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White-nose syndrome is associated 
with increased replication of a 
naturally persisting coronaviruses 
in bats
Christina M. Davy1,2, Michael E. Donaldson1, Sonu Subudhi   3, Noreen Rapin3, 
Lisa Warnecke4,5, James M. Turner4,6, Trent K. Bollinger7, Christopher J. Kyle8,  
Nicole A. S.-Y. Dorville4, Emma L. Kunkel4, Kaleigh J. O. Norquay4, Yvonne A. Dzal4, 
Craig K. R. Willis4 & Vikram Misra   3

Spillover of viruses from bats to other animals may be associated with increased contact between them, 
as well as increased shedding of viruses by bats. Here, we tested the prediction that little brown bats 
(Myotis lucifugus) co-infected with the M. lucifugus coronavirus (Myl-CoV) and with Pseudogymnoascus 
destructans (Pd), the fungus that causes bat white-nose syndrome (WNS), exhibit different disease 
severity, viral shedding and molecular responses than bats infected with only Myl-CoV or only P. 
destructans. We took advantage of the natural persistence of Myl-CoV in bats that were experimentally 
inoculated with P. destructans in a previous study. Here, we show that the intestines of virus-infected 
bats that were also infected with fungus contained on average 60-fold more viral RNA than bats 
with virus alone. Increased viral RNA in the intestines correlated with the severity of fungus-related 
pathology. Additionally, the intestines of bats infected with fungus exhibited different expression 
of mitogen-activated protein kinase pathway and cytokine related transcripts, irrespective of viral 
presence. Levels of coronavirus antibodies were also higher in fungal-infected bats. Our results suggest 
that the systemic effects of WNS may down-regulate anti-viral responses in bats persistently infected 
with M. lucifugus coronavirus and increase the potential of virus shedding.

Bats are hosts for many viruses and are thought to be the source of some viruses that have spilled over to humans 
and other mammals, causing fatal disease. These include coronaviruses causing severe acute respiratory syn-
drome (SARS1), Middle East respiratory syndrome (MERS2–5), porcine epidemic diarrhoea (PED6) and swine 
acute diarrhoea syndrome (SADS7); paramyxoviruses such as Hendra8 and Nipah9; and filoviruses like Marburg10 
and Ebola11. Four families of viruses that are pathogenic for other mammalian species (Coronaviridae12, 
Paramyxoviridae13, Rhabdoviridae14 and Filoviridae15) may also have originated in bats. These viruses often 
cause serious disease in their secondary hosts, but most do not appear to cause clinical signs or pathology in 
bats16–18, suggesting that uniquely benign relationships have co-evolved between the viruses and their primary 
bat hosts19,20. While relatively little is known about the dynamics of viral infections in bats, these viruses may 
be maintained in bat populations as a result of either persistently infected individuals, reinfection after waning 
immunity, or spatial transmission dynamics21,22.
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The rare spill-over of bat viruses to other animals may require a “perfect storm” of conditions that include 
increased contact between bats or fomites and other mammals, possibly due to human impacts on habitat qual-
ity23, and the ability of the virus to infect, replicate, and transmit in the secondary host. The rate of viral shedding 
and the amount of detectable virus associated with bat colonies fluctuates, with periodic increases often linked 
to parturition, waning maternal immunity, nutritional stress or increased energy consumption17,24–29. Increased 
shedding of virus by a colony of bats may reflect an increase in the proportion and number of susceptible individ-
uals, or an increase in the replication of persistent or latent virus normally suppressed by the host. For herpesvi-
ruses, reactivation from latency is linked to perturbations caused by a variety of physiological, immunological and 
psychological stressors30. The mechanisms that trigger the reactivation of latent or persistently infecting viruses 
are not clearly understood, but the increased shedding of viruses is correlated with some incidents of spill-over of 
bat viruses to other animals31.

The Canadian prairies are home to three species of bats, including the little brown bat (Myotis lucifugus), big 
brown bat (Eptesicus fuscus), and northern long-eared bat (Myotis septentrionalis). All three species hibernate 
from October to May, sometimes in shared hibernacula. We recently demonstrated that ~30% of hibernating M. 
lucifugus sampled over two years from hibernacula in Manitoba were infected with a coronavirus (Myl-CoV), 
which persisted at low levels in the intestine32. A closely related coronavirus also infects E. fuscus33.

Whereas bats appear to be relatively resistant to viral infections, a cold-adapted fungus that was recently 
introduced to North America has caused widespread mortality in some species of bats in eastern United States 
and Canada34–37. The fungus (Pseudogymnoascus destructans) causes white-nose syndrome (WNS) in hibernat-
ing bats, which is characterized by the growth of white fungal mycelia on the face and exposed skin of the wings 
and tail membranes. The visual and microscopic effects of P. destructans on the skin of the wings are associated 
with increased expression of several genes devoted to innate immunity and inflammation in wing tissue38,39. 
Profound systemic effects include dehydration, hypovolemia, metabolic acidosis, and fat depletion, which can 
lead to death40–42. Other systemic effects of bat WNS include an accumulation of neutrophils in the lungs, which 
is accompanied by an increase in the expression of several cytokine genes43 suggesting that even the most severely 
afflicted hibernating bats are capable of at least some systemic immune response to fungal infection.

Previous studies on other species have demonstrated that a fungus and a virus could interact during 
co-infection and affect each other44,45. Similar interactive impacts of co-infection with P. destructans and viruses 
on bat immune responses are not known. We used M. lucifugus experimentally-infected with P. destructans and/
or naturally infected with Myl-CoV as a model to understand how co-infections influence bat-virus interactions. 
This system allows us to avoid confounding factors of direct pathogen-pathogen interactions, because the fungus 
affects the skin, while the coronavirus infections occur internally, almost exclusively in the ileum and lungs32. We 
hypothesized that co-infection would alter the molecular response of bats to a persistent viral infection, and that 
viral shedding would change as a result of the increased or disrupted host immune response. To test this predic-
tion, we examined tissues collected from M. lucifugus at the termination of an earlier study that quantified the 
effects and pathogenesis of P. destructans in hibernating bats experimentally infected with the fungus37, some of 
which were naturally infected with Myl-CoV32. This combination of uninfected, virus-infected, fungus-infected 
and co-infected M. lucifugus allowed us to test our hypothesis that host responses to co-infection are synergistic 
and not simply additive.

Results
Quantitation of Myl-CoV and M. lucifugus RNA through reverse transcription quantitative PCR (RT-qPCR) 
and dual-RNA-sequencing indicated that co-infected bats had significantly higher levels of Myl-CoV RNA than 
bats infected with virus alone. The amount of Myl-CoV RNA correlated with the severity of WNS pathology in 
co-infected bats. This phenomenon was associated with specific molecular responses to co-infection, even in the 
intestines of bats where only one of the two pathogens was directly interacting with the host tissue. The levels 
of antibodies against Myl-CoV nucleocapsid (N) protein were also higher in co-infected bats. Each key result is 
discussed in detail below.

Bats co-infected with the fungus P. destructans and the virus Myl-CoV contained higher levels 
of Myl-CoV RNA.  Myl-CoV genomic RNA was detected in bats infected only with Myl-CoV (virus-infected; 
7/18), co-infected bats (European P. destructans (3/13), or with North American P. destructans (7/16)37). There 
was no difference in the frequency of Myl-CoV detected among these treatments (p-value = 0.801). We pooled 
bats infected with the two P. destructans isolates for all further analyses and tested whether co-infection with P. 
destructans and Myl-CoV correlated with an increase in viral replication. Our RT-qPCR data showed that the 
co-infected bats contained 60-fold more Myl-CoV RNA on average than the virus-infected bats (Mann Whitney 
test; p-value = 0.014; Fig. 1).

Relative quantities of Myl-CoV RNA detected in the ileum of the virus-infected bats were low and showed low 
variation (Standard Deviation of 1/ΔCT = 0.005), compared to the relative quantities of Myl-CoV RNA in the 
co-infected bats (Standard Deviation of 1/ΔCT = 0.108; Fig. 1). The severity of WNS fungal pathology varied in 
co-infected bats, and we therefore tested whether relative quantities of viral RNA in the ileum correlated with the 
severity of WNS symptoms. Levels of WNS severity were scored based on fungal hyphae on the wings, secondary 
bacteria in wing lesions, oedema, necrosis and inflammation in wing lesions, and levels of neutrophils in lung, 
spleen and liver interstitium. Severity scores for wing tissue, secondary bacteria in lesions, and neutrophils in the 
lung interstitium positively correlated with relative amounts of coronavirus RNA in hibernating bats (Table 1).

Bat responses to co-infection exceed the sum of responses to virus or fungal infection alone.  
To determine the extent to which Myl-CoV and P. destructans infection interact to influence gene expression in 
bat intestines, we performed a transcriptomic analysis on bat intestines comparing gene expression among the 
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uninfected, virus-infected, fungus-infected, and co-infected treatments (Fig. 2(A)). RNA sequencing resulted 
in ~700 million paired-end reads passing filters, 65% of which aligned to the M. lucifugus genome (Table S1). 
Pairwise differential gene expression varied widely among the four treatments with relatively low overlap in 
differentially expressed transcripts (Fig. 2B,C), Supplementary Fig. 1). Similar transcript expression occurred 
between the uninfected and virus-infected bats, and between the fungus-infected and co-infected bats.

The fungus-infected bats exhibited a much stronger response, differentially expressing 324 transcripts com-
pared to the uninfected bats (Table S3). These transcripts were enriched for only two gene ontology (GO) terms 
(cell-cell junction and plasma membrane part; Table S8). The co-infected bats differentially expressed 634 tran-
scripts relative to the uninfected bats (Table S4). These transcripts showed significant enrichment for 16 GO terms 
(Table S8). The co-infected and fungus-infected bats shared 108 similar differentially expressed transcripts and 
overlapped in one enriched GO term relative to the uninfected bats (plasma membrane part; Table S8).

Effect of infection with the fungus P. destructans on the expression of genes linked to innate 
responses in the intestines of bats infected with the virus Myl-CoV.  When we directly compared 
responses of bats among the four treatments, response of the virus-infected bats differed strongly from the 
responses of fungus-infected or co-infected bats (virus-infected vs. fungus-infected: 461 differentially expressed 
transcripts and 9 significantly enriched GO terms; virus-infected vs. co-infected: 473 transcripts and 43 enriched 
GO terms; Tables S5, S6, S7; Supplementary Fig. 1). These differences in gene expression patterns included genes 
that clustered in two processes relevant to host-pathogen interactions – the mitogen-activated protein kinase 
(MAPK) pathways and cytokine and innate immune responses. Table 2 lists genes from the two processes that 
were significantly either up or down-regulated when virus-infected bats were compared to co-infected bats. For 
the MAPK pathway-related transcripts, genes such as RSU1 and RERG were up-regulated while those, such as 
STYK1, RRAD, MAP3K and SRC were down-regulated. For cytokine-related genes several transcripts were sup-
pressed. When we compared the expression of the same genes for bats with WNS (combining fungus-infected 
and co-infected bats) and all bats without WNS (combining uninfected and virus-infected bats), we found similar 
differences (last two columns of Table 2). This suggested that superficial infection with fungus, P. destructans, was 
the driving factor for altered gene expression in the bat intestines.
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Figure 1.  Effect of white-nose syndrome on level of Myotis lucifugus coronavirus (Myl-CoV) RNA in 
hibernating little brown bats (M. lucifugus). Relative transcript levels for the coronavirus RNA polymerase 
gene for each bat are depicted as reciprocal of Cycle threshold (Ct) normalized separately (ΔCt) for levels 
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) transcripts in each sample. The horizontal bar 
represents the mean while the vertical bar indicates standard deviation from the mean. Significance (p value) 
is as calculated with an independent Mann-Whitney test. Virus-infected bats had lower 1/ΔCt values for 
coronavirus RNA than co-infected bats. The average fold-differences between virus-infected and co-infected 
bats were calculated from the difference between the average ΔCt values.

Correlate

Level of coronavirus RNA

Pearson 
Correlationa Significance N

Virus-infected/Co-infected −0.610 0.009 17

Average hyphae score −0.630 0.016 14

Average bacterial score −0.680 0.007 14

Lung interstitial neutrophils −0.618 0.043 11

Table 1.  Correlation between level of Myotis lucifugus coronavirus RNA and disease severity of white-nose 
syndrome (WNS) in co-infected M. lucifugus, based on three measures of WNS severity and pathology. 
aPearson’s coefficients were calculated for the ∆Ct levels for cytokine transcripts for bats in each treatment class 
and lung interstitial neutrophil scores and mean bacterial and hyphae scores for 5 wing sections for each bat.
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To confirm the results of the RNA-seq analysis, we selected 4 genes from Table 2, namely IRF1, RERG, SRC 
and IL22RA1, to be verified by RT-qPCR. We also included interleukin 10 (IL10) due to its biological relevance 
to immune regulation and because we had previously observed an increase in its expression related to fungal 
infection43. As we wanted to confirm whether WNS was driving gene expression in the intestines of bats, we per-
formed a two-group analysis for the RT-qPCR data. We combined all the bats without WNS into a single group 
(uninfected + virus-infected) and all the bats with WNS into the other group (fungus-infected + co-infected; 
Fig. 3(A)). Expression of Ras-like estrogen regulated growth inhibitor (RERG) increased while expression of 
Interleukin 22 receptor subunit alpha 1 (IL22 RA1) genes decreased in bats with WNS, irrespective of viral infec-
tion (Fig. 3C,E). Expression of the immune modulatory cytokine IL10 tended to be higher in bats with WNS than 
in bats without WNS, but the difference was not statistically significant (p-value = 0.07) (Fig. 3(F)).

White-nose syndrome is associated with increased coronavirus antibody levels in the 
co-infected bats.  In 2017, we performed a similar study, experimentally exposing 63 M. lucifugus to P. 
destructans as described in Warnecke et al.37. We performed IgG ELISA on blood plasma to detect Myl-CoV 
(coronavirus) N protein antibodies and found that 21/63 were positive for antibodies against the coronavirus. 
Of those 21 bats, 7 had detectable coronavirus RNA in their intestines suggesting an active infection, and 3 out 
of the 7 had been experimentally infected with P. destructans during the course of the study. We compared the 
ELISA optical density (O.D.) values of these virus-infected bats to co-infected bats (Fig. 4(A)) and found that the 
presence of P. destructans was associated with increased levels of coronavirus antibodies (Mann Whitney test, p 
value = 0.03; Fig. 4(B)).

Discussion
Our findings suggest that systemic responses of bats to WNS results in increased coronavirus replication and con-
sequently, increased viral shedding, which may lead to subsequent infection of susceptible animals. Coronavirus 
infection may in turn increase the severity of WNS pathology. This is the first study to examine the systemic 
effects of co-infection on either bat coronavirus or WNS, and our results raise important questions in regard to 
zoonotic spillover events. Although events of successful viral spillover to distantly related species are thought to 
be extremely rare, in recent years several coronaviruses have spilled over, including SARS-CoV1, MERS-CoV2–5, 
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Figure 2.  Co-infection of little brown bats (Myotis lucifugus) with M. lucifugus coronavirus (Myl-CoV) and 
Pseudogymnoascus destructans results in non-additive patterns of gene expression compared to sole infection 
with the virus or fungus. (A) Experimental design, showing the four treatments of little brown bat (Myotis 
lucifugus) established by experimental inoculation with Pseudogymnoascus destructans and by qPCR detection 
of persistent Myl-CoV infections: uninfected, virus-infected, fungus-infected and co-infected. (B) Differential 
gene expression identified by DESeq2 among virus-infected, fungus-infected and Co-infected bats as compared 
to the change each exhibited relative to uninfected bats. (C) Differential gene expression among the four 
treatments, detected by DESEQ2 and visualized in volcano plots. The log of the adjusted p-value is plotted as a 
function of the log ratio of differential expression. Colored data points represent different groups of genes based 
on fold change and false discovery rate (FDR) cutoff; red (>2 fold change, FDR <0.05), dark grey (>2 fold 
change, FDR > 0.05), light grey (<2 fold change, FDR < 0.05), black (<2 fold change, FDR > 0.05).
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PEDV-CoV6 and SADS-CoV7. These viruses are thought to have originated in bats. In addition, circumstantial 
evidence suggests that most alpha and beta coronaviruses that parasitize other mammals may have originated in 
bats as well46. If so, then understanding host-pathogen interactions between bats and coronaviruses could inform 
our ability to predict or manage the risk of spillover. In this study, we showed that a coronavirus exhibits low 
activity in its natural host, M. lucifugus, but that co-infection with a fungus increases the quantity of viral RNA 

Ensembl 
Gene Name Ensembl Description

Virus-infected vs. Co-
infected

All bats “without fungus” vs. 
all bats “with fungus”a

Log2 Fold 
Changeb Padj

Log2 Fold 
Changeb Padj

MAPK pathway-related transcripts

STYK1 serine/threonine/tyrosine kinase 1 −1.268 0.025 −1.516 <0.0001

RSU1 Ras suppressor protein 1 1.102 0.004

RRAD RRAD, Ras related glycolysis inhibitor and calcium 
channel regulator −1.297 0.028 −1.3 0.025

RERG RAS like estrogen regulated growth inhibitor 1.562 0.018 1.416 0.005

MAP3K11 mitogen-activated protein kinase 11 −1.14 0.040 −1.13 0.0002

SRC SRC proto-oncogene, non-receptor tyrosine kinase −1.539 0.013 −1.297 0.0037

Cytokine-related transcripts

IRF1 Interferon regulatory factor 1 −1.551 0.001 −1.444 0.0001

IFI6 Interferon alpha inducible protein 6 −1.798 0.014 −1.352 0.039

IL22RA1 Interleukin 22 receptor subunit alpha 1 −1.411 0.015 −1.314 0.002

SOCS6 Suppressor of cytokine signaling 6 −1.278 0.008 −1.534 <0.0001

Table 2.  RNA-sequencing identified differential expression of transcripts related to the MAPK pathway and 
to cytokine-related processes, comparing gene expression in the ileum of little brown bats (Myotis lucifugus) 
infected only with the M. lucifugus coronavirus (Myl-CoV; virus-infected) or co-infected with Myl-CoV and 
Pseudogymnoascus destructans. The last 2 columns show the same comparisons made after grouping bats that 
were not exposed to the fungus, and bats that were exposed to the fungus and exhibiting symptoms of WNS 
(irrespective of their viral infection status). a(Uninfected + virus-infected) vs. (fungus-infected + co-infected) 
bPositive log2 fold-change values indicate higher expression in the second listed treatments relative to the first.
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Figure 3.  Effect of white-nose syndrome (WNS) on the levels of immune genes IRF1, RERG, SRC, IL22RA1 
and IL10 expressed in the ileum of little brown bats (Myotis lucifugus). (A) Summary of the four treatments, 
with a red arrow indicating the two groups (“with fungus” and “without fungus”) that were compared. (B–F) 
The relative transcript levels of each gene for bats with and without WNS, depicted as reciprocal of Cycle 
threshold (Ct) normalized separately (ΔCt) for levels of transcripts for GAPDH in each sample. Statistical 
significance was calculated based on the independent Mann Whitney test. The difference in the two groups was 
significant for RERG and IL22RA1 genes.
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in the intestines. We have no reason to expect zoonotic transmission of the coronavirus i.e. Myl-CoV, but similar 
co-infection mechanisms may operate in tropical bat species harbouring potentially zoonotic viruses.

Our results suggest that secondary skin infection with the fungus, P. destructans, substantially increases the 
level of viral RNA in the intestine of hibernating bats. We showed that infection of the skin with P. destructans 
can cause profound changes in gene expression in the intestines, despite a lack of direct contact between intes-
tinal tissue and the fungus. Infection with P. destructans causes modulation of a number of immune responses, 
including down-regulation of interleukin and cell proliferation genes which may compromise bats’ ability to 
suppress viral activity (Fig. 5). Taken together, our results have implications for epidemiological studies of P. 
destructans, the WNS fungus and for research into viral spillovers, which should consider the potential implica-
tions of co-infections that increase viral shedding.

Complex strategies allow viruses to remain endemic in populations. These include a continuously replenished 
source of susceptible hosts for viruses that cause short-term acute infections with long-lasting immunity (e.g. 
measles virus), antigenic drift of virus (e.g. influenza virus) or waning immunity (e.g. respiratory syncytial virus) 
that allows reinfection, and long-lasting latent (e.g. herpesviruses) or persistent infections (e.g. pestiviruses) with 
sustained or periodic shedding. It is not yet clear how bat viruses are maintained in their natural host populations, 
or how they avoid extinction as host populations become immune and less susceptible. Persistent infections 
can be established in cultured cells with viruses that may have originated in bats, including Ebola virus47 and 
SARS-CoV48–50, but whether these viruses persist in their primary hosts is not known. Studies of persistence of 
bat viruses in infected bats have produced equivocal results. The lack of direct evidence supporting specific mod-
els of persistence or transmission dynamics represents a major knowledge gap in bat-virus ecology21.

We maintained M. lucifugus in controlled laboratory hibernation chambers for four months during these 
experiments, and we detected the coronavirus i.e. Myl-CoV, at the end of hibernation. These data imply that the 
coronavirus can persist in its host for at least the duration of hibernation, particularly as nucleotide variability 
among the detected coronavirus isolates showed that spread of coronavirus among bats within a chamber was 
unlikely32. In an extensive study of New World alphacoronaviruses, no target viruses were detected in the rec-
tal swabs of individual bats sampled over time46, suggesting that persistence and intensity of shedding varies 
among species or viruses. The authors concluded that the targeted coronaviruses do not persist in their hosts but 
are maintained in populations by the introduction of new susceptible individuals. However, their results could 
also reflect viral persistence in individual animals, with low baseline levels of virus replication and undetectable 
shedding interspersed with periods of increased replication and shedding that did not occur during the sampling 
period.

Periodic or seasonal increases in virus shedding associated with parturition, lactation, nutritional deprivation 
or environmental stress21,29 suggest persistent or latent viruses may be activated by hormonal or other systemic 
cues. Direct evidence linking a specific trigger to increased shedding has not yet been found. However, viral 
replication in rodent and bat cells persistently infected with Ebola virus increased greatly following modulation 
of the Ras/MAPK pathway with lipopolysaccharides or phorbol esters, and with the resulting suppression of the 
cells’ interferon response47–49. In experimental systems, the immune modulatory cytokine IL10 also influences 
viral persistence and replication51–53, although more study is required to clarify the effects of circulating cytokines 
on the replication of persistently infecting viruses. Nevertheless, these results suggest that circumstances which 
induce anti-inflammatory cytokines or suppress anti-viral innate responses, may provide a trigger for increased 
shedding of persistently infecting virus.

We discovered that bats with WNS (fungus-infected and co-infected) had significantly lower intestinal levels 
of transcripts for IL22RA1 and other interferon-related genes as compared to uninfected bats, and we observed 
the same trend in IL10 (although it was not significant; p value = 0.07). IL22RA1 is the receptor present on 
host cells, including intestinal cells, which help in initiating cellular signalling in response to IL22 produced by 
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Figure 4.  Little brown bats (Myotis lucifugus) coinfected with M. lucifugus coronavirus (Myl-CoV) and 
Pseudogymnoascus destructans produce more antibodies against Myl-CoV than bats infected only with Myl-
CoV. (A) Diagram summarizes the four treatments; the red arrow shows the two groups between which 
antibody levels were compared. (B) Antibody levels against the Myl-CoV N protein detected by antibody 
capture ELISA expressed as optical density (O.D.) values at 405 nm. Co-infected bats had significantly higher 
antibody levels than bats infected only with Myl-CoV (independent Mann Whitney test; p value = 0.03).



www.nature.com/scientificreports/

7SCIENTIFIC ReporTs |  (2018) 8:15508  | DOI:10.1038/s41598-018-33975-x

T-cells54. IL-22 leads to an increase in anti-microbial peptide production, cellular protection against damage 
and increases cellular proliferation55. Therefore, reduced IL-22 signalling in the intestines of bats with WNS, 
might suppress the bat defences that control the coronavirus infection. Additionally, previous studies have shown 
that the anti-inflammatory gene, IL10, is expressed more in the lungs of bats with WNS than in bats without 
it43. We saw a similar trend with the levels of IL10 in the intestines which might play a role in suppressing the 
immune response against the coronavirus. Another altered cytokine gene which was of interest was the suppres-
sor of cytokine signalling-6 (SOCS6) gene. Fungal-infected bats showed lower levels of SOCS6 transcripts, lack 
of which has been implicated in mild growth retardation in mice56. Overall, our results suggest that WNS triggers 
changes in gene expression in the ileum (Fig. 5). These may influence expression of interferon-stimulated-genes 
(ISGs), thereby leading to increased viral replication at the site of viral persistence. Interferon-related transcripts 
were more highly expressed in the ileum of virus-infected bats that did not have WNS, suggesting that the bat’s 
response to WNS causes down-regulation of interferon activity. Interferons may control coronavirus replica-
tion, as seen in cases of SARS-CoV57 and MERS-CoV58. Therefore, a decrease in interferon activity might cause 
an increase in coronavirus (Myl-CoV) replication. In addition to interferon-related genes, we also found that 
RERG, which is related to growth inhibition, was upregulated in the fungus-infected bats when compared to 
virus-infected bats. Upregulation of RERG could affect the rate of cell proliferation in the intestines59. Finally, this 
cascade of responses is associated with increased severity of WNS symptoms.

Bats with WNS experience a range of systemic disturbances including dehydration, hypovolemia, metabolic 
acidosis and fat depletion40,41, neutrophil infiltration of the lung interstitium, and increased expression of tran-
scripts related to anti-microbial and pro- and anti-inflammatory cytokines43. Taken together, this evidence sug-
gests that hibernating bats respond systemically to superficial fungal infection, and this hypothesis is further 
supported by our observations of altered gene expression in the ileum of fungus-infected bats.

Based on our results, we propose a model for how secondary infections may increase the replication and 
subsequent shedding of persistently infecting virus (Fig. 5). The establishment of WNS (or other secondary infec-
tion) impacts the tissue with which that pathogen interacts (in the case of P. destructans, the skin). Direct inter-
actions between the host and the secondary pathogen are limited to the affected tissue, but the systemic response 
to the disease triggers a cascade of immune responses, including increased release of cytokines or neutrophils. 
Affected cells such as intra-alveolar macrophages in the lungs or cells lining the intestine, may produce pro- or 
anti-inflammatory molecules and influence cells that harbour viral genomes. This cascade of host responses dis-
rupts the equilibrium between the persistently infecting virus and the cell’s innate immune response, leading to a 
dramatic increase in the expression of coronavirus (Myl-CoV) replication.

Virus-infected

Co-infected

Fungal infection
(P. destructans)

Fungal infection present

Intestines

Fungal infection absent

Higher levels of Virus
in Fungus infected bats

Less IL22 signalling

Reduced ISG expression
(Hernandez, 2015)

Wings

Suppression of 
MAPKinase related genes

Lowering of innate immune response
leading to increased viral load

Myl-CoV
(Virus)

Higher IL10 levels

Figure 5.  Hypothesized model of pathways involved in increased coronavirus shedding and white-nose 
syndrome (WNS) severity in little brown bats (Myotis lucifugus) co-infected with M. lucifugus coronavirus 
(Myl-CoV) and Pseudogymnoascus destructans. Diagram summarizes the changes observed by comparing 
co-infected bats with virus-infected bats. Bats with persistent Myl-CoV infection exhibit relatively low viral 
shedding. When bats are also infected with P. destructans (shown in yellow arrow) and develop WNS, the level 
of coronavirus increases. There is a change in the level of some immune genes, such as IL22, RERG and possibly 
IL10, which may have an effect on immune response and cell proliferation. The increase in coronavirus levels in 
co-infected bats is possibly due to the bats’ systemic response to WNS reducing innate anti-viral responses.
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Our assays were unfortunately limited to analysing viral and cytokine transcripts rather than protein, because 
reagents for detecting bat viral and host proteins are not yet available. We were not able to perform serial dilutions 
of the plasma to precisely quantify anti-viral titre due to the limitation in the amount of plasma obtained from 
each bat. The sample size was also small for this assay, because only 7 of the sampled bats had detectable levels of 
coronavirus in their intestines and were positive for viral antibodies. Despite these limitations, we demonstrated 
higher antibodies against the coronavirus in the plasma of co-infected bats when compared with virus-infected 
bats. This increased antibody level in co-infected bats might reflect an adaptive immune response to increased 
coronavirus replication in the intestines.

Our proposed hypothesis for the mechanism driving increased viral replication following pathogenic 
co-infection was worth testing, but our results are also consistent with an alternative hypothesis. Increased viral 
replication or viral load may affect the severity and population-level impacts of WNS. Bat mortality following the 
arrival of WNS varies widely from site to site, with populations decreasing from 30% to 99%35. Variation in the 
microclimate, and other ecological factors may drive some of this variation60, but our data suggest that cryptic 
viral infections may also play a role in determining survival rates for bats hibernating in sites colonized by P. 
destructans. We recommend that future studies on population-wide impact of WNS incorporate viral sampling 
to help better understand the role of co-infections on bat populations in the wild.

Materials and Methods
Sample acquisition.  Fifty-four male M. lucifugus were collected from a WNS-free cave in Manitoba, Canada 
in November 2010. Details of the experimental design as well as protocols for collecting and transporting bats, 
infection with P. destructans, maintenance of bats in hibernation and sample collection have been described 
previously37,43. Briefly, bats in groups of 18 were either sham-inoculated or inoculated with North American 
or European isolates of P. destructans. Bats were housed at 7 °C and >97% relative humidity with ad libitum 
water. All bats were equipped with data loggers to monitor skin temperatures. Bats were euthanized during 
the experiment when humanely required or at the termination of the experiment 120 days after inoculation. 
Immediately following euthanasia samples from segments of wing as well as various tissues were preserved in 
RNAlater (Qiagen, 76016) or in formalin. Samples in RNAlater were kept at −20 °C until they were processed. 
North American and European isolates of P. destructans caused similar disease outcomes37, so we did not differ-
entiate between the strains in subsequent analysis. The procedures for care, handling and euthanasia of bats were 
approved by the University Committee on Animal Care and Supply of the University of Saskatchewan (Protocol 
#20100120). Bats were collected under the province of Manitoba Wildlife Scientific Permit WB11145.

In 2017, a further 129 M. lucifugus were collected from a WNS-free cave in Manitoba, Canada in January 
under the Manitoba Sustainable Development Wildlife Scientific Permit No. SAR16009. Bats were euthanized 
during the experiment when humanely required or at the termination of the experiment 70 days after infection 
and a similar experiment was performed at the University of Winnipeg as described above (Protocol #AE08399).

Histological classification.  During necropsy, we collected representative samples for histopathology from 
all major organ systems. In addition, representative samples were taken from all areas of the wing and rolled on 
dental wax before placing in 10% neutral buffered formalin. Tissues were processed routinely for histology. Five 
µm sections were cut and stained with periodic acid-Schiff stain to highlight fungal hyphae. Liver and other 
tissues were processed routinely and stained with hematoxylin and eosin. Wings were scored on a scale of 0 to 5 
with 5 being very severe with >50% of wing covered in fungal hyphae. We used a bacterial score from 0 to 5, with 
5 indicating wide-spread and abundant bacteria being present in many areas within the dermis and underlying 
connective tissues. Average scores from 5 sections of wing were used for analysis. Interstitial lung neutrophil 
assessment was similarly evaluated on a scale of 0 to 5, with 5 being very severe. Average scores from the 5 sec-
tions were used for analysis.

RNA Extraction.  Tissues preserved in RNAlater were homogenized in 2 ml sealed vials with a 5 mm stainless 
steel bead, 0.1 g of 0.1 mm zirconia/silica beads and 350 μl Buffer RLT Plus (with β-mercaptoethanol, RNeasy Plus 
Mini Kit, Qiagen, 74136) using a Retsch MM400 Oscillating Mill at 30 Hz for 4 min. Total RNA was extracted fol-
lowing the manufacturers protocol. RNA integrity was assessed using RNA 6000 Nano Kit (Agilent, 5067-1511) 
with the Agilent 2100 Bioanalyzer.

cDNA Synthesis.  cDNA was synthesized from 1 μg of RNA (or less if concentrations were too low) per reac-
tion using QuantiTect Reverse Transcription Kit (Qiagen 205313). cDNA samples were stored at −80 °C until 
they were used for PCR.

Polymerase Chain Reaction (PCR).  Tissue samples were identified by their submission numbers with no 
reference to treatment class prior to analysis with PCR, so that evaluation of the results could not be inadvertently 
biased by knowledge of the treatment. We used semi-nested PCR to detect Myl-CoV. Primers were designed 
from the partial sequence of Rocky Mountain bat coronavirus replicase (accession number EF544563) (Table S9). 
The primary reaction used primers MyCVF1 and MyCVR1 to yield a 441 bp product. The secondary or nested 
reaction used primers MyCVF2 and MyCV R1 to give a 273 bp product. PCR were performed in a MJ Research 
PTC-200 thermal cycler using TopTaq DNA Polymerase (Qiagen, 200205). Each reaction (50 μl) contained 2 μl 
cDNA (or 1 µl primary reaction), 200 nM of each primer, 200 µM of each dNTP (Invitrogen, 10297018), TopTaq 
PCR buffer and 0.25 μl TopTaq. The thermal profile for the primary reaction was: 94 °C for 3 min (denaturation), 
followed by 30 cycles of 94 °C for 30 sec, 45 °C for 30 sec (annealing), 72 °C for 1 min and finally 72 °C for 10 min. 
The thermal profile used for the secondary reaction was 94 °C for 3 min (denaturation), then 30 cycles of 94 °C 
for 30 sec, 55 °C for 30 sec (annealing), 72 °C for 1 min and finally 72 °C for 10 min. PCR products were ana-
lyzed on ethidium bromide stained 1.0% agarose gels (Invitrogen 15510-027 in 0.5X TBE). PCR products were 
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purified using MinElute PCR Purification Kit (Qiagen, 28006) and verified by sequencing (Macrogen, Korea). If 
more than one DNA band was present, the appropriate size band was cut out and purified using QIAquick Gel 
Extraction Kit (Qiagen, 28706) before sequencing.

Reverse-Transcription Quantitative PCR (RT-qPCR).  The Stratagene MX3005P qPCR System was used 
in conjunction with QuantiFast SYBR Green PCR Kit (Qiagen 204056). We quantified coronavirus with RNA 
primers MyCVF2 and MyCV R1 (Table S9). For initial experiments data were normalized to two transcripts – 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-actin43. As there were no differences in results, 
all subsequent experiments used only GAPDH as a normalizer using primers GAPDH US and GAPDH DS 
(designed for use in humans but also amplify M. lucifugus transcripts – Table S9). As well, a no-template (neg-
ative) control was included with every set of primers. Each 25 μl reaction contained: 1 μM of each primer set, 
12.5 μl SYBR Green Master Mix and 8.5 μl of diluted cDNA.

To verify the RNAseq data, cDNA from ileum samples in which coronavirus RNA had been detected via 
RT-qPCR were analysed using the following primers, IL22RA1, IRF1, RERG and SRC (for sequence of prim-
ers see Table S9). Primers were designed by aligning primers described for quantitating human cytokines 
(PrimerBank) with annotated transcripts of M. lucifugus genes: c-jun (Accession number: XM_006096110.1), 
cyclin D1 (XM_006098046.1), IL10 (XM_006094865.1) and TNF alpha (XM_006104644.1). The interferon 
beta primers were designed using the annotated transcript for the E. fuscus gene (XM_008145044.1), which also 
amplify transcripts from M. lucifugus. Primer efficiencies were determined from cycle threshold (Ct) values of 
purified PCR products serially diluted and re-amplified. Primers amplified targets with an efficiency of about 
100% and in all cases the identities of the PCR products were confirmed by their specific dissociation tempera-
ture, specific sizes on agarose gels and by sequencing.

We observed primer-dimers in some reactions in addition to the PCR product. The dimers dissociated at 
77 °C, while the specific coronavirus polymerase product dissociated at 83 °C. To avoid false positives due to 
primer-dimers, the thermocycler was programmed to read at 80 °C (in the cycle after the primer-dimer had dis-
sociated, and before dissociation of the target product). The thermal profile used was 95 °C for 5 min followed by 
40 cycles of 95 °C for 10 sec, 60 °C for 30 sec (readings taken at 80 °C), and a final cycle of dissociation of product 
95 °C for 1 min, 55 °C for 30 sec and 95 °C for 30 sec (readings taken at every degree between 55 °C and 95 °C). 
Only results from reactions that yielded unambiguous results were used for analysis.

RNA-seq Analysis.  To explore the mechanisms driving high virus load in bats with WNS, we performed 
RNA-seq analysis which could potentially screen all targets in the bat intestinal cells. We targeted the ileum 
transcriptome because this is the tissue in which Myl-CoV is present in detectable concentrations32. Extraction of 
RNA from ileum tissue, which includes the ileum and potential gut contents have been described in previous sec-
tions. Bats were screened for Myl-CoV using RT-qPCR, and bats were assigned post hoc to treatment groups rep-
resenting four infection histories (Fig. 1(A)): 1) Uninfected (bats were not infected with virus or fungus; n = 5), 2) 
Virus-infected (bats were naïve to the fungus but had a persistent Myl-CoV infection; n = 4), 3) Fungus-infected 
(bats were experimentally infected with P. destructans and no virus was detected; n = 3), or 4) Co-infected (bats 
with persistent Myl-CoV infections that were also experimentally infected with P. destructans; n = 4). All samples 
had adequate RNA quality for sequencing (i.e. RIN value >7).

RNA isolation.  Tissues were homogenized in 2 ml sealed vials with a 5 mm steel bead, 0.1 g of 0.1 mm zir-
conium silica beads, 350 µL of RLT buffer (with β-mercaptoethanol) (RNeasy Plus Kit, Qiagen) using a Retsch 
MM400 tissue homogenizer at 30 Hz twice for 2 minutes each. Total RNA from tissues was extracted using the 
procedure provided with the RNeasy Plus Kit.

cDNA library preparation and RNA-sequencing.  Total RNA was sent to The Centre for Applied 
Genomics at The Hospital for Sick Children (Toronto, Canada). RNA quality was assessed using a Bioanalyzer 
(Agilent Technologies). We retained all samples with a DV200 (percentage of RNA fragments greater than 200 
nt) greater than 85% (Table S1), discarding one Co-infected sample with a DV200 = 42%. Poly(A) mRNA was 
enriched using oligo dT-beads, and cDNA libraries were prepared using the NEBNext Ultra Directional RNA 
Library Prep Kit for Illumina (New England BioLabs). Barcoded libraries were pooled in equimolar quantities, 
and the sixteen libraries were sequenced on three lanes of a HiSeq. 2500 System (Illumina Inc.), which generated 
126 bp paired-end reads.

RNA-sequencing read alignment and analysis.  We used FastQC v0.11.561 to assess sequence qual-
ity and Trimmomatic v0.3662 to remove the adapter sequences and low-quality bases from reads with the fol-
lowing settings: Illumina clop:2:30:10, leading:3, tailing:3, slidingwindow:4:15, minlength:36. We used TopHat 
v2.1.163 to align the trimmed paired-end reads from each library, separately, to the Ensembl M. lucifugus genome 
sequence (Myoluc2.064) in strand-specific mode (fr-firststrand) with mate-inner-dist values specific for the insert 
size of each library. We used featureCounts65 to count reads mapped to the Myoluc2.0 genome annotation in 
strand-specific mode (reversely stranded), counting paired-end reads as fragments, counting only those frag-
ments where both reads aligned successfully, counting multi-mapping fragments, and excluding chimeric frag-
ments. We assessed the variability within and between the treatments using the R package SARTools v.1.3.066. The 
featureCount-estimated gene counts were transformed by a variance stabilizing method (VST) using SARTools.

We identified differentially expressed genes between each of the treatments using DESeq2 v.1.12.3, run in 
SARTools. Custom SARTools-based DESeq settings included: cooksCutoff = TRUE (perform outliers detection), 
independentFiltering = TRUE, alpha = 0.05 (threshold of statistical significance), pAdjustMethod = BH (benja-
mini hochberg p-value adjustment method), and locfunc = median (estimate size factors). Differentially expressed 
genes were identified as having a fold-change >2 and false discovery rate (FDR)-corrected p-values < 0.0567. We 
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produced volcano plots representing the differential expression comparisons by plotting the log of the adjusted p 
value as a function of the log ratio of differential expression. We used the Ensembl gene IDs identified by DESeq2 
as input for the web-based g:Profiler68 to test for gene ontology (GO) term enrichment among the differentially 
expressed genes, using a FDR significance threshold <0.05. These GO-terms and their corresponding p-values 
were used in REViGO69 to visualize significant enrichment of biological processes.

IgG capture ELISA against Myl-CoV N protein.  Purified, glutathione-s-transferase (GST)-tagged 
Myl-CoV N protein expressed in infected E. coli BL21 cells was used as positive antigen, and GST-tagged protein 
expressed in uninfected BL21 cells was used as negative antigen. 96-well Costar high-binding round-bottom 
assay plates were coated with 0.05 µg/well of either antigen diluted in 0.1 M phosphate buffered saline (pH 7.4) 
in a total volume of 100 µl. Plates were covered and incubated overnight at 4 °C and washed three times with 
300 µl of PBS-Tween 20 (0.1%) immediately prior to use. Serum samples were diluted to 1:100 in PBS-Tween 
20 (0.2%) supplemented with 5% fetal bovine serum (Gibco, Thermofisher). 100 µl of each sample was added 
in parallel to a positive and negative antigen plate and incubated at 37 °C for one hour and washed as above. A 
peroxidase-labelled goat anti-bat IgG secondary antibody (0.05 µg in 100 µl per well, Bethyl labs) was added, incu-
bated for one hour at 37 °C and washed as above. Peroxidase substrate (2,2’-azino-bis (3-ethylbenzthiazoline-6-
sulfonic acid)) was added to each well and colour development was quantified 30 minutes later by measuring the 
optical density at 405 nm using an ELISA microplate reader. The ELISA cut-off value (0.39) was calculated as the 
[(mean bat plasma O.D. values for bats that were PCR-negative for Myl-CoV in the ileum) + (3x standard devia-
tions of those O.D values)].

Statistical analysis.  Data from RT-qPCR and histopathological scores were analysed with SPSS Statistics 
version 23. The relative levels of a transcript for each bat were calculated as RT-qPCR Cycle threshold (Ct) nor-
malized separately (ΔCt) to the “house-keeping” gene GAPDH. A ΔCt reduction of one (1) indicates an approx-
imately two-fold higher concentration of RNA. The significance of differences of mean values of ΔCt between 
co-infected bats and virus-infected bats were determined using an independent-samples Mann-Whitney U test. 
We calculated Pearson’s coefficients to test the correlation between ΔCt levels for coronavirus polymerase cDNA 
for bats in each treatment class, and average scores for fungal hyphae, secondary bacteria, oedema, necrosis and 
inflammation in wing lesions, as well as bacteremia and levels of neutrophils in lung, spleen and liver interstitium.

Ethical Statement.  Bat studies were carried out in strict compliance with Canadian Council on Animal 
Care guidelines and the procedure for care, handling, and euthanasia of bats were approved by the University 
Committee on Animal Care and Supply of the University of Saskatchewan (protocol s#20100120).

Data Accessibility
All RNA-seq fastq files have been submitted to the NCBI Sequence Read Archive database (accession number 
SRX3752319- SRX3752333). These data files will be released to the public upon acceptance of this manuscript 
for publication.
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