# ACS APPLIED MATERIALS & INTERFACES



Subscriber access provided by Nottingham Trent University

# Biological and Medical Applications of Materials and Interfaces

# A Novel Gold Nanorod-based HR1 Peptide Inhibitor for Middle East Respiratory Syndrome Coronavirus

Xinyu Huang, Meng Li, Yurui Xu, Jikang Zhang, Xia Meng, Xueying An, Lei Sun, Leilei Guo, Xue Shan, Junliang Ge, Jiao Chen, Yadong Luo, Heming Wu, Yu Zhang, Qing Jiang, and Xinghai Ning ACS Appl. Mater. Interfaces, Just Accepted Manuscript • DOI: 10.1021/acsami.9b04240 • Publication Date (Web): 17 May 2019 Downloaded from http://pubs.acs.org on May 19, 2019

#### Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.



is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

# A Novel Gold Nanorod-based HR1 Peptide Inhibitor for Middle East Respiratory Syndrome Coronavirus

Xinyu Huang,<sup>a</sup># Meng Li,<sup>b</sup># Yurui Xu, <sup>a</sup> Jikang Zhang,<sup>a</sup> Xia Meng,<sup>a</sup> Xueying An,<sup>c</sup> Lei Sun,<sup>a</sup> Leilei Guo,<sup>d</sup> Xue Shan,<sup>a</sup> Junliang Ge,<sup>a</sup> Jiao Chen,<sup>e</sup> Yadong Luo,<sup>b</sup> Heming Wu,<sup>b</sup> Yu Zhang,\* <sup>a</sup> Qing Jiang,\*<sup>c</sup> and Xinghai Ning\*<sup>a</sup>

<sup>a</sup> Nanjing National Laboratory of Microstructures, College of Engineering and Applied Sciences,
 Nanjing University, Nanjing 210093, China

<sup>b</sup> Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China

<sup>c</sup> State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China

<sup>d</sup> State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China

e Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China

# These authors contributed equally to this work.

KEYWORDS: gold nanorods, peptides, inhibitors, viral infections, MERS

ABSTRACT: Middle East respiratory syndrome coronavirus (MERS-CoV) causes a SARS-like illness with high pathogenicity and mortality due to the lack of effective therapeutics. Currently, only few antiviral agents are available for the treatment of MERS, but their effects have been greatly impaired by low antiviral activity, poor metabolic stability and serious adverse effect. Therefore, the development of effective treatment for MERS is urgently needed. In this study, a series of HR1 peptide inhibitors have been developed to inhibit HR1/HR2-mediated membrane fusion between MERS-CoV and host cells, which is the major pathway of MERS-CoV-induced host infections. Particularly, peptide PIH exhibits potent inhibitory activity with  $IC_{50}$  of 1.171  $\mu$ M, and its inhibitory effects can be further increased to ten-fold by forming the gold nanorod complex (PIH-AuNRs). In addition, PIH-AuNRs display enhanced metabolic stability and biocompatibility *in vitro* and *in vivo*, and therefore effectively prevent MERS-CoV-associated membrane fusion. In summary, PIH-AuNRs represent a novel class of antiviral agents, and have the great potential of treating MERS in the clinic.

#### Introduction

Middle East respiratory syndrome coronavirus (MERS-CoV) has been identified as an infective virus<sup>1</sup> with high pathogenicity<sup>2, 3</sup> and mortality rate<sup>4</sup>. MERS-CoV can cause severe respiratory illnesses,<sup>5</sup> and is recognized as a serious threat to public health.<sup>6</sup> Currently, there has been no vaccine or effective treatment for MERS,<sup>7</sup> which mainly relies on supportive treatment and the combination therapy of traditional antiviral drugs, such as interferon and ritonavir. However, neither of them showed good antiviral effects on the patients, leading to limited therapeutic

applications.<sup>8-10</sup> Therefore, there is an urgent need for developing effective therapeutics for MERS.

A growing number of evidences show that MERS-CoV infections were caused by Spike protein (S protein)-mediated membrane fusion between MERS-CoV and host cells.<sup>11</sup> S protein is a type I transmembrane glycoprotein expressed as a trimer on the surface of the viral envelope, and plays a critical role in MERS infections.<sup>12</sup> S protein contains two functional subunits, S1 and S2. S1 protein is responsible for binding host cells through recognizing dipeptidyl peptidase 4 receptors (DPP4),<sup>13</sup> and consequently trigger S2 protein to mediate the fusion of MERS-CoV envelope with host cell membrane. The critical roles of S2 protein in regulating MERS-CoV infections indicate that inhibition of S2 protein function is a potent approach for MERS treatment. The S2 protein consists of three major domains, HR1 (heptad repeat 1), HR2 (heptad repeat 2) and fusion peptides (FP). When S1 binds to the dipeptidyl peptidase 4 receptor (DPP4), the FP inserts into the host cell membrane, and then the HR1 triplex and the HR2 triplex bind to each other to form a 6-helix bundle (6-HB).<sup>14</sup> The 6-HB draws the MERS-CoV envelope and the host cell membrane toward each other, and promotes their fusion, leading to the release of the viral genetic RNA into host cells (Figure 1). Therefore, the formation of 6-HB plays a key role in mediating the fusion of the MERS-CoV envelope with the target cell membrane, making it a good target for preventing MERS-CoV infections.

In this study, we have developed a series of peptide inhibitors, based on the crystal structure of 6-HB formed by the interaction of HR1 and HR2 domains (PDB ID: 4NJL). Peptide inhibitors were designed using the docking-based virtual screening method, on the basis of the HR2 sequence. We identified an  $\alpha$ -helix peptide, named PIH, which could mimic the conformation of HR2, and selectively interact with HR1 to block the formation of 6-HB. PIH showed good

inhibitory activity against the S protein-mediated membrane fusion; particularly, PIH-modified gold nanorods (PIH-AuNRs) showed enhanced inhibitory activity. In addition, PIH-AuNR with improved biostability and biocompatibility, had better physical and pharmaceutical profile than PIH alone, endowing potential clinical applications. Therefore, PIH-AuNRs hold the great potential for the treatment of Middle East Respiratory Syndrome Coronavirus.

#### **Experimental Section**

**Materials and Instrument.** All chemicals and solvents are of reagent grade unless otherwise indicated. All chemicals were purchased from Sigma and Aladdin Reagent Company without further purification. HR1 was purchased from KareBay Biochem Company. Cell Counting Kit-8 (CCK-8) was purchased from Beyotime. 293T cell line and Huh-7 cell line were obtained from Cell Bank of Chinese Academy of Science. 293T and Huh-7 cell lines were cultured in Dulbecco's Modified Eagle Medium (DMEM) (Invitrogen) supplemented with 10% fetal bovine serum (FBS) (Gibco) and penicillin/streptomycin (1%, w/v). ICR female mice were purchased from Nanjing Qinglongshan Experimental Animal Center. Mice used in experiments were 8–10 weeks old. All procedures were approved by Affiliated Drum Tower Hospital of Nanjing University Medical School Ethics Committee and carried out in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals.

Peptide synthesis was performed on an automated peptide synthesizer (Multisyntech). Highperformance liquid chromatography (HPLC, Shimadzu) was used for peptide purification and serum stability study. MS were acquired from the NJU Mass Spectral Facility using electrospray ionization (ESI-TOF). Circular dichroism (CD) spectroscopy analysis was performed on a J-815 spectropolarimeter (Jasco). Fluorescence images were taken by an inverted fluorescence

microscope (Nikon Instruments). Cytotoxicity assays were performed on a microplate reader (Tecan Group). Transmission electron microscope (TEM) images were taken with an H-800 transmission electron microscope (Hitachi). Dynamic light scattering (DLS) was performed on a Zetasizer Nano ZS (Malvern). UV-Vis spectra were measured on JINGHUA UV-1800 spectrophotometer.

**Design of HR1 peptide inhibitors.** The 3D structure of the peptides were modeled based on the template of the HR2 helix of MERS-CoV fusion core (PDB ID: 4NJL), using the Accelrys Discovery Studio 4.1 software. The best homology model was refined by restrained energy minimization with adopting the OPLS3 force field. The heavy atoms were converged to RMSD of 2.0 Å. Then the peptides were docked with the HR1 helices of MERS-CoV fusion core using Schrodinger 2015-3. The binding energies of the peptides with HR1 core helices of MERS-CoV were estimated by MM-GBSA method using VSGB solvation model in OPLS3 force field. Interactions between the peptides and HR1 core helices of MERS-CoV were viewed in PyMOL 1.7.4. The peptide with highest binding energy was chosen for further inhibition studies.

Synthesis of PIH. PIH was synthesized with the standard solid-phase procedure,<sup>15</sup> purified by HPLC and identified by LC-ESI-MS. VP-ODS C18 column ( $150 \times 4.6 \text{ mm}$ , 5 µm) was used for HPLC analyses. The solvent A (0.1% TFA in 100% water (v/v)) and the solvent B (0.1% TFA in 80% acetonitrile and 20% water (v/v)) were chosen as mobile phases. The flow rate was 1mL/minute, and the flow gradient from 50% to 75% solvent B was performed during 20 minutes.

**Circular dichroism (CD) spectroscopy analysis.** The secondary structure of PIH was determined by circular dichroism analysis. The PIH was dissolved in PBS (pH 7.2), and the CD

spectra were measured on a J-815 spectropolarimeter at 20°C with a parameter set of 1.0 nm bandwidth in the range of 190 to 260 nm, 0.1 nm resolution, 100  $\mu$ m path length, 4-second response time, and a 50 nm/minute scanning speed. The absorbance of PBS was subtracted to calibrate the spectra of PIH.

**Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS–PAGE).** SDS–PAGE was performed to measure the formation of 6-HB with HR1 (KareBay) and PIH.<sup>16,17</sup> HR1 (10 mM), PIH (10 mM) and their mixture (25 mM, HR1: PIH= 1: 1), were incubated in PBS at room temperature for 30 minutes. All samples were diluted with loading buffer, loaded onto the gel, and run at 120 V for 60 minutes, until the tracking dye reached the bottom edge of the gel. The gel was then stained and imaged with Coomassie blue.

**Serum stability.** Enzymatic degradation studies were carried out using 100% fetal calf serum. PIH solution (20 µL, 10 mM in PBS) was added to serum (380 µL), and was incubated at 37 °C for 12 hours. The cultured mixtures (20 µL) were taken at different time points (0, 0.2, 0.5, 1, 2, 4, 6, 8 or 12 hour), and the samples were added glacial acetonitrile (90 µL), vortexed, and maintained in ice bath for 5 minutes. Then, samples were diluted with acetic acid (90 µL, 0.5%, v/v) and centrifuged at 10, 000 g for 15 minutes. The supernatants were collected for RP-HPLC analysis. The process of peptide degradation conforms to the first-order kinetic equation:  $A_i = A_0 e^{-kt}$ .

**MERS-CoV S2 subunit-mediated cell fusion model.** 293T cells were transfected with the plasmid of either pAAV-IRES-MERS-EGFP or pAAV-IRES-EGFP, and cultured at 37°C for 36 hours, generating 293T/MERS/EGFP and 293T/EGFP, respectively. Huh-7 cells ( $5 \times 10^4$ ) were incubated in 96-well microplates at 37°C for 12 hours, followed by adding  $2 \times 10^4$  293T/EGFP or

293T/MERS/EGFP cells. The cell fusion was imaged using an inverted fluorescence microscope at different time points (0, 1, 2, 3, 4, 5, 6, 8, 12 hour). The fused cells were identified by measuring EGFP fluorescence intensity, which is at least one-fold lower in fused cells than intact cells. The numbers of cell fusion were calculated using the Image J software. The fusion rates (*F*) were calculated using the following formula:  $N/T \times 100\%$ . '*N*' represents the numbers of fused cells; '*T*' represents the total numbers of 293T cells.

Inhibition of MERS-CoV S2 subunit-mediated cell fusion. 293T/MERS/EGFP or 293T/EGFP cells (2×10<sup>4</sup>) were pre-treated with HR1 inhibitors for 30 minutes, and then added into Huh-7 cells (5×10<sup>4</sup>). After co-culture at 37°C for 6 hours, cell fusions were imaged using a fluorescence microscope. The numbers of cell fusion were calculated using the Image J software. The fusion rates ( $F_P$ ,  $F_H$ ,  $F_N$ ) were calculated using the following formula:  $F/A \times 100\%$ . 'F' represents the numbers of fused cells; 'A' represents the total numbers of 293T cells; ' $F_P$ ' represents the cell fusion rate between 293T/MERS/EGFP and Huh-7 cells in absence of HR1 inhibitors; ' $F_H$ ' represents the cell fusion rate between 293T/MERS/EGFP cells and Huh-7 cells in the presence of HR1 inhibitors; ' $F_N$ ' represents the cell fusion rate of between 293T/EGFP cells and Huh-7 cells in absence of HR1 inhibitors. The inhibition rate (I) of cell fusions was calculated using the following formula: ( $F_P - F_H$ )/( $F_P - F_N$ )×100%. The concentration for 50% inhibition ( $IC_{50}$ ) was calculated using the IBM SPSS software.

**Cytotoxicity assay.** The cytotoxicity was evaluated with a CCK-8 kit. Huh-7, 293T and L02 cells ( $5 \times 10^3$  cells) were seeded into 96-well microplates, and cultured at 37 °C overnight. Cells were incubated with different concentrations of HR1 inhibitors for 48 hours, followed by adding

CCK-8 solution (10  $\mu$ L). The absorbance at 570 nm was read on a microplate reader after 2-hour incubation.

The preparation and characterization of PIH-AuNRs. PIH (8  $\mu$ L, 1.3 mM) was added into the solution of excess AuNRs (2.0 mL, 3.4 nM) with a molar ratio of 1500: 1 between PIH and AuNRs. After 12-hour stirring, the reaction mixture was filtrated (pore size, 0.22  $\mu$ m) and centrifuged, and the supernatant was analyzed by HPLC to evaluate the conjugation yield. HPLC data showed that that all PIH was successfully immobilized on AuNRs, generating PIH-modified AuNRs, which has about 1529 PIH on single AuNR. Then, PIH-modified AuNRs were further coated with HS-PEG2000-COOH (2.0 mL, 100  $\mu$ M) for 12 hours, and PIH-AuNRs were collected by centrifugation at 10, 000 rpm for 15 minutes, and washed by PBS buffer for twice. The final PIH-AuNRs were resuspended in PBS buffer, and stored at 4 °C . PIH-AuNRs was characterized with TEM. The zeta potential of PIH-AuNRs was measured by DLS with a scattering angle 90° at 25°C.

**Biochemical parameters.** ICR mice were injected with PIH-AuNRs (20 mg kg<sup>-1</sup>) or saline via the tail vein every 3 days for 12 days. At day 12, mice were sacrificed, and the serum was collected for biochemical studies. ALT, AST, TBIL, TNF- $\alpha$ , Il-1 $\beta$  and Il-6 were measured using ELISA assays.

**Histopathology studies.** ICR mice, treated with PIH-AuNRs (20 mg kg<sup>-1</sup>) or saline for 12 days, were sacrificed, and various organs were harvested, embedded in the paraffin, and stained with hematoxylin and eosin (H&E). The images were captured using inverted microscope.

 Statistics. All experiments were repeated at least 3 times with 6-12 biological replicates. Error bars represent standard error of the mean from independent samples assayed within the experiments. Statistical analysis was done with GraphPad Prism 6 software. Statistical significance was calculated using unpaired Student's t-test, and a p-value<0.05 was considered to be statistically significant. Results and Discussion

**Molecular design of PIH.** The amino-acid sequence of MERS-CoV S protein (GenBank: JX869059.1) was obtained from NCBI, containing HR1 domain (residues 984–1,104) and HR2 domain (residues 1,246–1,295) (Figure 2a). Based on the interaction model between HR1 and HR2 in 6-HB, we have designed a series of peptide inhibitors, which mimic the HR2 helix conformation (Table S1). After mimetic screening, we obtained a peptide inhibitor, named PIH, which showed the highest binding affinity for HR1. PIH shared 65% identity with the HR2 helix (PDB ID: 4NJL) with nine modified amino acids, and had the highest docking score of -365.882 kcal mol<sup>-1</sup> (Figure 2b), indicating that PIH is a promising HR1 inhibitor. We constructed the 3D structure of PIH based on HR2 helix using homology modelling of Discovery Studio 4.1 software. As shown in Figure 2c, PIH has a regular  $\alpha$ -helix in the middle region and random coils at the N- and C-terminals. Docking studies showed that PIH and HR1 helix could form the 6-HB analog through hydrophobic and hydrophilic interactions (Figure 2d and 2e), which is consistent with the interaction between HR1 and HR2 helix in MERS-CoV fusion core.

PIH interacted with hydrophobic grooves formed between two adjacent HR1 helices mainly through hydrophobic interactions, involving N-terminal portion (L2, I5, L9, L10),  $\alpha$ -helix portion (L12, M16, L19, V22, V23, L26), and C-terminal portion (Y30, I31, L33 and L36) of

PIH (Figure 2d). In addition, PIH also interacted with HR1 hydrophilic regions by hydrogen bonds. For example, the N-terminal portion (S1, T3, E8, L10, D11, L12) of PIH formed eight hydrogen bonds with one HR1 helix (G1250, E1039, K1035, N1028, K1021) and the adjacent HR1 helix (N1027, Q1023); the  $\alpha$ -helix portion (E13, E15, M16, V23, K25, E27, E28, S29) of PIH formed seven hydrogen bonds with one HR1 helix (K1021, T1010, K1000) and the adjacent HR1 helix (Q1023, N1016, Q1009); the C-terminal portion (Y30, I31, L36) of PIH formed five hydrogen bonds with one HR1 helix (K1000, N993) and the adjacent HR1 helix (N1002, Q1009). Therefore, PIH was tightly bound to HR1 through the hydrophobic and hydrophilic interactions, and competitively inhibited the formation of 6-HB, indicating that PIH is a potent inhibitor against MERS-CoV infections.

**Biophysical characterization of PIH.** We synthesized PIH and fully characterized its biophysical and biological properties. PIH was synthesized by the solid phase synthetic method, and characterized by LC-MS (Figure 3a and Figure S1). PIH spontaneously formed  $\alpha$ -helix in PBS, which was confirmed by circular-dichroism spectroscopy (Figure 3b). As expected, PIH has two negative absorption (208, 222 nm), indicating that it forms  $\alpha$ -helix structure.

We proposed that inhibiting the formation of 6-HB between HR1 and HR2 is an effective method to prevent MERS-CoV infections. We therefore investigated whether PIH could form the complex with HR1. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that a new band of ~26 kDa was observed in the mixture of PIH and HR1 (Figure 3c), which matches the molecular mass of a 6-HB formed by HR1 (~4 kDa) and PIH (~4 kDa), which is consistent with native polyacrylamide-gel electrophoresis (N-PAGE) analysis (Figure S2). Therefore, PIH interacts with HR1 to form 6-HB, and is a promising HR1 inhibitor.

**Serum stability of PIH**. Peptide drugs have been recognized as ideal therapeutics for critical diseases in the clinic due to good biocompatibility, specificity and efficacy.<sup>18</sup> However, their clinical potential has been hindered by their low stability and bioavailability. Particularly, protein kinases randomly decompose peptide drugs, and consequently minimize their *in vivo* potency. Therefore, we evaluated the stability of PIH in the fetal calf serum, and its half-life was calculated. As shown in Figure 3d, PIH displayed good metabolic stability in serum with the  $t_{1/2}$  of 6.93 hours, indicating that it is a potent drug candidate for *in vivo* applications.

**PIH-induced inhibition of S2 subunit-mediated cell fusion.** MERS-CoV infects host cells through S2 subunit-induced membrane fusion. During infections, HR1 and HR2 domains in S2 subunit form a 6-HB fusion core, which is responsive for membrane fusion between MERS-CoV and host cells. Therefore, inhibiting the formation of 6-HB is a promising method against MERS-CoV infections. However, MERS-CoV belongs to a family of viruses that can infect a variety of mammalian hosts, and is readily transmissible among humans by direct contact with respiratory secretions, body fluids and excretions from infected individuals. Consequently, the containment level 3 is required for all *in vitro* and *in vivo* studies, significantly hindering the development of anti-MERS treatments. We therefore constructed the cell fusion model to systemically evaluate therapeutic efficacy of anti-MERS agents.

It has been reported that Huh-7 cells showed higher susceptibility to MERS-CoV than respiratory tract cells,<sup>19</sup> and therefore, we have constructed the cell fusion model with 293T cells co-expressed with EGFP/S protein and Huh-7 cells with MERS-CoV receptor DPP4.<sup>20</sup> We thus performed experiments to verify whether PIH could inhibit cell fusion mediated by S2 subunit. The cellular size of 293T cells (MERS/EGFP) increased after fusing with Huh-7 cells, and fused cells showed at least two-fold lower fluorescence intensity, compared to 293T cells (EGFP) (Figure 4a),

indicating that S proteins on the 293T cells could recognize DPP4 on Huh-7 cells to induce cell fusion. In addition, we further identified that cell fusion between 293T and Huh-7 cells showed time-dependence, and reached the plateau after six hours (Figure 4b). Based on this established cell fusion model, we further investigated the inhibitory effects of PIH on S2 subunit-mediated cell fusion at six hours after co-culture. Figures 4c and 4d show that PIH had a dose-dependent responding profile with  $IC_{50}$  of 1.171 µM, and could completely inhibit the cell fusion at a concentration of 10 µM, indicating that PIH has a high inhibitory activity for MERS-CoV infections.

**Cytotoxicity of PIH.** Peptide-based therapeutics have been recognized as ideal drug candidates due to their high selectivity, biocompatibility and potency. However, some peptide drug candidates failed in the clinical trials due to unexpected cytotoxicity.<sup>21</sup> We therefore assessed cytotoxicity of PIH on 293T, Huh-7 and L02 cells. As shown in Figure 4e, PIH displayed no significant cytotoxicity to mammalian cells even at a high concentration of 100  $\mu$ M, which is ten-fold higher than the concentration needed for fully inhibiting cell fusion. The selectivity index (*SI=CC*<sub>50</sub>/*IC*<sub>50</sub>) of PIH is 132, suggesting that PIH is an effective MERS-CoV inhibitor with no adverse effects.

The preparation and characterization of PIH-AuNRs. Although PIH exhibited significant inhibitory activity, peptides along suffer major drawbacks, such as poor metabolic stability and bioavailability.<sup>22</sup> The construction of conjugates between peptides and gold nano-cargos represents a promising strategy for improving their pharmacokinetics and pharmacodynamics. There are many types gold nanostructures, such as gold nanoparticles, nanorods (AuNRs), nanoplates, nanodisks and nanoshells, and all of them have been widely used in the diagnosis and treatment of various diseases due to their unique physical and chemical properties. Particularly,

Page 13 of 29

#### ACS Applied Materials & Interfaces

AuNRs have been widely used in biomedical applications, and especially theranostic and thermochemotherapeutic applications.<sup>23-25</sup> For example, AuNRs are a promising nanosized drug delivery system, and can effectively deliver drugs in diseased tissues, thereby greatly improving therapeutic efficacy. In addition, AuNRs have tunable surface plasmon and photothermal effects, endowing them with good photoacoustic and photothermal effects. Furthermore, AuNRs, as a nanocarrier for chemotherapeutic agents, can provide effective combined chemo-photothermal therapy. Most importantly, the surface of AuNRs can be easily modified with biocompatible materials, making them an ideal drug delivery platform.

In recent years, AuNRs have been identified as potential biocompatible and site-specific carriers for antiviral theranostic agents. For example, AuNRs-mediated delivery of ssRNA was developed as a unique therapeutics for the treatment of seasonal and pandemic flu.<sup>23</sup> These findings suggest that AuNRs-based antiviral agents represent a promising approach for the management of infectious diseases. Therefore, we developed PIH-modified gold nanorods (PIH-AuNRs) with polyethylene glycol (PEG) coating (Figure 5a). The PEG coating on AuNRs could not only enhance the stability and hydrophilicity of PIH-AuNRs by reducing nonspecific binding of proteins,<sup>26</sup> but minimize the phagocytic clearance by the reticuloendothelial system (RES) *in vivo*,<sup>27, 28</sup> leading to improving pharmacokinetic and pharmacodynamics properties.

PIH has a cysteine residue with a free thiol moiety at the N-terminus, and can be immobilized on AuNRs by the Au-S chelation. PIH and AuNRs were mixed for 12 hours, and the reaction mixture was filtrated and centrifuged. The supernatant of the reaction mixture was analyzed by HPLC to evaluate the conjugation yield of PIH. Figure S6 shows that all PIH was successfully immobilized on AuNRs. In addition, we performed TEM to identify the morphology of PIH-AuNRs, which were in the nano-range with a length of  $54.2 \pm 1.3$  nm and a diameter of  $18.0 \pm 0.7$  nm (Figure

5b). The zeta potential of AuNRs was 36.9 mV, and changed to -16.9 mV and -34.9 mV after PIH and PEG modification, respectively, indicating that PIH-AuNRs were successfully prepared (Figure 5c). In addition, the UV-Vis spectra of PIH-AuNRs showed a red shift absorption, compared to AuNRs (Figure 5d), further confirming the formation of PIH-AuNRs.

**Biological evaluation of PIH-AuNRs.** We further assessed the inhibitory activity of PIH-AuNRs using the cell fusion model. Figures 5e and 5f show that PIH-AuNRs showed a higher inhibitory activity than PIH, partially due to multivalent effects. For example, PIH-AuNRs could completely inhibit cell fusion at the concentration of 1.0  $\mu$ M, and had ten-fold higher inhibitory activity than peptide PIH. In addition, PIH displayed good biocompatibility, and did not affect cell viability on 293T, Huh-7 and L02 cells (Figure 5g), indicating that PIH-AuNRs are a more potent anti-MERS agent than peptide PIH.

**Biostability and biosafety of PIH-AuNRs.** Peptide-modified AuNRs have some critical issues for *in vivo* applications due to limited pharmacokinetics and pharmacodynamics.<sup>29</sup> Therefore, we further assessed the biostability and biosafety of PIH-AuNRs *in vitro* and *in vivo*, and identified their clinical application prospects. Figure 6a shows that PIH-AuNRs exhibited strong inhibitory activity after 12-hour incubation in serum, and could inhibit more than 90% of cell fusion at the concentration of 1.171  $\mu$ M. In contrast, PIH lost inhibitory effects after 12-hour incubation in serum, indicating that the conjugation of AuNRs can greatly improve biostability of PIH. In addition, PEG modification could further enhance the biostability and bioavailability of PIH-AuNRs *in vivo*.<sup>30</sup>

To further assess the possibility of *in vivo* applications of PIH-AuNRs, we evaluated their biocompatibility in ICR mice. Mice were administrated intravenously with either PIH-AuNRs

(100 mg kg<sup>-1</sup>) or saline (control) every 3 days for 12 days. Figure 6b shows that the body weights of mice gradually increased, and no significant differences were observed between the PIH-AuNRs and control groups at any given time points. In addition, no apparent signs of dehydration, behavioral abnormalities and other symptoms related to systemically toxic effects were observed during the treatment, suggesting PIH-AuNRs are a biosafe AuNR-based therapeutics.

**Biochemical parameters and histopathology.** Normally, hepatotoxicity is a major hindrance for clinical applications of nanoparticle-based therapeutics due to nonspecific liver accumulation.<sup>31, 32</sup> We therefore performed experiments to investigate PIH-AuNRs induced adverse effects by measuring biochemical parameters and histopathology. As shown in Figure 6c, PIH-AuNRs had no measurable adverse effects on liver function and immune system throughout profiles. For example, 100 mg kg<sup>-1</sup> of PIH-AuNRs resulted in negligible hepatotoxicity, and no obvious rise in levels of alanine transaminase (ALT), aspartate transaminase (AST) and total bilirubin (TBIL) were observed. In addition, the inflammatory cytokines, including tumor necrosis factor (TNF- $\alpha$ ), Interleukin 1 beta (II-1 $\beta$ ) and Interleukin 6 (II-6), maintained at normal levels, demonstrating PIH-AuNRs have minimal adverse immunogenicity.

After a 12-day treatment, mice in the PIH-AuNRs and control groups were sacrificed, and major organs were harvested and imaged. We found that all organs in both groups showed similar size, weight and texture, and particularly, no apparent difference in liver and spleen were observed (Figure 6d). In addition, organ tissues were fixed and stained with hematoxylin and eosin, and no pathological abnormalities, degenerations or lesions were detected in the PIH-AuNRs group.

Therefore, all these data indicate that PIH-AuNRs have good biocompatibility, and have the great potential for the treatment of MERS in the clinic.

#### Conclusion

In this study, we have developed a novel gold nanorod-based HR1 peptide inhibitor (PIH-AuNRs) for MERS. PIH is a potent HR1 inhibitor, and can selectively inhibit MERS-Cov S protein-mediated cell fusion with  $IC_{50}$  of 1.171  $\mu$ M. Particularly, PIH-AuNRs exhibit ten-fold higher inhibitory activity than PIH, and can completely inhibit cell fusion at 1.171  $\mu$ M. In addition, PIH-AuNRs showed good biostability and biocompatibility *in vitro* and *in vivo*, indicating that they have a broad application prospects for MERS treatment. Therefore, PIH-AuNRs are a promising antiviral agent, and may have a huge impact on developing pharmaceuticals in the clinic.

FIGURES



**Figure 1.** Schematic diagram of the inhibition of MERS-COV S2 subunit-mediated membrane fusion with HR1 inhibitors. HR1 inhibitor can inhibit HR1/HR2 complex (6-HB)-mediated membrane fusion, and prevent MERS-CoV infections.



**Figure 2.** Design of HR1 peptide inhibitors. (a) Schematic representation of MERS-CoV S protein S2 subunit. FP, fusion peptide; HR1, heptad repeat 1 domain; HR2, heptad repeat 2 domain; TM, transmembrane domain; CP, cytoplasmic domain. (b) PIH was designed based on the sequence of HR2. (c) Overview of MERS-CoV-PIH complex structure. The core structures of MERS-CoV (HR1) and PIH are colored in yellow and blue, respectively. (d) Electrostatic potential surface of the central HR1 helices was calculated using PyMOL. The hydrophobic grooves are formed between each of two adjacent HR1 helices. PIH showed high binding affinity to the grooves. (e) PIH mimics the conformation of HR2 binding domain, and shows the strong

 hydrophilic interactions with HR1 helices. The residues involved in the formation of hydrogen bonds are properly labeled, and hydrogen bonds are shown in red dashed lines.



**Figure 3.** Synthesis and characterization of PIH. (a) The HPLC chromatogram of PIH. (b) The circular dichroism spectrum of PIH. PIH forms  $\alpha$ -helix. (c) Determination of the 6-HB formation between HR1 and PIH by SDS-PAGE. (d) Serum stability of PIH. The data are expressed as means  $\pm$  s. d. (n=10).



**Figure 4.** *In vitro* biological evaluation of PIH. (a) Representative fluorescent Images of cell fusion after 6-hour co-culture. The white arrows show the fused cells formed between 293T/MERS/EGFP cells and Huh-7 cells. Scale bars, 100  $\mu$ m. (b) Percentages of cell fusion at different time points. (c) Representative images of cell fusion in the presence of PIH. Scale bars, 100  $\mu$ m. (d) Inhibitory activity of PIH on MERS-CoV S2 subunit-mediated cell fusion. (e) The cytotoxicity of PIH against 293T, Huh-7 and L02 cells for 48 hours. The data are expressed as



**Figure 5.** The preparation and characterization of PIH-AuNRs. (a) The preparation of PIH-AuNRs. (b) TEM images of PIH-AuNRs. Scale bar, 20 nm. (c) Zeta potential of AuNRs, Pep-AuNRs and PIH-AuNRs. (d) UV-Vis spectra of PIH-AuNRs and AuNRs. (e) Representative images of cell fusion in the presence of PIH, AuNRs and PIH-AuNRs. Scale bars, 100 μm. (f) Quantification of cell fusion between Huh-7 and 293T/MERS/EGFP cells in the presence of PIH,

AuNRs and PIH-AuNRs. (g) Inhibitory activity of PIH-AuNRs on MERS-CoV S2 subunitmediated cell fusion. \*\*\* represents p < 0.001. (h) The cytotoxicity of PIH-AuNRs against 293T, Huh-7 and L02 cells for 48 hours. The data are presented as means  $\pm$  s. d. (n=10).



**Figure 6.** *In vitro* and *in vivo* biological evaluation of PIH-AuNRs. (a) Representative images of cell fusion in the presence of PIH, PIH-AuNRs and PBS, pre-incubated with serum for 12 hours. Scale bars, 100 µm. (b) Body weights of mice in the PIH-AuNRs group and control group. (c)

| Biosafety evaluation of PIH-AuNRs in vivo. Liver functions (ALT, AST and TBIL) and                 |
|----------------------------------------------------------------------------------------------------|
| inflammatory cytokines (TNF- $\alpha$ , Il-1 $\beta$ and Il-6) were measured by ELISA assays. (d)  |
| Representative images of organs of mice in the PIH-AuNRs group and control group, including        |
| heart, liver, spleen, lung and kidney. (e) H&E histopathological sections of tissues. The data are |
| presented as means $\pm$ s. d. (n=10). Scale bars, 100 $\mu$ m.                                    |
| ASSOCIATED CONTENT                                                                                 |
| Supporting Information.                                                                            |
| The following files are available free of charge.                                                  |
| Sequences and docking scores of designed peptides, LC-ESI-MS of PIH, Native-PAGE analysis          |
| of PIH, HPLC chromatograms of serum stability, original large fluorescence images of Figures 4,    |
| 5 and 6, HPLC chromatograms of the supernatant of the reaction mixture between PIH and             |
| AuNRs. (doc)                                                                                       |

## AUTHOR INFORMATION

## **Corresponding Author**

\* E-mail: xning@nju.edu.cn (X. Ning)

\* E-mail: qingj@nju.edu.cn (Q. Jiang)

\* E-mail: zhangyu2007sm@163.com (Y. Zhang)

### **Author Contributions**

#Xinyu Huang and Yadong Luo contributed equally to this work.

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENT

The works were supported by the National Key Research and Development Program of China (Grant No. 2018YFB1105400), the National Natural Science Foundation of China (Grant No. 21708019), the Thousand Talents Program for Young Researchers, the Natural Science Foundation of Jiangsu Province (Grant No. BK20180334), the Shuangchuang Program of Jiangsu Province, the Fundamental Research Funds for Central Universities Nanjing University and the Scientific Research Foundation of Graduate School of Nanjing University (Grant No. 2017ZDL04).

#### REFERENCES

(1) Groot, R. J., De; Baker, S. C.; Baric, R. S.; Brown, C. S.; Christian, D.; Luis, E.; Fouchier, R. A. M.; Monica, G.; Gorbalenya, A. E.; Memish, Z. A. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. *J. Virol.* 2013, *87*, 7790-7792.

(2) Abdullah, A.; Allison, M.; Trish M, P.; Connie S, P.; Abdullah A, A. R.; Derek A T, C.; Zaki N, A.; Maher, A.; Abdulmohsen, A.; Hatem, M. Hospital Outbreak of Middle East Respiratory Syndrome Coronavirus. *N. Engl. J. Med.* **2013**, *369*, 407-416.

(3) Memish, Z. A.; Zumla, A. I.; Abdullah, A. Middle East Respiratory Syndrome Coronavirus Infections in Health Care Workers. *N. Engl. J. Med.* **2013**, *369*, 884-886.

(4) Zaki, A. M.; van Boheemen, S.; Bestebroer, T. M.; Osterhaus, A. D.; Fouchier, R. A. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. *N. Engl. J. Med.* 2012, *367*, 1814-1820.

(5) Assiri, A.; Al-Tawfiq, J. A.; Al-Rabeeah, A. A.; Al-Rabiah, F. A.; Al-Hajjar, S.; Al-Barrak,
A.; Flemban, H.; Al-Nassir, W. N.; Balkhy, H. H.; Al-Hakeem, R. F. Epidemiological,
Demographic, and Clinical Characteristics of 47 cases of Middle East Respiratory Syndrome
Coronavirus Disease from Saudi Arabia: a Descriptive Study. *Lancet Infect. Dis.* 2013, *13*, 752-761.

(6) Chan, J. F. W.; Lau, S. K. P.; To, K. K. W.; Cheng, V. C. C.; Woo, P. C. Y.; Kwok-Yung, Y.
Middle East Respiratory Syndrome Coronavirus: Another Zoonotic Betacoronavirus Causing
SARS-like Disease. *Clin. Microbiol. Rev.* 2015, *28*, 465-522.

(7) Leung, C. H. C.; Gomersall, C. D. Middle East Respiratory Syndrome. *Intensive Care Med.***2014**, *40*, 1015-1017.

(8) Al-Tawfiq, J. A.; Momattin, H.; Dib, J.; Memish, Z. A. Ribavirin and Interferon Therapy in Patients Infected with the Middle East Respiratory Syndrome Coronavirus: an Observational Study. *Int. J. Infect. Dis.* **2014**, *20*, 42-46.

(9) Omrani, A. S.; Saad, M. M.; Kamran, B.; Abdelkarim, B.; Mohammed, A. M.; Alaidaroos, A. Y.; Almakhlafi, G. A.; Albarrak, M. M.; Memish, Z. A.; Albarrak, A. M. Ribavirin and Interferon Alfa-2a for Severe Middle East Respiratory Syndrome Coronavirus Infection: a Retrospective Cohort Study. *Lancet Infect. Dis.* 2014, *14*, 1090-1095.

(10) Shalhoub, S.; Farahat, F.; Al-Jiffri, A.; Simhairi, R.; Shamma, O.; Siddiqi, N.; Mushtaq, A. IFN-alpha2a or IFN-beta1a in Combination with Ribavirin to Treat Middle East Respiratory Syndrome Coronavirus Pneumonia: a Retrospective Study. *J. Antimicrob. Chemother.* **2015**, *70*, 2129-2132.

(11) Yuan, Y.; Cao, D.; Zhang, Y.; Ma, J.; Qi, J.; Wang, Q.; Lu, G.; Wu, Y.; Yan, J.; Shi, Y.; Zhang, X.; Gao, G. F. Cryo-EM Structures of MERS-CoV and SARS-CoV Spike Glycoproteins Reveal the Dynamic Receptor Binding Domains. *Nat. Commun.* 2017, *8*, 15092.
(12) Stefanie, G.; Stephanie, B.; Franziska, K.; Florian, W.; Adeline, H.; Annika, K. M. K.; Kathrin, W.; Michael, W.; Benjamin, M.; Christian, D., The Spike Protein of the Emerging

Betacoronavirus EMC Uses a Novel Coronavirus Receptor for Entry, Can be Activated by TMPRSS2, and is Targeted by Neutralizing Antibodies. *J. Virol.* **2013**, *87*, 5502-5511.

(13) Raj, V. S.; Mou, H.; Smits, S. L.; Dekkers, D. H.; Muller, M. A.; Dijkman, R.; Muth, D.; Demmers, J. A.; Zaki, A.; Fouchier, R. A.; Thiel, V.; Drosten, C.; Rottier, P. J.; Osterhaus, A. D.; Bosch, B. J.; Haagmans, B. L. Dipeptidyl Peptidase 4 is a Functional Receptor for the Emerging Human Coronavirus-EMC. *Nature* 2013, 495, 251-254.

(14) Gao, J.; Lu, G.; Qi, J.; Li, Y.; Wu, Y.; Deng, Y.; Geng, H.; Li, H.; Wang, Q.; Xiao, H.; Tan,

W.; Yan, J.; Gao, G. F. Structure of the Fusion Core and Inhibition of Fusion by a Heptad Repeat
Peptide Derived from the S Protein of Middle East Respiratory Syndrome Coronavirus. *J. Virol.*2013, *87*, 13134-13140.

(15) Merrifield, R. B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149-2154.

(16) Bosch, B. J.; van der Zee, R.; de Haan, C. A.; Rottier, P. J. The Coronavirus Spike Protein is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. *J. Virol.* **2013**, *77*, 8801-8811.

(17) Tripet, B.; Howard, M. W.; Jobling, M.; Holmes, R. K.; Holmes, K. V.; Hodges, R. S. Structural Characterization of the SARS-coronavirus Spike S Fusion Protein Core. *J. Biol. Chem.* **2004**, *279*, 20836-20849.

(18) Fosgerau, K.; Hoffmann, T. Peptide Therapeutics: Current Status and Future Directions. *Drug Discov. Today* 2015, 20, 122-128.

(19) Chan, F. W.; Chan, K. H.; Choi, K. Y.; To, K. W.; Tse, H.; Cai, J. P.; Yeung, M. L.; Cheng,

V. C.; Chen, H.; Che, X. Y.; Lau, K. P. Differential Cell Line Susceptibility to the Emerging Novel Human Betacoronavirus 2c EMC/2012: Implications for Disease Pathogenesis and Clinical Manifestation. *J. Infect. Dis.* **2013**, *207*, 1743-1752.

(20) Lu, L.; Liu, Q.; Zhu, Y.; Chan, K. H.; Qin, L.; Li, Y.; Wang, Q.; Chan, J. F.; Du, L.; Yu, F.;
Ma, C.; Ye, S.; Yuen, K. Y.; Zhang, R.; Jiang, S. Structure-based Discovery of Middle East
Respiratory Syndrome Coronavirus Fusion Inhibitor. *Nat. Commun.* 2014, *5*, 3067.

(21) HåVard, J.; Pamela, H.; Hancock, R. E. W. Peptide Antimicrobial Agents. *Clin. Microbiol. Rev.* 2006, *19*, 491-511.

(22) Kaspar, A. A.; Reichert, J. M. Future Directions for Peptide Therapeutics Development. *Drug Discov. Today* **2013**, *18*, 807-817.

(23) Chakravarthy, K. V.; Bonoiu, A. C.; Davis, W. G.; Ranjan, P.; Ding, H.; Hu, R.; Bowzard, J. B.; Bergey, E. J.; Katz, J. M.; Knight, P. R.; Sambhara, S.; Prasad, P. N. Gold Nanorod Delivery of an ssRNA Immune Activator Inhibits Pandemic H1N1 Influenza Viral Replication. *Proc. Natl. Acad. Sci. U. S. A.* 2010, *107*, 10172-10177.

(24) Yucai, W.; Black, K. C. L.; Hannah, L.; Weiyang, L.; Yu, Z.; Xin, C.; Dehui, W.; Si-Yun,
L.; Max, L.; Paul, K. Comparison Study of Gold Nanohexapods, Nanorods, and Nanocages for
Photothermal Cancer Treatment. *ACS Nano* 2013, *7*, 2068-2077.

(25) Yan, E.; Cao, M.; Wang, Y.; Hao, X.; Pei, S.; Gao, J.; Wang, Y.; Zhang, Z.; Zhang, D. Gold Nanorods Contained Polyvinyl Alcohol/Chitosan Nanofiber Matrix for Cell Imaging and Drug Delivery. *Mater. Sci. Eng., C* 2016, *58*, 1090.

(26) Ming, Z.; Xueying, H. Nanoparticles Comprising a Mixed Monolayer for Specific Bindings with Biomolecules. *J. Am. Chem. Soc.* **2004**, *126*, 12047-12054.

(27) Moghimi, S. M.; Patel, H. M. Serum-mediated Recognition of Liposomes by Phagocytic Cells of the Reticuloendothelial System – The Concept of Tissue Specificity. *Adv. Drug Delivery Rev.* **1998**, *32*, 45-60.

(28) Papisov, M. I. Theoretical Considerations of RES-avoiding Liposomes: Molecular Mechanics and Chemistry of Liposome Interactions. *Adv. Drug Delivery Rev.* 1998, *32*, 119-138.
(29) Wan-Seob, C.; Minjung, C.; Jinyoung, J.; Mina, C.; Hea-Young, C.; Beom Seok, H.; Sheen Hee, K.; Hyoung Ook, K.; Taik, L. Y.; Bong Hyun, C. Acute Toxicity and Pharmacokinetics of 13 nm-sized PEG-coated Gold Nanoparticles. *Toxicol. Appl. Pharmacol.* 2009, *236*, 16-24.

M.; Seidel, G. D.; Yuldasheva, N.; Tamarkin, L. Phase I and Pharmacokinetic Studies of CYT-6091, a Novel PEGylated Colloidal Gold-rhTNF Nanomedicine. *Clin. Cancer Res.* **2010**, *16*, 6139-6149.

(30) Libutti, S. K.; Paciotti, G. F.; Byrnes, A. A.; Alexander, H. R., Jr.; Gannon, W. E.; Walker,

(31) Balasubramanian, S. K.; Jittiwat, J.; Manikandan, J.; Ong, C. N.; Yu, L. E.; Ong, W. Y. Biodistribution of Gold Nanoparticles and Gene Expression Changes in the Liver and Spleen after Intravenous Administration in Rats. *Biomaterials* **2010**, *31*, 2034-2042.

(32) Jong, W. H. D.; Hagens, W. I.; Krystek, P.; Burger, M. C.; Sips, A. J. A. M.; Geertsma, R.
E. Particle Size-dependent Organ Distribution of Gold Nanoparticles after Intravenous Administration. *Biomaterials* 2008, *29*, 1912-1919.

HR1/PIH Complex

Control



For Table of Contents Only