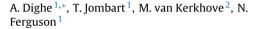
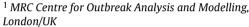
ELSEVIER

Contents lists available at ScienceDirect

International Journal of Infectious Diseases

journal homepage: www.elsevier.com/locate/ijid

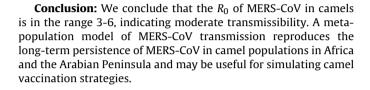



IMED abstracts

Oral Presentations: One Health – Emerging Threats Across Species Boundaries

03.002

A mathematical model of the transmission of middle East respiratory syndrome coronavirus in dromedary camels (*Camelus dromedarius*)



² WHO Health Emergencies Programme, Geneva/CH

Purpose: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) remains an emerging disease threat, with regular reports of human cases on the Arabian Peninsula, driven by recurring camel-to-human transmission events. A prophylactic vaccine under development has been found to greatly reduce shedding in dromedaries, but there are major gaps in our quantitative understanding of the epidemiology of MERS-CoV in dromedary populations. The purpose of our work is to develop a mathematical model of MERS-CoV transmission in camels in order to address these gaps and to eventually inform the development of evidence-based animal vaccination strategies.

Methods & Materials: After reviewing publicly available data on camel demography and epidemiology of MERS-CoV in camels, we developed a stochastic, age-structured mathematical model of MERS-CoV transmission in single homogenous camel populations, and between coupled sub-populations.

Results: We show that if immunity is completely protective against future infection, a basic reproduction number (R_0) of 6 reproduces reported patterns of age-stratified seroprevalence observed in camel populations sampled in the Arabian Peninsula and North Africa. If immunity offers only partial protection, we estimate that R_0 is approximately 3. In large modelled populations where transmission persists long-term, epidemics are predicted to have an annual periodicity driven by seasonal births. Allowing reinfection (due to partial immunity) enhances persistence but disease extinction by chance is still expected in well-mixed populations of less than 1000 animals. Hence, we predict that single herds are unlikely to be able to sustain MERS-CoV transmission. Using a meta-population model of multiple coupled small populations, we show that transmission can persist in the population as a whole due to random reintroduction of virus into populations in which transmission has previously ceased via animal movements.

https://doi.org/10.1016/j.ijid.2018.11.023

03.003

Ebola in animals - our knowledge to date: assessing human exposure risks

- ¹ Food and Agriculture Organization, Animal Health Service, Rome/IT
- ² Food and Agriculture Organisation, Animal Health, Rome/IT
- ³ Food and Agriculture Organisation, Animal Health, Rome/IT
- ⁴ Food and Agriculture Organisation, Animal Health, Jerusalem/IL
- ⁵ Food and Agriculture Organization of the United Nations, Crisis Management Centre – Animal Health (CMC-AH), Rome/IT
- ⁶ FAO Emergency Centre for Transboundary Diseases for West and central Africa, Bamako/ML
- ⁷ Food and Agriculture Organisation, Animal Health, Libreville/GA
- ⁸ EMPRES UN FAO, Rome/IT
- ⁹ Food and Agriculture Organisation, Animal Health, Abidian/CI
- ¹⁰ Food and Agriculture Organisation, Animal Health, Kinshasa/CD
- ¹¹ FAO, Rome/IT
- ¹² Food and Agriculture Organization of the United Nation, Animal Health Serivce, Rome/IT
- ¹³ Food and Agriculture Organisation of the United Nations, Rome/IT

