1 Acute respiratory infection in human dipeptidyl peptidase 4-transgenic

2 mice infected with Middle East respiratory syndrome coronavirus

3

4 Naoko Iwata-Yoshikawa, ^{a†} Tadashi Okamura, ^{a,b,c†} Yukiko Shimizu, ^b Osamu Kotani, ^d

5 Hironori Sato,^d Hanako Sekimukai,^{a,e} Shuetsu Fukushi,^f Tadaki Suzuki,^a Yuko Sato,^a

6 Makoto Takeda,^g Masato Tashiro,^h Hideki Hasegawa,^a and Noriyo Nagata^{a#}

^aDepartment of Pathology, National Institute of Infectious Diseases, Tokyo, Japan;

8 ^bDepartment of Laboratory Animal Medicine, Research Institute, National Center for

9 Global Health and Medicine (NCGM), Tokyo, Japan; ^cSection of Animal Models,

10 Department of Infectious Diseases, Research Institute National Center for Global Health

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

11 and Medicine, Tokyo, Japan; ^dLaboratory of Viral Genomics, Pathogen Genomics Center,

12 National Institute of Infectious Diseases, Tokyo, Japan; ^eDepartment of Tissue Physiology,

13 Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan;

¹⁴ ^fDepartment of Virology I, National Institute of Infectious Diseases, Tokyo, Japan;

15 ^gDepartment of Virology III, National Institute of Infectious Diseases, Tokyo, Japan;

16 ^hInfluenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan

17 Running head: A transgenic mouse model of MERS-CoV

18

19 #Address correspondence to Noriyo Nagata, nnagata@niid.go.jp.

20[†]N.I-Y. and T.O. contributed equally to this work.

21

Word counts: abstract, 216 words 22

23

 \sum

Journal of Virology

25Middle East respiratory syndrome coronavirus (MERS-CoV) infection can manifest 26as a mild illness, acute respiratory distress, organ failure, or death. Several animal models 27have been established to study disease pathogenesis and to develop vaccines and 28therapeutic agents. Here, we developed transgenic (Tg) mice on a C57BL/6 background; 29these mice expressed human CD26/dipeptidyl peptidase 4 (hDPP4), a functional receptor 30 for MERS-CoV, under the control of an endogenous hDPP4 promoter. We then 31characterized this mouse model of MERS-CoV. The expression profile of hDPP4 in these 32mice was almost equivalent to that in human tissues, including kidney and lung; however, 33 hDPP4 was overexpressed in murine CD3-positive cells within peripheral blood and 34lymphoid tissues. Intranasal inoculation of young and adult Tg mice with MERS-CoV led 35to infection of the lower respiratory tract and pathological evidence of acute multifocal 36 interstitial pneumonia within 7 days, with only transient loss of body weight. However, the 37 immunopathology in young and adult Tg mice was different. On Day 5 or 7 38post-inoculation, lungs of adult Tg mice contained higher levels of pro-inflammatory 39cytokines and chemokines associated with migration of macrophages. These results suggest 40that the immunopathology of MERS infection in the Tg mouse is age-dependent. The 41mouse model described herein will increase our understanding of disease pathogenesis and 42host mediators that protect against MERS-CoV infection.

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

43

44 **IMPORTANCE**

45	Middle East respiratory syndrome coronavirus (MERS-CoV) infections are endemic
46	in the Middle East and a threat to public health worldwide. Rodents are not susceptible to
47	the virus because they do not express functional receptors; therefore, we generated a new
48	animal model of MERS-CoV infection based on transgenic mice expressing human
49	(h)DPP4. The pattern of hDPP4 expression in this model was similar to that in human
50	tissues (except lymphoid tissue). In addition, MERS-CoV was limited to the respiratory
51	tract. Here, we focused on host factors involved in immunopathology in MERS-CoV
52	infection and clarified differences in antiviral immune responses between young and adult
53	transgenic mice. This new small animal model could contribute to more in-depth study of
54	the pathology of MERS-CoV infection and aid development of suitable treatments.
55	

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

57

56

INTRODUCTION

Middle East respiratory syndrome coronavirus (MERS-CoV) was originally isolated as a novel coronavirus from a fatal case of acute respiratory distress syndrome 5859and renal failure in 2012 (1). A human receptor for the virus, called human CD26/dipeptidyl peptidase 4 (hDPP4), was identified subsequently (2). Many 60 61epidemiological and virological investigations have been undertaken since then; however, 62 information about the pathogenesis of MERS-CoV is limited. In addition, because 63 MERS-CoV is endemic in the Middle East, the development of effective prophylactic 64 and therapeutic treatment strategies remains a high priority. Therefore, appropriate 65 animal models are needed to better understand the pathogenesis of MERS-CoV and 66 facilitate development of effective vaccines and drugs. Some research groups 67 experimentally infected nonhuman primates and small experimental animals with 68 MERS-CoV (3-7). Rhesus macaques appear to develop a transient lower respiratory tract 69 infection after a combination of intratracheal, ocular, oral, and intranasal inoculation with 70MERS-CoV (3), whereas the common marmoset develops progressive and severe 71pneumonia, which can be lethal (4). However, animal models based on nonhuman 72primates present both ethical and economic problems. Thus, establishing a small animal 73model of MERS-CoV infection is desirable. Unfortunately, MERS-CoV does not infect 74or replicate in small rodents such as Syrian hamsters (8), mice (9), or rats (10) because 75they lack a functional MERS-CoV receptor. Zhao et al. described lung infection in a

76	mouse model transduced with an adenovirus expressing hDPP4 (11); thus a transgenic
77	(Tg) mouse carrying hDPP4 should be suitable for MERS-CoV studies (5). Some
78	research groups developed Tg mice overexpressing the hDPP4 receptor under the control
79	of CAG or cytokeratin 18 promoters (5-7). These mice developed severe lung disease,
80	along with infection of the brain. Autopsy data are available from only one MERS
81	patient; therefore, it is unclear whether MERS-CoV causes a systemic infection, although
82	there is no evidence that MERS-CoV infects the human brain. Other studies describe
83	development of a hDPP4 knock-in mouse (12-14). Although the tissue distribution and
84	expression levels of hDPP4 in these models are largely equivalent to those of DPP4 in
85	wild-type mice, the phenotype that determines MERS-CoV susceptibility varies from
86	model to model. The hDPP4 knock-in mouse model described by Coleman et al. (12)
87	succumbed to infection with wild-type MERS-CoV. By contrast, model mice described
88	by Cockrell et al. (14) and Li et al. (13) are susceptible to infection by serially passaged
89	MERS-CoV, which induces severe lung pathology and diffuse alveolar damage (DAD).
90	These mice would be good models for studying pathogenesis of MERS. Here, we
91	developed a new Tg mouse model expressing hDPP4 under the control of its endogenous
92	promoter to better mimic physiological expression of hDPP4. These Tg mice were then
93	backcrossed onto Th1-prone C57BL/6 mice. After evaluating susceptibility to
94	MERS-CoV infection, we investigated age-dependent differences in disease
95	pathogenesis; because older age is one of the common factors related to MERS severity,

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

96	and mortality (15-20). Both young and adult Tg mice infected with MERS-CoV showed
97	transient weight loss along with moderate pneumonia and MERS-CoV replication in the
98	lung; however, they did not recapitulate the severe disease and lethal infection seen in
99	humans. Young and adult Tg mice infected with MERS-CoV did, however, show
100	differing immunopathology. Adult Tg mice showed higher levels of pro-inflammatory
101	cytokine- and chemokine-mediated macrophage infiltration of the lungs than young Tg
102	mice. Taken together, these results suggest that age affects the immunopathology of
103	MERS-CoV infection in Tg mice. The data suggest that other factors are required to
104	recapitulate severe human disease in these Tg mice; however, this mouse model will be
105	useful for identifying host mediators that protect against MERS-CoV infection. This
106	animal model will provide new insight into factors that cause severe MERS-CoV
107	infection.

108

109 RESULTS

110 Expression of hDPP4 in Tg mouse tissues

111 To generate Tg mice showing tissue- or cell type-specific hDPP4 expression

112mimicking that in humans, we first looked at research involving Tg mice harboring human

113enterovirus receptors (such as the human poliovirus receptor) and SCARB2 receptor-driven

114endogenous promoters (21, 22). Promoter sequences, which normally include a

115transcriptional start site, are usually isolated from the upstream regions of endogenous

117

118	generate Tg mice harboring hDPP4 (Fig. 1A). To screen the generated Tg mice, we
119	confirmed presence of the transgene by PCR genotyping using two primers sets specific for
120	hDPP4 (Table 1; exon 3 and exon 10). hDPP4 is a protease expressed on the surface of cells
121	in various organs, including T cells (24, 25). The enzyme is expressed by approximately
122	60% of resting T cells isolated from blood (26). Since handling of peripheral blood in a
123	laboratory is relatively simple, we conducted flow cytometry analysis using a
124	FITC-conjugated anti-human CD26/hDPP4 monoclonal antibody that does no react with
125	murine DPP4 to detect expression of hDPP4 in mice. CD3-positive lymphocytes from 2/15
126	tested pups were positive for hDPP4. These mice were then crossed with C57BL/6 mice to
127	establish two independent Tg lines (Tg1 and Tg2), which were maintained as hemizygotes
128	carrying the hDPP4 gene. The Tg animals were born at the expected Mendel's ratio and
129	were outwardly indistinguishable from control littermates. Because CD3-positive
130	lymphocytes from peripheral blood of line Tg2 showed higher hDPP4 expression that those
131	from line Tg1 (Fig. 1B), Tg2 was used for further analyses. PCR genotyping using primer
132	sets specific for hDPP4 revealed that the complete hDPP4 gene had integrated into the
133	genome of Tg2 mice (Fig. 1C, Table 1).
134	To examine hDPP4 expression in human and Tg2 tissues, we first performed
135	Western blot analysis with a goat anti-CD26/hDPP4 polyclonal antibody (AF1180; R&D

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

mammalian genes (23). Therefore, we used a bacterial artificial chromosome (BAC) clone

(RP11-345J9) containing the complete hDPP4 gene and an endogenous promotor to

137	about 110 kDa (hDPP4) were detected in all tested human tissues (liver, spleen, kidney,
138	heart, lung, stomach, small intestine, large intestine, pancreas, brain, spinal cord, and
139	skeletal muscle), except brain (Fig. 2A). All of the tissues from hDPP4 Tg mice expressed
140	hDPP4, including liver, spleen, kidney, heart, lung, stomach, small intestine, large intestine,
141	pancreas, brain, spinal cord, and skeletal muscle (Fig. 2A). These results suggest that the
142	human transgene was expressed in the majority of organs/tissues in Tg2 mice.
143	To further determine hDPP4 distribution in tissues, immunohistochemistry (IHC)
144	was performed (Fig. 2B). IHC using a goat anti-CD26/hDPP4 antibody detected hDPP4
145	antigens in pneumocytes in the lung, in bile capillaries in the liver, in renal tubular
146	epithelium, on the surface of epithelial cells lining the small intestine, in pancreatic islets,
147	in lymphocytes in the lymph nodes, and in several types of endothelial cell and serous
148	membranes (Fig. 2B, left column). While hDPP4 expression was undetectable in brain
149	tissue by Western blot analysis, IHC revealed that endothelial cells lining blood vessels and
150	leptomeninges of the human brain were positive for hDPP4, although neurons and glia were
151	negative. In Tg2 mice, pneumocytes and bronchial epithelial cells in the lungs, bile
152	capillaries in the liver, the renal tubular epithelium, and the surface of epithelial cells in the
153	small intestine were positive for hDPP4 (Fig. 2B, middle column). In addition, several
154	types of endothelial cells and serous membranes in all tested tissues, including the central
155	nervous system, from Tg2 mice were positive for hDPP4. Notably, most lymphocytes in

Systems), which detected hDPP4 but cross-reacted weakly with mouse DPP4. Bands of

158	intestine) (Fig. 2B, right column). These data suggest that the pattern of hDPP4 expression
159	in Tg2 mice is similar to that in humans (except for pancreas and lymphoid tissues).
160	Expression of hDPP4 was higher in lymphocytes from Tg2 mice than in those from
161	humans (Fig. 1C and Fig. 2B). Therefore, we investigated the immune response profile in
162	Tg2 mice. To assess innate immune responses in the lungs of Tg2, non-Tg, and C57BL/6
163	mice, all animals received intranasal administration of PBS with or without poly(I:C), a
164	synthetic analog of double-strand RNA (Fig. 3). There was no statistically significant
165	difference in cytokine expression between Tg2, non-Tg, and C57BL/6 mice at 24 h after
166	inoculation with poly(I:C) or PBS (Fig. 3). However, when we set expression levels after
167	PBS treatment as 1, we noted that expression of MIP-1 α , GM-CSF, IL-1 β , IL-12, and IL-2
168	in poly(I:C)-treated Tg2 mice was 0.8–2-fold higher than in the other two strains. These
169	results suggest that hDPP4 expression in mice does not have a marked effect on basal
170	innate immune responses in the three mouse strains; however, Tg2 show slightly stronger
171	or earlier innate immune responses than C57BL/6 mice and non-Tg mice. Thus, when we
172	investigated immune responses in this animal model we made comparisons between
173	MERS-CoV-infected and non-infected Tg mice.
174	
175	Susceptibility of hDPP4-Tg mice to MERS-CoV infection

the T cell zones of the spleen and lymph nodes from Tg2 mice were positive for hDPP4.

Staining of tissues from non-Tg mice was very weak or absent (except for the small

 \sum

156

157

170	e
179]
180	1
181	p
182	n
183	p
184	C
185	а
186	
187	1
188]

177	were unable to prepare a sufficient number of non-Tg mice from littermate mice for this
178	experiment. After intranasal inoculation of 10-week-old Tg2 and C57BL/6 mice with 10^5
179	$TCID_{50}$ (50% of the tissue culture infectious dose) of MERS-CoV, neither group was
180	lethargic; however, Tg2 mice showed mild but transient weight loss from Days 6 to 7
181	post-inoculation (p.i.) (Tg2 mice, $n = 8$ [four females and four males]; and C57BL/6 mice,
182	n = 10 [five female and five male]; Fig. 4A). Tg2 mice showed seroconversion at 35 days
183	p.i., whereas C57BL/6 mice did not (Tg2 mice, $n = 5$ [three females and two males]; and
184	C57BL/6 mice, $n = 6$ [three females and three males]; Fig. 4B), suggesting that Tg2 mice
185	are susceptible to infection by MERS-CoV.
186	We next examined viral replication kinetics and sites of viral replication in
187	10-week-old Tg2 and C57BL/6 mice ($n = 3-4$ [two females and 1–2 males per time point]).
188	Tg2 mice and C57BL/6 mice were inoculated intranasally with 10^5 TCID ₅₀ of MERS-CoV,
189	and tissue specimens (the maxilla [including the nostril], nasal wash fluid, lung, and lung
190	wash fluid) were collected at 6 h p.i. and on Days 1, 3, 5, and 7 p.i. The nasal wash fluid
191	from three out of four Tg2 mice contained barely detectable levels of infectious virus at
192	Days 1 and 5 p.i. (Fig. 4C). Supernatants from maxilla tissue homogenates (20%) from Tg2
193	mice contained $10^{2.8}$ TCID ₅₀ /g at Day 1 p.i., although the titer fell by 5 days p.i. The viral
194	titers in lung wash fluid and supernatants of lung tissue homogenates (20%) from Tg2 mice
195	contained $10^{2.3}$ TCID ₅₀ /ml and $10^{4.6}$ TCID ₅₀ /g, respectively, at 1 day p.i.; these values were

In this experiment, C57BL/6 mice were used instead of non-Tg mice, because we

Journal of Virology

Σ

196	significantly higher than those at 6 h p.i. (P < 0.05 and P < 0.01, respectively; one-way
197	ANOVA). The virus titers in the lungs were detectable up until 5 days p.i. Virus was
198	undetectable in the respiratory tract at 7 days p.i. Although IHC revealed that various
199	organs from Tg2 mice were positive for the hDPP4 antigen (Fig. 2B), no infectious virus
200	was detected in the liver, spleen, kidney, heart, intestines, and brain up to 7 days p.i. (Table
201	2). By contrast, virus was detected in the respiratory tract of C57BL/6 mice at 6 h p.i. only.
202	These observations suggest that MERS-CoV infects and replicates mainly in the lower
203	respiratory tract of Tg2 mice and is eliminated within 7 days of infection.
204	Several research groups have developed Tg mouse models of MERS-CoV infection;
205	however, in these models, viral replication and MERS-CoV RNA were detected in the
206	brain (5-7, 27). Thus, we next measured the amount of viral RNA in the brain of Tg2 mice
207	at 6 h and at 1, 3, 5, and 7 days p.i. by real-time RT-PCR using primers specific for
208	MERS-CoV; however, no MERS-CoV RNA was detected in the brain of Tg2 mice.
209	Furthermore, another study showed that experimental infection of common marmosets with
210	MERS-CoV resulted in viremia (4). Quantitative examination of viral RNA levels in Tg2
211	mice revealed very low copy numbers of viral RNA in the blood at 3 and 5 days p.i., while
212	sera from Tg2 mice were negative for the virus (Table 2). These results suggest that,
213	although intranasal inoculation of Tg2 mice with MERS-CoV causes no neuroinvasion, it
214	may induce viremia.

215

216	infected animals (3, 4, 28), but no infectious virus was detected in the spleen from Tg2
217	mice up to 7 days p.i. (Table 2). To investigate whether lymphoid organs in Tg2 mice are
218	susceptible to MERS-CoV infection, we harvested splenocytes from Tg2 and C57BL/6
219	mice and estimated infectivity and MERS-CoV RNA levels (Fig. 4D). Although the
220	amount of infectious MERS-CoV in splenocytes was below the detection limit, viral RNA
221	was detected in splenocytes from Tg2 mice (peaking at 2 days p.i.). Thus, lymphoid organs
222	of Tg2 mice were as susceptible to MERS-CoV infection as those reported in other animal
223	studies, although lymphoid organs were not a major site of MERS-CoV replication in Tg2
224	mice after intranasal inoculation.
225	
226	Acute inflammatory changes in the lungs of hDPP4-Tg mice after MERS-CoV
226 227	Acute inflammatory changes in the lungs of hDPP4-Tg mice after MERS-CoV inoculation
226 227 228	Acute inflammatory changes in the lungs of hDPP4-Tg mice after MERS-CoV inoculation MERS-CoV infection of the nasal cavity, lungs, brain, spinal cord, liver, spleen,
226 227 228 229	Acute inflammatory changes in the lungs of hDPP4-Tg mice after MERS-CoV inoculation MERS-CoV infection of the nasal cavity, lungs, brain, spinal cord, liver, spleen, kidney, heart, and gastrointestinal tract of Tg2 mice was examined histopathologically on
226 227 228 229 230	Acute inflammatory changes in the lungs of hDPP4-Tg mice after MERS-CoV inoculation MERS-CoV infection of the nasal cavity, lungs, brain, spinal cord, liver, spleen, kidney, heart, and gastrointestinal tract of Tg2 mice was examined histopathologically on Days 1, 3, 5, 7, 14, and 35 p.i (n = 3 [one or two females and one or two males per time
 226 227 228 229 230 231 	Acute inflammatory changes in the lungs of hDPP4-Tg mice after MERS-CoV inoculation MERS-CoV infection of the nasal cavity, lungs, brain, spinal cord, liver, spleen, kidney, heart, and gastrointestinal tract of Tg2 mice was examined histopathologically on Days 1, 3, 5, 7, 14, and 35 p.i (n = 3 [one or two females and one or two males per time point]). Histopathological investigations revealed that Tg2 mice showed progressive
 226 227 228 229 230 231 232 	Acute inflammatory changes in the lungs of hDPP4-Tg mice after MERS-CoV inoculation MERS-CoV infection of the nasal cavity, lungs, brain, spinal cord, liver, spleen, kidney, heart, and gastrointestinal tract of Tg2 mice was examined histopathologically on Days 1, 3, 5, 7, 14, and 35 p.i (n = 3 [one or two females and one or two males per time point]). Histopathological investigations revealed that Tg2 mice showed progressive pulmonary inflammation associated with acute virus infection, from which they recovered
226 227 228 229 230 231 232 233	Acute inflammatory changes in the lungs of hDPP4-Tg mice after MERS-CoV inoculation MERS-CoV infection of the nasal cavity, lungs, brain, spinal cord, liver, spleen, kidney, heart, and gastrointestinal tract of Tg2 mice was examined histopathologically on Days 1, 3, 5, 7, 14, and 35 p.i (n = 3 [one or two females and one or two males per time point]). Histopathological investigations revealed that Tg2 mice showed progressive pulmonary inflammation associated with acute virus infection, from which they recovered (Fig. 5). On Day 1 p.i., there was no obvious infiltration of the lungs in Tg2 mice; however,
 226 227 228 229 230 231 232 233 234 	Acute inflammatory changes in the lungs of hDPP4-Tg mice after MERS-CoV inoculation MERS-CoV infection of the nasal cavity, lungs, brain, spinal cord, liver, spleen, kidney, heart, and gastrointestinal tract of Tg2 mice was examined histopathologically on Days 1, 3, 5, 7, 14, and 35 p.i (n = 3 [one or two females and one or two males per time point]). Histopathological investigations revealed that Tg2 mice showed progressive pulmonary inflammation associated with acute virus infection, from which they recovered (Fig. 5). On Day 1 p.i., there was no obvious infiltration of the lungs in Tg2 mice; however, mild cellular degeneration and viral antigen-positive cells were seen in the bronchioles and

Several animal studies have identified MERS-CoV RNA in the lymphoid organs of

235	a few alveolar areas (Fig. 5A–C). Double immunofluorescence staining revealed that
236	MERS-CoV antigen co-localized with hDPP4-positive bronchioles and alveolar cells on
237	Day 1 p.i. (Fig. 6). On Days 3 and 5 p.i., inflammatory reactions, including partial and/or
238	mild perivascular and peribronchiolar infiltration by mononuclear cells and eosinophils in
239	response to viral antigens, were observed in alveolar areas of lung tissue from Tg2 mice
240	(Fig. 5D–I). From Day 3 p.i. onwards, the alveolar area was the main site of inflammatory
241	responses to viral replication (Fig. 5F, I, L). On Day 7 p.i., the point at which Tg2 mice
242	showed weight loss, there was evidence of severe lung inflammation, including
243	perivascular and alveolar septal thickening, caused by infiltrating mononuclear cells; some
244	alveoli were positive for viral antigens (Fig. 5K). At Day 14 p.i., focal cellular infiltration
245	was still evident in the peribronchioles and alveolar septa, although viral antigens and
246	inflammatory responses had cleared from the lungs by Day 35 p.i. (Fig. 5M–P). There was
247	no evidence of diffuse alveolar damage in the lungs up to Day 35 p.i. These findings
248	suggest that progressive immunopathology occurred uniformly throughout the lungs, but
249	resolved within 14 days after infection. Neither histopathology nor IHC detected
250	inflammatory infiltration or viral antigens in the nasal cavity through 35 days p.i. In
251	addition, there was no inflammation or viral antigen expression in the brain through 35
252	days p.i. (Fig. 7). By contrast, C57BL/6 mice showed no histopathological changes or viral
253	antigen in any organ, including the lung. These results indicate that Tg2 mice suffer acute
254	pneumonia after infection of the lungs with MERS-CoV, which is related to expression of

Σ

255	hDPP4 in the bronchiolar epithelium and pneumocytes. Splenocytes from Tg2 mice were
256	susceptible to ex vivo infection with MERS-CoV (Fig. 4D); however, the spleen and other
257	lymphoid tissues did not harbor viral antigens. Furthermore, MERS-CoV induced T cell
258	apoptosis upon infection in vitro (28), whereas immunohistochemical staining detected no
259	evidence of apoptosis in lymphoid tissues, including spleen and lymph nodes, of
260	MERS-CoV-infected Tg2 mice. Similar to the other mouse models in which mouse DPP4
261	was replaced with hDPP4 (12), MERS-CoV replication and pathology were localized in the
262	lungs of Tg2 mice.
263	

264Differences in the immunopathology of MERS-CoV infection between young and 265adult hDPP4-Tg mice

266According to an epidemiological study (29), age (>45 years) is considered to be one 267of the risk factors for MERS-CoV infection in humans. Therefore, we infected 25-week-old 268mice with MERS-CoV. Tg2 mice showed significant weight loss from Days 7 and 8 p.i, 269 before recovering by Day 14 p.i. (n = 6 [one female and five male Tg2 mice] and n = 7270[three female and four male non-Tg mice]; Fig. 8A). However, 25-week-old Tg2 mice 271showed no obvious clinical signs (such as respiratory illness and mortality). The 27225-week-old Tg2 mice had seroconverted by 35 days p.i., whereas the C57BL/6 mice had 273not (Fig. 8B). Next, we examined viral replication kinetics and sites of viral replication in 27425-week-old Tg2 and non-Tg mice (n = 4 [two females and two males per time point]). The

Journal of Virology

275	nasal wash fluid from one out of four Tg2 mice contained barely detectable levels of
276	infectious virus at 1, 3, and 5 days p.i. (Fig. 8C). Supernatants from maxilla tissue
277	homogenates (20%) from Tg2 mice contained $10^{1.7}$ and $10^{2.0}$ TCID ₅₀ /g at 1 and 3 days p.i.,
278	respectively, although the titer was undetectable at 5 days p.i. The viral titers in lung wash
279	fluid from Tg2 mice were detectable up until 3 days p.i., while the supernatants from lung
280	tissue homogenates (20%) from Tg2 mice showed a high viral load from 1 to 5 days p.i.;
281	infectious virus was detectable up until 7 days p.i. Viral loads in the respiratory tract
282	peaked at 3 days p.i Although no virus was detectable in the respiratory tract of
283	10-week-old Tg mice at 7 days p.i., infectious virus was detected in the lungs of
284	25-week-old Tg mice up until 5 days p.i. In addition, infectious virus was detected in the
285	lungs of one of four 25-week-old Tg mice $(10^{2.5} \text{ TCID}_{50}/\text{g})$ even at 7 days p.i. We also
286	found that viral titers in the nasal wash fluid, maxilla (including nostril), lung wash fluid,
287	and lungs of 25-week-old Tg2 mice on Day 3 p.i. $(10^{2.6}/ml, 10^{3.3}/ml, 10^{2.3}/ml, and 10^{4.9}/ml,$
288	respectively) were slightly higher than those in 10-week-old Tg2 mice $(10^{1.6}/\text{ml}, 10^{2.9}/\text{ml},$
289	$10^{1.8}$ /ml, and $10^{4.5}$ /ml, respectively) (P = 0.04, Student's <i>t</i> test with Welch's correction).
290	Histopathological analysis revealed that 25-week-old Tg2 mice showed delayed and

Histopathological analysis revealed that 25-week-old Tg2 mice showed delayed and prolonged inflammatory responses in the lung compared with those in 10-week-old Tg2 mice (Fig. 9). Interestingly, viral antigen-positive cells were seen in the alveolar area on Day 1 p.i., and then in the bronchi on Day 3 p.i., along with a sparse cellular infiltrate (Fig. 9A–F). Cellular infiltration (which included mononuclear cells and polynuclear cells) was observed in the alveoli from 5 days p.i.; this expanded on Day 7 p.i. (Fig. 9G–L). Focal cell
infiltration was seen in the alveoli on Day 14 p.i., and lymphoid cell aggregates were seen
around bronchioles and blood vessels on Day 35 p.i. (Fig. 9M–R).

Next, we compared inflammation of the alveoli in 10-week-old Tg mice and 25-week-old Tg mice on Day 7 p.i. Ionized calcium binding adaptor molecule 1 (Iba-1) is expressed specifically by monocytes/macrophages and is upregulated when these cells are activated. The predominant inflammatory infiltrate within the lungs of both 10-week-old and 25-week-old Tg mice comprised Iba-1-positive large cells and CD3-positive mononuclear cells (Fig. 10). Phagocytic vacuoles were prominent in large Iba-1 positive cells from 25-week-old Tg mice.

305

306 Expression of pro-inflammatory cytokines and chemokines in hDPP4-Tg mice after

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

307 MERS-CoV infection

308 Dysregulated cytokine and chemokine expression is observed in

309 MERS-CoV-infected patients (30). Therefore, we measured the levels of 20 cytokines and

310 chemokines in lung samples from both 10-week-old and 25-week-old Tg2 mice inoculated

311 with either MERS-CoV or minimal essential medium (MEM). Measurements were made at

312 6 h, and at 1, 3, 5, and 7 days, p.i. (n = 3-4 [two females and 1-2 males per time point], Fig.

313 11A; and n = 4 [two females and two males per time point], Fig. 11B). On Day 3 p.i., we

314 observed early expression of gamma IFN-induced protein 10 (IP-10) in the lungs of both

315	10- and 25-week-old Tg2 mice, which was significantly higher than that in control mice;
316	this increase lasted through Day 7. This was followed by a transient increase in expression
317	of interleukin (IL)-6, IL-13, and monocyte chemotactic protein-1 (MCP-1) in lungs from
318	both 10- and 25-week-old Tg2 mice at Day 5 p.i. High levels of macrophage inflammatory
319	protein 1 alpha (MIP-1 α) and monokine induced by gamma IFN (MIG) were detected in
320	the lungs of both groups of Tg2 mice from Days 3 or 5 to 7 p.i., whereas IL-12 levels
321	increased at Day 7 p.i. IFN- γ production in the lungs of 10-week-old Tg2 mice peaked
322	significantly on Day 5 p.i. while high values were seen in both infected and non-infected
323	25-week-old mice during the observation period. By contrast, expression of IP-10, IL-12,
324	and IL-1 β in 25-week-old Tg mice was higher than that in 10-week-old Tg2 mice.
325	Interestingly, IL-1 α and IL-17 were detected only in 25-week-old Tg2 mice infected with
326	MERS-CoV. IL-1 α , a potent pro-inflammatory cytokine associated with inflammation and
327	fever, was detected from 3 days p.i. and remained significantly elevated until 7 days p.i.;
328	IL-17 (a pro-inflammatory cytokine that recruits monocytes and neutrophils) was detected
329	from 3 days p.i., peaking at 5 days p.i. before falling at 7 days p.i. These results indicate
330	that MERS-CoV infection induces production of acute inflammatory chemokines and
331	cytokines in the lungs. In addition, aging causes more severe immunopathology; this means
332	that young and adult Tg mice show differing pathology in the lung after MERS-CoV
333	infection.
334	Furthermore, we measured expression of mRNA encoding interferon (IFN)- α 4 and

336	and at 1, 3, 5, and 7 days p.i. by real-time reverse transcription RT-PCR (31). We did not
337	find any evidence of IFN- α 4 or IFN- β in the lungs from 10-week-old Tg2 mice at early
338	times post-infection; however, we observed a transient increase in IFN- α 4 expression in the
339	lungs of two out of four Tg2 mice at 5 days p.i.; this fell by 7 days p.i. (Fig. 11C). Day 5 p.i.
340	was the time point at which the amount of virus in the lungs of Tg2 mice began to fall. No
341	IFN- β mRNA was detectable in lung samples from either group. On the other hand, the
342	lungs of 25-week-old Tg2 mice showed a transient increase in IFN- α 4 and IFN- β mRNA
343	expression at 3 days p.i. (Fig. 11C). In addition, IFN- α 4 and IFN- β mRNA expression was
344	higher than that in 10-week-old Tg2 mice. Taken together, these results indicate that both
345	type 1 and type 2 IFN contribute to the immunopathology of the lungs of 25-week-old Tg2
346	mice infected with MERS-CoV.

IFN- β (type 1 IFN with antiviral activity) in the lungs of 10- and 25-week-old mice at 6 h

347

335

348 DISCUSSION

349 Here, we describe a new hDPP4-Tg mouse expressing the human gene under the 350control of an endogenous human promoter. This mouse model shows a pattern of hDPP4 351expression that closely mimics that in human tissues and is similar to that in other recent 352models (5-7). This mouse model also shows susceptibility to infection by MERS-CoV; this 353mimics the non-lethal observations in other mouse models (13, 14). After intranasal 354inoculation with a human isolate of MERS-CoV, the Tg mice developed acute and mild

355	interstitial pneumonia; however, the infection was non-lethal and so did not mimic severe
356	cases seen in human MERS-CoV patients. MERS-CoV infection can cause severe illness,
357	resulting in acute respiratory distress syndrome, although a large number of MERS-CoV
358	infections follow a mild or asymptomatic course in healthy individuals (32-35). Thus, this
359	Tg mouse model reflects the natural course of a mild MERS-CoV infection.
360	The majority of severe MERS-CoV cases occur in middle-aged and older males (36,
361	37). Therefore, we infected Tg2 mice aged 25 weeks with MERS-CoV. The mice showed
362	prominent pro-inflammatory responses and prolonged pulmonary inflammation when
363	compared with Tg2 mice aged 10 weeks. However, none of the infected Tg2 mice had a
364	severe outcome, such as respiratory distress, that led to death. Epidemiologically, patients
365	with diabetes, kidney failure, or chronic lung disease, all of which might weaken the
366	immune system, tend to have a poor outcome after infection by MERS-CoV
367	(http://www.who.int/csr/don/23-september-2015-mers-kuwait/en/). Thus, it is presumed
368	that a combination of older age and underlying disease might also increase mortality in this
369	animal model.
370	This hDPP4-Tg mouse model, which lacks the clinical signs and mortality
371	associated with severe MERS-CoV infection, is likely to be less advantageous than other
372	lethal mouse models with respect to development of novel vaccines or antiviral agents
373	(12-14). When we asked why the Tg2 mice showed non-lethal responses to infection, we
374	could not ignore the fact that virus levels in lungs were lower than those reported for other

Σ

375	MERS mouse models (5, 12, 13, 38, 39). One reason for this is that the transgene used in
376	this study is a hemizygote, meaning that the copy number or expression level may be lower
377	than that in mice homozygous for hDPP4. In addition, the DPP4 protein is active as a dimer
378	(40), but the Tg2 mice harbor both murine and hDPP4. We presume that the viral yield in
379	the lungs of Tg2 mice was low because of heterodimers formed by hDPP4 and murine
380	DPP4. To address this, we constructed structural models of homo- and heterodimers
381	comprising human and mouse DPP4. Notably, the estimated interaction energy of the DPP4
382	heterodimers was greater than that of murine and hDPP4 homodimers (-358.2, -347.6, and
383	-344.6 kcal/mol, respectively). These results suggest that DPP4 heterodimers are as stable
384	as DPP4 homodimers. Cockrell et al. reported that mouse DPP4 does not support
385	MERS-CoV entry (38). Thus, the presence of stable DPP4 heterodimers may be a reason
386	for the lower levels of infection in our mouse model. Further study is necessary to clarify
387	this.
388	Some research groups generated a mouse-adapted MERS-CoV for use in
389	severe/lethal MERS-CoV infection mouse models (13, 14). This may be one way to
390	establish severe MERS infection in our Tg2 mice.
391	While the Tg2 mice expressed hDPP4 protein in the liver, spleen, kidney, heart,
392	lung, gastrointestinal tract, pancreas, and brain, viral infection and replication were limited
393	(mainly) to the lower respiratory tract, with little upper respiratory tract involvement, after
394	intranasal inoculation of MERS-CoV. Tg2 mice developed interstitial pneumonia, and
	21

Σ

395	MERS-CoV antigens were detected in the lungs. Virus yields in the lung were up to
396	100-fold higher than those in the upper respiratory tract. Most MERS patients exhibit a
397	severe lower respiratory tract infection, with little involvement of the upper respiratory tract
398	(36). This suggests that MERS-CoV infection in Tg2 mice mimics mild infection in
399	humans.

400	In vitro analysis of MERS-CoV suggests that the virus also infects human T cells
401	and macrophages (28, 41, 42). We detected MERS-CoV RNA in serum and spleen cells
402	from Tg2 mice. These data are similar to those generated from another Tg mouse model in
403	which mouse DPP4 was replaced with hDPP4 under control of the endogenous mouse
404	DPP4 promoter (12). MERS-CoV infection of T cells might affect immunopathology or
405	induction of apoptosis in Tg mice, but we found no clear evidence of this. Although Tg2
406	mice showed systemic viremia, infection of organs (except lung) did not lead to secondary
407	complications. The disease phenotype (including clinical symptoms, viral titer in the lung,
408	and acute pneumonia) appeared to be driven by infiltration by macrophages and
409	lymphocytes; this is similar to the phenotype observed in another Tg mouse model
410	harboring hDPP4 under the control of the endogenous mouse DPP4 promoter (12).
411	The Tg2 mice described herein did not show any brain or renal lesions after
412	MERS-CoV infection. Other Tg mouse models in which hDPP4 is expressed under a strong
413	ubiquitous promoter show high levels of viral RNA and inflammation in the lungs, which
414	are accompanied by brain lesions (5, 7, 11). A fatal case of human MERS-CoV infection

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

MERS-CoV is the lower respiratory tract; however, patients with MERS often show signs		
of acute kidney failure (1, 43). In addition, MERS-CoV was identified in the urine of		
MERS patients (44, 45). Data from the first autopsy case did find pathological signs in the		
patient's kidneys, although IHC revealed no evidence of MERS-CoV replication in the		
kidneys (43). In addition, acute renal failure in this patient was not caused by MERS-CoV		
directly; rather, it was caused by hypotension (43) and/or acute respiratory distress		
syndrome (46).		
Histopathological analysis identified CD3-positive T cells and Iba-1-positive		
macrophages in the lungs of Tg2 mice on Day 7 p.i., which correlated with expression of		
inflammatory cytokines and inflammatory infiltrates in the lung. Tg2 mice aged 10 and 25		
weeks showed increased expression of cytokines and chemokines associated with migratio		
of T cells and activation of macrophages, including IP-10, IL-6, IL-13, MCP-1, IFN- γ ,		

425	macrophages in the lungs of Tg2 mice on Day 7 p.i., which correlated with expression of
426	inflammatory cytokines and inflammatory infiltrates in the lung. Tg2 mice aged 10 and 25
427	weeks showed increased expression of cytokines and chemokines associated with migration
428	of T cells and activation of macrophages, including IP-10, IL-6, IL-13, MCP-1, IFN- γ ,
429	MIP-1 α , MIG, and IL-12, in the lungs at Days 5 and/or 7 p.i. This result is the same as that
430	observed in a hDPP4 knock-in mouse model reported by Coleman et al. (12). In this hDPP4
431	knock-in mouse model, CD8 ⁺ T cells and macrophages affected the course of

published by Ng et al. showed no sign of MERS-CoV infection in the brain (43). To date,

no reports suggest that MERS-CoV shows tropism for brain tissue. The primary target of

MERS-CoV-induced disease (12). In addition, Tg2 mice expressed mRNA encoding the

type 1 IFN, IFN- α 4, during the early phase of the MERS-CoV infection. Importantly, the

pathogenic and immune response data from the knock-in mouse model and our own model

Journal of Virology

 \leq

436	2 IFNs) and infiltration by macrophages might clear the virus from the lung, thereby
437	preventing progression to MERS. Interestingly, we detected IL-1 α and IL-17 in the lungs of
438	25-week-old Tg2 mice, but not those of 10-week-old Tg2 mice, after MERS-CoV infection.
439	Both IL-1 α and IL-17 are pro-inflammatory cytokines that attract monocytes and
440	neutrophils; therefore, they may exacerbate immunopathology after infection. These
441	findings support the notion that the severity of MERS-CoV infection is age-dependent. Age
442	is one of the most common factors related to severity and mortality of MERS infection;
443	however, the underlying pathology is unclear (47).
444	Many studies have examined immune responses of MERS patients (30, 48-52).
445	Indeed, elevated serum levels of IL-6, IL-12, IP-10, and IFN- γ are observed in patients
446	during the early period after severe infection (48-51). In addition, a prominent
447	pro-inflammatory Th1 and Th17 response, including production of IFN- γ , TNF- α , IL-15,
448	and IL-17, is seen in patients during the acute phase of MERS-CoV infection (52). By
449	contrast, we found that administration of poly(I:C) to Tg2 mice induced a mild increase (or
450	earlier induction) in innate immune responses when compared with those in C57BL/6 mice
451	and non-Tg mice. This suggests that overexpression of hDPP4 might influence immune
452	responses in Tg2 mice. Thus, we must exercise caution when assessing the relationship
453	between immunopathology and outcome in patients and animal models of MERS-CoV;

are similar. Thus, an acute inflammatory reaction (including production of type 1 and type

455	acute phase of MERS-CoV infection, both in patients and mouse models.
456	In summary, we generated a hDPP4-Tg mouse model showing mild respiratory
457	infection by MERS-CoV. While this Tg mouse has limitations as a model for human
458	MERS (i.e., lower virus titer in the lungs and mild disease), the immunopathology seems to
459	resemble a mild and early stage of infection in humans. Even though it has limitations, this
460	Tg mouse model will increase our understanding of the mechanisms underlying
461	MERS-CoV infection. Indeed, we recently used this mouse model to confirm a role for
462	transmembrane protease serine type2 (TMPRSS2) during MERS-CoV infection (Naoko
463	Iwata-Yoshikawa et al., submitted). This animal model may provide new insight into
464	disease pathogenesis and guide development of therapeutic interventions that mitigate
465	MERS.
466	
467	MATERIALS AND METHODS

however, pro-inflammatory responses seem to contribute to immunopathology during the

468 Ethics statements. Experiments using recombinant DNA and pathogens were approved by
469 the Committee for Experiments using Recombinant DNA and Pathogens at the National
470 Institute of Infectious Diseases, Tokyo, Japan. All animal experiments were approved by
471 the Animal Care and Use Committee of the National Institute of Infectious Diseases, and
472 the NCGM Research Institute, and were conducted in accordance with institutional
473 Guidelines for the Care and Use of Animals. All animals were housed in a Japan Health

Accepted M	
Journal of Virology	

475	from US Biomax, Inc., GeneTex, Inc., Alpha Diagnostics International, or Protein
476	Biotechnologies. The protocols were approved by the Health Insurance Portability and
477	Accountability Act (HIPAA) or Institutional Review Board (IRB).
478	
479	Cells and viruses. MERS-CoV, HCoV-EMC 2012 strain, was kindly provided by Dr. Bart
480	Haagmans and Dr. Ron Fochier (Erasmus Medical Center, Rotterdam, the Netherlands) and
481	was used throughout the study. Vero E6 cells, purchased from the American Type Cell
482	Collection (Manassas, VA), were cultured in Eagle's MEM containing 5% fetal bovine
483	serum (FBS), 50 IU/ml penicillin G, and 50 μ g/ml streptomycin (5% FBS-MEM). Stocks of
484	MERS-CoV were propagated and titrated on Vero E6 cells and cryopreserved at -80°C.
485	Viral infectivity titers are expressed as the TCID ₅₀ /ml on Vero E6 cells and were calculated
486	according to the Behrens-Kärber method. Work with infectious MERS-CoV was performed
487	under biosafety level 3 conditions.
488	
489	Virus isolation and titration. Lung wash fluids and liver, kidney, heart, spleen, intestine,
490	and brain tissue samples from Tg2, non-Tg, and C57BL/6 mice were collected at the time
491	of postmortem examination and stored at -80°C. Tissue homogenates (20% $[w/v]$) were
492	prepared in 2% FBS-MEM, and samples were inoculated onto Vero E6 cell cultures, which
493	were then examined for cytopathic effects (CPE) for 5 days. Blind-passage was performed

Sciences Foundation-certified facility. All human samples used in this study were obtained

N

Downloaded fr
ОМ
http://jvi.a:
sm.org/
on Janu
ary
<u>_</u>
2019 by
guest

495

496	the samples were deemed negative for infectious virus. Viral infectivity titers were
497	determined in Vero E6 cell cultures using the micro-titration assay described above.
498	
499	MERS-CoV neutralizing assay. Blood was obtained from each mouse and allowed to clot.
500	Sera were then obtained by centrifugation and inactivated by incubation at 56°C for 30 min.
501	One hundred TCID ₅₀ aliquots of MERS-CoV were incubated for 1 h in the presence or
502	absence of mouse serum (serially diluted 2-fold) and then added to confluent Vero E6 cell
503	cultures in 96-well microtiter plates. The presence of a viral CPE was determined on Day 5,
504	and the titers of neutralizing antibody were determined as the reciprocal of the highest
505	dilution at which no CPE was observed. The lowest and highest serum dilutions tested were
506	1:2 and 1:512, respectively.
507	
508	Generation of hDPP4-Tg mice. To generate Tg mice expressing hDPP4, a BAC vector
509	carrying the hDPP4 gene (RP11-345J9) was purchased from Advanced GenoTechs Co.,
510	Japan. The BAC DNA was purified using a Large-Construct Kit (Qiagen) according to the
511	manufacturer's instructions and suspended in TE buffer (10 mM Tris \cdot HCl and 0.1 mM
512	EDTA, pH 7.5) at a concentration of 4 ng/ μ l. Tg mice were generated using standard
513	procedures (23). The purified BAC clones were microinjected into the pronuclei of

after freezing and thawing cells from the first- or second-round passages. If

MERS-CoV-specific CPE were not observed in the first-, second- or third-round cultures,

 \sum

515

516	assessed by FACS analysis as described below. The Tg mice were then backcrossed onto
517	C57BL/6NCr for five generations. After weaning, the mice were tested for Tg integration
518	by PCR and FACS analysis. Briefly, genomic DNA isolated from ear punch tissues was
519	subjected to PCR using hDPP4-specific primers (Table 2) and lymphocytes were isolated
520	from blood taken from the tail vein. Lymphocytes were screened for hDPP4 protein
521	expression by flow cytometry analysis. Tg mice and their non-Tg littermates were used for
522	the MERS-CoV infection study.
523	
524	Flow cytometry analysis. Blood was collected from the retro-orbital venous plexus under
525	isoflurane anesthesia using heparinized capillary tubes. The samples were then treated with
526	Red Blood cell lysis buffer (Sigma-Aldrich, St. Louis, MO) to remove erythroid cells. For
527	immunofluorescence staining, cells were re-suspended in staining buffer (PBS containing
528	2.5% FBS, 0.5 mM EDTA, 0.05% NaN ₃) and Fc-receptors were blocked by incubation for
529	20 min on ice with an unlabeled anti-mouse CD16/CD32 monoclonal antibody (clone:
530	2.4G2; Bay bioscience Co., Ltd., Kobe, Japan). After washing, the cells were stained for 30

fertilized eggs from BDF1×C57BL/6NCr mice (SLC Inc., Hamamatsu, Japan) and then

transplanted into pseudopregnant ICR mice (SLC Inc.). Expression of the transgene was

531min with a FITC-labeled anti-hDPP4 antibody (clone: BA5b) or with a control antibody

532against mouse IgG2a (clone: MOPC-173; BioLegend, San Diego, CA) and an APC-labeled

533anti-human CD3 antibody (clone: 145-2C11; BioLegend). Cells were then washed and

analyzed on a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA). Data were

535 processed using Cell Quest software (BD Biosciences).

536

537	Western blot analysis. To examine expression of DPP4 in human tissues, human tissue
538	lysates prepared from the liver, spleen, kidney, heart, lung, stomach, small intestine, large
539	intestine, pancreas, and brain were purchased from Alpha Diagnostics International (San
540	Antonio, TX). Human skeletal muscle lysates were purchased from Protein Biotechnologies
541	(Ramona, CA) and used under IRB-approval protocols. To prepare protein samples from
542	the Tg and non-Tg mouse organs, tissues were homogenized in 0.5 ml of RIPA buffer (50
543	mM Tris/HCl [pH 7.5], 150 mM NaCl, 1% [v/v] Nonidet P40 [NP40], 0.5% Sodium
544	deoxycholate, 0.1% SDS) containing a protease inhibitor mixture (Complete Mini; Roche
545	Diagnostics, Basel, Switzerland) and the protein concentrations were measured using a
546	Pierce [™] BCA protein assay kit (Thermo Fisher Scientific Inc., Waltham, MA).
547	Homogenates (equivalent to 5 μg of protein) were subjected to SDS/PAGE on 4–12%
548	Bis-Tris Protein Gels (Thermo Fisher Scientific), followed by transfer to a PVDF
549	membrane (Millipore Corp., Billerica, MA). After blocking, the membranes were incubated
550	for 1 h with a goat anti-hDPP4 antibody (0.1 μ g/ml, Cat# AF1180; R&D Systems, Inc.,
551	Minneapolis, MN) or a rabbit anti- β -actin antibody (1 µg/ml, Cat# ab8227; Abcam,
552	Cambridge, UK), followed by incubation with a donkey anti-goat HRP-conjugated
553	antibody (Abcam) and an anti-rabbit HRP-conjugated antibody (Abcam). The bands were

555

556

557

558

559saline intranasally. The dose of poly(I:C) was determined from previous studies (53). 560 Control mice received saline alone. To evaluate production of cytokines and chemokines in 561the lung, mice were sacrificed at 1 day post-administration (n = 4 per group [two females 562and two males]) and lungs were collected. Inflammatory cytokine profiles in 20% (w/v) 563lung homogenates were detected using a commercial Mouse Cytokine 20-Plex antibody 564bead kit (Thermo Fisher Scientific), as described by the manufacturer. 565566Inoculation of mice with MERS-CoV. Tg2 and non-Tg mice (9-10 weeks or 25 weeks 567 old), and Tg2-BALB mice (12-22 weeks old), were anesthetized and inoculated intranasally with 1×10^5 TCID₅₀ (30 µl) of MERS-CoV. Body weight was measured daily 568 569for 14 days (n = 4-8 per group), and animals were sacrificed at 6 h and at 1, 3, 5, 7, 14, and 57035 days p.i. to analyze virus replication, hematological parameters, cytokine expression, 571and disease pathology (n = 3-6 per group). Clinical signs were observed up until 14 days 572 p.i. All mock-infected mice were inoculated with 2% FBS-MEM and used as controls for 573all analyses involving mice aged 9-10 weeks.

detected by an Immobilon Western Chemiluminescent HRP Substrate (Millipore) and an

Intranasal administration of poly(I:C). Tg2, non-Tg, and C57BL/6 mice (10 weeks old)

were anesthetized and received 20 µg of poly(I:C) (Invitrogen, San Diego, CA) in 20 µl of

LAS-3000 apparatus (FUJIFILM, Tokyo, Japan).

Σ

575	Histopathology and IHC. Formalin-fixed paraffin-embedded normal human tissue	
576	sections were purchased from separate sources: liver, spleen, lung, trachea, small intestine,	
577	colon, pancreas, cerebrum, cerebellum, and skeletal muscle were obtained from US Biomax,	
578	Inc. (Rockville, MD), whereas kidney, heart, spinal cord, stomach, and lymph node were	
579	obtained from GeneTex, Inc. (Irvine, CA). These human tissues were collected under	
580	HIPAA-approved protocols. To obtain animal tissues, mice were anesthetized and perfused	
581	with 2 ml of 10% phosphate-buffered formalin and the lungs, liver, spleen, kidney, heart,	
582	gastrointestinal tract, salivary glands, and brain tissue were harvested and fixed. Fixed	
583	tissues were routinely embedded in paraffin, sectioned, and stained with hematoxylin and	
584	eosin. For IHC, antigen retrieval of formalin-fixed mouse tissue sections was performed by	
585	autoclaving at 121°C for 10 min in retrieval solution at pH 6.0 (Nichirei, Tokyo, Japan).	
586	hDPP4 and MERS-CoV antigens were detected using a standard immunoperoxidase	
587	method and a goat anti-hDPP4 antibody (R&D Systems), a rabbit anti-MERS-CoV	
588	nucleocapsid antibody (Cat# 40068-RP01; Sino Biological Inc., Beijing, China).	
589	For double staining of CD3 (T cells) and Iba-1 (macrophages) antigen, we used a rabbit	
590	anti-human CD3 antibody (Cat# 790-4341; Ventana Medical System Inc., Tucson, AZ) and	
591	a rabbit anti-human Iba-1 antibody (Cat# 019-19741; Wako Pure Chemical Industries, Ltd.,	
592	Osaka, Japan). DAB (Sigma-Aldrich Co., MO, USA) and the Vina Green Chromogen Kit	
593	(Biocare Medical, CA, USA) were used as chromogens for HRP visualization. Following	

594	the first staining of CD3 using the polymer-based detection system with DAB, denaturing
595	was performed by hydrolytic autoclaving in citrate buffer (pH 6.0) for 10 min at 121°C.
596	The second staining was performed for Iba-1 with Vina Green. Nuclei were counterstained
597	with hematoxylin for 10 sec. To detect apoptosis, TUNEL labeling was performed using the
598	In Situ Cell Death Detection Kit (Roche).
599	
600	Quantitative real-time RT-PCR. To measure the levels of type I IFN mRNA expression
601	and the number of viral genome copies, RNA was extracted from 20% (w/v) lung and brain
602	tissue homogenates and from the blood of Tg2 and non-Tg mice infected with MERS-CoV
603	using RNeasy Mini kits (Qiagen, Hilden, Germany), according to the manufacturer's
604	instructions. mRNA encoding IFN- α , IFN- β , and the E gene of MERS-CoV was examined
605	by real-time RT-PCR using an ABI Prism 7900HT Fast real-time PCR system (Applied
606	Biosystems, Foster City, CA). The TaqMan probes and primers, and the reaction conditions,
607	have been described previously (31). Expression of each gene was normalized to that of
608	β-actin.
609	
610	Detection of inflammatory cytokines and chemokines. Cytokines and chemokines in
611	mouse lung homogenates (10% w/v) were measured using a commercial Mouse Cytokine
612	20-Plex antibody bead kit (Thermo Fisher Scientific). A panel of inflammatory cytokines
613	and chemokines (basic fibroblast growth factor [bFGF], granulocyte-macrophage,

615	IL-12p40/p70, IL-13, IL-17, IP-10, keratinocyte chemoattractant [KC], MCP-1, MIG,
616	MIP-1 α , TNF- α , and vascular endothelial growth factor) was measured according to the
617	manufacturer's protocols.
618	
619	Isolation of splenocytes and infection with MERS-CoV. Spleens were removed
620	as eptically from Tg2 and C57BL/6 mice ($n = 3$ each), dissociated in RPMI-1640 medium,
621	and pressed gently through a 40 μ m nylon mesh filter. The cell suspension was centrifuged
622	at 400 g for 10 min, and red blood cells were lysed with blood cell lysis buffer (final
623	concentration: 155 mM NH ₄ Cl, 10 mM KHCO ₃ , and 0.1 mM EDTA; pH 7.3) at room
624	temperature for 5 min. The cells were washed twice with RPMI-1640 medium and
625	centrifuged at 1000 g for 10 min. hDPP4-expressing CD3 ⁺ T cells within the splenocyte
626	population were detected by flow cytometry analysis. The percentage of CD3 ⁺ T cells was
627	39.11 \pm 3.8%, and that of hDPP4-expressing CD3 ⁺ T cells was 26.46 \pm 1.9%. The cells were
628	re-suspended in the medium and infected with MERS-CoV (MOI of 1). Viral replication
629	was determined after 1 and 2 days of culture. Viral infectivity titers were measured in Vero
630	E6 cell cultures using a micro-titration assay. To detect the MERS-CoV genome in
631	splenocytes, RNA from splenocytes infected with MERS-CoV was extracted at 1 and 2
632	days p.i. and subjected to quantitative real-time RT-PCR (10).

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

colony-stimulating factor [GM-CSF], IFN- γ , IL-1 α , IL-1 β , IL-2, IL-4, IL-5, IL-6, IL-10,

633

634	Molecular modeling of DPP4 homo- and heterodimers. DPP4 dimer models were	
635	constructed using the Molecular Operating Environment (MOE) (Chemical Computing	
636	Group Inc., Montreal, Quebec, Canada) based on the crystal structure of hDPP4 at a	
637	resolution of 2.55 Å (PDB code: 20NC). Stereochemical quality was assessed using the	
638	Ramachandran Plot and Atom Clashes applications in MOE. Interaction energy, which is	
639	an indicator of the affinity of the dimer, was calculated using the Potential Energy	
640	application in MOE.	
641		
642	Statistical analysis. Data are expressed as the mean and standard error of the mean.	
643	Statistical analyses were performed using Graph Pad Prism 5 software (GraphPad Software	
644	Inc., La Jolla, CA). Intergroup comparisons were performed using one-way, two-way	
645	ANOVA, or Student's t test with Welch's correction. A P-value < 0.05 was considered	
646	statistically significant.	
647		
648	FUNDING INFORMATION	
649	This work was supported by a Grant-in-Aid for research (H25-Shinko-Wakate-004)	
650	from the Ministry of Health, Labor, and Welfare, Japan, by a Research Program on	
651	Emerging and Re-emerging Infectious Diseases (JP17fk0108313, JP18fk0108058) from the	
652	Japan Agency for Medical Research and Development, AMED, by a Grant-in-Aid for	

653 scientific research from the Ministry of Education, Culture, Sports, Science, and

 \sum

Journal of Virology

654 Technology in Japan, (KAKENHI; 16K09951, 18H02665), and in part by The Grant for

655 National Center for Global Health and Medicine (27A1102).

656

657 ACKNOWLEDGEMENTS

- 658 We thank Drs. Bart Haagmans and Ron Fouchier for providing MERS-CoV (isolate
- 659 HCoV-EMC/2012) and Drs. Satoshi Koike, Ken Fujii (Tokyo Metropolitan Institute of
- 660 Medical Science), and Shutoku Matsuyama (National Institute of Infectious Diseases) for
- 661 helpful discussion. We also thank Ms. Ayako Harashima and Midori Ozaki for technical
- 662 assistance.

663 **REFERENCES**

Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA.
 2012. Isolation of a novel coronavirus from a man with pneumonia in
 Saudi Arabia. The New England journal of medicine 367:1814-1820.

Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, Muth D,
Demmers JA, Zaki A, Fouchier RA, Thiel V, Drosten C, Rottier PJ,
Osterhaus AD, Bosch BJ, Haagmans BL. 2013. Dipeptidyl peptidase 4 is
a functional receptor for the emerging human coronavirus-EMC. Nature
495:251-254.

de Wit E, Rasmussen AL, Falzarano D, Bushmaker T, Feldmann F,
Brining DL, Fischer ER, Martellaro C, Okumura A, Chang J, Scott D,
Benecke AG, Katze MG, Feldmann H, Munster VJ. 2013. Middle East
respiratory syndrome coronavirus (MERS-CoV) causes transient lower
respiratory tract infection in rhesus macaques. Proceedings of the
National Academy of Sciences of the United States of America
110:16598-16603.

- Falzarano D, de Wit E, Feldmann F, Rasmussen AL, Okumura A, Peng X,
 Thomas MJ, van Doremalen N, Haddock E, Nagy L, LaCasse R, Liu T,
 Zhu J, McLellan JS, Scott DP, Katze MG, Feldmann H, Munster VJ. 2014.
 Infection with MERS-CoV causes lethal pneumonia in the common
 marmoset. PLoS pathogens 10:e1004250.
- Agrawal AS, Garron T, Tao X, Peng BH, Wakamiya M, Chan TS, Couch
 RB, Tseng CT. 2015. Generation of a transgenic mouse model of Middle
 East respiratory syndrome coronavirus infection and disease. Journal of
 virology 89:3659-3670.
- 688
 6. Zhao G, Jiang Y, Qiu H, Gao T, Zeng Y, Guo Y, Yu H, Li J, Kou Z, Du L,
 689
 690
 690
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700<
- 692 7. Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR,

<u>Journal of Virology</u>

693 Gibson-Corley KN, Meyerholz DK, McCray PB, Jr. 2016. Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and 694695 Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4. 696 The Journal of infectious diseases 213:712-722. 697 de Wit E, Prescott J, Baseler L, Bushmaker T, Thomas T, Lackemeyer 8. 698 MG, Martellaro C, Milne-Price S, Haddock E, Haagmans BL, Feldmann 699 H, Munster VJ. 2013. The Middle East respiratory syndrome coronavirus 700 (MERS-CoV) does not replicate in Syrian hamsters. PloS one 8:e69127. 701 9. Coleman CM, Matthews KL, Goicochea L, Frieman MB. 2013. Wild type 702 and innate immune deficient mice are not susceptible to the Middle East 703 Respiratory Syndrome Coronavirus. The Journal of general virology. 70410. Iwata-Yoshikawa N, Fukushi S, Fukuma A, Suzuki T, Takeda M, Tashiro 705 M, Hasegawa H, Nagata N. 2016. No susceptibility of neonatal and adult 706 rats against the Middle East respiratory syndrome coronavirus. 707 Japanese journal of infectious diseases. 708 11. Zhao J, Li K, Wohlford-Lenane C, Agnihothram SS, Fett C, Zhao J, Gale MJ, Jr., Baric RS, Enjuanes L, Gallagher T, McCray PB, Jr., Perlman S. 709 7102014. Rapid generation of a mouse model for Middle East respiratory 711syndrome. Proceedings of the National Academy of Sciences of the United 712States of America 111:4970-4975. 713 12.Coleman CM, Sisk JM, Halasz G, Zhong J, Beck SE, Matthews KL, Venkataraman T, Rajagopalan S, Kyratsous CA, Frieman MB. 2017. 714715CD8+ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model 716 of Middle East Respiratory Syndrome. Journal of virology 91. 71713. Li K, Wohlford-Lenane CL, Channappanavar R, Park JE, Earnest JT, 718Bair TB, Bates AM, Brogden KA, Flaherty HA, Gallagher T, Meyerholz 719 DK, Perlman S, McCray PB, Jr. 2017. Mouse-adapted MERS coronavirus 720 causes lethal lung disease in human DPP4 knockin mice. Proceedings of 721the National Academy of Sciences of the United States of America 722114:E3119-E3128.

37

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

14.

15.

16.

17.

18.

19.

microbiology 2:16226.

Korea Centers for Disease Control and Prevention. 2015. Middle East Respiratory Syndrome Coronavirus Outbreak in the Republic of Korea, 2015. Osong public health and research perspectives 6:269-278. Saad M, Omrani AS, Baig K, Bahloul A, Elzein F, Matin MA, Selim MA, Al Mutairi M, Al Nakhli D, Al Aidaroos AY, Al Sherbeeni N, Al-Khashan HI, Memish ZA, Albarrak AM. 2014. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases 29:301-306. Ahmed AE. 2017. The predictors of 3- and 30-day mortality in 660 MERS-CoV patients. BMC infectious diseases 17:615. Alsahafi AJ, Cheng AC. 2016. The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012-2015. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases 45:1-4. Majumder MS, Kluberg SA, Mekaru SR, Brownstein JS. 2015. Mortality Risk Factors for Middle East Respiratory Syndrome Outbreak, South Korea, 2015. Emerging infectious diseases 21:2088-2090.

Cockrell AS, Yount BL, Scobey T, Jensen K, Douglas M, Beall A, Tang XC,

Marasco WA, Heise MT, Baric RS. 2016. A mouse model for MERS

coronavirus-induced acute respiratory distress syndrome. Nature

746 20.Choi WS, Kang CI, Kim Y, Choi JP, Joh JS, Shin HS, Kim G, Peck KR, 747 Chung DR, Kim HO, Song SH, Kim YR, Sohn KM, Jung Y, Bang JH, Kim 748NJ, Lee KS, Jeong HW, Rhee JY, Kim ES, Woo H, Oh WS, Huh K, Lee YH, 749 Song JY, Lee J, Lee CS, Kim BN, Choi YH, Jeong SJ, Lee JS, Yoon JH, Wi 750YM, Joung MK, Park SY, Lee SH, Jung SI, Kim SW, Lee JH, Lee H, Ki 751HK, Kim YS. 2016. Clinical Presentation and Outcomes of Middle East 752Respiratory Syndrome in the Republic of Korea. Infection &

753		chemotherapy 48 :118-126.
754	21.	Koike S, Taya C, Kurata T, Abe S, Ise I, Yonekawa H, Nomoto A. 1991.
755		Transgenic mice susceptible to poliovirus. Proceedings of the National
756		Academy of Sciences of the United States of America 88 :951-955.
757	22.	Fujii K, Nagata N, Sato Y, Ong KC, Wong KT, Yamayoshi S, Shimanuki
758		M, Shitara H, Taya C, Koike S. 2013. Transgenic mouse model for the
759		study of enterovirus 71 neuropathogenesis. Proceedings of the National
760		Academy of Sciences of the United States of America 110 :14753-14758.
761	23.	Haruyama N, Cho A, Kulkarni AB. 2009. Overview: engineering
762		transgenic constructs and mice. Current protocols in cell biology /
763		editorial board, Juan S. Bonifacino [et al.] Chapter 19: Unit 19 10.
764	24.	Geppert TD, Davis LS, Gur H, Wacholtz MC, Lipsky PE. 1990. Accessory
765		cell signals involved in T-cell activation. Immunological reviews 117:5-66.
766	25.	Fleischer B. 1994. CD26: a surface protease involved in T-cell activation.
767		Immunology today 15: 180-184.
768	26.	Hegen M, Niedobitek G, Klein CE, Stein H, Fleischer B. 1990. The T cell
769		triggering molecule Tp103 is associated with dipeptidyl aminopeptidase
770		IV activity. J Immunol 144:2908-2914.
771	27.	Fan C, Wu X, Liu Q, Li Q, Liu S, Lu J, Yang Y, Cao Y, Huang W, Liang C,
772		Ying T, Jiang S, Wang Y. 2018. A Human DPP4-Knockin Mouse's
773		Susceptibility to Infection by Authentic and Pseudotyped MERS-CoV.
774		Viruses 10.
775	28.	Chu H, Zhou J, Wong BH, Li C, Chan JF, Cheng ZS, Yang D, Wang D, Lee
776		AC, Li C, Yeung ML, Cai JP, Chan IH, Ho WK, To KK, Zheng BJ, Yao Y,
777		Qin C, Yuen KY. 2016. Middle East Respiratory Syndrome Coronavirus

780diseases 213:904-914. Alghamdi IG, Hussain, II, Almalki SS, Alghamdi MS, Alghamdi MM, 78129.782El-Sheemy MA. 2014. The pattern of Middle East respiratory syndrome

Efficiently Infects Human Primary T Lymphocytes and Activates the

Extrinsic and Intrinsic Apoptosis Pathways. The Journal of infectious

778779

30.

31.

32.

33.

34.

35.

36.

37.

coronavirus in Saudi Arabia: a descriptive epidemiological analysis of
data from the Saudi Ministry of Health. International journal of general
medicine 7 :417-423.
van den Brand JM, Smits SL, Haagmans BL. 2015. Pathogenesis of
Middle East respiratory syndrome coronavirus. The Journal of pathology
235 :175-184.
Iwata-Yoshikawa N, Uda A, Suzuki T, Tsunetsugu-Yokota Y, Sato Y,
Morikawa S, Tashiro M, Sata T, Hasegawa H, Nagata N. 2014. Effects of
Toll-like receptor stimulation on eosinophilic infiltration in lungs of
BALB/c mice immunized with UV-inactivated severe acute respiratory
syndrome-related coronavirus vaccine. Journal of virology 88 :8597-8614.
Memish ZA, Zumla AI, Assiri A. 2013. Middle East respiratory syndrome
coronavirus infections in health care workers. The New England journal
of medicine 369: 884-886.
2013. State of Knowledge and Data Gaps of Middle East Respiratory
Syndrome Coronavirus (MERS-CoV) in Humans. PLoS currents 5.
O'Hagan JJ, Carias C, Rudd JM, Pham HT, Haber Y, Pesik N, Cetron MS,
Gambhir M, Gerber SI, Swerdlow DL. 2016. Estimation of Severe Middle
East Respiratory Syndrome Cases in the Middle East, 2012-2016.
Emerging infectious diseases 22 :1797-1799.
Omrani AS, Matin MA, Haddad Q, Al-Nakhli D, Memish ZA, Albarrak
AM. 2013. A family cluster of Middle East Respiratory Syndrome
Coronavirus infections related to a likely unrecognized asymptomatic or
mild case. International journal of infectious diseases : IJID : official
publication of the International Society for Infectious Diseases
17: e668-672.
2013. Update: Severe respiratory illness associated with Middle East
Respiratory Syndrome Coronavirus (MERS-CoV)worldwide, 2012-2013.
MMWD Monkidity and montality weakly papert 69:480-482
MMWR. Morbially and mortality weekly report 62 .480-485.

Journal of Virology

813		AJ, Lu X, Erdman DD, Tatti K, Binder AM, Rudd J, Tokars J, Miao C,
814		Alarbash H, Nooh R, Pallansch M, Gerber SI, Watson JT. 2016.
815		Multifacility Outbreak of Middle East Respiratory Syndrome in Taif,
816		Saudi Arabia. Emerging infectious diseases 22 :32-40.
817	38.	Cockrell AS, Peck KM, Yount BL, Agnihothram SS, Scobey T, Curnes NR,
818		Baric RS, Heise MT. 2014. Mouse dipeptidyl peptidase 4 is not a
819		functional receptor for Middle East respiratory syndrome coronavirus
820		infection. Journal of virology 88: 5195-5199.
821	39.	Pascal KE, Coleman CM, Mujica AO, Kamat V, Badithe A, Fairhurst J,
822		Hunt C, Strein J, Berrebi A, Sisk JM, Matthews KL, Babb R, Chen G, Lai
823		KM, Huang TT, Olson W, Yancopoulos GD, Stahl N, Frieman MB,
824		Kyratsous CA. 2015. Pre- and postexposure efficacy of fully human
825		antibodies against Spike protein in a novel humanized mouse model of
826		MERS-CoV infection. Proceedings of the National Academy of Sciences of
827		the United States of America 112:8738-8743.
828	40.	Chien CH, Huang LH, Chou CY, Chen YS, Han YS, Chang GG, Liang PH,
829		Chen X. 2004. One site mutation disrupts dimer formation in human
830		DPP-IV proteins. The Journal of biological chemistry 279 :52338-52345.
831	41.	Tynell J, Westenius V, Ronkko E, Munster VJ, Melen K, Osterlund P,
832		Julkunen I. 2016. Middle East respiratory syndrome coronavirus shows
833		poor replication but significant induction of antiviral responses in human
834		monocyte-derived macrophages and dendritic cells. The Journal of
835		general virology 97: 344-355.
836	42.	Zhou J, Chu H, Li C, Wong BH, Cheng ZS, Poon VK, Sun T, Lau CC,
837		Wong KK, Chan JY, Chan JF, To KK, Chan KH, Zheng BJ, Yuen KY. 2014
838		Active replication of Middle East respiratory syndrome coronavirus and
839		aberrant induction of inflammatory cytokines and chemokines in human
840		macrophages: implications for pathogenesis. The Journal of infectious
841		diseases 209: 1331-1342.
842	43.	Ng DL, Al Hosani F, Keating MK, Gerber SI, Jones TL, Metcalfe MG,

Σ

843	Tong S, Tao Y, Alami NN, Haynes LM, Mutei MA, Abdel-Wareth L, Uyeki
844	TM, Swerdlow DL, Barakat M, Zaki SR. 2016. Clinicopathologic,
845	Immunohistochemical, and Ultrastructural Findings of a Fatal Case of
846	Middle East Respiratory Syndrome Coronavirus Infection in the United
847	Arab Emirates, April 2014. The American journal of pathology
848	186 :652-658.
849 44.	Poissy J, Goffard A, Parmentier-Decrucq E, Favory R, Kauv M, Kipnis E,
850	Mathieu D, van der Werf S, Guery B. 2014. Kinetics and pattern of viral
851	excretion in biological specimens of two MERS-CoV cases. Journal of
852	clinical virology : the official publication of the Pan American Society for
853	Clinical Virology 61: 275-278.
854 45.	Drosten C, Seilmaier M, Corman VM, Hartmann W, Scheible G, Sack S,
855	Guggemos W, Kallies R, Muth D, Junglen S, Muller MA, Haas W,
856	Guberina H, Rohnisch T, Schmid-Wendtner M, Aldabbagh S, Dittmer U,
857	Gold H, Graf P, Bonin F, Rambaut A, Wendtner CM. 2013. Clinical
858	features and virological analysis of a case of Middle East respiratory
859	syndrome coronavirus infection. The Lancet. Infectious diseases
860	13: 745-751.
861 46.	Seeley EJ. 2013. Updates in the management of acute lung injury: a focus
862	on the overlap between AKI and ARDS. Advances in chronic kidney
863	disease 20: 14-20.
864 47.	Park JE, Jung S, Kim A, Park JE. 2018. MERS transmission and risk
865	factors: a systematic review. BMC public health 18 :574.
866 48.	Faure E, Poissy J, Goffard A, Fournier C, Kipnis E, Titecat M, Bortolotti
867	P, Martinez L, Dubucquoi S, Dessein R, Gosset P, Mathieu D, Guery B.
868	2014. Distinct immune response in two MERS-CoV-infected patients: can
869	we go from bench to bedside? PloS one 9 :e88716.
870 49.	Guan WD, Mok CK, Chen ZL, Feng LQ, Li ZT, Huang JC, Ke CW, Deng X,
871	Ling Y, Wu SG, Niu XF, Perera RA, Da Xu Y, Zhao J, Zhang LQ, Li YM,
872	Chen RC, Peiris M, Chen L, Zhong NS. 2015. Characteristics of Traveler

873		with Middle East Respiratory Syndrome, China, 2015. Emerging
874		infectious diseases 21: 2278-2280.
875	50.	Min CK, Cheon S, Ha NY, Sohn KM, Kim Y, Aigerim A, Shin HM, Choi JY,
876		Inn KS, Kim JH, Moon JY, Choi MS, Cho NH, Kim YS. 2016.
877		Comparative and kinetic analysis of viral shedding and immunological
878		responses in MERS patients representing a broad spectrum of disease
879		severity. Scientific reports 6: 25359.
880	51.	Shin HS, Kim Y, Kim G, Lee JY, Jeong I, Joh JS, Kim H, Chang E, Sim
881		SY, Park JS, Lim DG. 2018. Immune responses to MERS coronavirus
882		during the acute and convalescent phases of human infection. Clinical
883		infectious diseases : an official publication of the Infectious Diseases
884		Society of America.
885	52.	Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA.
886		2018. MERS-CoV infection in humans is associated with a
887		pro-inflammatory Th1 and Th17 cytokine profile. Cytokine 104: 8-13.
888	53.	Ichinohe T, Watanabe I, Ito S, Fujii H, Moriyama M, Tamura S,
889		Takahashi H, Sawa H, Chiba J, Kurata T, Sata T, Hasegawa H. 2005.
890		Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine
891		protects against influenza virus infection. Journal of virology
892		79: 2910-2919.
893		

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

Journal of Virology

894 FIGURE LEGENDS

895	Fig. 1. Generation of transgenic mice expressing human dipeptidyl peptidase 4 (hDPP4).
896	(A) Schematic diagram showing a bacterial artificial chromosome clone (BAC clone
897	RP11-345G-9) containing the hDPP4 gene used to produce the transgenic mice. The open
898	and closed circles denote the centromere (Cen) and telomere (Tel) of human chromosome 2,
899	respectively. The gray arrows indicate the genes located downstream of the hDPP4 gene
900	(white arrow). The cloned region in the BAC construct is denoted by a black line. GCG,
901	glucagon gene; FAP, fibroblast activation protein; IFIH1, interferon induced with helicase
902	C domain 1. (B) Expression of hDPP4 on peripheral blood CD3-positive T-lymphocytes
903	from the transgenic (Tg) mice. Tg1 and Tg2, hDPP4 ^{+/-} transgenic mouse lines 1 and 2;
904	non-Tg, hDPP4 ^{-/-} mouse. (C) Genomic DNA was extracted from Tg2 mice, and human
905	DPP4 exons 1–26 were subjected to PCR using specific primers. M: marker; Lane 1: exon
906	1; Lane 2: exon 2; Lane 3: exon 3; Lane 4: exon 4; Lane 5: exon 5; Lane 6: exon 6 to 7;
907	Lane 7: exon 8; Lane 8: exon 9; Lane 9: exon 10; Lane 10: exon 11; Lane 11: exon 12;
908	Lane 12: exon 13 to 14; Lane 13: exon 15 to 16; Lane 14: exon 17 to 18; Lane 15: exon 19;
909	Lane 16: exon 20; Lane 17: exon 21; Lane 18: exon 22; Lane 19: exon 23; Lane 20: exon
910	24; Lane 21: exon 25; Lane 22-23: exon 26.
911	
912	Fig. 2. Expression of human dipeptidyl peptidase 4 (hDPP4) in tissues from humans and

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

913 mice. Tg2, hDPP4^{+/-} transgenic mouse line 2; non-Tg, hDPP4^{-/-} mouse. (A) Western blot

914	analysis of homogenized human and mouse tissues with an anti-hDPP4 polyclonal antibody
915	or an anti- β -actin polyclonal antibody (internal control). Arrows indicate the positions of
916	hDPP4 (110 kDa). (B) Immunohistochemical analysis of hDPP4 expression in human, Tg2,
917	and non-Tg mice tissues stained with an anti-hDPP4 polyclonal antibody. Sections were
918	counterstained with hematoxylin. Scale bars, 50 μ m for large images of liver, kidney, small
919	intestine, pancreas, spleen, and lymph node; and 20 μ m for large images of lung and brain;
920	insets, 25 μm.
921	
922	Fig. 3. Innate immune responses in Tg2, non-Tg, and C57BL/6 mice. C57BL/6, non-Tg,
923	and Tg2 mice received an intranasal inoculation of poly(I:C) or saline and were sacrificed
924	24 h later (n = 4/group). Expression of pro-inflammatory cytokines and chemokines in
925	saline- and poly(I:C)-inoculated animals. P-values were calculated using one-way ANOVA,
926	followed by Tukey's post-test; ns: not significant; * $P < 0.05$. Error bars indicate the
927	standard deviation.
928	
929	Fig. 4. Permissiveness of transgenic mice to infection by MERS-CoV. (A) The body
930	weight of 10-week-old mice was monitored daily after intranasal inoculation of
931	MERS-CoV at a dose of 10^5 TCID ₅₀ (n = 8 for hDPP4-transgenic mouse line 2 (Tg2), n =
932	10 for C57BL/6 mice). Error bars represent the standard deviation. ** $P < 0.01$, *** $P < 0.001$
933	(two-way ANOVA). (B) Seroconversion of Tg2 mice inoculated with MERS-CoV. Titer of

000	ue
937	Vi
938	flu
939	inc
940	the
941	< (
942	M
943	ex
944	RN
945	
946	Fi
947	(hl
948	fro

935	post-inoculation with MERS-CoV (Tg2, $n = 3-5$; C57BL/6, $n = 4-6$). The dotted line
936	denotes the detection limit of the assay. Error bars represent the standard deviation. (C)
937	Viral load in the respiratory tract of mice inoculated with MERS-CoV. NW, nasal wash
938	fluid; Maxilla, maxilla including nostril; LW, lung wash fluid. Mice were euthanized at the
939	indicated times post-viral inoculation ($n = 3-4$ per time point). Viral titer was expressed as
940	the mean \pm standard deviation. The dotted line denotes the detection limit of the assay. **P
941	< 0.01, ***P < 0.001 (two-way ANOVA). (D) Quantitative real-time RT-PCR analysis of
942	MERS-CoV viral RNA in splenocytes isolated from Tg2 and C57BL/6 mice. RNA was
943	extracted from splenocytes infected with MERS-CoV at a multiplicity of infection of 1.
944	RNA levels were normalized against β -actin (endogenous control).
945	
946	Fig. 5. Histopathological changes in the lungs of human dipeptidyl peptidase 4
947	(hDPP4)-transgenic mice inoculated with MERS-CoV. Representative images of lungs
948	from hDPP4 ^{+/-} transgenic mouse line 2 on Days 1, 3, 5, 7, 14, and 35 post-inoculation (p.i.).
949	Mild but progressive interstitial infiltration was seen within 7 days p.i. (left column). IHC
950	staining of sequential sections revealed abundant MERS-CoV antigen-positive cells in
951	affected areas (middle column). Severe inflammation, with many mononuclear cells in the
952	alveolar spaces and regenerated type II pneumocytes in the alveolar wall, was observed

MERS-CoV-specific neutralizing antibodies in mouse serum on Days 7, 14, and 35

953within 7 days p.i. (right column). Scale bars: left and middle columns, 100 $\mu m;$ right

 \sum

Journal of Virology

955	immunohistochemistry using an anti-MERS-CoV nucleocapsid protein polyclonal antibody.
956	
957	Fig. 6. Double immunofluorescence images taken at 1 day p.i. showing human dipeptidyl
958	peptidase 4 (hDPP4) (green) and MERS-CoV antigen (red) in the lungs of Tg2 mice
959	infected with MERS-CoV. Viral antigen-positive cells in the lungs were hDPP4-positive
960	bronchiolar epithelial cells (upper panels) and alveolar epithelial cells (lower panels).
961	Original magnification, \times 600.
962	
963	Fig. 7. Histopathological changes in the brain of human dipeptidyl peptidase 4
964	(hDPP4)-transgenic mice inoculated with MERS-CoV. A, D, G show sagittal sections of the
965	head, including the nasal cavity, olfactory bulb, and brain, of a Tg2 mouse infected with
966	MERS-CoV (images taken at 3, 7, and 35 days p.i.). Right panels show the brain cortex
967	from A, D, and G, respectively (B, E, F: hematoxylin and eosin staining; C, F, I:
968	immunohistochemical analysis of MERS-CoV antigen). Neither lesions nor MERS-CoV
969	antigen-positive cells were detected in the brain. Scale bars in A, D, G = 1 mm; scale bars
970	in B, C, E, F, H, and I = $20 \ \mu m$.
971	

972 Fig. 8. Susceptibility of adult human dipeptidyl peptidase 4 (hDPP4)-transgenic mice to

MERS-CoV infection. Tg2, hDPP4^{+/-} transgenic mouse line 2; non-Tg, hDPP4^{-/-} mouse. 973

Journal of Virology

M

column, 50 µm; insets of middle column, 20 µm. HE, hematoxylin and eosin staining; IHC,

974	(A) The body weight of 25-week-old mice was monitored daily after intranasal inoculation
975	with MERS-CoV (n = 6 Tg2 mice; and n = 7 non-Tg mice). *P < 0.05 and ***P < 0.001
976	(two-way ANOVA). (B) Seroconversion of Tg2 mice inoculated with MERS-CoV. Titer of
977	MERS-CoV-specific neutralizing antibodies in mouse serum on Days 7, 14, and 35
978	post-inoculation with MERS-CoV (Tg2, $n = 4-6$; non-Tg, $n = 4$). The dotted line denotes
979	the detection limit of the assay. Error bars represent the standard deviation. (C) Viral titer in
980	nasal wash fluid (NW), maxilla (including nostril), lung wash fluid (LW), and lungs of
981	25-week-old Tg2 and non-Tg mice at 3 days post-inoculation (p.i.) (n = 4 mice per group).
982	Viral titer is expressed as the mean \pm standard deviation. The dotted line denotes the
983	detection limit of the assay. ** $P < 0.01$ and *** $P < 0.001$ (two-way ANOVA).
984	
985	Fig. 9. Histopathological changes in the lungs of human dipeptidyl peptidase 4
986	(hDPP4)-transgenic mice inoculated with MERS-CoV. Representative histopathological
987	images of the lungs from 25-week-old Tg2 mice at 1, 3, 5, 7, 14, and 35 days
988	post-MERS-CoV infection. Time-dependent recruitment of inflammatory cells to the lung
989	(left and right columns). Marked inflammatory cell infiltration was noted at 7 days
990	post-inoculation (p.i.) (J and L). Middle column, immunohistochemical staining for
991	MERS-CoV antigen. Scale bars: left and middle columns = $100 \ \mu m$; right column = $50 \ \mu m$;
992	insets of middle column = 20 μ m. HE, hematoxylin and eosin staining; IHC,
993	immunohistochemistry using an anti-MERS-CoV nucleocapsid protein polyclonal antibody.
	10

Σ

Σſ

995	Fig. 10. Identification of cells infiltrating the lung of Tg2 mice infected with MERS-CoV.
996	Representative images of lungs from 10-week-old (Young) and 25-week-old (Adult)
997	hDPP4 ^{+/-} transgenic mice (line 2) on Day 7 post-inoculation (p.i.). Infiltrating cells were
998	positive for Iba-1 (green) or CD3 (brown). Bars, 20 μ m. Upper panels: hematoxylin and
999	eosin staining (HE); Middle and lower panels: immunohistochemistry (IHC) using an
1000	anti-Iba-1 polyclonal antibody and an anti-CD3 monoclonal antibody.
1001	
1002	Fig. 11. Cytokine and chemokine levels and expression of type I interferon (IFN) genes in
1003	the lungs of Tg2 mice infected with MERS-CoV. Cytokine and chemokine levels in lung
1004	samples from 10-week-old (A) and 25-week-old (B) mice. Tg2 mice were inoculated with
1005	MERS-CoV or cell culture medium containing 2% FBS. Lungs were collected at the
1006	indicated times post-viral inoculation ($n = 3-4$ mice per time point). Data represent the
1007	mean \pm standard deviation. The dotted line denotes the detection limit of the assay. *P $<$
1008	0.05, **P < 0.01, and ***P < 0.001 (two-way ANOVA). (C) Quantitative real-time RT-PCR
1009	analysis of type I IFN gene expression in lung homogenates from Tg2 mice inoculated with
1010	MERS-CoV or cell culture medium containing 2% FBS. RNA levels were normalized
1011	against β -actin (endogenous control). Data represent the mean \pm standard deviation. The
1012	dotted line denotes the detection limit of the assay. *P < 0.05 and ***P < 0.001 (two-way
1013	ANOVA).

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

Target	Size (bp)	Sequence $(5' \rightarrow 3')$		
		Forward	Reverse	
Exon 1	130	AATGTTTAACTCGGGGCCGA	CGGAAGTGAGCGTTCAGAGA	
Exon 2	162	GGACTTGATCTGCTCGGCTT	CCTGACCTGAGCTCCAACTG	
Exon 3	391	ACACACACACTCTCACACACT	TCTCAGTGCCATAAAAGCCCA	
Exon 4	468	GTGCAAAGGGAGAAAGACTGA	CCACTTTGCCATATGCTGCA	
Exon 5	562	GTGCACAGTGATGGCAATGA	CCACCATGCCCGACTTTAAC	
Exon 6–7	330	GTCTCCTATAGTGAGTGGCCA	TCTGACAACTGGAGAGACTCAC	
Exon 8	565	GGTCAGCCTTCTCGGTCTTC	GGAGACATCTGGTGCTGTGA	
Exon 9	440	AGCCCAGCAAATGCAAAGTG	GCCAGATGCTGTTGACTTCAG	
Exon 10	296	TGCAGACGTTTTTGTGCAGT	GGCTGTGATCCACTTTGCCA	
Exon 11	274	CCAAGGTCTGGCAATAGTCA	TTCACTCTCCCCAACTGCAC	
Exon 12	299	GAGCTTCCAGAAGGACCCAG	GCTGACTCATCCATAAAAACCCC	
Exon 13-14	848	TGCTTGCAGCCAGAAGTCAT	CTTCTGGGCAAAGAGGGCAT	
Exon 15–16	708	CTCCGTGCACACTTAGGCTT	GGAGCTGCTTCGAAGTGAGT	

1014 **Table 1.** Primers used for PCR of human DPP4 exons

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

Exon 17-18	847	GCCCTGTGCCTTTCCAGTAA	GCATGTTCTCCAAATCCCTTCC
Exon 19	247	TGCTACTGACGGACATGAGG	GAAAGGACGCATTTGGCTCC
Exon 20	549	GGATGCATACTTCTCCACGG	AGGACATATGCCAACTCCCT
Exon 21	281	GCAGAGAACAAATGGCAGGG	ACTGCCCAGAGACCTAAGACT
Exon 22	206	AATGTGGAAACTGCGACTCG	TCTCTTTGTACCTGGCAGCA
Exon 23	567	AGGTGCTTTAGCCACCCTTT	GAGAGTCTTCTGGGCTCTAAAGG
Exon 24	364	TCCCTTCCAGTCCTGTCTCC	CAGTCTTGCCCCTCATGCTT
Exon 25	239	CTTTCCCACCCCTTGGTACC	CCTGTCTGTGGCACTGCTAA
Exon 26 (1)	784	TAGACCCCCTCTTTGACCCC	GAACAGCTCTTCTCCGAGGG
Exon 26 (2)	723	AAGGGATGGCAAGATGTGGG	TCCATATGCCAGTGCGGTTT

1016

1017 1018

1019

1020

Journal of Virology

Σ

51

1021	Table 2. V
1022	PCR in tis
	Animal
	Tg2

1021 **Table 2.** Virus isolation, detection of viral antigens by immunohistochemistry, and detection of the MERS-CoV genome by real-time

	Liver		Spleen		Kidney		Heart			Lung				Intestine			Brain			Blood				
Animal	Ι	А	G	 I	A	G	 I	А	G	I	А	G	 Ι	А	G	Ι	A	G	Ι	А	G	\mathbf{I}^1	А	G
Tg2	-	-	NE	-	-	-	-	-	-	-	-	NE	+	+	NE	-	-	NE	-	-	-	-	-	+2
Non-Tg	-	-	NE	-	-	-	-	-	-	-	-	NE	-	-	NE	-	-	NE	-	-	-	-	-	-

O22 PCR in tissues from Tg2 and non-Tg mice inoculated with MERS-CoV

1023 I: virus isolated; A: viral antigens; G: viral genome.

1024 +: virus was isolated, or viral antigens or the viral genome was detected, in tissues.

1025 -: no virus, antigen, or genome was detected in tissues.

- 1026 $Tg2 = hDPP4^{+/-}$ transgenic mouse line 2; non-Tg = hDPP4^{-/-} mouse.
- 1027 NE: not examined.
- 1028 ¹: serum samples used for analysis.
- 1029 ²: viral genome was detected in samples at 3 and 5 days p.i.

52

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

 \sum

 $\overline{\leq}$

IL-6

400

JW 200

100-

B6 non-Tg Tg PBS B6 non-Tg Tg Poly(I:C)

ns

⊢ ns

Z

Z

А

Journal of Virology

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

А

4000

3000

1000

400

300

100

300 250 -

200

100

50 0

В

400

300

100

300

100

300

250 200

W 150

100

JW/6d

Im/gq 500

IW/6d 150

JW/8d

JW 2000

IP-10

1 d Time : 3 d after inf

1 d Time 3 d after infe 5 d

5 d ectior

MIP1-α

IL-1α

IL-6

1 d Time

MIG

1 d 3 d 5 d Time after infection

IL-1β

ř#

7 d

250

200

150

8000

6000

4000 H

2000

150-

100

200 •

150

100

150

100

40 -

30

lm/gd 50

lm/bo

MCP-1

1 d 3 d 5 d

Time

Tg2-MEM Tg2-MERS-CoV

6 h

1 d 3 d 5 d Time after infection

IL-5

IFN-γ

1 d 3 d Time after infe

1 d Time

500

150

IFN-γ

1d 3d 5d Time after infection

IL-2

1 d 3 d 5 d Time after infection

IL-2

5 d ection

500

400

300

100

0

150

100

7 d

14/6d 200

 $\overline{\leq}$