JVI Accepted Manuscript Posted Online 17 July 2019 J. Virol. doi:10.1128/JVI.00785-19 Copyright © 2019 American Society for Microbiology. All Rights Reserved.

1 Biochemical analysis of coronavirus spike glycoprotein conformational intermediates

- 2 during membrane fusion
- 3
- 4 Miyuki Kawase^a, Michiyo Kataoka^b, Kazuya Shirato^a, and Shutoku Matsuyama^{a*}
- 5
- ⁶ ^aDepartment of Virology III, National Institute of Infectious Diseases, Murayama Branch, 4-
- 7 7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
- ⁸ ^bDepartment of Pathology, National Institute of Infectious Diseases, Murayama Branch, 4-7-
- 9 1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan

10

- 11 **Running title:** Coronavirus spike activation
- 12
- ^{*}Address correspondence to matuyama@nih.go.jp
- 14 Department of Virology III, National Institute of Infectious Diseases, Murayama Branch,
- 15 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
- 16 Tel: +81-42-561-0771 (ext. 3367); Fax: +81-42-567-5631

17

- 18 Abstract word count = 247
- 19 Main text word count = 8986

21 Abstract

22	A fusion protein expressed on the surface of enveloped viruses mediates fusion of the viral
23	and cellular membranes to facilitate virus infection. Pre- and post-fusion structures of viral
24	fusion proteins have been characterized, but conformational changes between them remain
25	poorly understood. Here, we examined the intermediate conformation of the murine
26	coronavirus fusion protein, called the spike protein, which must be cleaved by a cellular
27	protease following receptor binding. Western blot analysis of protease digestion products
28	revealed that two subunits (67 and 69 kDa) are produced from a single spike protein (180
29	kDa). These two subunits were considered to be by-products derived from conformational
30	changes and were useful for probing the intermediate conformation of the spike protein.
31	Interaction with a heptad repeat (HR) peptide revealed that these subunits adopt packed and
32	unpacked conformations, respectively, and two-dimensional electrophoresis revealed a
33	trimeric assembly. Based on biochemical observations, we propose an asymmetric trimer
34	model for the intermediate structure of the spike protein. Receptor binding induces the
35	membrane-binding potential of the trimer, in which at least one HR motif forms a packed-
36	hairpin structure, while membrane fusion subunits are covered by the receptor-binding
37	subunit, thereby preventing the spike protein from forming the typical homotrimeric pre-
38	hairpin structure predicted by the current model of class I viral fusion protein. Subsequent
39	proteolysis induces simultaneous packing of the remaining unpacked HRs upon assembly of
40	three HRs at the central axis to generate a six-helix bundle. Our model proposes a key
41	mechanism for membrane fusion of enveloped viruses.

42

43 **Importance**

44 Recent studies using single-particle cryo-electron microscopy (cryoEM) revealed the

45 mechanism underlying activation of viral fusion protein at the priming stage. However,

 $\overline{\leq}$

characterizing the subsequent triggering stage underpinning transition from pre- to post-46 fusion structures is difficult because single-particle cryoEM excludes unstable structures that 47 appear as heterogeneous shapes. Therefore, population-based biochemical analysis is needed 48 to capture features of unstable proteins. Here, we analyzed protease digestion products of a 49 50 coronavirus fusion protein during activation; their sizes appear to be affected directly by the conformational state. We propose a model for the viral fusion protein in the intermediate 51 state, which involves a compact structure and conformational changes that overcome steric 52 hindrance within the three fusion protein subunits. 53

55 Introduction

Class I viral fusion proteins drive the fusion of viral and cellular membranes to facilitate 56 insertion of the viral genome into the host cytoplasm (1). Structural analyses including cryo-57 electron microscopy (cryoEM) and X-ray crystallography revealed pre- and post-fusion 58 structures, and biochemical analysis led to the proposal of a unified model for conformational 59 changes of viral fusion proteins; receptor binding primes the formation of a membrane-60 embedded homotrimeric pre-hairpin structure that bridges viral and cellular membranes, then 61 62 folds back on itself to form a hairpin structure, drawing the viral and cellular membranes into close proximity, resulting in lipid mixing (1-3). The post-fusion form consists of a central N-63 terminal trimeric α -helical coiled-coil (trimer of heptad repeat 1, HR1) surrounded by three 64 C-terminal helices (HR2), generating a six-helix bundle (6HB) (1–3). 65 66 The molecular rearrangements occurring at the early stages of the fusion process underpinning the receptor-binding step in the fusion protein of human immunodeficiency 67 virus-1, influenza virus, and coronavirus were revealed by high-resolution cryoEM (4–13). 68 However, the dynamic rearrangements underpinning the transition from pre- to post-fusion 69 structures remain largely uncharacterized. During membrane fusion in influenza virus and 70 herpes simplex virus, V- or Y-shaped density was observed in the intermediate state by 71 cryoEM (14, 15), and in the retroviral Env trimer, an asymmetric intermediate appeared to 72 emanate from a single protomer in cryo-electron tomography experiments (16). For the 73 Moloney murine leukemia virus Env protein, the sequential release of the surface subunit 74 from the transmembrane subunit induces the formation of an asymmetric trimer (17). 75 Adoption of an asymmetric conformation presumably overcomes steric hindrance within the 76 three fusion protein subunits. 77 78 The coronavirus spike (S) glycoprotein is a class I viral fusion protein constructed of

79 S1 and S2 subunits. The N-terminal S1 subunit is responsible for receptor binding, and the C-

80	terminal membrane-anchored S2 subunit is important for virus-cell membrane fusion. Some
81	coronaviruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle
82	East respiratory syndrome coronavirus (MERS-CoV), and mouse hepatitis virus type 2
83	(MHV-2), possess uncleaved 180 kDa S proteins. These viruses utilize cell surface or
84	endosomal proteases (such as TMPRSS2, HAT, trypsin, elastase, or cathepsin L) to cleave S
85	proteins during cell entry (2, 18-31). It remains controversial whether MERS-CoV S protein
86	is processed by the cellular protease furin after internalization via endocytosis (32) because
87	this finding was not supported by a recent study (33).
88	Our previous study showed that the S protein of MHV-2 requires a two-step
89	conformational change process (26). The first step takes place after binding to a soluble form
90	of the MHV receptor (CEACAM1a), upon which the metastable form of S protein is
91	converted to a stable trimer possessing liposome-binding activity. The subsequent step is
92	driven by protease digestion. From a single 180 kDa S protein, trypsin produces a 90 kDa
93	subunit in the absence of receptor, but a 66 kDa subunit in the presence of receptor, and this
94	66 kDa species is thought to involve the formation of a 6HB structure (detected as a
95	proteinase K-resistant 53 kDa subunit) (26). A similar result of the protease digestion pattern
96	was also reported in SARS-CoV and MERS-CoV S proteins (4, 20). Therefore, the sizes of
97	protease digestion products are thought to be directly affected by the conformational state of
98	the coronavirus S protein. Studying the MHV-2 S protein could illuminate the conformational
99	changes occurring in each step, and may provide novel insight into viral class I fusion
100	protein.
101	
102	Materials and methods

103 Virus, cells, soluble receptor, and HR2-mimicking peptide

104	MHV-2 was propagated in DBT cells cultured in Dulbecco's modified Eagle's medium
105	(DMEM) containing 10% tryptose phosphate broth (BD Difco, USA) (34). Viruses were
106	collected at 21 h post-infection and stored at -80°C. The soluble form of the MHV receptor
107	(CEACAM1a) was produced using recombinant baculovirus and purified as previously
108	described (35). HR2-mimicking peptide
109	(DLSLDFEKLNVTLLDLTYEMNRIQDAIKKLNESYINLKE) was provided by B. J. Bosch
110	(36) and dissolved in water at a concentration of 500 μ M.
111	
112	Proteases and protease inhibitors
113	Trypsin (T8802; Sigma, USA), proteinase K (166-21051; Wako, Japan), endoproteinase arg-
114	C (P6056; Sigma), and endoproteinase lys-C (P3428; Sigma) were employed after being
115	dissolved in phosphate-buffered saline (PBS; pH 7.4). Inhibitors camostat (3193; Tocris
116	Bioscience, UK), Pefabloc SC (11429868001; Roche, Switzerland), and E64d (330005;
117	Calbiochem, USA) were dissolved in dimethyl sulfoxide (DMSO). Soybean trypsin inhibitor
118	(STI; T-9128; Sigma) was dissolved in PBS.
119	
120	Liposomes
121	Lipids l-phosphatidylcholine (PC; egg; Avanti-Polar Lipids, USA), l-

- phosphatidylethanolamine (PE; egg; Avanti-Polar Lipids), sphingomyelin (Sph; brain; 122
- 123 Avanti-Polar Lipids), and cholesterol (Chol; Sigma) were mixed in a 1:1:1:1.5 molar
- PC:PE:Sph:Chol ratio, dried under N2 gas in a glass tube, and lyophilized overnight. After 124
- addition of 1 ml of PBS (pH 7.2), the lipid suspension was vortexed and extruded 25 times 125
- 126 through a 0.4 µm Nucleopore filter (GE Water & Process Technologies, USA) using an
- 127 Avanti Mini-Extruder. Liposomes were stored at 4°C and used within 1 week.
- 128

129 Activation of MHV-2 spike (S) protein and western blot analysis

130	Standard reaction. To evaluate conformational changes in the S protein occurring in the first
131	step, a 10 μ l solution of MHV-2 (10 ⁷ pfu/100 μ l) was mixed with 1.1 μ l of soluble receptor
132	(10 μM) and warmed at 37°C for 30 min. For conformational changes in the second step, 1.2
133	μl of trypsin (100 $\mu g/ml)$ was added and incubated at 37°C for 30 min. A 1/4 volume of
134	sample buffer comprising 30% glycerol, 250 mM TRIS pH 6.8, 2.5% sodium dodecyl sulfate
135	(SDS), a small amount of Bromophenol Blue, 100 mM dithiothreitol (DTT), and 1 mM
136	Pefabloc SC was added to the reaction and boiled at 100°C for 5 min. Samples were
137	separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on
138	3-10% gradient or 7.5% gel (e-PAGEL; ATTO, Japan), transferred to a polyvinylidene
139	difluoride (PVDF) membrane (Immobilon-P; Millipore, USA), and soaked in ImmunoBlock
140	(CTKN001; DS Pharma Biomedical, Japan) for 5 min. Western blot analysis was carried out
141	using anti-S2 antibodies, a mouse monoclonal antibody recognizing the 10G epitope (MAb-
142	10G), and rabbit anti-peptide antibodies recognizing the S2a region, the very highly
143	conserved region (VHCR), and cytoplasmic tail (CT) epitopes (anti-S2a, anti-VHCR, and
144	anti-CT, respectively), followed by horseradish peroxidase-conjugated anti-mouse (32430;
145	Thermo, USA) or anti-rabbit (sc-2054; Santa Cruz Biotech, USA) IgG. Immunoreactive
146	bands were visualized with an enhanced chemiluminescence kit (ECL; RPN2232; GE
147	Healthcare, USA) and a LAS-3000 instrument (Fuji, Japan). All experiments were repeated at
148	least twice.
149	<i><u>Reactions in the presence of liposomes</u></i> . A 6 μ l sample of liposomes was added, and the
150	volume of receptor and trypsin was raised to achieve the target concentrations. Standard
151	reactions were then carried out as described above.
152	Timing of heptad repeat (HR) packing. To stop the reaction at the indicated time points,

reactions were quickly frozen in dry ice/methanol, and 1.4 µl of HR2-mimicking peptide (500

153

 \leq

Journal of Virology

157	changes of the S protein as described above, reaction mixtures were chilled on ice for 5 min
158	and 1.5 μ l of proteinase K (10 mg/ml) was added and incubated on ice for 30 min.
159	Deglycosylation of the S2 subunit. After assessing conformational changes of the S protein
160	as described above, deglycosylation was carried out using Protein Deglycosylation Mix
161	(P6039S; NEB, UK) according to the manufacturer's instructions.
162	SDS-PAGE of unboiled samples (native PAGE). After assessing conformational changes of
163	the S protein as described above, sample buffer excluding DTT was added and unboiled
164	mixtures were separated by SDS-PAGE (3-10% gradient or 7.5% gel; e-PAGEL).
165	Protein denaturation on PVDF membranes. After SDS-PAGE of unboiled samples and
166	electro transfer to a PVDF membrane, initial detection of native S protein was performed by
167	western blot analysis. The membrane was then soaked in stripping buffer (46428;
168	ThermoFisher, USA) at room temperature for 5 min to denature the S protein, rinsed 10 times
169	with rinse buffer (20845; Millipore), blocked with ImmunoBlock, and re-probed with anti-S2
170	antibody.
171	Two-dimensional SDS-PAGE. S protein was treated with receptor and trypsin as described
172	above, mixed with sample buffer containing molecular size markers (1610373; BioRad,
173	USA) without DTT, and separated by SDS-PAGE using a 3-10% gradient gel (first gel).
174	After electrophoresis, the gel was wrapped in a heat-seal bag, soaked in sample buffer (0.5%
175	SDS), boiled at 105°C for 5 min in an autoclave, sliced along the protein markers, placed
176	onto a 7.5% gel (second gel), and subjected to electrophoresis and western blot analysis.
177	
178	Generating trypsin-treated MHV-2 harboring cleaved S protein

µM) was added. Samples were further incubated at 37°C for 20 min to facilitate the formation

Generation of the proteinase K-resistant 53 kDa fragment. After assessing conformational

of 67 and 69 kDa fragments.

 $\overline{\leq}$

179	A solution of MHV-2 (500 $\mu l;10^7$ pfu/100 $\mu l)$ was mixed with 5 μl of trypsin (100 $\mu g/m l)$ or
180	PBS (for uncleaved control) and incubated at 37°C for 1 h. Next, 5 μl of STI (10 mg/ml in
181	PBS) and 5 μ l of camostat (1 mM in PBS) were added and incubated at room temperature for
182	10 min to inactivate trypsin. About 500 μ l of virus solution was applied to a 2 ml bed volume
183	of Sephadex G-75 (17005101; GE Healthcare) equilibrated with PBS (column size, 10 ml)
184	(7311550; BioRad, USA). PBS (1.4 ml) was loaded onto the column, and eluent (200 μl
185	fractions) was collected. Western blot analysis was carried out using MAb-10G to identify
186	fractions containing MHV-2. Fractions 3 and 4 were used for the experiments shown in
187	Figure 2.
188	
189	Virus cell entry assay
190	DBT cells in a collagen-coated 96-well culture plate (4860-010; Iwaki, Japan) were treated
191	with DMEM containing 10 μ M E64d cathepsin inhibitor at 37°C for 30 min to block the
192	endosomal virus entry pathway. Approximately 10^5 pfu of virus was used to infect 10^5 cells
193	on ice. After a 30 min adsorption on ice, virus was removed and cells were treated with
194	various concentrations of trypsin. After a 30 min incubation, viral entry was stopped by
195	adding DMEM containing 10 μM camostat and 10 μM E64d, and incubated at 37°C for 5 h.
196	Cellular RNA was isolated from cells with the addition of 200 μ l of Isogen (311-02501;
197	Nippon Gene, Japan). Real-time PCR was performed to estimate the amount of newly
198	synthesized viral mRNA7 as described below.
199	
200	Quantitative estimation of viral mRNA by real-time PCR
201	Real-time reverse transcription PCR was performed to estimate the amount of MHV-2
202	mRNA7 as described previously. The target sequence was the MHV-2 N gene. Hybridization
203	probes labeled with fluorescent dye, 5'-GCTCCTCTGGAAACCGCGCTGGTAATGG-3'

 $\overline{\leq}$

<u>Journal of Virology</u>

lournal of Virology

204	(3'-labeled	with fluoreso	cein isothiod	cyanate) and 5	'-
-----	-------------	---------------	---------------	----------------	----

ATCCTCAAGAAGACCACTTGGGCTGACCAAACC-3' (5'-labeled with LCRed640), 205 were used to detect the amplified fragments. To amplify viral mRNA7, oligonucleotides 5'-206 GTACGTACCCTTTCTACTC-3' (MHV-2 leader) and 5'-CAAGAGTAATGGGGAACCA-207 3' (MHV-2 mRNA7 reverse) were employed. PCR analysis involved reverse transcription at 208 61°C for 20 min, followed by PCR with an initial denaturation at 95°C for 30 s, followed by 209 40 cycles at 95°C for 5 s, 55°C for 15 s, and 72°C for 13 s. Reactions were performed using a 210 LightCycler Nano instrument (Roche). The amount of virus in cells was calculated from the 211 212 calibration curve. 213 **Electron microscopy** 214 A 6 µl aliquot of ultraviolet-irradiated virus was absorbed onto glow-discharged 300-mesh 215 216 heavy-duty carbon-coated Cu grids (Veco grids; Nisshin EM, Tokyo, Japan) for 2 min, and the excess was blotted onto filter paper (Whatman; GE Healthcare, Piscataway, NJ, USA). 217 Grids were then washed twice with Milli-Q water and negatively stained with 2% 218 219 phosphotungstic acid. Data were collected using an HT7700 transmission electron microscope (Hitachi, Tokyo, Japan) operating at 100 kV electrons and magnification of 220 30,000×. 221 222 Statistical analysis 223 Two-tailed Student's t-tests were used to analyze statistical significance. A p-value <0.05 224 225 was considered statistically significant. n.s. = not significant, * = significant ($p \le 0.05$), ** =highly significant ($p \le 0.01$), *** = very highly significant ($p \le 0.001$). Error bars indicate 226 standard deviation (SD). 227

229 **Results**

230	Trypsin digestion generates three different sizes (90, 69, and 67 kDa) of S2 subunit
231	A schematic diagram of the MHV-2 S protein and the binding sites of antibodies employed in
232	this study is shown in Figure 1A. Three anti-synthetic peptide antibodies, anti-S2a, anti-
233	VHCR, and anti-CT, and a monoclonal antibody (MAb-10G) were used to detect the S2
234	subunits via western blot analysis. To probe conformational changes of the MHV-2 S protein,
235	an authentic virus rather than recombinant S protein was employed. Virus at 10 ⁶ plaque-
236	forming units (pfu) in 10 μl of culture medium was treated with the soluble form of the MHV
237	receptor (1 μ M) at 37°C for 30 min, and 10 μ g/ml trypsin was added and incubated for 30
238	min. The main difference between previous (26) and present experiments is the concentration
239	of trypsin (10 μ g/ml trypsin was used instead of 1 μ g/ml trypsin).
240	As reported previously (26), trypsin-mediated cleavage of the 180 kDa S protein (Fig.
241	1B, 10G and CT, lane 1) generated a species of 90 kDa (Fig. 1B, 10G and CT, lane 2) in the
242	absence of receptor. However, two different S2 subunit fragments (67 and 69 kDa) were
243	observed following trypsin-mediated cleavage in the presence of receptor (Fig. 1B, 10G and
244	CT, lane 4). The 67 kDa subunit was observed for the first time when a higher concentration
245	of trypsin (10 μ g/ml) was used in the present study. The sizes of these S protein subunits are
246	revised from the previous study; the 200 kDa full-length S protein was revised to 180 kDa,
247	the 80 kDa S2 subunit was revised to 90 kDa, and the 66 kDa S2 subunit was revised to 69
248	kDa (26).
249	The appearance of the 90, 67, 69, and 53 kDa species was assessed at different trypsin
250	concentrations. The 90 and 69 kDa species were detected following treatment with 0.25 or
251	0.5 μ g/ml trypsin (Fig. 1C). In addition, a 67 kDa S2 subunit was observed when the
252	concentration of trypsin was higher ($\geq 1 \ \mu g/ml$; Fig. 1C). Interestingly, both 67 and 69 kDa
253	subunits were observed, even at the highest concentration of trypsin (128 μ g/ml), which is

Σ

 \leq

Journal of Virology

254

255	previous report (26), suggesting that a heterogeneous mix of S2 subunits (67 and 69 kDa) was
256	stably produced from a single (180 kDa) S protein species. Treatment with 1 mg/ml
257	proteinase K was carried out to probe the post-fusion conformation that is thought to involve
258	the formation of a 6HB structure (26). As shown in Figure 1C, a proteinase K-resistant 53
259	kDa band was observed when the concentration of trypsin was $\geq 0.125 \ \mu g/ml$ (lane 6).
260	
261	Quantification of virus cell entry triggered by trypsin
262	The trypsin concentration required to induce virus cell entry was assessed. After virus
263	adsorption for 30 min on ice, cells were treated with various concentrations of trypsin at 37°C
264	for 30 min, and trypsin was then inactivated by addition of the serine protease inhibitor
265	camostat mesylate. After a 5 h incubation at 37°C, cellular RNA was isolated and real-time
266	PCR was performed to quantify viral subgenomic mRNA7. The concentration of trypsin
267	required to induce viral cell entry was $\geq 0.25 \ \mu g/ml$ (Fig. 1D), which corresponds
268	approximately with the appearance of the 69 and 53 kDa fragments (Fig. 1C), but not the 67
269	kDa fragment.
270	
271	Comparison of uncleaved and pre-cleaved S proteins
272	As reported previously, the MHV-2f variant of MHV-2 harbors an amino acid substitution at
273	the S1/S2 cleavage site that is cleaved by furin during biogenesis; this variant is sufficient to
274	induce the cell-cell fusion without supplemental trypsin in the culture medium (29). To
275	clarify whether cleavage at the S1/S2 site is sufficient for S protein priming prior to induction
276	of conformational changes, we compared trypsin-treated MHV-2 and MHV-2f with MHV-2.
277	To generate trypsin-treated MHV-2, the MHV-2 was exposed to 1 μ g/ml trypsin (or PBS for
278	the uncleaved virus control) for 1 h, followed by addition of trypsin inhibitors (both STI and

~100-fold higher than needed to induce conformational changes of S protein according to a

279

280	that, as reported previously (29), half of the S protein of MHV-2f was cleaved (lane 9)
281	whereas almost all of the S protein expressed by the trypsin-treated virus was cleaved (lane 5)
282	(compare with PBS-treated MHV-2 S protein (lane 1)). The trypsin-treated virus was able to
283	enter cells as efficiently as the PBS-treated virus (Fig. 2B). Next, the viruses were exposed to
284	both receptor and trypsin to induce conformational changes. A higher concentration of
285	trypsin (50 μ g/ml) was needed to cleave the S protein, presumably due to residual trypsin
286	inhibitors. Although background levels of the 67 and 69 kDa products were observed in the
287	absence of receptor (lane 6) (presumably due to the use of pre-incubated viruses), clear
288	production of a 67 kDa fragment was observed in the presence of receptor and trypsin (lane
289	8). Interestingly, induction of the proteinase K-resistant 53 kDa band from the trypsin-treated
290	virus was observed in the presence of receptor, even in the absence of trypsin (lane 7); by
291	contrast, the other two viruses (PBS-treated MHV-2 and MHV-2f) required both receptor and
292	trypsin. This implies that the two types of cleaved S protein have different conformations: the
293	pre-cleaved S protein (cleaved by furin during biogenesis) needs additional cleavage after the
294	receptor-binding step, whereas the trypsin-treated S protein (cleaved on virus particle) needs
295	only receptor binding to trigger the conformational changes. Cleavage at the S2' site (to
296	generate the 69 kDa species) may trigger conformational changes, as reported previously (20,
297	30); however, cleavage at either the S1/S2 site or the S2' site is presumably enough to
298	activate the MHV-2 S protein. The 67 and 69 kDa species can be considered by-products of
299	the S protein following conformational changes; therefore, these products were examined to
300	probe the intermediate conformation(s) of the S protein.
301	

camostat). Next, the viruses were purified using a Sephadex G-75 column. Figure 2A shows

302 Characterization of a 67 kDa S2 subunit

13

 \leq

303	As identified in previous studies using MHV and SARS-CoV, the 90 and 69 kDa subunits are
304	derived from cleavage at the S1/S2 site (R756) and the S2' site (R907) (11, 19, 27, 28, 30,
305	31). To identify the trypsin cleavage site that produces the 67 kDa fragment, we attempted to
306	gain indirect evidence because the 67 kDa subunit has not been successfully purified from the
307	virus particle for amino-terminal sequencing. Both the 67 and 69 kDa subunits were detected
308	by MAb-10G and anti-CT, but not by anti-S2a, even following increased exposure of blots,
309	and only the 69 kDa subunit was detected by anti-VHCR (Fig. 1B). These results indicate
310	that the 69 kDa subunit is a product of cleavage between S2a and VHCR epitopes at the S2'
311	site, as previously reported (11, 30), whereas the 67 kDa subunit is the result of cleavage at
312	the C-terminal side of the VHCR epitope. Using endoproteinases arg-C and lys-C to identify
313	the specific arginine or lysine residue of the cleavage site, the 67 kDa subunit was found to be
314	cleaved at a lysine residue (Fig. 3A).
315	Next, deglycosylation of the S protein subunit was carried out using a commercial
316	deglycosylation mix containing five enzymes that can completely remove N- and O-linked
317	glycans from almost all glycoproteins except some plant and insect glycoproteins. The 90, 69,
318	and 67 kDa bands were shifted to 65, 47, and 43 kDa, respectively, following treatment with
319	0.32 or 32 µg/ml trypsin (Fig. 3B). The 4 kDa size difference between 43 and 47 kDa

deglycosylated bands indicates that the 67 kDa subunit is cleaved at K951 because the

321 calculated molecular weight of the peptide fragment between S2' (R907) and K951 is 4.8

kDa, whereas cleavage at the neighboring lysine K917 would yield a 1.3 kDa size difference, and cleavage at K1008 would afford a 10.6 kDa size difference. The K951 cleavage site was therefore designated postS2'. Notably, the postS2' cleavage site is in the 48th β-strand (β48), which forms an anti-parallel β-sheet with β47 in the pre-fusion form but not in the post-fusion form of the S protein (10, 11). Cleavage at postS2' is unlikely to contribute to S protein triggering because it is located at the C-terminal side of the fusion peptide (FP; Fig. 4A and 328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

We next turned our attention to how 344

be produced by trypsin digestion of a 345 sized (90 kDa) species is produced in 346 protein forms a heterogeneous trimer 347 348 trimer exposes a different cleavage site. In the first native SDS-PAGE step (gels were boiled 349 before blotting so that the trimer could be detected by the antibody, as described in the 350 methods), several different sizes of trimer were detected (Fig. 5A, lanes 2 and 3). In the 351 second denaturing SDS-PAGE step, these trimer bands were separated into monomer bands (Fig. 5A, lanes 5 and 6). To examine the components of the trimer, we performed two-352

4B), and the appearance of the 67 kDa species does not correspond to the formation of the

dimensional electrophoresis. Following treatment with 10 μ g/ml trypsin, both the 67 and 69 353 kDa bands, or the single 67 kDa band, were separated from three species of trimer at around 354 355 140 kDa (Fig. 5B and 5C b), whereas only the 69 kDa band was detected following treatment with 0.32 µg/ml trypsin (Fig. 5C a). These results suggest that a subset of S2 subunits can 356 form a heterogeneous trimer comprising the 69 and 67 kDa species at a ratio of 3:0, 2:1, 1:2, 357 358 or 0:3.

359

Exposed or buried epitope configurations in the S protein globule 360

361 Further characterization of S2 subunits was performed to investigate exposed and buried configurations of epitopes, and the results are shown in Figure 6A and 6B. MHV-2 was 362 treated with receptor and trypsin to induce conformational changes as described above. S 363 protein detection was performed using four anti-S2 antibodies recognizing linear epitopes. 364 Following soaking in stripping buffer to denature the S protein on the polyvinylidene 365 difluoride (PVDF) membrane, detection was then repeated with the same antibodies. When 366 antibodies against the VHCR and CT epitopes were used, all bands detected in denatured 367 blots (Fig. 6B) were the same as those observed in native blots (Fig. 6A), indicating that these 368 epitopes are exposed on the S protein in both the native and denatured states. In the post-369 fusion form of the S protein treated with receptor and trypsin, doublet bands at 140 kDa were 370 observed using anti-CT antibody (Fig. 6A, CT, lane 4), while lower bands were not observed 371 with the anti-VHCR antibody (Fig. 6A, VHCR, lane 4). This observation correlates with the 372 373 appearance of 67 and 69 kDa bands in SDS-PAGE (Fig. 1B, CT and VHCR, lane 4), 374 suggesting that the upper band of 140 kDa species is composed of 67 and 69 kDa subunits, whereas the lower band comprises three 67 kDa subunits. This is consistent with the results in 375 376 Figure 5C b showing that the 67 and 69 kDa bands were separated from 140 kDa trimer

Using anti-S2a antibody recognizing a linear epitope (Fig. 1B, S2a) (37), a 500 kDa 378 band corresponding to a trimeric assembly was observed only after the receptor-binding step 379 380 in native blots (Fig. 6A, S2a, lane 3), as observed in a previous study (26), but this was barely detectable in denatured blots (Fig. 6B, S2a, lane 3). We do not currently have an explanation 381 for exposure of the S2a epitope, but this hydrophobic epitope is buried in the globule in the 382 pre-fusion state (10) and is presumably exposed only in the native trimer after the receptor-383 binding step, before disappearing following cleavage by trypsin. When antibody recognizing 384 385 the 10G epitope was used, monomeric S2 subunit species were detected in the native blot 386 (Fig. 6A, 10G, lanes 3 and 4), but trimeric species were not observed, although they were detectable in the denatured blot (Fig. 6B, 10G, lanes 3 and 4). This indicates that the 10G 387 epitope adopts a buried configuration in the trimer of pre- and post-fusion forms. These 388 observations provided clues that were used to predict the intermediate structure of the S2 389 390 subunit.

391

The timing of S protein cleavage 392

We next analyzed the timing of the appearance of 67, 69, and 53 kDa fragments during 393 conformational changes of the S protein. To stop the reaction after different incubation times 394 at 37°C, reaction tubes were quickly frozen in dry ice/methanol, and immediately boiled in 395 sample buffer containing the trypsin inhibitor. As shown in Figure 7A, trypsin treatment on 396 397 ice for 5 min following receptor treatment was sufficient to generate the 69 kDa but not the proteinase K-resistant 53 kDa species (lane 2). The 53 kDa band was induced after a 1 min 398 incubation at 37°C (lane 3), and the 67 kDa band appeared and became prominent over 4 min 399 (lane 5), indicating that the conformational changes that induce the 6HB structure are 400 complete at 1 min after treatment with trypsin. In preliminary EM experiments (described 401 402 below), conformational changes of the S protein were probed in the presence of liposomes.

The appearance of S2 fragments (90, 69, and 67 kDa) and the timing of cleavage coinciding
with their appearance were the same in the absence and presence of liposomes (Fig. 7B and
7C).

406

407 Unpacked (accessible) and packed (occluded) HR conformations

408 To characterize the conformational states of 67 and 69 kDa subunits after the receptorbinding step, HR2-mimicking peptide was employed. This 39 amino acid peptide derived 409 410 from the HR2 region of the S2 subunit is water-soluble and interferes with packing of the HR1/HR2 motif, thereby inhibiting virus infection (36). MHV-2 pre-treated with soluble 411 receptor was treated with HR2-mimicking peptide (50 µM) and various concentrations of 412 trypsin. The 69 kDa but not the 67 kDa subunit disappeared following treatment with HR2-413 mimicking peptide, and the 55 kDa degradation product appeared after incubation in the 414 presence of 8 µg/ml trypsin (Fig. 8A, lane 13). Presumably, protease-cleavable sites in the S2 415 subunit are vulnerable to scission by trypsin when the HR2-mimicking peptide is present due 416 to the restriction of helical bundle formation by the HR motif; hence the cleavage pattern was 417 altered. This also indicates that the HR1/HR2 motif in the 67 kDa fragment forms a post-418 fusion species in which the HR1 motif is occluded after the receptor-binding step. 419 Interestingly, HR2-mimicking peptide completely inhibited production of the 420 proteinase K-resistant 53 kDa fragment (Fig. 8C, lanes 11 and 13), even in the presence of 421 the packed 67 kDa species (Fig. 8A, lanes 11 and 13), suggesting that HR2-mimicking 422 423 peptide interferes with 6HB formation. The trimer in the receptor-binding step is presumably constructed from both packed and unpacked HR1/HR2 motifs, and HR2-mimicking peptide 424 interacts with an unpacked motif, and thereby interferes with 6HB formation. In the presence 425 of $0.5-2 \mu g/ml$ trypsin, HR2-mimicking peptide did not appear to affect degradation of the 69 426 kDa fragment due to the low concentration of trypsin (Fig. 8A, lanes 5–10). In addition, 427

428	trypsin degradation products in the presence of HR2-mimicking peptide were detected by
429	MAb-10G antibody (Fig. 8A, lanes 13, 15, and 17) but not by anti-CT antibody (Fig. 8B,
430	lanes 13, 15, and 17), indicating that the 10G epitope region is folded and consequently
431	avoids cleavage by trypsin, whereas the C-terminal side of the 10G epitope including the
432	HR2 region (residues 1253–1302, Fig. 4A) is presumably unfolded and therefore degraded by
433	trypsin. Although the mechanism remains unknown, HR2-mimicking peptide enhanced the
434	production of the 69 kDa subunit following treatment with 0.25 μ g/ml trypsin (Fig. 8B, lane
435	3).

Next, the concentration dependence of HR2-mimicking peptide was assessed. In the 436 presence of $\geq 0.5 \ \mu M$ HR2-mimicking peptide, the 69 and 53 kDa bands disappeared (Fig. 8D 437 and 8E, lanes 5–7), and the 55 kDa degradation products appeared (Fig. 8D, lanes 5–7). Pre-438 treatment of HR2-mimicking peptide with 10 µg/ml trypsin did not affect the ability to cause 439 the disappearance of the 69 and 53 kDa fragments (Fig. 8D and 8E, lanes 11–13), indicating 440 that trypsin does not directly affect HR2-mimicking peptide. To determine whether the HR2-441 peptide actually blocks MHV-2 infection, real-time PCR-based virus entry assays were 442 performed, as previously reported for SARS-CoV in which HR2-mimicking peptide blocks 443 trypsin-mediated direct viral entry from the cell surface (38). In the presence of $\geq 0.5 \,\mu M$ 444 HR2-mimicking peptide, virus entry was clearly blocked (Fig. 8F). 445

446

The timing of HR packing 447

Next, the timing of HR1/HR2 motif packing in the S protein was analyzed. HR2-mimicking 448 peptide was added to the S protein conformational change reaction at the indicated time 449 points after stopping the reaction using dry ice/methanol, and mixtures were re-incubated at 450 451 37°C for 20 min to facilitate production of the 67 and 69 kDa fragments (re-incubation is required to visualize bands that reflect the structure present upon HR2-mimicking peptide 452

addition). At each HR2-mimicking peptide addition time point, if the HR1/HR2 motif forms 453 an unpacked structure, the HR2-mimicking peptide would be expected to bind to HR1 and 454 trypsin would degrade the 69 kDa to produce the 55 kDa lacking the CT epitope as described 455 above (Fig. 8A and 8B). As shown in Figure 8G (lane 2), the 67 kDa subunit appeared, the 69 456 kDa subunit disappeared, and the 55 kDa degradation product appeared following treatment 457 458 with HR2-mimicking peptide after the receptor-binding step, suggesting that both packed and unpacked HR1/HR2 motifs simultaneously occur in the reaction. After a 1 min incubation at 459 37°C, undegraded 69 kDa subunit, which does not interact with HR2-mimicking peptide, was 460 observed (Fig. 8G, lane 3), suggesting that both the 67 and 69 kDa fragments form a packed 461 structure at this time point. 462

463

Assembly of three S2 subunits at the center of the S protein trimer 464

As shown in Figures 5A and 6A, interactions between subunits in the S protein trimer were 465 466 enhanced by receptor and trypsin treatment, and it remained stable in sample buffer containing 0.5% SDS during SDS-PAGE. To compare the strength of intermolecular 467 interactions within the trimer at each step during the conformational changes, reactions of 468 469 virus treated with receptor and trypsin were frozen at the indicated time points using dry ice/methanol, mixed with sample buffer containing trypsin inhibitor and 0.5% SDS, and 470 incubated at different temperatures between 25°C and 100°C at intervals of 5°C. Both the 471 trimer and the dissociated monomer were detected via western blotting following soaking of 472 the PVDF membrane in stripping buffer used for trimer detection by MAb-10G. As shown in 473 474 Figure 9A, the non-treated trimer in the pre-fusion state dissociated into the monomeric form at 25°C. After receptor binding, the dissociation temperature was increased to ~60°C. The 475 dissociation temperature of the trimer was further increased to 90°C after trypsin treatment, 476 477 and finally reached 95°C after 32 min (Fig. 9B).

Downloaded from http://jvi.asm.org/ on July 19, 2019 by guest

S		
ot Pe	478	Next, to explore the interactions of the three S2 subunits in more detail after the
scrij	479	protease digestion step, experiments were performed between 81°C and 95°C at intervals of
SUUC	480	1°C, and the results of western blot analysis were cropped and aligned to compare the
Ň	481	dissociated monomers (Fig. 9C). After trypsin treatment on ice, the dissociation temperature
ptec	482	was ~85°C, and this gradually increased to 94°C during incubation, corresponding with the
CCe	483	appearance of the 67 kDa fragment. These results indicate that the three S2 subunits in the
\triangleleft	484	trimer partially assemble at the receptor-binding step, and their interaction is dramatically
	485	enhanced by trypsin treatment. The postS2' site is finally cleaved after assembly.

486

Negative-stain EM 487

Each virus activation step described above was visualized by negative-stain EM (Fig. 10A), 488 489 and enlarged views of images are shown in Figure 10B. For non-treated virus, intact S protein globules were observed as uniform alignments on the viral membrane (Fig. 10B i). The 490 height (distance) from the viral membrane to the top of the S protein was measured and is 491 492 presented as a histogram (Fig. 10C). The height of uniform non-treated S protein was ~240 Å, but after receptor treatment, the shapes of S proteins became more variable, gaps between 493 S protein globules and the viral membrane were reduced (Fig. 10B ii), and the height of half 494 495 of the S protein population was decreased to <200 Å (Fig. 10C ii). After trypsin treatment for 5 min on ice, the S1 subunits appeared to remain on the S2 subunit, their shapes became 496 obscured, and the gaps were further reduced (Fig. 10B iii and 10C iii). At 1 min after 497 498 warming at 37°C, a few elongated cone-like structures were observed (Fig. 10B iv), as 499 previously reported using recombinant S2 subunit (11). After additional incubation at 37°C 500 for 30 min, almost all S protein globules disappeared, and many elongated cone-like 501 structures appeared (Fig. 10A v and 10B v).

lournal of Virology

502	Next, the virus activation steps described above were probed in the presence of
503	liposomes. On EM grids, an excessive number of liposomes but very few viruses were
504	observed in the absence of soluble receptor (Fig. 10D i), whereas many virus particles were
505	observed on liposomes in the presence of soluble receptor (Fig. 10D ii). These results
506	correspond to liposome flotation assays in a previous study in which virus binding to
507	liposomes was induced by receptor (26). Virus particles disappeared at 1 min after trypsin
508	treatment (Fig. 10D iv), and fused liposomes were the dominant species observed at 30 min
509	(Fig. 10D v), suggesting that membrane fusion with liposomes was largely complete within 1
510	min, and liposomes then fused with each other using the remaining S protein. An enlarged
511	view of virus-bound liposomes shown in Figure 10D ii and 10D iii is presented in Figure 10E
512	The gaps between viruses and liposomes that are presumably bridged by S protein were ~ 200
513	Å after the receptor-binding step (Fig. 10E ii), and this distance was reduced by trypsin
514	treatment on ice (Fig. 10E iii). A hazy density was evident between viruses and liposomes
515	(Fig. 10E).

516

517 Discussion

The S protein of the MHV-2 virion is uncleaved, similar to the S protein of MERS-CoV and 518 SARS-CoV, which requires cellular protease following receptor binding to induce S1 519 520 dissociation from S2 and the subsequent conformational changes necessary for membrane fusion (26). By contrast, most MHV variants carry S proteins that are cleaved by cellular 521 522 furin at the S1/S2 site during biogenesis, which was believed to require only receptor binding 523 to induce membrane fusion (39, 40). However, previous studies of MHV and MERS-CoV suggest that the coronaviruses harboring pre-cleaved S protein (cleaved by furin during 524 biogenesis) at the S1/S2 site require further cellular proteases to facilitate cell entry (20, 30). 525 Our results also suggest that the S protein cleaved during biogenesis by furin requires 526

additional cleavage to induce conformational changes required to adopt a proteinase K-527 resistant conformation (Fig. 2A, lane 12). However, the trypsin-treated S protein cleaved on 528 virus particles at the S1/S2 site does not require additional cleavage; it needs only receptor 529 binding (Fig. 2A, lane 7). Therefore, these two types of S protein cleaved at the S1/S2 site are 530 predicted to have different conformations. In the present study using MHV-2, the 67 and 69 531 kDa products were considered to be by-products that reflect intermediate conformations of 532 the S protein, although importance of cleavage at the S2' site was reported for coronavirus S 533 534 proteins (20, 30).

Previous studies used cryoEM to examine conformational changes within the 535 coronavirus S protein during the priming stage, which is induced by receptor binding; the 536 results observed after receptor binding indicated an asymmetric trimer with opened and 537 closed domains within the S1 subunit and a tightly assembled central helix in the S2 subunits 538 (4, 6). However, no major differences in the HR region were observed. Although structural 539 analysis using cryoEM is excellent for detecting stable protein structures, unstable structures 540 such as the HR2 motifs in the S2 subunit cannot be analyzed using this technique, even if a 541 large number of protein particles are captured; population-based biochemical analysis is 542 needed to capture features of unstable proteins. Herein, we predicted the dynamic 543 rearrangements of S2 subunits underpinning the transition from pre- to post-fusion structures 544 based on western blot analysis of the 67 and 69 kDa by-products that are induced following 545 trypsin digestion of the S protein. 546

Our model of the S protein conformational changes was constructed based on 547 previously reported pre- and post-fusion structures (protein data bank codes 3JCL and 6B3O, 548 respectively). The S2 subunit of coronavirus features a topology similar to that of the 549 550 paramyxovirus F protein, comprising a core β -sheet, an upstream helix, and a central helix, and these motifs are essentially identical in pre- and post-fusion F protein structures (10, 41). 551

displayed as a fixed globule represented by a gray column in Figure 11. The flexible regions
in the S2 subunit that undergo conformational changes are positioned in the FP region
(residues 867–949) and the HR1 region (residues 954–1072), as shown in Figure 4A and 4B.
In addition, the region downstream of the core β -sheet (residues 1155–1302) that includes the
HR2 region also appears to be flexible (Fig. 4A and 4B).
In the present and previous studies, we observed eight features related to
conformational changes that occur in the flexible regions of the S2 subunit. The first four
features are induced by receptor binding. [1] During this step, the S protein binds to the targe
membrane, as demonstrated by liposome-binding assays in a previous study (26) and
negative-stain EM in this study (Fig. 10D ii). Because the FP region is located close to β 48,
at least one β 48 per trimer must be dissociated from β 47 in invariant motifs for the FP region
to be free. It is important to remember that the exact location of the FP region of coronavirus
S protein remains controversial. The FP region (residues 867–949) immediately follows an
S2' cleavage site (42), and another possible FP region (pFP; residues 967–983) is adjacent to
the region upstream of HR1 (Fig. 4A and 4B), as reported previously (43, 44). [2] The

(residues 867-949) and the HR residues 954–1072), as shown in Figure 4A and 4B. 555 In addition, the region downstre e core β -sheet (residues 1155–1302) that includes the 556 HR2 region also appears to be 557 Fig. 4A and 4B).

These invariant MHV-2 S protein motifs are assumed not to change conformation, and are

conformational changes that oc flexible regions of the S2 subunit. The first four 559 [1] During this step, the S protein binds to the target 560 features are induced by recepto 561 membrane, as demonstrated by -binding assays in a previous study (26) and negative-stain EM in this study D ii). Because the FP region is located close to β 48, 562 563 at least one β 48 per trimer must ciated from β 47 in invariant motifs for the FP region 564 to be free. It is important to ren at the exact location of the FP region of coronavirus 565 S protein remains controversial region (residues 867–949) immediately follows an S2' cleavage site (42), and anot ble FP region (pFP; residues 967–983) is adjacent to 566 567 the region upstream of HR1 (Fi d 4B), as reported previously (43, 44). [2] The 568 metastable form of the S protein trimer is converted to a stable trimer (Fig. 6A, VHCR, lane 3), for which the dissociation temperature was increased from 25°C to 60°C (Fig. 9C). 569 During this stage, the movement of HR1 to form a trimeric α -helical coiled-coil on the distal 570 side of the viral membrane is restricted because the S2 subunit is still covered by the S1 571 572 subunit in the uncleaved S protein (Fig. 10A ii). Therefore, regions at $\alpha 29$ and $\alpha 30$ (the 573 central helix) are only capable of interacting within the trimer (Fig. 4B). This is consistent with a previous study in which the tightly packed central helix in the S2 subunit was detected 574 575 by cryoEM after the receptor-binding step (4, 6). [3] The 106 amino acids of the connector region (residues 1155–1260, Fig. 4A), including the 10G epitope and disulfide bond at 576

552

553

554

558

Journal of Virology

trimer was undetectable in the native blot (Fig. 6A, 10G, lane 3), and was resistant to trypsin
even in the presence of HR2-mimicking peptide (Fig. 8A). Reduction of the gap between the
S protein globule and the viral membrane (~200 Å) in EM images (Fig. 10B ii and 10C ii)
may reflect a folded C-terminal side of the S2 subunit. In addition, the 10G region is likely
fixed near helix $\alpha 29$ at the top of the S2 trimer to allow 6HB assembly in the following step
(11). These observations indicate that, in the S protein structure appearing after the receptor-
binding step, the core of the connector leash is packed into the groove of the invariant motif
(Fig. 11A ii, purple lines), as seen in the post-fusion structure (11). [4] The HR1/HR2 motif
forms the packed-hairpin structure observed as the 67 kDa subunit after trypsin treatment that
is unable to interact with HR2-mimicking peptide (Fig. 8A, lane 13 and 8G, lane 2). Based on
the steric configuration of the post-fusion structure, HR1 of one S2 subunit must be packed
with HR2 of another S2 subunit in the trimer to form a hairpin structure (11). Additionally,
unpacked HR1, observed as the 69 kDa band that was degraded following treatment with
HR2-mimicking peptide and trypsin (Fig. 8G, lane 2), also appeared in this step.
Interestingly, both 69 and 67 kDa subunits were present in the trimer, as revealed by two-
dimensional electrophoresis (Fig. 5C b), suggesting that a subset of S2 subunits form a
heterogeneous trimer constructed from two different conformational states. We predict that
the trimer includes at least one packed HR1/HR2 motif and extends at least one unpacked
HR1 motif toward the target membrane to expose the FP region, and the S2 subunit is
covered by the S1 subunit in the uncleaved S protein (Fig. 11A ii). These features suggest
that the S protein cannot form the typical homotrimeric pre-hairpin structure predicted in the
current model of class I viral fusion protein assembly (Fig. 11B).
The next four features of the conformational changes are induced by trypsin

positions 1169 and 1214, presumably form a folded structure because the 10G epitope in the

treatment, during which obscure-shaped S proteins were observed by EM (Fig. 10B iii). [5]

 \leq

602	The S1/S2 site is cleaved by trypsin to generate the 90 kDa subunit (Fig. 1C, lane 7 and 7A,
603	lane 2), and the S2' site is subsequently cleaved by trypsin to generate the 69 kDa subunit
604	(Fig. 1C, lanes 7–16). Release of the S1 subunit from the S2 subunit presumably enhances
605	interactions within three S2 subunits and triggers conformational changes in the HR1/HR2
606	motifs. [6] All three HR1/HR2 motifs in the trimer appear to form a packed-hairpin structure
607	at 1 min after warming at 37°C because HR2-mimicking peptide cannot interact with them
608	(Fig. 8G, lane 3). [7] Simultaneously, the three HR1/HR2 motifs assemble at the center to
609	form a 6HB core at 1 min after trypsin treatment (Fig. 7A, bottom, lane 3). At this stage, the
610	dissociation temperature of the trimer was ~90°C (Fig. 9C). [8] The postS2' cleavage site in
611	β 48 is finally cleaved by trypsin after assembly of the three HR motifs at the center, resulting
612	in the appearance of the 67 kDa subunit (Fig. 9C bottom). The final 6HB structure is
613	constructed from 67 and 69 kDa subunits or three 67 kDa subunits (Fig. 5C b). Numerous
614	elongated cone-like structures were observed by EM (Fig. 10A v).
615	As described above, at least one HR1/HR2 motif per trimer may form a packed-
616	hairpin structure after the receptor-binding step, and another exposes the FP region, as
617	illustrated in Figure 11A ii. This conformation presumably facilitates formation of an
618	asymmetric trimer. In principle, the class I viral fusion protein trimer must break its rotational
619	symmetry during activation to overcome the steric hindrance within the three fusion protein
620	subunits (45, 46). When the different conformational states of the HR1/HR2 motif assemble
621	in the trimer, the axis of the trimer is presumably tilted against the viral membrane (Fig. 11A
622	vii), resulting in the breaking of rotational symmetry. This is followed by formation of 6HB
623	and membrane fusion. Flexibility at the juxtamembrane region and the tilted orientation
624	against the viral membrane required for membrane fusion were recently reported by a study
625	examining influenza HA in detergent micelles analyzed by cryoEM (47). We anticipate that

626	the r	nechanism suggested by western blot analysis herein will be confirmed by other	
627	appr	oaches such as high-resolution cryoEM and/or in silico simulation.	
628			
629			
630			
631	Ack	nowledgments	
632	We t	hank Judith M. White (Virginia University) for valuable suggestions about this work,	
633	and	Fumihiro Taguchi (Chungnam National University) for providing an opportunity to work	
634	on th	is project. We also thank Noriyo Nagata (NIID) for technical suggestions, and Berend-	
635	Jan l	Bosch and Peter J. M. Rottier (Utrecht University) for providing HR2-mimicking peptide.	
636			
637	Funding		
638	This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society		
639	for the Promotion of Science (Grant No. 17864517).		
640			
641	Refe	erences	
642	1.	White JM, Whittaker GR. 2016. Fusion of Enveloped Viruses in Endosomes. Traffic	
643		17:593–614.	
644	2.	Heald-Sargent T, Gallagher T. 2012. Ready, set, fuse! the coronavirus spike protein	
645		and acquisition of fusion competence. Viruses 4:557–580.	
646	3.	Harrison SC. 2015. Viral membrane fusion. Virology 479–480:498–507.	
647	4.	Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J, Quispe J, Cameroni E, Gopal	
648		R, Dai M, Lanzavecchia A, Zambon M, Rey FA, Corti D, Veesler D. 2019.	
649		Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus	
650		Fusion. Cell 176:1026-1039.e15.	

Σ

651	5.	Ozorowski G, Pallesen J, De Val N, Lyumkis D, Cottrell CA, Torres JL, Copps J,
652		Stanfield RL, Cupo A, Pugach P, Moore JP, Wilson IA, Ward AB. 2017. Open and
653		closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature
654		547:360–361.
655	6.	Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, Lu G, Wu Y, Yan J, Shi Y, Zhang X,
656		Gao GF. 2017. Cryo-EM structures of MERS-CoV and SARS-CoV spike
657		glycoproteins reveal the dynamic receptor binding domains. Nat Commun 8:1–9.
658	7.	Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, Wang X. 2016. Cryo-electron
659		microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite
660		conformational state for receptor binding. Cell Res 27:119-129.
661	8.	Kirchdoerfer RN, Wang N, Pallesen J, Wrapp D, Turner HL, Cottrell CA, Corbett KS,
662		Graham BS, McLellan JS, Ward AB. 2018. Stabilized coronavirus spikes are resistant
663		to conformational changes induced by receptor recognition or proteolysis. Sci Rep
664		8:15701.
665	9.	Lee M, Yao H, Kwon B, Waring AJ, Ruchala P, Singh C, Hong M. 2018.
666		Conformation and Trimer Association of the Transmembrane Domain of the
667		Parainfluenza Virus Fusion Protein in Lipid Bilayers from Solid-State NMR: Insights
668		into the Sequence Determinants of Trimer Structure and Fusion Activity. J Mol Biol
669		430:695–709.
670	10.	Walls AC, Tortorici MA, Bosch B-J, Frenz B, Rottier PJM, DiMaio F, Rey F a.,
671		Veesler D. 2016. Cryo-electron microscopy structure of a coronavirus spike
672		glycoprotein trimer. Nature 531:114–117.
673	11.	Walls AC, Tortorici MA, Snijder J, Xiong X, Bosch B, Rey FA. 2017. Tectonic
674		conformational changes of a coronavirus spike glycoprotein promote membrane
675		fusion. Proc Natl Acad Sci 114:11157-11162.

Σ

lournal of Virology

Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, Corbett

701	20.	Park J-E, Li K, Barlan A, Fehr AR, Perlman S, McCray PB, Gallagher T. 2016.
702		Proteolytic processing of Middle East respiratory syndrome coronavirus spikes
703		expands virus tropism. Proc Natl Acad Sci U S A 113:12262-12267.
704	21.	Reinke LM, Spiegel M, Plegge T, Hartleib A, Nehlmeier I, Gierer S, Hoffmann M,
705		Hofmann-winkler H, Winkler M, Pöhlmann S. 2017. Different residues in the SARS-
706		CoV spike protein determine cleavage and activation by the host cell protease
707		TMPRSS2. PLoS One 12(6):e0179177.
708	22.	Belouzard S, Millet JK, Licitra BN, Whittaker GR. 2012. Mechanisms of coronavirus
709		cell entry mediated by the viral spike protein. Viruses 4:1011–1033.
710	23.	Zheng Y, Shang J, Yang Y, Liu C, Wan Y, Geng Q, Wang M, Baric R, Li F. 2018.
711		Lysosomal Proteases Are a Determinant of Coronavirus Tropism. J Virol 92:e01504-
712		18.
713	24.	Kawase M, Shirato K, Matsuyama S, Taguchi F. 2009. Protease-mediated entry via the
714		endosome of human coronavirus 229E. J Virol 83:712-721.
715	25.	Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. 2004.
716		Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-
717		CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A 101:4240-
718		4245.
719	26.	Matsuyama S, Taguchi F. 2009. Two-step conformational changes in a coronavirus
720		envelope glycoprotein mediated by receptor binding and proteolysis. J Virol
721		83:11133–11141.
722	27.	Belouzard S, Chu VC, Whittaker GR. 2009. Activation of the SARS coronavirus spike
723		protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S
724		A 106:5871–5876.

Σ

749	35.	Matsuyama S, Taguchi F. 2002. Receptor-Induced Conformational Changes of Murine
750		Coronavirus Spike Protein. J Virol 76:11819–11826.
751	36.	Bosch BJ, Rossen JWA, Bartelink W, Zuurveen SJ, de Haan CAM, Duquerroy S,
752		Boucher CAB, Rottier PJM. 2008. Coronavirus Escape from Heptad Repeat 2 (HR2)-
753		Derived Peptide Entry Inhibition as a Result of Mutations in the HR1 Domain of the
754		Spike Fusion Protein. J Virol 82:2580–2585.
755	37.	Taguchi F, Shimazaki YK. 2000. Functional analysis of an epitope in the S2 subunit of
756		the murine coronavirus spike protein: Involvement in fusion activity. J Gen Virol
757		81:2867–2871.
758	38.	Ujike M, Nishikawa H, Otaka A, Yamamoto N, Yamamoto N, Matsuoka M, Kodama
759		E, Fujii N, Taguchi F. 2007. Heptad Repeat-Derived Peptides Block Protease-
760		Mediated Direct Entry from the Cell Surface of Severe Acute Respiratory Syndrome
761		Coronavirus but Not Entry via the Endosomal Pathway. J Virol 82:588-592.
762	39.	Sturman LS, Ricard CS, Holmes K V. 1990. Conformational change of the coronavirus
763		peplomer glycoprotein at pH 8.0 and 37 degrees C correlates with virus aggregation
764		and virus-induced cell fusion. J Virol 64:3042-50.
765	40.	Gallagher TM. 1997. A role for naturally occurring variation of the murine coronavirus
766		spike protein in stabilizing association with the cellular receptor. J Virol 71:3129–37.
767	41.	McLellan JS, Yang Y, Graham BS, Kwong PD. 2011. No TitleStructure of Respiratory
768		Syncytial Virus Fusion Glycoprotein in the Postfusion Conformation Reveals
769		Preservation of Neutralizing Epitopes. J Virol 85:7788-7796.
770	42.	Madu IG, Roth SL, Belouzard S, Whittaker GR. 2009. Characterization of a highly
771		conserved domain within the severe acute respiratory syndrome coronavirus spike
772		protein S2 domain with characteristics of a viral fusion peptide. J Virol 83:7411–7421.

Σ

773	43.	Ou X, Zheng W, Shan Y, Mu Z, Dominguez SR, Holmes K V., Qian Z. 2016.
774		Identification of the Fusion Peptide-Containing Region in Betacoronavirus Spike
775		Glycoproteins. J Virol 90:5586-5600.
776	44.	Luo Z, Weiss SR. 1998. Roles in cell-to-cell fusion of two conserved hydrophobic
777		regions in the murine coronavirus spike protein. Virology 244:483-494.
778	45.	von Messling V, Milosevic D, Devaux P, Cattaneo R. 2004. Canine distemper virus
779		and measles virus fusion glycoprotein trimers: partial membrane-proximal ectodomain
780		cleavage enhances function. J Virol 78:7894–7903.
781	46.	Cohen FS, Melikyan GB. 2004. The energetics of membrane fusion from binding,
782		through hemifusion, pore formation, and pore enlargement. J Membr Biol 199:1-14.
783	47.	Benton DJ, Nans A, Calder LJ, Turner J, Neu U, Lin YP, Ketelaars E, Kallewaard NL,
784		Corti D, Lanzavecchia A, Gamblin SJ, Rosenthal PB, Skehel JJ. 2018. Influenza
785		hemagglutinin membrane anchor. Proc Natl Acad Sci 115:10112–10117.
786		
787		
788	Figu	re Legends
789	Fig. 1	I. Proteolytic activation of the MHV-2 spike (S) protein. (A) Schematic diagram of
790	MHV	7-2 S protein organization. Letters A, B, C, and D indicate domains of the S1 subunit.

SP, signal peptide; RBD, receptor-binding domain; UH, upstream helix; FP, fusion peptide;

792 HR1/HR2, heptad repeats; CH, central helix; BH, β -hairpin; CR, connector region; TMD,

transmembrane domain. The three trypsin cleavage sites are indicated by black arrows, and

the four linear epitopes recognized by antibodies are indicated by white arrows. (B) Two-step

- conformational changes of S protein primed by receptor binding and triggered by trypsin.
- 796 MHV-2 pre-treated with a soluble form of the receptor (CEACAM1a, receptor) was
- incubated with trypsin ($10 \mu g/ml$). Samples were boiled and subjected to western blot

798	analysis using the indicated antibodies. (C) Trypsin concentration-dependent cleavage of S
799	protein. MHV-2 pre-treated with receptor was incubated with various concentrations of
800	trypsin, then with proteinase K. Samples were boiled and subjected to western blot analysis
801	using MAb-10G antibody. (D) Trypsin concentration dependence of virus cell entry. MHV-2
802	was adsorbed onto DBT cells, and various concentrations of trypsin were added. After a 5 h
803	incubation, viral mRNA was quantified by real-time PCR ($n = 6$). Data were analyzed
804	relative to the no trypsin control using two-tailed Student's t-tests. n.s. = not significant, * =
805	significant ($p \le 0.05$), ** = highly significant ($p \le 0.01$), *** = very highly significant
806	($p \le 0.001$). Error bars indicate standard deviation (SD).
807	
808	Fig. 2. Proteolytic activation of the pre-cleaved S protein. (A) Conformational changes in
809	pre-cleaved S proteins. To prepare the virus harboring a cleaved S protein, MHV-2 was
810	treated with 1 μ g/ml trypsin or phosphate-buffered saline (PBS) (uncleaved control) for 1 h,
811	treated with trypsin inhibitors, and then purified on a Sephadex G-75 column.
812	Conformational changes in PBS-treated MHV-2, trypsin-treated MHV-2, and MHV-2f
813	harboring a pre-cleaved S protein were examined as described in Figure 1. Samples were
814	boiled and subjected to western blot analysis with MAb-10G antibody. (B) Cell entry by
815	viruses. Viruses treated with PBS or trypsin were inoculated onto DBT cells, and cellular
816	RNA was isolated after 0 or 6 h. Viral mRNA was quantified by real-time PCR ($n = 4$).
817	
818	Fig. 3. Additional characterization of the 67 and 69 kDa subunits. (A) Specific cleavage
819	of the postS2' site at arginine or lysine residues. Endopeptidase arg-C (20 $\mu g/ml)$ and/or lys-
820	C (20 μ g/ml) were employed instead of trypsin to induce S protein conformational changes.

- (B) Deglycosylation of S2 subunits. S protein activated by receptor and trypsin was 821
- 822 deglycosylated using a deglycosylation enzyme mix. Nonrelevant lanes on the same blot were

34

 \leq

sliced out in Adobe Photoshop to align the lanes shown. (C) Receptor concentration 823 dependence. MHV-2 was treated with serially diluted soluble receptor, then with trypsin (10 824 825 μ g/ml). (D) Effect of redox potential. The 67 and 69 kDa subunits induced by the treatment of receptor and trypsin (0.32 and 32 μ g/ml) were boiled in sample buffer containing the 826 indicated concentration of dithiothreitol (DTT). (A-D) After SDS-PAGE, western blot 827 analysis was carried out using MAb-10G antibody. 828

829

830 Fig. 4. Primary structure and topology of the MHV-2 S2 subunit. (A) Primary sequence of the S2 subunit. Gray areas indicate invariant motifs present in both pre- and post-fusion 831 832 structures. S-S, disulfide bridge; glyco, N-glycosylation site; scissor mark, trypsin cleavage 833 site. The four antibody-binding sites and the functional motifs are depicted. (B) Topology of the pre-fusion form of S protein based on the cryoEM structure (10). Colors and labels 834 835 correspond to those in panel A. Magenta dotted lines indicate molecular interactions between 836 motifs.

837

Fig. 5. Components of the S2 trimer after triggering. (A) Comparison of native and 838 839 denatured S protein. MHV-2 treated with soluble receptor and trypsin was divided into two 840 aliquots for unboiled (native) and boiled (denatured) treatments. After electrophoresis on a 3-10% gel, the gel was boiled in sample buffer at 105° C for 5 min in an autoclave, and 841 transferred to a PVDF membrane. (B) Two-dimensional electrophoresis. The reaction 842 mixture prepared as described for panel A was mixed with sample buffer containing 843 844 molecular size markers, and two-dimensional electrophoresis was carried out. After the first electrophoresis step, the first gel (3-10%) was boiled in sample buffer, sliced along the 845 markers, and laid onto the second gel (7.5%). After the second electrophoresis step, the gel 846 was transferred to a PVDF membrane. X-marks indicate overlaid molecular size markers. (C) 847

Cropped and enlarged blots. Blots from two-dimensional electrophoresis and western blot 848 analysis corresponding to 0.32 or 10 μ g/ml trypsin treatment were cropped at 67 and 69 kDa 849 and enlarged by graphical manipulation software. (A–C) Western blot analysis was carried 850 851 out using MAb-10G antibody. 852

> Fig. 6. Exposed or buried configurations of epitopes in the S protein globule. (A) Native 853 854 SDS-PAGE. Unboiled samples were subjected to western blot analysis. (B) Denaturing and 855 re-probing. PVDF membranes from panel A were soaked in stripping buffer for 5 min to denature the bound S protein, and subjected to detection with the same antibodies a second 856 857 time. (A and B) Western blot analysis was performed using the indicated antibodies. 858 859 Fig. 7. Timing of the appearance of the 90, 69, 67, and 53 kDa species. (A) Time course of

> 860 90, 69, 67, and 53 kDa fragment generation. MHV-2 was treated with receptor and trypsin, 861 and the reaction was stopped by freezing at the indicated time points. (B) Two-step conformational changes in the S protein primed by receptor binding and triggered by trypsin 862 863 in the presence of liposomes. (C) Time course of the generation of 90, 69, and 67 kDa 864 fragments in the presence of liposomes. MHV-2 was treated with receptor and trypsin in the presence of liposomes, and the reaction was stopped by freezing at the indicated time points. 865 (A–C) Appearance of S2 subunits (90, 69, and 67 kDa) detected by western blot analysis 866 using MAb-10G antibody. 867

868

869 Fig. 8. Interaction of HR2-mimicking peptide with the S2 subunit. (A) Effect of HR2-870 mimicking peptide (HR2-peptide) during S protein triggering. HR2-peptide (50 µM) was added to MHV-2 after the receptor-binding step, and reaction mixtures were treated with 871 872 various concentrations of trypsin. (B) The PVDF membrane from panel A was re-probed with

873

a	W
d	esc
0	tei
ıt	ed
20) n
ŀ	ysi
ir	ne
e	in

generate the 53 kDa fragment. (D) Effect of trypsin on the HR2-peptide. HR2-peptide non-874 875 treated or pre-treated with 10 µg/ml trypsin for 30 min was diluted and added to the reaction containing MHV-2 and receptor, and reaction mixtures were treated with 10 µg/ml trypsin. 876 (E) Reaction mixtures from panel D were treated with proteinase K to generate the 53 kDa 877 fragment. (F) Blocking virus cell entry. MHV-2 was adsorbed onto DBT cells, and 10 µg/ml 878 trypsin was added in the presence or absence of HR2-mimicking peptide. After a 5 h 879 880 incubation, viral mRNA was quantified by real-time PCR (n = 6). Data ere analyzed 881 relative to the no peptide control using two-tailed Student's t-tests, as c cribed in the legend of Figure 1. (G) Time course of HR1/HR2 motif packing. During S pro n activation by 882 receptor and trypsin, the reaction was stopped by freezing at the indica time points, and 883 884 HR2-mimicking peptide (HR2-peptide) was added and incubated for 2 nin to facilitate the formation of 67 and 69 kDa fragments. (A-E and G) Western blot ana 885 is was performed using the indicated antibodies. 886

anti-CT antibody. (C) Reaction mixtures from panel A were treated with proteinase K to

887

Fig. 9. Timing of S2 subunit assembly. (A) Thermostability of the trin 888 er in the receptor-889 binding step. The reaction analyzing conformational changes of S prote was stopped by 890 freezing at the indicated time points after 30 min treatment with receptor. (B) Thermostability 891 of the trimer in the proteolysis step. Reaction mixtures prepared as described for panel A 892 were treated with trypsin and stopped by freezing at the indicated time points. (C) More 893 detailed analysis of S protein thermostability. The dissociation temperature of mixtures prepared as described for panel B was explored between 81°C and 95°C at intervals of 1°C. 894 (A–C) Reaction mixtures were treated with sample buffer containing protease inhibitor and 895 0.5% SDS on ice, then incubated at the indicated temperature using a Veriti thermal cycler 896 (ThermoFisher). After electrophoresis and electroblotting, the PVDF membrane was soaked 897

898	in stripping buffer for trimer detection by MAb-10G. Dissociated monomer bands from each
899	step of the conformational changes were cropped and aligned to compare the dissociation
900	temperature in panel C.
901	

902	Fig. 10. Visualization by negative-stain electron microscopy (EM). (A) Virus particles.
903	MHV-2 treated with or without receptor (1 μ M) and trypsin (10 μ g/ml) to induce
904	conformational changes in S protein was subjected to negative-stain EM. (B) Enlarged view
905	of S protein on the viral particle. (C) Histogram of S protein height above the membrane. S
906	proteins $(n = 32)$ in five viral particles were measured and represented as a histogram. (D)
907	Visualization of virus binding to liposomes. Liposomes were added to the reaction to induce
908	conformational changes in the viral S protein. Viruses are indicated by arrows. (E) Enlarged
909	view of virus binding to liposomes. Virus particles observed in panel D are enlarged.
910	
911	Fig. 11. Schematic diagram of S protein activation. (A) Conformational changes of the S
912	protein trimer. (B) Homotrimeric pre-hairpin structure in the unified model of class I viral
913	fusion protein assembly. FP, fusion peptide; HR1/HR2, heptad repeats.

913 914

 $\overline{\leq}$

Fig. 2

 \leq

Downloaded from http://jvi.asm.org/ on July 19, 2019 by guest

Fig. 3

Fig. 4

 \sum

Fig. 5

kDa

• 180

90

69 67

Z

Fig. 6

 \sum

Fig. 7

Α

kDa

250 ⊳

150 ⊳

100 ⊳

75 ⊳

50 ⊳

37 ⊳ + N ო

trypsin

Fig. 9

В		
	denaturation temperature (°C)	
	100 95 95 95 95 95 95 95 95 95 95 95 95 95	_
trypsin on ice		kDa ▲155
5 min		● 90● 69
at 37°C		∙ 155
↓ 1 min		 90 69 67
↓ 4 min		 ▲ 150 ▲ 90 ▲ 69 ▲ 67
J 32 min		 140 90 69 67

detected using MAb-10G

С		
	denaturation temperature (°C)	
	100 100 100 100 100 100 100 100	kDa
no treat		▲ 1 me
receptor ∳ 30 min		∙1 me
trypsin on ice	denaturation temperature (°C)	
ļ	9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
5 min		▲ 69
at 37°C 1 min		▲ 69
↓ 4 min	P	€69€67
↓ 32 min	411	• 69 • 67
	detected using MAb 10C	

 \leq

detected using MAb-10G

Fig. 10

B

С

Ε

Α (i) non-treated

= 200 Å

(i) non-treated

MHV-2 + liposome

200 nm

(ii) plus receptor at 37°C for 30 min

(ii) plus receptor at 37°C for 30 min

spike height (Å)

(iii) then plus trypsin

on ice for 5 min

(iii) then plus trypsin on ice for 5 min

(iii) then plus trypsin

on ice for 5 min

(iv) then warmed at 37°C for 1 min

(iv) then warmed

at 37°C for 1 min

(iv) then warmed at 37°C for 1 min

(v) additionally incubated at 37°C for 30 min

(ii) plus receptor at 37°C for 30 min with liposome

Downloaded from http://jvi.asm.org/ on July 19, 2019 by guest

Fig. 11

 \sum