JVI Accepted Manuscript Posted Online 24 July 2019 J. Virol. doi:10.1128/JVI.00711-19 Copyright © 2019 American Society for Microbiology. All Rights Reserved.

- 1 Fitness barriers limit reversion of a proofreading-deficient coronavirus
- 2
- 3 Kevin W. Graepel^{1,3}, Maria L. Agostini^{1,3}, Xiaotao Lu², Nicole R. Sexton⁴, and Mark R.
- 4 Denison^{1,2,3#}
- 5
- ⁶ ¹Department of Pathology, Microbiology, and Immunology; ²Department of Pediatrics;
- ⁷ ³Vanderbilt Institute for Infection, Immunology and Inflammation (VI4), Vanderbilt University
- 8 Medical Center, Nashville, TN, USA. ⁴Department of Microbiology, Immunology, and
- 9 Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University,
- 10 Fort Collins, CO, USA.
- 11
- 12 #Address correspondence to mark.denison@vumc.org
- 13
- 14 Running head: Barriers to reversion of a debilitated coronavirus
- 15
- 16 Keywords:
- 17 RNA virus, adaptive evolution, competitive fitness, coronavirus, exoribonuclease, plus-strand
- 18 RNA virus, proofreading, replication fidelity
- 19
- 20 Abstract word count: 359
- 21 Text word count: 4120
- 22

Downloaded from http://jvi.asm.org/ on July 24, 2019 by guest

23 ABSTRACT

24	The 3'-to-5' exoribonuclease in coronavirus (CoV) nonstructural protein 14 (nsp14-ExoN)
25	mediates RNA proofreading during genome replication. ExoN catalytic residues are arranged in
26	three motifs: I (DE), II (E), III (D). Alanine substitution of the motif I residues (AA-E-D, four
27	nucleotide substitutions) in murine hepatitis virus (MHV) and SARS-CoV yields viable mutants
28	with impaired replication and fitness, increased mutation rates, and attenuated virulence in vivo.
29	Despite these impairments, MHV- and SARS-CoV ExoN motif I AA mutants (ExoN-AA) have
30	not reverted at motif I in diverse in vitro and in vivo environments, suggesting that profound
31	fitness barriers prevent motif I reversion. To test this hypothesis, we engineered MHV-ExoN-AA
32	with 1, 2 or 3 nucleotide mutations along genetic pathways to AA-to-DE reversion. We show
33	that engineered intermediate revertants were viable but had no increased replication or
34	competitive fitness compared to MHV-ExoN-AA. In contrast, a low passage (P10) MHV-ExoN-
35	AA showed increased replication and competitive fitness without reversion of ExoN-AA.
36	Finally, engineered reversion of ExoN-AA to ExoN-DE in the presence of ExoN-AA passage-
37	adaptive mutations resulted in significant fitness loss. These results demonstrate that while
38	reversion is possible, at least one alternative adaptive pathway is more rapidly advantageous than
39	intermediate revertants and may alter the genetic background to render reversion detrimental to
40	fitness. Our results provide an evolutionary rationale for lack of ExoN-AA reversion, illuminate
41	potential multi-protein replicase interactions and coevolution, and support future studies aimed at
42	stabilizing attenuated CoV ExoN-AA mutants.

Downloaded from http://jvi.asm.org/ on July 24, 2019 by guest

Journal of Virology

 $\overline{\leq}$

IMPORTANCE 44

45	Coronaviruses encode an exoribonuclease (ExoN) that is important for viral replication, fitness,
46	and virulence, yet coronaviruses with a defective ExoN (ExoN-AA) have not reverted under
47	diverse experimental conditions. In this study, we identify multiple impediments to MHV-ExoN-
48	AA reversion. We show that ExoN-AA reversion is possible but evolutionarily unfavorable.
49	Instead, compensatory mutations outside of ExoN-AA motif I are more accessible and beneficial
50	than partial reversion. We also show that coevolution between replicase proteins over long-term
51	passage partially compensates for ExoN-AA motif I but renders the virus inhospitable to a
52	reverted ExoN. Our results reveal the evolutionary basis for the genetic stability of ExoN-
53	inactivating mutations, illuminate complex functional and evolutionary relationships between
54	coronavirus replicase proteins, and identify potential mechanisms for stabilization of ExoN-AA
55	coronavirus mutants.

Journal of Virology

 \leq

56 INTRODUCTION

57 The rapid evolution of RNA viruses represents a significant challenge for preventing, treating, 58 and eradicating RNA viral diseases. High mutation rates in RNA viruses generate extensive 59 opportunities to overcome evolutionary hurdles, such as antiviral drugs, host immunity, or 60 engineered attenuating changes (1). The evolutionary pathways traversed by RNA viruses are 61 shaped by natural selection, which will favor some evolutionary trajectories more than others 62 based on whether mutations are beneficial, deleterious, or neutral (2). Predicting the likely results 63 of RNA virus evolution is an important step for anticipating viral emergence and for developing 64 escape-resistant antiviral drugs and vaccines (3, 4).

65

66 Coronaviruses (CoVs) are a family of positive-sense RNA viruses that cause human illnesses 67 ranging from the common cold to severe and lethal respiratory disease (5). All CoVs encode a 68 proofreading exoribonuclease within nonstructural protein 14 (nsp14-ExoN) that is critical for 69 replication, fidelity, fitness, and virulence, and ExoN-inactivation has been proposed as a 70 strategy for live-attenuated vaccine development (6-15). As members of the DEDDh superfamily 71 of exonucleases, CoV ExoNs hydrolyze nucleotides using four metal-coordinating amino acids 72 arranged in 3 motifs: I (DE), II (E), III (D) (16, 17). Alanine substitution of ExoN motif I (DE-73 to-AA) disrupts ExoN biochemical activity in both SARS-CoV and human CoV 229E (hCoV-229E) (16, 18, 19). The betacoronaviruses murine hepatitis virus (MHV) and SARS-CoV 74 75 tolerate disruption of ExoN activity [ExoN(-)] but display mutator phenotypes accompanied by

76 defects in replication, competitive fitness, and evasion of innate immune responses (10, 13, 14).

Journal of Virology

ExoN active site mutants in alphacoronaviruses, including transmissible gastroenteritis virus and
hCoV-229E, have yet to be recovered and are proposed to be lethal for replication (19, 20).

79

80	Given the critical role of ExoN in CoV biology and the elevated mutation rate, we expected that
81	natural selection would repeatedly drive reversion of the ExoN-inactivating substitutions. In line
82	with this expectation, ExoN motif III mutants of SARS-CoV and MHV rapidly and repeatedly
83	revert ((14) and unpublished observations). In contrast, we have never detected partial or
84	complete reversion of ExoN motif I mutants (ExoN-AA) in SARS-CoV or MHV during 10 years
85	of study and hundreds of experiments. More specifically, we have not detected consensus or
86	minority variants of any kind at the motif I AA codons in either virus strain during acute
87	infections and prolonged passage in tissue culture and following treatment with multiple
88	nucleoside analogues (6-11, 13, 14). SARS-CoV-ExoN-AA also is stable during acute and
89	persistent animal infections in immunocompetent and immune-compromised mice (12). The lack
90	of primary reversion is not due simply to reduced adaptive capacity, as both SARS-CoV- and
91	MHV-ExoN-AA can adapt for increased replication (7, 14). Most strikingly, long-term passage
92	of MHV-ExoN-AA (250 passages, P250) yielded a highly fit population that had directly
93	compensated for defective proofreading through evolution of a likely high-fidelity RdRp (7).
94	Yet, where primary reversion would have required just four total consensus mutations, MHV-
95	ExoN-AA-P250 contained more than 170.
96	

Downloaded from http://jvi.asm.org/ on July 24, 2019 by guest

97 In this study, we sought to determine whether specific genetic or fitness barriers prevent primary
98 reversion of ExoN motif I AA. To this end, we identified and engineered viable genetic

Downloaded from http://jvi.asm.org/ on July 24, 2019 by guest

99	pathways towards ExoN-AA motif I reversion in MHV (hereafter, ExoN-AA). Our results show
100	that partial reversion did not confer a selective advantage compared to ExoN-AA. Further,
101	ExoN-AA adapted within 10 passages for greater fitness than any of the intermediate revertants.
102	Finally, restoration of WT-ExoN-DE in the setting of passage-selected mutations in the nsp12
103	RNA-dependent RNA polymerase (RdRp) and nsp14-ExoN exacted profound fitness costs.
104	Together, these data are the first observation of an ExoN(-) CoV genotype-fitness landscape and
105	identify multiple genetic barriers underlying ExoN(-) motif I stability in MHV. Further, they
106	suggest extensive coevolution between MHV replicase proteins during adaptation and reveal
107	potential strategies for stabilizing ExoN mutant CoVs.
108	

109

Σ

110 **RESULTS**

111	Primary reversion of ExoN(-) motif I. MHV-ExoN(-), hereafter ExoN-AA, contains two
112	engineered substitutions in each codon of motif I, such that complete reversion to WT-ExoN-DE
113	requires mutations to all four sites (Figure 1A). Viral mutation rates in the absence of
114	proof reading range from 10^{-4} to 10^{-6} mutations per nucleotide per round of replication (µ) (1).
115	Assuming an ExoN-AA mutation rate of $10^{-4} \mu$ and accounting for codon degeneracy, the
116	probability of restoring the native amino acid sequence in a single round of replication is 10^{-18} .
117	Only rarely do ExoN-AA titers exceed 10 ⁶ PFU/mL, so it is unlikely that ExoN-AA could
118	navigate this genetic barrier in a single infectious cycle. Thus, we hypothesized that ExoN-AA
119	reversion, if possible, would proceed incrementally. To identify potential pathways towards
120	ExoN-AA reversion, we examined the possible single-nucleotide substitutions surrounding A89
121	and A91 (Figure 1B). Three mutations are synonymous, and five mutations yield amino acids
122	unlikely to coordinate with the positively-charged metals required for ExoN catalysis (glycine,
123	valine, proline, threonine, and serine) (16, 19, 21, 22). One mutation per site can restore the
124	acidic charge (i.e. AA-to-ED) but not the native amino acid. These variants have not been tested
125	in a CoV ExoN, but biochemical studies of E. coli DNA polymerase I ExoN mutants suggest that
126	these conservative substitutions would not restore WT-like ExoN activity (23). We predicted
127	stepwise pathways to ExoN-AA \rightarrow DE reversion based on restoration of acidic charge followed
128	by reversion to native amino acids (Figure 1C). We engineered and recovered variants in ExoN-
129	AA requiring three mutations (3nt; ExoN-AD, ExoN-EA), two mutations (2nt; ExoN-DA, ExoN-
130	ED, ExoN-AE), or one mutation (1nt; ExoN-DD, ExoN-EE) for reversion to WT-ExoN-DE
131	(Table 1). We will hereafter refer to these mutants as intermediate revertants. All intermediate

Σ

132

133

134

135

136	suggesting that these two variants are less fit than WT-ExoN-DE and demonstrating that
137	reversion by 1nt mutation is readily accessible. To test whether the 3nt or 2nt mutants would
138	revert more rapidly than ExoN-AA (4nt), we passaged three lineages of each mutant 10 times at
139	multiplicities of infection (MOI) of 0.5 and 0.01 PFU/cell. We harvested supernatants and
140	screened for reversion by visual inspection of plaque phenotypes at each passage. WT-ExoN-DE
141	and WT-like viruses produce uniform, large plaques, while ExoN-AA-like viruses yield small,
142	variably-sized plaques (13). When we observed mixed plaque phenotypes, we sequenced three
143	large plaques from each lineage to confirm reversion. The 3nt (ExoN-AD and ExoN-EA) and 2nt
144	(ExoN-DA and ExoN-ED) intermediate revertants showed no evidence of reversion over 10
145	passages at either MOI (Table 1). In contrast, the 2nt ExoN-AE contained WT-revertants by P2
146	in all lineages at $MOI = 0.5$ PFU/cell and by P8 in one lineage at $MOI = 0.01$ PFU/cell. Once
147	observed, WT-revertants dominated the ExoN-AE population for the remaining passages. These
148	data indicate that at least one 2nt mutation pathway can lead to full reversion in tissue culture.
149	The probability of ExoN-AE arising during a single infectious cycle of ExoN-AA is low but
150	theoretically achievable (~10 ⁻⁹), so ExoN-AA could conceivably revert within just two infectious
151	cycles. However, complete reversion has never been observed even during prolonged passage or
152	persistent infections, suggesting that additional barriers to the replication, fitness, or maintenance
153	of intermediate revertants exist.

revertants generated viable progeny during recovery, demonstrating that reversion to WT-ExoN-

stable during recovery, as confirmed by dideoxy sequencing. However, both 1nt mutants (ExoN-

DE along these pathways is theoretically possible. The 3nt and 2nt mutants were genetically

DD and ExoN-EE) reverted to WT-ExoN-DE during three independent recovery attempts,

 \sum

154

Partial reversion of MHV-ExoN(-) motif I does not confer a selective advantage. Because
the intermediate revertants are viable as recombinants but are not found in ExoN-AA
populations, we hypothesized that they confer no selective advantage over ExoN-AA (8, 9, 13).
To test this hypothesis, we first analyzed replication of the 3nt and 2nt intermediate revertants
(Figure 2A). All variants achieved similar peak titers to ExoN-AA, but detailed examination of
their kinetics suggested a potential delay of up to 1.5 hours for all intermediate revertants
compared to ExoN-AA. Of note, ExoN-AE was the most delayed, and we detected WT-ExoN-
DE revertants in two of three replicates, suggesting increased selective pressure against this
variant. We next measured the competitive fitness of each intermediate revertant relative to a
recombinant ExoN-AA containing seven silent mutations in the nsp2 coding region (ExoN-AA-
reference). Intermediate revertants were mixed with an equal titer of ExoN-AA-reference at a
combined $MOI = 0.05$ PFU/cell and passaged four times. The ratio of each intermediate revertant
to ExoN-AA-reference was quantified at each passage by RT-qPCR, and the change in ratio over
time was used to calculate their relative fitness. WT-ExoN-DE was significantly more fit than
ExoN-AA, whereas the intermediate revertants (ExoN-AD, -EA, -DA, and -ED) had no
increased fitness relative to ExoN-AA (Figure 2B). The apparent increased fitness of ExoN-AE
resulted from all lineages reverting to WT-ExoN-DE during the experiment. Finally, our
previous studies have shown that adaptation of ExoN-AA includes partial compensation for the
replication fidelity defect, as measured by reduced susceptibility to the mutagen 5-fluorouracil
(5-FU) (7-11, 24). None of the intermediate variants demonstrated statistically significant
differences in 5-FU sensitivity as compared to Fx_0N-AA (Figure 2C). Thus, with the exception

Downloaded from http://jvi.asm.org/ on July 24, 2019 by guest

155	the intermediate revertants are viable as recombinants but are not found in ExoN-AA
156	populations, we hypothesized that they confer no selective advantage over ExoN-AA (8, 9, 13).
157	To test this hypothesis, we first analyzed replication of the 3nt and 2nt intermediate revertants
158	(Figure 2A). All variants achieved similar peak titers to ExoN-AA, but detailed examination of
159	their kinetics suggested a potential delay of up to 1.5 hours for all intermediate revertants
160	compared to ExoN-AA. Of note, ExoN-AE was the most delayed, and we detected WT-ExoN-
161	DE revertants in two of three replicates, suggesting increased selective pressure against this
162	variant. We next measured the competitive fitness of each intermediate revertant relative to a
163	recombinant ExoN-AA containing seven silent mutations in the nsp2 coding region (ExoN-AA-
164	reference). Intermediate revertants were mixed with an equal titer of ExoN-AA-reference at a
165	combined MOI = 0.05 PFU/cell and passaged four times. The ratio of each intermediate revertar
166	to ExoN-AA-reference was quantified at each passage by RT-qPCR, and the change in ratio ove
167	time was used to calculate their relative fitness. WT-ExoN-DE was significantly more fit than
168	ExoN-AA, whereas the intermediate revertants (ExoN-AD, -EA, -DA, and -ED) had no
169	increased fitness relative to ExoN-AA (Figure 2B). The apparent increased fitness of ExoN-AE
170	resulted from all lineages reverting to WT-ExoN-DE during the experiment. Finally, our
171	previous studies have shown that adaptation of ExoN-AA includes partial compensation for the
172	replication fidelity defect, as measured by reduced susceptibility to the mutagen 5-fluorouracil
173	(5-FU) (7-11, 24). None of the intermediate variants demonstrated statistically significant
174	differences in 5-FU sensitivity as compared to ExoN-AA (Figure 2C). Thus, with the exception
175	of the ExoN-AE \rightarrow DE revertants, no 3nt and 2nt intermediate genotypes along our predicted

9

Journal of Virology

pathway demonstrated an advantage in replication, fitness, or fidelity that would favor their
maintenance or expansion in the viral population. Thus, natural selection is unlikely to drive
ExoN-AA down these pathways towards reversion.

179

180	Secondary adaptations outside of ExoN-AA motif I increase fitness along alternative
181	pathways. Although we did not find fitness advantages to intermediate revertants, we also did
182	not identify profound fitness costs that would drive their immediate loss from populations. We
183	have previously demonstrated that during 250 passages (P250), ExoN-AA can adapt for
184	increased replication, fitness, and fidelity via secondary mutations outside of motif I (7). We
185	tested whether secondary adaptive mutations could exceed the fitness of ExoN-AA and its
186	intermediate revertants. To examine the early adaptation of ExoN-AA, we studied passage 10
187	from the P250 passage series (Figure 3). ExoN-AA-P10 retains the ExoN-AA motif I genotype
188	but has increased replication and reduced susceptibility to 5-FU, altogether manifesting in
189	greater relative fitness (Figure 3) (7). We identified only six total mutations within ExoN-AA-
190	P10 by dideoxy sequencing (Table 2), indicating that rapid adaptation of and compensation for
191	ExoN-AA requires relatively few genetic changes at the consensus level. To test whether
192	interactions between multiple mutations or population level effects contribute to ExoN-AA-P10
193	fitness, we isolated a plaque-purified clone of ExoN-AA-P10. The clone replicated to higher
194	titers than the ExoN-AA-P10 population but had identical 5-FU sensitivity and relative fitness
195	(Figure 3), indicating that genomes derived from a single virus plaque encode the adaptive
196	changes required by the total population. Together, these data demonstrate that mutations outside
197	of ExoN(-) motif I can confer greater fitness advantages than intermediate revertants even at

Downloaded from http://jvi.asm.org/ on July 24, 2019 by guest

198	early passages. These early adaptive mutations likely reduce the selective pressure for motif I
199	reversion and place the intermediate revertants at a selective disadvantage.
200	
201	Adaptive mutations in nsp12 and nsp14 that increase ExoN-AA fitness confer significant
202	fitness costs to WT-ExoN-DE. Mutational fitness effects are highly dependent upon the genetic
203	background (25-27). In addition to reducing selective pressure for reversion, mutations
204	conferring increased fitness to ExoN-AA might also reduce the benefits of motif I reversion. We
205	previously reported that long-term passage of ExoN-AA selects for secondary adaptive
206	mutations in the nsp12 RdRp and nsp14 (nsp12-P250 and nsp14-P250) (7). Nsp12-P250 contains
207	7 nonsynonymous mutations that partially compensate for defective proofreading and increase
208	ExoN-AA fitness. Nsp14-P250 contains 6 nonsynonymous mutations, including a conservative
209	D-to-E substitution in ExoN motif III, and increases ExoN-AA fitness without compensating for
210	defective proofreading. To test whether the fitness effects of passage-associated mutations in
211	nsp12-P250 and nsp14-P250 depend upon the ExoN-AA genotype, we engineered a WT motif I
212	(ExoN-DE) into viruses containing nsp12-P250 and nsp14-P250, alone and together, and
213	analyzed replication, 5-FU sensitivity, and competitive fitness. Compared to WT-ExoN-DE, both
214	ExoN-DE-nsp12-P250 and ExoN-DE-nsp14-P250 displayed delayed and decreased replication
215	(Figure 4A). In 5-FU sensitivity assays, ExoN-DE-nsp14-P250 was indistinguishable from WT-
216	ExoN-DE, while both variants containing nsp12-P250 (ExoN-DE-nsp12-P250 and ExoN-DE-
217	nsp12/14-P250) were significantly more sensitive to 5-FU (Figure 4B). Finally, the nsp12-P250
218	and nsp14-P250 mutations significantly decreased fitness relative to WT-ExoN-DE (Figure 4C).

Downloaded from http://jvi.asm.org/ on July 24, 2019 by guest

219 We detected no statistical differences between the specific infectivity of WT-ExoN-DE and any

220	of the nsp12-P250 and nsp14-P250 variants in isolated infections (Figure 4D). Thus, mutations
221	in nsp12 and nsp14 that arose in the ExoN-AA background were detrimental to replication,
222	mutagen sensitivity, and competitive fitness in the presence of a fully-reverted ExoN-DE. These
223	results support the conclusion that the adaptive pathways available to ExoN-AA may stabilize
224	the ExoN-AA genotype, reducing both the selective pressure for, and the potential benefits of,
225	primary reversion.

Downloaded from http://jvi.asm.org/ on July 24, 2019 by guest

227 DISCUSSION

228 In this study, we demonstrate that the stability of the ExoN(-) motif I genotype in MHV (ExoN-229 AA) is a consequence of the limitations and opportunities of the genetic landscape it explores 230 during replication (Figure 5). Our results support a model in which the viable adaptive pathways 231 leading to direct reversion of motif I from AA-to-DE are relatively flat on a fitness landscape, 232 with intermediate revertants remaining phenotypically ExoN(-) and conferring no fitness 233 advantage over ExoN-AA. In contrast, at least one alternative adaptive pathway is readily 234 accessible and imparts immediate fitness gains over ExoN-AA. We propose that even minimal 235 alternative pathway adaptive fitness gains reduce the likelihood and benefits of motif I reversion, 236 until eventually the changing genetic background renders reversion detrimental. These data and 237 this model suggest that selection during replication favors immediate, incremental fitness gains 238 along the most accessible pathway rather than dramatic fitness increases across a larger genetic 239 barrier. While this study focused on the issue of primary ExoN-AA reversion, it raises intriguing 240 questions about the remaining topography of the ExoN-AA fitness landscape. Ongoing studies in 241 our laboratory will determine whether ExoN-AA-P10 (and P250) represent a conserved pathway 242 to compensation for defective proofreading or if CoV genomes accommodate multiple solutions 243 to ExoN(-)-associated debilitations. Supporting the possibility of limited potential pathways, a 244 recent study of vaccine-derived polioviruses determined that evolution for virulence in parallel 245 epidemics proceeded through a limited set of genetic changes rather than a plethora of distinct 246 trajectories (4).

Downloaded from http://jvi.asm.org/ on July 24, 2019 by guest

e replic
associa
sp14-2
/T-Exo
the Ml
ral RN.
olve in
ntaining
sis, the
s in the
o polym

A key finding of this study is that mutations compensating for ExoN-AA are detrimental to WT-

ExoN-DE, yet the mechanisms underlying this disparity are not clear. We expected that

compensatory mutations in nsp14-250 would hobble WT-ExoN-DE by inducing structural

251	changes in the active site. However, the replication and fitness defects observed in ExoN-DE
252	viruses containing nsp14-250 were not associated with altered proofreading, as measured by 5-
253	FU sensitivity (Figure 4). In fact, the nsp14-250 mutations do not substantially affect 5-FU
254	sensitivity in either the ExoN-AA or WT-ExoN-DE backgrounds (7), suggesting that these
255	mutations enhance some other stage of the MHV replication cycle, perhaps through interactions
256	with other replicase proteins or with viral RNA. If so, these results imply that the proteins of the
257	MHV replication holoenzyme must evolve in a highly cooperative manner to compensate for
258	defective proofreading while also maintaining their intricate and intimate functional
259	relationships. In line with this hypothesis, the likely high-fidelity nsp12-250 disrupted
260	replication, 5-FU resistance, and fitness in the presence of an intact ExoN-DE catalytic motif.
261	Given the inverse relationship between polymerase fidelity and replication speed (the slower the
262	polymerase proceeds, the more time it has to discriminate incoming nucleotides) (28-31), nsp12-
263	250 could fracture the delicate kinetic balance between polymerization and nsp14-ExoN-
264	mediated excision during replication. Support for this hypothesis comes from a recent study
265	establishing that the SARS-CoV-nsp12 replicates with lower fidelity than the RdRp of dengue
266	virus and from the observation that the likely high-fidelity RdRp variant MHV-nsp12-V553I
267	delays replication of proofreading-capable MHV (9, 32). As with nsp14-250, nsp12-250

Downloaded from http://jvi.asm.org/ on July 24, 2019 by guest

- 268 mutations could have additional effects on RdRp functions or protein-protein interactions that are
- 269 incompatible with an active ExoN domain. Finally, it is possible that the adaptive mutations in

248

249

250

M

270

271	or secondary structures in ways that interfere with WT-ExoN-DE. Defining the molecular
272	interactions underlying the strain-specificity of ExoN-AA-compensatory mutations using
273	recombinant viruses or reconstituted biochemical systems will provide a unique opportunity to
274	explore the complex evolutionary and functional relationships that underpin the coronavirus
275	replication machinery.
276	
277	Our results also extend existing studies of CoV ExoN motif I. Motif I AA→DE mutations in the
278	SARS-CoV nsp14-ExoN dramatically reduce nuclease activity in biochemical assays, but no
279	study has examined the contributions of each residue independently (16, 18). While we cannot
280	exclude the possibility that intermediate revertants of ExoN-AA retain some level of nucleolytic
281	activity, the lack of consistent or statistical differences in replication, 5-FU sensitivity, or
282	competitive fitness relative to ExoN-AA supports previous studies demonstrating that motif I DE
283	is essential for ExoN function (16, 18, 19). Given these results, we were surprised to observe
284	repeated reversion of the ExoN-AE but not the other two 2nt variants, ExoN-DA and ExoN-ED.
285	One potential explanation is that the specific mutational bias of ExoN-AE makes the revertant
286	mutations more accessible than in ExoN-DA or ExoN-ED. Alternatively, if ExoN-AE has
287	profound replication or fitness defects, selection could drive primary reversion more quickly
288	away from this genotype. Consistent with this hypothesis, ExoN-AE reverted more quickly at a
289	higher MOI, where natural selection acts more efficiently on a larger population size (Table 1)
290	(33). Biochemical studies of the ExoN-AA intermediate revertants will be valuable to determine

nsp12-250 and nsp14-250, including synonymous changes, could modify RNA sequence features

Journal of Virology

Downloaded from http://jvi.asm.org/ on July 24, 2019 by guest

291	whether nsp14-ExoN-AE differs from the other intermediate revertants and to define the
292	structural and kinetic features of nsp14-ExoN catalysis.
293	
294	Finally, our studies suggest that compensatory mutations identified through long-term passage
295	could be used to stabilize the ExoN-AA genotype. In particular, the high-fidelity nsp12-P250
296	could reduce the probability of reversion by reducing mutational sampling within motif I (34),
297	and both nsp12-P250 and nsp14-P250 render the MHV genome inhospitable to a WT-ExoN-DE.
298	Together, these studies argue that experimental evolution can generate reagents to define critical
299	interactions involved in CoV replication and can identify new strategies for stabilizing attenuated
300	CoVs.

301

Journal of Virology

302 MATERIALS AND METHODS

303	Cell culture. Delayed brain tumor (DBT-9) cells (35) and baby hamster kidney 21 cells
304	expressing the MHV receptor (BHK-R) (36) were maintained at 37°C in Dulbecco's Modified
305	Eagle Medium (DMEM, Gibco) supplemented with 10% serum (HyClone FetalClone II, GE
306	Healthcare or Fetal Bovine Serum, Invitrogen), 100 U/mL penicillin and streptomycin (Gibco),
307	and 0.25 μ M amphotericin B (Corning). BHK-R cells were further supplemented with 0.8
308	mg/mL G418 selection antibiotic (Gibco). The infectious clone of the murine hepatitis virus
309	strain A59 (MHV-A59; GenBank accession number AY910861) was used as the template for all
310	recombinant viruses .
311	
312	Determination of viral titer by plaque assay. Virus samples were serially diluted and
313	inoculated on subconfluent DBT-9 cell monolayers in either 6- or 12-well format. Cells were
314	overlaid with 1% agar in DMEM and incubated overnight at 37°C. Plates were fixed with 4%
315	formaldehyde and agar plugs were removed. The number of plaques per well was counted by
316	hand and used to calculate titer (36).
317	
318	Plaque purification of viral populations. DBT cells were infected with serial dilutions of virus
319	and overlaid with 1% agar in DMEM. Single plaques were isolated with glass Pasteur pipettes,
320	resuspended in PBS containing calcium and magnesium, and inoculated onto fresh DBTs. This
321	process was completed 3 times before generating experimental stocks.

Downloaded from http://jvi.asm.org/ on July 24, 2019 by guest

 \leq

323	Cloning and recovery of recombinant viruses. Site-directed mutagenesis in MHV genome
324	fragments was performed using "round the horn" PCR (originally described in (37)). Briefly,
325	adjacent primers containing the mutation of interest were 5'-phosphorylated using T4
326	polynucleotide kinase (NEB, M0201S) using the buffer from the T4 DNA ligase, which contains
327	ATP (M0202S). PCR was performed on a plasmid template using the Q5 High-fidelity 2x
328	Master Mix (NEB, M0492L), with primers at final concentration of 500nM. The linear
329	amplification product was purified using the Promega Wizard SV Gel and PCR Clean-up System
330	(Promega Corporation, A9282), and 4 μL was ligated at 16°C overnight with the T4 DNA ligase
331	(NEB M0202S). After transformation into chemically-competent Top10 E. coli (lab-derived) and
332	expansion in liquid culture, the MHV segment of each plasmid was sequenced. Viruses were
333	constructed, rescued, and sequenced as described previously (7, 13, 36). Experimental stocks
334	were generated by infecting a subconfluent 150 cm^2 flask of DBT-9 cells at MOI of 0.01
335	PFU/cell. Flasks were frozen at -80°C when monolayers were fully involved, approximately 20-
336	28 hours post-infection depending on the variant. After thawing, the supernatant was clarified by
337	centrifugation at 4,000 x g (Sorvall RC 3B Plus; HA-6000A rotor) for 10 min at 4°C. For
338	intermediate revertants, stocks were generated in serum-free DMEM and processed as above
339	before being concentrated roughly 10-fold by centrifugation at 4,000 x g using Amicon Ultra-15
340	Centrifugal Filter Units, 100kDa (EMD Millipore, UFC910008). The virus titer of each stock
341	was determined by plaque assay using DBT-9 cells as described above.
342	
343	Passage of ExoN intermediate revertants. Intermediate revertants of ExoN-AA were passaged
344	10 times on subconfluent DBT-9 cell monolayers in 24-well plates at an estimated MOI of either

Σ

 \sum

345	0.01 or 0.5 PFU/cell. Supernatants were harvested at 24 and 20 hours post-infection for MOI =
346	0.01 and 0.5 PFU/cell, respectively, and screened for WT reversion by plaque assay. At least
347	three WT-like plaques were sequenced for each lineage to confirm motif I reversion.
348	
349	Replication kinetics. Viral replication kinetics in DBT-9 cells were determined at indicated
350	MOIs as described previously (11). Replicates were synchronized by 30-minute incubation at
351	$4^\circ C$ before transferring to the 37°C incubator. Supernatant (300 $\mu L)$ was harvested at the
352	indicated time points and titered by plaque assay.
353	
354	Determination of specific infectivity. Subconfluent monolayers of DBT-9 cells in 24-well
355	plates were infected with the indicated virus at $MOI = 0.05$ PFU/cell, and supernatant was
356	harvested at 16 hours post-infection. Genomic RNA in supernatant was quantified using one-step
357	reverse transcription quantitative RT-PCR (RT-qPCR) on TRIzol-extracted RNA as described
358	previously (9). Briefly, genomic RNA was detected with a 5' 6-carboxyfluorescein (FAM) and
359	3' black hole quencher 1 (BHQ-1) labeled probe targeting nsp2 (Biosearch Technologies,
360	Petaluma, CA), and RNA copy number was calculated by reference to an RNA standard derived
361	from the MHV A fragment. Samples were plated in technical duplicate to minimize well-to-well
362	variation. Titers were determined by plaque assay in DBT-9 cells, and specific infectivity was
363	calculated as PFU per supernatant genomic RNA copy.
364	
365	5-fluorouracil sensitivity assays. Stock solutions of 5-fluorouracil (Sigma F6627) were

366 prepared in dimethyl sulfoxide (DMSO). Sensitivity assays were performed in 24-well plates at

MOI = 0.01 PFU/cell, as previously described (7). Cells were incubated with drug for 30 minutes
prior to infection. Supernatants were harvested at 24 hours post-infection, and titers were
determined by plaque assay.

370

371 Competitive fitness assays. ExoN-AA-reference and WT-ExoN-DE-reference viruses were 372 marked with 7 consecutive silent mutations within nsp2 (wild-type: 1301-TTCGTCC-1307; 373 reference: 1301-CAGCAGC-1307) by round the horn PCR, as described above. Competitions 374 were performed in triplicate on DBT-9 cells in 12-well plates, plated at a density of 1×10^5 cells 375 per well 24 hours prior to infection. Cells were infected at a total MOI of 0.1 PFU/cell (MOI = 376 0.05 PFU/cell each for competitor and reference virus). Supernatants were harvested 15 and 16 377 hours post-infection for experiments with ExoN-AA-reference and WT-ExoN-DE-reference, 378 respectively, and passaged 4 times. Samples were titered between all passages to maintain total 379 MOI of 0.1 PFU/cell. RNA was extracted from 70 µL of supernatant using QIAamp 96 virus 380 QIAcube HT kit on the QIAcube HT System (Qiagen). Each RNA sample was analyzed by one-381 step RT-qPCR with two SYBR Green assays. Reference viruses were detected with forward 382 primer SS-qPCR-Sil-F (5'-CTATGCTGTATACGGACAGCAGT-3'; 200nM final) and reverse 383 primer SS-qPCR-R2 (5'-GGTGTCACCACAACAATCCAC-3', 200nM final). Competitors were detected with forward primer SS-gPCR-WT-F (5'-CTATGCT-GTATACGGATTCGTCC-3', 384 385 450 nM final) and reverse primer SS-qPCR-R2 (5'-GGTGTCAC-CACAACAATCCAC-3', 450 386 nM final). RNA samples were diluted 1:100 prior to RT-qPCR with Power SYBR Green RNA-387 to-Ct 1-step kit (Applied Biosystems) according to the manufacturer's protocol. Duplicate wells 388 were averaged, and values were excluded from subsequent analysis if the duplicate wells differed

389	by > 0.5 Ct. The relative abundance of competitor and reference were determined by subtracting
390	Ct thresholds ($\Delta Ct_{competitor} = Ct_{competitor} - Ct_{reference}$) and converted to reflect the fold-change in
391	ratio ($\Delta ratio = 2^{-\Delta Ct \text{ competitor}}$). The $\log_{10}\Delta ratio$ was plotted against passage number, and the change
392	in $log_{10}\Delta ratio$ (i.e. slope of linear regression) is the relative fitness. Note that regressions were fit
393	only through P1-P4, as slight deviations in 1:1 ratio in the input (P0) can skew the slope.
394	
395	Statistical analysis. GraphPad Prism 6 (La Jolla, CA) was used to perform statistical tests. Only
396	the comparisons shown [e.g. ns or asterisk(s)] within the figure or legend were performed. In
397	many cases the data were normalized to untreated controls. This was performed using GraphPad

390	Ct thresholds ($\Delta Ct_{competitor} = Ct_{competitor} - Ct_{reference}$) and converted to reflect the fold-change in
391	ratio ($\Delta ratio = 2^{-\Delta Ct \text{ competitor}}$). The $\log_{10}\Delta ratio$ was plotted against passage number, and the change
392	in $log_{10}\Delta ratio$ (i.e. slope of linear regression) is the relative fitness. Note that regressions were fit
393	only through P1-P4, as slight deviations in 1:1 ratio in the input (P0) can skew the slope.
394	
395	Statistical analysis. GraphPad Prism 6 (La Jolla, CA) was used to perform statistical tests. Only
396	the comparisons shown [e.g. ns or asterisk(s)] within the figure or legend were performed. In
397	many cases the data were normalized to untreated controls. This was performed using GraphPad
398	Prism 6. The number of replicate samples is denoted within each figure legend.
399	
400	

401

 \sum

402 ACKNOWLEDGEMENTS

403	We thank member	rs of the Denison	laboratory and S	Seth Bordenstein for	valuable discussions, as
-----	-----------------	-------------------	------------------	----------------------	--------------------------

404 well as Andrea Pruijssers for critical review of the manuscript. This work was supported by

405 United States Public Health Service awards R01-AI108197 (M.R.D), T32-GM007347 (K.W.G),

406 F30-AI129229 (K.W.G), T32-AI089554 (N.R.S.), F31-AI133952 (M.L.A.), and T32-AI089554

407 (M.L.A.) all from the National Institutes of Health. The content is solely the responsibility of the

408 authors and does not necessarily represent the official views of the National Institutes of Health.

409 The authors declare no conflicts of interest.

410

Accepted Manuscript Posted Online

REFERENCES 411

412	1.	Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R. 2010. Viral mutation rates.
413		J Virol 84 :9733–9748.
414	2.	Domingo E, Sheldon J, Perales C. 2012. Viral quasispecies evolution. Microbiol Mol
415		Biol Rev 76 :159–216.
416	3.	Dolan PT, Whitfield ZJ, Andino R. 2018. Mapping the Evolutionary Potential of RNA
417		Viruses. Cell Host and Microbe 23:435–446.
418	4.	Stern A, Yeh Te M, Zinger T, Smith M, Wright C, Ling G, Nielsen R, Macadam A,
419		Andino R. 2017. The Evolutionary Pathway to Virulence of an RNA Virus. Cell 169:35–
420		35.e19.
421	5.	Perlman S, Netland J. 2009. Coronaviruses post-SARS: update on replication and
422		pathogenesis. Nat Rev Microbiol 7:439–450.
423	6.	Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, Smith EC, Case
424		JB, Feng JY, Jordan R, Ray AS, Cihlar T, Siegel D, Mackman RL, Clarke MO,
425		Baric RS, Denison MR. 2018. Coronavirus Susceptibility to the Antiviral Remdesivir
426		(GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease.
427		MBio 9 :e00221–18–15.
428	7.	Graepel KW, Lu X, Case JB, Sexton NR, Smith EC, Denison MR. 2017. Proofreading-
429		Deficient Coronaviruses Adapt for Increased Fitness over Long-Term Passage without
430		Reversion of Exoribonuclease-Inactivating Mutations. MBio 8:e01503–17.
		23

 $\overline{\leq}$

Σ

431	8.	Smith EC, Blanc H, Surdel MC, Vignuzzi M, Denison MR. 2013. Coronaviruses
432		lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for
433		proofreading and potential therapeutics. PLoS Pathog 9:e1003565.
434	9.	Sexton NR, Smith EC, Blanc H, Vignuzzi M, Peersen OB, Denison MR. 2016.
435		Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA
436		Polymerase That Confers Resistance to Multiple Mutagens. J Virol 90:7415–7428.
437	10.	Case JB, Li Y, Elliott R, Lu X, Graepel KW, Sexton NR, Smith EC, Weiss SR,
438		Denison MR. 2017. Murine Hepatitis Virus nsp14 Exoribonuclease Activity Is Required
439		for Resistance to Innate Immunity. J Virol 92 :e01531–17–38.
440	11.	Smith EC, Case JB, Blanc H, Isakov O, Shomron N, Vignuzzi M, Denison MR. 2015.
441		Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity. J
442		Virol 89 :6418–6426.
443	12.	Graham RL, Becker MM, Eckerle LD, Bolles M, Denison MR, Baric RS. 2012. A
444		live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised
445		mouse model of lethal disease. Nat Med 18:1820–1826.
446	13.	Eckerle LD, Lu X, Sperry SM, Choi L, Denison MR. 2007. High fidelity of murine
447		hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J Virol
448		81 :12135–12144.
449	14.	Eckerle LD, Becker MM, Halpin RA, Li K, Venter E, Lu X, Scherbakova S, Graham
450		RL, Baric RS, Stockwell TB, Spiro DJ, Denison MR. 2010. Infidelity of SARS-CoV
		24

451		Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing.
452		PLoS Pathog 6 :e1000896.
453	15.	Menachery VD, Gralinski LE, Mitchell HD, Dinnon KH III, Leist SR, Yount BL Jr.,
454		McAnarney ET, Graham RL, Waters KM, Baric RS. 2018. Combination attenuation
455		offers strategy for live-attenuated coronavirus vaccines. J Virol JVI.00710-18-35.
456	16.	Ma Y, Wu L, Shaw N, Gao Y, Wang J, Sun Y, Lou Z, Yan L, Zhang R, Rao Z. 2015.
457		Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex.
458		Proc Natl Acad Sci USA 112:9436–9441.
459	17.	Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LLM, Guan Y,
460		Rozanov M, Spaan WJM, Gorbalenya AE. 2003. Unique and conserved features of
461		genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group
462		2 lineage. J Mol Biol 331 :991–1004.
463	18.	Bouvet M, Imbert I, Subissi L, Gluais L, Canard B, Decroly E. 2012. RNA 3'-end
464		mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural
465		protein nsp10/nsp14 exoribonuclease complex. Proc Natl Acad Sci USA 109:9372–9377.
466	19.	Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C, Canard B,
467		Ziebuhr J. 2006. Discovery of an RNA virus 3"->5" exoribonuclease that is critically
468		involved in coronavirus RNA synthesis. Proc Natl Acad Sci USA 103:5108-5113.

 \leq

469	20.	Becares M, Pascual-Iglesias A, Nogales A, Sola I, Enjuanes L, Zuñiga S. 2016.
470		Mutagenesis of Coronavirus nsp14 Reveals Its Potential Role in Modulation of the Innate
471		Immune Response. J Virol 90 :5399–5414.
171		
472	21.	Steitz TA, Steitz JA. 1993. A general two-metal-ion mechanism for catalytic RNA. Proc
473		Natl Acad Sci USA 90:6498–6502.
474	22.	Chen P, Jiang M, Hu T, Liu Q, Chen XS, Guo D. 2007. Biochemical characterization of
475		exoribonuclease encoded by SARS coronavirus. J Biochem Mol Biol 40:649–655.
476	23.	Derbyshire V, Grindley ND, Joyce CM. 1991. The 3"-5" exonuclease of DNA
477		polymerase I of Escherichia coli: contribution of each amino acid at the active site to the
478		reaction. EMBO J 10 :17–24.
479	24.	Case JB, Ashbrook AW, Dermody TS, Denison MR. 2016. Mutagenesis of S-
480		Adenosyl-l-Methionine-Binding Residues in Coronavirus nsp14 N7-Methyltransferase
481		Demonstrates Differing Requirements for Genome Translation and Resistance to Innate
482		Immunity. J Virol 90:7248–7256.
10.0		
483	25.	Das SR, Hensley SE, Ince WL, Brooke CB, Subba A, Delboy MG, Russ G, Gibbs JS,
484		Bennink JR, Yewdell JW. 2013. Defining Influenza A Virus Hemagglutinin Antigenic
485		Drift by Sequential Monoclonal Antibody Selection. Cell Host and Microbe 13:314–323.
486	26.	Nakajima K, Nobusawa E, Nagy A, Nakajima S. 2005. Accumulation of Amino Acid
487		Substitutions Promotes Irreversible Structural Changes in the Hemagglutinin of Human
488		Influenza AH3 Virus during Evolution. J Virol 79:6472–6477.
		26

Σ

Journal of Virology

489

27.

Koel BF, Burke DF, van der Vliet S, Bestebroer TM. 2018. Epistatic interactions can

509 34. Arnold JJ, Vignuzzi M, Stone JK, Andino R, Cameron CE. 2005. Remote site control 510 of an active site fidelity checkpoint in a viral RNA-dependent RNA polymerase. J Biol 511 Chem 280:25706-25716. 512 35. Chen W, Baric RS. 1996. Molecular anatomy of mouse hepatitis virus persistence: 513 coevolution of increased host cell resistance and virus virulence. J Virol 70:3947-3960. 514 Yount B, Denison MR, Weiss SR, Baric RS. 2002. Systematic assembly of a full-length 36. 515 infectious cDNA of mouse hepatitis virus strain A59. J Virol 76:11065–11078. 516 Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. 1989. Site-directed mutagenesis 37. 517 by overlap extension using the polymerase chain reaction. Gene 77:51–59. 518

Downloaded from http://jvi.asm.org/ on July 24, 2019 by guest

510

519

Journal of Virology

 \leq

520 FIGURE LEGENDS

521	Figure 1. Sequence landscape around ExoN-AA motif I. (A) ExoN motif I nucleotide sequences. (B)
522	Landscape of single-nucleotide substitutions within ExoN-AA motif I. (C) Predicted pathways to
523	reversion of ExoN-AA. Variants marked with # reverted to WT during three independent recovery
524	attempts.
525	
526	Figure 2. Intermediate revertants of ExoN-AA motif I do not have selective advantages. (A)

527 Replication kinetics at MOI = 0.01 PFU/cell plotted as mean \pm SD of n = 3. (B) Competitive fitness of 528 each variant relative to ExoN-AA. Viruses were competed with a tagged ExoN-AA-reference strain, and 529 relative fitness was normalized to the mean of ExoN-AA. (C) 5-fluorouracil sensitivity at MOI = 0.01 530 PFU/cell. Statistical significance of each variant relative to ExoN-AA was determined by one-way 531 ANOVA with multiple comparisons (Panel D) two-way ANOVA with Dunnett's multiple comparisons 532 (panel *C*). ****p<0.0001; ns = not significant. Data in (*B*) and (*C*) represent mean \pm SD of n = 6. Boxed 533 values have the same significance. #All lineages of ExoN-AE reverted to WT-ExoN-DE during the 534 experiment.

Downloaded from http://jvi.asm.org/ on July 24, 2019 by guest

```
Figure 3. ExoN-AA adapts for increased fitness within 10 passages. (A) Replication kinetics of
indicated viruses at MOI = 0.01 PFU/cell plotted as mean \pm SD of n = 3. (B) 5-fluorouracil sensitivity at
MOI = 0.01 PFU/cell. (C) Competitive fitness of individual recombinants relative to ExoN-AA. Viruses
were competed with a tagged ExoN-AA-reference strain, and relative fitness was normalized to the mean
of ExoN-AA. Statistical significance of each virus relative to ExoN-AA was determined by two-way
ANOVA with Dunnett's multiple comparisons (panel B) or by one-way ANOVA with multiple
```

 \sum

542

543	(<i>C</i>) represent mean \pm SD of n = 6. Boxed values have the same significance.
544	
545	Figure 4. Mutations that increase ExoN-AA fitness are detrimental in the presence of WT-ExoN-
546	DE. (<i>A</i>) Replication kinetics of indicated viruses at MOI = 0.01 PFU/cell plotted as mean \pm SD of n = 3.
547	(<i>B</i>) 5-fluorouracil sensitivity at MOI = 0.01 PFU/cell, mean \pm SD of n = 6. (<i>C</i>) Competitive fitness of
548	individual recombinants relative to WT-ExoN-DE. Viruses were competed with a tagged WT-ExoN-DE
549	reference strain, and relative fitness was normalized to the mean of WT-ExoN-DE, mean \pm SD of n = 6.
550	(D) Specific infectivity (genomes per PFU) from isolated infections, mean \pm SD of n = 4 Statistical
551	significance of each virus relative to WT-ExoN-DE was determined with two-way ANOVA with
552	Dunnett's multiple comparisons test (panel B) or by ordinary one-way ANOVA with Dunnett's multiple
553	comparisons test (panels C and D). ** $p < 0.01$; *** $p < 0.001$; **** $p < 0.0001$; ns = not significant.
554	
555	Figure 5. Model for the in vitro evolution of MHV-ExoN-AA. MHV-ExoN-AA (black dot) is a low-
556	fitness variant. Reversion to WT-ExoN-DE would dramatically increase fitness but can only be achieved
557	by traversing a flat landscape and climbing a steep fitness cliff (dotted white arrows). However,
558	secondary mutations that incrementally increase fitness are more accessible (solid white arrow).
559	Eventually, the genetic background changes enough that reversion becomes detrimental (dotted yellow
560	line).

comparisons (Panel C). ****p < 0.0001, ns = not significant. LOD = limit of detection. Data in (B) and

562 TABLE FOOTNOTES

563	Table 1. Recovery and	l passage of intermediate revertants
-----	-----------------------	--------------------------------------

- n.d.: not done.
- ^aBolded nucleotides must mutate to reach WT-ExoN-DE genotype.
- 566 ^bRecovered viruses were subjected to 10 passages at the indicated MOI. Samples were screened for wild-
- 567 type revertants by plaque assay, and revertant lineages were sequence-confirmed.

- 569 Table 2. Mutations in ExoN(-) P10. Data derived from dideoxy sequencing.
- 570 ^aMutation present at approximately 50% of population.
- 571 ^bMHV HE is not transcribed in tissue culture.
- 572 ^cAmino acid numbers designate positions within cleaved nsps, not the polyprotein.

C Number of mutations from WT-ExoN-DE

Z

ns

 \leq

 \leq

Journal of Virology

 \sum

Sequence space

Above this line, reversion is detrimental

WT-ExoN-DE

h

motif I

intermediate revertants

ExoN-AA

 \leq

Sequence space

Table 1. Recovery and passage of intermediate revertants.

n.d.: not done.

^aBolded nucleotides must mutate to reach WT-ExoN-DE genotype.

^bRecovered viruses were subjected to 10 passages at the indicated MOI. Samples were screened for wild-

type revertants by plaque assay, and revertant lineages were sequence-confirmed.

	# of mutations to Mo		# of reverted passag	# of reverted lineages by passage 10 ^b	
Virus	WT-ExoN-DE	sequence ^a	MOI = 0.01	MOI = 0.5	
ExoN-AA	4	GCAGCT	0/3	0/3	
ExoN-AD	3	GCAGAT	0/3	0/3	
ExoN-EA	3	GAAGCT	0/3	0/3	
ExoN-DA	2	GATG CT	0/3	0/3	
ExoN-AE	2	GCAGAA	1/3 (by P8)	3/3 (by P2)	
ExoN-ED	2	GAAGAT	0/3	0/3	
ExoN-EE	1	GAAGAA	n.d.	n.d.	
ExoN-DD	1	GATGA T	n.d.	n.d.	
WT-ExoN-DE	0	GATGAA	n.d.	n.d.	

Table 2. Mutations in ExoN(-) P10. Data derived from dideoxy sequencing.

^aMutation present at approximately 50% of population.

^bMHV HE is not transcribed in tissue culture.

^cAmino acid numbers designate positions within cleaved nsps, not the polyprotein.

Mutation number	Nucleotide change	Protein	Amino acid change ^c
1	G2520A ^a	nsp2	D524N
2	A3080G ^a	nsp3	Silent
3	T16017A	nsp12	M814K
4	A17836G ^a	nsp13	I492M
5	G22673A ^a	HE^{b}	noncoding
6	A29298C ^a	Μ	Silent