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Abstract
A new deterministic mathematical model for the transmission dynamics of Middle 

East Respiratory Syndrome Coronavirus (MERS-CoV) is proposed and fully analyzed. 
The presented model exhibits a unique endemic equilibrium and there is no infection free 
equilibrium due to constant influx of latent immigrants. An invasion threshold parameter is 
derived and stability analysis of the full model and its two special cases is carried out. The 
impact of quarantine and isolation is assessed via threshold analysis approach, while the 
impact of immigration on the disease prevalence is discussed. Indeed, we showed that MERS-
CoV can be controlled by quick isolation or monitoring close contacts and quarantining of 
suspected latent immigrants. Further, numerical simulations of the model reveal that the 
disease can be contained if these preventive measures are combined with high reduction of 
immigration rate. 

Subject Classification:  (2010) 34D23, 93C15, 93D20

Keywords: Middle East Respiratory Syndrome, Isolation, Quarantine.

1.  Introduction

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) belongs 
to the subfamily Coronavirinae in lineage C of the genus Betacoronavirus. 
MERS-CoV is one of the four Coronavirus groups of which Severe Acute 
Respiratory Syndrome (SARS-Cov) belongs [9]. In September 2012, The 
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World Health Organization (WHO), reported the First cases of MERS-
CoV [26], a novel respiratory disease, initially localized to Middle East 
countries. It has a high potential for transmission to close contacts, as 
observed in communities with sporadic exposure, health care facilities, as 
well as families having contact with infected members [10]. Coronaviruses 
are wide spread in Bats around the world but can also be found in 
many other animal species as well [20]. The first index was reported in 
Kingdom of Saudi Arabia (KSA) on 13th June, 2012, when unknown 
coronavirus isolated from a 60yr old man admitted in hospital with a 7 - 
day history of acute pneumonia, fever, cough, expectoration, short breath 
and subsequent renal failure which later resulted in fatal outcome [28]. 
Shortly thereafter, on 14th September, 2012, the United Kingdom Health 
Protection Agency (HPA) Imported Fever Service was notified of a case 
of unexplained virus, later named human coronavirus England 1. It has 
been isolated from another patient with history of severe respiratory 
illness in an intensive care unit (ICU) of London hospital. The index has 
been transferred from Qatar and had a history of travel to Saudi Arabia 
[3]. The origin of the disease was traced back to an earlier time - April, 
2012, when health care workers in an ICU of a hospital in Zarqa, Jordan 
were confirmed to have been contracted with the novel coronavirus [9]. 
From June, 2012 to 25th September, 2013, WHO reported total of 133 cases 
with 55 deaths from 9 countries [20]. Up to 14th March, 2014, there were 
477 globally reported cases and alerts including additional 7 countries 
[15]. Globally, from September 2012 to 17th April, 2013, WHO has been 
informed of a total of 243 laboratory-confirmed cases of infection with 
MERS-CoV, including 93 deaths [25]. It has been observed that all cases 
outside Middle East are traced back to the region either by travel to or 
from the affected areas or by direct or indirect contact with others who 
have a travel history to Middle East [1].

The epidemiological data available suggest that the infection is 
primarily zoonotic in nature, with possible cross-species transmission 
between humans and animals (Bats, Camels). Some of the reasons advanced 
are: Close phylogenetic similarity between viruses isolated from humans, 
bats and camels; presence of viral neutralizing antibodies in dromedary 
camels for the past 2 decades from (EGP, JO, KSA, OM, Canary Island), 
and none in other livestocks [1, 13, 16, 21, 22]; close association between 
camels and humans as source of food, sporting and as pets. However, 
most of the reported cases have no close contact with camels or bats . 
Therefore, the direction of transmission from humans to animals or vice 
varsa, host, reservoir e.t.c. remain unknown [1, 16, 17].
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The established clinical symptoms of MERS-CoV include fever, 
cough, shortness of breath, acute pneumonia, expectoration, hemoptysis 
often followed by renal failure [2, 20, 28]. Gastrointestinal symptoms like 
vomiting and diarrhea are also common [2]. The incubation period was 
estimated to be 5.2–5.5 days and the serial interval (the time between the 
successive onset of symptoms in a chain of transmission) was 7.6 days 
[2]. According to Cauchemez et al, [7], the estimated basic reproduction 
number obtained from all confirmed and probable of human cluster cases 
from Middle East (up to Aug 8, 2013) and the first 133 cases [20], were in 
the range 0.8–1.3 and 0.6 respectively. The implication of the former result 
is that self-sustaining transmission in the absence of control measures 
may occur. The average age of the first 133 reported MERS-CoV cases was 
52 years with male having higher case-fatality risk of 52% compared to 
women 24% [20].

Clinically, whenever there is an outbreak or re-emergence of new or 
an old infection in a community/country, in the absence of vaccine or 
treatment, isolation and quarantine of individuals with clinical symptoms 
or suspected to be exposed to the pathogens have proved to be effective 
ways of containing the disease [11, 13]. The World Health Organization 
is concerned, among others, with the gaps in understanding the degree 
of transmissibility between people, possibility of “super spreaders” and 
potential for sustainable person-to-person transmission and spread [10]. 
However, several mathematical epidemic models incorporating one of 
such control measures or both exist in the literature, see for instance, [11, 
18, 23, 24, 27]. For the 2015 epidemic outbreak of MERS-Cov in the Republic 
of Korea, two deterministic models for the transmission dynamics of 
MERS-Cov with and without control measures were developed in [27]. 
The basic reproduction number, R0 was estimated to reach up to 4.422. 
The numerical analysis reveals that lack of self-protection sense and 
targeted control measures were the reasons of the outbreak spread quickly. 
However, it was reported that strengthening self-protection ability of 
susceptible and quickly isolating or monitoring close contacts are effective 
measures to control the disease. Furthermore, partial correlation analysis 
shows that the infectivity and proportion of the asymptomatic infected 
cases have much influence on the disease spread. In the same vain, another 
deterministic model was designed to analyze the MERS-CoV outbreak in 
the Republic of Korea [18]. The proposed model explicitly incorporates 
superspreading events and time-dependent transmission and isolation 
rates. The superspreaders are those who transmit the virus to more than 
20 patients and have underlying respiratory diseases with a severe cough. 
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The impact of the timing of control measures associated with a reduction 
of the transmission rate and diagnostic delays on the outbreak size and 
duration was assessed. It was observed that early interventions within 1 
week after the epidemic onset is a promising means to reduce the size and 
duration of the MERS-CoV epidemic.

In a similar note, an SEIQJR - SARS model with both quarantine 
and isolation strategies was presented in [11]. The analysis of this model 
reveals that a reduction in the contact rate between susceptible and infected 
individuals by isolating the latter is a critically important strategy that 
can control SARS outbreaks with or without quarantine. It was reported 
that an optimal isolation is more effective than sub-optimal isolation 
and quarantine together. And that an optimal isolation combined with a 
highly effective screening programme at the points of entry would lead to 
a community-wide eradication of SARS.

It is well known that migration and immigration greatly increase 
the spread of many infectious diseases at a regional, national and global 
scale [4, 12]. Simple models for disease transmission incorporating 
immigration of infective individuals was presented in [4]. The models 
exhibit a single endemic equilibrium that is asymptotically stable. It 
was revealed that there is no disease free equilibrium in the presence of 
immigration of infectives. For HIV transmission model a considerable 
reduction of infectives was suggested by screening and quarantining of 
infectives. While both immigration/migration terms were incorporated 
into all sub-population compartments, susceptible and infected, of two 
types of well-known heterogeneous epidemic models: multistage models 
and multi-group models for HIV/AIDS and other sexually transmitted 
diseases (STDs). It was shown that, the disease always becomes endemic 
in the population and tends to a unique asymptotically stable endemic 
equilibrium when migration or immigration into infected sub-population 
is present [12].

In this paper, a disease transmission model for MERS-CoV epidemic 
incorporating immigration of susceptible and latently infected individuals 
is proposed to assess the impacts of quarantine and isolation strategies in 
controlling the disease. As in the previous studies, the main result is that 
our model exhibit a unique asymptotically stable endemic equilibrium 
and there is no disease free equilibrium when immigration into latently 
infected sub-population is present. While such equilibria exist for the case 
when either all the immigrants are susceptible or the immigration rate is 
negligible. The impact of quarantine and isolation is assessed in relation 
to the relative infectiousness of quarantined and isolated individuals. 
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Further, eradication of MERS-CoV is feasible by reduction of immigration 
rate of latently infected individuals. The proposed model extends in some 
sense the aforementioned models in the literature as follows: 

(i)	� In the presented model, demographic features are incorporated 
and vital mathematical analysis is carried out, while these were not 
provided in MERS-CoV model proposed in [27]. 

(ii)	� In [18] there were only two sources of infection, here we consider 
four sources of infection. 

(iii)	�Although, immigration into both susceptible and infective 
compartments is common to [4, 12] and our model, in the latter 
we used saturated incidence formulation when the former used a 
simple mass action formulation. 

(iv)	�For the SARS model in [11], quarantined individuals are 
asymptomatic infectives who develop symptoms and then move to 
the isolated class. In our model, some quarantined individuals do 
not show symptoms and become susceptibles while others recovered 
by either treatment or acquiring natural immunity and move to 
recovered compartment. 

The remaining part of the paper is organized as follows. In section 
2, we describe the mathematical model. In section 3, rigorous analysis 
of the model is provided including its basic properties, existence and 
stability of the model equilibria, and the impact of quarantine, isolation 
and immigration rate are discussed. Numerical simulations supporting 
the theoretical results are provided. In section 4, we provide a concluding 
remarks.

2.  Model formulation

The susceptible human population is generated via recruitment by 
birth (at a constant rate P) and immigration (at a rate aq); where 0 £ q £ 
1 account for the fraction of the inflow of migrants into the community 
(by air or road) who are susceptible, and by recovery of quarantined 
individuals at a rate s (1 – p); where 0 < p < 1 is a fraction of quarantined 
individuals tested with no clinical symptoms of the disease. This 
population is decreased following infection with MERS-CoV, which can 
be acquired via effective contact with infectious human (at a rate l), where 
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1 2 3( )L I Q J
N

β η η η
λ

+ + +
=

Here the parameter b is the effective contact rate (contact capable 
of leading MERS-CoV infection). Furthermore, 0 £ h1 £ 1, 0 £ h2 £ 1 and  
0 £ h3 £ 1 are modification parameters accounting for the assumed 
reduction in infectiousness of individuals in the latent (L), quarantine (Q) 
and isolated (J) classes, in comparison to infectious individuals in I class. 
Natural death is assumed to occur in all human compartments at a rate m. 
Thus, the rate of change of the susceptible population is given by 

= (1 ) ( ) .dS q p Q S
dt

α σ λ µΠ + + − − +

The population of individuals in the latent class is increased by 
immigration at the rate a(1 – q) and by infection (at the rate l), and is 
decreased by the development of clinical symptoms (at a rate t1), 
quarantine (at a rate t2) and natural death, so that 

1 2(1 ) ( ) .
=

q S L
dL

dt
α λ τ τ µ− + − + +

The population of infectious individuals with clinical symptoms 
of MERS-CoV in I class increases following the development of clinical 
symptoms by individuals in latent class (at the rate t1). This population 
is decreased by isolation (at a rate g), recovery (at a rate d1), MERS-CoV 
induced mortality (at a rate n1) and natural death, this gives 

1 1 1= ( ) .dI L I
dt

τ γ ν δ µ− + + +

The population of quarantine individuals increases following the 
quarantine of individuals in the latent class (at the rate t2). This population 
is decreased by recovery (at a rate s) and natural death, so that 

2 ( ) .dQ L Q
dt

τ σ µ= − +

The population of individuals that are isolated (J(t)) is generated by 
the isolations of infectious individuals with clinical symptoms of MERS-
CoV (at the rate g). It is decreased by recovery (at a rate d2), disease induced 
death (at a rate n2) and natural death. Hence 
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2 2= ( ) .dJ I J
dt

γ ν δ µ− + +

Finally, the recovered population is generated by the recovery of 
individuals in I, J and Q classes at the rates d1, d2 and sp, respectively, and 
decrease due to natural death. This gives 

1 2= .B

dR I I pQ R
dt

δ δ σ µ+ + −

In summary, the MERS-CoV transmission model is given by the 
following system of non-linear differential equations (a flow diagram of 
the model is given in Figure 1 and the associated variables and parameters 
are described in Table 1, respectively). 

1 2 3

1 2 3
1 2

1 1 1

2

( )
(1 ) ,

( )
(1 ) ( ) ,

( ) , (1)

( ) ,

L I Q JdS q p Q S S
dt N

L I Q JdL q S L
dt N
dI L I
dt

dQ L Q
dt

β η η η
α σ µ

β η η η
α τ τ µ

τ γ ν δ µ

τ σ µ

+ + +
= Π + + − − −

+ + +
= − + − + +

= − + + +

= − +

Figure 1
The flow diagram of model (1). The parameter, .+ + +1 2 3( )= L I Q J

N
β η η ηλ  
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2 2

1 2

( ) ,

,

dJ I J
dt

dR I J pQ R
dt

γ ν δ µ

δ δ σ µ

= − + +

= + + −

with nonnegative initial conditions (0) 0, (0) 0, (0) 0, (0) 0,S L I Q≥ ≥ ≥ ≥
(0) 0, (0) 0.J R≥ ≥

Since the last compartment (R) does not appear in the first five 
equations of model (1), it is convenient to discard the last equation of 
system (1) for theoretical analysis.

The equation for the total population which is obtained by adding all 
the equations of (1) is given by 

1 2

( ) ( ) ( ) ( ). (2)dN t N t I t J t
dt

α µ ν ν= Π + − − −

3.  Analysis of model (1)

3.1 Basic properties

The basic properties of the model can now be investigated. 

Lemma 1 : The solution ( ( ), ( ), ( ), ( ), ( )), ( ))S t L t I t Q t J t R t  of model (1) with positive 
initial conditions, exists for all t ≥ 0 and is unique. Furthermore, ( ) 0,S t >

( ) 0, ( ) 0, ( )L t I t Q t 0> > >  and J(t) > 0 for all t ≥ 0. 
Using Lemma 1 on equation (2), we have the following result.

Lemma 2 : The biologically-feasible region of model (1) is
6{( ( ), ( ), ( ), ( ), ( ), ( ))) : ( ) ( )

( ) ( ) ( ) ( )

S t L t I t Q t J t R t R S t L t

I t Q t J t R t α
µ

+Γ = ∈ +

Π +
+ + + + ≤ 



which is positively-invariant and attracting. 

Proof : Adding the equations of the model (1) gives 

1 2
( ) ( ) ( ) ( ),dN t N t I t J t

dt
α µ ν ν= Π + − − −

 so that 
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( ) ( ).dN t N t
dt

α µ= Π + −

 It follows that ( ) 0dN t
dt

≤   if ( ) .N t α
µ

Π+>  Thus, a standard comparison 
theorem can be used to show that 

( ) (0) [1 ].t tN t N e eµ µα
µ

− −Π +
≤ + −

In particular, ( )N t α
µ

Π+≤   if  (0) .N α
µ

Π+≤  Thus G  is positively 

invariant. Furthermore, if ( ) ,N t α
µ

Π+>  then either the solution enters G  

in finite time or N(t)  approaches α
µ

Π+  and the infected variables L, I, Q 

and J  approaches zero. Hence, G  is attracting. That is, all solutions in R+
6  

eventually enter G . 

Table 1
Description of parameters of model (1) 

Parameter Interpretation 
P Recruitment rate of susceptible humans by birth 
q Fraction of immigrant humans
a Recruitment rate of humans by immigration
s Removal rate from quarantined
b Transmission coefficient

h1, h2, h3 Modification parameters for reduction in infectiousness of 
latent, quarantined & isolated individuals, respectively

m Natural death rate in all classes
t1, t2 Progression rates to infectious/quarantined classes, 

respectively
g Isolation rate

n1, n2 Disease-induced death rates for infectious and isolated 
individuals , respectively

d1, d2 Recovery rates for infectious and isolated individuals , 
respectively

p Fraction of quarantined humans 
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3.2 Existence and stability of equilibria

It should be noted that model (1) has no disease free equilibrium (DFE) 
due to the constant inflow of newly latent individuals. Let ˆ ˆ ˆˆ ˆ ˆ( , , , , )S L I Q J=E  
be the equilibrium solution of system (1). Then setting the right hand side 
of (1) to zero we obtain 

1 3 2

2 1 2

3

2 1 2

1 3

2 2 1 2

2

( ) (1 )(1 )ˆ = ,ˆ ˆ( )[ ( )( )] ( )
ˆ[ ( ) (1 )]ˆ = ,ˆ ˆ( )[ ( )( )] ( )

ˆ[ ( ) (1 )]ˆ = , (3)ˆ ˆ{( )[ ( )( )] ( )}
ˆ[ ( )ˆ =

K K q p q
S

p
K q

L
p

K q
I

K p

Q

α αστ
µ λ τ µ τ µ σ µ τ σ µ λ

λ α µα
µ λ τ µ τ µ σ µ τ σ µ λ

τ λ α µα
µ λ τ µ τ µ σ µ τ σ µ λ

τ λ α

Π + + − −

+ + + + + +

Π + + −

+ + + + + +

Π + + −

+ + + + + +

Π + +

2 1 2

1 3

2 4 2 1 2

(1 )]
,ˆ ˆ( )[ ( )( )] ( )

ˆ[ ( ) (1 )]ˆ = ,ˆ ˆ{( )[ ( )( )] ( )}

q
p

K q
J

K K p

µα
µ λ τ µ τ µ σ µ τ σ µ λ

τ γ λ α µα
µ λ τ µ τ µ σ µ τ σ µ λ

−

+ + + + + +

Π + + −

+ + + + + +

where 1 1 2 2 1 1 3 4 2 2, , , ,K K K Kτ τ µ γ ν δ µ σ µ ν δ µ= + + = + + + = + = + +

1 2 3
ˆ ˆˆ ˆ( )ˆ (4)ˆ

I L Q J
N

β η η η
λ

+ + +
=

and 
ˆ ˆ ˆˆ ˆ ˆ. (5)N S L I Q J= + + + +

Substituting (3) and (5) into equation (4) yields after algebraic 
manipulations (6). 

1 3 2
3 1

2 1 2

1 3 1 3 3
2 2

2 2 4

ˆ{ ( ) (1 )(1 )} ˆ( )ˆ ˆ( )[ ( )( )] ( )
(6)ˆ ˆ( ) ( )ˆ( ) = 0

K K q p q
K

p
K K

K K K

λ α αστ
λ η β

µ λ τ µ τ µ σ µ τ σ µ λ

τ λ β τ γ λ η β
τ λ η β

Π + + − −
+Φ −

+ + + + + +

 − − +Φ + − + 
  

with

2 1 2

ˆ[ ( ) (1 )] .ˆ ˆ( )[ ( )( )] ( )
q

p
λ α µα

µ λ τ µ τ µ σ µ τ σ µ λ
Π + + −

Φ =
+ + + + + +
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Thus, the endemic equilibria of system (1) correspond to the positive 
values of (3) obtained by using the positive solutions of (6).

We define an invasion threshold by

1 3 4 3 2 4 1 3 2 2

1 2 3 4

( )[ ( ) ( )]
. (7)

( )i

K K K K K
K K K K q

β α τ η γ η η τ
α

Π + + + +
=

Π +
R

Thus, we obtain the following results. 

Theorem 1 : Model (1) has: 
(i)	 a unique endemic equilibrium for all values of Ri if q Œ [0, 1) and a > 0, 
(ii)	 a unique endemic equilibrium if Ri > 1 and either q = 1 or a = 0, 
(iii)	no endemic equilibrium if Ri £ 1 and either q = 1 or a = 0. 

Proof : Re-arranging and simplifying equation (6) gives the following 
quadratic equation for λ̂  

2ˆ ˆ 0, (8)a b cλ λ+ + =

where 

2 4 3 2 1 3 4
4

2 2 4 1
1

3 4 1 2 1 3
2

2 4 1 3 2 2 1 3 4 3

( )[ ( ) ( )],

( )(1 ) (1 ) { [ (1 ) )]

( ) ]}, (9)
(1 )[ ( ) ( )],

i i
i

a K K K K K

b K q q K K p K

K K K K
c q K K K K K

α τ τ γ

α α µ τ σ µ

µ τ τ αµ
αβµ η η τ τ η γ

=

= Π + + + +

= Π + − + − − +

+ + +

= − − + + +

∏ R

The coefficient a of equation (8) is always positive and c is always 
negative (noting that a > 0 and q Œ (0, 1)), whereas b is positive if Ri £ 1. 
If Ri > 1, b can also be positive or negative. Thus, model (1) has a unique 
endemic equilibrium for any sign of b by Descartes rule of sign. This 
proves (i). Next, if q = 1 or a = 0, then the coefficient ** and equation (8) 
reduces to 

ˆ 0, (10)a bλ + =

with either 

2 4 3 2 1 3 4
4

1

( )[ ( ) ( )], (11)

( )(1 ),j i
j

a K K K K K

b K

α τ τ γ

α
=

= Π + + + +

= Π + −∏ R

or
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2 4 3 2 1 3 4
4

=1

= [ ( ) ( )], (12)

= (1 ),j i
j

a K K K K K

b K

τ τ γΠ + + +

Π −∏ R

respectively. It is clear that, in each case the solution ˆ = b
a

λ −  of (10) is 
positive if Ri > 1 and negative when Ri < 1. Moreover, for Ri = 1, the 
coefficient b of (10) is zero and so, the coefficient a of this equation must 
be zero since λ̂  cannot be zero. Hence, equation (10) has no solution 
whenever Ri = 1. Consequently these prove (ii) and (iii).                            

It follows from (7) that if either q = 1 or a = 0, then the invasion 
threshold, Ri reduces to 

* 1 3 4 3 2 4 1 3 2 2

1 2 3 4

[ ( ) ( )]
. (13)i

K K K K K
K K K K

β τ η γ η η τ+ + +
=R

The uniqueness of the endemic equilibrium, Ê  allows us to 
numerically show its global stability as depicted in Figure 2, since the 
analytical proof is quite involved. 

3.3  Immigration cases

As mentioned earlier, when all the immigrants are susceptible,  
q = 1 or the immigration rate is negligible (a = 0) the threshold parameter 
is as defined in (13). Furthermore, for each of such scenarios a disease free 
equilibrium exists.

For the first case, in the absence of infection, model (1) with q = 1 
exhibits a locally asymptotically stable disease free equilibrium given by

* * * * *
0 = ( , , , , ) = ,0,0,0,0 .q S L I Q J α

µ
 Π +
 
 

E

In fact, the Jacobian matrix evaluated at E0, denoted by qJ  is

1 3

1 1 2 3

1 2

2 3

4

(1 )
0

. (14)0 0 0
0 0 0
0 0 0

q

p
K

K
K

K

µ βη β σ βη
βη β βη βη

τ
τ

γ

 − − − −
 

− − 
 = −
 

− 
 − 

J
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 fo

r 
1


� R

i
 (a

) q
 =

 0
.8

5,
 a

 =
 4

00
, b

 =
 0

.2
5,

 R
i =

 0
.7

4,
  

R
i*  =

 0
.7

1 
an

d 
in

 (b
) q

 =
 0

.5
2,

 a
 =

 3
00

, b
 =

 3
, R

i =
 9

.5
5,

 R
i*  =

 8
.4

9.
 



14� S. USAINI, A. S. HASSAN, S. M. GARBA AND JM-S. LUBUMA

The eigenvalues of this matrix are: -m, and the eigenvalues of the 
matrix 

0qJ  which is obtained by deleting the first/last rows and the first/
last columns of .qJ  Then, the characteristic polynomial of this matrix is

4 3 2 0, (15)A B C Dλ λ λ λ+ + + + =

with

1 2 3 4 1A K K K K βη= + + + −

3 4 3 4 1 3 1 2 1 1 1 2 2

1 4 3 1 3 2 2
1 2 4 1 3 2 4

1 2 4 1 3

2 3 4 1 2 4 1 3
* *

1 2 4 1 1 3 2 4 2 2 3 4

1 2 4 1 3

( )( ) ( ) ( )
( ) ( )

1 ( ) 1

( )
(1 ) ( )(1 )

( )
i i

B K K K K K K K K
K K

C K K K K K K K
K K K K K

K K K K K K
K K K K K K K K K K

K K K
D

βη βη β τ τ η

βτ η γ β η η τ

β η τ

β η τ

= + + + − + − − +

  + +
= − + + −     

   
+ − +

= − + + − +

− +

R R

*
1 2 3 4 (1 ).iK K K K= −R

The Routh-Hurwitz criteria [19] for the local asymptotic stability in 
this case are 0, 0, 0A C D> > >  and 2 2 0.ABC C A D− − >  The first three 
conditions are satisfied if * 1i <R  which implies that *

1 1i <R  and *
2 1i <R  

so that 1 1 2K Kβτ <  and 1 1 ,Kβη <  respectively. The last condition holds 
since all terms remaining in the expansion after cancelation are positive. 
Thus the disease free equilibrium, E0

q of model (1) with q = 1 is locally 
asymptotically stable when * 1.i <R

It is instructive to note that if * 1,i =R  the coefficient D of the 
characteristic equation (15) is zero and so, Jq has a zero eigenvalue. This 
indicates the occurrence of a bifurcation when * 1i =R  which will be 
investigated using Centre Manifold theory as described in Castillo-Chavez 
and Song [6, Theorem 4.1] in Subsection 3.4.

The epidemiological interpretation of this result is that MERS-CoV 
will be eliminated if the initial sizes of the infected sub-populations of 
the model are in the basin of attraction of the DFE (E0

q). However, disease 
eradication is independent of the initial sizes if the DFE is globally 
asymptotically stable. The global stability result is established in the 
following theorem. 

Theorem 2 : The DFE (E0
q) of model (1) with q = 1 is globally-asymptotically 

stable (GAS) when Ri
* < 1. 
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Proof : The proof is based on the approach in [1]. Using the notation in [5], 
for system (1) with 1, , ( , , , ),q X S Z L I Q J= = =  and * , 0 .X α

µ
 Π+
 
 

=  Then, 
the equation of uninfected is

( , ) (1 ) ,dX F X Z p Q S S
dt

α σ λ µ= = Π + + − − −

and the infected subsystem is 

1 2

1 1 1

2

2 2

( )
( )

( , )
( )

( )

S L
L IdZ G X Z
L Qdt
I J

λ τ τ µ
τ γ ν δ µ
τ σ µ
γ ν δ µ

 − + +
 

− + + + = =  − +
  − + + 

When 0L I Q J= = = =  (i.e., Z = 0), then ( , 0) ( ) ,F X Sα µ= Π + −  and 

1 1 2 3

* 1 2

2 3

4

0 0
( , 0)

0 0
0 0

K
K

A D G X
K

K

βη β βη βη
τ
τ

γ

 −
 

− = =  −
  − 

is obviously an M-matrix (a matrix whose off diagonal elements are 
nonnegative).

Next, we have
ˆ( , ) ( , ),G X Z AZ G X Z= −  which implies that 

1 2 31 1 1 1

ˆ ( , ) .0
0
0

S S S SL I Q J
N N N N

G X Z

β η η η
         

− + − + − + −         
         

 =
 
 
 
 

It is clear that ˆ ( , ) 0,G X Z ≥  since 0 £ S £ N. It is also clear that 
* , 0X α

µ
 Π+
 
 

=  is a global asymptotic stable equilibrium of ( , 0).dX
dt

F X=  

Thus, by using a result in [5], we conclude that E0
q is globally-asymptotically 

stable when Ri
* < 1. 						                

It follows from Theorem 1 that, model (1) with q = 1 has a unique 
endemic equilibrium if Ri

* > 1.
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Now, let 0
αE  and α̂E  be the disease free and endemic equilibria of 

model (1), respectively with negligible immigration rate (a = 0), then we 
obtain the following results. 

Theorem 3 : The unique DFE, 0
αE  of model (1) with a = 0 is globally-

asymptotically stable if Ri
* < 1, otherwise unstable. 

Theorem 4 : The unique endemic equilibrium, α̂E  of model (1) with a = 0 is 
globally-asymptotically stable if Ri

* > 1. 
Hence, the summary of the stability results of the model equilibria is 

given in Table 2. 

3.4 Bifurcation analysis

Here we investigate the existence of bifurcation of model (1) using 
Centre Manifold theory since the Jacobian matrix Jq for the case when 
all the immigrants are susceptible has a simple zero eigenvalue when 
Ri

* = 1 with other eigenvalues having negative real parts as presented in 
Subsection 3.3. In order to apply such a theory, we make the following 
change of variables 1 2 3 4 5, , , , ,S x L x I x Q x J x= = = = =  so that we use the 
vector notation 1 2 3 4 5( , , , , ) .Tx x x x x x=  Then system (1) with q = 1 can be 

written in the form ( )dx
dt

F x=  with 1 2 3 4 5( , , , , ) ,Tf f f f f f=  such that 

1 2 3 2 4 3 5
1 4 1 1

1 2 3 4 5 6

1 2 3 2 4 3 5
2 1 1 2 2

1 2 3 4 5 6

3 1 2 1 1 3

4 2 2 4

5 3 2 2 5

( )
(1 ) ,

( )
( ) , (16)

( ) ,
( ) ,
( ) .

x x x x
x p x x x

x x x x x x
x x x x

x x x
x x x x x x

x x x
x x x
x x x

β η η η
α σ µ

β η η η
τ τ µ

τ γ ν δ µ
τ σ µ
γ ν δ µ

+ + +
= Π + + − − −

+ + + + +

+ + +
= − + +

+ + + + +

= − + + +

= − +

= − + +











The Jacobian matrix of system (16) at E0 is the same with Jq as presented 
in (14). If b is taken as a bifurcation parameter, we obtain from Ri

* = 1 that 

* 1 2 3 4

1 3 4 3 2 4 1 3 2 2

.
( ) ( )

K K K K
K K K K K

β β
τ η γ η η τ

= =
+ + +

It can be verified that the Jacobian of (16) at b   = b* has a right  
eigenvector associated with zero eigenvalue given by 1 2 3 4 5( , , , , ) ,Tu u u u u u=  
with 
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3 11 2 1
1 1 2 2 2 3 2

2 3 2 4 2

2
4 2 5

3 4

= (1 ) , = > 0, = ,

= , and = . (17)

u p u u u u u
K K K K K

u u u
K K

η γττ τ τβ η σ
µ

τ γ

 
− + + − −  
 

Similarly, the left eigenvalue of Jq(E0) associated with zero eigenvalue 
at b  = b* is given by 1 2 3 4 5( , , , , ) ,Tv v v v v v=  where 

32
1 2 2 3 3 4 2 4 2 5 2

2 4 3 4

0, 0, ( ) , , . (18)v v v v K v v v v v
K K K K

βηβηβ γη= = > = − = =

To establish the existence of bifurcation, we need to compute a and b 
as follows. Let Fk be the kth component of F, then as defined in [6] 

25

0
, , 1

25

0
, , 1 *

( )
(19)

( ).

k
k i j

k i j i j

k
k i

k i j i

F
a v u u

x x

F
b v u

x x
β

=

=

∂
=

∂

∂
=

∂

∑

∑

E

E

Now, for system (16) the associated non zero partial derivatives of F 
at the disease free equilibrium are as follows: 

2 * 2 *
2 1 2 1

2
2 32

*2 * 2
1 32 1 2 2

2 4 2 5

2 ( 1)
,

(20)
( )( )

, .

F F
x xx

F F
x x x x

β η µ β µ η
α α

β µ η ηβ µ η η
α α

∂ ∂ +
= − = −

Π + ∂ Π +∂

+∂ + ∂
= − = −

∂ Π + ∂ Π +

It follows from (19) and (20) that 

1 32 2 1 1 2 1 2
1 2

2 3 4

( )( 1) ( )
2 , (21)

u v
a u

K K K
γ η ηβµ τ η τ η η

η
α

 ++ +
= − + + +  Π +  

which is negative, and for the sign of b, it is associated with the following 
non zero partial derivatives of F 

2 2 2 2
1 1 1 1

1 2 3
2 3 4 5

2 2 2 2
2 2 2 2

1 2 3
2 3 4 5

, 1, , (22)

, 1, , .

F F F F
x x x x

F F F F
x x x x

η η η
β β β β

η η η
β β β β

∂ ∂ ∂ ∂
=− = − = − = −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
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It follows from the expression of b in (19) and the derivatives in (22) 
that 

31 2 2
1 2 2

2 3 4

0. (23)b u v
K K K

γητ τ η
η
 

= + + + >  
 

We obtain from the computations of a and b above that a is negative 
and b is positive. Thus, using Theorem 4.1 (iv) in [6], we establish the 
following result 

Theorem 5 : The system of equations (1) with q = 1 exhibits a transcritical 

bifurcation at E0 if the bifurcation parameter *

( ) ( )
1 2 3 4

1 3 4 3 2 4 1 3 2 2

K K K K
K K K K Kτ η γ η η τ

β
+ + +

=  or 
equivalently Ri

* = 1. 

3.5  The impact of quarantine/isolation/immigration

In this section, the impact of quarantine and isolation on the 
transmission dynamics of MERS-CoV is investigated via a threshold 
analysis approach on the invasion threshold parameter, Ri. This is carried 
out in terms of the parameters associated with quarantine of latent 
immigrants t2 and the isolation of individuals with disease symptoms g. 
More precisely, the threshold Ri is considered as a function of t2 and g. 
For the case of the quarantine of latently infected individuals, the rate of 
change of Ri with respect to t2 is as follows:

Table 2
 Summary of the stability results of the full model and its two special cases. 

Equilibrium Invasion threshold Stability

Ê i 1R  GAS 

q
0E Ri

* < 1  LAS/GAS 

0
αE Ri

* < 1  LAS/GAS

q̂E Ri
* > 1  GAS

α̂E Ri
* > 1  GAS
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2 4 1 3 2 2 1 3 4 32
2

2 1 2 1 2 3 4

[ ( ) ( )]
. (24)i K K K K K

K K K K K K
β η η τ τ η γβη

τ
∂ + + +

= −
∂
R

Let us define from (24) that

* 1 2 3 4 1 3 4 3
2

2 4 1 2

1 2 3 4 1 3 4 3

2 4 1

( )
( ) (25)

( )
,

( )

K K K K K
K K K

K K K K K
K K

η τ η γ
η

τ
η τ η γ

τ µ

+ +
=

−

+ +
=

+

since 1 1 2 .K τ τ µ= + +  Therefore,

*
2 2

2

0 if and only if .i η η
τ
∂
∂

 
R

Thus, this threshold parameter will be a decreasing function of the 
quarantine parameter t2, resulting in a decrease of disease burden (new 
infections and mortality) if the relative infectiousness of quarantine 
individuals h2 does not exceed its associated threshold h*

2. By contrast, if 
h2 < h*

2, then the use of quarantine of latent immigrants will increase the 
threshold parameter (Ri) and so, increase disease burden. In this case, the 
use of quarantine is detrimental to a community. The result is summarized 
as follows. 

Proposition 1 : The use of quarantine of the latent immigrants will have positive 
(negative) impact in a community if * .2 2η η

Similarly, the rate of change of Ri with respect to isolation parameter 
g is given by

4 1 3 2 2 1 3 3

1 2 3 4

2 4 1 3 2 2 1 3 4 3
2

1 2 3 4

[ ( ) ]

[ ( ) ( )]
. (26)

i K K K
K K K K

K K K K K
K K K K

β η η τ τ η
γ

β η η τ τ η γ

∂ + +
=

∂

+ + +
−

R

We obtain from (26) that

* 4 2 2
3

1 1 1 1

, (27)
K δ ν µ

η
δ ν µ δ ν µ

+ +
= =

+ + + +

so that 

*
3 30 if and  only if .i η η

γ
∂
∂

 
R
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It follows that, Ri will be a decreasing function of the isolation 
parameter g  and hence decrease disease burden if *

3 3 .η η<  It will be an 
increasing function of g, on one hand, when *

3 3 .η η>  In such a case, the use 
of isolation will have a detrimental impact in a community. This result is 
summarized in the following proposition.

Proposition 2 : The use of isolation of infectious individuals will have positive 
(negative) impact in a community if .*

3 3η η  
These results (Propositions 1 and 2) are illustrated numerically in 

section 3.5.1 below.

Figure 3
 The simulations showing the impact of immigration on the number of infect-
ed individuals using parameter values as in Table (3). (a) The infected humans 
increases with increasing influx of immigrants. (b) Indicates that the infected 
humans increases to a certain level. (c) Reveals that there is a critical immigra-

tion rate above which the infected humans decreases. 
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It worthies mentioning here that, the critical parameters h*
2 and h*

3 as 
defined in (25) and (27), respectively, remain the same for the case when 
either all immigrants are susceptibles (q = 1) or the immigration rate is 
negligible, a = 0. Hence, the results in Propositions 1 and 2 also hold true 
for such two cases.

To explore the impact of influx of immigrants into the susceptible and 
latent compartments on the dynamics of MERS-CoV, we use numerical 
experiment to vary 

different values of the immigration rate (a), while keeping all other 
model parameters fixed. In fact, the numerical simulations reveal that 
the number of infected individuals increases with increasing values of a. 
As depicted in Figure 3(a), when the influx increases from 0 to 700, the 
infected individuals increases from 30 to 90 as well. It also shows that 
the prevalence is very low (ranges between 10 to 14) and the steady state 
value I is also very small, whereas, for 0 £ a £ 100, it ranges between 32 to 
42 about, and if a = 700 then I(200) is less than 100. Moreover, Figure 3(b) 
shows more clearly that the number of infected individuals increases with 
increasing value of a, while Figure 3(c) indicates that, there might be a 
critical value of a above which the disease prevalence decreases due to the 
positive impact of quarantine and isolation (Propositions 1 and 2) so that 
the disease will die out with time. However, eradication of MERS-CoV 
in a community is feasible if quarantine and isolation is combined with a 
high reduction of immigration rate. 

Figure 4
The simulations showing the impact of quarantine and isolation in controlling 
the infection with parameter values as in Table 3. (a) Quarantine with critical 

value, h*
2 = 0.3118. (b) Isolation with critical parameter h*

3 = 0.1087
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3.5.1 Numerical simulations

The numerical simulations in Figure 4(a) is depicting the result of 
Preposition 1 in which the invasion threshold parameter Ri, is a decreasing 
function of the quarantine parameter t2, whenever the modification 
parameter for quarantine is less than a critical value h*

2  =0.3118. Thus, 
for values of h2 = 0.017, 0.25, less than h*

2, the cumulative new cases of 
infection decreases from about 27,000 to 16,500 individuals. However, for 
h2 = 0.5, 0.75, greater than the critical value, the cumulative new cases 
increases from about 28,500 to 38,500 individuals.

Ri, is a decreasing function of the isolation parameter g, whenever 
the modification parameter for quarantine is less than a critical value  
h*

3  = 0.1087. Thus, for values of h2 = 0.001 to 0.017, less than h3, the 
cumulative new cases of infection decreases from about 18,500 to 16,500 
individuals. However, for h3 = 0.25 to 0.55, greater than the critical 

Table 3
Parameter values for the model (1) 

Parameter Nominal value Reference
P 400 per day Assumed 
b 0.25 per day Assumed
a ≥ 0 per day Assumed
m 0.0000374 per day [11]
h1 (0.001, 0.65) Assumed
h2 (0.013, 0.78) Assumed
h3 (0.002, 0.65) Assumed 
g (0.00138, 0.05) per day [2,8]
s (0.00138, 0.025) per day [2, 8]
n1 (0.0018, 0.0028)per day [2, 25] 
n2 (0.0012, 0.0018)per day [2, 8, 25]
t1 (0.0018, 0.0028)per day [2] 
t2 (0.0012, 0.0018)per day [2, 8]
d1 (0.0337, 0.26) per day [2]
d2 (0.26, 0.5) per day [2]
p [0, 1] Assumed
q [0, 1] Assumed
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value, the cumulative new cases increases from about 26,500 to 32,500  
individuals. 

4.  Discussion and Conclusion

A new deterministic model for the spread of the Middle East 
Respiratory Syndrome coronavirus in a community with quarantine and 
isolation as control strategies is formulated and rigourously analyzed. We 
notice that the presented model does not have disease free equilibrium 
point due to constant in flux of the latent immigrants and so, there is an 
endemic persistence of MERS-CoV depending on the invasion threshold 
parameter Ri, immigration rate as well as the epidemiological status 
of the immigrants. In fact, if the immigration rate a > 0 and fraction of 
susceptible immigrants q Œ [0, 1), then the disease invades the population 
for all values of Ri. On the other hand, endemic persistence is only 
possible if either immigration rate is negligible or when all immigrants 
are susceptible provided Ri

* > 1. Stability analysis is carried out for the full 
model and these two immigration scenarios. We showed numerically that 
this equilibrium point is a global attractor when * 1,i R  see Figure 2. For 
the case when all the immigrants are susceptible, we proved the global 
asymptotic stability of the associated disease free equilibrium (E0

q) if the 
threshold parameter Ri

* < 1. Such a stability result hold true for the case 
when the immigration rate is negligible, a = 0 and the result follows easily 
from the first scenario. The existence and stability of endemic equilibrium 
for these scenarios follows from that of the full model.

In order to complete our investigation, we assess the impact of 
quarantine and isolation via a threshold analysis approach. Indeed, we 
showed that quarantine of latent immigrants will decrease the burden of 
the epidemics (new infections), if the rate of the relative infectiousness of 
quarantined individuals does not exceed certain threshold quantity, h*

2. 
In a similar note, an isolation of infected individuals using intensive care 
units of hospitals, will have positive impact on the burden of the epidemics 
(new infections and mortality due to disease) by reducing the threshold 
parameter, if the relative infectiousness of isolated individuals does not 
exceed certain threshold quantity, h*

3. These results are summarized in 
Propositions 1 and 2 and numerically supported by Figure 4.

Furthermore, numerical simulations of the model reveal that the 
influx of susceptible and latent immigrants increase the number of 
infected individuals. In fact, one can observe from Figure 3(a) that if the 
influx of these immigrants increases from 0 to 700, the number of infected 
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individuals rises from 30 to 90. Despite such an effect of the immigration 
rate (a), the positive impact of isolation and quarantine drastically reduces 
the disease prevalence. As shown in Figure 3(a), the prevalence is very 
low (ranges between 10 to 14) and the steady state I is also very small. 
While for 0 £ a £ 100 it ranges between 32 to 42 about, and if a = 700 then 
I(200) is less than 100. Moreover, Figure 3(b) shows more clearly that the 
number of infected individuals increases as the immigration rate increases, 
whereas, Figure 3(c) indicates that, there might be a critical value of a 
above which the number of infectious humans decreases perhaps, due to 
the positive impact of quarantine and isolation (Propositions 1 and 2) so 
that the disease will die out with time. It is worthy of mention that, most 
of the parameter values used are obtained from some related literature 
as presented in Table 3. The ranges of such parameter values are chosen 
from minimum and maximum as presented in such existing works for the 
sake of consistency. While we assumed the values of the parameters (p, 
q and hi for i = 1, 2,3) in the interval [0, 1] since each of such parameters 
is either a fraction of humans or a fraction that account for the assumed 
reduction in infectiousness of individuals in the latent, quarantined and 
isolated compartments. Moreover, the values of the recruitment rate P 
and the effective contact rate b are assumed in relation to their values used 
for SARS model in [11].

In conclusion, we showed using a deterministic model that MERS-
CoV can be controlled by quick isolation or monitoring close contacts 
with the patients infected by MERS-CoV and quarantine of suspected 
latently infected individuals. This is similar to the finding in [27]. In 
addition, reducing the influx of immigrants plays a significant role in 
decreasing the number of infected individuals when the recruitment rate 
of immigrants is below a certain critical value. This is a value of a below 
which the prevalence is high. However, community-wide eradication of 
MERS-CoV is feasible when quarantine and isolation are combined with 
high reduction of the immigration rate into a community. 

Acknowledgement

The authors acknowledged the support of South African DST/NRF 
SARChI Chair on Mathematical Models and Methods in Bioengineering 
and Biosciences (N00317). Furthermore, we appreciate with thanks the 
guidance of Julien Arino and Pauline van den Driessche during the joint 
UNISA-UP Workshop on Theoretical and Mathematical Epidemiology, 
2014 where this project was initiated. They are also indebted to the two 



MERS-COV WITH LATENT IMMIGRANTS� 25

anonymous Reviewers and the Handling editor for their constructive 
comments and suggestions which have enhanced the paper. 

References 

	 [1]	� A. N. Alagaili, T. Briese, N. Mishra, V. Kapoor, S. C. Sameroff, E. de 
Wit, V. J. Munster, L. E. Hensley, I. S. Zalmout, A. Kapoor, J. H. Ep-
stein, W. B. Karesh, P. Daszak, O. B. Mohammed, W. I. Lipkin, . Mid-
dle East Respiratory Syndrome Coronavirus Infection in Dromedary 
Camels in Saudi Arabia, mBio 5 (2) (2014), e00884–14, doi:10.1128/
mBio.00884–14. 

[2]	� A. Assiri, A. McGeer, T. M. Perl, C. S. Price, A. A. Al Rabeeah, D. A. 
T. Cummings, Z. N. Alabdullatif, M. Assad, A. Almulhim, H. Makh-
doom, H. Madani, R. Alhakeem, J. A. Al-Tawfiq, M. Cotten, S. J. Wat-
son, P. Kellam, A. I. Zumla,and Z. A. Memish, Hospital outbreak of 
Middle East Respiratory Syndrome Coronavirus, N Engl J Med 369 (5) 
(2013) 407–416. 

[3]	� A. Bermingham, M. A. Chand, C. S. Brown, E. Aarons, C. Tong, C. 
Langrish, K. Hoschler, K. Brown, M. Galiano, R. Myers, R. G. Pebody, 
H. K. Green, N. L. Boddington, R. Gopal, N. Price, W. Newsholme, C. 
Drosten, R. A. Fouchier and M. Zambon, Severe respiratory illness 
caused by a novel coronavirus, in a patient transferred to the United 
Kingdom from the Middle East. Euro Surveill,17 (40) (2012). 

[4]	� F. Brauer, P. van den Driessche, Models for the transmission of dis-
ease with immigration of infectives, Math. Biosci. 171, 2001 143–-154. 

[5]	� C. Castillo-Chavez, Z. Feng and W. Huang (2002), On the compu-
tation of R0 and its role on global stability. In: C. Castillo-Chavez, 
S. Blower, P. van der Driessche, D. Kirschner, and A. Yakubu (eds) 
Mathematical approaches for emerging and reemerging infectious 
diseases:an introduction, Springer (2002) 261–274. 

[6]	� C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and 
their applications, Math. Biosci. Engineer. 1(2) (2004) 361–404 

[7]	� S. Cauchemez, C. Fraser, M. D. V. Kerkhove, C. A. Donnelly, S. Riley, 
A. Rambaut, V. Enouf, S. van der Werf, N. M. Ferguson, Middle East 
respiratory syndrome coronavirus: quantification of the extent of the 
epidemic, surveillance biases, and transmissibility, Lancet Infect Dis, 
14 (2014) 50–56. 



26� S. USAINI, A. S. HASSAN, S. M. GARBA AND JM-S. LUBUMA

[8]	� CIDRAP Center for infectious diseases research and policy, Univer-
sity of Minnesota (2014) http : //www.cidrap.umn.edu/news-per-
spective/2013/09/eight-472 new - saudi - cases - push - global - mers 
- total - 130 (Accessed September 14 2014). 

[9]	� R. J. de Groot, S. C. Baker, R. S. Baric, C. S. Brown, C. Drosten, L. 
Enjuanes, R. A. M. Fouchier, M. Galiano, A. E. Gorbalenya, Z. A. Me-
mish, S. Perlman, L. L. M. Poon, E. J. Snijder, G. M. Stephens, P. C. 
Y. Woo, A. M. Zaki, M. Zambon and J. Ziebuhr, Middle East Respi-
ratory Syndrome Coronavirus (MERS-CoV): Announcement of the 
Coronavirus Study Group. J. Virol., 87(14) (2013) 7790–7792. 

[10]	� Gloval overview of an emerging novel coronavirus (MERS-CoV), 
World Health Assembly (2013). 

[11]	� A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den 
Driessche, D. Gabrielson, C. Bowman, M. E. Alexander, S. Ardal, J. 
Wu and B. M. Sahai, Modelling strategies for controlling SARS out-
breaks, Proc. R. Soc. Lond. B 271 (2004) 2223–-2232. 

[12]	� H. Guo, M. Y. Li, Impacts of migration and immigration on disease 
transmission dynamics in heterogeneous populations, Discrete Con-
tin. Dyn. Syst., Ser. B, 17(7) (2012) 2413–2430. 

[13]	� B. L. Haagmans, S. H. S. Al Dhahiry, C. B. E. M. Reusken, V. S. Raj, 
M. Galiano, R. Myers, G.-J. Godeke, M. Jonges, E. Farag, A. Diab, H. 
Ghobashy, F. Alhajri, M. Al-Thani, S. A. Al-Marri, H. E. Al Romaihi, 
A. Al Khal, A. Bermingham, A. D. M. E. Osterhaus, M. M. AlHajri 
and M. P. G. Koopmans, Middle East respiratory syndrome corona-
virus in dromedary camels: an outbreak investigation, Lancet Infect 
Dis, 14 (2014) 140–45. 

[14]	� J.K. Hale, S.M.V. Lunel, Introduction to functional differential equations, 
Springer-Verlag, Berlin, Heidelrberg, New York, 1993. 

[15]	� HealthMap organization (2014). http://www.healthmap.org/en/ 
(Accessed March 14 2014). 

[16]	� M. G. Hemida1, R. A. Perera, P. Wang, M. A. Alhammadi, L. Y. Siu, 
M. Li, L. L. Poon, L. Saif, A. Alnaeem and M. Peiris, Middle East Re-
spiratory Syndrome (MERS) coronavirus seroprevalence in domestic 
livestock in Saudi Arabia, 2010 to 2013, Euro Surveill, 18 (50) (2013) 
pii=20659. Available online: http : //www.eurosurveillance.org/. 

[17]	� K. Kupperschmidt, Researchers scramble to understand camel con-
nection to MERS, SCIENCE, 341 (2013). 



MERS-COV WITH LATENT IMMIGRANTS� 27

[18]	� J. Lee, G. Chowell, and E. Jung, A dynamic compartmental model 
for the middle east respiratory syndrome outbreak in the republic of 
korea: A retrospective analysis on control interventions and super-
spreading events, Journal of theoretical biology, 408 (2016) 118–126. 

[19]	� P. Lancaster, Theory of Matrices, New York, (1969). 
[20]	� P. M. Penttinen, K. Kaasik-Aaslav, A. Friaux, A. Donachie, B. Sudre, 

A. J. Amato-Gauci, Z. A. Memish, D. Coulombier, Taking stock of the 
first 133 MERS coronavirus cases globally – Is the epidemic chang-
ing? Euro Surveill, 18 (39) (2013) 1–5. 

[21]	� R. A. Perera, P. Wang, M. R. Gomaa, R. El-Shesheny, A. Kandeil, 
O. Bagato, L. Y. Siu, M. M. Shehata, A. S. Kayed, Y. Moatasim, M. 
Li, L. L. Poon, Y. Guan, R. J. Webby, M. A. Ali, J. S. Peiris and G. 
Kayali (2013). Seroepidemiology for MERS coronavirus using micro-
neutralisation and pseudoparticle virus neutralisation assays reveal 
a high prevalence of antibody in dromedary camels in Egypt, June 
2013. Euro Surveill,18 (36):pii=20574. Available online: http://www.
eurosurveillance.org/ViewArticle.aspx?ArticleId=20574. 

[22]	� C. B. Reusken, M. Ababneh, V. S. Raj, B. Meyer, A. Eljarah, S. Abu-
tarbush, G. J. Godeke, T. M. Bestebroer, I. Zutt, M. A. Müller, B. J. 
Bosch, P. J. Rottier, A. D. Osterhaus, C. Drosten, B. L. Haagmans and 
M. P. Koopmans, Middle East Respiratory Syndrome coronavirus 
(MERS-CoV) serology in major livestock species in an affected re-
gion in Jordan, June to September 2013, Euro Surveill, 18 (50) (2013) 
pii=20662. Available online: //www.eurosurveillance.org/View-
Article.aspx?ArticleId=20662. 

[23]	� M.A Safi, A.B. Gumel, Mathematical analysis of a disease transmis-
sion model with quarantine, isolation and an imperfect vaccine, Com-
puters and Mathematics with applications, 61 (2011) 3044–3070. 

[24]	� M.A Safi, A.B. Gumel, Qualitative study of a quarantine/isolation 
model with multiple disease stages, Applied Mathematics and Com-
putation 218 (2011) 1941–1961. 

[25]	� World Health Organization (WHO) (2014). Global Alert and Re-
sponse (GAR): Middle East respiratory syndrome coronavirus 
(MERS-CoV) – update //www.who.int/csr/don/20140411mers/en/
(accessedApril21,2014) (accessed April 21, 2014). 

[26]	� World Health Organization (WHO). Global Alert and Response 
(GAR): novel coronavirus infection http://www.who.int/csr/
don/20130801/en/index.html (accessed Aug 1, 2014). 



28� S. USAINI, A. S. HASSAN, S. M. GARBA AND JM-S. LUBUMA

[27]	� Z.-Q. Xia, J. Zhang, Y.-K. Xue, G.-Q. Sun, and Z. Jin, Modeling the 
transmission of middle east respiratory syndrome corona virus in the 
republic of korea, PloS one, 10 (2015), p. e0144778. 

[28]	� A. M. Zaki, S. van Boheemen, T. M. Bestebroer, A. D.M.E. Osterhaus, 
and R. A.M. Fouchier, Isolation of a Novel Coronavirus from a Man 
with Pneumonia in Saudi Arabia. N Engl J Med, 367 (2012) 1814–1820. 

		  Received March, 2019


