JVI Accepted Manuscript Posted Online 11 December 2019 J. Virol. doi:10.1128/JVI.02015-19 Copyright © 2019 American Society for Microbiology. All Rights Reserved.

1
Т

2	Molecular mechanism for antibody-dependent enhancement of coronavirus entry
3	
4	Yushun Wan ^{1,*} , Jian Shang ^{1,*} , Shihui Sun, Wanbo Tai ³ , Jing Chen ⁴ , Qibin Geng ¹ ,
5	Lei He ² , Yuehong Chen ² , Jianming Wu ¹ , Zhengli Shi ⁴ , Yusen Zhou, Lanying Du ^{3,#} ,
6	Fang Li ^{1,#}
7	
8	¹ Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine,
9	University of Minnesota, Saint Paul, MN, USA
10	² Laboratory of infection and immunity, Beijing Institute of Microbiology and
11	Epidemiology, Beijing, China
12	³ Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
13	⁴ Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province,
14	China
15 16	* These authors contributed equally to this work. Author order was determined by the
17	time to join the project.
18 19 20 21 22 23	# Correspondence: Fang Li (<u>lifang@umn.edu</u>); Lanying Du (<u>LDu@nybc.org</u>)
23 24	Keywords: antibody-dependent enhancement of viral entry, MERS coronavirus, SARS
25	coronavirus, spike protein, neutralizing antibody, viral receptor, IgG Fc receptor
26	
27	Running title: Coronavirus entry mediated by neutralizing antibodies

Downloaded from http://jvi.asm.org/ on January 15, 2020 at Queen Mary, University of London

28

30	Antibody-dependent enhancement (ADE) of viral entry has been a major concern
31	for epidemiology, vaccine development and antibody-based drug therapy. However, the
32	molecular mechanism behind ADE is still elusive. Coronavirus spike protein mediates
33	viral entry into cells by first binding to a receptor on host cell surface and then fusing
34	viral and host membranes. Here we investigated how a neutralizing monoclonal antibody
35	(mAb), which targets the receptor-binding domain (RBD) of MERS coronavirus spike,
36	mediates viral entry using pseudovirus entry and biochemical assays. Our results showed
37	that mAb binds to the virus-surface spike, allowing it to undergo conformational changes
38	and become prone to proteolytic activation. Meanwhile, mAb binds to cell-surface IgG
39	Fc receptor, guiding viral entry through canonical viral-receptor-dependent pathways.
40	Our data suggest that the antibody/Fc-receptor complex functionally mimics viral
41	receptor in mediating viral entry. Moreover, we characterized mAb dosages in viral-
42	receptor-dependent, antibody-dependent, and both-receptors-dependent entry pathways,
43	delineating guidelines on mAb usages in treating viral infections. Our study reveals a
44	novel molecular mechanism for antibody-enhanced viral entry and can guide future
45	vaccination and antiviral strategies.

Downloaded from http://jvi.asm.org/ on January 15, 2020 at Queen Mary, University of London

46

47

48

Journal of Virology

50	Antibody-dependent enhancement (ADE) of viral entry has been observed for
51	many viruses. It was shown that antibodies target one serotype of viruses but only sub-
52	neutralize another, leading to ADE of the latter viruses. Here we identify a novel
53	mechanism for ADE: a neutralizing antibody binds to the virus-surface spike protein of
54	coronaviruses like a viral receptor, triggers a conformational change of the spike, and
55	mediates viral entry into IgG-Fc-receptor-expressing cells through canonical viral-
56	receptor-dependent pathways. We further evaluated how antibody dosages impacted viral
57	entry into cells expressing viral receptor, Fc receptor, or both receptors. This study
58	reveals complex roles of antibodies in viral entry and can guide future vaccine design and
59	antibody-based drug therapy.

Downloaded from http://jvi.asm.org/ on January 15, 2020 at Queen Mary, University of London

60

61

63	Antibody-dependent enhancement (ADE) occurs when antibodies facilitate viral
64	entry into host cells and enhance viral infection in these cells $(1, 2)$. ADE has been
65	observed for a variety of viruses, most notably in flaviviruses (e.g., dengue virus) (3-6). It
66	has been shown that when patients are infected by one serotype of dengue virus (i.e.,
67	primary infection), they produce neutralizing antibodies targeting the same serotype of
68	the virus. However, if they are later infected by another serotype of dengue virus (i.e.,
69	secondary infection), the preexisting antibodies cannot fully neutralize the virus. Instead,
70	the antibodies first bind to the virus, then bind to the IgG Fc receptors on immune cells,
71	and mediate viral entry into these cells. Similar mechanism has been observed for HIV
72	and Ebola virus (7-10). Thus, sub-neutralizing antibodies (or non-neutralizing antibodies
73	in some cases) are responsible for ADE of these viruses. Given the critical roles of
74	antibodies in host immunity, ADE causes serious concerns in epidemiology, vaccine
75	design and antibody-based drug therapy. This study reveals a novel mechanism for ADE
76	where fully neutralizing antibodies mimic the function of viral receptor in mediating viral
77	entry into Fc-receptor-expressing cells.
78	Coronaviruses are a family of large, positive-stranded, and enveloped RNA
79	viruses (11, 12). Two highly pathogenic coronaviruses, SARS coronavirus (SARS-CoV)
80	and MERS coronavirus (MERS-CoV), cause lethal infections in humans (13-16). An
81	envelope-anchored spike protein guides coronavirus entry into host cells (17). As a
82	homo-trimer, the spike contains three receptor-binding S1 subunits and a trimeric
83	membrane-fusion S2 stalk (18-25). This state of the spike on the mature virions is called
84	"pre-fusion". SARS-CoV and MERS-CoV recognize angiotensin-converting enzyme 2

Z

Accepted Manuscript Posted Online

4

85

86	Their S1 each contains a receptor-binding domain (RBD) that mediates receptor
87	recognition (29, 30) (Fig. 1A). The RBD is located on the tip of the spike trimer and is
88	present in two different states - standing up and lying down (18, 21) (Fig. 1B). Binding
89	to a viral receptor can stabilize the RBD in the standing-up state (20). Receptor binding
90	also triggers the spike to undergo further conformational changes, allowing host proteases
91	to cleave at two sites sequentially – first at the $S1/S2$ boundary (i.e., $S1/S2$ site) and then
92	within S2 (i.e., S2' site) (31, 32). Proteolysis of the spike can take place during viral
93	maturation (by proprotein convertases), after viral release (by extracellular proteases),
94	after viral attachment (by cell-surface proteases), or after viral endocytosis (by lysosomal
95	proteases) (33-39). After two protease cleavages, S1 dissociates and S2 undergoes a
96	dramatic structural change to fuse host and viral membranes; this membrane-fusion state
97	of the spike is called "post-fusion" (40, 41). Due to the recent progresses towards
98	understanding the receptor recognition and membrane fusion mechanisms of coronavirus
99	spikes, coronaviruses represent an excellent model system for investigating ADE of viral
100	entry.
101	ADE has been observed for coronaviruses. Several studies have shown that sera
102	induced by SARS-CoV spike enhance viral entry into Fc-receptor-expressing cells (42-
103	44). Further, one study demonstrated that unlike receptor-dependent viral entry, sera-
104	dependent SARS-CoV entry does not go through the endosome pathway (44).
105	Additionally, it has long been known that immunization of cats with feline coronavirus
106	spike leads to worsened future infection due to the induction of infection-enhancing

(ACE2) and dipeptidyl peptidase 4 (DPP4), respectively, as their viral receptor (26-28).

107 antibodies (45-47). However, detailed molecular mechanisms for ADE of coronavirus

 $\overline{\leq}$

110 neutralizes MERS-CoV entry by outcompeting DPP4 (48); this discovery allowed us to 111 comparatively study the molecular mechanisms for antibody-dependent and receptor-112 dependent viral entries. 113 In this study, we examined how Mersmab1 binds to MERS-CoV spike, triggers 114 the spike to undergo conformational changes, and mediates viral entry into Fc-receptor-115 expressing cells. We also investigated the pathways and antibody dosages for Mersmab1-116 dependent and DPP4-dependent viral entries. Our study sheds lights on the mechanisms 117 of ADE and provides insight into vaccine design and antibody-based antiviral drug 118 therapy. 119 120 Results 121 Antibody-dependent enhancement of coronavirus entry 122 To investigate ADE of coronavirus entry, we first characterized the interactions 123 between Mersmab1 (which is a MERS-CoV-RBD-specific mAb) and MERS-CoV spike 124 using biochemical methods. First, ELISA was performed between Mermab1 and MERS-

108

109

125 CoV RBD and between Mersmab1 and MERS-CoV spike ectodomain (S-e) (Fig. 2A). To

entry are still unknown. We previously discovered a monoclonal antibody (mAb) (named

Mersmab1), which has strong binding affinity for MERS-CoV RBD and efficiently

this end, Mersmab1 (which was in excess) was coated to the ELISA plate, and gradient

127 amounts of recombinant RBD or S-e were added for detection of potential binding to

128 Mersmab1. The result showed that both the RBD and S-e bound to Mersmab1. S-e bound

to Mersmab1 more tightly than the RBD did, likely due to the multivalent effects

130	associated with the trimeric state of S-e. Second, we prepared Fab from Mersmab1 using
131	papain digestion and examined the binding between Fab and S-e using ELISA. Here
132	recombinant S-e (which was in excess) was coated to the ELISA plate, and gradient
133	amounts of Fab or Mersmab1 were added for detection of potential binding to S-e. The
134	result showed that both Fab and Mersmab1 bound to S-e (Fig. 2B). Mersmab1 bound to
135	S-e more tightly than Fab did, also likely due to the multivalent effects associated with
136	the dimeric state of Mersmab1. Third, flow cytometry assay was carried out to detect the
137	binding between S-e and DPP4 receptor and among S-e, Mersmab1 and CD32A (which
138	is an Fc receptor). To this end, DPP4 or CD32A was expressed on the surface of human
139	HEK293T cells (human kidney cells), and recombinant S-e was added for detection of
140	potential binding to one of the two receptors in the absence or presence of Mersmab1.
141	The result showed that without Mersmab1, S-e bound to DPP4 only; in the presence of
142	Mersmab1, S-e bound to CD32A (Fig. 2C). As a negative control, a SARS-CoV RBD-
143	specific mAb (49) did not mediate the binding of S-e to CD32A. The cell-surface
144	expressions of both DPP4 and CD32A were measured and used for calibrating the flow
145	cytometry result (Fig. 2D), demonstrating that the direct binding of S-e to DPP4 is
146	stronger than the indirect binding of S-e to CD32A through Mersmab1. Overall, these
147	biochemical results reveal that Mersmab1 not only directly binds to the RBD region of
148	MERS-CoV S-e, but also mediates the indirect binding interactions between MERS-CoV
149	S-e and the Fc receptor.
150	Navt we investigated whether Marsmahl mediates MEDS CoV entry into Eq.
130	Next we investigated whether interstitably includes with the entry lifto FC-
151	receptor-expressing cells. To this end, we performed MERS-CoV pseudovirus entry

- receptor-expressing cells. To this end, we performed MERS-CoV pseudovirus entry
- 152 assay, where retroviruses pseudotyped with MERS-CoV spike (i.e., MERS-CoV

 \sum

153	pseudoviruses) were used to enter human cells expressing CD32A on their surface. The
154	main advantage of pseudovirus entry assay is to focus on the viral entry step (which is
155	mediated by MERS-CoV spike) by separating viral entry from the other steps of viral
156	infection cycles (e.g., replication, packaging and release). We tested three different types
157	of Fc receptors: CD16A, CD32A, and CD64A; each of these Fc receptors was
158	exogenously expressed in HEK293T cells. We also tested macrophage cells where
159	mixtures of Fc receptors were endogenously expressed. Absence of Mersmab1 served as
160	a control for Mersmab1 (a non-neutralizing mAb would be appropriate as another control
161	for Mersmab1, but we do not have access to any non-neutralizing mAb). The result
162	showed that in the absence of Mersmab1, MERS-CoV pseudoviruses could not enter Fc-
163	receptor-expressing cells; in the presence of Mersmab1, MERS-CoV pseudoviruses
164	demonstrated significant efficiency in entering CD32A-expressing HEK293T cells and
165	macrophage cells (Fig. 3A). In comparison, in the absence of Mersmab1, MERS-CoV
166	pseudoviruses entered DPP4-expressing HEK293T cells efficiently, but the entry was
167	blocked effectively by Mersmab1 (Fig. 3A). In control experiments, anti-SARS mAb did
168	not mediate MERS-CoV pseudoviruses entry into Fc-receptor-expressing HEK293T cells
169	or macrophages, and neither did it block MERS-CoV pseudoviruses entry into DPP4-
170	receptor-expressing HEK293T cells (Fig. 3A). In another set of control experiments, we
171	showed that neither the Fc nor the Fab portion of Mersmab1 could mediate MERS-CoV
172	pseudoviruses entry into Fc-receptor-expressing HEK293T cells or macrophages (Fig.
173	3B), suggesting that both the Fc and Fab portions of anti-MERS mAb are required for
174	antibody-mediated viral entry. Here the above DPP4-expressing HEK293T cells were
175	induced to exogenously express high levels of DPP4. To detect background expression

 \sum

176	levels of DPP4, we performed qRT-PCR on HEK293T cells. The result showed that
177	HEK293T cells express very low levels of DPP4 (Fig. 3C). In comparison, MRC5 cells
178	(human lung cells) express high levels of DPP4, whereas Hela cells (human cervical
179	cells) do not express DPP4 (Fig. 3C). Because of the comprehensive control experiments
180	that we performed, the very low endogenous expression of DPP4 in HEK293T cells
181	should not affect our conclusions. Nevertheless, we confirmed the above results using
182	Hela cells that do not express DPP4 (Fig. 3D). Overall, our results reveal that Mersmab1
183	mediates MERS-CoV entry into Fc-receptor-expressing cells, but blocks MERS-CoV
184	entry into DPP4-expressing cells.

185 To expand the above observations to another coronavirus, we investigated ADE 186 of SARS-CoV entry. We previously identified a SARS-CoV-RBD-specific mAb, named 187 33G4, which binds to the ACE2-binding region of SARS-CoV RBD (49, 50); this mAb 188 was examined here for its potential capability to mediate ADE of SARS-CoV entry (Fig. 189 3E). The result showed that 33G4 mediated SARS-CoV pseudovirus entry into CD32A-190 expressing cells, but blocked SARS-CoV pseudovirus entry into ACE2-expressing cells. 191 Therefore, both the MERS-CoV-RBD-specific mAb and the SARS-CoV-RBD specific 192 mAb can mediate the respective coronavirus to enter Fc-receptor-expressing human cells, 193 while blocking the entry of the respective coronavirus into viral-receptor-expressing 194 human cells. For the remaining of this study, we selected the MERS-CoV-RBD-specific 195 mAb, Mersmab1, for in-depth analysis of ADE.

196 Molecular mechanism for antibody-dependent enhancement of coronavirus entry

Σ

Σ

197	To understand the molecular mechanism of ADE, we investigated whether
198	Mersmab1 triggers any conformational change of MERS-CoV spike. It was shown
199	previously that DPP4 binds to MERS-CoV spike and stabilizes the RBD in the standing-
200	up position (Fig. 1A, 1B), resulting in a weakened spike structure and allowing the S2'
201	site to become exposed to proteases (51). Here we repeated this experiment: MERS-CoV
202	pseudoviruses were incubated with DPP4 and then subjected to trypsin cleavage (Fig.
203	4A). The result showed that during the viral packaging process, virus-surface-anchored
204	MERS-CoV spike molecules were cleaved at the S1/S2 site by proprotein convertases; in
205	the absence of DPP4, the spike molecules could not be cleaved further at the S2' site by
206	trypsin. These data suggest that only the S1/S2 site, but not the S2' site, was accessible to
207	proteases in the free form of the spike trimer. In the presence of DPP4, a significant
208	amount of MERS-CoV spike molecules were cleaved at the S2' site by trypsin, indicating
209	that DPP4 binding triggered a conformational change of MERS-CoV spike to expose the
210	S2' site. Interestingly, we found that Mersmab1 binding also allowed MERS-CoV spike
211	to be cleaved at the S2' site by trypsin. As a negative control, the SARS-CoV-RBD-
212	specific mAb did not trigger MERS-CoV spike to be cleaved at the S2' site by trypsin.
213	Hence, like DPP4, Mersmab1 triggers a similar conformational change of MERS-CoV
214	spike to expose the S2' site for proteolysis.
215	We further analyzed the hinding between Mersmahl and MERS-CoV S-e using
210	
216	negative-stain electron microscopy (EM). We previously demonstrated through
217	mutagenesis studies that Mersmab1 binds to the same receptor-binding region on MERS-
218	CoV RBD as DPP4 does (Fig. 1C) (48). Because full-length Mersmab1 (which is a
219	dimer) triggered aggregation of S-e (which is a trimer), we prepared the Fab part (which

 \sum

220

221	used Fab in the negative-stain EM study. The result showed that Fab bound to the tip of
222	the S-e trimer, where the RBD is located (Fig. 4B). Due to the limited resolution of
223	negative-stain EM, we could not clearly see the conformation of the Fab-bound RBD.
224	However, based on previous studies, the receptor-binding site on the RBD in the spike
225	trimer is only accessible when the RBD is in the standing-up position (18, 20, 21). Hence,
226	the fact that the mAb binds to the receptor-binding region of the RBD in the spike trimer
227	suggests that the RBD is in the standing-up state. Thus, the results from negative-stain
228	EM and the proteolysis study are consistent with each other, supporting that like DPP4,
229	Mersmab1 stabilizes the RBD in the standing-up position and triggers a conformational
230	change of the spike. Future study on the high-resolution cryo-EM structure of MERS-
231	CoV S-e trimer complexed with Mersmab1 will be needed to provide detailed structural
232	information for the Mersmab1-triggered conformational changes of MERS-CoV S-e.
222	
233	To understand the pathways of Mersmab1-dependent MERS-CoV entry, we
234	evaluated the potential impact of different proteases on MERS-CoV pseudovirus entry;
235	these proteases are distributed along the viral entry pathway. First, proprotein convertase
236	inhibitor (PPCi) was used for examining the role of proprotein convertases in the
237	maturation of MERS-CoV spike and the impact of proprotein convertases on the ensuing
238	Mersmab1-dependent viral entry (Fig. 5A). The result showed that when MERS-CoV
239	pseudoviruses were produced from HEK293T cells in the presence of PPCi, the cleavage
240	of MERS-CoV spike by proprotein convertases was significantly inhibited (Fig. 5B). In
241	the absence of Mersmab1, MERS-CoV pseudoviruses packaged in the presence of PPCi
242	entered DPP4-expressing human cells more efficiently than those packaged in the

is a monomer) of Mersmab1, detected the binding between Fab and S-e (Fig. 2B), and

243

244	packaged in the presence of PPCi entered CD32A-expressing cells more efficiently than
245	those packaged in the absence of PPCi (Fig. 5A). These data suggest that proprotein
246	convertases play a role (albeit not as drastic as some other proteases; see below) in both
247	DPP4-dependent and Mersmab1-dependent MERS-CoV entry. Second, cell-surface
248	protease TMPRSS2 (transmembrane Serine Protease 2) was introduced to human cells
249	for evaluation of its role in Mersmab1-dependent viral entry (Fig. 5C). The result showed
250	that in the absence of Mersmab1, TMPRSS2 enhanced MERS-CoV pseudovirus entry
251	into DPP4-expressing cells, consistent with previous reports (36). In the presence of
252	Mersmab1, TMPRSS2 also enhanced MERS-CoV pseudovirus entry into CD32A-
253	expressing cells, suggesting that TMPRSS2 activates Mersmab1-dependent MERS-CoV
254	entry. Third, lysosomal protease inhibitors were evaluated for the role of lysosomal
255	proteases in Mersmab1-dependent viral entry (Fig. 5D). Two inhibitors were used,
256	lysosomal acidification inhibitor Baf-A1 and cysteine protease inhibitor E64d. The result
257	showed that lysosomal protease inhibitors blocked the DPP4-dependent viral entry
258	pathway, consistent with previous reports (39). Lysosomal protease inhibitors also
259	blocked the Mersmab1-dependent viral entry pathway, suggesting that lysosomal
260	proteases play important roles in Mersmab1-dependent MERS-CoV entry. Taken
261	together, the DPP4-dependent and Mersmab1-dependent MERS-CoV entries can both be
262	activated by proprotein convertases, cell-surface proteases, and lysosomal proteases;
263	hence the same pathways are shared by DPP4-dependent and Mersmab1-dependent
264	MERS-CoV entries.

absence of PPCi (Fig. 5A). In the presence of Mersmab1, MERS-CoV pseudoviruses

265 Antibody dosages for antibody-dependent enhancement of coronavirus entry

 \sum

266	To determine the range of Mersmab1 dosages in ADE, MERS-CoV pseudovirus
267	entry was performed in the presence of different concentrations of Mersmab1. Three
268	types of human HEK293T cells were used: HEK293T cells exogenously expressing
269	DPP4 only, CD32A only, or both DPP4 and CD32A. Accordingly, three different results
270	were obtained. First, as the amount of Mersmab1 increased, viral entry into DPP4-
271	expressing HEK293T cells continuously dropped (Fig. 6A). This result reveals that
272	Mersmab1 blocks the DPP4-dependent viral entry pathway by outcompeting DPP4 for
273	binding to MERS-CoV spike. Second, as the amount of Mersmab1 increased, viral entry
274	into CD32A-expressing HEK293T cells first increased and then decreased (Fig. 6A). The
275	turning point was about 100 ng/ml Mersmab1. A likely explanation for this result is as
276	follows: at low concentrations, more mAb molecules enhance the indirect interactions
277	between MERS-CoV spike and the Fc receptor; at high concentrations, mAb molecules
278	saturate the cell-surface Fc receptor molecules and then further bind to MERS-CoV spike
279	and block the indirect interactions between MERS-CoV spike and the Fc receptor. Third,
280	as the amount of Mersmab1 increased, viral entry into cells expressing both DPP4 and
281	CD32A first dropped, then increased, and finally dropped again (Fig. 6B). This result is
282	the cumulous effect of the previous two results. It reveals that when both DPP4 and
283	CD32A are present on host cell surface, Mersmab1 inhibits viral entry (by blocking the
284	DPP4-dependent entry pathway) at low concentrations, promotes viral entry (by
285	enhancing the CD32A-dependent entry pathway) at intermediate concentrations, and
286	inhibits viral entry (by blocking both the DPP4- and CD32A-dependent entry pathways)
287	at high concentrations. We further confirmed the above results using MRC5 cells, which
288	are human lung cells endogenously expressing DPP4 (Fig. 6C, 6D). Therefore, ADE of

289 MERS-CoV entry depends on the range of Mersmab1 dosages as well as expressions of 290 the viral and Fc receptors on cell surfaces.

291 Discussions

292 ADE of viral entry has been observed and studied extensively in flaviviruses, 293 particularly dengue virus (3-6). It has also been observed in HIV and Ebola viruses (7-294 10). For these viruses, it has been proposed that primary viral infections of hosts led to 295 production of antibodies that are sub-neutralizing or non-neutralizing for secondary viral 296 infections; these antibodies cannot completely neutralize secondary viral infections, but 297 instead guide virus particles to enter Fc-receptor-expressing cells. ADE can lead to 298 worsened symptoms in secondary viral infections, causing major concerns for 299 epidemiology. ADE is also a major concern for vaccine design and antibody-based drugs 300 therapy, since antibodies generated or used in these procedures may lead to ADE. ADE 301 has been observed in coronavirus for decades, but the molecular mechanisms are 302 unknown. Recent advances in understanding the receptor recognition and cell entry 303 mechanisms of coronaviruses have allowed us to use coronaviruses as a model system for 304 studying ADE.

305In this study we first demonstrated that a MERS-CoV-RBD-specific neutralizing306mAb binds to the RBD region of MERS-CoV spike and further showed that the mAb307mediates MERS-CoV pseudovirus entry into Fc-receptor-expressing human cells.308Moreover, a SARS-CoV-RBD-specific neutralizing mAb mediates ADE of SARS-CoV309pseudovirus entry. These results demonstrated that ADE of coronaviruses is mediated by310neutralizing mAbs that target the RBD of coronavirus spikes. In addition, the same

Z

coronavirus strains that led to the production of fully neutralizing mAbs can be mediated to go through ADE by these neutralizing mAbs. Our results differ from previously observed ADE of flaviviruses where primary infections and secondary infections are caused by two different viral strains and where ADE-mediating mAbs are only subneutralizing or non-neutralizing for secondary viral infections (3-6). Therefore, our study expands the concept of ADE of viral entry.

317 We then examined the molecular mechanism for ADE of coronavirus entry. We 318 showed that the mAb binds to the tip of MERS-CoV spike trimer, where the RBD is 319 located. mAb binding likely stabilizes the RBD in the standing-up position, triggers a 320 conformational change of MERS-CoV spike, and exposes the previously inaccessible S2' 321 site to proteases. During the preparation of this manuscript, a newly published study 322 demonstrated that a SARS-CoV-RBD-specific mAb (named S230) bound to the ACE2-323 binding region in SARS-CoV RBD, stabilized the RBD in the standing-up position, and 324 triggered conformational changes of SARS-CoV spike (Fig. 7A) (52). In contrast, a 325 MERS-CoV-RBD-specific mAb (named LCA60) bound to the side of MERS-CoV RBD, 326 away from the DPP4-binding region, stabilized the RBD in the lying-down position, and 327 did not trigger conformational changes of MERS-CoV spike (Fig. 7B). These published 328 results are consistent with our result on Mersmab1-triggered conformational changes of 329 MERS-CoV spike, together suggesting that in order to trigger conformational changes of 330 coronavirus spikes, mAbs need to bind to the receptor-binding region in their RBD and 331 stabilize the RBD in the standing-up position. Moreover, our study revealed that ADE of 332 MERS-CoV entry follows the same entry pathways of DPP4-dependent MERS-CoV 333 entry. Specifically, proprotein convertases partially activate MERS-CoV spike. If cell-

 \leq

334	surface proteases are present, MERS-CoV spike can be further activated and fuse
335	membranes on the cell surface; otherwise, MERS-CoV enters endosomes and lysosomes,
336	where lysosomal proteases activate MERS-CoV spike for membrane fusion. Taken
337	together, RBD-specific neutralizing mAbs bind to the same region on coronavirus spikes
338	as viral receptors do, trigger conformational changes of the spikes as viral receptors do,
339	and mediate ADE through the same pathways as viral-receptor-dependent viral entries. In
340	other words, RBD-specific neutralizing mAbs mediate ADE of coronavirus entry by
341	functionally mimicking viral receptors.
240	Einelly, we analyzed ADE of companying entry of different antihody decores
342	Finally we analyzed ADE of coronavirus entry at different antibody dosages.
343	MERS-CoV entry into cells expressing both viral and Fc receptors demonstrates complex
344	mAb-dosage-dependent patterns. As the concentration of mAb increases, (i) viral entry
345	into DPP4-expressing cells is inhibited more efficiently because mAb binds to the spike
346	and blocks the DPP4-dependent entry pathway, (ii) viral entry into Fc-receptor-
347	expressing cells is first enhanced and then inhibited because mAb binds to the Fc receptor
348	to enhance the ADE pathway until the Fc receptor molecules are saturated, and (iii) viral
349	entry into cells expressing both DPP4 and Fc receptor is first inhibited, then enhanced,
350	and finally inhibited again because of the cumulative effects of the previous two patterns.
351	In other words, for viral entry into cells expressing both DPP4 and Fc receptor, there
352	exist a balance between the DPP4-dependent and antibody-dependent entry pathways that
353	can be shifted and determined by mAb dosages. Importantly, ADE occurs only at
354	intermediate mAb dosages. Our study explains an earlier observation where ADE of
355	dengue viruses only occurs at certain concentrations of mAb (5). While many human
356	tissues express either DPP4 or Fc receptor, a few of them, most notably placenta, express

357 both of them (53, 54). For other viruses that use viral receptors different from DPP4, 358 there may also be human tissues whether the viral receptor and Fc receptor are both 359 expressed. The expression levels of these two receptors in specific tissue cells likely are 360 determinants of mAb dosages at which ADE would occur in these tissues. Other 361 determinants of ADE-enabling mAb dosages may include the binding affinities of the 362 mAb for the viral and Fc receptors. Overall, our study suggests that ADE of viruses 363 depends on antibody dosages, tissue-specific expressions of viral and Fc receptors, and 364 some intrinsic features of the antibody.

365 Our findings not only reveal a novel molecular mechanism for ADE of 366 coronaviruses, but also provide general guidelines on viral vaccine design and antibody-367 based antiviral drug therapy. As we have shown here, RBD-specific neutralizing mAbs 368 may mediate ADE of viruses by mimicking the functions of viral receptors. Neutralizing 369 mAbs targeting other parts of viral spikes would be less likely to mediate ADE if they do 370 not trigger the conformational changes of the spikes. Hence, to reduce the likelihood of 371 ADE, spike-based subunit vaccines lacking the RBD can be designed to prevent viral 372 infections. Based on the same principle, neutralizing mAbs targeting other parts of the 373 spike can be selected to treat viral infections. Moreover, as already discussed, our study 374 stresses on the importance of choosing antibody dosages that do not cause ADE and 375 points out that different tissue cells should be closely monitored for potential ADE at 376 certain antibody dosages.

The *in vitro* systems used in this study provide a model framework for ADE.
Future research using *in vivo* systems is needed to further confirm these results. Our
previous study showed that a humanized version of Mersmab1 efficiently protected

380	human DPP4-transgenic mice from live MERS-CoV challenges (48, 55), suggesting that
381	given the antibody dosages used in this previous study as well as the binding affinity of
382	the mAb for human DPP4, the receptor-dependent pathway of MERS-CoV entry
383	dominated over ADE in vivo. Thus, future in vivo studies may need to screen for a wide
384	range of antibody dosages and also for a variety of tissues with different ratios of DPP4
385	and Fc receptor expressions. Although ADE has not been observed for MERS-CoV in
386	vivo, our study suggests that ADE occurs under some specific conditions in vivo,
387	depending on the antibody dosages, binding affinity of the mAb for DPP4, and tissue
388	expressions of DPP4 and Fc receptor. Moreover, the mechanism that we have identified
389	for ADE of MERS-CoV in vitro may account for the ADE observed in vivo for other
390	coronaviruses such as SARS-CoV and feline coronavirus (42-47). Overall, our study
391	reveals complex roles of antibodies in viral entry and can guide future vaccine design and
392	antibody-based drug therapy.
393	

 \leq

394 Acknowledgements

395	We thank Dr. Matthew Aliota for comments. This work was supported by
396	R01AI089728 (to F.L), R01AI110700 (to F.L.), and R01AI139092 (to L.D. and F.L.).

397

398

399 Materials and Methods

400 Cell lines and Plasmids

401	HEK293T cells and HEK293F cells (human embryonic kidney cells), Hela cells
402	(human cervical cells), and MRC5 cells (human lung cells) were obtained from the
403	ATCC (American Type Culture Collection). HEK293-gamma chain cells (human
404	embryonic kidney cells) were constructed previously (56). These cells were cultured in
405	Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal bovine
406	serum (FBS), 2 mM L-glutamine, 100 units/ml penicillin, and 100 μ g/ml streptomycin.
407	THP-1 cells (human macrophage cells) were obtained from the ATCC and were cultured
408	in Roswell Park Memorial Institute (RPMI) culture medium (Invitrogen) containing 10%
409	of heat inactivated fetal bovine serum and supplemented with 10 mM Hepes, 1 mM
410	pyruvate, 2.5 g/l D-glucose, 50 pM ß-mercaptoethanol, and 100 μ g/ml streptomycin.
411	For induction of macrophages, human monocytic THP-1 cells were treated with
412	150 nM phorbol 12-myristate 13-acetate for 24 hours, followed by 24 hours incubation in
413	RPMI medium (57) before experiments.
414	The full-length genes of MERS-CoV spike (GenBank accession number
415	AFS88936.1), SARS-CoV spike (GenBank accession number AFR58742), human DPP4
416	(GenBank accession number NM_001935.3) and human ACE2 (GenBank accession
417	number NM_021804) were synthesized (GenScript Biotech). Three Fc receptor genes,
418	human CD16A (GenBank accession number NM_000569.7), human CD32A (GenBank
419	accession number NM_001136219.1) and human CD64A (GenBank accession number
420	NM_000566.3), were cloned previously (58, 59). For protein expressions on cell surfaces

 \leq

421

422

423 Protein purification and antibody preparation 424 For ELISA and negative-stain electron microscopic study, recombinant MERS-425 CoV spike ectodomain (S-e) was prepared. The MERS-CoV S-e (residues 1-1294) was 426 subcloned into pCMV vector; it contained a C-terminal GCN4 trimerization tag and a 427 His_6 tag. To stabilize S-e in the pre-fusion conformation, we followed the procedure from 428 a previous study by introducing mutations to the S1/S2 protease cleavage site (RSVR748-429 751ASVA) and the S2 region (V1060P, L1061P) (21). MERS-CoV S-e was expressed in 430 HEK293F cells using a FreeStyle 293 mammalian cell expression system (Life 431 technologies). Briefly, HEK293F cells were transfected with the plasmid encoding 432 MERS-CoV S-e and cultured for three days. The protein was harvested from the cell 433 culture medium, purified sequentially on Ni-NTA column and Superdex200 gel filtration 434 column (GE Healthcare), and stored in a buffer containing 20 mM Tris pH7.2 and 200 435 mM NaCl. The ectodomain of human DPP4 was expressed and purified as previously 436 described (39). Briefly, DPP4 ectodomain (residues 39-766) containing an N-terminal 437 human CD5 signal peptide and a C-terminal His₆ tag were expressed in insect cells using 438 the Bac-to-Bac expression system (Life Technologies), secreted to cell culture medium 439 and purified in the same way as MERS-CoV S-e. 440 Both the MERS-CoV-RBD-specific mAb (i.e., Mersmab1) and SARS-CoV-RBD-441 specific mAb (i.e., 33G4) were purified as previously described (48, 49). Briefly, 442 hybridoma cells expressing the mAb were injected into the abdomen of mice. After 7-10 443 days, the mouse ascites containing the mAb were collected. The mAb was then purified

or pseudovirus surfaces, the above genes were subcloned into the pcDNA3.1(+) vector

(Life Technologies) with a C-terminal C9 tag.

Σ

444	using a Protein A column (GE Healthcare). Fab of Mersmab1 antibody was prepared
445	using Immobilized Papain beads (ThermoFisher Scientific) according to the
446	manufacturer's manual. Briefly, Mersmab1 antibody was incubated with Immobilized
447	Papain beads in digestion buffer (20 mM sodium phosphate, 10 mM EDTA, 20 mM L-
448	cysteine.HCl pH 7.0) in a shaker water bath at 37 °C overnight. After digestion, the
449	reaction was stopped with 10 mM Tris.HCl pH 7.5, and the supernatant was collected
450	through centrifugation at 12,000g for 15 min. Fab was then separated from undigested
451	IgG and Fc using a Protein A column (GE HealthCare).
452	ELISA
453	The binding affinity between mAb and MERS-CoV S-e or RBD was measured
454	using ELISA assay as previously described (60). Briefly, ELISA plates were pre-coated
455	with mAb (350 nM) at 37 °C for 1 hour. After blocking with 1% BSA at 37 °C for 1
456	hour, MERS-CoV S-e or RBD (300 nM or gradient concentrations as specified in Fig. 2)
457	was added to the plates and incubated with mAb at 37 $^{\circ}\mathrm{C}$ for 1 hour. After washes with
458	PBS buffer, the plates were incubated with anti-His ₆ antibody (Santa Cruz) at 37 °C for 1
459	hour. Then the plates were washed with PBS and incubated with HRP-conjugated goat
460	anti-mouse IgG antibody (1:5,000) at 37 °C for 1 hour. After more washes with PBS,
461	enzymatic reaction was carried out using ELISA substrate (Life Technologies) and
462	stopped with 1 M H_2SO_4 . Absorbance at 450 nm (A450) was measured using Tecan
463	Infinite M1000 PRO Microplate Reader (Tecan Group Ltd.). Five replicates were done
464	for each sample. PBS buffer was used as a negative control.
465	Flow cytometry cell-binding assay

466

467	cells exogenously expressing DPP4 or one of the Fc receptors were incubated with
468	MERS-CoV S-e (40 μ g/ml) and mAb (50 μ g/ml) (both of which contained a C-terminal
469	His ₆ tag) at room temperature for 30 min, followed by incubation with fluorescein
470	phycoerythrin (PE)-labeled anti-His6 probe antibody for another 30 min. The cells then
471	were analyzed using FACS (fluorescence activated cell sorting).
472	Pseudovirus entry assay
473	Coronavirus-spike-mediated pseudovirus entry assay was carried out as
474	previously described (61, 62). Briefly, for pseudovirus packaging, HEK293T cells were
475	co-transfected with a plasmid carrying an Env-defective, luciferase-expressing HIV, type
476	1 genome (pNL4–3.luc.R-E-) and a plasmid encoding MERS-CoV or SARS-CoV spike.
477	Pseudoviruses were harvested and purified using a sucrose gradient ultracentrifugation at
478	40,000g 72 hours after transfection and then used to enter the target cells. To detect
479	pseudovirus entry, pseudoviruses and cells were incubated for 5 hours at 37°C, and then
480	medium was changed and cells were incubated for an additional 60 hours. Cells were
481	then washed with PBS and lysed. Aliquots of cell lysates were transferred to Optiplate-96
482	(PerkinElmer), followed by addition of luciferase substrate. Relative light unites (RLUs)
483	were measured using EnSpire plate reader (PerkinElmer). All the measurements were
484	carried out in four replicates. To inhibit proprotein convertases during packaging of
485	MERS-CoV pseudoviruses, 50 nM proprotein convertase inhibitor (PPCi) Dec-RVKR-
486	CMK (Enzo Life Sciences) was added to the cell culture medium 5 hours post
487	transfection, before the packaged pseudoviruses were purified as described above.
488	Inhibition of pseudovirus entry using various protease inhibitors was carried out as

Flow cytometry was performed as previously described (22). Briefly, HEK293T

 \sum

489

490	convertase inhibitor Dec-RVKR-CMK (Enzo Life Sciences), 100 nM camostat mesylate
491	(Sigma-Aldrich), 100 nM bafilomycin A1 (Baf-A1) (Sigma-Aldrich), 50 nM E64d
492	(Sigma-Aldrich), at 37 °C for 1 hour, or 500 ng/ml antibody for 5 min. The above cells
493	were then used for pseudovirus entry assay.
494	Isolation and quantification of cell surface receptor proteins
495	To examine the expression levels of receptor proteins in cell membranes, the cells
496	expressing the receptor were harvested and all membrane-associated proteins were
497	extracted using a membrane protein extraction kit (Thermo Fisher Scientific). Briefly,
498	cells were centrifuged at 300g for 5 min and washed with cell wash solution twice. The
499	cell pellets were resuspended in 0.75 ml permeabilization buffer and incubated at 4°C for
500	10 min. The supernatant containing cytosolic proteins was removed after centrifugation at
501	16,000g for 15 min. The pellets containing membrane-associated proteins were
502	resuspended in 0.5 ml solubilization buffer and incubated at 4°C for 30 min. After
503	centrifugation at 16,000g for 15 min, the membrane-associated proteins from the
504	supernatant were transferred to a new tube. The expression level of membrane-associated
505	C9-tagged receptor proteins among all membrane-associated proteins was then measured
506	using Western blot analysis and further used for normalizing the results from flow
507	cytometry cell-binding assays and pseudovirus entry assays.
508	Extraction of total RNA and qRT-PCR
509	Total RNAs of cells were extracted using TRIzol reagent according to the
510	manufacturer's manual. Briefly, TRIzol was added to the cell lysate, and then chloroform
511	and phenol-chloroform were added to precipitate RNA. The RNA pellets were washed

described previously (63). Briefly, cells were pre-treated with 50 nM proprotein

 $\overline{\leq}$

Downloaded from http://jvi.asm.org/ on January 15, 2020 at Queen Mary, University of London

Accepted Manuscript Posted Online

Journal of Virology

lournal of Virology

- 512 using ethanol, solubilized in DEPC-treated water, and then reverse-transcribed using
- 513 MLV reverse transcriptase (Promega) and oligo dT primers (Promega). Quantitative PCR
- 514 on DPP4 RNA was performed using DPP4-specific primers and SYBR qPCR kit (Bio-
- 515 Rad) in CFX qPCR instrument (Bio-Rad). Glyceraldehyde 3-phosphate dehydrogenase
- 516 (GAPDH) RNA was used as a control. The primers are listed below:
- 517 DPP4 - forward-5'-AGTGGCGTGTTCAAGTGTGG-3'; reverse-5'-
- 518 CAAGGTTGTCTTCTGGAGTTGG-3'
- GAPDH forward-5'-GGAAGGTGAAGGTCGGAGTCAACGG-3'; reverse-5'-519
- 520 CTCGCTCCTGGAAGATGGTGATGGG-3'
- 521 Proteolysis assay
- 522 Purified MERS-CoV pseudoviruses were incubated with 67 µg/ml recombinant
- DPP4, 67 μ g/ml mAb or PBS at 37 °C for 30 min, and then treated with 10⁻³ mg/ml 523
- 524 TPCK-treated-trypsin on ice for 20 min. Samples were subjected to Western blotting
- 525 analysis. MERS-CoV spike and its cleaved fragments (which contained a C-terminal C9
- 526 tag) were detected using an anti-C9 tag monoclonal antibody (Santa Cruz
- 527 Biotechnology).
- 528 Negative-stain electron microscopy
- Samples were diluted to a final concentration of 0.02 mg/mL in PBS buffer and 529
- 530 loaded onto glow-discharged 400 mesh carbon grids (Electron Microscopy Sciences).
- 531 The grids were stained with 0.75% uranyl formate. All micrographs were acquired using
- 532 a Tecnai G2 Spirit BioTWIN at 120 keV (FEI Company) and an Eagle 4 mega pixel CCD
- 533 camera at 6,000 × nominal magnification at the University of Minnesota.
- 534
- 535

Accepted Manuscript Posted Online

536 **References**

537		
538 539	1.	Tirado SM, Yoon KJ. 2003. Antibody-dependent enhancement of virus infection and disease. Viral Immunol 16: 69-86.
540 541 542	2.	Takada A, Kawaoka Y. 2003. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol 13: 387-398.
543 544 545 546	3.	Guzman MG, Alvarez M, Rodriguez-Roche R, Bernardo L, Montes T, Vazquez S, Morier L, Alvarez A, Gould EA, Kouri G, Halstead SB. 2007. Neutralizing antibodies after infection with dengue 1 virus. Emerg Infect Dis 13:282-286.
547 548 549 550 551	4.	Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W, Puttikhunt C, Edwards C, Duangchinda T, Supasa S, Chawansuntati K, Malasit P, Mongkolsapaya J, Screaton G. 2010. Cross- reacting antibodies enhance dengue virus infection in humans. Science 328: 745- 748.
552 553 554	5.	Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuan G, Gordon A, Balmaseda A, Harris E. 2017. Antibody-dependent enhancement of severe dengue disease in humans. Science 358 :929-932.
555 556	6.	Whitehead SS, Blaney JE, Durbin AP, Murphy BR. 2007. Prospects for a dengue virus vaccine. Nat Rev Microbiol 5: 518-528.
557 558 559 560	7.	Willey S, Aasa-Chapman MM, O'Farrell S, Pellegrino P, Williams I, Weiss RA, Neil SJ. 2011. Extensive complement-dependent enhancement of HIV-1 by autologous non-neutralising antibodies at early stages of infection. Retrovirology 8:16.
561 562 563	8.	Beck Z, Prohaszka Z, Fust G. 2008. Traitors of the immune system-enhancing antibodies in HIV infection: their possible implication in HIV vaccine development. Vaccine 26: 3078-3085.
564 565	9.	Takada A, Watanabe S, Okazaki K, Kida H, Kawaoka Y. 2001. Infectivity- enhancing antibodies to Ebola virus glycoprotein. J Virol 75 :2324-2330.
566 567	10.	Takada A, Feldmann H, Ksiazek TG, Kawaoka Y. 2003. Antibody-dependent enhancement of Ebola virus infection. J Virol 77: 7539-7544.
568 569	11.	Perlman S, Netland J. 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nature Reviews Microbiology 7: 439-450.

 \sum

570 571 572	12.	Enjuanes L, Almazan F, Sola I, Zuniga S. 2006. Biochemical aspects of coronavirus replication and virus-host interaction. Annu Rev Microbiol 60: 211-230.
573 574 575	13.	Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus A, Fouchier RAM. 2012. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. New England Journal of Medicine 367: 1814-1820.
576 577 578 579 580 581	14.	Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong SX, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ. 2003. A novel coronavirus associated with severe acute respiratory syndrome. New England Journal of Medicine 348 :1953-1966.
582 583 584 585	15.	Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam LYC, Lim W, Nicholls J, Yee WKS, Yan WW, Cheung MT, Cheng VCC, Chan KH, Tsang DNC, Yung RWH, Ng TK, Yuen KY. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361 :1319-1325.
586 587 588 589 590	16.	de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Fouchier RA, Galiano M, Gorbalenya AE, Memish ZA, Perlman S, Poon LL, Snijder EJ, Stephens GM, Woo PC, Zaki AM, Zambon M, Ziebuhr J. 2013. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol 87:7790-7792.
591 592	17.	Li F. 2016. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol 3: 237-261.
593 594 595 596	18.	Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, Lu G, Wu Y, Yan J, Shi Y, Zhang X, Gao GF. 2017. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun 8:15092.
597 598 599 600	19.	Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Luo C, Zhang W, Li F. 2018. Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins. PLoS Pathog 14:e1007009.
601 602 603	20.	Song W, Gui M, Wang X, Xiang Y. 2018. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 14: e1007236.
604 605 606 607	21.	Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cottrell CA, Becker MM, Wang L, Shi W, Kong WP, Andres EL, Kettenbach AN, Denison MR, Chappell JD, Graham BS, Ward AB, McLellan JS. 2017. Immunogenicity and structures of a rationally designed

 \leq

608 609		prefusion MERS-CoV spike antigen. Proc Natl Acad Sci U S A 114: E7348- e7357.
610 611 612	22.	Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Tai W, Du L, Zhou Y, Zhang W, Li F. 2018. Cryo-Electron Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State. J Virol 92.
613 614 615	23.	Walls AC, Tortorici MA, Bosch BJ, Frenz B, Rottier PJ, DiMaio F, Rey FA, Veesler D. 2016. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531:114-117.
616 617 618	24.	Walls AC, Tortorici MA, Frenz B, Snijder J, Li W, Rey FA, DiMaio F, Bosch BJ, Veesler D. 2016. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat Struct Mol Biol 23:899-905.
619 620 621	25.	Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, Corbett KS, Graham BS, McLellan JS, Ward AB. 2016. Pre-fusion structure of a human coronavirus spike protein. Nature 531:118-121.
622 623	26.	Li F. 2015. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol 89:1954-1964.
624 625 626 627	27.	Li WH, Moore MJ, Vasilieva N, Sui JH, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426 :450-454.
628 629 630 631 632	28.	Raj VS, Mou HH, Smits SL, Dekkers DHW, Muller MA, Dijkman R, Muth D, Demmers JAA, Zaki A, Fouchier RAM, Thiel V, Drosten C, Rottier PJM, Osterhaus A, Bosch BJ, Haagmans BL. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495: 251-254.
633 634	29.	Li F, Li WH, Farzan M, Harrison SC. 2005. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309 :1864-1868.
635 636 637 638	30.	Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, Zhang Y, Zhang W, Yuan Y, Bao J, Zhang B, Shi Y, Yan J, Gao GF. 2013. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500 :227-231.
639 640	31.	Belouzard S, Millet JK, Licitra BN, Whittaker GR. 2012. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4 :1011-1033.
641 642	32.	Heald-Sargent T, Gallagher T. 2012. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses 4: 557-580.

Σ

643 644 645 646 647	33.	Bertram S, Glowacka I, Muller MA, Lavender H, Gnirss K, Nehlmeier I, Niemeyer D, He Y, Simmons G, Drosten C, Soilleux EJ, Jahn O, Steffen I, Pohlmann S. 2011. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol 85:13363-13372.
648 649 650 651	34.	Matsuyama S, Ujike M, Morikawa S, Tashiro M, Taguchi F. 2005. Protease- mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proceedings of the National Academy of Sciences of the United States of America 102 :12543-12547.
652 653 654 655	35.	Kam YW, Okumura Y, Kido H, Ng LF, Bruzzone R, Altmeyer R. 2009. Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro. PLoS One 4:e7870.
656 657 658	36.	Shirato K, Kawase M, Matsuyama S. 2013. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 87: 12552-12561.
659 660 661 662 663	37.	Gierer S, Muller MA, Heurich A, Ritz D, Springstein BL, Karsten CB, Schendzielorz A, Gnirss K, Drosten C, Pohlmann S. 2015. Inhibition of proprotein convertases abrogates processing of the middle eastern respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral infectivity. J Infect Dis 211 :889-897.
664 665 666 667 668 669	38.	Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Kramer-Kuhl A, Welsch K, Winkler M, Meyer B, Drosten C, Dittmer U, von Hahn T, Simmons G, Hofmann H, Pohlmann S. 2013. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 87:5502-5511.
670 671 672	39.	Zheng Y, Shang J, Yang Y, Liu C, Wan Y, Geng Q, Wang M, Baric R, Li F. 2018. Lysosomal Proteases Are a Determinant of Coronavirus Tropism. J Virol 92 .
673 674 675	40.	Walls AC, Tortorici MA, Snijder J, Xiong X, Bosch BJ, Rey FA, Veesler D. 2017. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci U S A 114 :11157-11162.
676 677 678	41.	Li F, Berardi M, Li WH, Farzan M, Dormitzer PR, Harrison SC. 2006. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. Journal of Virology 80: 6794-6800.
679 680	42.	Wang SF, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW, Chen KH, Liu FT, Liu WT, Chen YM, Huang JC. 2014. Antibody-dependent SARS

681

682 Biophys Res Commun 451:208-214. 683 Kam YW, Kien F, Roberts A, Cheung YC, Lamirande EW, Vogel L, Chu 43. 684 SL, Tse J, Guarner J, Zaki SR, Subbarao K, Peiris M, Nal B, Altmeyer R. 685 2007. Antibodies against trimeric S glycoprotein protect hamsters against SARS-686 CoV challenge despite their capacity to mediate FcgammaRII-dependent entry 687 into B cells in vitro. Vaccine 25:729-740. 688 44. Jaume M, Yip MS, Cheung CY, Leung HL, Li PH, Kien F, Dutry I, 689 Callendret B, Escriou N, Altmeyer R, Nal B, Daeron M, Bruzzone R, Peiris 690 JS. 2011. Anti-severe acute respiratory syndrome coronavirus spike antibodies 691 trigger infection of human immune cells via a pH- and cysteine protease-692 independent FcgammaR pathway. J Virol 85:10582-10597. 693 45. Corapi WV, Olsen CW, Scott FW. 1992. Monoclonal antibody analysis of 694 neutralization and antibody-dependent enhancement of feline infectious 695 peritonitis virus. J Virol 66:6695-6705. 696 46. Hohdatsu T, Yamada M, Tominaga R, Makino K, Kida K, Koyama H. 1998. 697 Antibody-dependent enhancement of feline infectious peritonitis virus infection in 698 feline alveolar macrophages and human monocyte cell line U937 by serum of cats 699 experimentally or naturally infected with feline coronavirus. J Vet Med Sci 60:49-700 55. 701 47. Vennema H, de Groot RJ, Harbour DA, Dalderup M, Gruffydd-Jones T, 702 Horzinek MC, Spaan WJ. 1990. Early death after feline infectious peritonitis 703 virus challenge due to recombinant vaccinia virus immunization. J Virol 64:1407-704 1409. 705 48. Du L, Zhao G, Yang Y, Qiu H, Wang L, Kou Z, Tao X, Yu H, Sun S, Tseng 706 CT, Jiang S, Li F, Zhou Y. 2014. A Conformation-Dependent Neutralizing 707 Monoclonal Antibody Specifically Targeting Receptor-Binding Domain in 708 Middle East Respiratory Syndrome Coronavirus Spike Protein. J Virol 88:7045-709 7053. 710 49. Du L, Zhao G, Li L, He Y, Zhou Y, Zheng BJ, Jiang S. 2009. Antigenicity and 711 immunogenicity of SARS-CoV S protein receptor-binding domain stably 712 expressed in CHO cells. Biochem Biophys Res Commun 384:486-490. 713 50. He YX, Lu H, Siddiqui P, Zhou YS, Jiang SB. 2005. Receptor-binding domain 714 of severe acute respiratory syndrome coronavirus spike protein contains multiple 715 conformation-dependent epitopes that induce highly potent neutralizing 716 antibodies. Journal of Immunology 174:4908-4915. 717 51. Millet JK, Whittaker GR. 2014. Host cell entry of Middle East respiratory 718 syndrome coronavirus after two-step, furin-mediated activation of the spike 719 protein. Proc Natl Acad Sci U S A 111:15214-15219.

coronavirus infection is mediated by antibodies against spike proteins. Biochem

720 721 722 723	52.	 Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J, Quispe J, Cameroni E, Gopal R, Dai M, Lanzavecchia A, Zambon M, Rey FA, Corti D, Veesler D. 2019. Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell 176:1026-1039.e1015.
724 725 726 727 728 729 730	53.	Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F. 2015. Proteomics. Tissue-based map of the human proteome. Science 347 :1260419.
731 732 733 734 735 736 737 738 739 740	54.	Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bergstrom K, Brumer H, Cerjan D, Ekstrom M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Bjorklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J, Oksvold P, Olsson I, Oster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson A, Skollermo A, et al. 2005. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4:1920-1932.
741 742 743 744	55.	Qiu H, Sun S, Xiao H, Feng J, Guo Y, Tai W, Wang Y, Du L, Zhao G, Zhou Y. 2016. Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection. Antiviral Res 132:141-148.
745 746 747 748	56.	Jing Y, Ni Z, Wu J, Higgins L, Markowski TW, Kaufman DS, Walcheck B. 2015. Identification of an ADAM17 cleavage region in human CD16 (FcgammaRIII) and the engineering of a non-cleavable version of the receptor in NK cells. PLoS One 10: e0121788.
749 750 751	57.	Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. 2015. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15:577.
752 753 754 755	58.	Snyder KM, Hullsiek R, Mishra HK, Mendez DC, Li Y, Rogich A, Kaufman DS, Wu J, Walcheck B. 2018. Expression of a Recombinant High Affinity IgG Fc Receptor by Engineered NK Cells as a Docking Platform for Therapeutic mAbs to Target Cancer Cells. Front Immunol 9: 2873.
756 757 758	59.	Su K, Li X, Edberg JC, Wu J, Ferguson P, Kimberly RP. 2004. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. II.

Σ

Journal of Virology

759 Differential binding of GATA4 and Yin-Yang1 transcription factors and 760 correlated receptor expression and function. J Immunol 172:7192-7199. 761 60. Du L, Tai W, Yang Y, Zhao G, Zhu Q, Sun S, Liu C, Tao X, Tseng CK, 762 Perlman S, Jiang S, Zhou Y, Li F. 2016. Introduction of neutralizing 763 immunogenicity index to the rational design of MERS coronavirus subunit 764 vaccines. Nat Commun 7:13473. 765 61. Liu C, Tang J, Ma Y, Liang X, Yang Y, Peng G, Qi Q, Jiang S, Li J, Du L, Li F. 2015. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. 766 767 J Virol **89:**6121-6125. 768 62. Yang Y, Du L, Liu C, Wang L, Ma C, Tang J, Baric RS, Jiang S, Li F. 2014. 769 Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-770 to-human transmission of MERS coronavirus. Proc Natl Acad Sci U S A 771 **111:**12516-12521. 772 Liu C, Ma Y, Yang Y, Zheng Y, Shang J, Zhou Y, Jiang S, Du L, Li J, Li F. 63. 773 2016. Cell Entry of Porcine Epidemic Diarrhea Coronavirus Is Activated by 774 Lysosomal Proteases. J Biol Chem 291:24779-24786. 775 Chen Y, Rajashankar KR, Yang Y, Agnihothram SS, Liu C, Lin YL, Baric 64. 776 **RS**, Li F. 2013. Crystal structure of the receptor-binding domain from newly 777 emerged Middle East respiratory syndrome coronavirus. J Virol 87:10777-10783. 778

 \leq

779 Figure Legends:

780	Figure 1. Structural similarity between DPP4 and mAb in binding MERS-CoV spike. (A)
781	Tertiary structure of MERS-CoV RBD in complex with DPP4 (PDB code: 4KR0) (30).
782	DPP4 is colored yellow. RBD is colored cyan (core structure) and red (receptor-binding
783	motif). DPP4 binds to the receptor-binding motif of the RBD. (B) Modeled structure of
784	MERS-CoV S-e in complex with DPP4. S-e is a trimer (PDB code: 5X5F): one
785	monomeric subunit whose RBD is in the standing-up conformation is colored blue and
786	the other two monomeric subunits whose RBDs are in the lying-down conformation are
787	colored grey (18). To generate the structural model of the S-e in complex with DPP4, the
788	RBD in panel (A) was structurally aligned with the standing-up RBD in the S-e trimer.
789	(C) Tertiary structure of MERS-CoV RBD (PDB 4L3N) (64). Critical mAb-binding
790	residues were identified through mutagenesis studies (48) and are shown as green sticks.
791	
792	Figure 2. Interactions between coronavirus spike and RBD-specific mAb. (A) ELISA for
793	detection of the binding between MERS-CoV-RBD-specific mAb (i.e., Mersmab1) and
794	MERS-CoV spike ectodomain (S-e). Mersmab1 was pre-coated on the plate, and
795	recombinant S-e or RBD was added subsequently for ELISA. Binding affinities were
796	characterized as ELISA signal at OD 450 nm. PBS was used as a negative control. (B)
797	ELISA for detection of the binding between Fab of Mersmab1 and MERS-CoV S-e.
798	
170	Recombinant S-e was pre-coated on the plate, and Mersmab1 or Fab was added
799	Recombinant S-e was pre-coated on the plate, and Mersmab1 or Fab was added subsequently for ELISA. (C) Flow cytometry for detection of the binding between
799 800	Recombinant S-e was pre-coated on the plate, and Mersmab1 or Fab was added subsequently for ELISA. (C) Flow cytometry for detection of the binding between MERS-CoV S-e and DPP4 receptor and among S-e, Mersmab1 and CD32A (i.e., Fc

Downloaded from http://jvi.asm.org/ on January 15, 2020 at Queen Mary, University of London

 \sum

802

803	labeled anti-His ₆ antibody was added to target the C-terminal His ₆ tag on S-e. Cells were
804	analyzed using FACS (fluorescence-activated cell sorting). (D) The expression levels of
805	cell-membrane-associated DPP4 and CD32A were characterized using Western blot
806	targeting their C-terminal C9 tag, and then used to normalize the binding affinity as
807	measured in panel (C). As an internal control, the expression level of cellular actin was
808	measured using an anti-actin antibody. All of the experiments were repeated at least three
809	times with similar results, and representative results are shown here. Error bars indicate
810	S.D. (n=5). Statistical analyses were performed as one-tailed <i>t</i> -test. *** $p < 0.001$.
811	Mersmab1 and its Fab both bind to MERS-CoV RBD and S-e.
812	
813	Figure 3. Antibody-dependent enhancement of coronavirus entry. (A) Antibody-
814	mediated MERS-CoV pseudovirus entry into human cells. The human cells included
815	HEK293T cells exogenously expressing DPP4, HEK293T cells exogenously expressing
816	one of the Fc receptors (CD16A, CD32A, or CD64A), and macrophage cells (induced
817	from THP-1 monocytes cells) endogenously expressing a mixture of Fc receptors. The
818	antibody was Mersmab1. An anti-SARS mAb (i.e., 33G4) was used as a negative control.
819	Efficiency of pseudovirus entry was characterized by luciferase activities accompanying
820	entry. HEK293T cells not expressing any viral receptor or Fc receptor were used as a
821	mock. (B) Fc- or Fab-mediated MERS-CoV pseudovirus entry into human cells. The Fc
822	or the Fab portion of Mersmab1 was used in MERS-CoV pseudovirus entry performed as
823	in panel (A). (C) Expression levels of DPP4 receptor in different cell lines. Total RNA
824	was extracted from three different cell lines: HEK293T, MRC5 and Hela. Then qRT-PCR

Mersmab1, or S-e plus a SARS-CoV-RBD-specific mAb (i.e., 33G4). Fluorescence-

825	was performed on the total RNAs from each cell line. The expression level of DPP4 in
826	each cell line is defined as the ratio between the RNA of DPP4 and the RNA of
827	Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). (D) Antibody-mediated MERS-
828	CoV pseudovirus entry into Hela cells that do not express DPP4 receptor. The
829	experiments were performed in the same way as in panel (A), except that Hela cells
830	replaced HEK293T cells. (E) Antibody-mediated SARS-CoV pseudovirus entry into
831	human cells. DPP4 and Mersmab1 were replaced by ACE2 and 33G4, respectively.
832	Mersmabl was used as a negative control. All of the experiments were repeated at least
833	three times with similar results, and representative results are shown here. Error bars
834	indicate S.D. (n=4). Statistical analyses were performed as one-tailed <i>t</i> -test. *** $p <$
835	0.001. RBD-specific mAbs mediate ADE of coronavirus entry, while blocking viral-
836	receptor-dependent coronavirus entry.
837	
838	Figure 4. Antibody-induced conformational changes of coronavirus spike. (A) Purified
839	MERS-CoV pseudoviruses were incubated with recombinant DPP4, mAb or PBS, and
840	then treated with trypsin. Samples were subjected to Western blotting analysis. MERS-
841	CoV spike and its cleaved fragments (all of which contained a C-terminal C9 tag) were
842	detected using an anti-C9 tag monoclonal antibody. Both DPP4 and Mersmab1 triggered

843 conformational changes of MERS-CoV spike, allowing it to cleaved at the S2' site by

detected using an anti-C9 tag monoclonal antibody. Both DPP4 and Mersmab1 triggered

844 trypsin. (B) Negative-stain electron microscopic analysis of MERS-CoV S-e in complex 845 with the Fab of Mersmab1. Both a field of particles and windows of individual particles 846 are shown. Black arrows indicate S-e-bound Fabs. According to previous studies (18, 20,

5	

<u>ourn</u>al of Virology

847 21), the Fab-binding site on the trimeric S-e is accessible only when the RBD is in the848 standing-up position.

849 Figure 5. Pathways for antibody-dependent enhancement of coronavirus entry. (A) 850 Impact of proprotein convertases on ADE of MERS-CoV entry. During packaging of 851 MERS-CoV pseudoviruses, HEK293T cells were treated with proprotein convertase 852 inhibitor (PPCi). The MERS-CoV pseudoviruses packaged in the presence of PPCi were 853 then subjected to MERS-CoV pseudovirus entry into HEK293T cells expressing either 854 DPP4 receptor or CD32A receptor. (B) Western blot of MERS-CoV pseudoviruses 855 packaged in the presence or absence of PPCi. MERS-CoV spike protein was detected 856 using anti-C9 antibody targeting its C-terminal C9 tag. As an internal control, another 857 viral protein, p24, was detected using anti-p24 antibody. (C) Impact of cell-surface 858 proteases on ADE of MERS-CoV entry. HEK293T cells exogenously expressing 859 TMPRSS2 (which is a common cell-surface protease) were subjected to MERS-CoV 860 pseudovirus entry. TMPRSS2 enhanced both the DPP4-dependent and antibody-861 dependent entry pathways. (D) Impact of lysosomal proteases on ADE of MERS-CoV 862 entry. HEK293T cells exogenously expressing DPP4 or CD32A were pretreated with one 863 of the lysosomal protease inhibitors, E64d and Baf-A1, and then subjected to MERS-CoV 864 pseudovirus entry. Lysosomal proteases blocked both the DPP4-dependent and antibody-865 dependent entry pathways. Hence DPP4-dependent and Mersmab1-dependent MERS-866 CoV entries share the same pathways. HEK293T cells not expressing DPP4 or CD32A 867 were used as a negative control. All of the experiments were repeated at least three times 868 with similar results, and representative results are shown here. Error bars indicate S.D.

869

870	Antibody-dependent and DPP4-dependent viral entries share the same pathways.
871	Figure 6. Antibody dosages for antibody-dependent enhancement of coronavirus entry.
872	(A) Impact of antibody dosages on MERS-CoV pseudovirus entry into HEK293T cells
873	exogenously expressing either DPP4 or CD32A. mAb blocks the DPP4-dependent entry
874	pathway; it enhances the antibody-dependent entry pathway at lower concentrations and
875	blocks it at higher concentrations. (B) Impact of antibody dosages on MERS-CoV
876	pseudovirus entry into HEK293T cells exogenously expressing both DPP4 and CD32A.
877	In the presence of both DPP4 and CD32A, mAb blocks viral entry at low concentrations,
878	enhances viral entry at intermediate concentrations, and blocks viral entry at high
879	concentrations. (C) Same experiment as in panel (A), except that MRC5 cells replaced
880	HEK293T cells. Here MRC5 cells express DPP4 receptor endogenously. (D) Same
881	experiment as in panel (B), except that MRC5 cells replaced HEK293T cells. Here
882	MRC5 cells endogenously express DPP4 and exogenously express CD32A. Please refer
883	to text for more detailed explanations. All of the experiments were repeated at least three
884	times with similar results, and representative results are shown here. Error bars indicate
885	S.D. (n=4).
886	Figure 7 Two previously published structures of coronavirus spike proteins complexed
	- gare The previously published surdenies of coronavinus spike proteins complexed
887	with antibody. (A) SARS-CoV S-e complexed with S230 mAb (PDB ID: 6NB7). The

(n=4). Statistical analyses were performed as one-tailed *t*-test. *** p < 0.001. * p < 0.05.

- 888 antibody binds to the side of the RBD, away from the viral-receptor-binding site,
- stabilizes the RBD in the lying-down state, and hence does not trigger conformational
- 890 changes of SARS-CoV S-e. (B) MERS-CoV S-e complexed with LCA60 mAb (PDB ID:

 \leq

6NB4). The antibody binds to the viral-receptor-binding site in the RBD, stabilizes the
RBD in the standing-up state, and hence triggers conformational changes of MERS-CoV
S-e.

DPP4

MERS RBD

 \leq

Downloaded from http://jvi.asm.org/ on January 15, 2020 at Queen Mary, University of London

 \sum

 \sum

Z

В

Cells expressing one of the receptors and pretreated with mAb; virus particles packaged from cells treated by inhibitor

Cells expressing one of the receptors or protease and pretreated with mAb

 $\overline{\leq}$

Downloaded from http://jvi.asm.org/ on January 15, 2020 at Queen Mary, University of London

Α

SARS S-e

S230 mAb

Z