JVI Accepted Manuscript Posted Online 9 January 2019 J. Virol. doi:10.1128/JVI.01815-18 Copyright © 2019 American Society for Microbiology. All Rights Reserved.

1	TMPRSS2 contributes to virus spread and immunopathology in the
2	airways of murine models after coronavirus infection
3	
4	Naoko Iwata-Yoshikawa ^{a†} , Tadashi Okamura ^{b,c†} , Yukiko Shimizu ^b , Hideki Hasegawa ^a ,
5	Makoto Takeda ^d , and Noriyo Nagata ^{a#}
6	
7	^a Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan;
8	^b Department of Laboratory Animal Medicine, Research Institute, National Center for
9	Global Health and Medicine (NCGM), Tokyo, Japan; ^c Section of Animal Models,
10	Department of Infectious Diseases, Research Institute National Center for Global Health
11	and Medicine, Tokyo, Japan; ^d Department of Virology III, National Institute of Infectious
12	Diseases, Tokyo, Japan
13	
14	Running head: Role of TMPRSS2 in coronavirus infection in vivo

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

15

- 16 #Address correspondence to Noriyo Nagata, nnagata@niid.go.jp.
- 17 †N.I-Y. and T.O. contributed equally to this work.
- 18

 \sum

Journal of Virology

19 Abstract

20	Transmembrane serine protease TMPRSS2 activates the spike protein of highly
21	pathogenic human coronaviruses such as severe acute respiratory syndrome-related
22	coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus
23	(MERS-CoV). In vitro, activation induces virus-cell membrane fusion at the cell surface.
24	However, the roles of TMPRSS2 during coronavirus infection in vivo are unclear. Here, we
25	used animal models of SARS-CoV and MERS-CoV infection to investigate the role of
26	TMPRSS2. Th-1-prone C57BL/6 mice and TMPRSS2-knockout (KO) mice were used for
27	SARS-CoV infection, and transgenic mice expressing the human MERS-CoV receptor,
28	hDPP4-Tg mice, and TMPRSS2-KO hDPP4-Tg mice were used for MERS-CoV infection.
29	After experimental infection, TMPRSS2-deficient mouse strains showed reduced body
30	weight loss and viral kinetics in the lungs. Lack of TMPRSS2 affected the primary sites of
31	infection and virus spread within the airway, accompanied by less severe immunopathology.
32	However, TMPRSS2-KO mice showed weakened inflammatory chemokine and/or cytokine
33	responses to intranasal stimulation with poly (I:C), a Toll-like receptor 3 agonist. In

 $\overline{\leq}$

- 34 conclusion, TMPRSS2 plays a crucial role in viral spread within the airway of murine
- 35 models infected by SARS-CoV and MERS-CoV and in the resulting immunopathology.

36

Journal of Virology

37 Importance

38	Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other
39	emerging viruses are desirable to enable a rapid response to pandemic threats.
40	Transmembrane protease serine type2 (TMPRSS2), a protease belonging to the type II
41	transmembrane serine protease family, cleaves the coronavirus spike protein, making it a
42	potential therapeutic target for coronavirus infections. Here, we examined the role of
43	TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results
44	suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after
45	infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate
46	development of novel targets for coronavirus therapy.

47

5

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

48 Introduction

49	Highly pathogenic human coronaviruses such as severe acute respiratory
50	syndrome-related coronavirus (SARS-CoV) (1-6) and Middle East respiratory
51	syndrome-related coronavirus (MERS-CoV) (7-9) cause severe infection of the lower
52	respiratory tract in humans. These zoonotic pathogens have mortality rates of >50% in aged
53	and immunosuppressed populations, making them potentially important emerging
54	pathogens (10, 11). Broad-spectrum antiviral drugs against these coronaviruses (and other
55	highly pathogenic viruses) will facilitate rapid responses to pandemic threats.
56	Transmembrane protease serine type2 (TMPRSS2), a protease belonging to the type II
57	transmembrane serine protease family, cleaves the influenza virus hemagglutinin (HA)
58	molecule in human airway epithelial cells (12); however, it can also cleave coronavirus
59	fusion glycoproteins, namely, the spike protein. The protease activates the spike protein to
60	induce virus-cell membrane fusion at the cell surface and facilitate entry of coronaviruses
61	into the host cell (13-16). Thus, active site inhibitors of TMPRSS2 are potential therapeutic
62	targets not only for influenza viruses but also coronaviruses (17). Some animal studies

63	show that TMPRSS2-knockout (KO) mice are protected against severe pathology and death
64	after influenza virus infection (18-21). In addition, a genetic study revealed that those with
65	high expression of certain TMPRSS2 variants are at increased risk of severe outcomes after
66	infection with A (H1N1) pdm09 influenza (22). However, the roles of TMPRSS2 in vivo
67	during coronavirus infection are unclear. Here, we used animal models of coronavirus
68	infection to examine the role of TMPRSS2.
69	Previously, we established a murine model of SARS based on adult BALB/c mice. The
70	animals were moribund due to severe pulmonary edema caused by skewing the immune
71	response toward a Th2 profile after infection by mouse-adapted SARS-CoV (23, 24). We
72	used adult C57BL/6 mice because the TMPRSS2-KO mice were back crossed to this strain
73	(20). After infection with mouse-adapted SARS-CoV, Th-1-prone C57BL/6 mice developed
74	acute pneumonia, with around 15% body weight loss; however, this was not fatal. In
75	addition, we recently generated an animal model of MERS-CoV using transgenic mice
76	expressing hDPP4 (hDPP4-Tg mice) under the control of an endogenous promoter
77	(Iwata-Yoshikawa et al., Submitted). The hDPP4-Tg mice were susceptible to infection by

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

Online	
t Posted	
anuscrip	
epted Ma	
Acce	

78

79	generated TMPRSS2-KO hDPP4-Tg (TMPRSS2-KO Tg) mice by crossing male
80	hDPP4-Tg mice with female TMPRSS2-KO mice.
81	Here, we used these animal models to demonstrate a role for TMPRSS2 during infection
82	by SARS-CoV and MERS-CoV. TMPRSS2-deficient mice showed reduced body weight
83	loss and viral replication in the lungs. In addition, histopathological and
84	immunohistochemical analyses revealed that expression of TMPRSS2 influenced both the
85	primary site of infection and virus spread within the airways of both mouse models, which
86	was accompanied by different immunopathologies.
87	
88	Results
89	TMPRSS2-KO mice show no body weight loss and weak proinflammatory responses
90	after SARS-CoV infection
91	To screen the generated TMPRSS2-KO mice, we confirmed the absence of the
92	TMPRSS2 gene by PCR analysis using a primer set specific for TMPRSS2 (Fig. 1). To

MERS-CoV and developed acute pneumonia with transient loss of body weight. Next, we

 \leq

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

examine the effect of TMPRSS2 expression during SARS-CoV infection, we infected
C57BL/6 wild-type (WT) and TMPRSS2-KO mice with 10^5 TCID ₅₀ F-musX
mouse-adapted SARS-CoV. WT mice showed clear loss of body weight from 2 to 4 days
post-injection (p.i.), but recovered later (the exception was a single moribund mouse at Day
5 p.i.); these symptoms were not observed in TMPRSS2-KO mice (Fig. 2a). Measurement
of the virus titer showed lower viral replication in the lungs of TMPRSS2-KO mice (Fig.
2b). There were no significant differences in the titers of neutralizing antibodies in serum
samples from either group (Fig. 2c).
Histopathological and immunohistochemical analyses revealed that lack of TMPRSS2
affected the primary infection sites in the airway. Immunohistochemical staining on Day 1
p.i. revealed strongly antigen-positive cells in the bronchiolar epithelium of WT mice
infected with SARS-CoV; however, only very weak antigen positivity was observed in
TMPRSS2-KO mice (Fig. 2d, left panels). Some antigen-positive cells were seen in alveoli
from both WT and TMPRSS2-KO mice on Day 3 p.i. (Fig. 2d, middle panels). On Day 3
p.i., cell debris and diffuse inflammatory infiltration by neutrophils and mononuclear cells

were observed around bronchi and in the alveoli of WT mice; by contrast, focal
inflammatory infiltration was observed in the alveoli of TMPRSS2-KO mice (F
panels). On Day 10 p.i., formation of granulation tissue was observed in the hea
alveolar area of most WT mice (eight of nine mice) (Fig. 3, upper panel), where
observed in only a few TMPRSS2-KO mice (three of fourteen mice) (Fig. 3, low
Next, we measured the concentrations of representative inflammatory growth

108

109	inflammatory infiltration was observed in the alveoli of TMPRSS2-KO mice (Fig. 2d, right
110	panels). On Day 10 p.i., formation of granulation tissue was observed in the healing
111	alveolar area of most WT mice (eight of nine mice) (Fig. 3, upper panel), whereas it was
112	observed in only a few TMPRSS2-KO mice (three of fourteen mice) (Fig. 3, lower panel).
113	Next, we measured the concentrations of representative inflammatory growth factors,
114	chemokines, and cytokines in the lungs and observed transient elevation of FGF-basic,
115	MIP-1α/CCL3, MIG/CXCL9, MCP-1/CCL2, IP-10/CXCK10, IL-1α, IL-1β, IL-12, IL-6,
116	IL-4, and IL-10 in the lungs of WT mice at 3 days p.i. (Fig. 4a, black bars). Similar
117	responses were observed in the lungs of TMPRSS2-KO mice; however, the concentrations
118	of FGF-basic, KC/CXCL1, IL-12 (p40/p70), IL-4, and IL-10 were significantly lower than
119	those in WT mice at Day 2 or 3 p.i. (Fig. 4a, white bars).
120	Furthermore, we measured the expression of mRNA encoding the Toll-like receptor 3
121	(TLR3), which recognizes ds RNA and activates the NF- κ B pathway for the activation of

122 type 1 interferon (IFN), and type 1 IFN including IFN- α 4 and IFN- β in the lungs of mice at

 \leq

	6 h and at 1, 2 and 3 days p.i. by real-time reverse transcription RT-PCR (24, 25).
124	Interestingly, we found a transient increase in TLR3 expression in the lungs of
125	TMPRSS2-KO mice at 6 h p.i., but not in WT mice (Fig. 4b). However, IFN- α 4 and IFN- β
126	mRNA expression was higher in WT mice than in TMPRSS2-KO mice (Fig. 4b).
127	Taken together, these results suggest that lack of TMPRSS2 affects both pathology and
128	immunopathology in the bronchi and/or alveoli after infection by SARS-CoV. Lower viral
129	replication in the lungs and less severe immunopathology observed in TMPRSS2-KO mice
130	resulted in no body weight loss and milder lung pathology.
131	
131 132	TMPRSS2-KO hDPP4-Tg mice show weaker proinflammatory responses and less
131 132 133	TMPRSS2-KO hDPP4-Tg mice show weaker proinflammatory responses and less severe lung pathology after infection with MERS-CoV
131 132 133 134	TMPRSS2-KO hDPP4-Tg mice show weaker proinflammatory responses and less severe lung pathology after infection with MERS-CoV TMPRSS2-KO hDPP4-Tg mice were generated as described in Materials and Methods.
131 132 133 134 135	TMPRSS2-KO hDPP4-Tg mice show weaker proinflammatory responses and less severe lung pathology after infection with MERS-CoV TMPRSS2-KO hDPP4-Tg mice were generated as described in Materials and Methods. To screen the generated Tg mice and TMPRSS2-KO hDPP4-Tg mice, we confirmed the
131 132 133 134 135 136	TMPRSS2-KO hDPP4-Tg mice show weaker proinflammatory responses and less severe lung pathology after infection with MERS-CoV TMPRSS2-KO hDPP4-Tg mice were generated as described in Materials and Methods. To screen the generated Tg mice and TMPRSS2-KO hDPP4-Tg mice, we confirmed the presence of the transgene of hDPP4 and absence of the TMPRSS2 gene by PCR analysis

 $\overline{\leq}$

138

139	with HCoV-EMC 2012 (MERS-CoV), hDPP4-Tg mice showed a temporary and mild loss
140	of body weight (from 6 to 9 days p.i.); however, only very slight changes were observed in
141	TMPRSS2-KO Tg mice (Fig. 5a). The results of virus titer measurements suggested that the
142	virus replicated more slowly in the lungs of TMPRSS2-KO Tg mice (Fig. 5b). The lung
143	from one out of five Tg mice contained $10^{6.45}$ TCID ₅₀ /g at Day 7 p.i. (two females and three
144	males), and that from three out of five TMPRSS2-KO mice contained $10^{4.2}$ or $10^{4.7}$
145	$TCID_{50}$ /g at Day 7 p.i. (one female and four males). In addition, the titers of neutralizing
146	antibodies in serum from TMPRSS2-KO Tg mice were significantly lower than those in
147	serum from hDPP4-Tg mice (Fig. 5c).
148	More obvious histopathological differences were observed in MERS-CoV-infected
149	animals than in SARS-CoV-infected animals (Fig. 5d). On Day 1 p.i., many viral
150	antigen-positive cells were observed in the bronchi and alveolar areas of hDPP4-Tg mice;
151	there were none in the bronchi, and only a few in the alveoli, of TMPRSS2-KO Tg mice
152	(Fig. 5d, left panels). On Day 3 p.i., many viral antigen-positive cells were present in these

to examine the role of TMPRSS2 after MERS-CoV infection. After intranasal inoculation

154	Day 7 p.i., thickening of the alveolar wall, with regenerated alveolar cells and prominent
155	cellular infiltration by macrophages and mononuclear cells, was observed in Tg mice, but
156	only mild infiltration (mainly by mononuclear cells) of the alveoli was observed in
157	TMPRSS2-KO Tg mice (Fig. 5d, right panels). On Day 14 p.i., lymphocyte aggregates and
158	cellular infiltrations were seen in the healing alveolar area of hDPP4-Tg mice (Fig. 6, upper
159	panel), whereas they were nearly absent from the healing alveolar area of TMPRSS2-KO
160	Tg mice (Fig. 6, lower panel). However, no granulation tissues were detected in either
161	mouse.
162	These data suggest that lack of TMPRSS2 has a marked effect on MERS-CoV infection
163	and replication in the bronchi and/or alveoli. Reduced viral replication in the lungs of
164	TMPRSS2-KO Tg mice resulted in only slight body weight loss and less severe lung
164 165	TMPRSS2-KO Tg mice resulted in only slight body weight loss and less severe lung pathology.
164 165 166	TMPRSS2-KO Tg mice resulted in only slight body weight loss and less severe lung pathology. Measurement of representative proinflammatory growth factors, chemokines, and

areas in hDPP4-Tg mice, but fewer in TMPRSS2-KO Tg mice (Fig. 5d, middle panels). On

168	MCP-1/CCL2, IL-1 α , IL-1 β , TNF- α , IL-12, IFN- γ , IL-17, and IL-13) revealed transient
169	elevation during the first 7 days p.i. (Fig. 7, black bars). TMPRSS2-KO Tg mice showed
170	similar responses, but they occurred later or were less pronounced than in hDPP4-Tg mice
171	(Fig. 7, white bars). The concentration of FGF-basic, GM-CSF, MIG/CXCL9, and TNF- α
172	in the lungs of TMPRSS2-KO Tg mice was lower than that in the lungs of hDPP4-Tg mice
173	on Days 5 and 7 p.i. Interestingly, expression of IL-6 and other inflammatory chemokines
174	(i.e., MIP-1 α , IL-1 α , and IL-1 β) was higher in TMPRSS2-KO Tg mice than in hDPP4-Tg
175	mice on Day 7 p.i.
176	Furthermore, we measured the expression of mRNA encoding TLR3 and type 1 IFN,
177	including IFN- α 4 and IFN- β , in the lungs of mice at 6 h and at 1, 2 and 3 days p.i. by
178	real-time reverse transcription RT-PCR (24, 25). No obvious increase in TLR3 expression
179	in the lungs of mice was observed (Fig. 7b); however, IFN- α 4 and IFN- β mRNA
180	expression was higher in hDPP4-Tg mice than in TMPRSS2-KO Tg mice on days 2 and/or
181	3 p.i. (Fig. 7b).
182	

 \sum

183	Innate immune responses in TMPRSS2-KO mice induced by a Toll-like receptor 3
184	(TLR3) agonist
185	Assay of chemokine and cytokine concentrations after coronavirus infection revealed
186	that proinflammatory immune responses in TMPRSS2-deficient mice were weaker than
187	those in WT mice. To assess the effect of knocking out TMPRSS2 on innate immune
188	responses in the absence of virus infection, we inoculated mice intranasally with poly (I:C),
189	a synthetic analog of double-strand RNA (26-28). Cytokine levels in the lungs were
190	measured at 24 h p.i. The concentrations of MCP-1/CCL2, KC/CXCL1, IL-1α, IL-5, IFN-γ,
191	and IL-17 in TMPRSS2-KO mice were lower than those in WT mice (Fig. 8). In addition,
192	levels of FGF-basic and IL-6 in the TMPRSS2-KO Tg mice were lower than those in
193	hDPP4-Tg mice (Fig. 8). These results suggest that TMPRSS2-deficient mice intrinsically
194	exhibit weaker or delayed inflammatory chemokine and cytokine responses via TLR3.
195	
196	Discussion

197 Mouse models of SARS-CoV and MERS-CoV infection allow us to investigate disease

198	pathogenesis and vaccine applications, and to evaluate antiviral drugs and other therapies.
199	hDPP4-Tg mice are susceptible to infection by a MERS-CoV isolate, resulting in acute
200	pneumonia but no brain disease (Iwata-Yoshikawa N, submitted). Here, we generated a
201	TMPRSS2-KO mouse bearing hDPP4. After infection with SARS-CoV or MERS-CoV,
202	TMPRSS2-deficient mice were protected from body weight loss. The results suggest that
203	TMPRSS2 plays an important role in the early phase of disease (lung infection); in
204	particular, SARS-CoV and MERS-CoV replicated in the bronchioles.
205	In humans, TMPRSS2 is expressed widely in epithelial tissues, including that lining the
206	upper airways, bronchi, and lung (29). The protein sequence of human and mouse
207	TMPRSS2 is conserved, with 78% sequence identity between the two species. In situ
208	hybridization analyses of mouse embryos and adult tissues reveal that TMPRSS2 is
209	expressed in the epithelium lining the gastrointestinal, urogenital, and respiratory tracts,
210	including the bronchi and bronchioles, but not in alveolar epithelium (30). Kim et al.
211	showed that depletion of TMPRSS2 (the molecule was inactivated by disrupting the serine
212	protease domain through homologous recombination) from mice did not affect

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

213	development or survival to adulthood; neither were there abnormalities in organ histology
214	or function (31). While the physiological function of TMPRSS2 is unclear, data suggest
215	that it does regulate sodium currents in lung epithelial cells through proteolytic cleavage of
216	the epithelial sodium channel (32). We also made the interesting observation that
217	TMPRSS2-deficient mice show weaker, or delayed, inflammatory chemokine and cytokine
218	responses mediated by Toll-like receptor 3.
219	Host cellular proteases such as trypsin, tryptase Clara, miniplasmin, human airway
220	trypsin-like protease, and TMPRSS2 cleave the HA glycoprotein of influenza A viruses.
221	Cleavage of HA is critical for viral entry into cells during fusion between the viral and host
222	cell membranes (33). Serine protease inhibitors such as camostat and aprotinin inhibit both
223	influenza virus replication in human airway epithelial cells and the release of cytokines
224	(IL-6 and TNF- α) into cell supernatants (34). In addition, animal studies using
225	TMPRSS2-KO mice reveal that TMPRSS2 is essential for the spread and pathogenesis of
226	influenza viruses such as emerging H7N9 and seasonal H1N1 and H3N2 (18-21).
227	TMPRSS2 also cleaves the coronavirus spike protein to generate unlocked,

 \leq

228	fusion-catalyzing forms at the cell surface and facilitate rapid "early" entry (14, 15, 35-39).
229	In addition, SARS-CoV and MERS-CoV enter cells via two distinct pathways: TMPRSS2
230	via the cell surface and cathepsin L via the endosome (13, 14, 16, 36, 40, 41). A previous
231	antiviral study revealed that a serine protease (TMPRSS2) rather than a cysteine protease
232	(Cathepsin L) facilitated the spread of SARS-CoV in the infected mouse (42). Our findings
233	are in agreement with this study; coronavirus replication in the lungs, especially in the
234	bronchioles, was less pronounced in TMPRSS2-deficient mice. However, viral spread and
235	inflammatory infiltration were still detected in the alveoli. Several proteases, including
236	other serine proteases and the cysteine protease, cathepsin L, may activate both SARS-CoV
237	and MERS-CoV, allowing the virus to spread to alveolar areas in TMPRSS2-deficient mice.
238	In addition, TLR3 mRNA expression in the lungs at 6 h p.i. of SARS-CoV-inoculated
239	TMPRSS2-deficient mice suggested that TLR3, which recognizes specifically dsRNA and
240	localizes to endosomes (43), recognized viral RNA within the endosomal component. Thus,
241	we speculate that the pathway employing cathepsin L and the endosome mainly contributed
242	to SARS-CoV infection in the TMPRSS2-deficient mice.

Σ

243	MERS-CoV infected animals had more obvious histopathological differences than
244	SARS-CoV infected animals in this animal model. In addition, weak-positive SARS-CoV
245	antigens at 1 day p.i. and a few virus antigen positive cells at 3 days p.i. were detected in
246	the bronchi of TMPRSS2-KO mice, but not in MERS-CoV-inoculated TMPRSS2-KO Tg
247	mice. Thus, MERS-CoV may rely more on TMPRSS2 during early infection than
248	mouse-adapted SARS-CoV, although differences in viral passage history and in the genetic
249	backgrounds of the animals should also be considered. More work will be required to test
250	the possibility that viral mutations are acquired during virus spreading in TMPRSS2
251	deficient mice.
251 252	deficient mice. TMPRSS2-deficient mice, including TMPRSS2-KO and TMPRSS2-KO Tg mice,
251 252 253	deficient mice. TMPRSS2-deficient mice, including TMPRSS2-KO and TMPRSS2-KO Tg mice, showed less severe loss of body weight after infection. Peak expression of FGF-basic, also
251 252 253 254	deficient mice. TMPRSS2-deficient mice, including TMPRSS2-KO and TMPRSS2-KO Tg mice, showed less severe loss of body weight after infection. Peak expression of FGF-basic, also known as FGF2, after infection synchronized with peak body weight loss in WT and
251 252 253 254 255	deficient mice. TMPRSS2-deficient mice, including TMPRSS2-KO and TMPRSS2-KO Tg mice, showed less severe loss of body weight after infection. Peak expression of FGF-basic, also known as FGF2, after infection synchronized with peak body weight loss in WT and hDPP4-Tg mice. FGFs play a role in tissue repair after pneumonia, including bronchiolitis
251 252 253 254 255 256	deficient mice. TMPRSS2-deficient mice, including TMPRSS2-KO and TMPRSS2-KO Tg mice, showed less severe loss of body weight after infection. Peak expression of FGF-basic, also known as FGF2, after infection synchronized with peak body weight loss in WT and hDPP4-Tg mice. FGFs play a role in tissue repair after pneumonia, including bronchiolitis obliterans organizing pneumonia (BOOP) and interstitial pneumonia (both fibrous
251 252 253 254 255 256 257	deficient mice. TMPRSS2-deficient mice, including TMPRSS2-KO and TMPRSS2-KO Tg mice, showed less severe loss of body weight after infection. Peak expression of FGF-basic, also known as FGF2, after infection synchronized with peak body weight loss in WT and hDPP4-Tg mice. FGFs play a role in tissue repair after pneumonia, including bronchiolitis obliterans organizing pneumonia (BOOP) and interstitial pneumonia (both fibrous pulmonary disorders), by promoting proliferation of fibroblasts (44). In fact, formation of

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

259	pulmonary fibrosis are common in those with SARS, including patients who survive the
260	infection (45). While there is limited evidence for development of fibrosis during end-stage
261	acute respiratory distress syndrome induced by MERS-CoV, clinical data from MERS
262	patients suggest that the situation is similar to that observed for SARS (45, 46). In addition,
263	some metabolic FGFs cause body weight loss (47).
264	As expected, lower expression of cytokines and chemokines was observed in
265	TMPRSS2-deficient mice than in TMPRSS2-competent mice after coronavirus infection.
266	This result is similar to those reported for TMPRSS2 and TMPRSS4 double-KO mice on
267	Day 3 post-H3N2 influenza A virus infection (48). High levels of virus replication very
268	likely induce severe tissue damage and increased cellular infiltration by immune cells. Viral
269	replication is likely a major cause of the elevated inflammatory chemokine levels observed

258

270 in WT mice; nevertheless, we assessed the possibility that TMPRSS2, a serine protease,

granulation tissue was observed in WT mice after SARS-CoV infection. BOOP and

- 271 may also contribute to inflammatory reactions after TLR3 stimulation. Intranasal
- 272 administration of poly (I:C) induced expression of MCP-1, KC, IL-1a, IL-1B, and IL-12 in

 \leq

 \leq

273	the lungs of WT mice, but not in those of TMPRSS2-KO mice. The genetic backgrounds of
274	WT and TMPRSS2-KO mice were the same because the TMPRSS2-KO mice were
275	produced from TMPRSS2 gene knockout C57BL/6 ES cells. The physiological function of
276	TMPRSS2 remains unclear; however, TMPRSS2 may contribute to more severe or rapid
277	immunopathology in WT mice by increasing the levels of inflammatory cytokines and
278	chemokines after TLR3 stimulation.
279	The immune responses to poly I:C treatment in 14-16 weeks-old hDPP4-Tg mice were
280	quite different from those in 14-16 weeks-old WT C57BL/6 mice. The hDPP4-Tg mice
281	were produced from $BDF1 \times C57BL/6$ mice; however, the Tg mice were backcrossed with
282	C57BL/6 mice for eight generations. Thus, the genetic backgrounds were almost the same
283	between these strains. On the other hand, hDPP4 expression did not have a marked effect
284	on basal innate immune responses in 10-week-old C57BL/6 and hDPP4-Tg mice; however,
285	hDPP4-Tg show slightly stronger or earlier innate immune responses than C57BL/6 mice
286	(Iwata-Yoshikawa et al., Submitted). In addition, Simeoni et al reported that hDPP4/CD26
287	transgene expression induced major phenotypic changes in T-cell populations within the

288	thymus and peripheral blood of their Tg mice, and that peripheral blood T-cell reduction
289	was age-dependent (49). Thus, the compromised immune responses in our hDPP4-Tg mice
290	were possibly due to hDPP4.
291	Broad-spectrum antiviral drugs against coronaviruses and other highly pathogenic
292	viruses will enable a rapid response to pandemic threats. Here, we demonstrate a role of
293	TMPRSS2 during infection by SARS-CoV and MERS-CoV. TMPRSS2 played an active
294	role at primary infection sites and influenced the spread of coronaviruses within the airways
295	of both mouse models, modulating the eventual immunopathology. Interestingly,
296	inflammatory chemokine and cytokine levels in TMPRSS2-KO mice were lower even after
297	intranasal stimulation by poly (I:C), suggesting an as-yet-unidentified physiological role for
298	TMPRSS2. In conclusion, we show that TMPRSS2 plays a role in the spread and
299	immunopathology of coronaviruses in the airways.
300	
301	Materials and methods

302 Ethics statements

22

>
00
2
5
6
ğ
1

٦

303	Experiments using recombinant DNA and pathogens were approved by the Committee
304	for Experiments using Recombinant DNA and Pathogens at the National Institute of
305	Infectious Diseases, Tokyo, Japan. All animal experiments were approved by the Animal
306	Care and Use Committee of the National Institute of Infectious Diseases and were
307	conducted in accordance with institutional Guidelines for the Care and Use of Animals. All
308	animals were housed in a Japan Health Sciences Foundation-certified facility.
309	
310	Cells and viruses
311	Vero E6 cells (American Type Cell Collection, Manassas, VA) were cultured in Eagle's
311 312	Vero E6 cells (American Type Cell Collection, Manassas, VA) were cultured in Eagle's MEM containing 5% fetal bovine serum (FBS), 50 IU/ml penicillin G, and 50 μ g/ml
311 312 313	Vero E6 cells (American Type Cell Collection, Manassas, VA) were cultured in Eagle's MEM containing 5% fetal bovine serum (FBS), 50 IU/ml penicillin G, and 50 μ g/ml streptomycin (5% FBS-MEM). Stocks of a mouse-passaged Frankfurt 1 isolate of
311 312 313 314	Vero E6 cells (American Type Cell Collection, Manassas, VA) were cultured in Eagle's MEM containing 5% fetal bovine serum (FBS), 50 IU/ml penicillin G, and 50 µg/ml streptomycin (5% FBS-MEM). Stocks of a mouse-passaged Frankfurt 1 isolate of SARS-CoV and F-musX-VeroE6 were propagated twice and titrated on Vero E6 cells prior
311 312 313 314 315	Vero E6 cells (American Type Cell Collection, Manassas, VA) were cultured in Eagle's MEM containing 5% fetal bovine serum (FBS), 50 IU/ml penicillin G, and 50 µg/ml streptomycin (5% FBS-MEM). Stocks of a mouse-passaged Frankfurt 1 isolate of SARS-CoV and F-musX-VeroE6 were propagated twice and titrated on Vero E6 cells prior to cryopreservation at 80°C, as previously described (23). MERS-CoV (HCoV-EMC 2012
 311 312 313 314 315 316 	Vero E6 cells (American Type Cell Collection, Manassas, VA) were cultured in Eagle's MEM containing 5% fetal bovine serum (FBS), 50 IU/ml penicillin G, and 50 µg/ml streptomycin (5% FBS-MEM). Stocks of a mouse-passaged Frankfurt 1 isolate of SARS-CoV and F-musX-VeroE6 were propagated twice and titrated on Vero E6 cells prior to cryopreservation at 80°C, as previously described (23). MERS-CoV (HCoV-EMC 2012 strain) was kindly provided by Dr. Bart Haagmans and Dr. Ron Fochier (Erasmus Medical

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

318	titrated on Vero E6 cells, and cryopreserved at -80°C. Viral infectivity titers are expressed
319	as the $TCID_{50}/ml$ on Vero E6 cells and were calculated according to the Behrens-Kärber
320	method. All work with infectious SARS-CoV and MERS-CoV was performed under
321	biosafety level 3 conditions.
322	
323	Generation of mice.
324	TMPRSS2-/- mice were established from TMPRSS2 gene knockout C57BL/6
325	embryonic stem (ES) cells (product number VG13341), which were obtained from the
326	Knockout Mouse Project (KOMP) Repository (UC Davis). The ES cells were injected into
327	C57BL/6 mouse blastocysts, and chimeric mice with a complete C57BL/6 genetic
328	background were generated. TMPRSS2-/- mice with a homologous genotype were obtained
329	by crossing male and female TMPRSS2+/- C57BL/6 mice (20).
330	The transgenic mice expressing human DPP4 gene (hDPP4-Tg mice) were generated by
331	microinjection of the purified BAC clones carrying hDPP4 gene into the pronuclei of
332	fertilized eggs from BDF1×C57BL/6NCr mice (Iwata-Yoshikawa et al., submitted). The

Σ

333

334	subsequently crossed with homozygous TMPRSS2 knockout (TMPRSS2-/-) mice.
335	Genomic DNA isolated from ear punch tissues was subjected to genotyping by PCR
336	analysis using hDPP4-specific primers (Forward; 5'-ACACACACACTCTCACACACT-3',
337	Reverse; 5'-TCTCAGTGCCATAAAAGCCCA-3') (Iwata-Yoshikawa N et al., submitted)
338	or TMPRSS2-specific primers P11 (5'-ACCTGGAGTATACGGGAACGTGA-3') and P12
339	(5'-GTGAGTGGGTGAAGGTTGGGTAG-3') (31).
340	
341	Animal experiments
342	Mice were anesthetized by intraperitoneal injection of a mixture of 1.0 mg of ketamine
343	and 0.02 mg of xylazine (0.08 ml/10 g of body weight). TMPRSS2-KO mice, C57BL/6
344	mice lacking a homologous genotype of the TMPRSS2 gene (TMPRSS2 ^{-/-}) (20), and
345	C57BL/6 mice (WT mice; TMPRSS2 ^{+/+}) were inoculated intranasally with SARS-CoV (10^5

346 TCID $_{50}$ in 30 μ l of F-musX). Human DPP4-expressing transgenic mice (hDPP4-Tg mice:

transgenic mice were then backcrossed with C57BL/6NCr mice for eight generations, and

347 C57BL/6 mice heterozygous for the human DPP4 gene [hDPP4^{+/-} TMPRSS2^{+/+}])

Journal of Virology

 \leq

348	(Iwata-Yoshikawa et al., manuscript in preparation) and hDPP4 ^{+/-} TMPRSS2 ^{-/-} C57BL/6
349	mice (TMPRSS2-KO Tg mice) were obtained by crossing hDPP4-Tg mice with
350	TMPRSS2-KO mice. These mice were inoculated intranasally with MERS-CoV (10^6)
351	TCID ₅₀ in 30 μ l of HCoV-EMC 2012). Infected mice were observed for clinical signs of
352	infection, and body weight was measured daily, for 10 days or 14 days ($n = 6-14$ mice, all
353	aged 12 to 28 weeks). For analysis of virus replication, cytokine expression, and pathology,
354	animals were sacrificed at various time points after inoculation ($n = 3-4$ mice per group, all
355	aged 13 to 30 weeks).
355 356	aged 13 to 30 weeks). WT, TMPRSS2-KO, hDPP4-Tg, and TMPRSS2-KO Tg mice (n = 4 mice per group, all
355 356 357	aged 13 to 30 weeks). WT, TMPRSS2-KO, hDPP4-Tg, and TMPRSS2-KO Tg mice (n = 4 mice per group, all aged 14 to 16 weeks) were anesthetized by intraperitoneal injection of a mixture of 1.0 mg
355 356 357 358	aged 13 to 30 weeks). WT, TMPRSS2-KO, hDPP4-Tg, and TMPRSS2-KO Tg mice (n = 4 mice per group, all aged 14 to 16 weeks) were anesthetized by intraperitoneal injection of a mixture of 1.0 mg of ketamine and 0.02 mg of xylazine (0.08 ml/10 g of body weight). Mice then received 20
355 356 357 358 359	aged 13 to 30 weeks). WT, TMPRSS2-KO, hDPP4-Tg, and TMPRSS2-KO Tg mice (n = 4 mice per group, all aged 14 to 16 weeks) were anesthetized by intraperitoneal injection of a mixture of 1.0 mg of ketamine and 0.02 mg of xylazine (0.08 ml/10 g of body weight). Mice then received 20 µg of poly (I:C) (Invitrogen, San Diego, CA) in 20 µl of PBS (intranasally) (25). All mice
355 356 357 358 359 360	aged 13 to 30 weeks). WT, TMPRSS2-KO, hDPP4-Tg, and TMPRSS2-KO Tg mice (n = 4 mice per group, all aged 14 to 16 weeks) were anesthetized by intraperitoneal injection of a mixture of 1.0 mg of ketamine and 0.02 mg of xylazine (0.08 ml/10 g of body weight). Mice then received 20 µg of poly (I:C) (Invitrogen, San Diego, CA) in 20 µl of PBS (intranasally) (25). All mice were sacrificed 24 h after administration for analysis of cytokine expression.

362 Virus titration

~
bolo
<u> </u>
4
nal
lool

363	Lung tissue homogenates (10% [wt/vol]) were prepared in MEM containing 2% FBS, 50
364	IU/ml penicillin G, 50 μ g/ml streptomycin, and 2.5 μ g/ml amphotericin B. Samples were
365	clarified by centrifugation at $740 \times g$ for 20 min, and the supernatant was inoculated onto
366	Vero E6 cell cultures for virus titration.
367	
368	Neutralizing antibody test
369	Serum was collected from mice sacrificed on Day 10 or 14 p.i. After inactivation at 56°C
370	for 30 min, Vero E6 cells were infected with virus (100 TCID ₅₀ per well) in the presence of
371	plasma (serially diluted 2-fold), incubated for 3 or 5 days, and then examined for cytopathic
372	effects. Plasma titers of neutralizing antibodies were calculated as the reciprocal of the
373	highest dilution at which no cytopathic effect was observed. The lowest and highest
374	dilutions tested were 4 and 256 or 64, respectively.
375	
376	Histopathology and immunohistochemistry

377 Mice were anesthetized and perfused with 2 ml of 10% phosphate-buffered formalin.

378	The lungs were harvested, fixed, embedded in paraffin, sectioned, and stained with
379	hematoxylin and eosin. Masson's trichrome staining was also conducted to detect fibrosis
380	in the lungs. Immunohistochemical analysis was performed using a polymer-based
381	detection system (Nichirei-Histofine Simple Stain Mouse MAX PO(R); Nichirei
382	Biosciences, Inc., Tokyo, Japan). Antigen retrieval from formalin-fixed mouse tissue
383	sections was performed by autoclaving in retrieval solution (pH 6.0; Nichirei Biosciences)
384	at 121°C for 10 min. Hyper-immune rabbit serum raised against SARS-CoV (23) or an
385	anti-MERS-CoV nucleocapsid antibody (Sino Biological Inc., Beijing, China) was used as
386	the primary antibody to detect viral antigens. Peroxidase activity was detected with
387	3,3'-diaminobenzidine (Sigma-Aldrich). Hematoxylin was used for counterstaining.
388	
389	Detection of inflammatory cytokines and chemokines
390	Cytokines and chemokines in mouse lung homogenates (10% wt/vol) were measured
391	using a commercial Mouse Cytokine 20-Plex antibody bead kit (Thermo Fisher Scientific)
392	and a Luminex 100 [™] apparatus (Luminex Co, Austin, TX), as described previously (23). A

 \leq

Downloaded from http://jvi.asm.org/ on Januar	
ıry 11, 2019	
by guest	

393	panel of inflammatory cytokines and chemokines (bFGF, GM-CSF, IFN- γ , IL-1 α , IL-1 β ,
394	IL-2, IL-4, IL-5, IL-6, IL-10, IL-12 [p40/p70], IL-13, IL-17, IP-10, KC, MCP-1, MIG,
395	MIP-1 α , TNF- α , and VEGF) was detected according to the manufacturer's protocols.
396	
397	Quantitative real-time RT-PCR. To measure the levels of type I IFN and TLR3
398	mRNA expression, RNA was extracted from 20% (w/v) lung of mice infected with viruses
399	using RNeasy Mini kits (Qiagen, Hilden, Germany), according to the manufacturer's
400	instructions. mRNAs encoding IFN- α , IFN- β , and TLR3 were examined by real-time
401	RT-PCR using an ABI Prism 7900HT Fast real-time PCR system (Applied Biosystems,
402	Foster City, CA). The TaqMan probes and primers, and the reaction conditions, have been
403	described previously (24, 25). Expression of each gene was normalized to that of β -actin.
404	
405	Statistical analysis
406	Data are expressed as the mean and standard error of the mean. Statistical analyses were

407 performed using Graph Pad Prism 7 software (GraphPad Software Inc., La Jolla, CA).

 \sum

Journal of Virology

N
6
_ Q,
0
2
~
-
0
- 73
ž
-

٦

408	Body weight curves, virus titers, and multiplex assay results were analyzed using one-way
409	or two-way analysis of variance (ANOVA). Significant effects of viral titers in different
410	animal strains at different time points were assessed by two-way ANOVA, and p-values
411	were calculated using Bonferroni's multiple comparisons test. The results of the
412	neutralizing antibody titer assays were analyzed using the Mann-Whitney test. A p-value <
413	0.05 was considered statistically significant.
414	
415	Acknowledgments
415 416	Acknowledgments We thank Dr. Ron A. M. Fouchier and Dr. Bart L. Haagmans (Erasmus Medical Center,
415 416 417	Acknowledgments We thank Dr. Ron A. M. Fouchier and Dr. Bart L. Haagmans (Erasmus Medical Center, The Netherlands) for providing MERS-CoV (isolate HCoV-EMC/2012), and Drs. Kazuya
415 416 417 418	Acknowledgments We thank Dr. Ron A. M. Fouchier and Dr. Bart L. Haagmans (Erasmus Medical Center, The Netherlands) for providing MERS-CoV (isolate HCoV-EMC/2012), and Drs. Kazuya Shirato, Shutoku Matsuyama, Masaki Anraku, and Kohji Sakai (National Institute of
415 416 417 418 419	Acknowledgments We thank Dr. Ron A. M. Fouchier and Dr. Bart L. Haagmans (Erasmus Medical Center, The Netherlands) for providing MERS-CoV (isolate HCoV-EMC/2012), and Drs. Kazuya Shirato, Shutoku Matsuyama, Masaki Anraku, and Kohji Sakai (National Institute of Infectious Diseases) for helpful discussion. We also thank our colleagues at the Institute,
415 416 417 418 419 420	Acknowledgments We thank Dr. Ron A. M. Fouchier and Dr. Bart L. Haagmans (Erasmus Medical Center, The Netherlands) for providing MERS-CoV (isolate HCoV-EMC/2012), and Drs. Kazuya Shirato, Shutoku Matsuyama, Masaki Anraku, and Kohji Sakai (National Institute of Infectious Diseases) for helpful discussion. We also thank our colleagues at the Institute, especially Ms. Midori Ozaki and Dr. Hitoshi Kujirai, for technical assistance.

422	This work was supported by a Grant-in-Aid for research (H25-Shinko-Wakate-004)
423	from the Ministry of Health, Labor, and Welfare, Japan; by a Research Program on
424	Emerging and Re-emerging Infectious Diseases (JP17fk0108313, JP18fk0108058) from the
425	Japan Agency for Medical Research and Development (AMED); by a Grant-in-Aid for
426	scientific research from the Ministry of Education, Culture, Sports, Science, and
427	Technology in Japan (KAKENHI; 16K09951, 18H02665); and in part by The Grant for
428	National Center for Global Health and Medicine (27A1102).
429	
430	

431 References

л	n	n
۰	υ	Ζ

 Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ, Group SW. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953-1966.

- Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere
 AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967-1976.
- Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, Ahuja A, Yung MY,
 Leung CB, To KF, Lui SF, Szeto CC, Chung S, Sung JJ. 2003. A major outbreak
 of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348:1986-1994.
- Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan
 WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen
 KY, group Ss. 2003. Coronavirus as a possible cause of severe acute respiratory
 syndrome. Lancet 361:1319-1325.
- 452 5. Zhong NS, Zheng BJ, Li YM, Poon, Xie ZH, Chan KH, Li PH, Tan SY, Chang
 453 Q, Xie JP, Liu XQ, Xu J, Li DX, Yuen KY, Peiris, Guan Y. 2003. Epidemiology
 454 and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's
 455 Republic of China, in February, 2003. Lancet 362:1353-1358.
- Guan Y, Peiris JS, Zheng B, Poon LL, Chan KH, Zeng FY, Chan CW, Chan MN, Chen JD, Chow KY, Hon CC, Hui KH, Li J, Li VY, Wang Y, Leung SW,
 Yuen KY, Leung FC. 2004. Molecular epidemiology of the novel coronavirus that

459		causes severe acute respiratory syndrome. Lancet 363:99-104.
460	7.	Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012.
461		Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N
462		Engl J Med 367: 1814-1820.
463	8.	Hijawi B, Abdallat M, Sayaydeh A, Alqasrawi S, Haddadin A, Jaarour N,
464		Alsheikh S, Alsanouri T. 2013. Novel coronavirus infections in Jordan, April 2012:
465		epidemiological findings from a retrospective investigation. East Mediterr Health J
466		19 Suppl 1: S12-18.
467	9.	Korea Centers for Disease C, Prevention. 2015. Middle East Respiratory
468		Syndrome Coronavirus Outbreak in the Republic of Korea, 2015. Osong Public
469		Health Res Perspect 6:269-278.
470	10.	Perlman S, Netland J. 2009. Coronaviruses post-SARS: update on replication and
471		pathogenesis. Nat Rev Microbiol 7:439-450.
472	11.	de Wit E, van Doremalen N, Falzarano D, Munster VJ. 2016. SARS and MERS:
473		recent insights into emerging coronaviruses. Nat Rev Microbiol 14:523-534.
474	12.	Bottcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M.
475		2006. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and
476		HAT from human airway epithelium. J Virol 80:9896-9898.
477	13.	Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. 2010.
478		Efficient activation of the severe acute respiratory syndrome coronavirus spike
479		protein by the transmembrane protease TMPRSS2. J Virol 84:12658-12664.
480	14.	Shirato K, Kawase M, Matsuyama S. 2013. Middle East respiratory syndrome
481		coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J
482		Virol 87:12552-12561.
483	15.	Bertram S, Dijkman R, Habjan M, Heurich A, Gierer S, Glowacka I, Welsch K,
484		Winkler M, Schneider H, Hofmann-Winkler H, Thiel V, Pohlmann S. 2013.
485		TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host
486		cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol
487		87: 6150-6160.
488	16.	Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Kramer-Kuhl A, Welsch

489		K, Winkler M, Meyer B, Drosten C, Dittmer U, von Hahn T, Simmons G,
490		Hofmann H, Pohlmann S. 2013. The spike protein of the emerging
491		betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated
492		by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 87:5502-5511.
493	17.	Laporte M, Naesens L. 2017. Airway proteases: an emerging drug target for
494		influenza and other respiratory virus infections. Curr Opin Virol 24:16-24.
495	18.	Hatesuer B, Bertram S, Mehnert N, Bahgat MM, Nelson PS, Pohlmann S,
496		Schughart K. 2013. Tmprss2 is essential for influenza H1N1 virus pathogenesis in
497		mice. PLoS Pathog 9:e1003774.
498	19.	Tarnow C, Engels G, Arendt A, Schwalm F, Sediri H, Preuss A, Nelson PS,
499		Garten W, Klenk HD, Gabriel G, Bottcher-Friebertshauser E. 2014. TMPRSS2
500		is a host factor that is essential for pneumotropism and pathogenicity of H7N9
501		influenza A virus in mice. J Virol 88:4744-4751.
502	20.	Sakai K, Ami Y, Tahara M, Kubota T, Anraku M, Abe M, Nakajima N,
503		Sekizuka T, Shirato K, Suzaki Y, Ainai A, Nakatsu Y, Kanou K, Nakamura K,
504		Suzuki T, Komase K, Nobusawa E, Maenaka K, Kuroda M, Hasegawa H,
505		Kawaoka Y, Tashiro M, Takeda M. 2014. The host protease TMPRSS2 plays a
506		major role in in vivo replication of emerging H7N9 and seasonal influenza viruses. J
507		Virol 88: 5608-5616.
508	21.	Sakai K, Sekizuka T, Ami Y, Nakajima N, Kitazawa M, Sato Y, Nakajima K,
509		Anraku M, Kubota T, Komase K, Takehara K, Hasegawa H, Odagiri T,
510		Tashiro M, Kuroda M, Takeda M. 2015. A mutant H3N2 influenza virus uses an
511		alternative activation mechanism in TMPRSS2 knockout mice by loss of an
512		oligosaccharide in the hemagglutinin stalk region. J Virol 89:5154-5158.
513	22.	Cheng Z, Zhou J, To KK, Chu H, Li C, Wang D, Yang D, Zheng S, Hao K,
514		Bosse Y, Obeidat M, Brandsma CA, Song YQ, Chen Y, Zheng BJ, Li L, Yuen
515		KY. 2015. Identification of TMPRSS2 as a Susceptibility Gene for Severe 2009
516		Pandemic A(H1N1) Influenza and A(H7N9) Influenza. J Infect Dis 212:1214-1221.
517	23.	Nagata N, Iwata N, Hasegawa H, Fukushi S, Harashima A, Sato Y, Saijo M,
518		Taguchi F, Morikawa S, Sata T. 2008. Mouse-passaged severe acute respiratory

Σ

Downloaded from http://jvi.asm.org/ on January 11, 2019 by gues

.637.
Y, Morikawa
ll-like receptor
nmunized with
rus vaccine. J
Takahashi H,
05. Synthetic
rotects against
O, Huang Y,
nimic poly IC
a dendritic cell
lou L, Azuma
tor 3 promotes
Diamond MS,
responses to
picornavirus.
ne proteases. J
ko PT. 2001.
se and human

alveolar damage in adult but not young mice. Am J Pathol 172:1625-1 521 Iwata-Yoshikawa N, Uda A, Suzuki T, Tsunetsugu-Yokota Y, Sato 24. 522 S, Tashiro M, Sata T, Hasegawa H, Nagata N. 2014. Effects of Tol 523 stimulation on eosinophilic infiltration in lungs of BALB/c mice im 524 UV-inactivated severe acute respiratory syndrome-related coronavir 525 Virol 88:8597-8614.

syndrome-associated coronavirus leads to lethal pulmonary edema and diffuse

- 526 25. Ichinohe T, Watanabe I, Ito S, Fujii H, Moriyama M, Tamura S, 527 Sawa H, Chiba J, Kurata T, Sata T, Hasegawa H. 20 528 double-stranded RNA poly(I:C) combined with mucosal vaccine pr 529 influenza virus infection. J Virol 79:2910-2919.
- 530 26. Trumpfheller C, Caskey M, Nchinda G, Longhi MP, Mizenina 531 Schlesinger SJ, Colonna M, Steinman RM. 2008. The microbial r 532 induces durable and protective CD4+ T cell immunity together with a 533 targeted vaccine. Proc Natl Acad Sci U S A 105:2574-2579.
- 534 27. Schulz O, Diebold SS, Chen M, Naslund TI, Nolte MA, Alexopoul 535 YT, Flavell RA, Liljestrom P, Reis e Sousa C. 2005. Toll-like recept 536 cross-priming to virus-infected cells. Nature 433:887-892.
- 537 28. Gitlin L, Barchet W, Gilfillan S, Cella M, Beutler B, Flavell RA, 538 Colonna M. 2006. Essential role of mda-5 in type I IFN 539 polyriboinosinic:polyribocytidylic acid and encephalomyocarditis 540 Proc Natl Acad Sci U S A 103:8459-8464.
- 541 29. Bugge TH, Antalis TM, Wu Q. 2009. Type II transmembrane serie 542 Biol Chem 284:23177-23181.
- 543 30. Vaarala MH, Porvari KS, Kellokumpu S, Kyllonen AP, Vihl 544 Expression of transmembrane serine protease TMPRSS2 in mous 545 tissues. J Pathol 193:134-140.
- 546 31. Kim TS, Heinlein C, Hackman RC, Nelson PS. 2006. Phenotypic analysis of 547 mice lacking the Tmprss2-encoded protease. Mol Cell Biol 26:965-975.
- 548 32. Donaldson SH, Hirsh A, Li DC, Holloway G, Chao J, Boucher RC, Gabriel SE.

519

520

Journal of Virology

549		2002. Regulation of the epithelial sodium channel by serine proteases in human
550		airways. J Biol Chem 277:8338-8345.
551	33.	Kido H, Okumura Y, Takahashi E, Pan HY, Wang S, Chida J, Le TQ, Yano M.
552		2008. Host envelope glycoprotein processing proteases are indispensable for entry
553		into human cells by seasonal and highly pathogenic avian influenza viruses. J Mol
554		Genet Med 3: 167-175.
555	34.	Yamaya M, Shimotai Y, Hatachi Y, Lusamba Kalonji N, Tando Y, Kitajima Y,
556		Matsuo K, Kubo H, Nagatomi R, Hongo S, Homma M, Nishimura H. 2015. The
557		serine protease inhibitor camostat inhibits influenza virus replication and cytokine
558		production in primary cultures of human tracheal epithelial cells. Pulm Pharmacol
559		Ther 33: 66-74.
560	35.	Bertram S, Heurich A, Lavender H, Gierer S, Danisch S, Perin P, Lucas JM,
561		Nelson PS, Pohlmann S, Soilleux EJ. 2012. Influenza and SARS-coronavirus
562		activating proteases TMPRSS2 and HAT are expressed at multiple sites in human
563		respiratory and gastrointestinal tracts. PLoS One 7:e35876.
564	36.	Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, Steffen I,
565		Tsegaye TS, He Y, Gnirss K, Niemeyer D, Schneider H, Drosten C, Pohlmann S.
566		2011. Evidence that TMPRSS2 activates the severe acute respiratory syndrome
567		coronavirus spike protein for membrane fusion and reduces viral control by the
568		humoral immune response. J Virol 85:4122-4134.
569	37.	Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pohlmann S.
570		2014. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by
571		TMPRSS2 augments entry driven by the severe acute respiratory syndrome
572		coronavirus spike protein. J Virol 88:1293-1307.
573	38.	Shirato K, Kawase M, Matsuyama S. 2017. Wild-type human coronaviruses
574		prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology
575		doi:10.1016/j.virol.2017.11.012.
576	39.	Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T.
577		2011. A transmembrane serine protease is linked to the severe acute respiratory
578		syndrome coronavirus receptor and activates virus entry. J Virol 85:873-882.

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

579	40.	Bertram S, Glowacka I, Muller MA, Lavender H, Gnirss K, Nehlmeier I,
580		Niemeyer D, He Y, Simmons G, Drosten C, Soilleux EJ, Jahn O, Steffen I,
581		Pohlmann S. 2011. Cleavage and activation of the severe acute respiratory
582		syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol
583		85: 13363-13372.
584	41.	Simmons G, Zmora P, Gierer S, Heurich A, Pohlmann S. 2013. Proteolytic
585		activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting
586		edge of antiviral research. Antiviral Res 100:605-614.
587	42.	Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R, Jr., Nunneley JW, Barnard
588		D, Pohlmann S, McKerrow JH, Renslo AR, Simmons G. 2015. Protease
589		inhibitors targeting coronavirus and filovirus entry. Antiviral Res 116:76-84.
590	43.	Blasius AL, Beutler B. 2010. Intracellular toll-like receptors. Immunity
591		32: 305-315.
592	44.	Lappi-Blanco E, Soini Y, Kinnula V, Paakko P. 2002. VEGF and bFGF are highly
593		expressed in intraluminal fibromyxoid lesions in bronchiolitis obliterans organizing
594		pneumonia. J Pathol 196: 220-227.
595	45.	van den Brand JM, Smits SL, Haagmans BL. 2015. Pathogenesis of Middle East
596		respiratory syndrome coronavirus. J Pathol 235:175-184.
597	46.	Ng DL, Al Hosani F, Keating MK, Gerber SI, Jones TL, Metcalfe MG, Tong S,
598		Tao Y, Alami NN, Haynes LM, Mutei MA, Abdel-Wareth L, Uyeki TM,
599		Swerdlow DL, Barakat M, Zaki SR. 2016. Clinicopathologic,
600		Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East
601		Respiratory Syndrome Coronavirus Infection in the United Arab Emirates, April
602		2014. Am J Pathol 186:652-658.
603	47.	Markan KR, Potthoff MJ. 2016. Metabolic fibroblast growth factors (FGFs):
604		Mediators of energy homeostasis. Semin Cell Dev Biol 53:85-93.
605	48.	Kuhn N, Bergmann S, Kosterke N, Lambertz RLO, Keppner A, van den Brand
606		JMA, Pohlmann S, Weiss S, Hummler E, Hatesuer B, Schughart K. 2016. The
607		Proteolytic Activation of (H3N2) Influenza A Virus Hemagglutinin Is Facilitated by
608		Different Type II Transmembrane Serine Proteases. J Virol 90:4298-4307.

609	49.	Simeoni L, Rufini A, Moretti T, Forte P, Aiuti A, Fantoni A. 2002. Human CD26
610		expression in transgenic mice affects murine T-cell populations and modifies their
611		subset distribution. Hum Immunol 63:719-730.

612

613

Σ

614 Figure legends

615	FIG 1. Genotyping of C57BL/6 (WT), TMPRSS2-KO (KO), hDPP4-Tg (Tg) and
616	TMPRSS2-KO hDPP4 (KO-Tg) mice by PCR analysis. PCR analysis was performed on
617	the genomic DNA from ear punches taken from WT, KO, Tg, and KO-Tg mice (WT,
618	4-5-week-old, n=3, [male=3]; KO, 4-5-week-old, n=3, [male=3]; Tg, 4-5-week-old, n=3,
619	[male=1, female=2]; KO-Tg, 4-5-week-old, n=3, [male=1, female=2]), and the resulting
620	products (391 bp for hDPP4 and 388 bp for TMPRSS2) are shown. Numbers indicate
621	positions of the 500 bp standard molecular weight marker ladder. M, 100 bp ladder; P,
622	positive controls for hDPP4 or TMPRSS2; N, negative control without the ear punch
623	template.
624	
625	FIG 2. Experimental infection of TMPRSS2-knockout (KO) mice with SARS-CoV.
626	C57BL/6 (WT) and TMPRSS2-KO mice were inoculated with F-musX (SARS-CoV). (a)
627	Body weight curve during the first 10 days post-infection (p.i.). Numbers of animals per
628	group were as follows: KO, n=14 (male=11, female=3); WT, n=10 (male=5, female=5).

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

629	Mice of 22-28 weeks-old were used. Error bars represent standard errors. *, p<0.05; ****,
630	p<0.0001 (one-way ANOVA.). (b) Virus titer in lungs from SARS-CoV-inoculated animals
631	at 6 h and at 1, 2, and 3 days p.i. Numbers of animals per group were as follows: KO, n=4-5
632	per time point (male=0-1, female=3-4); WT, n=4-5 per time point (male=0-1, female=3-4).
633	Mice of 14-30 weeks-old were used. Error bars represent standard errors. The dotted line
634	indicates the limit of detection. P-values in the graph were calculated by two-way ANOVA
635	to determine significant effects of viral titers in different animal strains at different time
636	points. (c) Neutralizing antibody titer in serum on Day 10 p.i. The data are from the same
637	animals used in (a), except for one mouse that died. Each symbol represents an individual
638	mouse. Numbers of animals per group were as follows: KO, n=14 (male=11, female=3);
639	WT, n=9 (male=4, female=5). Mice of 22-28 weeks-old were used. Error bars represent
640	standard errors. P-values for the graph were calculated by the Mann-Whitney test. The
641	dotted line indicates the limit of detection. (d) Histopathological examination of the lungs
642	from WT and TMPRSS2-KO mice after infection by SARS-CoV. Numbers of animals per
643	group were as follows: KO, n=3 per time point (male=1-2, female=1-2); WT, n=3 per time

644

645

646	anti-SARS-CoV polyclonal antibody (at 1 and 3 days p.i.). Hematoxylin and eosin staining
647	at 3 days p.i. On Day 1 p.i., viral antigen-positive cells are seen mainly in the bronchi of a
648	WT mouse, whereas very weakly positive cells are seen in a TMPRSS2-KO mouse (left
649	panels, brown color). On Day 3 p.i., several alveolar cells around the bronchi in both WT
650	and TMPRSS2-KO mice are positive for viral antigen (middle panels, brown color). Cell
651	debris and diffuse inflammatory infiltration by neutrophils and mononuclear cells are seen
652	around bronchi and in the alveolar area of WT mice, whereas focal inflammatory
653	infiltration is observed in the alveoli of TMPRSS2-KO (right panels, inset). Br, bronchi; Al,
654	alveolar area; V, vein. Bars, 20 or 200 µm.
655	
656	FIG 3. Formation of granulation tissue in TMPRSS2-knockout (KO) mice after infection
657	with SARS-CoV. Histopathological examination of the lungs from WT and TMPRSS2-KO
658	mice at 10 days after infection with SARS-CoV. Representative images of lungs are from

point (male=1-2, female=1-2). Mice of 15-20 weeks-old were used. Representative images

of lungs from mice on Days 1 and 3 days p.i. Immunohistochemical analysis using an

 \leq

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

659	the same animals in Fig. 2a. HE, Hematoxylin and eosin staining; MT, Masson's trichrome
660	staining. Granulation tissue, known as Masson bodies (blue allows in HE; Red arrows in
661	MT) was located in the alveolar duct walls of WT mice, but to a lesser extent in
662	TMPRSS2-KO mice. Br, bronchi; Ad, Alveolar duct; Al, alveolar area. Bars, 200 or 100
663	μm.
664	
665	FIG 4. Immune responses in TMPRSS2-knockout (KO) mice after infection with
666	SARS-CoV. C57BL/6 wild-type (WT) and TMPRSS2-KO mice were inoculated with
667	F-musX (SARS-CoV). Cytokine and chemokine responses (a) and the levels of type I IFN
668	and TLR3 mRNA expression (b) in the lungs at 6 h and at 1, 2, and 3 days p.i. The lung
669	homogenates were from the same animals in Fig 1(b) and assays were done using unicate
670	samples per animal. Expression of each gene was normalized to that of β -actin in (b).
671	Numbers of animals per group were as follows: KO, n=4 per time point (male=0-1,
672	female=3-4); WT, n=4 per time point (male=0-1, female=3-4). Mice of 14-30 weeks-old
673	were used. Error bars represent standard errors. P-values for the graph were calculated by

Z

674 ANOVA. *, p<0.05; **, p<0.01; ****, p<0.0001.

675

676	FIG 5. Experimental infection of TMPRSS2-knockout hDPP4-transgenic (KO-Tg) mice
677	with MERS-CoV. hDPP4-Tg (Tg) and KO-Tg mice were inoculated with EMC-HCoV
678	(MERS-CoV). (a) Body weight curve during the 14 days post-infection (p.i.). Numbers of
679	animals per group were as follows: KO-Tg, n=8 (male=2, female=6); Tg, n=6 (male=3,
680	female=3). Mice of 12-14 weeks-old were used. Error bars represent standard errors. ***,
681	p<0.001 (one-way ANOVA) (b) Virus titer in the lungs of MERS-CoV-inoculated animals
682	at 6 h and at 1, 2, and 3 days p.i. Numbers of animals per group were as follows: KO-Tg,
683	n=4 per time point (male=0-1, female=3-4); Tg, n=4 per time point (male=1-2, female=2-3).
684	Mice of 13-22 weeks-old were used. Error bars represent standard errors. The dotted line
685	indicates the limit of detection. P-values indicated in the graph were calculated by two-way
686	ANOVA for significant effects of viral titers in different animal strains at different time
687	points. (c) Neutralizing antibodies in serum from mice on Day 14 p.i. The sera were from
688	the same animals in (a). Numbers of animals per group were as follows: KO-Tg, n=8

689	(male=2, female=6); Tg, n=6 (male=3, female=3). Mice of 12-14 weeks-old were used.
690	Error bars represent standard errors. *, p<0.05. P-values in the graph were calculated by the
691	Mann-Whitney test. The dotted line indicates the limit of detection. (d) Histopathological
692	examination of the lungs of Tg mice and TMPRSS2-KO Tg mice after infection with
693	MERS-CoV. Numbers of animals per group were as follows: KO-Tg, n=3 per time point
694	(male=1-2, female=1-2); WT, n=3 per time point (male=2-3, female=0-1). 19-25 weeks-old
695	mice were used. Representative images from mice taken on Days 1, 3, and 7 p.i.
696	Immunohistochemical analysis at 1 and 3 days p.i. using an anti-MERS-CoV nucleocapsid
697	polyclonal antibody. Hematoxylin and eosin staining at Day 7 p.i. Viral antigen-positive
698	cells are seen both in the bronchi and alveoli of a Tg mouse (left panels, brown color).
699	Some pneumocytes in the Tg mouse are positive for viral antigen, but negative in a
700	TMPRSS2-KO Tg mouse (Day 1 p.i.; left panels, brown color). Several viral
701	antigen-positive cells are seen in the alveoli and bronchi of a Tg mouse on Day 3 p.i., but
702	fewer are present in a TMPRSS2-KO Tg mouse (middle panels, brown color). On Day 7,
703	massive cellar proliferation is observed in the alveoli of a Tg mouse, with numerous

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

	≥
	0
	20
ć	6
	na

nol

704	macrophages and mononuclear cells (right panels, inset). By contrast, multinuclear cells
705	(including neutrophils and eosinophils) are seen in the alveoli of a TMPRSS2-KO Tg
706	mouse (right panels, inset, arrows). Br, bronchi; Al, alveolar area; V, vein. Bars, 20 or 200
707	μm.
708	
709	FIG 6. Recovery from acute pneumonia without granulation tissue in TMPRSS2-knockout
710	hDPP4-transgenic (KO-Tg) mice with MERS-CoV. Histopathological examination of the
711	lungs from hDPP4-Tg (Tg) and KO-Tg mice 14 days after infection with MERS-CoV.
712	Representative images of lungs are from the same animals in Fig. 5a. HE, Hematoxylin and
713	eosin staining; MT, Masson's trichrome staining. A lymphocyte aggregate (*) and cellular
714	infiltrations persisted in the alveolar area of the Tg mouse, whereas infiltrations in KO-Tg
715	mice were mild. No granulation tissues were detected in these mice. Br, bronchi; Al,
716	alveolar area; Bars, 200 or 100 µm.
717	

718 FIG 7. Immune responses in TMPRSS2-knockout (KO) hDPP4-transgenic mice after

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

720	Tg) mice were inoculated with EMC-HCoV (MERS-CoV). (a) The lung homogenates were
721	from the same animals in Fig 5(b) and assays were done using unicate samples per animal.
722	The dotted line indicates the limit of detection. (b) The levels of type I IFN and TLR3
723	mRNA expression in the lungs at 6 h and at 1, 2, and 3 days p.i. Numbers of animals per
724	group were as follows: KO-Tg, n=4 per time point (male=0-1, female=3-4); Tg, n=4 per
725	time point (male=1-2, female=2-3). Mice of 13-22 weeks-old were used. Expression of
726	each gene was normalized to that of β -actin. Error bars represent standard errors. P-values
727	for the graph were calculated by ANOVA. *, p<0.05; **, p<0.01.
728	
729	FIG 8. Immune responses after intranasal inoculation of mice with poly (I:C).
730	Concentrations of inflammatory cytokines and chemokines in the lungs at 24 h
731	post-infection. The assays were done using unicate samples per animal. Numbers of
732	animals per group were as follows: WT, n=4 per group (male=2, female=2); KO, n=4 per
733	group (male=2, female=2); Tg, n=4 per group (male=2, female=2); KO-Tg, n=4 per group

infection with MERS-CoV. hDPP4-Tg (Tg) and TMPRSS2-KO hDPP4 (TMPRSS2-KO

719

4 (poly I:C, male=2, female=2; PBS, male=1, female=3). Mice of 14-16 weeks-old were used.

735 Error bars represent standard errors. P-values for the graph were calculated by ANOVA. *,

736 p<0.05.

Br

Days 3 p.i.

Br

Br

С

Br

 \leq

а

Journal of Virology

b

С

Br

 \leq

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest

а

 $\overline{\leq}$

Downloaded from http://jvi.asm.org/ on January 11, 2019 by guest