

LCD Port-Timer/Port Comparator Input

14.2.6.4 Example Using Four-MUX, 1/3-Bias Drive Mode

The four-MUX drive mode uses all four common lines. In this mode, bits 0
through 7 are used for segment information.

Figure 14-17 shows an example four-MUX LCD, pin-out, LCD-to-'430
connections, and the resulting data mapping. Note this is only an example.
Segment mapping in a user's application completely depends on the LCD
pin-out and on the '430-to-LCD connections.

Figure 14-17. Example With the Four-MUX Mode

LCD

DIGIT15 ---------------- DIGIT1

Pinout and Connections Display Memory

Connections
1'430 Pinsl I LCD Pinout I

PIN COMOCOM1COM2COM3
M

COM I 3 I 2 I 1 I 0 I 3 I 2 I 1 I 0 I

AB 03Fh a b c h f 9 e d

SO +-+ 1 ld le 19 11
51 +-+ 2 lh lc lb la

03Eh a b c h f 9 e d

03Dh a b c h f 9 e d
52 +-+ 3 2d 2e 2g 21 03Ch a b c h f 9 e d
53 +-+ 4 2h 2c 2b 2a
54 +-+ 5 3d 3e 3g 31
55 +-+ 6 3h 3c 3b 3a

03Bh a b c h f 9 e d

03Ah a b c h f 9 e d

56 +-+ 7 4d 4e 4g 41 039h a b c h f 9 e d
57 +-+ 8 4h 4c 4b 4a
58 +-+ 9 5d 5e 5g 51
59 +-+ 10 5h 5c 5b 5a

038h a b c h f 9 e d

037h a b c h f 9 e d
510 +-+ 11 6d 6e 6g 61 036h a b c h f 9 e d
511 +-+ 12 6h 6c 6b 6a
512 +-+ 13 7d 7e 7g 71
513 +-+ 14 7h 7c 7b 7a

035h a b c h f 9 e d

034h a b c h f 9 e d
514 +-+ 15 8d 8e 8g 81
515 +-+ 16 8h 8c 8b 8a
516 +-+17 9d ge 9g 91

033h a b c h f 9 e d

032h a b c h f 9 e d

517 +-+ 18 9h 9c 9b 9a 031h a b c h f 9 e d
518 +-+ 19 10d 10e 109 101
519 +-+20 10h 10c lOb lOa
520 +-+ 21 lld lle 11g 111
521 +-+22 l1h llc l1b lla
522 +-+23 12d 12e 12g 121
523 +-+24 12h 12c 12b 12a
524 +-+25 13d 13e 13g 131
525 +-+26 13h 13c 13b 13a
826 +-+27 14d 14e 14g 141

�~�
I I I I I I I I
3 2 1 0 3 2 1 0

U
�~� �~�

Sn+1 Sn

827 +-+28 14h 14c 14b 14a
828 +-+29 15d 15e 15g 151
829 +-+30 15h 15c 15b 15a

COMO +-+ 31 COMO
COMl +-+32 COMl
COM2 +-+33 COM2
COM3 +-+34 COM3

14-20

n =28

26

24

22

20

18

16

14

12

10

8

6

4

2

0

q 3 B
L.......::::...

Digit 15

Digit 14

Digit 13

Digit 12

Digit 11

Digit 10

Digit 9

Digit 8

Digit 7

Digit 6

DigitS

Digit 4

Digit 3

Digit 2

Digit 1

Parallel-
Serial
Conversion

Code t-"X,f'lmOlB'S

14.3 Code Examples

Code examples for the four modes follow.

14.3.1 Example Code for Static LCD

a
b
c
d
e
f
g
h

.sect "lcd1mux",OfOOOh
All eight segments of a digit are often located in four
display memory bytes with the static display method.

.EQU 001h

.EQU 010h

.EQU 002h

.EQU 020h

.EQU 004h

.EQU 040h

.EQU OOSh

.EQU 080h
The register content of Rx should be displayed.
The Table represents the 'on'-segments according to the
content of Rx.

LCD1 .EQU 00031h

LCD15 .EQU 0003Fh

MOV. B Table (Rx), RY

MOV. B Ry, &LCDn

RRA Ry
MOV.B Ry,&LCDn+1

RRA Ry
MOV. B Ry, &LCDn+2

RRA Ry
MOV. B Ry, &LCDn+3

Table .BYTE a+b+c+d+e+f
.BYTE b+c;

. BYTE

Load segment information
into temporary memory.
(Ry) = 0000 0000 hfdb geca
Note:
All bits of an LCD memory

, byte are written
(Ry) = 0000 0000 Ohfd bgec
Note:
All bits of an LCD memory
byte are written
(Ry) = 0000 0000 OOhf dbge
Note:
All bits of an LCD memory

, byte are written
(Ry) = 0000 0000 OOOh fdbg
Note:
All bits of an LCD memory

, byte are written

displays "0"
displays "1"

Uquid Crystal Display Drive 14-21

Code Examples

14.3.2 Example Code for Two MUX, 1/2·Bias LCD

14-22

.sect "lcd2mux",OfOOOh
All eight segments of a digit are often located in two
display memory bytes with the 2MUX display rate

a .EQU 002h
b .EQU 020h
c .EQU 008h
d .EQU 004h
e .EQU 040h
f .EQU OOlh
g .EQU 080h
h .EQU OlOh

The register content of Rx should be displayed.
The Table represents the 'on'-segments according to the
content of Rx.

LCDl .EQU 0003lh

LCD15 .EQU 0003Fh

MOV.B Table(Rx),Ry; Load segment information into
temporary memory.

MOV. B Ry, &LCDn (Ry) = 0000 0000 gebh cdaf
Note:

RRA Ry
RRA Ry
MOV. B Ry, &LCDn +l

Table .BYTE a+b+c+d+e+f

All bits of an LCD memory byte
are written
(Ry) = 0000
(Ry) = 0000
Note:

0000
0000

Ogeb
OOge

hcda
bhcd

All bits of an LCD memory byte
are written

displays "0"

.BYTE a+b+c+d+e+f+g+h displays "8"

. BYTE

Code Examples

14.3.3 Example Code for Three MUX, 1/3-Bias LCD

.sect "lcd3mux",OfOOOh
The 3MUX rate can easily support nine segments for each
digit. The nine segments of a digit are located in
1 1/2 display memory bytes.

a .EQU 0040h
b .EQU 0400h
c .EQU 0200h
d .EQU 0010h
e .EQU 0001h
f .EQU 0002h
g .EQU 0020h
h .EQU 0100h
Y .EQU 0004h

The LSDigit of register Rx should be displayed.
The Table represents the 'on'-segments according to the
LSDigit of register of Rx.
The register Ry is used for temporary memory

LCD1 .EQU 00031h

LCD15 .EQU 0003Fh

ODDDIGRLA Rx LCD in 3MUX has 9 segments per
digit; word table required for
displayed characters.

MOV Table(Rx),Ry; Load segment information to

MOV. B Ry, &LCDn

SWPB Ry
BIC. B #07h, &LCDn +l

BIS. B Ry, &LCDn +l

temporary memo
(Ry) = 0000 Obch
write 'a, g, d, y,
Digit n (LowByte)
(Ry) = Oagd Oyfe
write 'b, c, h' of
(HighByte)

Oagd Oyfe
f, e' of

0000 Obch
Digit n

EVNDIGRLA Rx LCD in 3MUX has 9 segments per
digit; word table required for
displayed characters.

MOV Table(Rx),Ry; Load segment information to

RLA Ry
RLA Ry
RLA Ry
RLA Ry
BIC.B #070h, &LCDn +l

BIS.B Ry, &LCDn +l

SWPB Ry
MOV.B Ry, &LCDn +2

Table .WORD a+b+c+d+e+f
.WORD b+c

. WORD a+e+f+g

temporary memo
(Ry) 0000 Obch
(Ry) 0000 bchO
(Ry) OOOb chOa
(Ry) OObc hOag
(Ry) Obch Oagd

Oagd
agdO
gdOy
dOyf
Oyfe

Oyfe
yfeO
feOO
eOOO
0000

write 'y, f, e' of Digit n+1
(LowByte)
(Ry) = Oyfe 0000 Obch Oagd
write 'b, c, h, a, g, d' of
Digit n+1 (HighByte)

displays "0"
displays "1"

displays "F"

Liquid Crystal Display Drive 14-23

Code Examples

14.3.4 Example Code for Four MUX, 1/3-Bias LCD

14-24

a
b
c
d
e
f
g
h

.sect "lcd4mux",OfOOOh
The 4MUX rate is the most easy-to-handle display rate.
All eight segments of a digit can often be located in
one display memory byte

.EQU 080h

.EQU 040h

.EQU 020h

.EQU 00lh

.EQU 002h

.EQU 008h

.EQU 004h

.EQU 010h

The LSDigit of register Rx should be displayed.
The Table represents the 'on'-segments according to the
content of Rx.

LCDl .EQU 00031h Address of LC Display Memory

LCD15 .EQU 0003Fh

MOV.B Table(Rx),&LCDn

......................

.................... ..

Table . BYTE a+b+c+d+e+f
. BYTE b+c
......................
.................... ..
. BYTE b+c+d+e+g
. BYTE a+d+e+f+g
. BYTE a+e+f+g

n = 1 15
all eight segments are
written to the display
memory

displays "0"
displays "1"

displays "d"
displays "E"
displays "F"

Chapter 15

ADC12+2 A-to-D Converter

The ADC12+2 features include:

o Eight analog or digital input channels

o A programmable current source on four analog pins

o Ratiometric or absolute measurement

o Built-in sample-and-hold

o End-of-conversion interrupt flag

o ADAT register that holds conversion results until the next start of
conversion

o Low-power consumption

o Stand-alone conversion without CPU processing overhead

o Programmable 12-bit or 14-bit resolution

o Four programmable ranges that give 14-bit dynamic range

o Fast-conversion time

o Large supply-voltage range

o Monotonic conversion

Topic Page

15.1 Introduction ... 15-2

15.2 Analog-to-Digital Operation 15-4

15.3 ADC12+2 Control Registers 15-13

15-1

Introduction

15.1 Introduction

The 12+2-bit ADC is a peripheral module accessed using word instructions.
Conversion results are contained in the ADAT register. The converted bits are
visible during a conversion and are immediately available to be read at the end
of conversion in the ADAT register. The conversion result is not cleared until
the next conversion is initiated by setting the SOC bit in the ACTL register. The
SOC bit clears the ADAT register for the new result and starts the ADC12+2
clock for another conversion. Figure 15-1 shows the ADC12+2 module
configuration.

Figure 15-1. ADC12+2 Module Configuration

1S-2

SV ACTL.1, ACTL.12
cc

>--,------~~----------~< AVec
ACTL.2-S

AIN Register

AO
MOB.O

A1
MOB.1

A2
MOB.2

AEN.O

A3
MOB.3

>-------------Mr-.! AEN
A4

AS

AS

A7

Rext

AGND

AEN.x

MOB.4

MOB.S

MOB.S

MOB.7

I MOB.S To MOB.1S

GNO

Analog-To-Digital Converter
RC-Type

r--,
I I
I I
I I

AEN.7

ACTL.O

AOAT 1---l1i4-1" ACTL
I I
I I
I I L __ .l

ACTL.14

MOB, 16 Bit

Introduction

The ADC12+2 module has eight individually-configurable input channels. A
conversion can be made on anyone of these channels at any time. Four of the
channels, AO, A 1, A2, and A3, may also be configured as current source
outputs whose values can be programmed by external resistor Rext. Any of the
current source outputs can be turned on (one at a time) to drive external
sensors in order to make ratiometric measurements. Absolute measurements
can also be made by applying an external reference to pins SVCC or AVoo.

Additionally, the eight channels can be configured as digital inputs. Each input
channel is individually configurable, so each input may be either an analog or
a digital input. The selection is made with the bits in the AEN register. When
used as digital inputs, the values of the digital input signals are read from the
AIN register.

Note:

When sensitive analog conversion takes place, any digital activity on adja­
cent channels may cause crosstalk and interference, giving noisy or incor­
rect conversion results.

The converter has two modes of operation: 12-bit, and 12+2-bit conversion,
depending on the status of ACTL register bit 11. When the range of the input
signal is known the input range may be preselected and the converter can be
used in 12-bit mode. The converter samples the input and then converts it to
12 bits of resolution within anyone of the four ranges (see subsection 15.2.3).

In 12+2-bit mode (setting ACTL register bit 11), the range is automatically
selected by the converter to resolve to 14 bits. The input is sampled twice: once
for the 2-bit range selection, and once again for the remaining 12-bits of the
conversion, to give a 12+2-bit result.

In both modes, when a conversion is completed, the interrupt flag (EOC) is set
automatically. The EOC signal disables the ADC clock to conserve power until
the SOC bit is set again.

Note: ADC, Start-of-Conversion

A conversion must always be completed before the next conversion is
initiated. Otherwise, unpredictable conversion data will result.

When powered-down (Pd bit in ACTL register), the ADC current consumption
is stopped. This is valid while SV CC is not externally driven. Upon a conversion
start-up or a power-up signal the converter wakes up, but it can take up to 6 Ils
to reach steady-state conditions.

ADC12+2 A-to-D Converter 15-3

Analog-to-Digital Operation

15.2 Analog-to-Digital Operation

The following sections describe the ADC12+2 and operation.

15.2.1 AID Conversion

15-4

After power-up, the ACTL register must be programmed to make a ratiometric
or absolute measurement and to manually or automatically select a range. In
manual (12-bit) mode, once the range bits are selected they cannot be
changed during the conversion, as this invalidates the results.

Setting the SOC bit in the ACTL register activates the ADC clock to begin a
new conversion. The conversion is based on a successive approximation
technique that uses a resistor array to resolve the M MSBs first, and uses a
switched capacitor array to resolve the remaining L LSBs.

The resistor array, consisting of 2M individually and equally weighted resistors,
forms a DAC; the capacitor array, conSisting of L capacitors, forms an AID
charge redistribution. The capacitors are binary-weighted. The number of
capacitors corresponds to the converter range, or to the digital-output code
L bits.

The sequence, shown in Figure 15-2, starts by selecting the applicable analog
channel and sampling the analog-input voltage onto the top plates of the
capacitor array. The analog multiplexer is then disconnected from the ADC
and the analog input does not need to be present after this sample period.

A successive approximation is performed on the resistor string to find the tap
that corresponds to a voltage within 2L LSBs of VIN. This yields the VH and
VL voltages across one element of the resistor array, and resolves the M
MSBs. The capacitor array then resolves the difference voltage (VH-VL) to L
bits of resolution using a similar successive approximation search on the
capacitor array, starting with the MSB capacitor.

This switching procedure continues with the MSB or largest capacitor to the
smallest (LSB) capacitor in the capacitor array, whereby the initial charge is
redistributed among the capacitors. The particular setting of the switches (both
in the resistor array and in those connected to the bottom plates of the
capacitors) has then induced a change on the top plate that is as close to the
input voltage (VIN) as possible. The switch settings then correspond to the
binary code [12-bit or 12+2-bit] that represents the fraction VINNREF.

The top plate voltage is monitored by a comparator with built-in input-offset
cancellation circuitry that senses whether the input voltage is less or greater
than the voltage on the top plate. It generates a digital output that determines
the direction of the successive approximation search.

When this sequence is completed, the top plate voltage is as close to zero as
the converter resolution allows, and the LSB is determined. An EOC Signal is
then sent to indicate that the conversion result is available from the ADAT
register.

Figure 15-2. ADC12+2 Schematic

~ ACTL.1 (SVccon)

-c--:>.-----I~ ACTL.12(Pd)

Rex! <=><---+-1
2M D<:+ __ ,......--I

0.75 SVCC

C 5+--,......--1 Resistor

B 5+--+--1 Decoder

A~+--+--I

Range
MUX

Analog-to-Digital Operation

AGND <=:>L-t-+--1H-.
ACTL.9,10 ----t---....

ACTL.11

ACTL.O AO<=>-+-~~-~
A1 <=>-+-14--+-1 8:1
A2 -C->-+-<_--t-I Input
~ ~ ~~-----~~++~~~++~--~~-~
MC>-----1-1
A51>-----~
A6L>-----~
A7L>-.----~

15.2.1.1 AID Conversion Timing

Input
MUX

ACTL 2.4

ACTL .5

ACTL.14 ACTL.O

MDB,16Bit

After the ADC12+2 module is activated (Pd bit is reset), at least 6 Ils must
elapse before a new conversion is attempted in order to allow the correct
internal biases to be established.

The ADC always runs at one-twelfth the clock rate of the ADCLK. ADCLK is
always MCLK divided by 1, 2, 3, or 4. The ADCLK frequency must be chosen
to meet the conversion time defined in the electrical characteristics (see
device's data sheet). The ADCLK frequency is selected with two bits (ADCLK)
in control register ACTL. If the ADCLK is too fast, an accurate conversion to
12 bits cannot be guaranteed due to the internal time constants associated
with analog input sampling and the conversion network. Also, if the ADCLK is
too slow, an accurate conversion to 12 bits cannot be guaranteed, due to
charge loss within the ADC-capacitor array, even if the input signal is valid and
steady for the required acquisition time.

Sampling the analog input signal takes 12 ADCLK pulses, and the 12-bit
conversion takes 84 (12 x 7) additional ADCLK cycles. Therefore, a 12-bit
conversion with a preselected range takes 96 ADCLK cycles. This is illustrated
in Figure 15-3.

ADC12+2 A-to-D Converter 15-5

Analog-to-Digital Operation

Figure 15-3. ADC12+2 Timing, 12-BitConversion

ADCLKl12

SOC
-----':

Sample ----I

EOC

I

1RXX50

End Of Conversion
I
I

SAR.~11---{:====~========~Co~n~w~rt~in~N~B~im~================t-~~~
~ ~ I •

A2D Mode, Rangel Input Data Valid I New
Channel Selected Valid and Latched I Conversion

In 12+2-bit mode, the analog input signal is sampled twice, each sampling
taking twelve ADCLK clock pulses. After the first sampling of the input signal,
the range conversion occurs and takes 24 ADCLK clocks. After the second
sampling of the input signal (the second sampling occurs automatically), the
12-bit conversion occurs and takes 84 (12 x 7) additional ADCLK clock cycles.
Altogether, the 12+2-bit conversion takes 132 ADCLK cycles as illustrated in
Figure 15-4.

Figure 15-4. ADC12+2 Timing, 12+2-Bit Conversion

15-6

_----..- Power-Up Time

ADCLKl12

PD

SOC __ ---'

Sample
----1

EOC

Start Of Conversion

I
I I

I I~
I I

~--~v--i------------------------~1~6OOC~~ 1 r I
I I End Of Conversion

~ ~ A2D Mode, Range, Input ~ Data Valid
and Latched

Channel Selected Valid
Input
Valid

The input signal must be valid and steady during the sampling period for an
accurate conversion (Figure 15-5). To ensure that supply glitching and ground
bounce errors or crosstalk interferences do not corrupt the results, avoid digital
activity on channels adjacent to the analog input during the conversion.

Analog-to-Digital Operation

Figure 15-5. ADC, Input Sampling Timing

ADCLK

I Start Of Conversion
SOC r
--~ ~---------------------------

ADCLKl12 ___ --+-1 _________ ---', ,'-___ _

Ir---------------------------------, Sample ----fV Sampling Input ,,'-___ _

--~~ I
I I

EOC

SAR.D-13 (I Converting N Bits -----1+ ___ ------- Input Valid ----------.. ..
A2D Mode, Range, -I
Channel Selected

INPUT

15.2.2 AID Interrupt

15.2.3 AID Ranges

____ ------~sa~m~p~lin~g~lnp~u~t-------------~1-------
l---
The ADC12+2 uses the charge redistribution method and thus the internal
switching of the inputs for sampling causes displacement currents to flow in
and out of the analog inputs. These current spikes or transients occur at the
leading and falling edges of the internal sample pulse. They quickly decay and
settle before causing any problems, because the time constant is less than
that of the effective internal RC. Internally, the analog inputs see a nominal RC
consisting of a nominal40-pF (C-array) capacitor in series with a nominaI2-i<n
resistor (Ron of switches). However, if the external dynamic-source impedance
is large, these transients might not settle within the allocated sampling time to
within 12 or 12+2 bits of accuracy.

When an AID conversion is complete, the EOC signal goes high, setting the
interrupt flag ADIFG. The ADIFG flag is located in the SFR registers in IFG2.2.
The flag is automatically reset when the interrupt is serviced.

Two additional bits control the generation of a CPU interrupt: The ADIE bit in
the SFR register (IE2.2) and the GIE bit. The ADIE bit is an individual bit to
enable or disable the AID interrupt-its initial state is reset. The GIE bit is the
global interrupt enable bit. When both bits are set, a CPU interrupt is generated
at the end of an AID conversion.

One of four ranges can be selected manually to yield 12 bits of resolution within
any given range. The range is defined with bits ACTL.9 and ACTL.1 0 prior to
conversion. The converter can also find the appropriate range automatically,
resulting in an overall 12+2-bit conversion.

ADC12+2 A-to-D Converter 15-7

Analog-to-Digital Operation

The ranges are:

0.00 x VREF ::; VIN < 0.25 x VREF

0.25 x VREF ::; VIN < 0.50 x VREF

0.50 x VREF ::; VIN < 0.75 x VREF

0.75 x VREF::; VIN < 1.00 x VREF

Where:

Range A

Range B

Range C

Range D

VREF is the voltage at the SV cc pin, either applied externally or derived by
closing the SVcc switch with bit 12 of the ACTL register.

After the proper range is selected, the input channel, selected by the
applicable bits in the control register, is connected to the converter input. The
ADC processes the signal at the selected input channel, and the software can
then access the conversion result through the AD AT register.

The digital code (decimal) expected within anyone range is:

N = INT \ VIN x 214 _ 213 x ACTL.10 - 212 x ACTL.9\
tyP VREF

Where:

ACTL.10 and ACTL.9 are bits 10 and 9 (respectively) in the ACTL register.

Thus, for a 12-bit conversion, the ranges are:

OOQOh ::; N ::; OFFFh

OOOOh ::; N ::; OFFFh

OOOOh ::; N ::; OFFFh

OOOOh ::; N ::; OFFFh

and for a 12+2-bit conversion:

OOOOh ::; N ::; 3FFFh

Note: ADC12+2 Offset Voltage

Range A

Range B

Range C

Range D

Any offset voltage (Vio) due to voltage drops at the bottom or top of the
resistor array, caused by parasitic impedances to the SV cc pin or the ground
AGND pin, distorts the digital code output and formula.

15.2.4 AID Current Source

15-8

When the ADC12+2 is used in sensor applications in conjunction with resistive
elements, current sources may be required so that the input signal can be
referred back to the supply voltage or voltage reference. This allows a
ratiometric measurement independent of the accuracy of the reference.

One of four analog channels can be used for the current-source output, as
shown in Figure 15-6. The current-source (Isource) output can be
programmed by an external resistor (Rext) and is then available on pins AO,
A 1, A2, and A3, with the value:

Isource = (0.25 x SVCc)/Rext

Analog-to-Digital Operation .
Where:

SV CC is the voltage at pin SV CC, and Rext is the external resistor between
pins SV CC and Rext.

Therefore, for ratiometric measurements, the voltage (Vin), developed across
the channel input with the resistive elements (channels AO, A1, A2, and A3
only) is:

Yin = (0.25 x sv cd x (Rsens/Rext)

Where:

Rsens is the external resistive element.

Figure 15-6. AID Current Source

~ ACTL.1 (SVccon)

<=~--j~ ACTL.12(Pd)

0
Rext

0.75 SVcc

Rsens [AGNO

M<->-~r+~---;

C

B

A

2M

2M
Resistor

2M
Decode

2M

A1 <=>-+-~-----j 8:1
A2 ~>-+-i~-------J Input
A3 cY"O 1--"-----------
MC>-----------j
A51>-------------J
MLY-----------;
A7L>-----------;

15.2.5 Analog Inputs and Multiplexer

ACTL2.4

Input

The analog inputs and the multiplexer are described in the following sections.

15.2.5.1 Analog Inputs

The analog-input signal is sampled onto an internal capacitor and held during
conversion. The charge is supplied by the input source, and the charging time
is defined to be twelve ADCLK clocks. Therefore, the external source
resistances and dynamic impedances must be limited so that the RC time
constant is short enough to allow the analog inputs to completely settle to
12-bit accuracy within the allocated sampling time. This time constant is
typically less than 0.8/fADCLK.

High source impedances have an adverse affect on the accuracy of the
converter, not only due to RC-settling behavior, but also due to input voltage
drops as a result of leakage current or averaged dc-input currents (input

ADC12+2 A-to-D Converter 15-9

Analog-to-Digital Operation

switching currents}. Typically, for a 12-bit converter, the error in LSBs due to
leakage current is:

Error (LSBs) = 4 x (IlA of leakage current) x (kQ of source resistance}/(volt
of VREF).

Example: 50-nA leakage, 10-kQ source resistance, 3-V VREF results in
0.7 LSBs of error.

This also applies to the output impedance of the voltage-reference source
VREF. The impedance must be low enough to enable the transients to settle
within (0.2/ ADCLK) seconds and to generate leakage-current-induced errors of
« 1LSB.

15.2.5.2 Analog Multiplexer

The analog multiplexer selects one of eight single-ended input channels, as
determined by the ACTL register bits. It is based on a T-switch to minimize the
coupling between channels, which corrupts the analog input. Channels that
are not selected are isolated from the ADC and the intermediate node
connected to the analog ground (AGND) so that the stray capacitance is
grounded to eliminate crosstalk.

Figure 15-7. Analog Multiplexer

R-100 Q ,...----.-....--- ACTL.9,1 0

Input

ESD Protection

OV

Crosstalk exists because there is always parasitic coupling capacitance
across and between switches. This can take several forms, such as coupling
from the input to the output of an off switch, or coupling from an off-analog input
channel to the output of an adjacent on output channel, causing errors. Thus,
for high-accuracy conversions, crosstalk interference must be minimized
through shielding and other well-known printed-circuit board (PCB) layout
techniques.

15.2.6 AID Grounding and Noise Considerations

15-10

As with any high-resolution converter (~ 12 bits), care and special attention
must be given to the printed-circuit board layout and the grounding scheme to
eliminate ground loops and any unwanted parasitic components/effects and
noise. Many common techniques are documented in application notes that
address these issues.

Ground loops can be formed when the ADC12+2 resistor-divider return
current flows through traces that are common to other analog or digital

Analog-to-Digital Operation ___________________________ '_._I1_'_.n_~l __________ w_~!_, ___________________________ _

circuitry. This current can generate small unwanted offset voltages that can
add to or subtract from the ADC reference or input voltages. One way to avoid
ground loops is to use a star-connection scheme forthe AGND; in this way, the
ground or reference currents do not flow through any common input leads,
eliminating any voltage errors (see Figure 15-8).

Figure 15-8. AID Grounding and Noise Considerations

VREF +
-

AID AVec

$O.'"F SVCC Tantalum Ceramic

RTOP (Internal)
-=

RBOT (Internal)

DVCC
AO. . . 7 7 O.'"F Tantalum Ceramic

AGND

DGND

The digital ground (DGND) and the analog ground (AGND) can also be star­
connected together. However, if separate supplies are used, two reverse­
biased diodes limit the voltage difference to less than ± 700 mV (see
Figure 15-8).

Power-supply rippling and noise spikes from digital switching or switching
power supplies can cause conversion errors. Normally, the internal ADC noise
is very small and the total input-referred noise is far less than one LSB, so the
output code is fairly stable. However, as noise couples into the device through
the supply and ground, the noise margin is reduced, and code uncertainty and
jitter can result. Several readings might be required to average out the noise
effects.

Another consequence of noise is that, as one of the reference voltages SVCC
or VREF is reduced, the absolute value of the LSB is also reduced. Therefore,
the noise becomes even more dominant. Thus, a clean, noise-free design
becomes even more important to achieve the desired accuracy.

In addition to physical layout techniques, adding carefully-placed bypass
capacitors returned to the respective ground planes helps to stabilize the
supply current and minimize the noise.

ADC12+2 A-to-D Converter 15-11

Analog-to-Digital Operation

15.2.7 AID Converter Input and Output Pins

15.2.7.1 Input Pins

The following sections describe the various ADC12+2 pins.

There are two different types of input signals: analog signals AO through A7,
and signals ISOURCE and SVcc. The input signals coming from channels AO
to A7 are configurable as ADC analog signals or as digital inputs (see
Figure 15-9). Pin SVCC is used as an output or input. It is an input when the
internal SVcc switch is off and the VREF is applied externally. It is an output
when the internal SVcc switch is on.

Figure 15-9. ADC12+2lnput Register, Input Enable Register

ACTL.2-S

AO

A1

A2

A3

A4

AS

A6

A?

Fromffo AOC

lS-12

AOx
1+---. MOB.O

A1x
1+----" MOB.1

•
•
• A2x 1+---. MOB.2 -----.1

A3x
1+----" MOB.3 -----.1

A4x
1+----. MOB.4

ASx 1+---. MOB.S

A6x
1+----. MOB.6

A?x

•
•
•
• 1+---. MOB.? -----.1

AIN 1- MOB.S To MOB.1S

Register

16

MOB

AEN REG

AEN.O

AEN.1

AEN.2

AEN.3

AEN.S

AEN.6

AEN.?

15.2.7.2 Output Pins

15.2.7.3 Supply Pins

ADC12+2 Control Registers

There are two different types of output signals: outputs AO, A 1, A2, A3, and
output SVcc. Current flows out of one of the analog pins AO, A1, A2, A3 if the
current source function is selected. An external resistor between Rext and
SV CC determines the amount of current. The SV CC pin outputs a voltage just
below AVcc when the SVcc switch is on.

There are four supply pins to split the digital and analog current paths: AVcc,
DV cc' AGND, and DGND. Some of the MSP430 family members may have all
four supply pins bonded out, while others may have analog and digital Vcc
and/or GND rails internally connected. Check the specific device's data sheet
for configuration.

15.3 ADC12+2 Control Registers

The four ADC12+2 control registers are described in Table 15-1.

Table 15-1. ADC 12+2 Control Registers

15.3.1

Register Short Form Register Type Address Initial State

Input AIN Read only 0110h

Input enable AEN Read/write 0112h Reset

ADC control ACTL Read/write 0114h See Figure 15-13

Reserved 0116h

ADC Data ADAT Read 0118h

Input Register AIN

When any of the inputs AO to A7 are configured as digital inputs, the digital
values are read from the AIN register.

Input register AIN is a read-only register connected to the 16-bit MDB;
however, only the register low byte is implemented. MDB.O to MDB.7
correspond to AO to A7 as shown in Figure 15-10. The register high byte is
read as OOh.

Figure 15-10. Input Register AIN

AIN
110h

MOB. 15
MOB. 8

MOB. 7 MOB. 0

A7x A6x A5x A4x A3x A2x A1x AOx

The signal at the corresponding input is logically ANDed with the applicable
enable Signal (see Figure 15-9). Unselected (disabled) bits are read as O.

ADC12+2 A-to-D Converter 15-13

ADC12+2 Control Registers

15.3.2 Input Enable Register AEN

Input enable register AEN, shown in Figure 15-11, is a read/write register
connected to the 16-bit MDB; however, only the register low byte is
implemented. MDB.O to MDB.7 correspond to AO to A7. The register high byte
is read as OOh.

Figure 15-11. Input Enable Register AEN

AIN
112h

MOB. 15
MOB. 8

MOB. 7 MOB. 0

rO rO rO rO rO rO rO rO rw-O rw-O rw-O rw-O rw-O rw-O rw-O rw-O

The input enable register bits control the definition of the individual bit:

AEN.x = 0: Analog input. The bit read while accessing the AIN register is O.

AEN.x = 1: Digital input. The bit read while accessing the AIN register
represents the logic level at the applicable pin.

The initial state of all AEN bits is reset.

15.3.3 ADC12+2 Data Register ADAT

The ADC data register (ADAT), shown in Figure 15-12, holds the result of the
analog-to-digital conversion. The register data at the end of a conversion are
correct until another conversion begins by setting the SOC bit.

Figure 15-12. ADC12+2 Data Register ADAT

MOB. 15 MOB. 0

t t t t t t t ttl 1 1 t ttl
AOAT I
0118h 0 I 0 10 I 0 I MSB I I I I I I I I I I I LSB I

rO rO rO rO

MOB. 15 MOB. 0

t ! t t t t t ttl 1 1 t ttl
AOAT I
0118h

15-14

o I 0 I RA 1 I RAO IMSB I I I I I I I I I I I LSB I
rO rO

ACTL.11 = 0

ACTL.11 = 1

AOC12+2 Contro/I-l&>,,,,<:j'&>r<:

15.3.4 ADC12+2 Control Register ACTL

The ADC12+2 control register (ACTL) is illustrated in Figure 15-13.

Figure 15-13. AOC12+2 Control Register ACTL

ACTL
0114h

MDB.15 MDB.O

rO rw-O rw-O rw-1 rw-O rw-O rw-O rw-O rw-O rw-O rw-O rw-O rw-O rw-O rw-O (w)r-O

Bit 0: Start of conversion
Setting this bit starts the ADC conversion. It is automatically reset.

Bit 1: Source of VREF
ACTL.1 = 0: Switch SVee is off. The ADC reference voltage

must be supplied from an external source.
ACTL.1 = 1: Switch SVee is on. The SVee pin is connected to

Vee internally and configured as an output. The
ADC reference voltage must not be supplied from
an external source.

Bits 2-5: AID input selection
These bits select the channel for conversion as described in
Table 15-2. Channels should be changed only after completing a
conversion. Changing the channel while a conversion is active
invalidates the conversion in progress.

Table 15-2.AlO Input Selection

ACTL.5 ACTL.4 ACTL.3 ACTL.2 Channel

0 0 0 0 AO

0 0 0 A1

0 0 0 A2

0 0 A3

0 0 0 A4

0 0 1 A5

0 0 A6

0 1 1 1 A7

X X X NONE

Bits 6-8: AID current source output selection
These bits select the channel for current source output as
described in Table 15-3. Channels should be changed only after
completing a conversion. Changing the channel while a conversion
is active invalidates the conversion in progress.

ADC12+2 A-to-O Converter 15-15

ADC12+2 Control Registers

Table 15-3. AID Current Source Selection

ACTL.8 ACTL.7 ACTL.6 Channel

0 0 0 AO

0 0 A1

0 0 A2

0 A3

X X NONE

Bits 9-11 : Range selection
These bits select the range for 12-bit mode conversion as
described in Table 15-4. They must not be changed after a
conversion starts. Any manipulation of these bits during
conversion results in incorrect conversion data. Their states are
ignored when 12+2-bit mode is selected.

Table 15-4. Range Selection

ACTL.11 ACTL.10 ACTL.9 Range

0 0 0 A

0 0 B

0 0 C

0 1 D

X X Auto

Bit 11: Conversion mode

Bit 12:

ACTL.11 = 0: 12-bit mode selected. The range selection bits
ACTL.9 and ACTL.1 0 must be used for manual
range selection.

ACTL.11 = 1: 12+2-bit mode selected. The automatic range
selection is active. The state of the range
selection bits ACTL.9 and ACTL.1 0 is don't care.

Power down (Pd)
ACTL.12 = 0: ADC12+2 is powered. Note, the ADC12+2

needs about 611S to stabilize after bit Pd is reset.
ACTL.12 = 1: SV CC switch is off.

Comparator is powered down.
Current source is off.

Bit 13, 14: ADCLK
The ADC12+2 clock is selected as described in Table 15-5.

Table 15-5.ADCLK Clock Frequency

Bit 15:

15-16

ACTL.14 ACTL.13

Reserved

o 0

o 1

o

ADCLK

MCLK

MCLKl2

MCLKl3

MCLKl4

lUI III

Appendix A

Peripheral File Map
1111

This appendix summarizes the MSP430x3xx peripheral file (PF) and control­
bit information into a single location for reference.

Each PF register is presented as a row of boxes containing the control or status
bits belonging to the register. The register symbol (e.g. POIN) and the PF hex
address are to the left of each register.

Topic Page

A.1 Overview•..•.....•......••....•••.....••.••.•............ A-2

A.2 Special Function Register of MSP430x3xx Family, Byte Access ... A-2

A.3 Digital va, Byte Access•.••.••.•.•..•.••••..•..••.....•.•• A-3

A.4 LCD Registers, Byte Access A-5

A.S 8-Bit Timer/Counter, Basic Timer, Timer/Port, Byte Access ..••••• A-6

A.6 FLL Registers, Byte Access A-6

A.7 EPROM Control Register and Crystal Buffer, Byte Access ..•.•... A-7

A.S USART, UART Mode (Sync::O), Byte Access ...•................• A-7

A.9 USART SPI Mode (Sync::1), Byte Access A-8

A.10 ADC12+2, Word Access•....•.•.•...•••••..••..•••....••• A·9

A.11 Watchdog/Timer, Word Access A-10

A.12 Hardware Multiplier, Word Access ...••..•.•.•••............••. A-10

A.13 TimecA Registers, Word Access A-11

A-1

Overview

A.1 Overview

Bit accessibility and/or hardware definitions are indicated following each bit
symbol:

0 rw: Read/write

0 r: Read only

0 rO: Read as 0

0 r1 : Read as 1

0 w: Write only

0 wo: Write as 0

0 w1: Write as 1

0 (w): No register bit implemented; writing a 1 results in a
pulse. The register bit is always read as O.

0 hO: Cleared by hardware

0 h1 : Set by hardware

0 -0,-1: Condition after PUC signal active

0 -(0),-(1): Condition after POR signal active

The tables in the following sections describe byte access to each peripheral
file according to the previously-described definitions.

A.2 Special Function Register of MSP430x3xx Family, Byte Access

OOOFhrl ____ -; ______ +-____ _;------+-----~r_----_;------_;------_;

Module enable 2, ME2
0005h

Module enable 1, ME1
0004h

Interrupt flag 2, IFG2
0003h

Interrupt flag 1, IFG1
0002h

Interrupt enable 2, IE2
0001h

Interrupt enable 1, IE1
OOOOh

I

BTIFG
rw

BTIE
rw-O

t ADIE - ADC12+2 interrupt enable (32x devices)
TPIE - Timer/Port interrupt enable (31x devices)

:j:TPIE - Timer/Port interrupt enable (32x, 33x devices)

NMIIFG
rw-O

ADIFG
rw-O

POIFG.1 POIFG.O
rw-O rw-O

TPIE:j: ADIEt

rw-O TPIEt
rw-O

POIE.1 POIE.O
rw-O rw-O

Note: SFR bits are not implemented on devices without the corresponding peripheral.

A-2

UTXE
URXE

rw-O
USPIIE

rw-O

UTXIFG URXIFG
rw-O rw-O

OFIFG WDTIFG
rw-1 rw-O

UTXIE URXIE
rw-O rw-O

OFIE WDTIE
rw-O rw-O

A.3 Digital 110, Byte Access

Bit# -

Function select, P4SEL
001Fh

Direction register, P4DIR
001Eh

Output register, P40UT
001Dh

Input register, P41N
001Ch

Function select, P3SEL
001Bh

Direction register, P3DIR
001Ah

Output register, P30UT
0019h

Input register, P31N
0018h

0017h

0016h

Interrupt enable, POlE
0015h

Interrupt edge select, POlES
0014h

Interrupt flags, POIFG
0013h

Direction register, PODIR
0012h

Output register, POOUT
0011h

Input register, POIN
0010h

7

P4SEL.7
rw-O

P4DIR.7
rw-O

P40UT.7
rw

P41N.7
r

P3SEL.7
rw-O

P3DIR.7
rw-O

P30UT.7
rw

P31N.7
r

POIE.7
rw-O

POIES.7
rw

POIFG.7
rw-O

PODIR.7
rw-O

POOUT.7
rw

POIN.7
r

6

P4SEL.6
rw-O

P4DIR.6
rw-O

P40UT.6
rw

P41N.6
r

P3SEL.6
rw-O

P3DIR.6
rw-O

P30UT.6
rw

P31N.6
r

POIE.6
rw-O

POIES.6
rw

POIFG.6
rw-O

PODIR.6
rw-O

POOUT.6
rw

POIN.6
r

5 4

P4SEL.5 P4SEL.4
rw-O rw-O

P4DIR.5 P4DIRA
rw-O rw-O

P40UT.5 P40UTA
rw rw

P41N.5 P41NA
r r

P3SEL.5 P3SEL.4
rw-O rw-O

P3DIR.5 P3DIRA
rw-O rw-O

P30UT.5 P30UTA
rw rw

P31N.5 P31N.4
r r

POIE.5 POIEA
rw-O rw-O

POIES.5 POIESA
rw rw

POIFG.5 POIFGA
rw-O rw-O

PODIR.5 PODIR.4
rw-O rw-O

POOUT.5 POOUTA
rw rw

POIN.5 POINA
r r

Access

3 2 o
P4SEL.3 P4SEL.2 P4SEL.1 P4SEL.O

rw-O rw-O rw-O rw-O

P4DIR.3 P4DIR.2 P4DIR.1 P4DIR.O
rw-O rw-O rw-O rw-O

P40UT.3 P40UT.2 P40UT.1 P40UT.O
rw rw rw rw

P41N.3 P41N.2 P41N.1 P4IN.O
r r r r

P3SEL.3 P3SEL.2 P3SEL.1 P3SEL.O
rw-O rw-O rw-O rw-O

P3DIR.3 P3DIR.2 P3DIR.1 P3DIR.O
rw-O rw-O rw-O rw-O

P30UT.3 P30UT.2 P30UT.1 P30UT.O
rw rw rw rw

P31N.3 P31N.2 P31N.1 P3IN.O
r r r r

POIE.3 POIE.2 t t
rw-O rw-O rO rO

POIES.3 POIES.2 POIES.1 POIES.O
rw rw rw rw

POIFG.3 POIFG.2 t t
rw-O rw-O rO rO

PODIR.3 PODIR.2 PODIR.1 PODIR.O
rw-O rw-O rw-O rw-O

POOUT.3 POOUT.2 POOUT.1 POOUT.O
rw rw rw rw

POIN.3 POIN.2 POIN.1 POIN.O
r r r r

t These interrupt enable bits and flags are included in the SFR frame.

Peripheral File Map A-3

Digita//IQ, Byte Access (Continued)

A.3 Digital 110, Byte Access (Continued)

Bit #-

002Fh

Function select, P2SEL
002Eh

Interrupt enable, P21E
002Dh

Interrupt edge select, P21ES
002Ch

Interrupt flags, P21FG
002Bh

Direction register, P2DIR
002Ah

Output register, P20UT
0029h

Input register, P21N
0028h

0027h

Function select, P1 SEL
0026h

Interrupt enable, P11E
0025h

Interrupt edge select, P11ES
0024h

A-4

Interrupt flags, P11FG
0023h

Direction register, P1DIR
0022h

Output register, P10UT
0021h

Input register, P11N
0020h

7

P2SEL.7
rw-O

P21E.7
rw-O

P2IES.7
rw

P2IFG.7
rw-O

P2DIR.7
rw-O

P20UT.7
rw

P21N.7
r

P1SEL.7
rw-O

P11E.7
rw-O

P1IES.7
rw

P1IFG.7
rw-O

P1DIR.7
rw-O

P10UT.7
rw

P11N.7
r

6 5

P2SEL.6 P2SEL.5
rw-O rw-O

P21E.6 P21E.5
rw-O rw-O

P2IES.6 P2IES.5
rw rw

P2IFG.6 P2IFG.5
rw-O rw-O

P2DIR.6 P2DIR.5
rw-O rw-O

P20UT.6 P20UT.5
rw rw

P21N.6 P21N.5
r r

P1SEL.6 P1SEL.5
rw-O rw-O

P11E.6 P11E.5
rw-O rw-O

P1IES.6 P1IES.5
rw rw

P1IFG.6 P1IFG.5
rw-O rw-O

P1DIR.6 P1DIR.5
rw-O rw-O

P10UT.6 P10UT.5
rw rw

P11N.6 P11N.5
r r

4

P2SEL.4
rw-O

P21E.4
rw-O

P2IES.4
rw

P2IFG.4
rw-O

P2DIR.4
rw-O

P20UT.4
rw

P2IN.4
r

P1SEL.4
rw-O

P1IE.4
rw-O

P1IES.4
rw

P1IFG.4
rw-O

P1DIR.4
rw-O

P10UT.4
rw

P1IN.4
r

3 2 o

P2SEL.3 P2SEL.2 P2SEL.1 P2SEL.O
rw-O rw-O rw-O rw-O

P21E.3 P21E.2 P21E.1 P21E.O
rw-O rw-O rw-O rw-O

P2IES.3 P2IES.2 P2IES.1 P2IES.O
rw rw rw rw

P2IFG.3 P2IFG.2 P2IFG.1 P2IFG.O
rw-O rw-O rw-O rw-O

P2DIR.3 P2DIR.2 P2DIR.1 P2DIR.O
rw-O rw-O rw-O rw-O

P20UT.3 P20UT.2 P20UT.1 P20UT.O
rw rw rw rw

P21N.3 P21N.2 P21N.1 P2IN.O
r r r r

P1SEL.3 P1SEL.2 P1SEL.1 P1SEL.O
rw-O rw-O rw-O rw-O

P11E.3 P11E.2 P11E.1 P1IE.O
rw-O rw-O rw-O rw-O

P1IES.3 P1IES.2 P1IES.1 P1IES.O
rw rw rw rw

P1IFG.3 P1IFG.2 P1IFG.1 P1IFG.O
rw-O rw-O rw-O rw-O

P1DIR.3 P1DIR.2 P1DIR.1 P1DIR.O
rw-O rw-O rw-O rw-O

P10UT.3 P10UT.2 P10UT.1 PlOUT.O
rw rw rw rw

P11N.3 P11N.2 P11N.1 P1IN.O
r r r r

A.4 LCD Registers, Byte Access

Bit#­

LCD memory 15
003Fh

LCD memory 14
003Eh

LCD memory 13
003Dh

LCD memory 12
003Ch

LCD memory 11
003Bh

LCD memory 10
003Ah

LCD memory 9
0039h

LCD memory 8
0038h

LCD memory 7
0037h

LCD memory 6
0036h

LCD memory 5
0035h

LCD memory 4
0034h

LCD memory 3
0033h

LCD memory 2
0032h

LCD memory 1
0031h

LCD control & mode, LCDC
0030h

7

S29C3
rw

S27C3
rw

S25C3
rw

S23C3
rw

S21C3
rw

S19C3
rw

S17C3
rw

S15C3
rw

S13C3
rw

S11C3
rw

S9C3
rw

S7C3
rw

S5C3
rw

S3C3
rw

S1C3
rw

LCDM7
rw-O

6

S29C2
rw

S27C2
rw

S25C2
rw

S23C2
rw

S21C2
rw

S19C2
rw

S17C2
rw

S15C2
rw

S13C2
rw

S11C2
rw

S9C2
rw

S7C2
rw

S5C2
rw

S3C2
rw

S1C2
rw

LCDM6
rw-O

5

S29C1
rw

S27C1
rw

S25C1
rw

S23C1
rw

S21C1
rw

S19C1
rw

S17C1
rw

S15C1
rw

S13C1
rw

S11C1
rw

S9C1
rw

S7C1
rw

S5C1
rw

S3C1
rw

S1C1
rw

LCDM5
rw-O

LCD Registers, Byte Access

4 3 2 o
S29CO S28C3 S28C2 S28C1 S28CO

rw rw rw rw rw

S27CO S26C3 S26C2 S26C1 S26CO
rw rw rw rw rw

S25CO S24C3 S24C2 S24C1 S24CO
rw rw rw rw rw

S23CO S22C3 S22C2 S22C1 S22CO
rw rw rw rw rw

S21CO S20C3 S20C2 S20C1 S20CO
rw rw rw rw rw

S19CO S18C3 S18C2 S18C1 S18CO
rw rw rw rw rw

S17CO S16C3 S16C2 S16C1 S16CO
rw rw rw rw rw

S15CO S14C3 S14C2 S14C1 S14CO
rw rw rw rw rw

S13CO S12C3 S12C2 S12C1 S12CO
rw rw rw rw rw

S11CO S10C3 S10C2 S10C1 S10CO
rw rw rw rw rw

S9CO S8C3 S8C2 S8C1 S8CO
rw rw rw rw rw

S7CO S6C3 S6C2 S6C1 S6CO
rw rw rw rw rw

S5CO S4C3 S4C2 S4C1 S4CO
rw rw rw rw rw

S3CO S2C3 S2C2 S2C1 S2CO
rw rw rw rw rw

S1CO SOC3 SOC2 SOC1 SOCO
rw rw rw rw rw

LCDM4 LCDM3 LCDM2 LCDM1 LCDMO
rw-O rw-O rw-O rw-O rw-O

Note: The LCD memory bits are named with the MSP430 convention. The first part of the bit name indicates the corresponding
segment line and the second indicates the corresponding common line.
Example for a segment using S4 and Com3: S4C3

Peripheral File Map A-5

a-Bit Timer/Counter, Basic Timer, Timer/Port, Byte Access

A.S 8-Bit Timer/Counter, Basic Timer, Timer/Port, Byte Access

Bit#­

Timer/Port enable reg.,
TPE

04Fh

7

TPSSEL3
rw-O

6

TPSSEL2
rw-O

Timer/Port data reg., TPD
04Eh

B16
rw-O

CPON
rw-O

Timer/Port counter1 ,
TPCNT2

04Dh

Timer/Port counter1 ,
TPCNT1

04Ch

Timer/Port control reg.,
TPCTL

04Bh

Counter data, 8-Bit
Basic Timer, BTCNT2

0047h

Counter data, 8-Bit
Basic Timer, BTCNT1

0046h

0045h

Counter data, 8-Bit
Timer/Counter, TCDAT

0044h

Preload register, 8-Bit
Timer/Counter, TCPLD

0043h

Control register, 8-Bit
Timer/Counter, TCCTL

0042h

0041h

Basic Timer, BTCTL
0040h

27
rw

27
rw

TPSSEL1
rw-O

27
rw

27
rw

TCDAT.7
rw

TCPLD.7
rw

SSEL1
rw-O

SSEL
rw

26
rw

26
rw

TPSSELO
rw-O

26
rw

26
rw

TCDAT.6
rw

TCPLD.6
rw

SSELO
rw-O

Hold
rw

A.6 FLL Registers, Byte Access

A-6

Bit#­

Frequency control, SCFQCTL
0052h

Frequency integrator, SCFI1
0051h

Frequency integrator, SCFIO
0050h

7

M
rw-O

29
rw-O

0
r

6

26
rw-O

28
rw-O

0
r

5

TPE.5
rw-O

TPD.5
rw-O

25
rw

25
rw

ENB
rw-O

25
rw

25
rw

TCDAT.5
rw

TCPLD.5
rw

ISCTL
rw-O

DIV
rw

5

25
rw-O

27
rw-O

0
r

4 3 2

TPEA TPE.3 TPE.2 TPE.1
rw-O rw-O rw-O rw-O

TPDA TPD.3 TPD.2 TPD.1
rw-O rw-O rw-O rw-O

24 23 22 21
rw rw rw rw

24 23 22 21
rw rw rw rw

ENA EN1 RC2FG RC1FG
rw-O r-O rw-O rw-O

24 23 22 21
rw rw rw rw

24 23 22 21
rw rw rw rw

TCDATA TCDAT.3 TCDAT.2 TCDAT.1
rw rw rw rw

TCPLD.4 TCPLD.3 TCPLD.2 TCPLD.1
rw rw rw rw

TXEN ENCNT RXACT TXD
rw-O rw-O rw-O rw-O

FRFQ1 FRFQO IP2 IP1
rw rw rw rw

4 3 2

24 23 22 21
rw-1 rw-1 rw-1 rw-1

26 25 24 23
rw-O rw-O rw-O rw-O

FN_4 FN_3 FN_2 21
rw-O rw-O rw-O rw-O

o

TPE.O
rw-O

TPD.O
rw-O

20
rw

20
rw

EN1FG
rw-O

20
rw

20
rw

TCDAT.O
rw

TCPLD.O
rw

RXD
r(-1)

IPO
rw

o
20

rw-1

22
rw-O

20
rw-O

EPROM Control Register and Crystal Buffer, Byte Access
J ,

A.7 EPROM Control Register and Crystal Buffer, Byte Access

Bit#­

EPROM control registert
EPCTL
0054h

Crystal buffer control register+
CBCTL
0053h

7

r-O

6

r-O

5 4

r-O r-O

t NonEPROM devices may use this register for other control purposes.
+ Devices without XBUF may use this register for other control purposes.

3

r-O

A.8 USART, UART Mode (Sync=O), Byte Access

Bit #­

USART
Transmit buffer UTXBUF

077h

USART
Receive buffer URXBUF

076h

USART
Baud rate UBR1

075h

USART
Baud rate UBRO

074h

USART
Modulation control

UMCTL073h

USART
Receive control URCTL

072h

USART
Transmit control UTCTL

071h

USART
USART control UCTL

070h

7

27
rw

27
r

215
rw

27
rw

m7
rw

FE
rw-O

Unused
rw-O

PENA
rw-O

6

26
rw

26
r

214
rw

26
rw

m6
rw

PE
rw-O

CKPL
rw-O

PEV
rw-O

5 4 3

25 24 23
rw rw rw

25 24 23
r r r

213 212 211
rw rw rw

25 24 23
rw rw rw

m5 m4 m3
rw rw rw

OE BRK URXEIE
rw-O rw-O rw-O

SSEL1 SSELO URXSE
rw-O rw-O rw-O

SP CHAR Listen
rw-O rw-O rw-O

2

r-O

CBSEL1
w-(O)

2

22
rw

22
r

210
rw

22
rw

m2
rw

URXWIE
rw-O

TXWAKE
rw-O

SYNC
rw-O

o

VPPS EXE
rw-O rw-O

CBSELO CBE
w-(O) w-(O)

o

21 20
rw rw

21 20
r r

29 28
rw rw

21 20
rw rw

m1 mO
rw rw

RXWake RXERR
rw-O rw-O

Unused TXEPT
rw-O rw-1

MM SWRST
rw-O rw-1

Peripheral File Map A-7

USART, SPI Mode (Sync=1), 8yteAccess

A.9 USART, SPI Mode (Sync=1), Byte Access

Bit#­

USART
Transmit buffer UTXBUF

077h

USART
Receive buffer URXBUF

076h

USART
Baud rate UBR1

075h

USART
Baud rate UBRO

074h

USART
Modulation control

UMCTL073h

USART
Receive control URCTL

072h

USART
Transmit control UTCTL

071h

A-a

USART
USART control UCTL

070h

7

27
rw

27
r

215
rw

27
rw

m7
rw

FE
rw-O

CKPH
rw-O

Unused
rw-O

6

26
rw

26
r

214
rw

26
rw

m6
rw

Undef.
rw-O

CKPL
rw-O

Unused
rw-O

5 4

25 24
rw rw

25 24
r r

213 212
rw rw

25 24
rw rw

m5 m4
rw rw

OE Undef.
rw-O rw-O

SSEL1 SSELO
rw-O rw-O

Unused CHAR
rw-O rw-O

3 2 o

23 22 21 20
rw rw rw rw

23 22 21 20
r r r r

211 210 29 28
rw rw rw rw

23 22 21 20
rw rw rw rw

m3 m2 m1 mO
rw rw rw rw

Unused Unused Undef. Undef.
rw-O rw-O rw-O rw-O

Unused Unused STC TXEPT
rw-O rw-O rw-O rw-1

Listen SYNC MM SWRST
rw-O rw-O rw-O rw-1

ADC12+2, Word Access ________ ._I~_. __ '_tn_~w_lI_nA_.1_~Q ___ • ___ U_.~ ___ . ______ "" _______ '_'_~~ ___ ~ __ %W_'_I~_B1_n_'_._' _____________ __

A.10 ADC12+2, Word Access

Bit#- 15 14 13 12 11 10 9 8
11Fhrl------.-----~------,-----~r------r------,-------r-------,

ADC12+2.
Data register ADAT

118h

Reserved
116h

ADC12+2,
Control register ACTL

114h

ADC12+2.
Input enable register AEN

112h

ADC12+2.
Input data register AIN

110h

rO rO

ACTL.15 ACTL.14
rO rw-O

rO rO

rO rO

R1t ROt
rO rO

ACTL.13 ACTL.12
rw-O rw-1

rO rO

rO rO

211 210 29 28
r r r r

ACTL.11 ACTL.10 ACTL.9 ACTL.8
rw-O rw-O rw-O rw-O

rO rO rO rO

rO rO rO rO

tThe bits ADAT.12 and ADAT.13 are read as 0 when ACTL.11 = 0; otherwise, signals RO and R1 are read.

Bit#-
11Ehl~------T-----~------~----~r------r------~------r------,

7 6 5 4 3 2 o

ADC12+2,
Data register ADAT

118h

Reserved
116h

ADC12+2,
Control register ACTL

114h

ADC12+2,
Input enable register AEN

112h

ADC12+2,
Input data register AIN

110h

I

27
r

ACTL.7
rw-O

AEN.7
rw-O

AIN.7
r

26
r

ACTL.6
rw-O

AEN.6
rw-O

AIN.6
r

25 24
r r

ACTL.5 ACTL.4
rw-O rw-O

AEN.5 AEN.4
rw-O rw-O

AIN.5 AIN.4
r r

23 22 21 20
r r r r

ACTL.3 ACTL.2 ACTL.1 ACTL.O
rw-O rw-O rw-O (w)rO

AEN.3 AEN.2 AEN.1 AEN.O
rw-O rw-O rw-O rw-O

AIN.3 AIN.2 AIN.1 AIN.O
r r r r

Peripheral File Map A-9

Watchdog/Timer, Word Access

A.11 WatchdoglTimer, Word Access

Bit#­ 15 8
Watchdog Timer, r"1-<-------------R-e-a-d-a-s-0-6-9-h --_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_->:>---,1

Control register WDTCTL <:----------- Written as 05Ah
120h

~--~

Bit#­

Watchdog Timer,
Control register WDTCTL

120h

7

HOLD
rw-O

6 5

NMIES NMI
rw-O rw-O

A.12 Hardware Multiplier, Word Access

Bit#­

Sum extend, Sum Ext
013Eh

Result-high word ResHI
013Ch

Result-low word ResLO
013Ah

Second operand OP2
0138h

MPYS+ACC MACS
0136h

MPY+ACCMAC
0134h

Multiply signed MPYS
0132h

Multiply unsigned MPY
0130h

Bit#­

Sum extend, Sum Ext
013Eh

Result-high word ResHI
013Ch

Result-low word ResLO
013Ah

Second operand OP2
0138h

MPYS+ACC MACS
0136h

MPY+ACCMAC
0134h

Multiply signed MPYS
0132h

Multiply unsigned MPY
0130h

15

t
r

215
rw

215
rw

215
rw

215
rw

215
rw

215
rw

215
rw

7

t
r

27
rw

27
rw

27
rw

27
rw

27
rw

27
rw

27
rw

14 13

t t
r r

214 213
rw rw

214 213
rw rw

214 213
rw rw

214 213
rw rw

214 213
rw rw

214 213
rw rw

214 213
rw rw

6 5

t t
r r

26 25
rw rw

26 25
rw rw

26 25
rw rw

26 25
rw rw

26 25
rw rw

26 25
rw rw

26 25
rw rw

4

TMSEL
rw-O

12

t
r

212
rw

212
rw

212
rw

212
rw

212
rw

212
rw

212
rw

4

t
r

24
rw

24
rw
24
rw

24
rw

24
rw

24
rw

24
rw

3 2 o

CNTCL SSEL IS1 ISO
(w),rO rw-O rw-O rw-O

11 10 9 8

t t t t
r r r r

211 210 29 28
rw rw rw rw

211 210 29 28
rw rw rw rw

211 210 29 28
rw rw rw rw

211 210 29 28
rw rw rw rw

211 210 29 28
rw rw rw rw

211 210 29 28
rw rw rw rw

211 210 29 28
rw rw rw rw

3 2 o
t t t t
r r r r

23 22 21 20
rw rw rw rw

23 22 21 20
rw rw rw rw

23 22 21 20
rw rw rw rw

23 22 21 20
rw rw rw rw

23 22 21 20
rw rw rw rw

23 22 21 20
rw rw rw rw

23 22 21 20
rw rw rw rw

t The Sum Extend register SumExt holds a 16x16-bit multiplication (MPYS) sign result, or the overflow of the multiply and accu­
mulate (MAC) operation, or the sign of the signed multiply and accumulate (MACS) operation. Overflow and underflow of the
MACS operation must be handled by software.

A-10

A.13 Timer _A Registers, Word Access

Bit#-

017Eh

017Ch

Cap/com register CCR4t
017Ah

Cap/com register CCR3t
0178h

Cap/com register CCR2
0176h

Cap/com register CCR1
0174h

Cap/com register CCRO
0172h

Timer_A register TAR
0170h

016Eh

016Ch

Cap/com control CCTL4t,
016Ah

Cap/com control CCTL3t,
0168h

Cap/com control CCTl2,
0166h

Cap/com control CCTL 1 ,
0164h

Cap/com control CCTLO,
0162h

limecA control TACTL
0160h

15 14

215 214
rw-(O) rw-(O)

215 214
rw-(O) rw-(O)

215 214
rw-(O) rw-(O)

215 214
rw-(O) rw-(O)

215 214
rw-(O) rw-(O)

215 214
rw-(O) rw-(O)

CM41 CM40
rw-(O) rw-(O)

CM31 CM30
rw-(O) rw-(O)

CM21 CM20
rw-(O) rw-(O)

CM11 CM10
rw-(O) rw-(O)

CM01 CMOO
rw-(O) rw-(O)

Unused Unused
rw-(O) rw-(O)

t Registers are reserved on devices with Timer_A3.

13

213
rw-(O)

213
rw-(O)

213
rw-(O)

213
rw-(O)

213
rw-(O)

213
rw-(O)

CCIS41
rw-(O)

CCIS31
rw-(O)

CCIS21
rw-(O)

CCIS11
rw-(O)

CCIS01
rw-(O)

Unused
rw-(O)

12

212
rw-(O)

212
rw-(O)

212
rw-(O)

212
rw-(O)

212
rw-(O)

212
rw-(O)

CCIS40
rw-(O)

CCIS30
rw-(O)

CCIS20
rw-(O)

CCIS10
rw-(O)

CCISOO
rw-(O)

Unused
rw-(O)

Timer_A Registers, Word Access

11 10 9 8

211 210 29 28
rw-(O) rw-(O) rw-(O) rw-(O)

211 210 29 28
rw-(O) rw-(O) rw-(O) rw-(O)

211 210 29 28
rw-(O) rw-(O) rw-(O) rw-(O)

211 210 29 28
rw-(O) rw-(O) rw-(O) rw-(O)

211 210 29 28
rw-(O) rw-(O) rw-(O) rw-(O)

211 210 29 28
rw-(O) rw-(O) rw-(O) rw-(O)

SCS4 SCCI4 Unused CAP4
rw-(O) rw-(O) rO rw-(O)

SCS3 SCCI3 Unused CAP3
rw-(O) rw-(O) rO rw-(O)

SCS2 SCCI2 Unused CAP2
rw-(O) rw-(O) rO rw-(O)

SCS1 SCCI1 Unused CAP1
rw-(O) rw-(O) rO rw-(O)

SCSO SCCIO Unused CAPO
rw-(O) rw-(O) rO rw-(O)

Unused SSEl2 SSEL1 SSELO
rw-(O) rw-(O) rw-(O) rw-(O)

Peripheral File Map A-11

Tiroer_A Registers, Word Access (Continued)

A.13 Timer_A Registers, Word Access (Continued)

Bit#-

017Eh

017Ch

Cap/com register CCR4t
017Ah

Cap/com register CCR3t
0178h

Cap/com register CCR2
0176h

Cap/com register CCR1
0174h

Cap/com register CCRO
0172h

TimecA register TAR
0170h

016Eh

016Ch

Cap/com control CCTl4t ,
016Ah

Cap/com control CCTl3t ,
0168h

Cap/com control CCTL2,
0166h

Cap/com control CCTl1,
0164h

Cap/com control CCTlO,
0162h

TimecA control TACTl
0160h

7

27
rw-(O)

27
rw-(O)

27
rw-(O)

27
rw-(O)

27
rw-(O)

27
rw-(O)

OutMod42
rw-(O)

OutMod32
rw-(O)

OutMod22
rw-(O)

OutMod12
rw-(O)

OutMod02
rw-(O)

101
rw-(O)

6

26
rw-(O)

26
rw-(O)

26
rw-(O)

26
rw-(O)

26
rw-(O)

26
rw-(O)

OutMod41
rw-(O)

OutMod31
rw-(O)

OutMod21
rw-(O)

OutMod11
rw-(O)

OutMod01
rw-(O)

100
rw-(O)

t Registers are reserved on devices with Timer_A3.

Bit#- 15 14

Timer_A interrupt vector I 0 0
TAIV 12Eh rO rO

Bit#- 7 6

Timer_A interrupt vector I 0 0
rO rO TAIV 12Eh

5 4

25 24
rw-(O) rw-(O)

25 24
rw-(O) rw-(O)

25 24
rw-(O) rw-(O)

25 24
rw-(O) rw-(O)

25 24
rw-(O) rw-(O)

25 24
rw-(O) rw-(O)

OutMod40 CCIE4
rw-(O) rw-(O)

OutMod30 CCIE3
rw-(O) rw-(O)

OutMod20 CCIE2
rw-(O) rw-(O)

OutMod10 CCIE1
rw-(O) rw-(O)

OutModOO CCIEO
rw-(O) rw-(O)

MC1 MCO
rw-(O) rw-(O)

13 12

0 0
rO rO

5 4

0 0
rO rO

TAIV Vector, Timer_A5 (five capture/compare blocks integrated)
0: No interrupt pending
2: CCIFG1 flag set, interrupt flag of capture/compare block 1

3

23
rw-(O)

23
rw-(O)

23
rw-(O)

23
rw-(O)

23
rw-(O)

23
rw-(O)

CCI4
r

CCI3
r

CCI2
r

CCI1
r

CCIO
r

Unused
rw-(O)

11

0
rO

3

r-(O)

4: CCIFG2 flag set, interrupt flag of capture/compare block 2 (CCIFG1 =0)

2

22
rw-(O)

22
rw-(O)

22
rw-(O)

22
rw-(O)

22
rw-(O)

22
rw-(O)

OUT4
rw-(O)

OUT3
rw-(O)

OUT2
rw-(O)

OUT1
rw-(O)

OUTO
rw-(O)

ClR
rw-(O)

10

0
rO

2

TAIV

r-(O)

6: CCIFG3 flag set, interrupt flag of capture/compare block 3 (CCIFG1 =CCIFG2=0)

o

21 20
rw-(O) rw-(O)

21 20
rw-(O) rw-(O)

21 2°
rw-(O) rw-(O)

21 2°
rw-(O) rw-(O)

21 20
rw-(O) rw-(O)

21 20
rw-(O) rw-(O)

COV4 CCIFG4
rw-(O) rw-(O)

CaV3 CCIFG3
rw-(O) rw-(O)

COV2 CCIFG2
rw-(O) rw-(O)

COV1 CCIFG1
rw-(O) rw-(O)

COVO CCIFGO
rw-(O) rw-(O)

TAlE TAIFG
rw-(O) rw-(O)

9 8

o 0
rO rO

o
o

r-(O) rO

8: CCIFG3 flag set, interrupt flag of capture/compare block 3 (CCIFG1=CCIFG2=CCIFG3=0)
10: TAIFG flag set, interrupt flag of Timer_A register/counter (CCIFG1=CCIFG2=CCIFG3=CCIFG4=0)

TAl V Vector, Timer_A3 (three capture/compare blocks integrated)
0: No interrupt pending
2: CCIFG1 flag set, interrupt flag of capture/compare block 1
4: CCIFG2 flag set, interrupt flag of capture/compare block 2 (CCIFG1=0)
6: Reserved
8: Reserved

10: TAIFG flag set, interrupt flag of Timer_A register/counter (CCIFG1=CCIFG2=CCIFG3=CCIFG4=O)

A-12

Appendix B

Instruction Set Description
tim III 'l1li JIIII t

I I - Illt !!i U

The MSP430 core CPU architecture evolved from a reduced instruction set
with highly-transparent instruction formats. Using these formats, core
instructions are implemented into the hardware. Emulated instructions are
also supported by the assembler. Emulated instructions use the core
instructions with the built-in constant generators CG1 and CG2 and/or the
program counter (PC). The core and emulated instructions are described in
detail in this section. The emulated instruction mnemonics are listed with
examples.

Program memory words used by an instruction vary from one to three words,
depending on the combination of addressing modes.

Topic Page

8.1 Instruction Set Overview 8-2

8.2 Instruction Set Description ...••••••••••••.•.••••......•••••••. 8-8

B-1

Instruction Set Overview

B.1 Instruction Set Overview

The following list gives an overview of the instruction set.

Status Bits

V N ZC
* ADC[.W];ADC.B dst dst + C -> dst * * * *

ADD[.W];ADD.B src,dst src + dst -> dst * * * *
ADDC[.W];ADDC.B src,dst src + dst + C -> dst * * * *
AND[.W];AND.B src,dst src .and. dst -> dst 0 * * *
BIC[.W];BIC.B src,dst .not.src .and. dst -> dst
BIS[.W];BIS.B src,dst src .or. dst -> dst
BIT[.W];BIT.B src,dst src .and. dst 0 * * *

* BR dst Branch to
CALL dst PC+2 -> stack, dst -> PC

* CLR[.W];CLR.B dst Clear destination
* CLRC Clear carry bit - 0
* CLRN Clear negative bit - 0
* CLRZ Clear zero bit o -

CMP[.W];CMP.B src,dst dst - src * * * *
* DADC[.W];DADC.B dst dst + C -> dst (decimal) * * * *

DADD[.W];DADD.B src,dst src + dst + C -> dst (decimal) * * * *
* DEC[.W];DEC.B dst dst -1 -> dst * * * *
* DECD[.W];DECD.B dst dst -2 -> dst * * * *
* DINT Disable interrupt
* EINT Enable interrupt
* INC[.W];INC.B dst Increment destination,

dst +1 -> dst * * * *
* INCD[.W];INCD.B dst Double-Increment destination,

dst+2->dst * * * *
* INV[.W];INV.B dst Invert destination * * * *

JC/JHS Label Jump to Label if
Carry-bit is set

JEQ/JZ Label Jump to Label if
Zero-bit is set

JGE Label Jump to Label if
(N .XOR. V) = 0

JL Label Jump to Label if
(N .XOR. V) = 1

JMP Label Jump to Label unconditionally - -
IN Label Jump to Label if

Negative-bit is set - - - -
JNC/JLO Label Jump to Label if

Carry-bit is reset
JNE/JNZ Label Jump to Label if

Zero-bit is reset

8-2

Instruction Set Overview
Il!'aWl1ll1lll IdIIIlOIII'OItiliili

Status Bits

V N ZC
MOV[.W];MOV.B src,dst src -> dst

* NOP No operation
* POP[.W];POP.B dst Item from stack, SP+2 ~ SP

PUSH[.W];PUSH.B src SP - 2 ~ SP, src ~ @SP
RETI Return from interrupt * * * *

TOS~SR, SP+2~SP

TOS ~ PC, SP + 2 ~ SZP
* RET Return from subroutine

TOS ~ PC, SP + 2 ~ SP
* RLA[.W];RLA.B dst Rotate left arithmetically * * * *
* RLC[.W];RLC.B dst Rotate left through carry * * * *

RRA[.W];RRA.B dst MSB ~ MSB ~ LSB ~ C 0 * * *
RRC[.W];RRC.B dst C ~ MSB ~ LSB ~ C * * * *

* SBC[.W];SBC.B dst Subtract carry from destination * * * *
* SETC Set carry bit - 1
* SETN Set negative bit 1
* SETZ Set zero bit 1

SUB[.W];SUB.B src,dst dst + .not.src + 1 ~ dst * * * *
SUBC[.W];SUBC.B src,dst dst + .not.src + C ~ dst * * * *
SWPB dst swap bytes
SXT dst Bit? ~ Bit8 Bit15 0 * * *

* TST[. W];TST.B dst Test destination 0 * * 1
XOR[.W];XOR.B src,dst src .xor. dst ~ dst * * * *

Note: Asterisked Instructions

Asterisked (*) instructions are emulated. They are replaced with core
instructions by the assembler.

Instruction Set Description 8-3

Instruction Set Overview

8.1.1 Instruction Formats

The following sections describe the instruction formats.

B.1.1.1 Double-Operand Instructions (Core Instructions)

The instruction format using double operands, as shown in Figure B-1,
consists of four main fields to form a 16-bit code:

o operational code field, four bits [op-code]
o source field, six bits [source register + As]
o byte operation identifier, one bit [BW]
o destination field, five bits [dest. register + Ad]

The source field is composed of two addressing bits and a four-bit register
number (0 15). The destination field is composed of one addressing bit and
a four-bit register number (0 15). The byte identifier BIW indicates whether
the instruction is executed as a byte (BIW == 1) or as a word instruction
(BIW == 0).

Figure 8-1. Double-Operand Instructions

8-4

15

OP-Code

I Operational Code
Field

12 11

Source Register

3 o

Destination Register

Status Bits

V N ZC
ADD[.W]; ADD.B src,dst src + dst -> dst * * *
ADDC[.W]; ADDC.B src,dst src + dst + C -> dst * * *
AND[.W]; AND.B src,dst src .and. dst -> dst 0 * *
BIC[.W]; BIC.B src,dst .not.src .and. dst -> dst
BIS[.W]; BIS.B src,dst src .or. dst -> dst
BIT[.W]; BIT.B src,dst src .and. dst 0 * *
CMP[.W]; CMP.B src,dst dst - src * * *

DADD[.W]; DADD.B src,dst src + dst + C -> dst (dec) * * *
MOV[.W]; MOV.B src,dst src -> dst
SUB[.W]; SUB.B src,dst dst + .not.src + 1 -> dst * * *
SUBC[.W]; SUBC.B src,dst dst + .not.src + C -> dst * * *
XOR[.W); XOR.B src,dst src .xor. dst -> dst * * *

Note: Operations Using the Status Register (SR) for Destination

All operations using Status Register SR for destination overwrite the SR
contents with the operation result; as described in that operation, the status
bits are not affected.

Example: ADD #3,SR ; Operation: (SR) + 3 -> SR

*
*
*

*
*
*

*
*
*

Instruction Set Overview

8.1.1.2 Single Operand Instructions (Core Instructions)

The instruction format using a single operand, as shown in Figure B-2,
consists of two main fields to form a 16-bit code:

o operational code field, nine bits with four MSBs equal to 1 h
o byte operation identifier, one bit [B/w]
o destination field, six bits [destination register + Ad]

The destination field is composed of two addressing bits and the four-bit
register number (0 15). The destination field bit position is the same as that
of the two operand instructions. The byte identifier (B/w) indicates whether the
instruction is executed as a byte (B/w = 1) or as a word (B/w = 0).

Figure B-2. Single-Operand Instructions

7 6 5

Destination Field I

Status Bits

V N Z C
RRA[.W]; RRA.B dst MSB -7 MSB ... LSB -7 C o * * *
RRC[.W]; RRC.B dst C -7 MSB LSB -7 C * * * *
PUSH[.W]; PUSH.B dst SP - 2 -7 SP, src -7 @SP
SWPB dst swap bytes
CALL dst PC-72 + @SP, dst -7 PC
RETI dst TOS -7 SR, SP + 2 -7 SP * * * *

TOS -7 PC, SP + 2 -7 SP
SXT dst Bit 7 -7 Bit 8 Bit 15 o * * *

8.1.2 Conditional and Unconditional Jumps (Core Instructions)

The instruction format for conditional and unconditional jumps, as shown in
Figure B-3, consists of two main fields to form a 16-bit code:

o operational code (op-code) field, six bits
o jump offset field, ten bits

The operational-code field is composed of the op-code (three bits), and three
bits according to the following conditions.

Figure B-3. Conditional and Unconditional Jump Instructions

I
15 13 12 10 9 0

0 0 1 xxxix x x x x x x x x x I I I
OP-Code Offset I Jump-On Code I Sign I
Operational Code Field Jump Offset Field

Conditional jumps jump to addresses in the range of -511 to +512 words
relative to the current address. The assembler computes the signed offsets
and inserts them into the op-code.

Instruction Set Description 8-5

Instruction Set Overview

JC/JHS Label Jump to label if carry bit is set

JEQ/JZ Label Jump to label if zero bit is set

JGE Label Jump to label if (N .XOR. V) = 0

JL Label Jump to label if (N .XOR. V) = 1

JMP Label Jump to label unconditionally

IN Label Jump to label if negative bit is set

JNC/JLO Label Jump to label if carry bit is reset

JNE/JNZ Label Jump to label if zero bit is reset

Note: Conditional and Unconditional Jumps

Conditional and unconditional jumps do not affect the status bits.

A jump that is taken alters the PC with the offset:

PCnew = PCoid + 2 + 2*offset

A jump that is not taken continues the program with the ascending instruction.

B.1.3 Emulated Instructions

8-6

The following instructions can be emulated with the reduced instruction set
without additional code words. The assembler accepts the emulated
instruction mnemonic, and inserts the applicable core instruction op-code.

Instruction Set Overview

The following list describes the emulated instruction short form.

Mnemonic Description Status Bits Emulation
V N Z C

Arithmetical instructions
ADC[.W] dst Add carry to destination * * * * AD DC #O,dst
ADC.B dst Add carry to destination * * * * ADDC.B #O,dst
DADC[.W] dst Add carry decimal to destination * * * * DADD #O,dst
DADC.B dst Add carry decimal to destination * * * * DADD.B #O,dst
DEC[.W] dst Decrement destination * * * * SUB #1,dst
DEC.B dst Decrement destination * * * * SUB.B #1,dst
DECD[.W] dst Double-decrement destination * * * * SUB #2,dst
DECD.B dst Double-decrement destination * * * * SUB.B #2,dst
INC[.W] dst Increment destination * * * * ADD #1,dst
INC.B dst Increment destination * * * * ADD.B #1,dst
INCD[.W] dst Increment destination * * * * ADD #2,dst
INCD.B dst Increment destination * * * * ADD.B #2,dst
SBC[.W] dst Subtract carry from destination * * * * SUBC #O,dst
SBC.B dst Subtract carry from destination * * * * SUBC.B #O,dst

Logical instructions
INV[.W] dst Invert destination * * * * XOR #OFFFFh,dst
INV.B dst Invert destination * * * * XOR.B #OFFFFh,dst
RLA[.W] dst Rotate left arithmetically * * * * ADD dst,dst
RLA.B dst Rotate left arithmetically * * * * ADD.B dst,dst
RLC[.W] dst Rotate left through carry * * * * AD DC dst,dst
RLC.B dst Rotate left through carry * * * * ADDC.B dst,dst

Data instructions (common use)
CLR[.W] Clear destination MOV #O,dst
CLR.B Clear destination MOV.B #O,dst
CLRC Clear carry bit - ° BIC #1,SR
CLRN Clear negative bit - ° BIC #4,SR
CLRZ Clear zero bit ° - BIC #2,SR
POP dst Item from stack MOV @SP+,dst
SETC Set carry bit - 1 BIS #1,SR
SETN Set negative bit - 1 BIS #4,SR
SETZ Set zero bit 1 - BIS #2,SR
TST[.W] dst Test destination ° * * 1 CMP #O,dst
TST.B dst Test destination ° * * 1 CMP.B #O,dst

Program flow instructions
BR dst Branch to MOV dst,PC
DINT Disable interrupt BIC #8,SR
EINT Enable interrupt BIS #8,SR
NOP No operation MOV #Oh,#Oh
RET Return from subroutine MOV @SP+,PC

Instruction Set Description 8-7

Instruction Set Overview

B.2 Instruction Set Description

8-8

This section catalogues and describes all core and emulated instructions in
alphabetical order. Some examples serve as explanations and others as
application hints.

The suffix .W or no suffix in the instruction mnemonic results in a word
operation.

The suffix .8 at the instruction mnemonic results in a byte operation.

ADC[.W]
ADC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Add carry to destination
Add carry to destination

ADC
ADC.B

dst or ADC.W dst
dst

dst + C -> dst

AD DC #O,dst
ADDC.B #O,dst

Instruction Set Overview

The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from OFFFFh to 0000, reset otherwise

Set if dst was incremented from OFFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

OscOff, CPUOff, and GIE are not affected.

The 16-bit counter pointed to by R13 is added to a 32-bit counter pOinted to
by R12.
ADD
ADC

@R13,0(R12)
2(R12)

; Add LSDs
; Add carry to MSD

The 8-bit counter pointed to by R 13 is added to a 16-bit counter pointed to by
R12.
ADD.B
ADC.B

@R13,0(R12)
1 (R12)

; Add LSDs
; Add carry to MSD

Instruction Set Description 8-9

Instruction Set Overview

ADD[.W]
ADD.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

8-10

Add source to destination
Add source to destination

ADD src,dst or
ADD.B src,dst

src + dst -> dst

ADD.W src,dst

The source operand is added to the destination operand. The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the result, cleared if not
V: Set if an arithmetic overflow occurs, otherwise reset

OscOff, CPUOff, and GIE are not affected.

R5 is increased by 10. The jump to TONI is performed on a carry.

ADD
JC

#10,R5
TONI ; Carry occurred

; No carry

R5 is increased by 10. The jump to TONI is performed on a carry.

ADD.B
JC

#10,R5
TONI

; Add 10 to Lowbyte of R5
; Carry occurred, if (R5) ~ 246 [OAh+OF6h]
; No carry

ADDC[.W]
ADDC.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set Overview

Add source and carry to destination
Add source and carry to destination

AD DC
ADDC.B

src,dst or ADDC.W src,dst
src,dst

src + dst + C -> dst

The source operand and the carry bit (C) are added to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost.

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

OscOff, CPUOff, and GIE are not affected.

The 32-bit counter pointed to by R13 is added to a 32-bit counter, eleven words
(20/2 + 2/2) above the pOinter in R13.

ADD
ADDC

@R13+,20(R13) ; ADD LSDs with no carry in
@R13+,20(R13) ; ADD MSDs with carry

; resulting from the LSDs

The 24-bit counter pOinted to by R13 is added to a 24-bit counter, eleven words
above the pointer in R13.

ADD.B
ADDC.B
ADDC.B

@R13+,10(R13) ; ADD LSDs with no carry in
@R13+,10(R13) ; ADD medium Bits with carry
@R13+,10(R13) ; ADD MSDs with carry

; resulting from the LSDs

Instruction Set Description 8-11

Instruction Set Overview

AND[.W]
AND.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

8-12

Source AND destination
Source AND destination

AND
AND.B

src,dst or AND.W src,dst
src,dst

src .AND. dst -> dst

The source operand and the destination operand are logically ANDed. The
result is placed into the destination.

N: Set if result MSB is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Reset

OscOff, CPUOff, and GIE are not affected.

The bits set in RS are used as a mask (#OAASSh) for the word addressed by
TOM. If the result is zero, a branch is taken to label TONI.

MOV
AND
JZ

#OAASSh,RS
RS,TOM
TONI

or

AND #OAASSh,TOM
JZ TONI

; Load mask into register RS
; mask word addressed by TOM with RS

; Result is not zero

The bits of mask #OASh are logically ANDed with the low byte TOM. If the result
is zero, a branch is taken to label TONI.

AND.B
JZ

#OASh,TOM
TONI

; mask Lowbyte TOM with RS

; Result is not zero

BIC[.W]
BIC.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Clear bits in destination
Clear bits in destination

Instruction Set Overview

BIC
BIC.B

src,dst or BIC.W src,dst
src,dst

.NOT.src .AND. dst -> dst

The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OscOff, CPUOff, and GIE are not affected.

The six MSBs of the RAM word LEO are cleared.

BIC #OFCOOh,LEO ; Clear 6 MSBs in MEM(LEO)

The five MSBs of the RAM byte LEO are cleared.

BIC.B #OF8h,LEO

The port pins PO and P1 are cleared.

POOUT
PO_O
PO_1

BIC.B

.equ 011h;

.equ

.equ

; Clear 5 MSBs in Ram location LEO

Definition of port address
01h
02h

;Set PO.O and PO.1 to low

Instruction Set Description 8-13

Instruction Set Overview

BIS[.W]
BIS.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Example

8-14

Set bits in destination
Set bits in destination

81S
81S.8

src,dst or 8IS.W
src,dst

src .OR. dst -> dst

src,dst

The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OscOff, CPUOff, and GIE are not affected.

The six LS8s of the RAM word TOM are set.

81S #003Fh,TOM; set the six LS8s in RAM location TOM

Start an AlD- conversion

ASOC
ACTL

.equ

.equ
1 ; Start of conversion bit
114h ; ADC control register

81S #ASOC,&ACTL; Start AID-conversion

The three MS8s of RAM byte TOM are set.

81S.8 #OEOh,TOM ; set the 3 MS8s in RAM location TOM

Port pins PO and P1 are set to high.

POOUT
PO
P1

.equ

.equ

.equ

011h
01h
02h

81S.8 #PO+P1,&POOUT

BIT[.W]
BIT.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Example

Test bits in destination
Test bits in destination

Instruction Set Overview

BIT src,dst or BIT.W src,dst

src .AND. dst

The source and destination operands are logically ANDed. The result affects
only the status bits. The source and destination operands are not affected.

N: Set if MSB of result is set, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

ascOtt, CPUOff, and GIE are not affected.

If bit 9 of R8 is set, a branch is taken to label TOM.

BIT
JNZ

#0200h,R8
TOM

; bit 9 of R8 set?
; Yes, branch to TOM
; No, proceed

Determine which AID channel is configured by the MUX.

ACTL
BIT
jnz

.equ
#4,&ACTL
END

114h ; ADC control register
; Is channel 0 selected?
; Yes, branch to END

If bit 3 of R8 is set, a branch is taken to label TOM.

BIT.B #8,R8
JC TOM

A serial communication receive bit (RCV) is tested. Because the carry bit is
equal to the state of the tested bit while using the BIT instruction to test a single
bit, the carry bit is used by the subsequent instruction; the read information is
shifted into register RECBUF.
,
; Serial communication with LSB is shifted first:

BIT.B
RRC

#RCV,RCCTL
RECBUF

; xxxx xxxx xxxx xxxx
; Bit info into carry
; Carry -> MSB of RECBUF
; cxxx xxxx
; repeat previous two instructions
; 8 times
; cccc CCCC
./\ /\ ,
; MSB LSB

; Serial communication with MSB is shifted first:
BIT.B #RCV,RCCTL; Bit info into carry
RLC.B RECBUF ; Carry -> LSB of RECBUF

; xxxx xxxc
; repeat previous two instructions
; 8 times
; cccc cccc
; I LSB
;MSB

Instruction Set Description 8·15

Instruction Set Overview

* BR, BRANCH

Syntax

Operation

Emulation

Description

Status Bits

Example

B-16

Branch to destination

BR dst

dst-> PC

MOV dst,PC

An unconditional branch is taken to an address anywhere in the 64K address
space. All source addressing modes can be used. The branch instruction is
a word instruction.

Status bits are not affected.

Examples for all addressing modes are given.

BR #EXEC ;Branch to label EXEC or direct branch (e.g. #OA4h)
; Core instruction MOV @PC+,PC

BR EXEC; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(O),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR @ R5 ; Branch to the address contained in the word
; pOinted to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @ R5+ ; Branch to the address contained in the word pOinted
; to by R5 and increment pointer in R5 afterwards.

BR X(R5)

; The next time-S/W flow uses R5 pointer-it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

; Branch to the address contained in the address
; pOinted to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

CALL

Syntax

Operation

Description

Status Bits

Example

Subroutine

CALL

dst
SP-2
PC
tmp

dst

->tmp
->SP
->@SP
->PC

Instruction Set Overview

dst is evaluated and stored

PC updated to TOS
dst saved to PC

A subroutine call is made to an address anywhere in the 64K address space.
All addressing modes can be used. The return address (the address of the
following instruction) is stored on the stack. The call instruction is a word
instruction.

Status bits are not affected.

Examples for all addressing modes are given.

CALL #EXEC ; Call on label EXEC or immediate address (e.g. #OA4h)
; SP-2 ~ SP, PC+2 ~ @SP, @ PC+ ~ PC

CALL EXEC ; Call on the address contained in EXEC
; SP-2 ~ SP, PC+2 ~ @SP, X(PC) ~ PC
; Indirect address

CALL &EXEC; Call on the address contained in absolute address
; EXEC
; SP-2 ~ SP, PC+2 ~ @SP, X(PC) ~ PC
; Indirect address

CALL R5 ; Call on the address contained in R5

CALL @R5

CALL @R5+

CALL X(R5)

; SP-2 ~ SP, PC+2 ~ @SP, R5 ~ PC
; Indirect R5

; Call on the address contained in the word
; pointed to by R5
; SP-2 ~ SP, PC+2 ~ @SP, @R5 ~ PC
; Indirect, indirect R5

; Call on the address contained in the word
; pointed to by R5 and increment pointer in R5.
; The next time-SIW flow uses R5 pointer-
; it can alter the program execution due to
; access to next address in a table pointed to by R5
; SP-2 ~ SP, PC+2 ~ @SP, @R5 ~ PC
; Indirect, indirect R5 with autoincrement

; Call on the address contained in the address painted
; to by R5 + X (e.g. table with address starting at X)
; X can be an address or a label
; SP-2 ~ SP, PC+2 ~ @SP, X(R5) ~ PC
; Indirect indirect R5 + X

Instruction Set Description 8-17

Instruction Set Overview

* CLR[.W]
* CLR.B

Syntax

Operation

Emulation

Description

Status Bits

Example

Example

Example

8-18

Clear destination
Clear destination

CLR dst or CLR.W dst
CLR.B dst

0-> dst

MOV
MOV.B

#O,dst
#O,dst

The destination operand is cleared.

Status bits are not affected.

RAM word TONI is cleared.

CLR TONI ; 0-> TONI

Register R5 is cleared.

CLR R5

RAM byte TONI is cleared.

CLR.B TONI ; 0-> TONI

*CLRC

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Instruction Set Overview

Clear carry bit

CLRC

o->C

BIC #1,SR

The carry bit (C) is cleared. The clear carry instruction is a word instruction.

N: Not affected
Z: Not affected
C: Cleared
V: Not affected

OscOff, CPUOff, and GIE are not affected.

The 16-bit decimal counter painted to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC
DADO
DADC

; C=O: defines start
@R13,O(R12) ; add 16-bit counter to low word of 32-bit counter
2(R 12) ; add carry to high word of 32-bit counter

Instruction Set Description 8-19

Instruction Set Overview

*CLRN

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

SUBR

SUBRET

8-20

Clear negative bit

CLRN

O~N

or
(.NOT.src .AND. dst -> dst)

BIC #4,SR

The constant 04h is inverted (OFFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

N: Reset to 0
Z: Not affected
C: Not affected
V: Not affected

OscOff, CPUOff, and GIE are not affected.

The Negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN
CALL

IN

RET

SUBR

SUBRET ; If input is negative: do nothing and return

*CLRZ

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Clear zero bit

CLRZ

O~Z

or
(.NOT.src .AND. dst -> dst)

BIC #2,SR

Instruction Set Overview

The constant 02h is inverted (OFFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

N: Not affected
Z: Reset to 0
C: Not affected
V: Not affected

OscOff, CPUOff, and GIE are not affected.

The zero bit in the status register is cleared.

CLRZ

Instruction Set Description 8-21

Instruction Set Overview

CMP[.W]
CMP.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Example

8-22

Compare source and destination
Compare source and destination

CMP
CMP.B

src,dst or
src,dst

dst + .NOT.src + 1
or
(dst - src)

CMP.W src,dst

The source operand is subtracted from the destination operand. This is
accomplished by adding the 1 s complement of the source operand plus 1. The
two operands are not affected and the result is not stored; only the status bits
are affected.

N: Set if result is negative, reset if positive (src >= dst)
Z: Set if result is zero, reset otherwise (src = dst)
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

OscOff, CPUOff, and GIE are not affected.

RS and R6 are compared. If they are equal, the program continues at the label
EQUAL.

CMP
JEQ

RS,R6
EQUAL

; RS = R6?
; YES, JUMP

Two RAM blocks are compared. If they are not equal, the program branches
to the label ERROR.

L$1
MOV
CMP
JNZ
DEC
JNZ

#NUM,RS
&BLOCK1,&BLOCK2
ERROR
RS
L$1

; number of words to be compared
; Are Words equal?
; No, branch to ERROR
; Are all words compared?
; No, another compare

The RAM bytes addressed by EDE and TONI are compared. If they are equal,
the program continues at the label EQUAL.

CMP.B EDE,TONI
JEQ EQUAL

; MEM(EDE) = MEM(TONI)?
; YES, JUMP

Check two keys connected to port pins PO and P1. If key1 is pressed, the pro­
gram branches to label MENU1; if key2 is pressed, the program branches to
MENU2.

POIN .EQU 010h
KEY1 .EQU 01h
KEY2 .EQU 02h

CMP.B #KEY1,&POIN
JEQ MENU1
CMP.B #KEY2,&POIN
JEQ MENU2

* DADC[.W]
* DADC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Add carry decimally to destination
Add carry decimally to destination

DADC
DADC.S

dst or DADC.W src,dst
dst

dst + C -> dst (decimally)

DADD
DADD.S

#O,dst
#O,dst

Instruction Set Overview

The carry bit (C) is added decimally to the destination.

N: Set if MSB is 1
Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise
V: Undefined

OscOff, CPUOff, and GIE are not affected.

The four-digit decimal number contained in R5 is added to an eight-digit deci­
mal number pOinted to by R8.

CLRC

DADD
DADC

R5,0(R8)
2(R8)

; Reset carry
; next instruction's start condition is defined
; Add LSDs + C
; Add carry to MSD

The two-digit decimal number contained in R5 is added to a four-digit decimal
number pOinted to by R8.

CLRC

DADD.S
DADC

R5,0(R8)
1 (R8)

; Reset carry
; next instruction's start condition is defined
; Add LSDs+ C
; Add carry to MSDs

Instruction Set Description 8-23

Instruction Set Overview

DADD[.W]
DADD.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

8-24

Source and carry added decimally to destination
Source and carry added decimally to destination

DADO
DADD.B

src,dst or DADD.W src,dst
src,dst

src + dst + C -> dst (decimally)

The source operand and the destination operand are treated as four binary
coded decimals (BCD) with positive signs. The source operand and the carry
bit (C) are added decimally to the destination operand. The source operand
is not affected. The previous contents of the destination are lost. The result is
not defined for non-BCD numbers.

N: Set if the MSB is 1, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if the result is greater than 9999

Set if the result is greater than 99
V: Undefined

OscOff, CPUOff, and GIE are not affected.

The eight-digit BCD number contained in R5 and R6 is added decimally to an
eight-digit BCD number contained in R3 and R4 (R6 and R4 contain the
MSDs).

CLRC
DADO
DADO
JC

; CLEAR CARRY
R5,R3 ; add LSDs
R6,R4 ; add MSDs with carry
OVERFLOW; If carry occurs go to error handling routine

The two-digit decimal counter in the RAM byte CNT is incremented by one.

CLRC
DADD.B

or

SETC
DADD.B

#1,CNT

#O,CNT

; clear Carry
; increment decimal counter

;=DADC.B CNT

* DEC[.W]
* DEC.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Decrement destination
Decrement destination

DEC
DEC.S

dst
dst

dst -1 -> dst

SUS
SUS.S

#1,dst
#1,dst

or DEC.W

Instruction Set Overview

dst

The destination operand is decremented by one. The original contents are
lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

OscOff, CPUOff, and GIE are not affected.

Instruction Set Description 8-25

Instruction Set Overview

Example R10 is decremented by 1

DEC R10 ; Decrement R 10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
;TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE
; to EDE+OFEh

L$1

MOV
MOV
MOV.B
DEC
JNZ

#EDE,RS
#255,R10
@RS+,TONI-EDE-1 (RS)
R10
L$1

; Do not transfer tables using the routine above with the overlap shown in Figure B-4.

Figure 8-4. Decrement Overlap

EDE r-----....,

4 • r-------,
TONI

EDE+254

TONI+254 1...-___ --'

Example Memory byte at address LEO is decremented by one.

DEC.B LEO ; Decrement MEM(LEO)

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
; TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE
; to EDE+OFEh

L$1

B-26

MOV
MOV.B
MOV.B
DEC.B
JNZ

#EDE,RS
#255,LEO
@RS+,TONI-EDE-1 (RS)
LEO
L$1

Instruction Set Overview _________________ _______ '_ti~ ~t A >JI. iI!'tiI ;TWtur

* DECD[.W]
* DECD.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Double-decrement destination
Double-decrement destination

DECD
DECD.B

dst or DECD.W dst
dst

dst - 2 -> dst

SUB
SUB.B

#2,dst
#2,dst

The destination operand is decremented by two. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1 , set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

OscOff, CPUOff, and GIE are not affected.

R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location
; starting with TONI
; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+OFEh

Example

L$1

MOV
MOV
MOV
DECD
JNZ

#EDE,R6
#510,R10
@R6+,TONI-EDE-2(R6)
R10
L$1

Memory at location LEO is decremented by two.

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.

DECD.B STATUS

Instruction Set Description 8-27

Instruction Set Overview

* DINT

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

8-28

Disable (general) interrupts

DINT

O~GIE

or
(OFFF7h .AND. SR ~ SR / .NOT.src .AND. dst -> dst)

BIC #8,SR

All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

GIE is reset. OscOff and CPUOff are not affected.

The general interrupt enable (GIE) bit in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP
MOV COUNTHI,R5; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by an NOP.

* EINT

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Enable (general) interrupts

EINT

1 ~GIE
or
(0008h .OR. SR -> SR I .NOT.src .OR. dst -> dst)

BIS #8,SR

All interrupts are enabled.

Instruction Set Overview

The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

GIE is set. OscOff and CPUOff are not affected.

The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of port PO.2 to PO.?
; The interrupt level is the lowest in the system
; POIN is the address of the register where all port bits are read. POIFG is the address of
; the register where all interrupt events are latched.

MaskOK

PUSH.B &POIN
BIC.B @SP,&POIFG ; Reset only accepted flags
EINT ; Preset port 0 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump

BIC #Mask,@SP

INCD SP ; Housekeeping: inverse to PUSH instruction
; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

Instruction Set Description 8-29

Instruction Set Overview

* INC[.W]
*INC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

8-30

Increment destination
Increment destination

INC dst or INC.W dst
INC.B dst

dst + 1 -> dst

ADD #1,dst

The destination operand is incremented by one. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFFh, reset otherwise

Set if dst contained OFFh, reset otherwise
C: Set if dst contained OFFFFh, reset otherwise

Set if dst contained OFFh, reset otherwise
V: Set if dst contained 07FFFh, reset otherwise

Set if dst contained 07Fh, reset otherwise

OscOff, CPUOff, and GIE are not affected.

The item on the top of a software stack (not the system stack) for byte data is
removed.

SSP .EQU R4

INC SSP; Remove TOSS (top of SW stack) by increment
; Do not use INC.S since SSP is a word register

The status byte of a process STATUS is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.S
CMP.S
JEQ

STATUS
#11 ,STATUS
OVFL

* INCD[.W]
* INCD.B

Syntax

Operation

Emulation
Emulation

Example

Status Bits

Mode Bits

Example

Example

Double-increment destination
Double-increment destination

INCD
INCD.B

dst or INCD.W dst
dst

dst + 2 -> dst

ADD
ADD.B

#2,dst
#2,dst

Instruction Set Overview

The destination operand is incremented by two. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFEh, reset otherwise

Set if dst contained OFEh, reset otherwise
C: Set if dst contained OFFFEh or OFFFFh, reset otherwise

Set if dst contained OFEh or OFFh, reset otherwise
V: Set if dst contained 07FFEh or 07FFFh, reset otherwise

Set if dst contained 07Eh or 07Fh, reset otherwise

OscOff, CPUOff, and GIE are not affected.

The item on the top of the stack (TOS) is removed without using a register.

PUSH R5

INCD SP

RET

; R5 is the result of a calculation, which is stored
; in the system stack
; Remove TOS by double-increment from stack
; Do not use INCD.B, SP is a word-aligned
; register

The byte on the top of the stack is incremented by two.

INCD.B O(SP) ; Byte on TOS is increment by two

Instruction Set Description 9-31

Instruction Set Overview

* INV[.W]
*INV.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Example

8-32

Invert destination
Invert destination

INV
INV.S

dst
dst

.NOT.dst -> dst

XOR
XORS

#OFFFFh,dst
#OFFh,dst

The destination operand is inverted. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFFh, reset otherwise

Set if dst contained OFFh, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)

Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

OscOff, CPUOff, and GIE are not affected.

Content of R5 is negated (twos complement).
MOV #OOAeh,R5
INV R5
INC R5

; Invert R5,
; R5 is now negated,

R5 = OOOAEh
R5 = OFF51h
R5 = OFF52h

Content of memory byte LEO is negated.

MOV.S
INV.S
INC.B

#OAEh,LEO
LEO
LEO

MEM(LEO) = OAEh
; Invert LEO, MEM(LEO) = 051h
; MEM(LEO) is negated, MEM(LEO) = 052h

JC
JHS

Syntax

Operation

Description

Status Bits

Example

Example

Jump if carry set
Jump if higher or same

JC
JHS

label
label

Instruction Set Overview

If C = 1: PC + 2 x offset -> PC
If C = 0: execute following instruction

The status register carry bit (C) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is reset,
the next instruction following the jump is executed. JC (jump if carry/higher or
same) is used for the comparison of unsigned numbers (0 to 65536).

Status bits are not affected.

The POIN.1 signal is used to define or control the program flow.

BIT
JC

#10h,&POIN
PROGA

; State of signal -> Carry
; If carry=1 then execute program routine A
; Carry=O, execute program here

R5 is compared to 15. If the content is higher or the same, branch to LABEL.

CMP
JHS

#15,R5
LABEL ; Jump is taken if R5 ~ 15

; Continue here if R5 < 15

Instruction Set Description 8-33

Instruction Set OveNiew

JEQ, JZ

Syntax

Operation

Description

Status Bits

Example

Example

Example

8-34

Jump if equal, jump if zero

JEQ label, JZ label

If Z = 1: PC + 2 x offset -> PC
If Z = 0: execute following instruction

The status register zero bit (Z) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is not
set, the instruction following the jump is executed.

Status bits are not affected.

Jump to address TONI if R7 contains zero.

TST
JZ

R7
TONI

; Test R7
; if zero: JUMP

Jump to address LEO if R6 is equal to the table contents.

CMP R6,Table(RS); Compare content of R6 with content of
; MEM (table address + content of RS)

JEQ LEO ; Jump if both data are equal
; No, data are not equal, continue here

Branch to LABEL if RS is O.

TST RS
JZ LABEL

JGE

Syntax

Operation

Description

Status Bits

Example

Instruction Set Overview

Jump if greater or equal

JGE label

If (N .xOR. V) = 0 then jump to label: PC + 2 x offset -> PC
If (N .xOR. V) = 1 then execute the following instruction

The status register negative bit (N) and overflow bit (V) are tested. If both N
and V are set or reset, the 1 O-bit signed offset contained in the instruction LSBs
is added to the program counter. If only one is set, the instruction following the
jump is executed.

This allows comparison of signed integers.

Status bits are not affected.

When the content of R6 is greater or equal to the memory pointed to by R7,
the program continues at label EDE.

CMP
JGE

@R7,R6
EDE

; R6 ~ (R7)?, compare on signed numbers
; Yes, R6 ~ (R7)
; No, proceed

Instruction Set Description 8-35

Instruction Set Overview

JL

Syntax

Operation

Description

Status Bits

Example

8-36

Jump if less

JL label

If (N .xOR. V) = 1 then jump to label: PC + 2 x offset -> PC
If (N .xOR. V) = 0 then execute following instruction

The status register negative bit (N) and overflow bit (V) are tested. If only one
is set, the 1 O-bit signed offset contained in the instruction LSBs is added to the
program counter. If both N and V are set or reset, the instruction following the
jump is executed.

This allows comparison of signed integers.

Status bits are not affected.

When the content of R6 is less than the memory pointed to by R7, the program
continues at label EDE.

CMP
JL

@R7,R6
EDE

; R6 < (R7)?, compare on signed numbers
; Yes, R6 < (R7)
; No, proceed

JMP

Syntax

Operation

Description

Status Bits

Hint:

Instruction Set Overview

Jump unconditionally

MP label

PC + 2 x offset -> PC

The 10-bit signed offset contained in the instruction LSBs is added to the
program counter.

Status bits are not affected.

This one-word instruction replaces the BRANCH instruction in the range of
-511 to +512 words relative to the current program counter.

Instruction Set Description 8-37

Instruction Set Overview

IN

Syntax

Operation

Description

Status Bits

Example

L$1

8-38

Jump if negative

IN label

if N = 1: PC + 2 x offset -> PC
if N = 0: execute following instruction

The negative bit (N) of the status register is tested. If it is set, the 1 O-bit signed
offset contained in the instruction LSBs is added to the program counter. If N
is reset, the next instruction following the jump is executed.

Status bits are not affected.

The result of a computation in RS is to be subtracted from COUNT. If the result
is negative, COUNT is to be cleared and the program continues execution in
another path.

SUB
IN

CLR

R5,COUNT
L$1

COUNT

; COUNT - RS -> COUNT
; If negative continue with COUNT =0 at PC=L$1
; Continue with COUNT~O

JNC
JLO

Syntax

Operation

Description

Status Bits

Example

ERROR

CO NT

Example

Jump if carry not set
Jump if lower

JNC
JNC

label
label

Instruction Set Overview

if C = 0: PC + 2 x offset -> PC
if C = 1: execute following instruction

The status register carry bit (C) is tested. If it is reset, the 1 O-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is set,
the next instruction following the jump is executed. JNC (jump if no carry/lower)
is used for the comparison of unsigned numbers (0 to 65536).

Status bits are not affected.

The result in R6 is added in BUFFER. If an overflow occurs, an error handling
routine at address ERROR is used.

ADD
JNC

R6,BUFFER
CO NT

; BUFFER + R6 -> BUFFER
; No carry, jump to CONT
; Error handler start

; Continue with normal program flow

Branch to STL2 if byte STATUS contains 1 or O.

CMP.B
JLO

#2,STATUS
STL2 ; STATUS < 2

; STATUS ~ 2, continue here

Instruction Set Description 8-39

Instruction Set Overview

JNE,JNZ

Syntax

Operation

Description

Status Bits

Example

8-40

Jump if not equal, jump if not zero

JNE label, JNZ label

If Z = 0: PC + 2 x offset -> PC
If Z = 1 : execute following instruction

The status register zero bit (Z) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is set,
the next instruction following the jump is executed.

Status bits are not affected.

Jump to address TONI if R7 and R8 have different contents.

CMP
JNE

R7,R8
TONI

; COMPARE R7 WITH R8
; if different: jump
; if equal, continue

MOV[.W]
MOV.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Loop

Example

Loop

Move source to destination
Move source to destination

Instruction Set Overview

MOV
MOV.B

src,dst or MOV.W src,dst
src,dst

src -> dst

The source operand is moved to the destination.
The source operand is not affected. The previous contents of the destination
are lost.

Status bits are not affected.

OscOff, CPUOff, and GIE are not affected.

The contents of table EDE (word data) are copied to table TOM. The length
of the tables must be 020h locations.

MOV
MOV
MOV
DEC
JNZ

#EDE,R10
#020h,R9
@R10+,TOM-EDE-2(R10)
R9
Loop

; Prepare pOinter
; Prepare counter
; Use pointer in R10 for both tables
; Decrement counter
; Counter =1= 0, continue copying
; Copying completed

The contents of table EDE (byte data) are copied to table TOM. The length of
the tables should be 020h locations

MOV #EDE,R10
MOV #020h,R9
MOV.B @R10+,TOM-EDE-1(R10)

DEC R9
JNZ Loop

; Prepare pointer
; Prepare counter
; Use pointer in R10 for
; both tables
; Decrement counter
; Counter =1= 0, continue
; copying
; Copying completed

Instruction Set Description 8-41

Instruction Set Overview

*NOP

Syntax

Operation

Emulation

Description

Status Bits

8-42

No operation

NOP

None

MOV #0,#0

No operation is performed. The instruction may be used for the elimination of
instructions during the software check or for defined waiting times.

Status bits are not affected.

The NOP instruction is mainly used for two purposes:

o To hold one, two or three memory words
o To adjust software timing

Note: Emulating No-Operation Instruction

Other instructions can emulate no-operation instruction using different
numbers of cycles and code words.

Examples:

MOV
MOV
BIC
JMP
BIC

0(R4),0(R4)
@R4,0(R4)
#0,EDE(R4)
$+2
#0,R5

; 6 cycles, 3 words
; 5 cycles, 2 words
; 4 cycles, 2 words
; 2 cycles, 1 word
; 1 cycle, 1 word

* POP[.W]
* POP.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Example

Example

Example

Example

Instruction Set Overview

Pop word from stack to destination
Pop byte from stack to destination

POP
POP.B

dst
dst

@SP -> dst
SP + 2-> SP

MOV
MOV.B

@SP+,dst or MOV.W @SP+,dst
@SP+,dst

The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status bits are not affected.

The contents of R7 and the status register are restored from the stack.

POP
POP

R7
SR

; Restore R7
; Restore status register

The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,
; the high byte of R7 is OOh

The contents of the memory pOinted to by R7 and the status register are
restored from the stack.

POP.B O(R7)

POP SR

; The low byte of the stack is moved to the
; the byte which is pOinted to by R7
: Example: R7 = 203h

Mem(R7) = low byte of system stack
: Example: R7 = 20Ah

Mem(R7) = low byte of system stack

Note: The System Stack Pointer

The system stack pOinter (SP) is always incremented by two, independent
of the byte suffix.

Instruction Set Description 8-43

Instruction Set Overview

PUSH[.W]
PUSH.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

8-44

Push word onto stack
Push byte onto stack

PUSH src or PUSH. W src
PUSH.S src

SP-2 ~SP
src ~ @SP

The stack pointer is decremented by two, then the source operand is moved
to the RAM word addressed by the stack pointer (TOS).

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OscOff, CPUOff, and GIE are not affected.

The contents of the status register and R8 are saved on the stack.

PUSH
PUSH

SR
R8

; save status register
; save R8

The contents of the peripheral TCDAT is saved on the stack.

PUSH.S &TCDAT ; save data from 8-bit peripheral module,
; address TCDAT, onto stack

Note: The System Stack Pointer

The system stack pointer (SP) is always decremented by two, independent
of the byte suffix.

* RET

Syntax

Operation

Emulation

Description

Status Bits

Return from subroutine

RET

@SP~PC

SP +2 ~SP

MOV @SP+,PC

Instruction Set Overview

The return address pushed onto the stack by a CALL instruction is moved to
the program counter. The program continues at the code address following the
subroutine call.

Status bits are not affected.

Instruction Set Description 8-45

Instruction Set Overview

RETI

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Return from interrupt

RETI

TOS
SP+2
TOS
SP+2

~SR

~SP

~PC

~SP

The status register is restored to the value at the beginning of the interrupt
service routine by replacing the present SR contents with the TOS contents.
The stack pOinter (SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt
service. This is the consecutive step after the interrupted program flow.
Restoration is performed by replacing the present PC contents with the TOS
memory contents. The stack pOinter (SP) is incremented.

N: restored from system stack
Z: restored from system stack
C: restored from system stack
V: restored from system stack

OscOff, CPUOff, and GIE are restored from system stack.

Figure 8-5 illustrates the main program interrupt.

Figure 8-5. Main Program Interrupt

PC-6

PC-4

PC-2

PC

PC +2

PC +4

PC +6

PC +8

8-46

•••

Interrupt Request

/ Interrupt Accepted

PC+2 is Stored
Onto Stack

PC= PCi

PCi+2

PCi+4

PCi +n-4

PCi +n-2

PCi+n

•••

• • •

RETI

* RLA[.W]
* RLA.B

Syntax

Operation

Emulation

Description

Rotate left arithmetically
Rotate left arithmetically

RLA dst or
RLA.B dst

RLAW dst

C <- MSB <- MSB-1 LSB+ 1 <- LSB <- 0

ADD dst,dst
ADD.B dst,dst

Instruction Set Overview

The destination operand is shifted left one position as shown in Figure 8-6.
The MSB is shifted into the carry bit (C) and the LSB is filled with O. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst ::::: 04000h and dst < OCOOOh before operation is
performed: the result has changed sign.

Figure 8-6. Destination Operand-Arithmetic Shift Left

Status Bits

Mode Bits

Example

Example

Word 15 0

~~4 I 1------------------ I '--r 0
8yte 7 o

An overflow occurs if dst ::::: 040h and dst < OCOh before the operation is
performed: the result has changed sign.

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:

the initial value is 04000h ::;; dst < OCOOOh; otherwise it is reset
Set if an arithmetic overflow occurs:
the initial value is 040h::;; dst < OCOh; otherwise it is reset

OscOff, CPUOff, and GIE are not affected.

R? is multiplied by 4.

RLA
RLA

R?
R?

; Shift left R? (x 2) - emulated by ADD R?,R?
; Shift left R? (x 4) - emulated by ADD R?,R?

The low byte of R? is multiplied by 4.

RLAB R?

RLA.B R?

Note: RLA Substitution

; Shift left low byte of R? (x 2) - emulated by
; ADD.B R?,R?
; Shift left low byte of R? (x 4) - emulated by
; ADD.B R?,R?

The assembler does not recognize the instruction:

RLA @R5+ nor RLAB @R5+.

It must be substituted by:

ADD @R5+,-2(R5) or ADD.B @R5+,-1(R5).

Instruction Set Description 8-47

Instruction Set Overview

* RLC[.W]
* RLC.B

Syntax

Operation

Emulation

Description

Rotate left through carry
Rotate left through carry

RLC dst or
RLC.B dst

RLC.W

C <- MSB <- MSB-1 LSB+1 <- LSB <- C

ADDC dst,dst

dst

The destination operand is shifted left one position as shown in Figure B-7.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 8-7. Destination Operand-Carry Left Shift

Status Bits

Mode Bits

Example

Example

Example

Example

8-48

Word 15 0

~ Byte
17 1------------------ 1 01

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if arithmetic overflow occurs, reset otherwise

Set if 03FFFh < dstinitial < OCOOOh, reset otherwise
Set if 03Fh < dstinitial < OCOh, reset otherwise

OscOff, CPUOff, and GIE are not affected.

RS is shifted left one position.

RLC RS ; (RS x 2) + C -> RS

The input POIN.1 information is shifted into the LSB of RS.

BIT.B
RLC

#2,&POIN
RS

; Information -> Carry
; Carry=POin.1 -> LSB of RS

The MEM(LEO) content is shifted left one pOSition.

RLC.B LEO ; Mem(LEO) x 2 + C -> Mem(LEO)

The input POIN.1 information is to be shifted into the LSB of RS.

BIT.B
RLC.B

#2,&POIN
RS

; Information -> Carry
; Carry = POin.1 -> LSB of R5
; High byte of RS is reset

Note: RLC and RLC.B Emulation

The assembler does not recognize the instruction:

RLC @RS+.

It must be substituted by:

AD DC @RS+,-2(RS).

RRA[.W]
RRA.B

Syntax

Operation

Description

Rotate right arithmetically
Rotate right arithmetically

RRA dst or
RRA.B dst

Instruction Set Overview

RRA.W dst

MSB -> MSB, MSB -> MSB-1, ... LSB+ 1 -> LSB, LSB -> C

The destination operand is shifted right one position as shown in Figure B-8.
The MSB is shifted into the MSB, the MSB is shifted into the MSB-1 , and the
LSB+ 1 is shifted into the LSB.

Figure 8-8. Destination Operand-Arithmetic Right Shift

Status Bits

Mode Bits

Word 15 0

[t1 ~~I------------------1:J
N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

OscOff, CPUOff, and GIE are not affected.

Instruction Set Description 8-49

Running Title-Attribute Reference

Example

;OR

Example

;OR

8-50

R5 is shifted right one position. The MSB retains the old value. It operates
equal to an arithmetic division by 2.

RRA R5 ; R5/2-> R5

The value in R5 is multiplied by 0.75 (0.5 + 0.25).

PUSH
RRA
ADD
RRA

RRA
PUSH
RRA
ADD

R5
R5
@SP+,R5
R5

R5
R5
@SP
@SP+,R5

; hold R5 temporarily using stack
; R5xO.5 -> R5
; R5 x 0.5 + R5 = 1.5 x R5 -> R5
; (1.5 x R5) x 0.5 = 0.75 x R5 -> R5

; R5 x 0.5 -> R5
; R5xO.5 -> TOS
; TOS x 0.5 = 0.5 x R5 x 0.5 = 0.25 x R5 -> TOS
; R5 x 0.5 + R5 x 0.25 = 0.75 x R5 -> R5

The low byte of R5 is shifted right one position. The MSB retains the old value.
It operates equal to an arithmetic division by 2.

RRA.B R5 ; R5/2 -> R5: operation is on low byte only
; High byte of R5 is reset

The value in R5 (low byte only) is multiplied by 0.75 (0.5 + 0.25).

PUSH.B R5 ; hold low byte of R5 temporarily using stack
RRA.B R5 ; R5 x 0.5 -> R5
ADD.B @SP+,R5 ; R5 x 0.5 + R5 = 1.5 x R5 -> R5
RRA.B R5 ; (1.5 x R5) x 0.5 = 0.75 x R5 -> R5

RRA.B R5 ; R5 x 0.5 -> R5
PUSH.B R5 ; R5 x 0.5 -> TOS
RRA.B @SP ;TOS x 0.5 = 0.5 x R5 x 0.5 = 0.25 x R5 -> TOS
ADD.B @SP+,R5 ; R5 x 0.5 + R5 x 0.25 = 0.75 x R5 -> R5

RRC[.W]
RRC.B

Syntax

Operation

Description

Rotate right through carry
Rotate right through carry

RRC
RRC

dst
dst

or RRC.W dst

C -> MSB -> MSB-1 LSB+ 1 -> LSB -> C

Instruction Set Overview

The destination operand is shifted right one position as shown in Figure B-6.
The carry bit (C) is shifted into the MSB, the LSB is shifted into the carry bit (C).

Figure 8-9. Destination Operand-Carry Right Shift

Status Bits

Mode Bits

Example

Example

Word 15 0

rf]1----+-I·1..---r-1--------------------------,---,1 b
8yte 7

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB

o

V: Set if initial destination is positive and initial carry is set, otherwise reset

OscOff, CPUOff, and GIE are not affected.

RS is shifted right one position. The MSB is loaded with 1.

SETC
RRC RS

; Prepare carry for MSB
; RS/2 + 8000h -> RS

RS is shifted right one position. The MSB is loaded with 1.

SETC
RRC.B RS

; Prepare carry for MSB
; RS/2 + 80h -> RS; low byte of RS is used

Instruction Set Description 8-51

Instruction Set Overview

* SBC[.W]
* SBC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

8-52

Subtract (borrow*) from destination
Subtract (borrow*) from destination

SBC dst or SBC.W dst
SBC.B dst

dst + OFFFFh + C -> dst
dst + OFFh + C -> dst

SUBC #O,dst
SUBC.B #O,dst

The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Reset if dst was decremented from 0000 to OFFFFh, set otherwise

Reset if dst was decremented from 00 to OFFh, set otherwise
V: Set if initially C = 0 and dst = 08000h

Set if initially C = 0 and dst = 080h

OscOff, CPUOff, and GIE are not affected.

The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
painted to by R12.

SUB
SBC

@R13,0(R12)
2(R12)

; Subtract LSDs
; Subtract carry from MSD

The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B
SBC.B

@R13,0(R12)
1(R12)

Note: Borrow Is Treated as a .NOT.

The borrow is treated as a . NOT. carry :

; Subtract LSDs
; Subtract carry from MSD

Borrow
Yes
No

Carry bit
o
1

*SETC

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

DSUS

Set carry bit

SETC

1->C

SIS #1,SR

The carry bit (C) is set.

N: Not affected
Z: Not affected
C: Set
V: Not affected

Instruction Set Overview

OscOff, CPUOff, and GIE are not affected.

Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 3987 and R6 = 4137

ADD

INV

SETC
DADD

#6666h,R5

R5

R5,R6

; Move content R5 from 0-9 to 6-OFh
; R5 = 03987 + 6666 = 09FEDh
; Invert this (result back to 0-9)
; R5 = .NOT. R5 = 06012h
; Prepare carry = 1
; Emulate subtraction by addition of:
; (10000 - R5 -1)
; R6 = R6 + R5 + 1
; R6 = 4137 + 06012 + 1 = 1 0150 = 0150

Instruction Set Description 8-53

Instruction Set Overview

*SETN

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

8-54

Set negative bit

SETN

1-> N

BIS #4,SR

The negative bit (N) is set.

N: Set
Z: Not affected
C: Not affected
V: Not affected

OscOff, CPUOff, and GIE are not affected.

·SETZ

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Set zero bit

SETZ

1 ->Z

SIS #2,SR

The zero bit (Z) is set.

N: Not affected
Z: Set
C: Not affected
V: Not affected

Instruction Set Overview

OscOff, CPUOff, and GIE are not affected.

Instruction Set Description 8-55

Instruction Set Overview

SUB[.W]
SUB.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

8-56

Subtract source from destination
Subtract source from destination

SUB
SUB.B

src,dst
src,dst

or

dst + .NOT.src + 1 -> dst
or
[(dst - src -> dst)]

SUB.W src,dst

The source operand is subtracted from the destination operand by adding the
source operand's 1 s complement and the constant 1. The source operand is
not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

OscOff, CPUOff, and GIE are not affected.

See example at the SBC instruction.

See example at the SBC.B instruction.

Note: Borrow Is Treated as a .NOT.

The borrow is treated as a .NOT. carry : Borrow
Yes
No

Carry bit
a
1

SUBC[. W]SBB[. W]
SUBC.B,SBB.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set Overview

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SUBC src,dst or SUBC.W
SBB src,dst or SBB.W
SUBC.B src,dst or SBB.B

dst + .NOT.src + C -> dst
or
(dst - src - 1 + C -> dst)

src,dst or
src,dst
src,dst

The source operand is subtracted from the destination operand by adding the
source operand's 1 s complement and the carry bit (C). The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive.
Z: Set if result is zero, reset otherwise.
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, reset otherwise.

OscOff, CPUOff, and GIE are not affected.

Two floating pOint mantissas (24 bits) are subtracted.
LSBs are in R13 and R10, MSBs are in R12 and R9.

SUB.W R13,R10; 16-bit part, LSBs
SUBC.B R12,R9 ; 8-bit part, MSBs

The 16-bitcounter pointed to by R13 is subtracted from a 16-bit counter in R10
and R11(MSD).

SUB.B @R13+,R10
SUBC.B @R13,R11

; Subtract LSDs without carry
; Subtract MSDs with carry
; resulting from the LSDs

Note: Borrow Is Treated as a .NOT. Carry

The borrow is treated as a .NOT. carry : Borrow
Yes
No

Carry bit
o
1

Instruction Set Description 8-57

Instruction Set Overview

SWPB

Syntax

Operation

Description

Status Bits

Mode Bits

Swap bytes

SWPB dst

Bits 15 to 8 <-> bits 7 to 0

The destination operand high and low bytes are exchanged as shown in
Figure 8-10.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OscOtt, CPUOff, and GIE are not affected.

Figure B-10. Destination Operand Byte Swap

15 8 7 o

Example

Example

8-58

MOV
SWPB

#040BFh,R7
R7

; 0100000010111111 -> R7
; 1011111101000000 in R7

The value in R5 is multiplied by 256. The result is stored in R5,R4.

SWPB
MOV
BIC
BIC

R5
R5,R4
#OFFOOh,R5
#00FFh,R4

;Copy the swapped value to R4
;Correct the result
;Correct the result

SXT

Syntax

Operation

Description

Status Bits

Mode Bits

Instruction Set Overview

Extend Sign

SXT dst

Bit 7 -> Bit 8 Bit 15

The sign of the low byte is extended into the high byte as shown in Figu re B-11 .

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

OscOff, CPUOff, and GIE are not affected.

Figure 8-11. Destination Operand Sign Extension

15 8 7 o

Example R7 is loaded with the Timer/Counter value. The operation of the sign-extend
instruction expands bit 8 to bit 15 with the value of bit 7.
R7 is then added to RS.

MOV.B
SXT
ADD

&TCDAT,R7
R7
R7,RS

; TCDAT = 080h: 1000 0000
; R7 = OFF80h: 11111111 10000000
; add value of EDE to 1S-bit ACCU

Instruction Set Description 8-59

Instruction Set Overview

* TST[.W]
* TST.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Se60

Test destination
Test destination

TST dst or TST. W dst
TST.B dst

dst + OFFFFh + 1
dst + OFFh + 1

CMP
CMP.B

#O,dst
#O,dst

The destination operand is compared with zero. The status bits are set accord­
ing to the result. The destination is not affected.

N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

OscOff, CPUOff, and GIE are not affected.

R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero,
continue at R7POS.

R7POS
R7NEG
R7ZERO

TST
IN
JZ

R7
R7NEG
R7ZERO

; Test R7
; R7 is negative
; R7 is zero
; R7 is positive but not zero
; R7 is negative
; R7 is zero

The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive
but not zero, continue at R7POS.

R7POS
R7NEG
R7ZERO

TST.B
IN
JZ

R7
R7NEG
R7ZERO

; Test low byte of R7
; Low byte of R7 is negative
; Low byte of R7 is zero
; Low byte of R7 is positive but not zero
; Low byte of R7 is negative
; Low byte of R7 is zero

XOR[.W]
XOR.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Instruction Set Overview

Exclusive OR of source with destination
Exclusive OR of source with destination

XOR
XOR.B

src,dst or
src,dst

src .xOR. dst -> dst

XOR.W src,dst

The source and destination operands are exclusive ORed. The result is placed
into the destination. The source operand is not affected.

N: Set if result MSB is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if both operands are negative

OscOff, CPUOff, and GIE are not affected.

The bits set in R6 toggle the bits in the RAM word TONI.

XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6

The bits set in R6 toggle the bits in the RAM byte TONI.

XOR.B R6,TONI ; Toggle bits in word TONI on bits
; set in low byte of R6,

Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte
EDE.

XOR.B
INV.B

EDE,R7
R7

; Set different bit to "1 s"
; Invert Lowbyte, Highbyte is Oh

Instruction Set Description 8-61

8-62

ill -

Appendix C

EPROM Programming
1~IIU~Il.~"~. 12 IlIiiJaliaMLnwA 111\ 'lt~RaI:ltb[lt~

erne m I!I~~~ L~~II!l"~I:aBl~ •• &iIi'Mt&Mi!t"'i!JJlll\~

This appendix describes the MSP430 EPROM module. The EPROM module
is erasable with ultraviolet light and electrically programmable. Devices with
an EPROM module are offered in a windowed package for multiple program­
ming and in an OTP package for one-time programmable devices.

Topic Page

Co1 EPROM Operation 0 C-2

Co2 FAST Programming Algorithm 0 C-4

Co3 Programming an EPROM Module Through a Serial Data Link
Using the JTAG Feature 0 C-5

Co4 Programming an EPROM Module With Controller's Software 0 0 0 0 0 C-6

CoS Code 0 C-8

C-1

EPROM Operation

C.1 EPROM Operation

C.1.1 Erasure

The CPU acquires data and instructions from the EPROM. When the
programming voltage is applied to the TDINPP terminal, the CPU can also
write to the EPROM module. The process of reading the EPROM is identical
to the process of reading from other internal peripheral modules. Both
programming and reading can occur on byte or word boundaries.

The entire EPROM may be erased before programming begins. Erase the
EPROM module by exposing the transparent window to ultraviolet light.

Note: EPROM Exposed to Ambient Light (1)

Since normal ambient light contains the correct wavelength for erasure,
cover the transparent window with an opaque label when programming a
device. Do not remove the table until it has to be erased. Any useful data in
the EPROM module must be reprogrammed after exposure to ultraviolet
light.

The data in the EPROM module can be programmed serially through the
integrated JTAG feature, or through software included as a part of the
application software. The JTAG implementation features an internal
mechanism for security purposes provided by the implemented fuse. Once the
security fuse is activated, the device cannot be accessed through the JTAG
functions. The JTAG is permanently operating in the by-pass mode.

Refer to the appropriate data sheet for more information on the fuse imple­
mentation.

C.1.2 Programming Methods

C-2

The application must provide an external voltage supply to the TDINPP
terminal to provide the necessary voltage and current for programming. The
minimum programming time is noted in the electrical characteristics of the
device data sheets.

The EPROM control register EPCTL controls the EPROM programming, once
the external voltage is supplied. The erase state is a 1. When EPROM bits are
programmed, they are read as O.

The programming of the EPROM module can be done for single bytes, words,
blocks of individual length, or the entire module. All bits that have a final level
of 0 must be erased before the EPROM module is programmed. The program­
ming can be done on single devices or even in-system. The supply voltage
should be in the range required by the device data sheet but at least the maxi­
mum supply voltage of the target application. The levels on the JTAG terminals
are defined in the device data sheet, and are usually CMOS levels.

EPROM Operation

Example C-1. MSP430 On-Chip Program Memory Format

xxxAh

xxxBh

xxx6h

xxx4h

Word Format

•••
DEFO

9ABC

567B

1234

•••

xxxBh

xxxAh

xxx9h

xxxBh

xxx7h

xxx6h

xxx5h

xxx4h

Byte Format

•••
DE

FO

9A

BC

56

78

12

34

•••

C.1.3 EPROM Control Register EPCTL

Figure C-1. EPROM Control Register EPCTL

7 o
EPCTL I I I

054h ~_ __~ ____ ~ __ ~ __ ~ ____ ~ __ ~_v_P_PS~_E_X_E~
r-O r-Q r-O r-Q r-O r-O rw-O rw-Q

For bit 0, the executable bit EXE initiates and ends the programming to the
EPROM module. The external voltage must be supplied to the TDINPP or
TesWPP before the EXE bit is set. The timing conditions are noted in the data
sheets.

For bit 1 , when the VPPS bit is set, the external programming voltage is con­
nected to the EPROM module. The VPPS bit must be set before the EXE bit
is set. It can be reset together with the EXE bit. The VPPS bit must not be
cleared between programming operations.

Note:

Ensure that no VPP is applied to the programming voltage pin (TDINPP or
TesWPP) when the software in the device is executed or when the JTAG is
not fully controlled. Otherwise, an undesired write operation may
occur.

EPROM Programming C-3

EPROM Operation

C.1.4 EPROM Protect

The EPROM access through the serial test and programming interface JTAG
can be inhibited when the security fuse is activated. The security fuse is acti­
vated by serial instructions shifted into the JTAG. Activating the fuse is not re­
versible and any access to the internal system is disrupted. The by-pass func­
tion described in the standard IEEE 1149.1 is active.

C.2 FAST Programming Algorithm

The FAST programming cycle is normally used to program the data into the
EPROM. A programmed logical 0 can be erased only by ultraviolet light.

Fast programming uses two types of pulses: prime and final. The length of the
prime pulse is typically 100llS (see the latest datasheet). After each prime
pulse, the programmed data are verified. If the verification fails 25 times, the
programming operation was false. If correct data are read, the final program­
ming pulse is applied. The final programming pulse is 3 times the number of
prime pulses applied.

Example C-2. Fast Programming Subroutine

C-4

VPP at TDINPP is Switched to EPROM: Set VPPS Bit
Load Loop Into R_Count, Loop = 25

Write Data From BurnByte To EPROM
Program One Prime Pulse (typ. 100 Ils)

Yes

Invert Data in BurnByte
Use inv. BurnByte for

Error Indication

Final Programming Pulse
Applied:

3-Times N Prime Pulse

End Of Subroutine: RET

EPROM Operation

C.3 Programming an EPROM Module Through a Serial Data Link Using the
JTAG Feature

The hardware interconnection of the JTAG terminals is established through
four separate terminals, plus the ground or VSS reference level. The JTAG ter­
minals are TMS, TCK, TOI(NPP), and TOO(fTOI).

Figure C-2. EPROM Programming With Serial Data Link

vpp§ • a-c
(12.5 V/70 mA)

TMS ---1~--I >---------------------~4TMS

TCK -'--+---1 >-----------------+-~TCK

TOI -'---+1 >-+-------..-0,.-- o-.---1TOINPpt

TOO 0----e----1 TOOITm:l:

MSP430Xxxx

TCLK -~-+-I ~----------------------~ Xout/TCLK

4---~-+~----------~~VCC/OVCC

AVCC

~~~~~----------~~VSS/OVSS 

SN74HCT125 

1 k 

27 

AVSS 

Switches shown for programming situation 

t TOI in standard mode, VPP input during programming 
:j: TOO in standard mode, data input TOI during programming 
§ See electrical characteristics in the latest data sheet 

EPROM Programming C-5 



EPROM Operation 

C.4 Programming an EPROM Module With Controller's Software 

The procedure for programming an EPROM module is as follows: 

1) Connect the required supply to the TDINPP terminal. 

2) Run the proper software algorithm. 

The software algorithm that controls the EPROM programming cycle cannot 
run in the same EPROM module to which the data are being written. It is impos­
sible to read instructions from the EPROM and write data to it at the same time. 
The software needs to run from another memory such as a ROM module, a 
RAM module, or another EPROM module. 

Figure C-3. EPROM Programming With Controller's Software 

VPP§ 
(11.5 V/70 rnA) 

... .. 

.. ... 
... .. 

... 

~ 68k 

VSS 
~ 68 k 

VSS 

-L 

t Internally a pullup resistor is connected to TMS and TCK 

TMSt 

TCKt 

TDINPP:l: 

TDOITDI§ 

MSP430Xxxx 

VSS/DVSS 

AVSS 

:j: ROM devices of MSP430 have an internal pullup resistor at pin TDINPP. 
MSP430Pxxx or MSP430Exxx have no internal pullup resistor. They should be terminated 
according to the device data sheet. 

§ The TDOffDI pin should be terminated according to the device data sheet. 

C.4.1 Example 

C-6 

The software example writes one byte into the EPROM with the fast program­
ming algorithm. The code is written position-independent, and will have been 
loaded to the RAM before it is used. The programming algorithm runs during 
the programming sequence in the RAM, thus avoiding conflict when the 
EPROM is written. The data (byte) that should be written is located in the RAM 
address BurnByte. The target address of the EPROM module is held in the 
register pointer defined with the set directive. The timing is adjusted to a cycle 
time of 1 Ils. When another cycle time/processor frequency is selected, the 
software should be adjusted according to the operating conditions. 



EPROM OOE!ratil~n 

Example C-3. Programming EPROM Module With Controller'S Software 

••• 
DE 

FO 

yyyy I--' 
9A 

-.... 
[)..... 

r- --- ~ ••• BC 
DE 

56 

"\. FO 
78 

R91 xxxx [ ): 9A 
--.. 

12 --BC 
34 

56 
••• 

78 

12 

34 

••• 

Example: Write data in yyyy into location xxxx 
Bum Byte = (yyyy) = (9Ah) 
R9 = xxxx 

The target EPROM module cannot execute the programming code sequence 
while the data are being written into it. In the example, a subroutine moves the 
programming code sequence into another memory, for example, into the 
RAM. 

Example C-4. Subroutine 

Start Of Subroutine: Load_Burn_Routine 

Source Start Address Of The Code Sequence»R7 
Destination Start Address Of The Code Sequence» R10 

Move One Word: (R7) » (R10) 
Increment Source and Dest. Pointer in R7 and R10 

No 

EPROM Programming C-7 



Code 

C.5 Code 
i-------------------------------------------------------------

Definitions used in Subroutine : 
; Move programming code sequence into RAM (load_burn_routine) 
; Burn a byte into the EPROM area (Burn_EPROM) 
i-------------------------------------------------------------

EPCTL .set 054h 
VPPS .set 2 
EXE .set 1 
BurnByte .set 0220h 
Burn_orig . set 0222h 

loops .set 25 
r_timer .set r8 
pointer .set r9 

.set rlO 

.set 3 

ov .set 2 

EPROM Control Register 
Program Voltage bit 
Execution bit 
address of data to be written 
Start address of burn 
program in the RAM 

lus = 1 cycle 
pointer to the EPROM address 
r9 is saved in the main routine 
before subroutine call is executed 

dec 
jnz 
mov 

r - timer : 1 cycle 
: 2 cycles 

# (lOO-ov) /lp, r_ timer 

loop_tlOO 
loop_tlOO 
2 cycles 

; Load EPROM programming sequence to another location e.g. RAM, Subroutine 

i---
;---

The address of Burn_EPROM (start of burn EPROM code) and 
the address of Burn_end (end of burn EPROM code) and 

i---
the start address of the location of the destination 
code area (RAM_Burn_EPROM) are known at assembly/linking 

RAM_Burn_EPROM . set 
load_burn_routine 

push r9 
push rlO 
mov 
mov 

load_burnl 
mov 
incd 
incd 
cmp 
jne 
pop 
pop 
ret 

#Burn_EPROM,R9 
#RAM_Burn_EPROM,R10 

@R9,O(R10) 
R10 
R9 
#Burn_end,R9 
1 o ad_burn 1 
r9 
rlO 

load pointer source 
load pointer dest. 

move a word 
dest. pointer + 2 
source pointer + 2 
compare to end_of table 

; Program one byte into EPROM, Subroutine 

i--

Burn subroutine: position independent code is needed 
since in this examples it is shifted to RAM »only 
relative addressing, relative jump instructions, is used! 
The timing is correct due to lus per cycle 

time 

Burn_EPROM 
dint 
mov.b #VPPS,&EPCTL 
push r_timer 

ensure correct burn timing 
VPPS on 

push r_count 
mov #loops,r_count 

Repeat_Burn 
mov.b &BurnByte, 0 (pointer) 

C-8 

save registers 
programming subroutine 
2 cycles = 2 us 

write to data to EPROM 



bis.b #EXE,&EPCTL 

mov #(100-ov)/lp,r_ timer 
wait 100 

dec r timer -
jnz wait - 100 
bic.b #EXE,&EPCTL 

mov #4,r_ timer 
wait 10 -

dec r timer -
jnz wait - 10 

cmp.b &BurnByte, 0 (pointer) 
jne Burn_EPROM_bad 

6 cycles 
EXE on 

6 us 

4 cycles 4 us 
total cycles VPPon to EXE 
12 cycles = 12 us (min.) 

;:programming pulse of 100us 
; :starts, actual time 102us 

;:EXE / prog. pulse off 

;:wait min. 10 us 
;:before verifying 
;:programmed EPROM 
;:location, actual 13+ us 

verify data = burned data 
data * burned data > jump 

Continue here when data correctly burned into EPROM location 
mov.b &BurnByte, ° (pointer) write to EPROM again 
bis.b #EXE,&EPCTL EXE on 
add #(Offffh-loops+1),r_count 

final""puls 
mov 

wait_300 
dec 
jnz 

#(300-ov)/lp,r_timer 

r_timer 
wait_300 

inc r_count 
jn final""puls 
clr.b &EPCTL 
jmp Burn EPROM_end 

Burn_EPROM_bad 
dec 

jnz 

inv.b &BurnByte 

Burn_EPROM_end 

Burn_end 

pop r_count 
pop r_timer 
eint 
ret 

Number of loops for 
; successful programming 

; :programming pulse of 
;:3*100us*N starts 

;:EXE off / VPPS off 

not ok : decrement 
loop counter 
loop not ended : do 
another trial 
return the inverted data 
to flag 
failing the programming 
attempt the EPROM address 
is unchanged 

Code 

EPROM Programming C-9 



C-10 



NOTES 



TI Worldwide Technical Support 

Internet 
TI Semiconductor Home Page 
www.tLcom/sc 

TI Distributors 
www.ti.com/sc/docs/general/distrib.htm 

Product Information Centers 
Americas 
Phone 
Fax 
Internet 

+ 1 (972) 644-5580 
+1(214) 480-7800 
www.tLcom/sc/ampic 

Europe, Middle East, and Africa 
Phone 

Belgium (English) 
France 
Germany 
Israel (English) 
Italy 
Netherlands (English) 
Spain 
Sweden (English) 
United Kingdom 

Fax 
Email 
Internet 

Japan 
Phone 

International 
Domestic 

Fax 
International 
Domestic 

Internet 
International 
Domestic 

+32 (0) 27 45 55 32 
+33 (0) 1 30 70 11 64 
+49 (0) 8161 803311 
1800 949 0107 
800791137 
+31 (0) 546 87 95 45 
+34 902 35 40 28 
+46 (0) 8587 555 22 
+44 (0) 1604 66 33 99 
+44 (0) 1604 66 33 34 
epic@tLcom 
www.tLcom/sc/epic 

+81-3-3344-5311 
0120-81-0026 

+81-3-3344-5317 
0120-81-0036 

www.tLcom/sc/jpic 
www.tij.co.jp/pic 

Asia 
Phone 

International +886-2-23786800 
Domestic Local Access Code 
Australia 1-800-881-011 
China 00-800-8800-6800 
Hong Kong 800-96-1111 
India 000-117 
Indonesia 001-801-10 
Korea 001-800-8800-6800 
Malaysia 1-800-800-011 
New Zealand 000-911 
Philippines 105-11 
Singapore 800-0111-111 
Taiwan 080-006800 
Thailand 0019-991-1111 

Fax 886-2-2378-6808 
Email tiasia@tLcom 
Internet www.tLcom/sc/apic 

© 2000 Texas Instruments Incorporated 
Printed in the USA 

"TEXAS 
INSTRUMENTS 

TI Number 
-800-800-1450 

-800-800-1450 
-800-800-1450 
-800-800-1450 

-800-800-1450 
-800-800-1450 
-800-800-1450 
-800-800-1450 

-800-800-1450 

A050200 



Printed in U.S.A. 
07/2000 

lf1 TEXAS 
INSTRUMENTS 

SLAU012 


