Qf TEXAS
INSTRUMENTS

MSP430x3xx Family

3

User’s Guide

3
=
m\.
Q)
s,
oy

Apnweq xxexoedSIN

2000 July 2000 Mixed Signal Products



MSP430x3xx Family
User’s Guide

Literature Number: SLAUO012
July 2000

Q’ TeEXAS
INSTRUMENTS



IMPORTANT NOTICE

Texas Instruments and its subsidiaries (T1) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using Tl components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tlassumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express orimplied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI's publication of information regarding any third
party’s products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated

Printed in U.S.A by
Sandford Press, Inc.
Dallas, Texas



Preface

Read This First

LA ER Hoe it e D

B e R R

About This Manual

The MSP430x3xx User's Guide is intended to assist the development of
MSP430x3xx family products by assembling together and presenting
hardware and software information in a manner that is easy for engineers and
programmers to use.

This manual discusses modules and peripherals of the MSP430x3xx family of
devices. Each discussion presents the module or peripheral in a general
sense. Not all features and functions of all modules or peripherals are present
on all devices. In addition, modules or peripherals may differ in their exact
implementation between device families, or may not be fully implemented on
an individual device or device family. Therefore, a user must always consult
the data sheet of any device of interest to determine what peripherals and
modules are implemented, and exactly how they are implemented on that
particular device.

How to Use This Manual

This document contains the following chapters and appendixes:
Chapter 1. Introduction

Chapter 2. Architectural Overview

Chapter 3. System Resets, Interrupts, and Operating Modes
Chapter 4. Memory

Chapter 5. 16-Bit CPU

Chapter 6. Hardware Multiplier

Chapter 7. FLL Clock Module

Chapter 8. Digital I/O Configuration

Chapter 9. Universal Timer/Port Module



Related Documentation From Texas Instruments

Chapter 10. Timers

Chapter 11. Timer_A

Chapter 12. USART Peripheral Interface, UART Mode
Chapter 13. USART Peripheral Interface, SPI Mode
Chapter 14. Liquid Crystal Display Drive

Chapter 15. ADC12+2 A-to-D Converter

Appendix A. Peripheral File Map

Appendix B. Instruction Set Description

Appendix C. EPROM Programming

Notational Conventions

This document uses the following conventions.

[ Program listings, program examples, and interactive displays are shown
ina special typeface similarto a typewriter’s.

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Related Documentation From Texas Instruments

FCC Warning

For related documentation see the web site http://www.ti.com/sc/msp430.

This equipment s intended for use in a laboratory test environment only. It gen-
erates, uses, and can radiate radio frequency energy and has not been tested
for compliance with the limits of computing devices pursuant to subpart J of
part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other en-
vironments may cause interference with radio communications, in which case
the user at his own expense will be required to take whatever measures may
be required to correct this interference.



Contents

T IntrodUction ...t i i s i e e 1-1
1.1 Features and Capabilities ......... ... i i 1-2

1.2 BIX DEVICES . oot e 1-3

1.3 32X DEVICES . .. i 1-3

1.4 38X DEVICES . . o ot 1-4

2 Architectural Overview . ........coiiiii it i caasraaranannaanr i annnnas 21
2.1 INtrodUCtioN ... o 2-2

2.2 Central Processing Unit ........ i 2-2

2.3  Program Memory . ... .. 2-3

2.4 Data Memory ... e 2-3

2.5 Operation Control ................ e e 2-3

2.6  Peripherals . ... ... e 2-4

2.7  Oscillator and Clock Generator . ........ ..ottt 2-4

3 System Resets, Interrupts, and OperatingModes ..........cccoiiiiiiiiiiiiiinn.. 3-1
3.1  System Reset and Initialization ............. .. . e 3-2
311 IntroducCtion .. ... 3-2

3.1.2 Device Initialization after System Reset ................... ... ... .. ..... 3-4

3.2  Global Interrupt Structure .. ... ... e 3-5

3.3  MSP430 Interrupt-Priority Scheme . ... ... . 3-6
3.3.1  Operation of Global Interrupt—Reset/NMI ........ ... ... ... ... ooo... 3-8

3.3.2 Operation of Global Interrupt—Oscillator Fault Control ................... 3-8

3.4 INterrupt ProCessing ... ...ttt 3-9
3.4.1 Interrupt Control Bits in Special-Function Registers (SFRs) .............. 3-11

3.4.2 Interrupt Vector Addresses .. .....oovii it 3-14

3.5  Operating MOdes . ....o 3-14
3.5.1 Low-Power ModesOand 1 (LPMOandLPM1) ......... ...t 3-18

3.5.2 Low-PowerModes2and 3 (LPM2andLPM3) ......... ..., 3-19

3.5.3 Low-PowerMode 4 (LPM4) . ... ... e 3-19

3.6  Basic Hints for Low-Power Applications . ... 3-20

L B 1T ¢ 1T ) 4-1
4.1 INtrodUCHON . ..o e 4-2

4.2 Datainthe Memory . ... o e 4-3

4.3 Internal ROM Organization . ... et 4-4
4.3.1 Processingof ROM Tables . ... it 4-4

432 ComputedBranchesandCalls ................ . cciiiiiiiiiiiiiiinn. .. 4-5

4.4  RAM and Peripheral Organization ................ ittt 4-6



Contents

4.41 Random AcCess MeMOIY .. ... ...ttt 4-6

4.4.2 Peripheral Modules—Address Allocation ............ ... ... .. ... ... 4-8

4.4.3 Peripheral Modules—Special Function Registers (SFRs) ................ 4-10

B 16-Bit CPU ...t it i 5-1
5.1 CPUREGISIErs . ... e 5-2
5.1.1  The Program Counter (PC) ...... ..ot e 5-2

5.1.2 The System Stack Pointer (SP) ... e 5-2

5.1.3 The Status Register (SR) . ... e 5-4

5.1.4 The Constant Generator Registers CG1andCG2 ....................... 5-5

5.2  Addressing Modes .. ... e 5-7
5.2.1 RegisterMode . ... 5-8

522 Indexed Mode . ...t e 5-9

523 SymbolicMode . ... ... 5-10

524 Absolute MOde . ...t e 5-11

525 IndirectMode ....... .. e 5-12

5.2.6 Indirect Autoincrement Mode ... 5-13

527 Immediate MOde ... .. ..o i e e 5-14

5.2.8 Clock Cycles, Length of Instruction ............. ... . ...t 5-15

5.3 Instruction Set OVerview ... ... ... e 5-17
5.3.1 Double-Operand Instructions . . ...........oo i, 5-18

5.3.2 Single-Operand Instructions ..........c.cciiiiir i, 5-19

5.3.3 Conditional JUmps . ... ... e 5-20

5.3.4 Short Form of Emulated Instructions .................c.coiiiiiiiin.. 5-21

5.835 Miscellaneous . . ... ...t e 5-22

5.4 InStrUCHON Map . ..o e 5-23
6 Hardware Multiplier ... i i i iees s icsscenasrcnnnnnnnnnrenn 6-1
6.1  Hardware Multiplier Module Support ............ . i e 6-2
6.2  Hardware Multiplier Operation ........ ... i e 6-3
6.2.1  Multiply Unsigned, 16x16 bit, 16x 8 bit, 8x 16 bit, 8x8bit ................ 6-5

6.2.2 Multiply Signed, 16x 16 bit, 16x8 bit, 8x16 bit, 8x8bit ................... 6-6

6.2.3 Multiply Unsigned and Accumulate, 16x16bit, 16x8bit, 8x16bit, 8x8bit .. .... 6-7

6.2.4 Multiply Signed and Accumulate, 16x16bit, 16x8bit, 8x16bit, 8x8bit ........ 6-8

6.3 Hardware Multiplier Registers .......... ... i s 6-9
6.4 Hardware Multiplier Special Function Bits .......... ... ... ... 6-10
6.5 Hardware Multiplier Software Restrictions .......... ... ... ... i il 6-10
6.5.1 Hardware Multiplier Software Restrictions—AddressMode ............... 6-10

6.5.2 Hardware Multiplier Software Restrictions—Interrupt Routines ............ 6-11

6.5.3 Hardware Multiplier Software Restrictions—MACS ...................... 6-12

7 FLLCIOCKMOAUIE ...t nranannnnnnnnnnnsnnsssnnnnnnnnnes 7-1
7.1 The FLLClock Module . ... ... i i i e 7-2
7.2  Crystal Oscillator . ... ... .. e e 7-3
7.3  Digitally-Controlled Oscillator (DCO) and Frequency-Locked Loop ................ 7-4
7.3.1  FLLOperation . .....c.iiii i e e 7-4

7.3.2 Modulator Operation ... ........c.uuiiiiiii 7-5

7.3.3 DCOFrequency Range . .........uuueiiiinini i 7-5

7.3.4 Disablingthe FLL . ... . o 7-6

7.35 MCLK Stability .......oooiii i e 7-6

7.3.6 Oscillator Fault Detection .......... ... it i 7-6

vi



Contents

10

1

7.4  FLLOperating MOES . ... ...ttt e e e e 7-7
7.41  Starting From Power Up Clear (PUC) ... ... ..o i 7-7
7.4.2 Adjustingthe FLL Frequency ....... ..o i 7-7
7.4.3 FLL Features for Low-Power Applications .............................. 7-7
7.5 Buffered Clock OUtpUL . . .. o oo s 7-8
7.6 FLL Module Control Registers . ... i e 7-9
7.6.1  MCLK Frequency Control . . ...t e 7-9
7.6.2 Special-Function Register Bits ............. .. 7-10
Digital /O Configuration ..............iiiiiiiiiiiiiiiiii it taeiin e eneasaanrns 8-1
8.1 INtrodUCHiON ... 8-2
8.2 PO PO .o 8-3
8.2.1 Port PO Control Registers . ... e 8-3
8.22 PortPOSchematic ...... ... 8-6
8.2.3 Port PO Interrupt Control Functions ......... ... ... ... i i, 8-9
8.3  POMS P, P2 L 8-11
8.3.1 Port P1, Port P2 Control Registers ............ .. oo iiiiiiinn... 8-12
8.3.2 PortP1,PortP2Schematic ....... ... 8-15
8.3.3 Port P1, P2 Interrupt Control Functions ............ ... ... . .cioiii... 8-16
8.4  POMS PG, P4 8-17
8.4.1 Port P3, P4 Control Registers ... 8-17
8.42 PortP3,P4Schematic ....... ... 8-19
Universal Timer/Port Module ...........iiiiiiiiiiiiiiiiinrrraacnnnsrasnnnnnncens 9-1
9.1 Timer/Port Configuration . ... ...... ... e 9-2
9.2  Timer/Port Module Operation . ... ... .....ouuuiiii i iiees 9-3
9.2.1 Timer/Port Counter TPCNT1, 8-Bit Operation ........................... 9-3
9.2.2 Timer/Port Counter TPCNT2, 8-Bit Operation ........................... 9-4
9.2.3 Timer/Port Counter, 16-Bit Operation .............. .. ... ... ... ..., 9-4
9.2.4 Enable Control . ... ...t 9-6
9.2.5 Comparator INpuUt . ... ..ot e e 9-6
9.3  Timer/Port Registers . ... ... e 9-7
9.4 Timer/Port INterrupts .. ..ottt e 9-11
9.5 Timer/Portin an ADC Application ... .........o i 9-12
141 10-1
10.1. BasicTimer1 .................. e 10-2
10.1.1 Basic Timer1 Registers . ... ..o e 10-3
10.1.2 Special Function Register Bits . .. ........ ... ... . 10-5
10.1.3 Basic Timer1 Operation . ......... ..ottt 10-5
10.1.4 Basic Timer1 Operation: Signal fLCD . .......... ... ... ciiiiiiiina.. 10-6
10.2 8-BitInterval Timer/Counter . . ... ... e e 10-7
10.2.1 Operation of 8-Bit Timer/Counter ............. ... ... 10-8
10.2.2 8-Bit Timer/Counter Registers ......... ..ottt 10-9
10.2.3 Special Function Register Bits, 8-Bit Timer/Counter Related ............. 10-11
10.2.4 Implementing a UART With the 8-Bit Timer/Counter .................... 10-11
10.3 The Watchdog Timer . . ... e e i 10-13
10.3.1 Watchdog Timer Register ......... .. oo it 10-14
10.3.2 Watchdog Timer Interrupt Control Functions .......................... 10-16
10.3.3 Watchdog Timer Operation ..............oi ittt 10-16
LI 11T - 1141
111 INtrodUCHiON . .. oo e e 11-2

vii



Contents

11.2  Timer_A Operation . ... ..ottt it ittt e et 11-4

11.2.1 TimerMode Control .. ... e e e 11-4

11.2.2 Clock Source Selectand Divider .. ........ ...t iiiiiiiann. 11-5

11.2.3 Startingthe Timer ........ . s 11-6

11.3  TIMer MOGes . ..o e e e 11-6

11.3.1 Timer—Stop Mode . ... 11-6

11.3.2 Timer—UpMode ... it e 11-6

11.3.3 Timer—Continuous Mode ...........coiiiiiiiii i 11-9

11.3.4 Timer—Up/Down Mode ....... ...t i 11-10

11.4  Capture/Compare BIOCKS . ... .......ueu i e 11-13

11.4.1 Capture/Compare Block — Capture Mode ............. ... ...t 11-14

11.4.2 Capture/Compare Block — CompareMode ..............cciiiiiiinn... 11-18

11.5 The Output Unit ... oo et e et 11-19

11.5.1 Output Unit—OQutput Modes .......... ..o, 11-20

11.5.2 Output Control BIOCK . ... ... oo e 11-21

11.5.3 Output EXamples . ... .o 11-22

11.6  Timer_A Registers ... ... e e e 11-25

11.6.1 Timer_A Control Register TACTL . ...t 11-25

11.6.2 Timer_ARegister TAR ... ... 11-27

11.6.3 Capture/Compare Control Register CCTLX ............ccoiiiiiino.... 11-27

11.6.4 Timer_A Interrupt Vector Register ............ ..o iiiiiinnnnn, 11-30

11,7 Timer_A UART e e e e 11-34

12 USART Peripheral Interface, UARTMode . ........coiiiiiiinninrnrenansnnnnnrnnns 121

12.1 USART Peripheral Interface . ... e 12-2

12.2 USART Peripheral Interface, UARTMode . ...t 12-3

12.2.1 UART Serial Asynchronous Communication Features ................... 12-3

12.3 Asynchronous Operation ............ ..o e 12-4

12.3.1 Asynchronous Frame Format ............ ... .. . i, 12-4

12.3.2 Baud Rate Generation in Asynchronous Communication Format .......... 12-5

12.3.3 Asynchronous Communication Formats ............................... 12-7

12.3.4 Idle-Line Multiprocessor Format ..., 12-7

12.3.5 Address-Bit Multiprocessor Format ............... ... ... .. 12-9

12.4 Interrupt and Enable Functions ........... ... i 12-11

12.4.1 USART Receive Enable Bit ........ ...t 12-11

12.4.2 USART TransmitEnable Bit........... ... .o i 12-12

12.4.3 USART Receive Interrupt Operation ......... .. ..o .. 12-13

12.4.4 USART Transmit Interrupt Operation .......... ... ..o viiiiiiinnan... 12-14

12.5 Control and Status Registers ....... ... i 12-15

12.5.1 USART Control Register UCTL . ...ttt 12-15

12.5.2 Transmit Control Register UTCTL .......... ... it 12-17

12.5.3 Receiver Control Register URCTL ......... ... ... ... i i, 12-18

12.5.4 Baud Rate Select and Modulation Control Registers ................... 12-20

12.5.5 Receive-Data Buffer URXBUF ............ .. . ... 12-21

12.5.6 Transmit Data Buffer UTXBUF ............ .. ... 12-22

12.6 Utilizing Features of Low-Power Modes . .............c i 12-23

12.6.1 Receive-Start Operation From UART Frame ...............ccovieunn.. 12-23

12.6.2 Maximum Utilization of Clock Frequency vs Baud Rate UART Mode ..... 12-25
12.6.3 Support of Multiprocessor Modes for Reduced

Use of MSP430 RESOUICES .. ...ttt e 12-26

12.7 Baud Rate Considerations ...ttt 12-26

viii



Contents

12.7.1 Bit Timing in Transmit Operation . .............. i ... 12-27

12.7.2 Typical Baud Ratesand Errors ..., 12-29
12.7.3 Synchronization Error . ... e 12-30

13 USART Peripheral Interface, SPIMode ............cccciiiiiiiiininiieiinrcannnenns 13-1
13.1 USART PeripheralInterface . ... i e 13-2
13.2 USART Peripheral Interface, SPIMode ............ ... 13-3
13.2.1 SPIMode Features ........coviiiiiit e e i 13-3

13.3 Synchronous Operation ...... ... i 13-4
13.3.1 Master SPIMode . ... .o 13-7
13.3.2 Slave SPIMOGE . ...t e 13-8

13.4 Interrupt and Control Functions ... ... ... ... . 13-9
13.4.1 USART Receive/Transmit Enable Bit, Receive Operation ................ 13-9
13.4.2 USART Receive/Transmit Enable Bit, Transmit Operation ............... 13-11

13.4.3 USART Receive-Interrupt Operation .............. ... ..., 13-13

13.4.4 Transmit-Interrupt Operation ....... ... ... i i 13-14

13.5 Control and Status Registers . ........ ..ot e e 13-15
13.5.1 USART Control Register ... i 13-15

13.5.2 Transmit Control Register UTCTL .......... . i, 13-16
13.5.3 Receive Control Register URCTL ........ ... ..o, 13-18

13.5.4 Baud Rate Select and Modulation Control Reglsters ................... 13-18
13.5.5 Receive Data Buffer URXBUF . ... ... ... .. i 13-19
13.5.6 Transmit Data Buffer UTXBUF . ... ... ... . . i ... 13-19

14 Liquid Crystal Display Drive . ........c.iiiiiiii it ianasncanssannsnannsnns 141
14.1 LCD Drve BasIiCS . . ...ttt 14-2
14.2 LCD Controller/DrVer . . . ..o 14-7
14.2.1 LCD Controller/Driver Features .. ..., 14-8
14.2.2 LCD Timing Generation . ..........coiiiiiiii i 14-8
14.2.3 LCD Voltage Generation . ...........uuuriiiee it 14-9
14.2.4 LCOD OUIPULS . o oottt e e 14-10

14.2.5 LCD Control Register ... e 14-14
14.2.6 LCD MeMOIY ..ttt e 14-16

14.3 Code Examples ........ ... e ... 1421
14.3.1 Example Code for StaticLCD ......... ... ..ot 14-21
14.3.2 Example Code for Two MUX, 1/2-BiasLCD ..............cccoiiiin ... 14-22
14.3.3 Example Code for Three MUX, 1/3-BiasLCD ........... ..., 14-23
14.3.4 Example Code for Four MUX, 1/3-Bias LCD .......................... 14-24

15 ADC12+2 A-to-DConverter .. .......ccviiiitsee e iancnnanannasannasasrnnnsennnn 15-1
15,1 INtrodUCHON . ... 15-2
15.2 Analog-to-Digital Operation .......... ... s 15-4
15.2.1 A/D CONVEISION . ..ttt et e e e 15-4

15.2.2 A/ D INterrupt ..o e 15-7
15.2.83 A/D RaNgGES ..ottt e e 15-7
15.2.4 A/D CUITENE SOUICE . ..o\ttt e e et e e e e e 15-8
15.2.5 Analog Inputs and Multiplexer . ....... ... i 15-9
15.2.6 A/D Grounding and Noise Considerations ......................c..... 15-10
15.2.7 A/D Converter Inputand OutputPins ......... ... ... ... 15-12

15.3 ADC12+2 Control Registers . . ... i i 15-13
15.3.1 Input Register AIN ... ... 15-13



Contents

15.3.2 Input Enable Register AEN .. ... ... ... . i 15-14
15.3.3 ADC12+2 Data Register ADAT .................... e 15-14
15.3.4 ADC12+2 Control Register ACTL ........oiiire i 15-15
A Peripheral File Map .......coiuiiiinrianisrnanarreasnnrnansreanrsnsnssnssnnssnnnns A-1
Al VBV BW ottt e e A-2
A.2  Special Function Register of MSP430x3xx Family, Byte Access ................... A-2
A3 Digital /O, Byte ACCESS . . . ..ttt ettt et e e e A-3
A4 LCD Registers, Byte ACCESS . ... ...ciiriiiin ittt e e A-5
A.5  8-Bit Timer/Counter, Basic Timer, Timer/Port, Byte Access ....................... A-6
A6 FLLRegisters, Byte ACCESS ... ..o e A-6
A.7 EPROM Control Register and Crystal Buffer, Byte Access ....................... A-7
A.8 USART, UART Mode (Sync=0), Byte Access ...........couviiriiiiiininnnnnnnn. A-7
A9 USART, SPI Mode (Sync=1), Byte ACCESS ........coiuiiiiiiiiiiiiii e A-8
A0 ADCI2+42, WOId ACCESS ..ttt ettt et e e et ettt et iaa e e A-9
A.11 Watchdog/Timer, Word ACCESS . ... ..oiuiriiii i e A-10
A.12 Hardware Multiplier, Word ACCESS ... ..ottt e e A-10
A.13 Timer_A Registers, Word ACCeSS . ...ttt ens A-11
B Instruction Set Description ..........coiiiii i i it B-1
B.1  Instruction Set Overview . ... o it B-2
B.1.1 Instruction Formats ........... . i B-4
B.1.2 Conditional and Unconditional Jumps (Core Instructions) ................. B-5
B.1.3 Emulated Instructions ............. i e B-6
B.2 Instruction Set Description ....... ... i e B-8
C EPROMProgramming .......vusuueiennnnssnnssannessssesssssssessrrsssissnnsnnnns C-1
C.1 EPROM OPeration .. ... ..ottt it e et e C-2
Cadll ErasUre ..ot e C-2
C.1.2  Programming Methods . ......... ... .ottt C-2
C.1.3 EPROM Control Register EPCTL ............ i C-3
C.1.4 EPROMPIoOtect ... ..ot e e C-4
C.2  FAST Programming Algorithm . . ... . e e C-4
C.3 Programming an EPROM Module Through a Serial Data Link Using the
JTAG Feature .. ..ot e e e C-5
C.4 Programming an EPROM Module With Controller's Software ..................... C-6
20 o Vo [ C-8



2-1
2-2
3-1

3-3
3—4
3-5
3-6

3-8
3-9
3-10
3-11
4-1
4-2
4-3
4-4
4-5

4-7
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
6-1
6-2
6-3
7-1
7-2

7-4
7-5
7-6

MSP430 System Configuration . ....... ... i 2-2
Bus Connection of Modules/Peripherals .. .......... ... .. i 2-4
Power-on Reset and Power-Up Clear Schematic .................. ..., 3-2
Power-On Reset Timing on Fast Vog Rise Time ................. ... ... . i, 3-3
Power-on Reset Timing on Slow Vg Rise Time .................. ... . ... ... .. 3-3
Interrupt Priority Scheme . ... ... e 3-6
Block Diagram of NMI Interrupt Sources ............c i 3-7
RST/NMI Mode SeleCtion .. ... ......c.iuinee e e 3-7
Interrupt ProCessing . .. ..ot e 3-9
Return from Interrupt .. .. o e 3-10
Status Register (SR) . ...t e 3-10
MSP430x3xx Family Operating Modes ....... ... 3-17
Typical Current Consumption vs Operating Modes ....................... ..ot 3-18
Memory Map of Basic Address Space ...t 4-2
Memory Data Bus . ... ... 4-2
Bits, Bytes, and Words in a Byte-Organized Memory .......... .. ... 4-3
ROM Organization .. ....... .ot et e 4-4
Byte and Word Operation . ............ it e 4-6
Register-Byte/Byte-Register Operations .. ... 4-7
Example of RAM/Peripheral Organization ............ ... ... i, 4-8
Program COUNTEr ... ... e e e 5-2
System Stack Pointer . ... ... .. e 5-2
StACK USAQgE .. ottt e 5-3
PUSH SP and POP SP ... e e 5-3
Status Register Bits ... ... e 5-4
Operand Fetch Operation . ........... it e 5-13
Double Operand Instruction Format ............ ... i 5-18
Single Operand Instruction Format ............ . i 5-19
Conditional-dump Instruction Format . . ....... ... i 5-20
Core Instruction Map . ... ... e 5-23
Connection of the Hardware Multiplier Module to the Bus System ................... 6-2
Block Diagram of the MSP430 16x16-Bit Hardware Multiplier ....................... 6-3
Registers of the Hardware Multiplier . ........ ... o it 6-9
Frequency-Locked LOOD . ..... ..o 7-2
Crystal Oscillator Schematic ......... ... i i e it 7-3
Fractional Tap Frequency Required . ...... ...t i eiee s 7-4
Modulator Hop Patterns . ....... ... et 7-5
Schematic of Clock Buffer . ... ... e 7-8
SCFQCTL ReQiSter . .ttt e e e e e e e 7-9

Xi



Contents

7-7
7-8
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
9-1
9-2
9-3
94
9-5

9-7
9-8
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
11-1
11-2
11-3
11-4
11-5
11-6
1-7
11-8
11-9
11-10
1-11
11-12
11-13
11-14
11-15

xii

SCFI0 and SCFI1 Registers ..ot e e et 7-9
Crystal Buffer Control Register .. ...... ...t e 7-10
Port PO Configuration . .. ... ... oo et 8-3
Interrupt Flags Register . ...... ... i e 8-5
Interrupt Enable Register . . ... ..o 8-6
Schematic of Bits PO7 t0 PO3 . ... ... 8-7
Schematic of Bit PO2 . ... ... e 8-7
Schematic of Bit POT ... ... e 8-8
Schematic of Bit POO .. ... ... oo e 8-8
Port P1, Port P2 Configuration .............o ittt i 8-11
Schematicof One Bitin Port P1, P2 . ... ... . e et 8-15
Ports P3, P4 Configuration .......... ... i e 8-17
Schematic of Bits PnX . ...t e 8-19
Timer/Port Configuration .. ... ...t 9-2
Timer/Port Counter, 16-Bit Operation ........... ... .. . . ... 9-5
Timer/Port Comparator INput . ........ .. e e 9-6
Timer/Port Control Register . . ... ... . i e et 9-7
Timer/Port Counter Registers .. ... ...t e 9-8
Timer/Port Data Register . ... ... 9-9
Timer/Port Enable Register . ... 9-9
Timer/Port Interrupt Scheme .. ... . i e 9-11
Basic Timer1 Configuration . ........... i e 10-2
Basic Timer1 Control Register .......... .o i e 10-3
Basic Timer1 Control Register Function ......... .. ... . i i 10-4
Basic Timer1 Counter BTCNT 1 .. ... e e eeaaes 10-4
Basic Timer1 Counter BTCNT2 ... .. . i e eees 10-5
8-Bit TIMer/CoUNtEr . ... e e 10-7
8-Bit Counter Example . . ... ... 10-8
8-Bit Timer/Counter Control Register ............. . ... . . . .. 10-9
Start Bit DeteCtion . ... ... 10-12
DataLatching ........cc. i e 10-12
Schematic of Watchdog Timer . ... ... i e 10-13
Watchdog Timer Control Register ...........co i e 10-14
Reading WD T C T L ... e e 10-15
WHNG 10 WD T C T L oo e 10-15
Timer_A Block Diagram . ... e 11-3
Mode CoNtrol ... o e e 11-4
Schematic of 16-Bit Timer . ... . o e 11-5
Schematic of Clock Source Select and Input Divider ........... ... ..., 11-5
Timer Up Mode . ... i e 11-7
UpMode Flag Setting . ... .coviiiii i e e 11-7
New Period > Old Period . ... ... et 11-8
New Period < Old Period . ... ... o et e 11-8
Timer ContinuoUuSs MOdE . . . ... 11-9
Continuous Mode Flag Setting .. ...t 11-9
Output Unit in Continuous Mode for Time Intervals .............................. 11-10
Timer Up/Down Mode . ...t e e e 11-10
Output Unitin Up/Down Mode (I) ... e 11-11
Timer Up/Down Direction Control ............ ... i et 11-11
Up/Down Mode Flag Setting . ... e 11-12



Contents

11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
1-27
11-28
11-29
11-30
11-31
11-32
11-33
11-34
121

12-2

12-3

124

12-5

12-6

12-7

12-8

12-9

12-10
12-11
12-12
12-13
12-14
12-15
12-16
12-17
12-18
12-19
12-20
12-21
12-22
12-23
12-24
12-25
12-26
12-27
12-28
12-29
131

13-2

Altering CCRO — Timerin Up/Down Mode ....... ... ... . o ittt 11-12
Capture/Compare BIOCKS .. ... o i e 11-13
Capture Logic Input Signal . ...... ... e 11-14
Capture SigNal . . ... 11-15
Capture Cycle . ..o e 11-16
Software Capture Example . ........ .. i 11-17
OUtPUL UNit . e 11-19
Output Control BIOCK .. ... ..o 11-21
Output Examples — TimerinUp Mode ... i 11-23
Output Examples — Timer in ContinuousMode ............. .. ... i . 11-23
Output Examples — Timer in Up/Down Mode (I) ........... ... 11-24
Timer_A Control Register TACTL . . ..o oo e 11-25
TAR Register ..o 11-27
Capture/Compare Control Register CCTLX ... e 11-27
Capture/Compare Interrupt Flag ... e 11-30
Schematic of Capture/Compare Interrupt VectorWord ........ ... ... .. ........ 11-31
Vector Word Register .. ... .. o e e 11-31
UART Implementation ............ oot i et iiiaa e 11-35
Timer_A UART Timing .. ... e e e 11-36
Block Diagram of USART .. ... 12-2
Block Diagram of USART —UARTMode ...t 12-3
Asynchronous Frame Format . ....... .. 12-4
Asynchronous Bit Format Example fornorn + 1 Clock Periods .................... 12-4
Typical Baud-Rate Generation Other Than MSP430 ............. ... ..., 12-5
MSP430 Baud Rate Generation Example for n or n + 1 Clock Periods .............. 12-6
Idle-Line Multiprocessor Format . ... ... i e 12-7
USART Receiver ldle Detect ...... ... e 12-8
Double-Buffered WUT and TX Shift Register ........... ... ...t 12-8
USART Transmitter Idle Generation ...............oiiiiiiiiiiiiiiii e 12-9
Address-Bit Multiprocessor Format ............ .o i 12-10
State Diagram of Receiver Enable . ... . 12-11
State Diagram of Transmitter Enable .............. . ... ... . . 12-12
Receive Interrupt Operation ........ ... 12-13
Transmit Interrupt Operation . ... ... 12-14
USART Control Register UCTL . ...t i aees 12-15
Transmitter Control Register UTCTL . ... s 12-17
Receiver-Control Register URCTL . .. ... e 12-18
USART Baud Rate Select Register ....... ... 12-20
USART Modulation Control Register . ... 12-21
USART Receive Data Buffer URXBUF .......... ... e 12-21
Transmit Data Buffer UTXBUF .. ... ... e 12-22
Receive-Start Conditions . .. ... i 12-23
Receive-Start Timing Using URXS Flag, Start Bit Accepted . ...................... 12-24
Receive Start Timing Using URXS Flag, Start Bit Not Accepted ................... 12-24
Receive Start Timing Using URXS Flag, Glitch Suppression ...................... 12-24
MSP430 Transmit Bit TIMING . ... ..ottt i e e 12-27
MSP430 Transmit Bit Timing Errors . ... ... e 12-27
Synchronization Error . . ... ... 12-30
Block Diagram of USART ... .. i i e e 13-2
Block Diagram of USART—SPIMode ...... ... et 13-3

xiii



Contents

13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12
14-13
14-14
14-15
14-16
14-17
151
15-2
15-3
15-4
15-5
15-6
15-7
15-8
15-9
15-10
15-11
15-12
15-13

Xiv

MSP430 USART as Master, External Device With SPlasSlave .................... 13-5
Serial Synchronous Data Transfer ............ e 13-6
Data Transfer CycCle .. ... i et 13-6
MSP430 USART as Slave in Three-Pin or Four-Pin Configuration .................. 13-7
State Diagram of Receiver Enable Operation—MSP430 as Master ................ 13-10
State Diagram of Receive/Transmit Enable—MSP430 as Slave, Three-Pin Mode .... 13-10
State Diagram of Receive Enable—MSP430 as Slave, Four-PinMode ............. 13-11
State Diagram of Transmit Enable—MSP430asMaster .......................... 13-11
State Diagram of Transmit Enable—MSP430asSlave ............... ...t 13-12
Receive Interrupt Operation ... ............uuu i e 13-13
Receive Interrupt State Diagram .......... ... . e 13-13
Transmit-Interrupt Operation . ........ ... i e 13-14
USART Control Register . ... ... et 13-15
Transmit Control Register UTCTL . ...ttt 13-16
USART Clock Phase and Polarity .............c..ueuiiioiinii i 13-17
Receive Control Register URCTL ... .. o i et 13-18
USART Baud-Rate Select Register . ... ... i 13-18
USART Modulation Control Register ... ... ... ..o 13-19
Receive Data Buffer URXBUF ... ... 13-19
Transmit Data Buffer UTXBUF ... ... s 13-19
Static Wave-FOrm Drive . ... ..o e 14-3
Two-MUX Wave-FOorm Drive . .......c.oiii i e e e 14-4
Three-MUX Wave-FOorm Drive .. ... ... i e ees 14-5
Four-MUX Wave-Form Drive . ...... ... i eaes 14-6
LCD Controller/Driver Block Diagram . ....... ..o 14-7
External LCD Module Analog Voltage .. ............ . i 14-9
Schematic Of LCD QUIPUL .. ... oot e 14-10
Segment Line orOutputLine ....... ... i 14-11
Mixed LCD and Port Mode Application . ... 14-12
Schematic of LCD Pin — Timer/Port Comparator .. ............iiiiiiiinennn. 14-13
LCD Control and Mode Register ............ i 14-14
Information Control . . ... ... 14-15
Display Memory Bits Attached to SegmentLines ........... .. ... .. 14-16
Example With the Static Drive Mode . ....... ... e 14-17
Example With the Two-MUX Mode ............ i et 14-18
Example With the 3-MUX Mode . ... ... e 14-19
Example With the Four-MUXMode . ... ... et 14-20
ADC12+2 Module Configuration ........ ... 15-2
ADCT2+2 SChemMAtiC . ...t 15-5
ADC12+2 Timing, 12-Bit CONVErsion . .. ...ttt ns 15-6
ADC12+2 Timing, 12+2-Bit CONVErsion . ..........ooiuiianii s 15-6
ADC, Input Sampling TimiNg . . .. ... e e 15-7
A/D CUITENE SOUICE . .ttt et e et ettt et et e e et e e 15-9
Analog MUltpleXer ... o 15-10
A/D Grounding and Noise Considerations ..............ccoiiiiiiiiiiiiiiinnaan.. 15-11
ADC12+2 Input Register, Input Enable Register .............. ... oL 15-12
Input Register AIN .. ... e 15-13
Input Enable Register AEN . ... ... e 15-14
ADC12+2 Data Register ADAT . ...ttt i e 15-14
ADC12+2 Control Register ACTL .. ...t 15-15



Contents

B-1
B-2
B-3

B-5
B-6

B-8
B-9
B-10
B-11
C-1

C-3

Double-Operand INStruCtions . ... ... e B-4
Single-Operand INStructions .. ... ... B-5
Conditional and Unconditional Jump Instructions .............. ... ... ... ... .. ..., B-5
Decrement OVerlap ... ... e B-26
Main Program Interrupt .. ... ... e B-46
Destination Operand—Arithmetic Shift Left ........ ... ... ... ... i, B-47
Destination Operand—Carry Left Shift .............. .. . i i i, B-48
Destination Operand—Arithmetic Right Shift ........... .. ... . ... . ... . .. B-49
Destination Operand—Carry Right Shift .......... ... ... .. i B-51
Destination Operand Byte Swap ........ ... i e B-58
Destination Operand Sign Extension . ... ... B-59
EPROM Control Register EPCTL ... ... .o C-3
EPROM Programming With Serial Data Link .......... ... ... o ... C-5
EPROM Programming With Controller’'s Software ............. ... ... ... ... oot C-6

XV



Tables

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
6-1
6-2
7-1
81
8-2
8-3
84
91

9-3

9-4
9-5

XVi

Interrupt Control Bits in SFRS . ... ... o 3-11
Interrupt Enable Registers 1and2 ....... ... .. i 3-12
Interrupt Flag Register 1 and 2 .. ... . i i 3-13
Module Enable Registers 1 and 2 ... ... .. i e 3-13
Interrupt Sources, Flags, and Vectors of 3xx Configurations ....................... 3-14
Low-Power Mode Logic Chart ............. . . . i 3-17
Peripheral File Address Map—Word Modules . ...t 4-9
Peripheral File Address Map—Byte Modules ........... ... . it 4-10
Special Function Register Address Map . ........ ..ot 4-11
Register by Functions ........ ... 5-2
Description of Status Register Bits .......... .. i 5-4
Values of Constant Generators CG1, CG2 ...ttt 5-5
Source/Destination Operand AddressingModes ..., 5-7
Register Mode Description . ....... ...t e 5-8
Indexed Mode Descriplion . . .. ... e 5-9
Symbolic Mode Description . . ... ...t e 5-10
Absolute Mode DesCription . .........oitii i i e e e 5-11
Indirect Mode DescCription . ... ... ..o et 5-12
Indirect Autoincrement Mode Description . ... 5-13
Immediate Mode Description . ...... ... i e e 5-14
Instruction Format | and AddressingModes . ... 5-15
Instruction Format-ll and AddressingModes ............ ... it 5-16
Miscellaneous Instructions or Operations . ... it 5-16
Double Operand Instruction Format Results ........... ... ... ... oL, 5-18
Single Operand Instruction Format Results .......... ... . oo, 5-19
Conditlonal-Jump Instructions . ...t e 5-20
Emulated Instructions . . . ... ... s 5-21
Sum Extension Register Contents . ... e 6-4
Hardware Multiplier Registers . ... ... i e i e 6-9
The DCO Range Control BitS . ... ...t e 7-5
Port PO Control Registers ....... ... i e 8-4
Port P1 Registers ... ... e 8-12
Port P2 Registers ............ ... ..o i I 8-12
Port PA P4 Registers ... ... i 8-18
Timer/Port Counter Signals, 16-Bit Operation .............. .. ... i i, 9-6
Timer/Port Registers . ... ... e 9-7
Bit ENT Level/Signal . . ... .. oo e 9-8
Timer/Port Clock Source Selection .......... ... it 9-8
Counter TPCNT2 CloCK SOUMCES . . ..o vie i i 9-10



Contents

101
10-2
10-3
10-4
10-5
11-1

11-2
11-3
11-4
11-5
11-6
1-7
11-8
11-9
121
12-2
12-3
12-4
12-5
13-1
13-2
14-1
14-2
151

15-2
15-3
15-4
15-5

Basic Timert Registers .. ... i et 10-3
BTCNT2 Input Frequency SOUICES ...ttt it 10-4
8-Bit Timer/Counter Registers ... ...t 10-9
ClocK INPUE SOUICE . ..ottt e e e et 10-10
LT I\ I - Vo T 10-14
TIMer MOGES ... 11-4
State of OUTx at Next Rising Edge of TimerClock ........... ... .. ... ..ot 11-22
Timer_A Registers . ... e 11-25
Mode Control . ... .. e 11-26
Input Clock Divider Control Bits . ..........v it et 11-26
Clock Source Selection ... ... it e e 11-26
Capture/Compare Control Register OutputMode ........... ... ... ..., 11-29
Capture/Compare Control Register Capture Mode .. .......... ... ... ... ..... 11-29
Vector Register TAIV Description . ... e 11-32
USART Interrupt Control and Enable Bits —-UART Mode ......................... 12-11
Control and Status Registers ... ... 12-15
Interrupt Flag Set Conditions ... ... i e 12-19
Receive Data Buffer Characters . ........... o i i e e 12-22
Commonly Used Baud Rates, Baud Rate Data, and Errors ....................... 12-29
USART Interrupt Control and Enable Bits —SPIMode ............ ... ...t 13-9
USART Control and Status Registers ....... ..., 13-15
LCDM SeleCtions . ...t e 14-15
LCDM Signal Outputs for Port Functions ............c i 14-15
ADC12+2 Control Registers .. ... 15-13
A/D INput Selection . . ... ..o 15-15
A/D Current Source Selection . . ... ... i e 15-16
Range SeleCtion ... ... e 15-16
ADCLK CIOCK FreqUENCY . . . .o ottt ettt e e e e e e e 15-16

XVii



12-1 4800 BaAUd . . .o oot ittt e e 12-6
122 19,200 Baud ... ...t e 12-6
12-3 Error Example for2400 Baud .............ci ittt e e e 12-28
12—4 Synchronization Error—2400 Baud .. ...t e 12-31
C-1 MSP430 On-Chip Program Memory Format ... C-3
C—2 Fast Programming Subroutine . ............ .. i e C-4
C-3 Programming EPROM Module With Controller’s Software ............................ C-7
G4 SUDIOULINE . . ..ttt ittt ettt e e e e C-7

xviii



No

R DR R R R R e

and Warnings

Word-Byte Operations . ... ... e 4-7
Status Register Bits V, N, Zand C .. ... ... . i e e 5-5
Data in Registers . .. ..o e 5-8
Instruction Format Il Immediate Mode . . ... .. .. e 5-16
Destination AdAress ... ..ot e 5-17
Instructions CMP and SUB . ... ... . i e 5-18
Writing to the Read-Only Register POIN . .. .. ... e 8-4
Port PO Interrupt Sensitivity . ... i e 8-6
Writing to Read-Only Registers P1IN, P2IN . ... ... e 8-12
Port P1, Port P2 Interrupt Sensitivity ...... ... 8-14
Function Select With P1SEL, P2SEL . ... ... i e e e e e 8-15
Writing to Read-Only Register .. ... ... e 8-18
Function Select With PNnSEL Registers . ... ... e 8-19
RC1FG and RC2FG When Software Disables the Counter .............. ... ... ... .ot 9-7
Watchdog Timer, Changing the Time Interval ......... ... .. . i, 10-17
Capture With Timer Halted . ...... ... ... i i e et 11-16
Changing Timer_A Control BitS .. ... ... et 11-27
Modifying Timer A Register TAR . ... .. oot e et 11-27
Simultaneous Capture and Capture Mode Selection ........... ... .. oo, 11-30
Writing to Read-Only Register TAIV . .. ... e 11-32
URXE Reenabled, UART Mode . ... .. i e e e 12-11
Writing to UTXBUF, UART MOdE ... oot et e et 12-12
Write to UTXBUF/Reset of Transmitter, UARTMode ..., 12-12
Mark and Space Definitions . . .. ... e 12-17
Receive Status Control Bits . ...ttt e 12-20
Break Detect (BRK) Bit With Halted UART Clock ...........c.. i 12-25
USART Synchronous Master Mode, Receive Initiation ................... ... ............ 13-7
USPIIE Re-Enabled, SPIMode ... ... i e e 13-10
Writing to UTXBUF, SPIMOde ... ..o e et 13-12
Write to UTXBUF/Reset of Transmitter, SPIMode ............... i, 13-12
ADC, Start-of-CoNVersioN . ... e e e 15-3
ADC12+2 Offset Voltage .. ... e 15-8
Asterisked INSIrUCHIONS . ... ... e e B-3
Operations Using the Status Register (SR) for Destination ................................. B-4
Conditional and Unconditional JUMPS .. ... ot B-6
Disable Intermupt . ... e B-28
Enable Intermupt . ..o e B-29
Emulating No-Operation Instruction . ............ . i e et eeaes B-42
The System Stack Pointer . .. ... .. s B-43

Xix



Contents

The System Stack Pointer . ... ... e B-44
RLA SUbSHtULION ... o e e e B-47
RLC and RLC.B EmuUIation . ..........coiiuiii i et eiaeaa s B-48
Borrow Is Treated as @ .NOT. ... .. . B-52
Borrow Is Treated as @ .NOT. ... .. i i e et B-56
Borrow Is Treated as a .NOT. Carry .. ....coiiiii i et e e B-57
EPROM Exposed to Ambient Light (1) ......... i et e e Cc-2

XX



Chapter 1

This chapter outlines the features and capabilities of the Texas Instruments
(TI) MSP430x3xx family of microcontrollers.

The MSP430 employs a von-Neumann architecture, therefore, all memory
and peripherals are in one address space.

The MSP430 devices constitute a family of ultralow-power, 16-bit RISC
microcontrollers with an advanced architecture and rich peripheral set. The
architecture uses advanced timing and design features, as well as a highly
orthogonal structure to deliver a processor that is both powerful and flexible.
The MSP430 consumes less than 400 pA in active mode operating at 1 MHz
in a typical 3-V system and can wake up from a <2-pA standby mode to fully
synchronized operation in less than 6 us. These exceptionally low current
requirements, combined with the fast wake-up time, enable a user to build a
system with minimum current consumption and maximum battery life.

Additionally, the MSP430 family has an abundant mix of peripherals and
memory sizes enabling true system-on-a-chip designs. The peripherals
include a 14-bit A/D, slope A/D, multiple timers (some with capture/compare
registers and PWM output capability), LCD driver, on-chip clock generation,
H/W multiplier, USART, Watchdog Timer, GPIO, and others.

See http://www.ti.com for the latest device information and literature for the
MSP430 family.

Topic Page
1.1 Features and Capabilities .............cciiiiiiiiniiiiiiinnnns, 1-2
1.2 BIXDeVICES .....cuiiiiiiiiiiiririeerannenssanseanrcnnnnnnnnnns 1-3
1.3 32X DEVICES . ..iiiiiiiiinceareranrrnernnnsusnansonnnannannnnn 1-3
14 33X DeViCeS ........ovviinricenensrrcneennsassrnneancannsanenn 14

1-1



Features and Capabilities

1.1 Features and Capabilities

1-2

The TI MSP430x3xx family of controllers has the following features and
capabilities:

[ Ultralow-power architecture:
0.1- 400 pA nominal operating current @1 MHz
2.5 -5.5V operation available
6 us wake-up from standby mode
Extensive interrupt capability relieves need for polling

(1 Flexible and powerful processing capabilities:
Seven source-address modes
Four destination-address modes
Only 27 core instructions
Prioritized, nested interrupts
No interrupt or subroutine level limits
Large register file
Ram execution capability
Efficient table processing
Fast hex-to-decimal conversion

O Extensive, memory-mapped peripheral set including:
Integrated 14-bit A/D converter
Multiple timers and PWM capability
Slope A/D conversion (all devices)
Integrated USART
Integrated LCD driver
Watchdog Timer
Multiple 1/0O with extensive interrupt capability
Integrated programmable oscillator
32-kHz crystal oscillator (all devices)

(O Powerful, easy-to-use development tools including:
Simulator (including peripheral and interrupt simulation)
C compiler
Assembler
Linker
Emulators (ICE and JTAG)
Evaluation kits
Device programmer
Application notes
Example code

[ Versatile ultralow-power device options including:
Masked ROM
OTP (in-system programmable)
EPROM (UV-erasable, in-system programmable)
—40°C to 85°C operating temperature range
Up to 64K addressing space
Memory mixes to support all types of applications



31x Devices

1.2 31x Devices

1.3 32x Devices

The 31x devices contain the following peripherals:

ool ood

Available 31x devices are:

MSP430C311S
MSP430C312
MSP430C314
MSP430C315
MSP430P315
MSP430P315S
PMS430E315

FLL clock system (on-chip DCO + crystal oscillator)

Watchdog Timer/General-Purpose Timer

Timer/Port (2 8-bit or 1 16-bit timer with analog comparator, 5 outputs, and
1 1/0. Ideal for slope A/D conversion)

Basic Timer1 (2 8-bit timers or 1 16-bit timer)

LCD Controller/Driver (up to 92 segments)

8-Bit Timer/Counter (8-bit counter with preload. Can be used as UART)
1/0 Port0 (8 1/0’s all with interrupt)

2KB ROM, 128B RAM
4KB ROM, 256B RAM
12KB ROM, 512B RAM
16KB ROM, 512B RAM
16KB OTP, 512B RAM
16KB OTP, 512B RAM
16KB EPROM, 512B RAM

The 32x devices contain the following peripherals:

Uoddo ddd

ADC12+2 (14-bit A/D)

Available 32x devices are:

MSP430C323
MSP430C325
MSP430P325A
PMS430E325A

FLL clock system (on-chip DCO + crystal oscillator)

Watchdog Timer/General-Purpose Timer

Timer/Port (2 8-bit or 1 16-bit timer with analog comparator, 5 outputs, and
1 1/O. Ideal for slope A/D conversion)

Basic Timer1 (2 8-bit timers or 1 16-bit timer)

LCD Controller/Driver (up to 84 segments)

8-bit Timer/Counter (8-bit counter with preload. Can be used as UART)
I/0 Port0 (8 1/O’s all with interrupt)

8KB ROM, 256B RAM
16KB ROM, 512B RAM
16KB OTP, 512B RAM
16KB EPROM, 512B RAM

Introduction



33x Devices

1.4 33x Devices
The 33x devices contain the following peripherals:

FLL clock system (on-chip DCO + crystal oscillator)

Watchdog Timer/General-Purpose Timer

Timer/Port (2 8-bit or 1 16-bit timer with analog comparator, 5 outputs, and
1 1/O. Ideal for slope A/D conversion)

Basic Timer1 (2 8-bit timers or 1 16-bit timer)

LCD Controller/Driver (up to 120 segments)

8-Bit Timer/Counter (8-bit counter with preload. Can be used as UART)
I/O Port0 (8 1/O’s all with interrupt)

I/O Port1,2 (8 1/O’s each all with interrupt)

I/O Port3,4 (8 I/O’s each)

Hardware Multiplier (16 x 16-bit)

Timer_A (16-bit timer with 5 capture/compare registers and PWM output)
USART

ooodopoUdoo Dod

Available 33x devices are:

MSP430C336 24KB ROM, 1KB RAM
MSP430C337 32KB ROM, 1KB RAM
MSP430P337A 32KB OTP, 1KB RAM
PMS430E337A 32KB EPROM, 1KB RAM

1-4



Chapter 2

Architectural Overvie

This section describes the basic functions of an MSP430-based system.

The MSP430 devices contain the following main elements:

[ Central processing unit

(1 Program memory

(1 Data memory

(1 Operation control

(1 Peripheral modules

(1 Oscillator and clock generator

Topic Page
21 Introduction ...........ccoiiiiiiiiiiiii ittt i 2-2
2.2 Central ProcessingUnit ..........ccoiiiiiiiiiiniinenrrnnnnas 2-2
2.3 ProgramMemory .........c.ciiceiinnncnnnancrasrnancnnernnnns 2-3
2.4 DataMemory ........ccciivisinnnnnannnnnsnarrrrssernnnnnnnsnnn 2-3
25 OperationControl ..........ciiiiiiiiiiiniinnircananecnnnnasans 2-3
26 Peripherals ........c.iciiiiiiitiii e taar s e 2-4
2.7 Oscillator and Clock Generator .............covvvvncennnennnnn 24

2-1



Introduction

2.1

Introduction

The architecture of the MSP430 family is based on a memory-to-memory
architecture, a common address space for all functional blocks, and a reduced
instruction set applicable to all functional blocks as illustrated in Figure 2-1.
See specific device data sheets for complete block diagrams of individual
devices.

Figure 2—1. MSP430 System Configuration

r-—--———"""-""-""""""=""""-""-"-"""""""""—-"—-""="""=-"—-="""=-"-="-"--- |
| |
| | Oscitlator | acLk | |
System PROGRAM DATA /0 Port USART 1/0 Port 1
: Clock [~# MCLK = - |
| /} N\ {\ PN /} ] AN N 4 |
| |
| magtegi [ | | || [ [, MAB, 4 Bit |
| 100C |
cPU R
I Incl. — F_J - -» l
| 16 Reg.| MDB, 16 Bit MDB, 8 Bit |
l Bus - I
' —1—y | Conv. \- I
| |
[ NI N o N v l
I || ||
| aoc ] wor Basic Timer [ |&BitTmer[ | &R0 |
| Random ’ l
l Logic [ | y I
| Module Select '
e e e e e e e e e e e s e S o S S —————————— — ———— N

2.2 Central Processing Unit

The CPU incorporates a reduced and highly transparent instruction set and a
highly orthogonal design. It consists of a 16-bit arithmetic logic unit (ALU), 16
registers, and instruction control logic. Four of these registers are used for
special purposes. These are the program counter (PC), stack pointer (SP),
status register (SR), and constant generator (CGx). All registers, except the
constant-generator registers R3/CG2 and part of R2/CG1, can be accessed
using the complete instruction set. The constant generator supplies instruction
constants, and is not used for data storage. The addressing mode used on
CG1 separates the data from the constants.

The CPU control over the program counter, the status register, and the stack
pointer (with the reduced instruction set) allows the development of
applications with sophisticated addressing modes and software algorithms.



Program Memory

2.3 Program Memory

Instruction fetches from program memory are always 16-bit accesses,
whereas data memory can be accessed using word (16-bit) or byte (8-bit)
instructions. Any access uses the 16-bit memory data bus (MDB) and as many
of the least-significant address lines of the memory address bus (MAB) as
required to access the memory locations. Blocks of memory are automatically
selected through module-enable signals. This technique reduces overall
current consumption. Program memory is integrated as programmable or
mask-programmed memory.

In addition to program code, data may also be placed in the ROM section of
the memory map and may be accessed using word or byte instructions; this
is useful for data tables, for example. This unique feature gives the MSP430
an advantage over other microcontrollers, because the data tables do not
have to be copied to RAM for usage.

Sixteen words of memory are reserved for reset and interrupt vectors at the
top of the 64-kilobytes address space from OFFFFh down to OFFEOh.

2.4 Data Memory

The data memory is connected to the CPU through the same two buses as the
program memory (ROM): the memory address bus (MAB) and the memory
data bus (MDB). The data memory can be accessed with full (word) data width
or with reduced (byte) data width.

Additionally, because the RAM and ROM are connected to the CPU via the
same busses, program code can be loaded into and executed from RAM. This
is another unique feature of the MSP430 devices, and provides valuable,
easy-to-use debugging capability.

2.5 Operation Control

The operation of the different MSP430 members is controlled mainly by the
information stored in the special-function registers (SFRs). The different bits
in the SFRs enable interrupts, provide information about the status of interrupt
flags, and define the operating modes of the peripherals. By disabling
peripherals that are not needed during an operation, total current consumption
can be reduced. The individual peripherals are described later in this manual.

Architectural Overview 2-3



Peripherals

2.6 Peripherals

Peripheral modules are connected to the CPU through the MAB, MDB, and
interrupt service and request lines. The MAB is usually a 5-bit bus for most of
the peripherals. The MDB is an 8-bit or 16-bit bus. Most of the peripherals
operate in byte format. Modules with an 8-bit data bus are connected by
bus-conversion circuitry to the 16-bit CPU. The data exchange with these
modules must be handled with byte instructions. The SFRs are also handled
with byte instructions. The operation for 8-bit peripherals follows the order
described in Figure 2-2.

Figure 2-2. Bus Connection of Modules/Peripherals

MAB
141
MDB
I v
Interrupt Request €¢— <4— Interrupt Request
Module/Peripheral
Interrupt Bus Grant —— — Interrupt Bus Grant

T

PUC

2.7 Oscillator and Clock Generator

2-4

The oscillator is designed for the commonly used 32,768 Hz, low-current-
consumption clock crystal. All analog components are integrated into the
MSP430x3xx; only the crystal needs to be connected with no other external
components required.

In addition to the crystal oscillator, all MSP430 devices contain a digitally-
controlled RC oscillator (DCO). The DCO is different from RC oscillators found
on other microcontrollers because it is digitally controllable and tuneable.

MSP430x3xx devices contain an additional logic block called the frequency
locked loop (FLL). The FLL continuously and automatically adjusts the
frequency of the DCO relative to the 32768-Hz crystal oscillator to stabilize the
DCO over voltage and temperature. This provides an effective, stable,
ultralow-power oscillator for the CPU and peripherals.

Clock source selection for peripherals is very flexible. Most peripherals are
capable of using the 32768-Hz crystal oscillator clock or the DCO clock. The
CPU executes from the DCO clock. See Chapter 7 for details on the clock
module.



Chapter 3

System Resets, Interrupts,
_and Operating Modes

This chapter discusses the MSP430x3xx system resets, interrupts, and
operating modes.

Topic Page
3.1 System Reset and Initialization .................cccoiiii i 3-2
3.2 GlobalInterrupt Structure ...........ccciiiiiiinnniirrenrrnnas 3-5
3.3 MSP430 Interrupt-Priority Scheme ............cccovieiiinann, 3-6
3.4 InterruptProcessing .........ccoouiiiiiiiiiiiiineniniananaaas 3-9
3.5 OperatingModes ........ociiiiiiinnenninrrnnnnannrsrssnssans 3-14
3.6 Basic Hints for Low-Power Applications ...................c.0. 3-20

3-1



System Reset and Initialization

3.1 System Reset and Initialization

3.1.1

Introduction

The MSP430 system reset circuitry (shown in Figure 3—1) sources two internal
reset signals: power-on reset (POR) and power-up clear (PUC). Different
events trigger these reset signals and different initial conditions exist
depending on which signal was generated.

Figure 3—1. Power-on Reset and Power-up Clear Schematic

3-2

=y 71 POR Dela
v | Vee | Y
c
o |
Por | | !
Detect }L—-’_* POR
| : | { i 2 Latch | » POR
oV | |
= oV 0V
RST/MNI L= - 4
> )
NMI(WDTCTL.5)t >O—T
PUC_FLL
TIMSELT o\
V\(lvl:')?l]l_|98$ J Resetwd1
EQut Dmcjz Lyl

t From watchdog timer peripheral module

A POR is a device reset. It is only generated by the two following events:
[ Powering up the device
[ A low signal on the RST/NMI pin when configured in the reset mode

A PUC is always generated when a POR is generated, but a POR is not
generated by a PUC. The following events trigger a PUC:

[ A POR signal
[ Watchdog Timer expiration (in watchdog mode only)
[ Watchdog Timer security key violation

[ A low signal on the RST/NMI pin when configured in the NMI mode

Note:

If desired, software can cause a PUC by simply writing to the watchdog timer
control register with an incorrect password.




System Reset and Initialization

v 1

Note:

Generation of the POR/PUC signals does not necessarily generate a system
reset interrupt. Anytime a POR is activated, a system reset interrupt is
generated. However, when a PUC is activated, a system reset interrupt may
or may not be generated. Instead, a lower priority interrupt vector may be
generated, depending on what action caused the PUC. Each device data
sheet gives a detailed table of what action generates each interrupt. This
table should be consulted for the proper handling of all interrupts.

L ]

When the Vg supply provides a fast rise time as shown in Figure 3-2, the
POR delay provides enough active time on the POR signal to allow the signal
to initialize the circuitry correctly after power up. When the V¢ rise time is
slow, as shown in Figure 3-3, the POR detector holds the POR signal active
until Vge has risen above the V(poR) level. This also ensures a correct
initialization.

Figure 3—-2. Power-On Reset Timing on Fast V¢ Rise Time

T

r*——ﬂ— tPOR_Delay

v

If power to the chipis cycled, the supply voltage Vcc must fall below the V(min)
(see Figure 3-3) to ensure that another POR signal occurs when Vg is
powered up again. If Vo does not fall below V(min) during a cycle or a glitch,
a POR is not generated and power-up conditions do not set correctly.

Figure 3-3. Power-on Reset Timing on Slow V¢ Rise Time

Vv y

'
(POR)

Vv
(min)]

A

POR

System Resets, Interrupts, and Operating Modes 3-3



System Reset and Initialization

3.1.2 Device Initialization after System Reset

3-4

After a device reset (POR/PUC combination), the initial system conditions are:
1 !/O pins switched to input mode (see note below).
1 VO flags are cleared as described in the I/O chapter (see note below).

O Other peripherals and registers initialized as described in their respective
chapters.

[0 Status register is reset.

[ Program counter is loaded with address contained at reset vector location
(OFFFEh). CPU execution begins at that address.

(1 FLL begins regulation of the DCO.

Note:

I/O pins and flags are only initialized after power up. Afterthe ’430is powered
and running, if a reset is generated with RST/NMI pin (in reset mode), the I/0
pins are unaffected.

After a system reset, the user program can evaluate the various flags to
determine the source of the reset and take appropriate action.

The initial state of registers and peripherals is discussed in each applicable
section of this manual. Each register is shown with a key indicating the
accessibility of the register and the initial condition, for example, rw—(0), or
rw—0. In these examples, the rindicates read, the w indicates write, and the
value after the dash indicates the initial condition. If the value is in parenthesis,
the initial condition takes effect only after a POR — a PUC alone will not effect
the bit(s). If the value is not in parenthesis, it takes effect after a PUC alone or
after a POR/PUC combination. Some examples follow:

Type Description

rw—(0) Read/write, reset with POR

rw—0 Read/write, reset with POR or PUC
r—1 Read only, set with POR or PUC

r Read only, no initial state

w Write only, no initial state



Global Interrupt Structure

3.2 Global Interrupt Structure

There are four types of interrupts:

1 System reset
(] Maskable

J Nonmaskable
d (Non)maskable

System reset (POR/PUC) is discussed in section 3.1.

Maskable interrupts are caused by:
1 A Watchdog-Timer overflow (if timer mode is selected)
(1 Other modules with interrupt capability

Nonmaskable interrupts are not maskable in any way. No individual interrupt
enable bit is implemented for them, and the general interrupt enable bit (GIE)
has no effect on them.

(Non)maskable interrupts are not masked by the general interrupt enable bit
(GIE) but are individually enabled or disabled by an individual interrupt enable
bit. When a (non)maskable interrupt is accepted, the corresponding interrupt
enable bit is automatically reset, therefore disabling the interrupt for execution
of the interrupt service routine (ISR). The RETI (return from interrupt)
instruction has no effect on the individual enable bits of the (non)maskable
interrupts. So the software must set the corresponding interrupt enable bit in
the ISR before execution of the RETI instruction for the interrupt to be
re-enabled after the ISR.

A nonmaskable NMI interrupt can be generated by an edge on the RST/NMI
pin if NMI mode is selected. Additionally, a (non)maskable interrupt event can
be generated when an oscillator fault occurs, if the oscillator fault interrupt
enable bit is set.

System Resets, Interrupts, and Operating Modes 3-5



MSP430 Interrupt-Priority Scheme

3.3 MSP430 Interrupt-Priority Scheme

The interrupt priority of the modules, as shown in Figure 3—4, is defined by the
arrangement of the modules in the connection chain: the nearer a module is
to the CPU/NMIRS, the higher the priority.

Figure 3—4. Interrupt Priority Scheme

. High
Priority Low
GMIRS
r‘ <
c GIE Module Module wD Module Module
PU
NMIRS 1 2 Timer m n
1 2 12 12 L 2 1
ad [ —’
4 | _ VN t PN \f N t 7\ _f
PUC ; v .~ ? ’
Grant
PUC
Gircuit OSCfault
il Reset/NMI
T N
WDT Security Key
NS / \} AN NS \/L
< MAB — 5L.SBs >

3-6

Reset and NMI, as shown in Figure 3-5, can only be used as alternative
interrupts because they use the same input pin. The associated control bits are
located in the watchdog timer control register shown in Figure 3-6, and are
password protected.



MSP430 Interrupt-Priority Scheme

Figure 3-5. Block Diagram of NMI Interrupt Sources

RST/NMI

<Z
vCC
i —p— PUC
~ System Reset
! 4 Generator
> —p— POR
A A A
y
NMIFG
S s N\
»— NMIRS
IFG1.4
Clear
NMIES TMSEL NMI WwDTQn EQU PUC POR
$ + f I l‘ i
PUC
A AR B I B 2 2

WDTIFG

S
IRQ
IFG1.0 1

OSCFault >1
OFIFG

| |
! |
: |
S _\ Clear |
IFG1.1 ) { Counter WOt ‘T 1

| POR
|
OFIE { |
|
IE1.1 | |
Clear I IRQA I
_f A nviROA | TIMSEL |
PUC | |
I WDTIE I
IRQA: Interrupt Request Accepted : E10 :
| Clear I
| f |
| Watchdog Timer Module PUC |
- _

Figure 3—6. RST/NMI Mode Selection
7 0
L
X\QZEET HOLD | NMIES| NMI | TMSEL | CNTCL| SSEL IS1 IS0
rw-0 rw-0 rw-0 rw-0 (w)-0  rw-0 rw-0 rw-0

BITS 0-4,7 See Timers chapter.
BIT 5: The NMI bit selects the function of the RST/NMI input pin. It is cleared after a PUC signall.

NMI = 0: The RST/NMI input works as reset input. As long as the RST/NMI pin is held
low, the internal PUC signal is active (level-sensitive).

NMI = 1: The RST/NMI input works as an edge-sensitive, nonmaskable interrupt input.

BIT 6: This bit selects the activating edge of the RST/NMI input if the NMI function is selected. It is
cleared after a PUC signal.

NMIES = 0: A rising edge triggers an NMI interrupt.
NMIES = 1: A falling edge triggers an NMI interrupt.

System Resets, Interrupts, and Operating Modes 3-7



MSP430 Interrupt-Priority Scheme

3.3.1

Operation of Global Interrupt—Reset/NMI

If the RST/NMI pin is set to the reset function, the CPU is held in the reset state
as long as the RST/NMI pin is held low. After the input changes to a high state,
the CPU starts program execution at the word address stored in word location
OFFFEh (reset vector).

If the RST/NMI pin is set to the NMI function, a signal edge (selected by the
NMIES bit) will generate an unconditional interrupt. When accepted, program
execution begins at the address stored in location OFFFCh. The RST/NMI flag
in the SFR IFG1.4 is also set.

Note:

When configured in the NMI mode, a signal generating an NMI event should
not hold the RST/NMI pin low, unless it is intended to hold the processor in
reset. When an NMI event occurs on the pin, the PUC signalis activated, thus
resetting the bits in the WDTCTL register. This results in the RST/NMI pin
being configured in the reset mode. If the signal on the RST/NMI pin that
generated the NMI event remains low, the processor will be held in the reset
state.

When NMI mode is selected and the NMI edge select bit is changed, an NMI
can be generated, depending on the actual level at RST/NMI pin. When the
NMI edge select bit is changed before selecting the NMI mode, no NMI is
generated.

3.3.2 Operation of Global Interrupt—Oscillator Fault Control

The oscillator fault signal warns of a possible error condition with the crystal
oscillator. It is generated by different events in the FLL Clock and Basic Clock
systems.

3.3.2.1 Oscillator Fault Control in the FLL Clock System

3-8

The oscillator fault signal is triggered if the SMSB (29—25) DCO control taps in
the SCFI1 register are equal to 0, or greater than or equal to 28h. The oscillator
fault signal can be enabled to generate an NMI by bit IE1.1 in the SFRs. The
interrupt flag IFG1.1 in the SFRs can then be tested by the interrupt service
routine to determine if the NMI was caused by an oscillator fault. See chapter
7 for more details on the operation of the DCO oscillator and the FLL.



Interrupt Processing

3.4 Interrupt Processing

The MSP430 programmable interrupt structure allows flexible on-chip and
external interrupt configurations to meet real-time interrupt-driven system
requirements. Interrupts may be initiated by the processor’s operating
conditions such as watchdog overflow; or by peripheral modules or external
events. Each interrupt source can be disabled individually by an interrupt
enable bit, or all maskable interrupts can be disabled by the general interrupt
enable (GIE) bit in the status register.

Whenever an interrupt is requested and the appropriate interrupt enable bit
and general interrupt enable (GIE) bit are set, the interrupt service routine
becomes active as follows:

1) CPU active: The currently executing instruction is completed.
2) CPU stopped: The low-power modes are terminated.

3) The program counter pointing to the next instruction is pushed onto the
stack.

4) The status register is pushed onto the stack.

5) The interrupt with the highest priority is selected if multiple interrupts
occurred during the last instruction and are pending for service.

6) The appropriate interrupt request flag resets automatically on single-
source flags. Multiple source flags remain set for servicing by software.

7) The GIE bit is reset; the CPUO(f bit, the OscOff bit, and the SCG1 bit are
cleared; the status bits V, N, Z, and C are reset. SCGO is left unchanged,
and loop control remains in the previous operating condition.

8) The content of the appropriate interrupt vector is loaded into the program
counter: the program continues with the interrupt handling routine at that
address.

The interrupt latency is six cycles, starting with the acceptance of an interrupt
request, and lasting until the start of execution of the appropriate
interrupt-service routine first instruction, as shown in Figure 3-7.

Figure 3—7. Interrupt Processing

Before After
Interrupt Interrupt
ltem1 ltem1
SP —» ltem2 TOS ltem2
PC
SP —» SR TOS

System Resets, Interrupts, and Operating Modes 3-9



Interrupt Processing

The interrupt handling routine terminates with the instruction:
RETT (return from an interrupt service routine)
which performs the following actions:

1) The status register with all previous settings pops from the stack. All pre-
vious settings of GIE, CPUOFF, etc. are now in effect, regardless of the
settings utilized during the interrupt service routine.

2) The program counter pops from the stack and begins execution at the
point where it was interrupted.

The return from the interrupt is illustrated in Figure 3-8.

Figure 3-8. Return from Interrupt

Before After
Return From Interrupt

Item1 ltem1
Item2 SP —» ltem2 TOS
PC PC
SP —» SR TOS SR

A RETI instruction takes five cycles. Interrupt nesting is activated if the GIE bit
is set inside the interrupt handling routine. The GIE bit is located in status
register SR/R2, which is included in the CPU as shown in Figure 3-9.

Figure 3-9. Status Register (SR)

15 8 7 0
OSC|CPU
Reserved For Future Enhancements V | SCG1 | SCGO off | off GIE| N|Z|C
\
\V
rw-0

Apart from the GIE bit, other sources of interrupt requests can be enabled/
disabled individually or in groups. The interrupt enable flags are located
together within two addresses of the special-function registers (SFRs). The
program-flow conditions on interrupt requests can be easily adjusted using the
interrupt enable masks. The hardware serves the highest priority within the
empowered interrupt source.

3-10



Interrupt Processing

3.4.1 Interrupt Control Bits in Special-Function Registers (SFRs)

Most of the interrupt control bits, interrupt flags, and interrupt enable bits are
collected in SFRs under a few addresses, as shown in Table 3—1. The SFRs
are located in the lower address range and are implemented in byte format.
SFRs must be accessed using byte instructions.

Table 3—1. Interrupt Control Bits in SFRs

Address 7 0
000Fh Not yet defined or implemented
000Eh Not yet defined or implemented
000Dh Not yet defined or implemented
000Ch Not yet defined or implemented
000Bh Not yet defined or implemented
000Ah Not yet defined or implemented
0009h Not yet defined or implemented
0008h Not yet defined or implemented
0007h Not yet defined or implemented
0006h Not yet defined or implemented
0005h Module enable 2 (ME2.x)
0004h Module enable 1 (ME1.x)

0003h Interrupt flag reg. 2 (IFG2.x)
0002h Interrupt flag reg. 1 (IFG1.x)
0001h Interrupt enable 2 (IE2.x)
0000h Interrupt enable 1 (IE1.x)

The MSP430 family supports SFRs by applying the correct logic and functions
to each individual module. Each module interrupt source can be individually
enabled or disable using the bits described in Table 3—-2.

The interrupt-flag registers are described in Table 3—3. The module-enable
bits are described in Table 3—4.

System Resets, Interrupts, and Operating Modes 3-11



Interrupt Processing

Table 3-2. Interrupt Enable Registers 1 and 2

Bit Position Short Form

Initial Statet Comments

IE1.0 WDTIE Reset Watchdog Timer enable signal. Inactive if watchdog mode is
selected. Active if Watchdog Timer is configured as general-
purpose timer.

IE1.1 OFIE Reset Oscillator fault interrupt enable

IE1.2 POIE.O Reset Dedicated /O P0.0 interrupt enable

IE1.3 POIE.1 Reset Dedicated I/O PO0.1 or 8-Bit Timer/Counter interrupt enable

IE1.4 Reset Reserved

IE1.5 Reset Reserved

IE1.6 Reset Reserved

IE1.7 Reset Reserved

IE2.0 URXIE Reset USART receive interrupt enable (33x devices)

IE2.1 UTXIE Reset USART transmit interrupt enable (33x devices)

IE2.2 ADIE/TPIE  Reset ADC enable (32x devices), Timer/Port enable (31x devices)

IE2.3 TPIE Reset Timer/Port (32x, 33x devices)

IE2.4 Reset Reserved

IE2.5 Reset Reserved

IE2.6 Reset Reserved

IE2.7 BTIE Reset Basic timer interrupt enable signal

1 The initial state is the logical state after the PUC signal.



Interrupt Processing

Table 3-3. Interrupt Flag Register 1 and 2

Bit Position Short Form

Initial State Comments

IFG1.0 WDTIFG Set Set on Watchdog Timer overflow in watchdog mode or security key

violation.
Or reset Reset with VCC power-up, or a reset condition at the RST/NMI pin

in reset mode.

IFG1.1 OFIFG Set Flag set on oscillator fault

IFG1.2 POIFG.0 Reset Dedicated I/O P0.0

IFG1.3 POIFG.1 Reset Dedicated I/0 P0.1 or 8-Bit Timer/Counter

IFG1.4 /' NMIIFG Reset Set through the RST/NMI pin

IFG1.5 Reserved

IFG1.6 Reserved

IFG1.7 Reserved

IFG2.0 URXIFG Reset USART receive flag (33x devices)

IFG2.1 UTXIFG Set USART transmitter ready (33x devices)

IFG2.2 ADIFG Reset ADC, set on end-of-conversion

IFG2.3 Reserved

IFG2.4 Reserved

IFG2.5 Reserved

IFG2.6 Reserved

IFG2.7 BTIFG Unchanged Basic timer flag

Table 3—4. Module Enable Registers 1 and 2

Bit Position  Short Form Initial State Comments

ME1.0 Reserved

ME1.1 Reserved

ME1.2 Reserved

ME1.3 Reserved

ME1.4 Reserved

ME1.5 Reserved

ME1.6 Reserved

ME1.7 Reserved

ME2.0 URXE Reset USART receiver enable (33x devices, UART mode)

USPIIE Reset USART transmit and receive enable (33x devices, SPI mode)

ME2.1 UTXE Reset USART transmit enable (33x devices, UART mode)
ME2.2 Reserved

ME2.3 Reserved

ME2.4 Reserved

ME2.5 Reserved

ME2.6 Reserved

ME2.7 Reserved

System Resets, Interrupts, and Operating Modes 3-13



Operating Modes

3.4.2 Interrupt Vector Addresses

The interrupt vectors and the power-up starting address are located in the
ROM, using the address range OFFFFh — OFFEOh as described in Table 3-5.
The vector contains the 16-bit address of the appropriate interrupt handler
instruction sequence. The interrupt vectors for 3xx devices are shown in Table
3-5 in decreasing order of priority. See device data sheet for interrupt vectors
for a specific device.

Table 3-5. Interrupt Sources, Flags, and Vectors of 3xx Configurations

Interrupt Source Interrupt Flag | System Interrupt | Word Address | Priority

Power-up, ext. reset, watchdog WDTIFG Reset OFFFEh 15 (highest)

NMI NMIIFG See Note OFFFCh 14

OSC. fault OFIFGt (Non)maskable

Dedicated I/O POIFG.0 Maskable OFFFAh 13

Dedicated I/O POIFG.1 Maskable OFFF8h 12
Maskable OFFF6h 11

Watchdog Timer WDTIFG Maskable OFFF4h 10

Timer_A CCIFGO Maskable OFFF2h 9

Timer_A TAIFG Maskable OFFFOh 8

USART receive URXIFG Maskable OFFEEh 7

USART transmit UTXIFG Maskable OFFECh 6

ADC, Timer/Port¥ ADCIFG Maskable OFFEANh 5

Timer/Port8 Maskable OFFES8h 4

Port P2 P2IFG.07t Maskable OFFE6h 3

Port P1 P1IFG.07t Maskable OFFE4h 2

Basic timer BTIFG Maskable OFFE2h 1

Port 0 POIFG.27t Maskable OFFEOh 0 (lowest)

T Multiple source flags

% Timer/Port vector in *31x configuration
§ Timer/Port vector in *32x and '33x configuration
T Interrupt can be disabled with individual interrupt enable bit, but not with the general interrupt enable bit, GIE.

3.4.2.1 External Interrupts

All eight bits of ports PO, P1, and P2 are designed for interrupt processing of
external events. All individual I/O bits are independently programmable. Any
combinations of inputs, outputs, and interrupt conditions are possible. This
allows easy adaptation to different /O configurations. See Chapter 8 for more
details on I/O ports.

3.5 Operating Modes

3-14

The MSP430 family was developed for ultra-low power applications and uses
different levels of operating modes. The MSP430 operating modes, shown in
Figure 3-10, give advanced support to various requirements for ultra-low
power and ultra-low energy consumption. This support is combined with an
intelligent management of operations during the different module and CPU
states. Aninterrupt event wakes the system from each of the various operating



Operating Modes

modes and the RETI instruction returns operation to the mode that was
selected before the interrupt event.

The ultra-low power system design which uses complementary metal-oxide
semiconductor (CMOS) technology, takes into account three different needs:

[d The desire for speed and data throughput despite conflicting needs for
ultralow-power

[ Minimization of individual current consumption

J Limitation of the activity state to the minimum required by the use of
low-power modes

There are four bits that control the CPU and the system clock generator:
CPUOff, OscOff, SCGO, and SCG1. These four bits support discontinuous
active mode (AM) requests, to limit the time period of the full operating mode,
and are located in the status register. The major advantage of including the
operating mode bits in the status register is that the present state of the
operating condition is saved onto the stack during an interrupt service request.
As long as the stored status register information is not altered, the processor
continues (after RETI) with the same operating mode as before the interrupt
event. Another program flow may be selected by manipulating the data stored
on the stack or the stack pointer. Being able to access the stack and stack
pointer with the instruction set allows the program structures to be individually
optimized, as illustrated in the following program flow:

(1 Enter interrupt routine

The interrupt routine is entered and processed if an enabled interrupt awakens
the MSP430:

B The SR andPC are stored on the stack, with the content present at the
interrupt event.

B Subsequently, the operation mode control bits OscOff, SCG1, and
CPUOIf are cleared automatically in the status register.

O Return from interrupt

Two different modes are available to return from the interrupt service routine
and continue the flow of operation:

B Return with low-power mode bits set. When returning from the
interrupt, the program counter points to the next instruction. The
instruction pointed to is not executed, since the restored low-power
mode stops CPU activity.

B Return with low-power mode bits reset. When returning from the
interrupt, the program continues at the address following the
instruction that set the OscOff or CPUOff-bit in the status register. To
use this mode, the interrupt service routine must reset the OscOff,
CPUOff, SCGO, and SCG1 bits on the stack. Then, when the SR
contents are popped from the stack upon RETI, the operating mode
will be active mode (AM).

System Resets, Interrupts, and Operating Modes 3-15



Operating Modes

3-16

The software can configure five operating modes:

O Active mode AM; SCG1=0, SCG0=0, OscOff=0, CPUOff=0:
CPU clocks are active

1 Low-power mode 0 (LPMO0); SCG1=0, SCG0=0, OscOff=0, CPUOff=1:
CPU is disabled
ACLK and MCLK remain active
Loop control for MCLK remains active

[ Low-power mode 1 (LPM1); SCG1=0, SCG0=1, OscOff=0, CPUOff=1:
CPU is disabled
Loop control for MCLK is disabled
ACLK and MCLK remain active

1 Low-power mode 2 (LPM2); SCG1=1, SCG0=0, OscOff=0, CPUOff=1:
CPU is disabled
MCLK and loop control for MCLK are disabled
DCO’s dc-generator remains enabled
ACLK remains active

J Low-power mode 3 (LPM3); SCG1=1, SCG0=1, OscOff=0, CPUOff=1:
CPU is disabled
MCLK and loop control for MCLK are disabled
DCO oscillator is disabled
DCO’s dc-generator is disabled
ACLK remains active

1 Low-power mode 4 (LPM4); SCG1=X, SCG0=X, OscOff=1, CPUOff=1:
CPU is disabled
ACLK is disabled
MCLK and loop control for MCLK are disabled
DCO oscillator is disabled
DCO’s dc-generator is disabled
Crystal oscillator is stopped

Note:

Peripheral operation is not halted by CPUOff. Peripherals are controlied by
their individual control registers.




Operating Modes

Table 3—6. Low-Power Mode Logic Chart

SCG1 SCGO OscOff CPUOff
LPMO 0 0 0 1
LPM1 1 0 1
LPM2 1 0 0 1
LPM3 1 1 0 1
LPM4 X X 1 1
These modes are illustrated in Figure 3—10.
Figure 3—-10. MSP430x3xx Family Operating Modes
RST/NMI
Vee O
Reset Active cc &n
POR
WDT Active,
Jime Expired, Overflow WDTIFG =0
WDTIFG =1 " PUC ) RST/NMI is Reset Pin
WDTIFG =1 _ FLL is Slowed Down
WDT is Active RST
WDT Active, NRMS|T£;13<IIL
Security Key Violation

Active Mode

CPU is Active
CPUOff = 1 Various Modules are Active CPUOAf =1
SCGO,1=0 OscOff = 1
; SGO0,1 =X

LP Mode LPMO
CPU Off, FLL On
MCLK on, ACLK On

CPUOSf = 1
SCGO =1
SCG1 =0

LP Mode LPM1
CPU Off, FLL Off
MCLK On, ACLK On

CPUOff = 1 CPUOAf =1
SCG0 =0 SCGO,1 =1
SCG1 =1

LP Mode LPM2
CPU Off, FLL Off
MCLK Off, ACLK On

System Resets, Interrupts, and Operating Modes

LP-Mode LPM4
CPU Off, FLL Off
MCLK Off, ACLK Off
DC Generator Off
LP Mode LPM3

CPU Off, FLL Off
MCLK Off, ACLK On

DC Generator Off

3-17



Operating Modes

Figure 3—11. Typical Current Consumption vs Operating Modes
730

3.5.1

3-18

700 -
600 -
< 500
= 400 1
8 300 -
200 -
100 1

B Vgc=5V
£ Vegg=3V

100 100

50 50

zl .——;, e b, 413 0101

AM LPMO LPM1 LPM2 LPM3 LPM4
Operating Modes

The low-power modes 1-4 enable or disable the CPU and the clocks. In
addition to the CPU and clocks, enabling or disabling specific peripherals may
further reduce total current consumption of the individual modes. The activity
state of each peripheral is controlled by the control registers for the individual
peripherals. An example is the enable/disable function of the segment lines of
the LCD peripheral: they can be turned on or off using a single register bit in
the LCD control and mode register. In addition, the SFRs include module
enable bits that may be used to enable or disable the operation of specific
peripheral modules (see Table 3-4).

Low-Power Modes 0 and 1 (LPMO and LPM1)

7

’

Low-power mode 0 or 1 is selected if bit CPUO(f in the status register is set.
Immediately after the bit is set the CPU stops operation, and the normal
operation of the system core stops. The operation of the CPU halts and all
internal bus activities stop until an interrupt request or reset occurs. The
system clock generator continues operation, and the clock signals MCLK and
ACLK stay active depending on the state of the other three status register bits,
SCGO, SCG1, and OscOff.

The peripherals are enabled or disabled according with their individual control
register settings, and with the module enable registers in the SFRs. All /O port
pins and RAM/registers are unchanged. Wake up is possible through all
enabled interrupts.

The following are examples of entering and exiting LPMO. The method shown
is applicable to all low-power modes.

The following example describes entering into low-power mode 0.

Main program flow with switch to CPUOff Mode==============

BIS #18h,SR ;Enter LPMO + enable general interrupt GIE
; (CPUOff=1, GIE=1). The PC is incremented
;during execution of this instruction and
;points to the consecutive program step.

...... ;The program continues here if the CPUOfEf
;bit is reset during the interrupt service
;routine. Otherwise, the PC retains its
;value and the processor returns to LPMO.



Operating Modes

The following example describes clearing low-power mode 0.

;===Interrupt service routines================================
...... ;CPU is active while handling interrupts
BIC #10h,0(SP) ;Clears the CPUOff bit in the SR contents
;that were stored on the stack.

RETI ;RETI restores the CPU to the active state
;because the SR values that are stored on
;the stack were manipulated. This occurs
;because the SR is pushed onto the stack
;upon an interrupt, then restored from the
;stack after the RETI instruction.

3.5.2 Low-Power Modes 2 and 3 (LPM2 and LPM3)

Low-power mode 2 or 3 is selected if bits CPUOff and SCG1 in the status
register are set. Imnmediately after the bits are set, CPU, and MCLK operations
halt and all internal bus activities stop until an interrupt request or reset occurs.

Peripherals that operate with the MCLK signal are inactive because the clock
signal is inactive. Peripherals that operate with the ACLK signal are active or
inactive according with the individual control registers and the module enable
bits in the SFRs. All I/O port pins and the RAM/registers are unchanged. Wake
up is possible by enabled interrupts coming from active peripherals or
RST/NMI.

3.5.3 Low-Power Mode 4 (LPM4)

In low-power mode 4 all activities cease; only the RAM contents, I/O ports, and
registers are maintained. Wake up is only possible by enabled external
interrupts.

Before activating LPM4, the software should consider the system conditions
during the low-power mode period. The two most important conditions are
environmental (that is, temperature effect on the DCO), and the clocked
operation conditions.

The environment defines whether the value of the frequency integrator should
be held or corrected. A correction should be made when ambient conditions
are anticipated to change drastically enough to increase or decrease the
system frequency while the device is in LPM4.

System Resets, Interrupts, and Operating Modes 3-19



Basic Hints for Low-Power Applications

3.6 Basic Hints for Low-Power Applications

There are some basic practices to follow when current consumption is a critical
part of a system application:

0
.

U

oco00 oo uUouUuuUooD oo oood

3-20

Switch off analog circuitry when possible.

Select the lowest possible operating frequency for the core and the
individual peripheral module.

Select the weakest drive capability if an LCD is used or switch the drive

off.

Use the interrupt driven software; the program starts execution rapidly.

Tie all unused inputs to an applicable voltage level. The list below defines
the correct termination for all unused pins.

PIN
AVcc:
AVgg:
SVce:
A0 to A7:
Xout:
XBUF:
Cl:

TPO.0 to TPO.5:

Px.0 to Px.7:
RO03:

R13:

R23:

R33:

S0 to S1:

83 to S20:

Com0 to Com3:

RST/NMI:

TDO:
TDI:

TMS:
TCK:

Potential
DVce
DVss
open
open
open
open
Vss
open

open
Vss
Vss
Vss
open
open
open
open
DV resp.
Vee

Comment

May be used as a low impedance output
Switched to analog inputs: AEN.x=0

May be used as a digital input

TP.5 switched to output direction, others to
Hi-Z

Unused ports switched to output direction

Switched to output direction

Pullup resistor 100k

Refer to device specific datasheets for the correct ter-
mination of these pins.



Chapter 4

Memory

MSP430 devices are configured as a von-Neumann architecture. It has code
memory, data memory, and peripherals in one address space. As a result, the
same instructions are used for code, data, or peripheral accesses. Also, code
may be executed from RAM.

Topic Page
41 Introduction ..........cciiiiiiiiiiiiii it i e 4-2
42 Datainthe Memory .........ccciiiiiiiiinnnerrrenrnnannnnnnnns 4-3
4.3 Internal ROM Organization ..........coovivnnirrriiinnnnnnnnnnns 4-4
4.4 RAM and Peripheral Organization ..............cociiiieiinnnnn 4-6

4-1



Introduction

4.1 Introduction

All of the physically separated memory areas (ROM, RAM, SFRs, and
peripheral modules) are mapped into the commion address space, as shown
in Figure 4—1 for the MSP430 family. The addressable memory space is 64KB.
Future expansion is possible.

Figure 4—1. Memory Map of Basic Address Space

Address Function Access
(Hex.)
OFFFFh
Interrupt Vector Table ROM Word/Byte
OFFEOh
OFFDFh Program Memory
Branch Control Tables ROM Word/Byte
Data Tables...
A
v
}
0200h Data Memory RAM Word/Byte
01 EFh Timer, Word
H 16-Bit Peripheral Modules ADG, ...
0100h
OFFh I/0, LCD
-Bi i d Byt
010h 8-Bit Peripheral Modules 8bT/C, . .. yte
OFh . ) .
oh Special Function Registers SFR Byte

The memory data bus (MDB) is 16- or 8-bits wide. For those modules that can
be accessed with word data the width is always 16 bits. For the other modules,
the width is 8 bits, and they must be accessed using byte instructions only. The
program memory (ROM) and the data memory (RAM) can be accessed with
byte or word instructions.

Figure 4-2. Memory Data Bus

Address Range 0000h — 00FFh

——— |usarT ROM RAM cPU
High Byte .
Data Bus 1 T
l Low Byte I l
SFRs } —— — SCI ADC | ——| WDT
8-Bit Peripheral Modules, Byte/Word 16-Bit Peripheral Modules,
Byte Access Access Word Access



Data in the Memory

4.2 Data in the Memory

Bytes are located at even or odd addresses as shown in Figure 4-3. However,
words are only located at even addresses. Therefore, when using word
instructions, only even addresses may be used. The low byte of a word is
always at an even address. The high byte of a word is at the next odd address
after the address of the word. For example, if a data word is located at address
xxx2h, then the low byte of that data word is located at address xxx2h, and the
high byte of that word is located at address xxx3h.

Figure 4-3. Bits, Bytes, and Words in a Byte-Organized Memory

YY) xXxXAh

15 (14 | ..Bits..| 9 8 xxx9h

7 6 |..Bits..]| 1 0 xxx8h

Byte XXx7h
Byte Xxx6h
Word (High Byte) xxx5h
Word (Low Byte) xxx4h
Y xxx3h

Memory 4-3



Internal ROM Organization

4.3

Internal ROM Organization

Various sizes of ROM (OTP, masked-ROM, or EPROM) are available within
the 64-kB address space, as shown in Figure 4-4. The common address
space is shared with SFRs, peripheral module registers, data and code
memory. The SFRs and peripheral modules are mapped into the address
range, starting with 0 and ending with 01FFh. The remaining address space,
0200h to OFFFFh, is shared by data and code memory. The start address for
ROM depends on the amount of ROM present. The interrupt vector table is
mapped into the the upper 16 words of ROM address space, with the highest
priority interrupt vector at the highest ROM word address (OFFFEh). See the
individual data sheets for specific memory maps.

Figure 4—-4. ROM Organization

4.3.1

4-4

OFFFEh Vectors Vectors Vectors Vectors
0FF§0h

. 4k
OF000h
OEFFFh

[ ]
[
® 32k
0D000h

O0CFFFh

12k

XX K

08000h

Processing of ROM Tables

The MSP430 architecture allows for the storage and usage of large tables in
ROM without the need to copy the tables to RAM before using them. This ROM
accessing of tables allows fast and clear programming in applications where
datatables are necessary. This offers the flexible advantages listed below, and
saves on ROM and RAM requirements. To access these tables, all word and
byte instructions can be used.

1 ROM storage of an output programmable logic array (OPLA) for display
character conversion

The use of as many OPLA terms as needed (no restriction on n terms)
OTP version automatically includes OPLA programmability

Computed table accessibility (for example, for a bar graph display)

OO0 d o

Table-supported program flows



Internal ROM Organization

4.3.2 Computed Branches and Calls

Computed branches and subroutine calls are possible using standard
instructions. The call and branch instructions use the same addressing modes
as the other instructions.

The addressing modes allow indirect-indirect addressing that is ideally suited
for computed branches and calls. This programming technique permits a
program structure that is different from conventional 8- and 16-bit
microcontrollers. Most of the routines can be handled easily by using software
status handling instead of flag-type program-flow control.

The computed branch and subroutine calls are valid throughout the entire
ROM space.

Memory 4-5



RAM and Peripheral Organization

4.4 RAM and Peripheral Organization

441

The entire RAM can be accessed with byte or word instructions using the
appropriate instruction suffix. The peripheral modules, however, are located
in two different address spaces and must be accessed with the appropriate
instruction length.

O The SFRs are byte-oriented and mapped into the address space from Oh
up to OFh.

O Peripheral modules that are byte-oriented are mapped into the address
space from 010h up to OFFh.

1 Peripheral modules that are word-oriented are mapped into the address
space from 100h up to 01FFh.

Random Access Memory

RAM can be used for both code and data memory. Code accesses are always
performed on even byte addresses.

The instruction mnemonic suffix defines the data as being word or byte data.

Example:

ADD.B &TCDATA, TCSUM_L ;Byte access
ADDC.B TCSUM_H ;Byte access
ADD R5,SUM_A = ADDW R5,SUM_A ;Word access
ADDC SUM_B = ADDCW SUM_A ;Word access

A word consists of two bytes: a high byte (bit 15 to bit 8), and a low byte
(bit 7 to bit 0) as shown in Figure 4-5. It must always align to an even address.

Figure 4-5. Byte and Word Operation

ooe xxxAh
- ADD.B Byte1, Byte2:
Byte1: 012h XXM Byten = 012h + 034h = 046h
Byte2: 034h xxx8h
Word1 (High Byte): 056h XXX7h
Word1 (Low Byte): 078h Xxx6h

ADD.W Word1, Word2:

Word2 (Low Byte): 0BCh xxx4h

YY) xxx3h

All operations on the stack and PC are word operations and use even-aligned
memory addresses.



In the following examples, word-to-word and byte-to-byte operations show the
results of the operation and the status bit information.

Example Word-Word Operation
R5 = OF28Eh

EDE .EQU 0212h
Mem(OF28Eh) = OFFFEh

Mem(0212h) = 00112h
ADD @RS5,&EDE

Mem(0212h) = 00110h
C=1,Z=0,N=0

Example Byte-Byte Operation
R5 = 0223h

EDE .EQU 0202h

Mem(0223h) = 05Fh

Mem(0202h) = 043h
ADD.B  @R5,&EDE

Mem(0202h) = 0A2h
C=0,Z2=0,N=1

Figure 4-6 shows the register-byte and byte-register operations.

Figure 4—6. Register-Byte/Byte-Register Operations

Register-Byte Operation

High Byte Low Byte
Unused Register
Byte Memory

Byte-Register Operation

High Byte  Low Byte

Byte

Memory

Oh Register

The following examples describe the register-byte and byte-register

operations.

Example Register-Byte Operation
R5 = 0A28Fh

R6 = 0203h

Mem(0203h) = 012h

ADD.B R5,0(R6)

08Fh
+012h
0A1h

Mem (0203h) = 0A1h
C=0,Z=0,N=1

(Low byte of register)
+ (Addressed byte)
—>(Addressed byte)

Example Byte-Register Operation
R5 = 01202h

R6 = 0223h

Mem(0223h) = 05Fh

ADD.B @R6,R5
05Fh
+ 002h ;Low byte of R5
00061h ;—>Store into R5 -
;High byte is 0
R5 = 00061h

C=0,Z=0,N=0

(Addressed byte)
+ (Low byte of register)

—>(Low byte of register,
zero to High byte)

Note: Word-Byte Operations

Word-byte or byte-word operations on memory data are not supported. Each

register-byte or byte-register is performed as a byte operation.

J

Memory 4-7



RAM and Peripheral Organization

4.4.2 Peripheral Modules—Address Allocation

Some peripheral modules are accessible only with byte instructions, while
others are accessible only with word instructions. The address space from
0100to 01FFh is reserved for word modules, and the address space from 00h
to OFFh is reserved for byte modules.

Peripheral modules that are mapped into the word address space must be
accessed using word instructions (for example, MOV R5,&WDTCTL).
Peripheral modules that are mapped into the byte address space must be
accessed with byte instructions (MOV.B #1,&TCCTL).

The addressing of both is through the absolute addressing mode or the 16-bit
working registers using the indexed, indirect, or indirect autoincrement
addressing mode. See Figure 4—7 for the RAM/peripheral organization.

Figure 4—7. Example of RAM/Peripheral Organization

4.4.2.1

Address Function Access
(Hex) 7 0
01FFh Timer,
Word
E 16-Bit Peripheral Modules ADC, . ..
0100h
OFFh I/O, LCD
010h 8-Bit Peripheral Modules 8b T/C, . .. Byte
OFh . . .
oh Special Function Registers SFR Byte

Word Modules

Word modules are peripherals that are connected to the 16-bit MDB.

Word modules can be accessed with word or byte instructions. If byte
instructions are used, only even addresses are permissible, and the high byte
of the result is always '0’.

The peripheral file address space is organized into sixteen frames with each
frame representing eight words as described in Table 4—1.



RAM and Peripheral Organization

Table 4—1. Peripheral File Address Map—Word Modules

Address Description
1FOh — 1FFh Reserved

1EOh — 1EFh Reserved

1DOh — 1DFH Reserved

1COh - 1CFH Reserved

1BOh — 1BFH Reserved

1A0h — 1AFH Reserved

190h — 19FH Reserved

180h — 18FH Reserved

170h - 17FH Timer_A

160h — 16FH Timer_A

150h — 15FH Reserved

140h — 14FH Reserved

130h — 13FH Multiplier

120h - 12FH Watchdog Timer
110h — 11FH Analog-to-Digital Converter
100h — 10FH Reserved

4.4.2.2 Byte Modules

Byte modules are peripherals that are connected to the reduced (eight LSB)
MDB. Access to byte modules is always by byte instructions. The hardware
in the peripheral byte modules takes the low byte (the LSBs) during a write
operation.

Byte instructions operate on byte modules without any restrictions. Read
access to peripheral byte modules using word instructions results in
unpredictable data in the high byte. Word data is written into a byte module by
writing the low byte to the appropriate peripheral register and ignoring the high

byte.

The peripheral file address space is organized into sixteen frames as
described in Table 4-2.

Memory 4-9



RAM and Peripheral Organization

Table 4-2. Peripheral File Address Map—Byte Modules

Address Description
00FOh — O0FFh Reserved
00EOh — O0EFh Reserved
00DOh — 00DFh Reserved
00COh — 00CFh Reserved
00BOh — 00BFh Reserved
00AOh — 00AFh Reserved
0090h — 009Fh Reserved
0080h — 008Fh Reserved
0070h — 007Fh USART
0060h — 006Fh Reserved

0050h — 005Fh
0040h — 004Fh
0030h — 003Fh
0020h — 002Fh
0010h - 001Fh
0000h — 000Fh

System clock generator, EPROM and Crystal Buffer
Basic timer, 8-Bit Timer/Counter, Timer/Port

LCD

Digital I/O port P1 and P2 control

Digital 1/0 port PO, P3, and P4 control

Special function

4.4.3 Peripheral Modules—Special Function Registers (SFRs)

4-10

The system configuration and the individual reaction of the peripheral modules
to the processor operation is configured in the SFRs as described in
Table 4-3. The SFRs are located in the lower address range, and are
organized by bytes. SFRs must be accessed using byte instructions only.



RAM and Peripheral Organization

Table 4-3. Special Function Register Address Map

Address Data Bus

7 0
000Fh Not yet defined or implemented
000Eh Not yet defined or implemented
000Dh Not yet defined or implemented
000Ch Not yet defined or implemented
000Bh Not yet defined or implemented
000Ah Not yet defined or implemented
0009h Not yet defined or implemented
0008h Not yet defined or implemented
0007h Not yet defined or implemented
0006h Not yet defined or implemented
0005h Module enable 2; ME2.2
0004h Module enable 1; ME1.1
0003h Interrupt flag reg. 2; IFG2.x
0002h Interrupt flag reg.1; IFG1.x
0001h Interrupt enable 2; IE2.x
0000h Interrupt enable 1; IE1.x

The system power consumption is influenced by the number of enabled
modules and their functions. Disabling a module from the actual operation
mode reduces power consumption while other parts of the controller remain
fully active (unused pins must be tied appropriately or power consumption will
increase; see Basic Hints for Low Power Applications in section 3.6.

Memory 4-11






Chapter 5

16-Bit CPU

N R A A A R

The MSP430 von-Neumann architecture has RAM, ROM, and peripherals in
one address space, both using a single address and data bus. This allows
using the same instruction to access either RAM, ROM, or peripherals and
also allows code execution from RAM.

Topic Page
51 CPURegiSters ......cviuiuiiiiiiiiinneeersnnsenanrsarneranns 5-2
5.2 AddressingModes ..............iiiiiiiiiiiiii i i e 5-7
5.3 Instruction Set Overview ..........coviiiiriiiiinennnnrennnens 5-17
54 InstructionMap .......ccoiiiiiiiiinnniririninnanrerranaranns 5-23

5-1



CPU Registers

5.1 CPU Registers

Sixteen 16-bit registers (RO, R1, and R4 to R15) are used for data and
addresses and are implemented in the CPU. They can address up to
64 Kbytes (ROM, RAM, peripherals, etc.) without any segmentation. The
complete CPU-register set is described in Table 5-1. Registers RO, R1, R2,
and R3 have dedicated functions, which are described in detail later.

Table 5—1. Register by Functions

5.1.1

Program counter (PC) RO
Stack pointer (SP) R1

Status register (SR) Ro
Constant generator (CG1)

Constant generator (CG2) R3
Working register R4 R4
Working register R5 R5

Working register R13 R13
Working register R14 R14
Working register R15 R15

The Program Counter (PC)

The 16-bit program counter points to the next instruction to be executed. Each
instruction uses an even number of bytes (two, four, or six), and the program
counter is incremented accordingly. Instruction accesses are performed on
word boundaries, and the program counter is aligned to even addresses.
Figure 5—1 shows the program counter bits.

Figure 5—1. Program Counter

15

Program Counter Bits 15 to 1 0

5.1.2 The System Stack Pointer (SP)

The system stack pointer must always be aligned to even addresses because
the stack is accessed with word data during an interrupt request service. The
system SP is used by the CPU to store the return addresses of subroutine calls
and interrupts. It uses a predecrement, postincrement scheme. The
advantage of this scheme is that the item on the top of the stack is available.
The SP can be used by the user software (PUSH and POP instructions), but
the user should remember that the CPU also uses the SP. Figure 5-2 shows
the system SP bits.

Figure 5-2. System Stack Pointer

15

System Stack Pointer Bits 15 to 1 0




CPU Registers

5.1.2.1 Examples for System SP Addressing (Refer to Figure 5-4)

MOV  SPR4 ;SP—>R4

MOV  @SPR5 ; Item I3 (TOS) —> R5
MOV  2(SP),R6 ;ltemI2—>R6

MOV  R7,0(SP) ; Overwrite TOS with R7
MOV  R8,4(SP) ; Modify item I1

PUSH Ri12 ; Store R12 in address Oxxxh — 6; SP points to same address
POP R12 ; Restore R12 from address Oxxxh — 6; SP points to
Oxxxh — 4
MOV  @SP+,R5 ;Item I3 —> R5 (popped from stack); same as POP
instruction

Figure 5-3 shows stack usage.

Figure 5-3. Stack Usage
Address PUSH #1 POP R8

Oxxxh 11 h] 1
Oxxxh —2
Oxxxh — 4
Oxxxh — 6
Oxxxh — 8

5.1.2.2 Special Cases—PUSH SP and POP SP

The special cases of using the SP as an argument to the PUSH and POP
instructions are described below.

Figure 5-4. PUSH SP and POP SP

PUSH SP POP SP
SPoid
SP; SP4 SP, —» SPq
The stack pointer is changed after The stack pointer is not changed
a PUSH SP instruction. after a POP SP instruction.

After the sequence

PUSH SP ; SP1 is stack pointer after this instruction
I
I

POP SP ; SP2 is stack pointer after this instruction

The stack pointer is two bytes lower than before this sequence.

16-Bit CPU 5-3



CPU Registers

5.1.3 The Status Register (SR)

The status register SR contains the following CPU status bits:

v Overflow bit

O SCG1 System clock generator control bit 1
J SCGo System clock generator control bit 0
g OscOff Crystal oscillator off bit

O CPUOft CPU off bit

g GIE General interrupt enable bit

O N Negative bit

g Z Zero bit

OocC Carry bit

Figure 5-5 shows the SR bits.

Figure 5-5. Status Register Bits

15 9 8 7 0
OSC|CPU
Reserved For Future Enhancements V | SCG1 | SCGO off | off GIEI| NJZ}|C
\
\Y
w-0

Table 5-2 describes the status register bits.

Table 5-2. Description of Status Register Bits

Bit

Description

\

Overflow bit. Set if the result of an arithmetic operation overflows the signed-variable range. The
bit is valid for both data formats, byte and word:
ADD(.B), ADDC(.B) Set when:

Positive + Positive = Negative

Negative + Negative = Positive, otherwise reset

SUB(.B), SUBC(.B), CMP(.B)  Set when:
Positive — Negative = Negative
Negative — Positive = Positive, otherwise reset

SCG1, SCGO These bits control four activity states of the system-clock generator and therefore influence the

OscOFF

CPU Off

GIE

operation of the processor system.

If set, the crystal oscillator enters off mode: all activities cease; however, the RAM contents, the
port, and the registers are maintained. Wake up is possible only through enabled external
interrupts when the GIE bit is set and from the NMI.

if set, the CPU enters off mode: program execution stops. However, the RAM, the port registers,
and especially the enabled peripherals (for example, basic timer, UART, etc.) stay active. Wake
up is possible through all enabled interrupts.

If set, all enabled maskable interrupts are handled. If reset, all maskable interrupts are disabled.
The GIE bit is cleared by interrupts and restored by the RETI instruction as well as by other
appropriate instructions.

Set if the result of an operation is negative.

Word operation: Negative bit is set to the value of bit 15 of the result

Byte operation: Negative bit is set to the value of bit 7 of the result

Set if the result of byte or word operation is 0; cleared if the result is not 0.

Setif the result of an operation produced a carry; cleared if no carry occurred. Some instructions
modify the carry bit using the inverted zero bits.

5-4



CPU Registers

Note: Status Register Bits V,N,Z and C

The status register bits V, N, Z, and C are modified only with the appropriate
instruction. For additional information, see the detailed description of the
instruction set in Appendix B.

5.1.4 The Constant Generator Registers CG1 and CG2

Commonly-used constants are generated with the constant generator
registers R2 and R3, without requiring an additional 16-bit word of program
code. The constant used for immediate values is defined by the addressing
mode bits (As) as described in Table 5-3. See Section 5.3 for a description of
the addressing mode bits (As).

Table 5-3. Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 -————- Register mode

R2 01 (0) Absolute address mode
R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 OFFFFh -1, word processing

The major advantages of this type of constant generation are:

[ No special instructions required

J Reduced code memory requirements: no additional word for the six most
used constants

1 Reduced instruction cycle time: no code memory access to retrieve the
constant

The assembler uses the constant generator automatically if one of the six
constants is used as a source operand in the immediate addressing mode.
The status register SR/R2, used as a source or destination register, can be
used in the registér mode only. The remaining combinations of
addressing-mode bits are used to support absolute-address modes and bit
processing without any additional code. Registers R2 and R3, used in the
constant mode, cannot be addressed explicitly; they act like source-only
registers.

16-Bit CPU 5-5



CPU Registers

5-6

The RISC instruction set of the MSP430 only has 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:

MOV R3,dst
or the equivalent
MOV #0,dst

where #0 is replaced by the assembler, and R3 is used with As = 00, which
results in:

[ One word instruction
(1 No additional control operation or hardware within the CPU

[0 Register-addressing mode for source: no extra-fetch cycle for constants
(#0)



Addressing Modes

5.2 Addressing Modes

All seven addressing modes for the source operand and all four addressing
modes for the destination operand can address the complete address space.
The bitnumbers in Table 5—4 describe the contents of the As and Ad mode bits.
See Section 5.3 for a description of the source address As and the destination
address Ad bits.

Table 5-4. Source/Destination Operand Addressing Modes

As/Ad  Addressing Mode Syntax Description
00/0 Register mode Rn Register contents are operand
011 Indexed mode X(Rn)  (Rn + X) points to the operand

X is stored in the next word
011 Symbolic mode ADDR  (PC + X) points to the operand

X is stored in the next word.
Indexed mode X(PC) is used.

011 Absolute mode &ADDR  The word following the instruction
contains the absolute address.
10/~ Indirect register @Rn Rn is used as a pointer to the
mode operand.
11/- Indirect @Rn+ Rnis used as a pointer to the
autoincrement operand. Rn is incremented
afterwards.
11/~ Immediate mode #N The word following the instruction

contains the immediate constant
N. Indirect autoincrement mode
@PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

16-Bit CPU 5-7



Addressing Modes

5.2.1 Register Mode

The register mode is described in Table 5-5.

Table 5-5. Register Mode Description

Assembler Code Content of ROM
MOV R10,R11 MOV R10,R11
Length: One or two words
Operation: Move the content of R10 to R11. R10 is not affected.
Comment: Valid for source and destination
Example: MOV R10,R11
Before: After:

R10 0A023h R10 0A023h

R11 OFA15h R11 0A023h

PC PCoqig PC PCqig +2

Note: Data in Registers

The data in the register can be accessed using word or byte instructions. If
byte instructions are used, the high byte is always 0 in the result. The status
bits are handled according to the result of the byte instruction.

i ]

5-8



Addressing Modes

5.2.2 Indexed Mode

The indexed mode is described in Table 5-6.

Table 5-6. Indexed Mode Description

Assembler Code Content of ROM
MOV 2(R5),6(R6) MOV X(R5),Y(R6)
X=2
Y=6
Length: Two or three words
Operation: Move the contents of the source address (contents of R5 + 2)

to the destination address (contents of R6 + 6). The source
and destination registers (R5 and R6) are not affected. In
indexed mode, the program counter is incremented
automatically so that program execution continues with the
next instruction.

Comment: Valid for source and destination
Example: MOV 2(R5),6(R6):
Before: After:
Address Register Address Register
Space Space
Oxxxxh | PC
OFF16h | 00006h R5| 01080h OFF16h | 00006h R5] 01080h
OFF14h | 00002h R6| 0108Ch OFF14h | 00002h R6| 0108Ch
OFF12h | 04596h | PC OFF12h | 04596h
0108Ch
01094h | Oxxxxh +0006h 01094h | Oxxxxh
01092h | 05555h 01092h 40901 [ 01234n
01090h | Oxxxxh 01090h | Oxxxxh
01080h
01084h | Oxxxxh +0002h 01084h | Oxxxxh
01082h | 01234h 01082h 01082h | 01234h
01080h | Oxxxxh 01080h | Oxxxxh

16-Bit CPU 5-9



Addressing Modes

5.2.3 Symbolic Mode

The symbolic mode is described in Table 5-7.

Table 5-7. Symbolic Mode Description

Assembler Code Content of ROM
MOV EDE,TONI MOV X(PC),Y(PC)
X=EDE-PC
Y =TONI - PC

Move the contents of the source address EDE (contents of
PC + X) to the destination address TONI (contents of PC +Y).
The words after the instruction contain the differences
between the PC and the source or destination addresses.
The assembler computes and inserts offsets X and Y
automatically. With symbolic mode, the program counter (PC)
is incremented automatically so that program execution

Length: Two or three words
Operation:
continues with the next instruction.
Comment: Valid for source and destination
Example: MOV EDE,TONI
Before:
Address Register
Space
OFF16h 011FEh
OFF14h 0F102h
OFF12h 04090h | PC
OFF14h
0F018h Oxxxxh +0F102h
OF016h | 0A123h OF016h
0F014h Oxxxxh
OFF16h
01116h | Oxxxxh +011FEh
01114h 01234h 01114h
01112h Oxxxxh

After:

OFF16h
OFF14h
OFF12h

0F018h
OF016h
OF014h

01116h
01114h
01112h

Address
Space
Oxxxxh

011FEh

0F102h

04090h

Oxxxxh

0A123h

Oxxxxh

Oxxxxh

0A123h

Oxxxxh

PC

;Source address EDE = OF016h,
:dest. address TONI=01114h

Register



Addressing Modes

5.2.4 Absolute Mode

The absolute mode is described in Table 5-8.

Table 5-8. Absolute Mode Description

Assembler Code

Content of ROM

MOV &EDE,&TONI

MOV X(0),Y(0)

X = EDE

Y = TONI

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

OF018h
OF016h
0F014h

01116h
01114h
01112h

Two or three words

Move the contents of the source address EDE to the
destination address TONI. The words after the instruction
contain the absolute address of the source and destination
addresses. With absolute mode, the PC is incremented
automatically so that program execution continues with the
next instruction.

Valid for source and destination

MOV &EDE,&TONI

Address
Space

01114h

OF016h

04292h

Oxxxxh

0A123h

Oxxxxh

Oxxxxh

01234h

Oxxxxh

PC

Register

After:

OFF16h
OFF14h
OFF12h

O0F018h
OF016h
OF014h

01116h
01114h
01112h

Address
Space
Oxxxxh

01114h

OF016h

04292h

Oxxxxh

0A123h

Oxxxxh

Oxxxxh

0A123h

Oxxxxh

;Source address EDE = OF016h,
;dest. address TONI=01114h

Register

PC

This address mode is mainly for hardware peripheral modules that are located
at an absolute, fixed address. These are addressed with absolute mode to
ensure software transportability (for example, position-independent code).

16-Bit CPU 5-11



Addressing Modes

5.2.5 Indirect Mode

The indirect mode is described in table 5-9.

Table 5-9. Indirect Mode Description

Assembler Code

Content of ROM

MOV @R10,0(R11)

MOV @R10,0(R11)

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

OFA34h
O0FA32h
OFA30h

002A8h
002A7h
002A6h

5-12

Address
Space
Oxxxxh

One or two words

Move the contents of the source address (contents of R10) to
the destination address (contents of R11). The registers are
not modified.

Valid only for source operand. The substitute for destination
operand is O(Rd).

MOV.B @R10,0(R11)

0000h

R10

04AEBh

PC R11

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxh

012h

Oxxh

Register

OFA33h

002A7h

OFF16h
OFF14h
OFF12h

O0FA34h
OFA32h
OFA30h

002A8h
002A7h
002A6h

Address
Space
Oxxxxh

0000h

04AEBh

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxh

05Bh

Oxxh

PC
R10
R11

Register

OFA33h
002A7h




Addressing Modes

5.2.6 Indirect Autoincrement Mode

The indirect autoincrement mode is described in Table 5-10.

Table 5-10. Indirect Autoincrement Mode Description

Assembler Code Content of ROM
MOV @R10+,0(R11) MOV @R10+,0(R11)
Length: One or two words
Operation: Move the contents of the source address (contents of R10) to

the destination address (contents of R11). Register R10 is
incremented by 1 for a byte operation, or 2 for a word
operation after the fetch; it points to the next address without
any overhead. This is useful for table processing.

Comment: Valid only for source operand. The substitute for destination
operand is O(Rd) plus second instruction INCD Rd.

Example: MOV @R10+,0(R11)
Before: After:
Address Register Address Register
Space Space
OFF18h | Oxxxxh OFF18h | Oxxxxh | PC
OFF16h | 00000h R10| OFA32h| OFF16h | 00000h R10| OFA34h
OFF14h | 04ABBh | PC R11| 010A8h| OFF14h | 04ABBh R11| 010A8h
OFF12h | Oxxxxh OFF12h | Oxxxxh
OFA34h | Oxxxxh OFA34h | Oxxxxh
OFA32h | 05BC1h OFA32h | 05BC1h
OFA30h | Oxxxxh OFA30h | Oxxxxh
010AAh | Oxxxxh 010AAh | Oxxxxh
010A8h | 01234h 010A8h | 05BC1h
010A6h | Oxxxxh 010A6h | Oxxxxh

The autoincrementing of the register contents occurs after the operand is
fetched. This is shown in Figure 5-6.

Figure 5—6. Operand Fetch Operation

Instruction > Address Operand

+1/+2

16-Bit CPU 5-13



Addressing Modes

5.2.7

Table 5—-11. Immediate Mode Description

5-14

Immediate Mode

The immediate mode is described in Table 5-11.

Assembler Code Content of ROM
MOV #45,TONI MOV @PC+,X(PC)
45
X =TONI-PC

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

010AAh
010A8h
010A6h

Two or three words
It is one word less if a constant of CG1 or CG2 can be used.

Move the immediate constant 45, which is contained in the
word following the instruction, to destination address TONI.
When fetching the source, the program counter points to the
word following the instruction and moves the contents to the

After:

OFF18h
OFF16h

OFF14h
OFF12h

010AAh
010A8h

destination.
Valid only for a source operand.
MOV #45,TONI
Address Register
Space
01192h
00045h
040B0h | PC
OFF16h
Oxxxxh __+01192h
01234h 010A8h
Oxxxxh

010A6h

Address
Space
Oxxxxh

01192h

00045h

040BOh

Oxxxxh

00045h

Oxxxxh

Register

PC



Addressing Modes

5.2.8 Clock Cycles, Length of Instruction

The operating speed of the CPU depends on the instruction format and
addressing modes. The number of clock cycles refers to the MCLK.

5.2.8.1 Format-l Instructions

Table 5-12 describes the CPU format-| instructions and addressing modes.

Table 5—-12. Instruction Format | and Addressing Modes

Address Mode No. of Length of Example
As Ad Cycles Instruction
00, Rn 0, Rm 1 1 MOV  R5,R8
0, PC 1 BR R9
00, Rn 1, x(Rm) 4 2 ADD R5,3(R6)
1, EDE 2 XOR R8,EDE
1, &EDE 2 MOR R5,4EDE
01,x(Rn) 0,Rm 3 2 MOV  2(R5),R7
01, EDE 2 AND EDE,R6
01, &EDE 2 MOV  &EDE,R8
01,x(Rn) 1, x(Rm) 6 3 ADD  3(R4),6(R9)
01, EDE 1, TONI 3 CMP  EDE,TONI
01, &EDE 1, &TONI 3 MOV  2(R5),&TONI
3 ADD  EDE,&TONI
10, @Rn 0, Rm 2 1 AND @R4,R5
10, @Rn 1, x(Rm) 5 2 XOR @R5,8(R6)
1, EDE 2 MOV  @R5,EDE
1, &EDE 2 XOR @R5,&EDE
11, @Rn+ 0, Rm 2 1 ADD @R5+,R6
0, PC 3 1 BR @R9+
11, #N 0, Rm 2 2 MOV  #20,R9
0, PC 3 2 BR #2AEh
11, @Rn+ 1, x(Rm) 5 2 MOV  @R9+,2(R4)
11, #N 1, EDE 3 ADD  #33,EDE
11, @Rn+ 1, &EDE 2 MOV @R9+,&EDE
11, #N 3 ADD  #33,&EDE

16-Bit CPU 5-15



Addressing Modes

5.2.8.2 Format-ll Instructions

Table 5-13 describes the CPU format Il instructions and addressing modes.

Table 5—-13. Instruction Format-Il and Addressing Modes

No. of Cycles
RRA
RRC Length of
Address Mode SWPB PUSH/ Instruction
A(s/d) SXT CALL (words) Example
00, Rn 1 3/4 1 SWPB R5
01, X(Rn) 4 5 2 CALL 2(R7)
01, EDE 4 5 2 PUSH EDE
01, &EDE SXT &EDE
10, @Rn 3 4 1 RRC @R9
11, @Rn+ 3 4/5 1 SWPB @R10+
(see Note) CALL #81H
11, #N 2

Note: Instruction Format Il Inmediate Mode

Do not use instructions RRA, RRC, SWPB, and SXT with the immediate
mode in the destination field. Use of these in the immediate mode will result
in an unpredictable program operation.

5.2.8.3 Format-lll Instructions

Format-lll instructions are described as follows:

Jxx—all instructions need the same number of cycles, independent of
whether a jump is taken or not.

Clock cycle: Two cycles

Length of instruction:  One word

5.2.8.4 Miscellaneous-Format Instructions

Table 5-14 describes miscellaneous-format instructions.

Table 5—-14.Miscellaneous Instructions or Operations

Activity Clock Cycle
RETI 5 cycles

1 wordt
Interrupt 6 cycles
WDT reset 4 cycles
Reset (RST/NMI) 4 cycles

T Length of instruction

5-16



Instruction Set Overview

5.3 Instruction Set Overview

This section gives a short overview of the instruction set. The addressing

modes are described in Section 5.2.

Instructions are either single or dual operand or jump.

The source and destination parts of an instruction are defined by the following
fields:

src
dst
As

S-reg
Ad

D-reg
B/W

The source operand defined by As and S-reg
The destination operand defined by Ad and D-reg

The addressing bits responsible for the addressing mode used
for the source (src)

The working register used for the source (src)

The addressing bits responsible for the addressing mode used
for the destination (dst)

The working register used for the destination (dst)

Byte or word operation:
0: word operation
1: byte operation

Note: Destination Address

Destination addresses are valid anywhere in the memory map. However,
when using an instruction that modifies the contents of the destination, the
user must ensure the destination address is writeable. For example, a
masked-ROM location would be a valid destination address, but the contents
are not modifiable, so the results of the instruction would be lost.

16-Bit CPU 5-17



Instruction Set Overview

5.3.1 Double-Operand Instructions

Figure 5~7 illustrates the double-operand instruction format.

Figure 5—7. Double Operand Instruction Format
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

Opcode S-Reg Ad | BIW As D-Reg

Table 5-15 describes the effects of an instruction on double operand
instruction status bits.

Table 5—15. Double Operand Instruction Format Results

Mnemonic S-Reg, D-Reg Operation Status Bits

V. N y4 Cc
MOV src,dst src —> dst - - - -
ADD src,dst src + dst —> dst * * * *
ADDC src,dst src + dst + C —> dst * * * *
SuUB src,dst dst + .not.src + 1 —> dst * * * *
SUBC src,dst dst + .not.src + C —> dst * * * *
CMP src,dst dst —src * * * *
DADD src,dst src + dst + C —> dst (dec) * * * *
AND src,dst src .and. dst —> dst 0 * * *
BIT src,dst src .and. dst 0 * * *
BIC src,dst .not.src .and. dst —> dst - - - -
BIS src,dst src .or. dst —> dst - - - -
XOR src,dst src .xor. dst —> dst * * * *

* The status bit is affected

—  The status bit is not affected
0  The status bit is cleared

1 The status bit is set

Note: Instructions CMP and SUB

The instructions CMP and SUB are identical except for the storage of the
result. The same is true for the BIT and AND instructions.




Instruction Set Overview

5.3.2 Single-Operand Instructions

Figure 5-8 illustrates the single-operand instruction format.

Figure 5-8. Single Operand Instruction Format
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

Opcode B/W Ad D/S-Reg

Table 5-16 describes the effects of an instruction on the single operand
instruction status bits.

Table 5-16. Single Operand Instruction Format Results

Mnemonic S-Reg, D-Reg Operation Status Bits
vV N 2Z C
RRC dst C->MSB —.....LSB—>C * * * *
RRA dst MSB —> MSB —>....LSB—> C 0 * * *
PUSH src SP-2-— 8P, src —> @ SP - - - -
SWPB dst swap bytes - - - -
CALL dst SP -2 - 8SP - - - -
PC+2 — stack, dst —> PC
RETI TOS —> SR, SP <-SP + 2 X X X X
TOS —> PC,SP <-SP + 2
SXT dst Bit 7 —> Bit 8........ Bit 15 0 * * *

* The status bit is affected

—  The status bit is not affected
0  The status bit is cleared

1 The status bit is set

All addressing modes are possible for the CALL instruction. If the symbolic
mode (ADDRESS), the immediate mode (#N), the absolute mode (&EDE) or
the indexed mode X (RN) is used, the word that follows contains the address
information.

16-Bit CPU 5-19



Instruction Set Overview

5.3.3 Conditional Jumps

Conditional jumps support program branching relative to the program counter.
The possible jump range is from —511 to +512 words relative to the program
counter state of the jump instruction. The 10-bit program-counter offset value
is treated as a signed 10-bit value that is doubled and added to the program

counter. None of the jump instructions affect the status bits.

The instruction code fetch and the program counter increment technique end

with the formula:

Figure 5-9 shows the conditional-jump instruction format.

Figure 5-9. Conditional-Jump Instruction Format

15

14

13

12

11

10

9 8 7

6 5 4 3 2 1 0

Opcode

C

10-Bit PC Offset

Table 5-17 describes these conditional-jump instructions.

Table 5—-17.Conditlonal-Jump Instructions

5-20

Mnemonic S-Reg, D-Reg  Operation

JEQNZ Label Jump to label if zero bit is set
JNE/UNZ Label Jump to label if zero bit is reset
JC Label Jump to label if carry bit is set
JNC Label Jump to label if carry bit is reset
JN Label Jump to label if negative bit is set
JGE Label Jump to label if (N .XOR. V) =0
JL Label Jump to label if (N .XOR. V) =1
JMP Label Jump to label unconditionally




Instruction Set Overview

5.3.4 Short Form of Emulated Instructions

The basic instruction set, together with the register implementations of the
program counter, stack pointer, status register, and constant generator, form
the emulated instruction set; these make up the popular instruction set. The
status bits are set according to the result of the execution of the basic
instruction that replaces the emulated instruction.

Table 5—-18 describes these instructions.

Table 5—18. Emulated Instructions

Mnemonic

Description Status Bits Emulation
Vv N z C

Arlthmetic Instructions

ADC[.W] dst Add carry to destination * * * * ADDC #0,dst
ADC.B dst Add carry to destination * * * * ADDC.B #0,dst
DADCI.W] dst Add carry decimal to destination * * * * DADD #0,dst
DADC.B dst Add carry decimal to destination * * * * DADD.B #0,dst
DEC[.W] dst Decrement destination * * * *  SUB #1,dst
DEC.B dst Decrement destination * * * * SUB.B #1,dst
DECD[.W] dst Double-decrement destination * * * *  SUB #2 dst
DECD.B dst Double-decrement destination * * * *  SUB.B #2,dst
INC[.W] dst Increment destination * * * * ADD #1,dst
INC.B dst Increment destination * * * *  ADD.B #1,dst
INCD[.W] dst Increment destination * * * * ADD #2,dst
INCD.B dst Increment destination * * * * ADD.B #2,dst
SBC[.W] dst Subtract carry from destination * * * *  8SUBC #0,dst
SBC.B dst  Subtract carry from destination * * * *  SUBC.B #0,dst
Logical Instructions

INV[.W] dst Invert destination * * * *  XOR #0FFFFh,dst
INV.B dst Invert destination * * * *  XOR.B #-1,dst
RLA[.W] dst Rotate left arithmetically * * * *  ADD dst,dst
RLA.B dst  Rotate left arithmetically * * * *  ADD.B dst,dst
RLC[.W] dst Rotate left through carry * * * * ADDC dst,dst
RLC.B dst Rotate left through carry * * * * ADDC.B dst,dst
Data Instructions (common use)

CLR[.W] Clear destination - - - - MOV #0,dst
CLR.B Clear destination - - - - MOV.B #0,dst
CLRC Clear carry bit - - - 0 BIC #1,SR
CLRN Clear negative bit - 0 ~ - BIC #4,SR
CLRZ Clear zero bit - - 0 - BIC #2 SR
POP dst Item from stack - - - - MOV @SP+,dst
SETC Set carry bit - - - 1 BIS #1,SR
SETN Set negative bit - 1 - - BIS #4,SR
SETZ Set zero bit - - 1 - BIS #2,SR

16-Bit CPU 5-21




Instruction Set Overview

Table 5-18. Emulated Instructions (Continued)

Mnemonic

Description Status Bits Emulation

\ N Z C

Data Instructions (common use) (continued)

TST[.W] dst Test destination 0 * * *  CMP #0,dst
TSTB dst Test destination 0 * * *  CMPB #0,dst
Program Flow Instructions

BR dst Branchto... - - - - MOV dst,PC
DINT Disable interrupt - - - - BIC #8,SR
EINT Enable interrupt - - - - BIS #8,SR
NOP No operation - - - - MOV #0h,#0h
RET Return from subroutine - — - - MOV @SP+,PC

5.3.5 Miscellaneous

5-22

Instructions without operands, such as CPUOff, are not provided. Their
functions are switched on or off by setting or clearing the function bits in the
status register or the appropriate 1/O register. Other functions are emulated

using dual operand instructions.

Some examples are as follows:

BIS #28h,SR ; Enter OscOff mode
; + Enable general interrupt (GIE)
BIS #18h,SR ; Enter CPUOff mode

; + Enable general interrupt (GIE)
BIC #SVCC,8ACTL ; Switch SVCC off



Instruction Map

5.4 Instruction Map

The instruction map in Figure 5-10 is an example of how to encode
instructions. There is room for more instructions, if needed.

Figure 5-10. Core Instruction Map

000 040 080 O0CO 100 140 180 1CO 200 240 280 2C0 300 340 380 3CO
0x

04x

08x

0Cx

10x | RRC |[RRCB | SwPB RRA | RRAB| SXT PUSH |PUSH.B| CALL RETI

14x

18x

1Cx

20x JNE/INZ

24x JEQ/JZ

28x JNC

2Cx JC

30x JN

34x JGE

38x JL

3Cx JMP
40x~-4Cx MOV, MOV.B
50x-5Cx ADD, ADD.B
60x-6Cx ADDC, ADDC.B
70x~7Cx SUBC, SUBC.B
80x-8Cx SUB, SUB.B
90x—9Cx CMP, CMP.B
AO0x—-ACx DADD, DADD.B
BOx—BCx BIT, BIT.B
COx—-CCx BIC, BIC.B
DOx-DCx BIS, BIS.B
EOx—ECx XOR, XOR.B
FOx—FCx AND, AND.B

16-Bit CPU

5-23



5-24



Chapter 6

The hardware multiplier is a 16-bit peripheral module. It is not integrated into
the CPU. Therefore, it requires no special instructions and operates
independent of the CPU. To use the hardware multiplier, the operands are
loaded into registers and the results are available the next instruction—no
extra cycles are required for a multiplication.

Topic Page
6.1 Hardware Multiplier Module Support .............ccceeiiininan.. 6-2
6.2 Hardware Multiplier Operation ............c.ccooiiniiiinninnan, 6-3
6.3 Hardware Multiplier Registers .............ccciiiviciiiinnninns. 6-9
6.4 Hardware Muitiplier Special FunctionBits ....................0u. 6-10
6.5 Hardware Multiplier Software Restrictions ..................... 6-10

6-1



Hardware Multiplier Module Support

6.1 Hardware Multiplier Module Support

The hardware multiplier module expands the capabilities of the MSP430
family without changing the basic architecture. Multiplication is possible for:

[J 16x16 bits
[0 16x8 bits
[} 8x16 bits
] 8x8bits

The hardware multiplier module supports four types of multiplication: unsigned
multiplication (MPY), signed multiplication (MPYS), unsigned muitiplication
with accumulation (MAC), and signed multiplication with accumulation
(MACS). Figure 6—1 shows how the hardware multiplier module interfaces
with the bus system to support multiplication operations.

Figure 6—1. Connection of the Hardware Multiplier Module to the Bus System

6-2

|
i MPY
| MPYS [ | Other
|
|

mac Modules

MACS

r———====- - - = |
= ROM RAM I
1 |
| |
TDI I |
00 —} N JAN :
| .
| [ ] MAB, 16 Bit . || |
| — - - :> |
l CPU : Test l
| | ncl. 16 Reg. || uTAG |
MDB, 16 Bit |
} H K >
| B |
| {
™S )\ ) }
|
|
|
|
Jd



Hardware Multiplier Operation

6.2 Hardware Multiplier Operation

The hardware multiplier has two 16-bit registers for both operands and three
registers to store the results of the multiplication. The multiplication is
executed correctly when the first operand is written to the operand register
OP1 prior to writing the second operand to OP2. Writing the first operand to
the applicable register selects the type of multiplication. Writing the second
operand to OP2 starts the multiplication. Multiplication is completed before the
result registers are accessed using the indexed address mode for the source
operand. When indirect or indirect autoincrement address modes are used,
another instruction is needed between the writing of the second operand and
accessing the result registers. Both operands, OP1 and OP2, utilize all seven
address mode capabilities.

No instruction is necessary for the multiplication; as a result, the real-time
operation does not require additional clock cycles and the interrupt latency is
unchanged.

The muitiplier architecture is illustrated in Figure 6-2.

Figure 6-2. Block Diagram of the MSP430 16x16-Bit Hardware Multiplier

15 rw 0
MPY 130h 15 mw 0 15 w 0
Operand 1 ["iov s 300 Operand 1 Operand 2 138h
(address
defines | MAC 134h ! Mode
operation)
MACS 136h 16 x 16 Multiplier

D Accessible Register

0000

PY

2 ;

Product Register

31

32-Bit Adder

MAC, MACS

MACS

MPYS r‘_—M AC

MPY, MPYS

M
Mode——>\\ Multiplexer / A

32-Bit Multiplexer

A— Mode

L

I SumExt 13Eh I

15

Accumulator ACC

r 0

6-3

Hardware Multiplier



Hardware Multiplier Operation

The sum extension register contents differ, depending on the operation and
on the results of the operation.

Table 6—1. Sum Extension Register Contents

Register MPY MPYS MAC MACS, see Notes
Operand1 X + - + + (OP1xOP2 + (OP1xOP2+ (OP1xOP2+ (OP1xOP2 +
ACC) < ACC) > ACC) > ACC) <
Operand2 X + - - - OFFFFFFFFh OFFFFFFFFh O7FFFFFFFh  O7FFFFFFFh
SumExt 0000h  0000h OFFFFh 0000h 0001h OFFFFh 0000h
Note: The following two overflow conditions may occur when using the MACS function and should be handled by software or
avoided.

1) The result of a MACS operation is positive and larger than 07FFF FFFFh. In this case, the SumExt register contains
OFFFFh and the ACC register contains a negative number (8000 0000h .... OFFFF FFFFh).

2) Theresultof a MACS operation is negative and less than or equal to 07FFF FFFFh. In this case, the SumExt register
contains 0000h and the ACC register contains a positive number (0000 0000h ... 07FFF FFFFh).



Hardware Multiplier Operation

6.2.1

Multiply Unsigned, 16x16 bit, 16 x 8 bit, 8x 16 bit, 8 x 8 bit

The following multiplication operation shows 32 bytes of program code and 32
execution cycles (16 x16 bit multiplication).

KhkkhkhkhkhkhkhkhkhkhkhkhkrkrA Rk khhkhhkdA b hhkhhkhkh AR AT dAdh kA Ak Ak kA b b Ak r kb hk*x

*

*

*

*

TRANSFER BOTH OPERANDS TO THE REGISTERS IN THE *
HARDWARE MULTIPLIER MODULE *
USE CONSTANT OPERAND1 AND OPERAND2 TO IDENTIFY *
BYTE DATA *

EE I S S I kI I S I SR I R kS I S S 2 S Rk

OPERAND1 .EQU

OPERAND2 .EQU

MPY
MPYS
MAC
MACS
oP2
RESLO
RESHI
SUMEXT

.EQU
.EQU
.EQU
.EQU
.EQU
.EQU
.EQU
.EQU
.BSS
.BSS
.BSS

0

0

0130H
0132H
0134H
0136H
0138H
013AH
013CH
013EH

OPER1,2,200H

OPER2, 2
RAM, 8

.IF OPERAND1=8

MOV.B

.ELSE
MOV

.ENDIF

&OPER1, &MPY ;

&OPER1, &MPY ;

.IF OPERAND1=8

MOV.B

.ELSE
MOV

.ENDIF

&OPER2, &0OP2 ;

&OPER2, &0P2

’

7

’

I

0 O 0 O
e ee ee ae

OPERAND1 IS WORD (16BIT)
OPERAND1 IS BYTE ( 8BIT)
OPERAND2 IS WORD (16BIT)
OPERAND2 IS BYTE ( 8BIT)

LOAD 1ST OPERAND,
DEFINES ADD. UNSIGNED MULTIPLY

LOAD 1ST OPERAND,
DEFINES ADD. UNSIGNED MULTIPLY

LOAD 2ND OPERAND AND START
MULTIPLICATION

LOAD 2ND OPERAND AND START
MULTIPLICATION

R R S I S I I I I S R S R SR SR S S i I S R R I S e R R

EXAMPLE TO ADD THE RESULT OF THE HARDWARE
MULTIPLICATION TO THE RAM DATA, 64BITS

LR R I R R R I R I R R I I S I S S R S S

*

*

ADD
ADDC
ADC
ADC

&RESLO, &RAM

&RESHI, &RAM+2

&RAM+4
&RAM+6

7

ADD LOW RESULT TO RAM

ADD HIGH RESULT TO RAM+2
ADD CARRY TO EXTENSION WORD
IF 64 BIT LENGTH IS USED

Hardware Multiplier 6-5



Hardware Muitiplier Operation

6.2.2 Multiply Signed, 1616 bit, 16 x8 bit, 8x16 bit, 8 x8 bit

The following multiplication operation shows 36 bytes of program code and 36
execution cycles (16x16 bit multiplication).

R R R R R R I R S S R R R R S

*
*
* IF ONE
*
*
*

OPERAND1 . EQU

OPERAND2 . EQU

TRANSFER BOTH OPERANDS TO THE REGISTERS IN THE *
HARDWARE MULTIPLIER MODULE *
OF THE OPERANDS IS 8 BIT, SIGN EXTENSION  *
is NEEDED. USE CONSTANT OPERAND1 AND OPERAND2 TO *
IDENTIFY BYTE DATA *
EEEEE SRS S S SRR S EEEEEE RS EEEEEEEEEEEEEEEEESESERSEERSEEEESE SR
0 ; 0: OPERAND1 IS WORD (16BIT)
; 8: OPERAND1 IS BYTE ( 8BIT)
0 ; 0: OPERAND2 IS WORD (16BIT)
; 8: OPERAND2 IS BYTE ( 8BIT)
MPY  .EQU O0130H
MPYS .EQU 0132H
MAC  .EQU 0134H
MACS .EQU 0136H
OP2  .EQU 0138H
RESLO .EQU 013aH
RESHI .EQU 013CH
SUMEXT .EQU 013EH
.BSS OPERI,2,200H
.BSS OPER2,2
.BSS RAM,8

.IF OPERAND1=0

MOV

.ELSE
MOV.B

SXT
.ENDIF

&OPER1, &MPYS ; LOAD 1ST (WORD) OPERAND,
; DEFINES ADD. SIGNED MULTIPLY

&OPER1, &MPYS ; LOAD 1ST (BYTE) OPERAND,
; DEFINES ADD. SIGNED MULTIPLY
&MPYS ; EXPAND BYTE TO SIGNED WORD DATA

.IF OPERAND2=0

MOV &OPER2, &0P2 ; LOAD 2ND (WORD) OPERAND AND
; START SIGNED MULTIPLICATION
.ELSE
MOV.B &OPER2,&0P2 ; LOAD 2ND (BYTE) OPERAND,
SXT &0P2 ; RE-LOAD 2ND OPERAND AND START
; SIGNED ‘FINAL’ MULTIPLICATION
.ENDIF
kokkhkkkhkhkkkkhkkkhkkkhkhkkkkkkkkkkkkkkkkkhkkkkkkkkkkkk ok k k&
* EXAMPLE TO ADD THE RESULT OF THE HARDWARE
* MULTIPLICATION TO THE RAM DATA, 64 BITS

BRI R R R R R R R R EEEEEEEEEEEREEEEEEEEEEEERSEEEEEEESEEEEEESESS]

ADD &RESLO, &RAM ; ADD LOW RESULT TO RAM

ADDC &RESHI, &RAM+2 ; ADD HIGH RESULT TO RAM+2

ADDC &SUMEXT, &RAM+4 ; ADD SIGN WORD TO EXTENSION WORD
ADDC &SUMEXT, &RAM+6 ; IF 64 BIT LENGTH IS USED



Hardware Multiplier Operation

6.2.3 Multiply Unsigned and Accumulate, 16x16bit, 16x8bit, 8x16bit, 8x8bit

The following multiplication operation shows 32 bytes of program code and 32
execution cycles (16X16-bit multiplication).

khkhkhkkhkhk Ak hkhkhkhAkhkhkArrkdhkrrAdkrkhkhhhkhkrdkhdhkhkhkrhdhkhkhkhhkhkrxhrkhkdhhkrhkkhkhkhhkrrx

TRANSFER BOTH OPERANDS TO THE REGISTERS IN THE
HARDWARE MULTIPLIER MODULE

THE RESULT OF THE MULTIPLICATION IS ADDED TO THE
CONTENT OF BOTH RESULT REGISTERS, RESLO AND RESH
USE CONSTANT OPERAND1 AND OPERAND2 TO IDENTIFY
BYTE DATA

*
*
*
*
*
*
*

OPERANDI .EQU

OPERAND2 .EQU

MPY
MPYS
MAC
MACS
OP2
RESLO
RESHT
SUMEXT

.EQU
.EQU
.EQU
.EQU
.EQU
.EQU
.EQU
.EQU
.BSS
.BSS
.BSS

0 ;

0 ;

0130H
0132H
0134H
0136H
0138H
013AH
013CH
013EH
OPER1, 2,200H
OPER2, 2
RAM, 8

.IF OPERAND1=8

MOV.B

.ELSE
MOV

.ENDIF

&0PER1, &MAC ;

&OPER1, &MAC ;

.IF OPERAND1=38

MOV.B

.ELSE
MOV

.ENDIF

&OPER2, &OP2 ;

&OPER2, &OP2 ;

OPERAND1 IS WORD (16BIT
OPERAND1 IS BYTE ( 8BIT
OPERAND2 IS WORD (16BIT
OPERAND2 IS BYTE ( 8BIT

0 O o

LOAD 1ST OPERAND,
DEFINES ADD. UNSIGNED MULT

LOAD 1ST OPERAND,

DEFINES ADD. UNSIGNED MULT

LOAD 2ND OPERAND AND START

MULTIPLICATION

LOAD 2ND OPERAND AND START
MULTIPLICATION

*
*
*
I *
*
*
*

LR R R R I R R R R R R R I S SR I R S S

)
)
)
)

IPLY

IPLY

R RS S RS R RS EEEER SR SRR LR SRR EEEEEEREEEEEEEESEEEEESEESEEESE]

EXAMPLE TO ADD THE RESULT OF THE HARDWARE
MULTIPLICATION TO THE RAM DATA, 64BITS

THE RESULT OF THE MULTIPLICATION IS HELD IN RESLO*
AND RESHI REGISTERS. THE UPPER TWO WORDS IN THE *
EXAMPLE ARE FURTHER LOCATED IN THEIR RAM LOCATION*

*
*
*
*
*
*

ADDC  &SUMEXT, &RAM+4
ADC &RAM+6

*
*

ERE R R R R R R R S R R R R R R R R R I I I I I

; ADD SUMEXTENSTION TO RAM+4
; IF 64 BIT LENGTH IS USED

Hardware Multiplier

6-7



Hardware Multiplier Operation

6.2.4 Multiply Signed and Accumulate, 16x16bit, 16x8bit, 8x16bit, 8x8bit

R R E R RS R EEE SRR EE SRR SRR SRR EEEEEEEEEEEEEEEEEEEEEEEEREEEEESEREEEEEES]

* TRANSFER BOTH OPERANDS TO THE REGISTERS IN THE HARDWARE *
* MULTIPLIER MODULE *
* USE CONSTANT OPERAND1 AND OPERAND 2 TO IDENTIFY BYTE DATA *
hokkkkkkkhkhkkkkkkkkhhkkhk ok sk kA ko kh ok kkkk ok k ko kkhkkkk ok ok k kR kkkkhkkkkkkkk ok *
OPERAND1 .EQU 0 ; 0: OPERAND1 IS WORD (16BIT)
; 8 OPERAND1 IS BYTE ( 8BIT)
OPERAND2 .EQU 0 ; 0: OPERAND2 IS WORD (16BIT)
;8 OPERAND2 IS BYTE ( 8BIT)
MPY .EQU 0130H
MPYS .EQU 0132H
MAC .EQU 0134H
MACS -EQU 0136H
OP2 .EQU 0138H
RESLO .EQU 013AH
RESHI .EQU 013CH
SUMEXT .EQU 013EH
MAXMACS .EQU 32H ;NUMBER OF MACS FUNCTIONS WHICH COULD

;BE EXECUTED TILL AN OVERFLOW OR UNDERFLOW
;COULD OCCUR THE FIRST TIME

.BSS OPER1,2,200H

.BSsS OPER2, 2

.BSS RAM, 8

.BSS MCOUNT, 2

.IF OPERAND1=8

MOV.B  &OPER1,&MACS ; LOAD 1ST OPERAND,
; DEFINES ADD. UNSIGNED MULTIPLY
SXT &MACS ; EXPAND BYTE TO SIGNED WORD DATA
.ELSE
MOV &OPERL, &MACS  ; LOAD 1ST OPERAND,
; DEFINES ADD. UNSIGNED MULTIPLY
.ENDIF
.IF OPERAND1=8
SXT &OPER2 ; OPER2 MEMORY LOCATION NEEDS
; 2 BYTES
MOV.B  &OPER2, &OP2 ; LOAD 2ND OPERAND AND START
; MULTIPLICATION
.ELSE
MoV &OPER2, &0P2 ; LOAD 2ND OPERAND AND START
; MULTIPLICATION
.ENDIF
IR R RS RS R S SRR EEE SRR RESEE SRR RS RS EEREEEERESEEEREEEEEERERERESEESEEES]
* EXAMPLE TO ADD THE RESULT OF THE HARDWARE MULTIPLICATION *
* TO THE RAM DATA IF NECESSARY *
* THE RESULT OF THE MULTIPLICATION IS HELD IN RESLO AND *
* RESHI REGISTERS. THE UPPER TWO WORDS IN THE EXAMPLE ARE *
* FURTHER LOCATED IN THEIR RAM LOCATION *
LE R R R R SRR SRR E SRR E SRR EEEEEEEEEEESEEEREEEEEEREEEEEEEEEEEERESERERSEES]
INC MCOUNT ; INC MACS COUNTER
CMP #MAXMACS,MCOUNT  ; ONLY ADD TO RAM IF NECESSARY
JNE NEXTMACS ;
ADDC  &RESLO, &RAM+0 ; ADD SUMEXTENSION TO RAM+0
ADDC  &RESHI, &RAM+2 ; ADD SUMEXTENSION TO RAM+2
ADDC  &SUMEXT, &RAM+4 ; ADD SUMEXTENSION TO RAM+4
ADDC  &SUMEXT, &RAM+6 ; IF 64 BIT LENGTH IS USED
CLR MCOUNT

NEXTMACS



Hardware Multiplier Registers

6.3 Hardware Multiplier Registers

Hardware multiplier registers are word structured, but can be accessed using
word or byte processing instructions. Table 6—-2 describes the hardware
multiplier registers.

Table 6-2. Hardware Multiplier Registers

Register Short Form  Register Type Address Initial State
Multiply Unsigned (Operand1) MPY Read/write 0130h Unchanged
Multiply Signed (Operand1) MPYS Read/write 0132h Unchanged
Multiply+Accumulate (Operand1) MAC Read/write 0134h Unchanged
Multiply Signed+Accumulate (Operand1) MACS Read/write 0136h Unchanged
Second Operand oP2 Read/write 0138h Unchanged
Result Low Word ResLo Read/write 013Ah Undefined
Result High Word ResHi Read/write 013Ch Undefined
Sum Extend SumExt Read 013Eh Undefined

Two registers are implemented for both operands, OP1 and OP2, as shown
in Figure 6-3. Operand 1 uses four different addresses to address the same
register. The different address information is decoded and defines the type of
multiplication operation used.

Figure 6-3. Registers of the Hardware Multiplier

e sy e
OP2 (138h) Operand 2, OP2
ResLo (13Ah) Result Low Word, ReslLo
ResHi (13Ch) Result High Word, ResHi
SumExt (13Eh) Sum Extension Word, SumExt

15 0

The multiplication result is located in two word registers: result high (RESHI)
and result low (RESLO). The sum extend register (SumExt) holds the result
sign of a signed operation or the overflow of the multiply and accumulate
(MAC) operation. See Section 6.5.3 for a description of overflow and
underflow when using the MACS operations.

All registers have the least significant bit (LSB) at bit0O and the most significant
bit (MSB) at bit7 (byte data) or bit15 (word data).

Hardware Multiplier 6-9



Hardware Multiplier Special Function Bits

6.4 Hardware Multiplier Special Function Bits

Because the hardware multiplier module completes all multiplication
operations quickly, without interrupt intervention, no special function bits are
used.

6.5 Hardware Multiplier Software Restrictions

6.5.1

Two restrictions require attention when the hardware multiplier is used:

[ Theindirect or indirect autoincrement address mode used to process the
result

1 The hardware multiplier used in an interrupt routine

Hardware Multiplier Software Restrictions—Address Mode

The result of the multiplication operation can be accessed in indexed, indirect,
orindirect autoincrement mode. The result registers may be accessed without
any restrictions if you use the indexed address mode including the symbolic
and absolute address modes. However, when you use the indirect and indirect
autoincrement address modes to access the result registers, you need at least
one instruction between loading the second operand and accessing one of the
result registers.

R R S Sk R S S I I R A S S I R S S S S g

* EXAMPLE: MULTIPLY OPERAND1 AND OPERAND2

R E RS R RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEESESES]

RESLO .SET O013AH ; RESLO = ADDRESS OF RESLO
PUSH R5 ; R5 WILL HOLD THE ADDRESS OF
MOV #RESLO, R5 ; THE RESLO REGISTER

MOV &OPER1, &MPY ; LOAD 1ST OPERAND,
; DEFINES ADD. UNSIGNED MULTIPLY
MOV &0OPER2, &0P2 ; LOAD 2ND OPERAND AND START

; MULTIPLICATION

R R I kS R R S I I R I S I R O S S
* EXAMPLE TO ADD THE RESULT OF THE HARDWARE

* MULTIPLICATION TO THE RAM DATA, 64BITS

R RS SRS EEEEE SRS EEEEEEEEEEEEEEEEEEREEEEEREEEEEEEEEEEEEEEEE S

NOP ; MIN. ONE CYCLES BETWEEN MOVING
; THE OPERAND2 TO HW-MULTIPLIER
; AND PROCESSING THE RESULT WITH
; INDIRECT ADDRESS MODE

ADD @R5+, &RAM ; ADD LOW RESULT TO RAM

ADDC @R5,&RAM+2 ; ADD HIGH RESULT TO RAM+2
ADC &RAM+4 ; ADD CARRY TO EXTENSION WORD
ADC &RAM+6 ; IF 64 BIT LENGTH IS USED
POP R5

The previous example shows that the indirect or indirect autoincrement
address modes, when used to transfer the result of a multiplication operation
to the destination, need more cycles and code than the absolute address
mode. There is no need to access the hardware multiplier using the indirect
addressing mode.



Hardware Multiplier Software Restrictions

6.5.2 Hardware Multiplier Software Restrictions—Interrupt Routines
The entire multiplication routine requires only three steps:

1) Move operand OP1 to the hardware multiplier; this defines the type of mul-
tiplication.

2) Move operand OP2 to the hardware multiplier; the multiplication starts.

3) Process the result of the multiplication in the RESLO, RESHI, and
SUMEXT registers.

The following considerations describe the main routines that use hardware
multiplication. If no hardware multiplication is used in the main routine,
multiplication in an interrupt routine is protected from further interrupts,
because the GIE bit is reset after entering the interrupt service routine.
Typically, a multiplication operation that uses the entire data process occurs
outside an interrupt routine and the interrupt routines are as short as possible.

A multiplication operation in an interrupt routine has some feedback to the
multiplication operation in the main routine.

6.5.2.1 Interrupt Following an OP1 Transfer

The two LSBs of the first operand address define the type of multiplication
operation. This information cannot be recovered by any later operation.
Therefore aninterrupt must not be accepted between the first two steps: move
operand OP1 and OP2 to the multiplier.

6.5.2.2 Interrupt Following an OP2 Transfer

After the first two steps, the multiplication result is in the corresponding
registers RESLO, RESHI, and SUMEXT. It can be saved on the stack (using
the PUSH instruction) and can be restored after completing another
multiplication operation (using the POP instruction). However, this operation
takes additional code and cycles in the interrupt routine. You can avoid this,
by making an entire multiplication routine uninterruptible, by disabling any
interrupt (DINT) before entering the mulitiplication routine, and by enabling
interrupts (EINT) after the multiplication routine is completed. The negativé
aspect of this method is that the critical interrupt latency is increased drastically
for events that occur during this period.

6.5.2.3 General Recommendation

In general, one should avoid a hardware multiplication operation within an
interrupt routine when a hardware multiplication is already used in the main
program. (This will depend upon the application-specific software, applied
libraries, and other included software.) The methods previously discussed
have some negative implications; therefore, the best practice is to keep
interrupt routines as short as possible.

Hardware Multiplier 6-11



Hardware Multiplier Software Restrictions

6.5.3 Hardware Multiplier Software Restrictions—MACS

The multiplier does not automatically detect underflow or overflow in the
MACS mode. An overflow occurs when the sum of the accumulator register
and the result of the signed multiplication exceed the maximum binary range.

The binary range of the accumulator for positive numbers is 0 to 2311
(7FFF FFFFh) and for negative numbers is —1 (OFFFF FFFFh) to -231
(8000 0000h). An overflow occurs when the sum of two negative numbers
yields a result that is in the range given above for a positive number. An under-
flow occurs when the sum of two positive numbers yields a result that is in the
range for a negative number.

The maximum number of successive MACS instructions without underflow or
overflow is limited by the individual application and should be determined us-
ing a worst-case calculation. Care should then be exercised to not exceed the
maximum number or to handle the conditions accordingly.



Chapter 7

FLL Cliock Module

SRudEnoss Gl s e

This chapter discusses the FLL clock module used in the MSP430x3xx
families. The FLL clock module in the MSP430x3xx includes a watch-crystal
oscillator, an RC-type digitally-controlled oscillator (DCO), and a frequency-
locked-loop (FLL) to ensure the accuracy of the DCO.

Topic Page
7.1 TheFLLClockModule...........ccviiiiiiiiiiiiiir i iinannnnans 7-2
7.2 CrystalOscillator .........ccoiiiiiiiiiiiiiiiiii i ainnannns 7-3
7.3 Digitally-Controlied Oscillator (DCO) and

Frequency-Locked LOOP .....cciiinivirnnncnnccnnrcnnnnsnnnnsss 7-4
7.4 FLLOperatingModes .........coviiiiiiiiirrrrrnennnnnnnnnnnns 7-7
7.5 Buffered Clock Output.........coiiiiiiiiiiniiiiireieiannnnnnns 7-8
7.6 FLL Module Control Registers ............couvvinrmarinnnnnnns 7-9

7-1



7.1 The FLL Clock Module

The frequency-locked loop (FLL) clock module (shown in Figure 7—1) follows
the major design targets of low system cost and low-power consumption. The
FLL operates completely using a 32768-Hz watch crystal. A second asynchro-
nous high-speed clock signal is generated on-chip using a digitally-controlled
oscillator (DCO). The DCO frequency is stabilized to a multiple of the watch
crystal frequency by dividing the DCO frequency and digitally locking the two
frequencies. This technique is known as frequency-locked loop.

Figure 7—1. Frequency-Locked Loop

7-2

ll> > ACLK
OscOff SCG0 PUC
T
f Crystal Enable Reset

10-bit Frequency Integrator

/(N+1) Divider | |

b N[
SCG1 FN4 FN3 FTNz I\T/l
Enable
DC Generator — DCO and Modulator MCLK

fS)(stem

The FLL module supplies the MSP430x3xx family of devices with two clock
signals and an associated software-selectable buffered clock output.

O ACLK, a crystal oscillator signal used by peripheral modules. This signal
is identical to the frequency of the crystal oscillator input, XIN. ACLK is also

O MCLK, the controller’s main system clock used by the CPU; this clock is
software selectable for individual peripheral modules. The MCLK is
identical to the frequency generated by the DCO. MCLK is also known as

fsystem-

[ XBUF, buffered output of either MCLK, ACLK, ACLK/2, ACLK/4, or off.



Crystal Oscillator

PR, S = R e 9 5 XA B VTSI MR L SR M, o S BT LT 07 TR Y

7.2 Crystal Oscillator

The crystal oscillator supports low-current consumption by using a 32,768 Hz
watch crystal. The crystal connects to XIN and XOUT without any other
external components. This oscillator generates the ACLK signal which is
available to on-chip peripherals and XBUF.

Two factors determine the choice of the watch crystal:

(1 Low-current consumption
[J Stable time base

The oscillator operates after applying Vg Since the OscOff control bit in the
Status register (SR) is reset. It can be stopped by software by setting the
OscOff bitin the SR (OscOff = 1). When OscOff mode is selected (see Chapter
3) the ACLK signal is held in a high state.

All components required for crystal operation are integrated into the MSP430
as shown in Figure 7-2. No additional external components are necessary for
operation. Because the oscillator is designed for ultralow-power dissipation,
short connections between the crystal and MSP430 devices should be used
for the PWB layout.

Figure 7-2. Crystal Oscillator Schematic

r-r---=-=--—-"—"T—®>"""—"=—"™="™—" A

| -12 pF |

'|— oV I

XINI l
ACLK |

— |
T OscOff |
|

MSP430 :

- ov |

32,768 Hz| 12 pF |
e e e e e e Jd

FLL Clock Module 7-3



Digitally-Controlled Oscillator (DCO) and Frequency-Locked Loop

7.3 Digitally-Controlled Oscillator (DCO) and Frequency-Locked Loop

The DCO is an integrated RC-type oscillator in the MSP430x3xx FLL clock
module. The DCO generates a clock signal called MCLK. The MCLK
generated by the DCO is used by the MSP430x3xx CPU and is available to
on-chip peripherals and XBUF. MCLK is set to an N+1 multiple of ACLK. The
N multiplier is contained in the lowest 7 bits of control register SCFQCTL
(SCFQCTL.6 ... SCFQCTL.0). N is set to 31 on PUC by default, resulting in
an effective ACLK multiplier of 32 and an MCLK of 1.048576 MHz, assuming
that ACLK is 32, 768 Hz.

The multiplier (N+1) sets the frequency of MCLK:
MCLK = (N + 1) x ACLK

MCLK is stabilized using a frequency-locked loop technique. When combined
with the DCO, two important benefits result:

[ Fast start-up. The MSP430x3xx DCO is active in less than 6 us, which
supports extended sleep periods and burst performance.

1 Digital control signals. The DCO starts at exactly the same setting as when
shutoff. Thus a long locking period is not required for normal operation.

User software can modify MCLK by changing the multiplier N at any time. The
exact minimum and maximum MCLK allowed is specified in the device data
sheet.

7.3.1 FLL Operation

As with any RC-type oscillator, frequency varies with temperature and voltage.
The FLL hardware automatically stabilizes MCLK. The FLL compares the
ACLK to MCLK/(N+1) and counts up or down a 10-bit frequency integrator.
The MCLK is constantly adjusted to one of 1024 possible settings. The output
of the frequency integrator that drives the DCO can be read in SCFI1 and
SCFIO. The count is adjusted +1 or —1 with each crystal period (30.5 us using
32,768 Hz). Of the 10-bits from the frequency integrator, 5-bits are used for
DCO frequency taps and 5-bits are used for a modulator. The 5-bits for the
DCO tap are contained inthe SCFI1 (SCFI1.7...SCFI11.3). There are 29 taps
implemented in the DCO (TAPS 28, 29, 30, and 31 are equivalent), each being
approximately 10% higher than the previous. In most applications, a fraction
tap may be required to achieve the programmed MCLK over the full range of
system operation (see Figure 7-3).

Figure 7-3. Fractional Tap Frequency Required

Discrete DCO Taps
fn-2 fn—1 fn fn+1 fn+2 fn+i/

T >

DCO Output
Frequency Spectrum

Required °Fractional Tap’



Digitally-Controlled Oscillator (DCO) and Frequency-Locked Loop

7.3.2 Modulator Operation

The modulator overcomes relatively-large tap steps by mixing a DCO tap with
the next higher-frequency tap DCO+1. The DCO mixing or hop pattern is con-
trolled with 5-bits; thus there are 32 possible mix patterns (see Figure 7—4).
The 5-bits for the modulator are contained in SCFI1 and SCFIO
(SCFI1.2...SCFI1.0, SCFI0.1, and SCFI0.0).

Figure 7—4. Modulator Hop Patterns
NDCOmod

n

L
1 e I e Y s T s I T s 1 s I

16

15

5

Uy yyryyyyye
IS I I I 6y
[

[ [1 Il [1
[ [1 I [1

[ [ [

[ I

A/ Lower DCO Tap Frequency fy, I——l{- Upper DCO Tap Frequency fp1

v

MCLK Cycles (1.048 MHz)

d—
i

One ACLK Cycle :l

7.3.3 DCO Frequency Range

The fundamental-frequency range of the DCO is centered based on frominal
approximately equal to 1 MHz using bits FN_2, FN_3, and FN_4 in SCFIO (see
Table 7—1). The range control allows the DCO to operate near the center of the
available taps for a given MCLK.

Table 7—-1. The DCO Range Control Bits

FN_4 FN_3 FN_2 MCLK FREQUENCY
0 0 0 1 X fnominal
0 0 1 2 X fnominal
0 1 X 3 X frominal
1 X X 4 X fhominal

FLL Clock Module 7-5



Digitally-Controlled Oscillator (DCQO) and Frequency-Locked Loop

7.3.4 Disabling the FLL

FLL loop control and modulation can be disabled independently. FLL loop con-
trol can be disabled by setting the SCGO bit in the status register (SR). In this
case, the DCO runs at the previous tap—open loop. Then the MCLK is not au-
tomatically stabilized to (N+1) x ACLK. The influence of the modulator can be
disabled by setting the modulation bit M (SCFQCTL.7). In this case the MCLK
is stabilized to (N+1) x ACLK every 1024 cycles to the nearest 32 DOC taps.

7.3.5 MCLK Stability

The DCO is absolutely monotonic and the 10-bits of the frequency integrator
continuously count up/down by one. The accuracy of MCLK is the same as that
of ACLK if the FLL is running continuously.

The accumulated error in MCLK tends to zero over a long period. The 10-bit
FLL integrator is automatically adjusted every period of the ACLK. Thus, a
positive frequency deviation over one ACLK period is compensated with a
negative deviation over the next ACLK period. Variation between MCLK clock
periods can be approximately 10% due to the modulator mixing of DCO taps,
while the accumulated system clock error over longer time periods is zero.

7.3.6 Oscillator Fault Detection

7-6

MSP430x3xx devices have a fail-safe mode when the external crystal fails. If
the crystal fails and no ACLK signal is generated, the FLL will continue to count
down to zero in an attempt to lock ACLK and MCLK/(N+1). Aninternal oscilla-
tor fault is detected if the DCO tap moves out of the range 0<Ndco<28; that
is, an oscillator fault is signaled if the five bits SCFI1.7...SCFI11.3 contain one
the values 0, 28, 29, 30, or 31. An oscillator fault sets the oscillator-fault inter-
rupt flag (OFIFG) in the interrupt flag register 1 (IFG1) permanently as long as
the fault condition is valid. If the oscillator-fault interrupt-enable bit (OFIE) is
set by user software in the interrupt enable register 1 (IE1) and an oscillator
fault occurs, a nonmaskable interrupt (NMI) is generated. When the interrupt
is granted, the OFIE is reset automatically by hardware; user software must
reset OFIFG. The NMI interrupt has two sources. User software must
interrogate the OFIFG bit to determine if the NMI was generated by an oscilla-
tor fault.

Note:

MCLK is active even at the lowest DCO tap. The MCLK signal is available
for the CPU to execute code and service an NMI.

L J




FLL Operating Modes

RTINS TR B D ST R 3

7.4 FLL Operating Modes

Control bits SCG0, SCG1, OscOff, and CPUOIf in the status register configure
the MSP430x3xx operating modes as discussed in Chapter 3, System Resets,
Interrupts, and Operating Modes.

7.4.1 Starting From Power Up Clear (PUC)

On a valid PUC, SCFQCTL = 31, SCFIO and SCFI1 are cleared, and SCGO,
SCG1, OscOff, and CPUOff in the status register are reset. The FLL is fully
operational and will adjust the DCO until MCLK = (31+1) x ACLK. Using a
32,768-Hz watch crystal for ACLK, MCLK will stabilize to 1.048576 MHz.

Because the DCO starts at the lowest tap on PUC, enough time must be
allowed for the DCO to settle on the proper tap for normal operation. This is
necessary only after PUC, or when SCFIO and SCFI1 are cleared. 32 ACLK
cycles are required to get from one tap to another. Twenty-nine taps are
implemented, requiring 27 x 32 ACLK cycles as the worst case for the DCO
to settle on the proper tap (taps 0 and 27 are not counted since OFIFG is set
at these taps). During initialization, this time should be left prior to precise
MCLK timing. During normal operation, the FLL will constantly adjust the DCO,
requiring no special considerations.

7.4.2 Adjusting the FLL Frequency

User software can adjust the FLL frequency at any time by changing the N
multiplier in the SCFQCTL register. Also, bits FN_2, FN_3, and FN_4 are
adjusted to the appropriate MCLK frequency range.

Example, MCLK = 64 x ACLK = 2097152

bic #GIE, SR ; Disable interrupts
mov.b #(64-1), &SCFQTL ; MCLK = 64 * ACLK
mov.b #FN_2, &SCFIO ; DCO centered at 2 MHz
bis #GIE, SR ; Enable interrupts

Example, MCLK = 100 x ACLK = 3276800

bic #GIE, SR ; Disable interrupts
mov.b #(100-1) , &SCFQTL ; MCLK = 100 * ACLK
mov.b #FN_3,&SCFIO ; DCO centered at 3 MHz
bis #GIE, SR ; Enable interrupts

7.4.3 FLL Features for Low-Power Applications

Three conflicting requirements typically exist in battery-powered MSP430x3xx
real-time applications:

(1 Low-frequency clock for energy conservation and time keeping

[ High-frequency clock for fast reaction to events and fast burst-processing
capability

FLL Clock Module 7-7



Buffered Clock Output

O Clock stability

The MSP430x3xx FLL clock system addresses the above conflicting
requirements by providing both a low-frequency ACLK with crystal stability
and a stable high-frequency MCLK with near instant on-capability. The DCO,
which generates the MSP430x3xx MCLK, is operation in less than 6 pS.

The choice of a digital frequency-locked loop versus an analog-phase locked
loop enables the benefit of fast-start and stability. A phase-locked loop takes
hundreds or thousands of clock cycles to start and stabilize. The MSP430x3xx
frequency-locked-loop starts immediately at the exact setting prior to shut
down.

For minimum power consumption, the MSP430x3xx system operates for
extended periods in low-power mode 3 (LPM3) with only the ACLK active for
timers and low-power peripherals. Interrupts, both from external and internal
events, drive the activation of MCLK for the CPU and high-speed peripherals.
In the MSP430x3xx, any interrupt stores the SR operating modes on the stack
and then clears the SCG1 bit in the SR, automatically starting the DCO and
MCLK. After the interrupt handler has completed, the saved SR is popped from
the stack with the RETI instruction, restoring the previous operating mode.

7.5 Buffered Clock Output

The clock buffer shown in Figure 7-5 allows ACLK, ACLK/2, ACLK/4, or MCLK
to be output on MSP430x3xx pin XBUF. The clock buffer is controlled using the
three bits CBE, CBSEL1, and CBSELO in control register CBCTL.

Figure 7-5. Schematic of Clock Buffer

POR
|
CL
>
CBSELA1
Q@ o ' CBSELO
00
ACLK ACLK 5—
ACLK/2 O01
10 XBUF
L————oA:;LC'T_/}i . XBUF
MCLK O

CBE

CBE enables XBUF when set. CBSEL1 and CBSELDO select the clock source
of an enabled XBUF. On a POR condition, CBSEL1, CBSELO, and CBE are
reset and XBUF is disabled. If either ACLK or MCLK is shut down (generating
no frequency) and this clock source (or fraction of) is selected for XBUF, no
frequency will be output on XBUF regardless of CBE.

Note:

Control register CBCTL is a write-only register. Only mov.B #xxh,
&CBCTL instructions should be used to access this register. Other Format 1
instructions, which are a read-then-write type, will result in incorrect setting.

7-8



FLL Module Control Registers

7.6 FLL Module Control Registers

7.6.1

The FLL module is configured using control registers SCFQCTL, SCFIO,
SCFi1, CBCTL, and four bits from the CPU status register: SCG1, SCGO,
OscOff, and CPUOff. User software can modify these control registers from
their default condition at any time. The FLL control registers are located in the
byte-wide peripheral map and should be accessed with byte (.B) instructions.

Register Short Form Register Type Address Initial State
System clock control ~ SCFQCTL Read/write 052h 03t1h
System clock SCFI0 Read/write 050h Reset

frequency integrator O

System clock SCFI Read/write 051h Reset
frequency integrator 1

Clock buffer CBCTL Write only 053h Reset

MCLK Frequency Control

The contents of register SCFQCTL controls the multiplication of the crystal fre-
quency. The contents of register SCFQCTL is shown in Figure 7-6.

Figure 7-6. SCFQCTL Register

7 0
SCFQCTL
o50n | M |26 | 25| 24| 23] 22| 21 | 20

w-0 rw-0 rw-0 rw-1 rw-1 rw-1 rw-1 rw-1
The seven bits indicate a range of 1+1to 127+1. Any value below 1 results in
unpredictable operation. The user should ensure that the value selected does
not exceed the maximum MCLK value specified in the device data sheet.

fystem = (x26 + x-25 + x:24 + x-23 + x-22 + x-21 + x-20 + 1) - fepystal

The default value in SCFQCTL is 31 after a PUC signal is active, resulting in
a factor of 32.

The output of the frequency integrator controls the DCO. This value can be
read using the SCFI1 and SCFIO addresses as shown in Figure 7-7.

Figure 7-7. SCFI0 and SCFI1 Registers

If the modulation bit M is set, only the DCO taps determine the system
frequency. Adjacent DCO taps are not mixed. Note, however, that if the FLL
remains active (SCGO0=0), it will continue to adjust the DCO taps. If an
application requires the system frequency to remain constant for a short period
of time, both the modulation and the FLL should be disabled (M=1, SCG0=1).

7 0

SCFI0 N E 1 0
050h 0 0 0 |FN_4|FN_3|{FN_2] 2 2
r r r rw-0 rw-0 rw-0 rw-0 rw-0
7 0
SCFI1
9 8 7 6 5 4 3 2
051h 2 2 2 2 2 2 2 2

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

FLL Clock Module 7-9



FLL Module Control Registers

Figure 7-8. Crystal Buffer Control Register

CBCTL

osan | T |t ot ot ot [0 e
t Not implemented w—(0) w—(0) w—(0)
Bit O: Bit CBE controls the output buffer configuration.

CBE =1: Output buffer enabled
CBE =0: Output buffer disabled

Bits 1, 2: Bits CBSEL1 and CBSELO select the frequency that can be
applied to output pin XBUF.

CBE CBSEL1 CBSELO XBUF
0 X X Disabled
1 0 0 ACLK
1 0 1 ACLK/2
1 1 0 ACLK/4
1 1 1 MCLK

7.6.2 Special-Function Register Bits

7-10

The FLL clock module affects two bits in the special-function registers, OFIFG
and OFIE. The oscillator fault-interrupt enable bit (OFIE) is located in bit 1 of
the interrupt-enable register IE1. The oscillator fault-interrupt flag bit (OFIFG)
is located in bit 1 of the interrupt-flag register IFG1.

IE1 7 6 5 4 3 2
ooh | I I I I I
IFG1 7 6 5 4 3 2

o | [ [ | | ]

The oscillator fault signal sets the OFIFG as long as the oscillator fault condi-
tion is active. The detection and effect of the oscillator fault condition is de-
scribed in section 7.3.6. The oscillator fault interrupt requests a nonmaskable
interrupt if the OFIE bit is set. The oscillator interrupt-enable bit is reset auto-
matically if a non-maskable interrupt is accepted. The initial state of the OFIE
bit is reset, and no oscillator fault requests an interrupt even if a fault condition
occurs.



Chapter 8

Digl!_wal /0 Conflguratlon

PR R k?‘WWNAW?%WW%MNWXMW%&W

This chapter describes the digital 1/0 configuration.

Topic Page
81 Introduction ...........cciiiiiiiiiiiiiiiiirnnetrnanaraaanaanans 8-2
2 2 oY ¢ 28 1 8-3
8.3 Ports P1, P2 ... ... i i et a ey 8-11
8.4 Ports P3, P4 ... i e i v eeiiaee e 8-17

8-1



Introduction

8.1

Introduction

The general-purpose I/O ports of the MSP430 are designed to give maximum
flexibility. Each 1/O line is individually configurable, and most have interrupt
capability.

There are several different I/O port modules that function in slightly different
ways. Forthis reason, names have been given to each port module. For exam-
ple, port PO, P1, P2, etc. These names refer to specific port modules, and apply
to all MSP430 devices. For example, port PO and P1 may be available on a
particular MSP430 device, while ports P1 and P3 may be available on another
device. It is important for the user to understand the operating differences and
which port(s) are available on the device in use.

Additionally, the I/O port pins are often multiplexed with other pin functions on
the devices to provide maximum flexibility while optimizing pin count on the
devices.



Port PO

8.2 Port PO

The general-purpose port PO contains 8 general-purpose I/O lines and the
required registers to control and configure them. Each I/O line is capable
of being controlled independently. In addition, each I/O line has interrupt
capability.

Six registers are used to control the port I/O pins (see Section 8.2.1).

Port PO is connected to the processor core through the 8-bit memory data bus
(MDB) and the memory address bus (MAB). Port PO should be accessed using
byte instructions in the absolute address mode, such as:

MOV.B #12h,&POOUT.

Figure 8—1. Port PO Configuration
MDB

4
<

B 8

8

Input Register POIN
10h

R/W .
a - 6/2/
Output Register POOUT

011h

R/W

Direction Register
012h PODIR

‘ R/W
Interrupt Flags POIFG

6/2

8.2.1

013h
Interrupt Flags IFG1.2/3 -l
002h

4

A

R/W

Interrupt Edge Select

014h

POIES
Y

- RIW

Interrupt Enable POIE

015h

Interrupt Enable 1E1.2/3
000h

a

Port PO Control Registers

LSB
P0.0

Port PO has six registers to control the 1/0O pins. The six control registers give
maximum input/output configuration flexibility:

[ Allindividual I/O bits are independently programmabile.

[ Any combination of input, output, and interrupt condition is possible.

[ Interrupt processing of external events is fully implemented for all eight

bits of port PO.

Digital I/O Configuration



Port PO

The six registers are shown in Table 8-1.

Table 8—1. Port PO Control Registers

Short Register

Register Form Type Address Initial State
Input POIN Readonly 010h  ———-—-
Output POOUT Read/write  011h Unchanged
Direction PODIR Read/write  012h Reset
Interrupt flags POIFG Read/write  013h Reset
Interrupt edge select POIES Read/write  014h Unchanged
Interrupt enable POIE Read/write  015h Reset

These registers contain eight bits except for the two LSBs in the interrupt flag
register and interrupt enable register. These two bits are included in the special
function register. The registers should be accessed using byte instructions and
absolute address mode.

8.2.1.1 Input Register POIN

The input register is a read-only register that shows the values of the signals
at the I/0 pins. The direction of the pin must be selected as input.

Note: Writing to the Read-Only Register POIN

Any attempt to write to this read-only register results in increased current
consumption while the write attempt is active.

8.2.1.2 Output Register POOUT

The output register shows the information of the output buffer. The output
buffer can be modified using all instructions that write to a destination. If read,
the contents of the buffer are independent of the pin direction. A direction
change does not modify the output buffer contents.

8.2.1.3 Direction Register PODIR

The direction register contains eight bits that define the direction of each 1/0
pin. All bits are reset by the PUC signal.

When:
Bit = 0: The 1/O pin is switched to input direction
Bit = 1: The I/O pin is switched to output direction

8-4



Port PO

8.2.1.4 Interrupt Flags POIFG

The interrupt flags register contains six flags that reflect whether or not an
interrupt is pending from the corresponding I/O pin, if the 1/O pins are
interrupt-enabled.

Three interrupt vectors are implemented for port PO; one for port P0.0, one for
port P0.1, and one for interrupt events on ports P0.2 to P0.7. The six flags
shown in Figure 8-2 are located in bits 7 to 2 and correspond to pins P0.7 to
P0.2. The interrupt flags for pins P0.1 and P0.0 are located in the SFRs.

Figure 8-2. Interrupt Flags Register
7 0

POIFG

013h POIFG.7 | POIFG.6] POIFG.5|POIFG.4 POIFG.%POIFG.Z

w-0 w0 w0 w0 w0 w0 r0 r0

When:
Bit = 0: No interrupt is pending

Bit=1: Aninterruptis pending due to a transition at the I/O pin or software
setting the bit. Manipulation of POOUT and PODIR can also set
the POIFG bits.

Writing a zero to an interrupt flag resets it; writing a one to an interrupt flag sets
it and generates an interrupt.

Interrupt flags POIFG.2 to POIFG.7 use only one interrupt vector. These flags
are not reset automatically when any interrupt from these events is served.
The software should determine which event is served and reset the appropri-
ate flag(s).

Flags POIFG.0 and POIFG.1 generate individual interrupts, and are reset
automatically when serviced.

I 1

Note:

Any external interrupt event should be as long as 1.5 times MCLK or longer
to ensure that is accepted and the corresponding interrupt flag is set.

L J

8.2.1.5 Interrupt Edge Select POIES

The interrupt edge select register contains a bit for each I/0 pin, which controls
which transition triggers the interrupt flag. All eight bits corresponding to pins
P0.7 to P0.0 are located in this register. When:

Bit = 0: The interrupt flag is set with a low-to-high transition

Bit = 1: The interrupt flag is set with a high-to-low transition

Note:

Any change in the POIES bit(s) may result in setting the associated interrupt
flags.

Digital I/O Configuration 8-5



Port PO

8.2.1.6 Interrupt Enable POIE

The interrupt enable register contains bits for I/O pins P0.7 to P0.2, as shown
in Figure 8—3, which enable an interrupt request for an interrupt event on these
pins. Two interrupt enable bits for P0.0 and P0.1 are located in special function
registers IE1.2 and 1E1.3.

Figure 8-3. Interrupt Enable Register
7 0

POIE.7 | POIE.6 | POIE.5 | POIE.4 | POIE.3 | POIE.2

POIE
015h

w-0 w0 rw-0 rwO0 w0 w0 10 r0

When:
Bit = 0: The interrupt request is disabled

Bit = 1: The interrupt request is enabled

Note: Port PO Interrupt Sensitivity
Only transitions, not static levels, cause interrupts.

The interrupt routine must reset the interrupt flags POIFG.2 to POIFG.7. Flags
POIFG.0 and POIFG.1 are reset automatically when these interrupts are
serviced.

If an interrupt flag is still set when the RETI instruction is executed (for
example, a transition occurs during the interrupt service routine), an interrupt
occurs again after RETI is completed. This ensures that each transition is
acknowledged by the software.

8.2.2 Port PO Schematic

The pin logic of each individual port PO signal can be read from and written to
as described in the following sections.

8.2.2.1 Port PO, Bits P0.3 to P0.7

Each port PO signal’s pin logic is built from five identical register bits—PODIR,
POOUT, POIFG, POIE, POIES—and one read-only input buffer, POIN. Bits 3
through 7 function identically as shown in Figure 8—4.



Port PO

Figure 8—4. Schematic of Bits P0.7 to P0.3

PODIRx r

POOUT.x > Output
P Input
POIN.x < MUX
POIRQ.x —— POIE.x
Interrupt
Interrupt |¢ Edge
POIFG.x Flag Select
PnIRQ.y T
Request POIES.x
Interrupt < .
P0.27
PnlRQ.z
NOTE: 3<x<7

8.2.2.2 Port PO, Bit P0.2

Bit 2 is slightly different from bits 3 to 7 as shown in Figure 8-5. The output
signal can be determined either by the port POOUT.2 bit or by the 8-Bit
Timer/Counter signal (TXD). When the output control register bit (TXE) is set
to a logic 1, the TXD signal is selected as the relevant output signal and the
pad logic is switched to the output, independent of the direction control bit
PODIR.2.

Figure 8-5. Schematic of Bit P0.2

oS 1] =1

POOUT.2 »— Output | | PO.2
TXD —»> MUX | |
| |
Input I |
POIN.2 < Mux [ |Padlogic |
POIRQ.2 —— POIE.2
Interrupt
Interrupt Edge
POIFG.2 Flag Select
POIRQ.3 T
Request . POIES.2
Interrupt M

P0.27
POIRQ.7

Digital I/O Configuration 8-7



Port PO

8.2.2.3 Port PO, Bit PO.1

Bit 1 is slightly different from bits 3 to 7 as shown in Figure 8-6. The interrupt
signal can be sourced by the input signal at pin P0.1, or by the 8-Bit
Timer/Counter carry signal. Whenever the interrupt source control bit (ISCTL)
in the 8-Bit Timer/Counter control register (TCCTL) is set, the interrupt source
is switched from pin PO.1 to the carry signal from the counter in the 8-bit
Timer/Counter. Flag POIFG.1 is reset automatically when the interrupt is
serviced (IRQA signal).

Figure 8—6. Schematic of Bit PO.1

PODIR.1
. i
POOUT.1 > Output !
I |
I |
oo |
1 < Input | i
POIN P | Padogic |
Interrupt
POIES.1 Edge
Select | -t i

P0.1D (To 8-bit T/C) |

Carry |

Request ————{POIRQJ — POIEA Interrupt II =
Int t i

Interrupt nterrup Source | ISCTL (From 8-bit T/C) |
| |

FI
PO.1 POIFG.1 ag Select

? e J
IRQA
(Interrupt request accepted)

8.2.2.4 Port PO, Bit P0.0

Bit 0 is identical to bits 3 to 7 as shown in Figure 8-7, but has its own interrupt
vector. Flag POIFG.0 is reset automatically when the interrupt is serviced

(IRQA signal).
Figure 8—7. Schematic of Bit P0.0
PODIR.O
! =3
POOUT.O > Output
I |
I I
Input ! {
POIN.0 < mux [® LPadloge |
POIRQ.0 — POIE.
Request OIE.0 Interrupt
Interrupt Interrupt g Edge
P0.0 POIFG.0 | Flag Select
T POIES.O
IRQA

(Interrupt request accepted)

8-8



Port PO

8.2.3 Port PO Interrupt Control Functions

Port PO uses eight bits for interrupt flags, eight bits to enable interrupts, eight
bits to select the effective edge of an interrupt event, and three different
interrupt vector addresses.

The three interrupt vector addresses are assigned to:

O P0.0
O PO.1/RXD
O P0.2to P0.7

The two port PO signals, P0.0 and P0.1/RXD, are used for dedicated signal
processing. Four bits in the SFR address range and two bits in the port0
address frame handle the interrupt events on P0.0 and P0.1/RXD :

P0.0 interrupt flag POIFG.O (located in IFG1.2, initial state is reset)
P0.1/RXD interrupt flag POIFG.1 (located in IFG1.3, initial state is reset)
P0.0 interrupt enable POIE.O (located in IE1.2, initial state is reset)
P0.1/RXD interrupt enable POIE.1 (located in IE1.3, initial state is reset)
P0.0 interrupt edge select (located in POIES.O, initial state is reset)
P0.1/RXD interrupt edge select (located in POIES.1, initial state is reset)

cooood

Both interrupt flags (POIFG.0 and POIFG.1/RXD) are single source flags and
are automatically reset when the processor serves them. The enable bits and
edge select bits remain unchanged.

The interrupt control bits of the remaining six I/O signals, P0.2 to P0.7, are
located in the I/O address frame. Each signal uses three bits for configuration
and interrupt.

J Interrupt flag, POIFG.2 to POIFG.7
(O Interrupt enable bit, POIE.2 to POIE.7
[ Interrupt edge select bit, POIES.2 to POIES.7

The interrupt flags POIFG.2 to POIFG.7 share the same interrupt vector. An
interrupt event on one or more pins of P0.2 to P0.7 requests an interrupt when
two conditions are met: the appropriate individual enable bit POIE.x (2 <x <7)
is set and the general interrupt enable (GIE) bit is set. Since the interrupts
share the same interrupt vector, interrupt flags P0.2 to P0.7 are not
automatically reset and, therefore, continue to generate interrupts until reset.
The interrupt service routine software should handle the detection of the
source and reset the appropriate flag when it is serviced.

Note:

Modifying the direction control bit or interrupt edge select bit for an /0 may
result in setting the interrupt flag for that I/O line.

-}

Digital I/O Configuration 8-9



Port PO

8.2.3.1 1/0-Pin Interrupt Handler for P0.2 to P0.7: Programming Example

The following code describes how to set the I/O pin interrupt handler.

; The I/O-PIN interrupt handler for P0.2 to P0.7 starts here

’

TIOINTR PUSH RS ;Save R5
MOV.B &POIFG,R5 ;Read interrupt flags
BIC.B R5,&POIFG ;Clear status flags with the

;read data

;Additional set bits are not
;cleared!

EINT ;Allow interrupt nesting

’

;R5 contains information about which I/O-pin(s) cause
;interrupts:

;the processing starts here.

POP R5 ;JOB done: restore R5
RETT ;Return from interrupt

;Definition of interrupt vector table

.sect “I027_vec”,0FFEOh ;The interrupt vector for
;flags POIFG.2 and POIFG.7
;are at memory address OFFEOh
;in 3xx devices.

.WORD IOINTR ;I/0-Pin (2 to 7) Vector in
; ROM

.sect "RST vec”,OFFFEh ; Interrupt Vectors
.WORD RESET



Ports P1, P2

8.3 Ports P1, P2

Each of the general-purpose ports P1 and P2 contain 8 general-purpose /O
lines and all of the registers required to control and configure them. Each I/O
line is capable of being controlled independently. In addition, each I/O line is
capable of producing an interrupt.

Separate vectors are allocated to ports P1 and P2 modules. The pins for port
P1 (P1.0-7) source one interrupt, and the pins for port P2 (P2.0-7) source
another interrupt.

Seven registers are used to control the port I/O pins (see Section 8.3.1).

Ports P1 and P2 are connected to the processor core through the 8-bit MDB
and the MAB. They should be accessed using byte instructions in the absolute
address mode.

Figure 8-8. Port P1, Port P2 Configuration

P MDB R
< ¥ ¥ X F

5 o i

R
8
Input Register PnIN
R/W
3 8
n=1:020h .
= 2:028h Output Register PNOUT
A R/W 8
n= ;-’ gg;: Direction Register
n=z:
PnDIR i RW .
=1:022h
n =2: 02Ah Interrupt Flags PnIFG
y R/W
n=1 02;; interrupt Edge Select 8
n=2:02 PnIES
R/W
n=1:024h
n=2:02Ch Interrupt Enable PnIE
n=1:025h 4 AW
n=2:02Dh Function Select PnSEL
n=1:026h 4
n=2: 02Eh
MSB LSB
Pn.7 Pn.0

Digital I/O Configuration 8-11



Ports P1, P2

8.3.1 Port P1, Port P2 Control Registers

The seven control registers give maximum digital input/output configuration
flexibility:

[ Allindividual I/O bits are independently programmable.
1 Any combination of input, output, and interrupt condition is possible.

[ Interrupt processing of external events is fully implemented for all eight
bits of ports P1 and P2.

The seven registers for port P1 and the seven registers for port P2 are shown
in Table 8-2 and Table 8-3, respectively.

Table 8-2. Port P1 Registers

Register Short Form Register Type Address Initial State
Input P1IN Read only 020h  ————-
Output P1OUT Read/write 021h Unchanged
Direction P1DIR Read/write 022h Reset
Interrupt Flags P1IFG Read/write 023h Reset
Interrupt Edge Select P1IES Read/write 024h Unchanged
Interrupt Enable P1IE Read/write 025h Reset
Function Select P1SEL Read/write 026h Reset

Table 8-3. Port P2 Registers

Register Short Form Register Type Address Initial State
Input P2IN Read only 028h @ ————-
Output P20UT Read/write 02%h Unchanged
Direction P2DIR Read/write 02Ah Reset
Interrupt Flags P2IFG Read/write 02Bh Reset
Interrupt Edge Select P2IES Read/write 02Ch Unchanged
Interrupt Enable P2IE Read/write 02Dh Reset
Function Select P2SEL Read/write 02Eh Reset

These registers contain eight bits, and should be accessed using byte
instructions in absolute-address mode.

8.3.1.1 Input Registers P1IN, P2IN

Both Input registers are read-only registers that reflect the signals at the 1/0
pins.

Note: Writing to Read-Only Registers P1IN, P2IN

Writing to these read-only registers results in increased current consumption
while the write attempt is active.

8.3.1.2 Output Registers P10UT, P20UT

Each output register shows the information of the output buffer. The output
buffer can be modified by all instructions that write to a destination. If read, the

8-12



Ports P1, P2

contents of the output buffer are independent of pin direction. A direction
change does not modify the output buffer contents.

8.3.1.3 Direction Registers P1DIR, P2DIR

The direction registers contain eight independent bits that define the direction
of the 1/O pin. All bits are reset by the PUC signal.

When:
Bit = 0: The port pin is switched to input direction (3-state)

Bit = 1: The port pin is switched to output direction

8.3.1.4 Interrupt Flags P1IFG, P2IFG

Each interrupt flag register contains eight flags that reflect whether or not an
interrupt is pending for the corresponding I/O pin, if the I/O is interrupt-enabled.

When:
Bit = 0: No interrupt is pending

Bit = 1: An interrupt is pending due to a transition at the 1/O pin or from
software setting the bit.

Note:

Manipulating P1OUT and P1DIR, as well as P20UT and P2DIR, can result
in setting the P1IFG or P2IFG bits.

L J

Writing a zero to an interrupt flag resets it; writing a one to an interrupt flag sets
it and generates an interrupt.

Each group of interrupt flags P1FLG.0 to P1FLG.7 and P2FLG.0 to P2FLG.7
sources its own interrupt vector. Interrupt flags P1IFG.0 to P1IFG.7 and
P2IFG.0 to P2IFG.7 are not reset automatically when an interrupt from these
events is serviced. The software should determine the origin of the interrupt
and reset the appropriate flag(s).

Note:

Any external interrupt event should be at least 1.5 times MCLK or longer, to
ensure that it is accepted and the corresponding interrupt flag is set.

Digital /O Configuration 8-13



Ports P1, P2

8.3.1.5 Interrupt Edge Select P1IES, P2IES

Each interrupt edge select register contains a bit for each corresponding I/O
pin to select what type of transition triggers the interrupt flag.

When:
Bit = 0: The interrupt flag is set with a low-to-high transition

Bit = 1: The interrupt flag is set with a high-to-low transition

Note:

Changing the P1IES and P2IES bits can result in setting the associated
interrupt flags.

PnIES.x PnIN.x PnIFG.x
0-1 0 Unchanged
0-1 1 May be set
1-0 0 May be set
1-50 1 Unchanged

8.3.1.6 Interrupt Enable P1IE, P2IE

Each interrupt enable register contains bits to enable the interrupt flag for each
I/0 pin in the port. Each of the sixteen bits corresponding to pins P1.0 to P1.7
and P2.0 to P2.7 is located in the P11E and P2IE registers.

When:
Bit = 0: The interrupt request is disabled

Bit = 1: The interrupt request is enabled

Note: Port P1, Port P2 Interrupt Sensitivity
Only transitions, not static levels, cause interrupts.

If an interrupt flag is still set when the RETI instruction is executed (for
example, a transition occurs during the interrupt service routine), an interrupt
occurs again after RETI is completed. This ensures that each transition is
acknowledged by the software.

8.3.1.7 Function Select Registers P1SEL, P2SEL

P1 and P2 port pins are often multiplexed with other peripheral modules to
reduce overall pin count on MSP430 devices (see the specific device data
sheet to determine which other peripherals also use the device pins). Control
registers P1SEL and P2SEL are used to select the desired pin function—I/O
port or other peripheral module. Each register contains eight bits
corresponding to each pin, and each pin’s function is individually selectable.
All bits in these registers are reset by the PUC signal. The bit definitions are:

Bit = 0: Port P1 or P2 function is selected for the pin

Bit = 1: Other peripheral module function is selected for the pin



Ports P1, P2

Note: Function Select With P1SEL, P2SEL

The interrupt-edge-select circuitry is disabled if control bit PnSEL.x is set.
Therefore, the input signal can no longer generate an interrupt.

When a port pin is selected to be used as an input to a peripheral module other
than the I/O port (PnSEL.x = 1), the actual input signal to the peripheral module
is a latched representation of the signal at the device pin (see Figure 8-9
schematic). The latch uses the PNSEL.x bit as its enable, so while PNSEL.x=1,
the internal input signal simply follows the signal at the pin. However, if the
PnSEL.x bit is reset, then the output of the latch (and therefore the input to the
other peripheral module) represents the value of the signal at the device pin
just prior to the bit being reset.

8.3.2 Port P1, Port P2 Schematic

The pin logic of each individual port P1 and port P2 signal is identical. Each
bit can be read and written to as shown in Figure 8-9.

Figure 8-9. Schematic of One Bit in Port P1, P2

PnSEL.x ® I
PnDIR.x » Output
Direction Control > MUX
From Module

Pad Logic

PnOUT.x
Module X OUT
PnIN.x
EN
Module x IN +—Y
Al—« A d
PnIRQ.x L— PnlE.x
Interrupt
Interrupt | Edge
PniFG.x Flag Select
PniRQ.y PNIES.x
Request ° PnSEL.x
Interrupt _ :
Pn.07 PnIRQ.z

x =010 7, according to bits 0 to 7
n =1 for Port P1 and 2 for Port P2

Digital I/O Configuration 8-15



Ports P1, P2

8.3.3 Port P1, P2 Interrupt Control Functions

8-16

Ports P1 and P2 use eight bits for interrupt flags, eight bits to enable interrupts,
eight bits to select the effective edge of an interrupt event, one interrupt vector
address for port P1, and one interrupt vector address for port P2.

Each signal uses three bits for configuration and interrupt:

1 Interrupt flag, P1IFG.0 to P1IFG.7 and P2IFG.0 to P2IFG.7
[ [Interrupt enable bit, P1IE.O to P1IE.7 and P2IE.O to P2IE.7
O Interrupt edge select bit, P1IES.0 to P1IES.7 and P2IES.0 to P2IES.7

The interrupt flags P11FG.0 to P1IFG.7 source one interrupt and P2IFG.0 to
P2IFG.7 source one interrupt. Any interrupt event on one or more pins of P1.0
to P1.7 or P2.0 to P2.7 requests an interrupt when two conditions are met: the
appropriate individual bit PnlE.x is set, and the GIE bit is set. Interrupt flags
P1IFG.0 to P1IFG.7 or P2IFG.0 to P2IFG.7 are not automatically reset. The
software of the interrupt service routine should handle the detection of the
source, and reset the appropriate flag when it is serviced.



Ports P3, P4

8.4 Ports P3, P4

General-purpose ports P3 and P4 function as shown in Figure 8—10. Each pin
can be selected to operate with the 1/0O port function, or to be used with a
different peripheral module. This multiplexing of pins allows for a reduced pin
count on MSP430 devices.

Four registers control each of the ports (see Section 8.4.1).

Ports P3 and P4 are connected to the processor core through the 8-bit MDB
and the MAB. They should be accessed with byte instructions using the
absolute address mode.

Figure 8-10. Ports P3, P4 Configuration

8.4.1

< MDB R
8 8
R
8
Input Register PnIN
R/W
' 3 8
n=3:018h ‘
n=4:01Ch Output Register PnOUT
4 R/W
n= i: 8}%: Direction Register
n=4:

. PnDIR v RIW
n= 3: O1An Function Select
n=4:01Eh Register PnSEL

n=3:01Bh T
n=4:01Fh

Port P3, P4 Control Registers

The four control registers of each port give maximum configuration fiexibility

of digital I/O.

O Allindividual I/O bits are programmed independently
O Any combination of input is possible
d Any combination of port or module function is possible

The four registers for each port are shown in Table 8—-4. They each contain
eight bits and should be accessed with byte instructions.

Digital I/O Configuration

8-17



Ports P3, P4

Table 8—4. Port P3. P4 Registers

Register Short Form  Address Register Type Initial State

Input P3IN 018h Readonly ~  ————-
P4IN 01Ch Readonly —-————-

Output P30OUT 019h Read/write Unchanged
P40OUT 01Dh Read/write Unchanged

Direction P3DIR 01Ah Read/write Reset
P4DIR 01Eh Read/write Reset

Port Select P3SEL 01Bh Read/write Reset
P4SEL 01Fh Read/write Reset

8.4.1.1 Input Registers

The input registers are read-only registers that reflect the signal at the I/0O pins.

1

Note: Writing to Read-Only Register

Any attempt to write to these read-only registers results in an increased
current consumption while the write attempt is active.

8.4.1.2 Output Registers

The output registers show the information of the output buffers. The output
buffers can be modified by all instructions that write to a destination. If read,
the contents of the output buffer are independent of the pin direction. A
direction change does not modify the output buffer contents.

8.4.1.3 Direction Registers

The direction registers contain eight independent bits that define the direction
of each 1/O pin. All bits are reset by the PUC signal.

When:
Bit = 0: The port pin is switched to input direction

Bit = 1: The port pin is switched to output direction

8-18



Ports P3, P4

8.4.1.4 Function Select Registers PnSEL

Ports P3, P4 pins are often multiplexed with other peripheral modules to
reduce overall pin count on MSP430 devices (see the specific device data
sheet to determine which other peripherals also use the device pins). Control
registers PnSEL are used to select the desired pin function—I/O port or other
peripheral module. Each register contains eight bits corresponding to each
pin, and each pin’s function is individually selectable. All bits in these registers
are reset by the PUC signal. The bit definitions are:

Bit = 0: Port function is selected for the pin

Bit = 1: Other peripheral module function is selected for the pin

Note: Function Select With PnSEL Registers

The interrupt-edge-select circuitry is disabled if control bit PnSEL.x is set.
Therefore, the input signal can no longer generate an interrupt.

When a port pin is selected to be used as an input to a peripheral module other
than the I/O port (PnSEL.x=1), the actual input signal to the peripheral module
is a latched representation of the signal at the device pin (see Figure 8—-11
schematic). The latch uses the PnSEL.x bit as its enable, so while PnSEL.x=1,
the internal input signal simply follows the signal at the pin. However, if the
PnSEL.x bit is reset, then the output of the latch (and therefore the input to the
other peripheral module) represents the value of signal at the device pin, just
prior to the bit being reset.

8.4.2 Port P3, P4 Schematic

The pin logic of each individual port signal is shown in Figure 8—11.

Figure 8—11. Schematic of Bits Pn.x

PnSEL.x - a
PnDIR.x » Output
Direction Control > MUX
From Module

e

PnOUT.x » i Output

Module x OUT > | MUX

|
|
|
(. —_

PnIN.x

A
7 3

EN

Module x IN ¢+——Y

n = 3 for Port3, 4 for Port P4
x =0to 7, according to bits 0 to 7

Digital I/O Configuration 8-19



8-20



Chapter 9

The Universal Timer/Port module supports the following system features:

J Up to six independent outputs
[ Two 8-bit counters or one 16-bit counter
[0 A precision comparator for slope A/D conversion

Topic Page
9.1  Timer/Port Configuration ...........ccoiiiiiiiiinniinianrrnenn 9-2
9.2 Timer/Port Module Operation ..........cccvivivrmnnnnrnannrnans 9-3
9.3 Timer/Port Registers ......... e reaaaer e 9-7
9.4 Timer/PortInterrupts ......ccvvriiiiiiniiriiiiiannnerniirenns 9-11
9.5 Timer/Portinan ADC Application ..........cc.cciiiiiiiinnnnss 9-12

9-1



Timer/Port Configuration

9.1 Timer/Port Configuration

The Timer/Port is configured as shown

Figure 9-1. Timer/Port Configuration

ENB ENA
CIN >—— 5 i l
I: o1 cmp

SxX/OXX/CMPI 1 ggi‘fg | Set_EN1FG
TPIN.5 —»]
Veea x

in Figure 9-1.

EN1 8-Bit Counter

>CLK1
RCA TPCNT1

r/'w

TPSSELO
TPSSEL1 TPSSELO
cMP | Lo
ACLK —— 0o o B16
MCLK ——CZ 2
3

TPSSEL3 TPSSEL2

} Set_RC1FG

1
L1, —Q EN2 g Bit Counter
TPIN.5 >CLK2  1poNT2
1 RC2 riw
ACLK —— 0 5 0
MCLK ——— o 3 i—————+ Set_RC2FG
TPx.0 GND —o0
G_i TPD.O Control Register
TPE.O TPCTL
TPx.1
—— TPD.A v v v *
' TPSSEL1 ENB y EN1 | RC1FG
TPE.1 TPSSELO ENA RC2FG ENI1FG
TPx.2
TPD.2
Data Register
TPE.2 TPD
TPx.3
—— TPD.3 vVVYY VY VY
B16 w TPD.5..ocicieece TPD.O
TPx.4 TPES CPON
—— TPD.4
Data Register
TPE.4 TPD
TPIN.5 v Y VYV VY
TPx.5 TPSSEL3 & TPE.S....ooiiieveieeenen TPE.O
TPD.5 TPSSEL2

TPE.5

i




Timer/Port Module Operation

9.2 Timer/Port Module Operation

9.2.1

This section describes the Timer/Port counters.

Timer/Port Counter TPCNT1, 8-Bit Operation

Refer to Figure 9—1 for the following discussion.

The Universal Timer/Port offers much more application flexibility than other
simple timer/counters by providing for flexible clocking and enable conditions.

The clock input to counter TPCNT1 can be selected from three different
sources. MCLK, ACLK, or CMP (an external signal, or the comparator output)
can be used to increment the timer/counter. The counter increments with each
positive edge of the CLK1 clock input when enable signal EN1 is set. When
the counter reaches full scale (OFFh), a ripple-carry signal RC1 goes high and
remains high as long as the counter data equals OFFh. When the counter
increments from OFFh to 000h, RC1 goes back low, but the negative edge of
signal RC1 sets a ripple-carry flag bit in the TPCTL register (RC1FG) to
indicate that the counter has rolled over. Setting the ripple carry flag RC1FG
will generate a CPU interrupt if the Timer/Port interrupt enable flag (TPIE) is
set. The RC1FG is not automatically reset, so it must be reset by the interrupt
service routine (ISR).

The user has several choices to configure the enable signal EN1 (see
Table 9—1). The counter is enabled when one or both ENA and ENB bits are
set. Both of these bits are reset with a system reset (POR or PUC).

Further, an external event can be used to enable or disable the timer. When
an external event on signals CMP or TPIN.5 disables the counter, flag EN1FG
of the TPCTL register is set and a CPU interrupt is generated if the Timer/Port
interrupt is enabled. The EN1FG flag is not automatically reset, so it must be
reset by the ISR. Note that the EN1FG flag is not set if the counter is disabled
through software manipulation of the ENA or ENB bits.

Any time the counter is disabled, the counter data is frozen, but the software
can write a different value to the counter to change its data. Note that this write
operation does not re-enable the counter.

The counter can be read or written to at anytime. A timer read can occur
asynchronously to a timer increment if the clock source for the timer is either
the ACLK orthe CMP signal. In this situation the user software should perform
several reads of the timer and take a majority vote to determine the correct
timervalue. When MCLK is selected as the clock source, the read is performed
synchronously to the increment, so a majority vote software routine is not
necessary.

Reading the timer/counter does not effect the count. The timer/counter will
accurately increment with each clock regardless of when a read occurs. Also,
performing a read of the counter directly after writing to it could resultin reading
different data than was written to it, depending on when the clock signal is
applied.

Universal Timer/Port Module 9-3



Timer/Port Module Operation

9.2.2 Timer/Port Counter TPCNT2, 8-Bit Operation

Counter TPCNT2 operates similarly to TPCNT1, with a few differences in the
enable signal and clock source.

The enable signal for TPCNT2 is primarily controlled with bit B16 of the TPD
register. Bit B16 selects 8 or 16-bit mode for the Timer/Port. When B16 is reset,
the Timer/Port is in 8-bit mode and counter TPCNT2 is always enabled.

Additionally, in 8-bit mode, counter TPCNT2 is completely independent from
TPCNT1 and has a separate clock source. The clock source for TPCNT2 in
8-bit mode can be selected to be ACLK, MCLK, or the TPIN.5 pin.

Like TPCNT1, TPCNT2 has a ripple-carry output (RC2) that is high while the
counter data is equal to OFFh and the enable signal EN2 is high. When the
counter increments from OFFh to 000h, RC2 goes back low. The negative
edge of RC2 sets a ripple-carry flag in the TPCTL register (RC2FG) to indicate
that the counter has rolled over. Setting RC2FG generates a CPU interrupt
if the Timer/Port interrupt is enabled. RC2FG is not automatically reset and
should be reset by the ISR.

Any time the counter is disabled, the counter data is frozen, but the software
can write a different value to the counter to change its data. Note that this write
operation does not reenable the counter.

The counter can be read or written to at any time. A timer read can occur
asynchronously to a timer increment if the clock source for the timer is either
ACLK or the TPIN.5 signal. In this situation, the user software should perform
several reads of the timer and take a majority vote to determine the correct
timervalue. When MCLK is selected as the clock source, the read is performed
synchronously to the increment, so a majority vote software routine is not
necessary.

Reading the timer does not effect the count. The timer will accurately
increment with each clock regardless of when a read occurs. Also, performing
a read of the counter immediately after writing to it could result in reading
different data than was written to it, depending on whether a clock signal was
applied between the write and the read.

9.2.3 Timer/Port Counter, 16-Bit Operation

In 16-bit mode (B16 = 1), counters TPCNT1 and TPCNT2 are cascaded to
form one 16-bit timer (see Figure 9-2). In this configuration, both counters
operate from the same clock and the ripple-carry output of TPCNT1 serves as
the enable for TPCNT2.

In 16-bit mode, clock source selection for the counter is made with the
TPSSELO and TPSSEL1 bits, and TPSSEL2 and TPSSEL3 become don’t
cares. Clock source choices are the same as those for TPCNT1 in 8-bit mode:
ACLK, MCLK, or CMP.



Timer/Port Module Operation

Figure 9-2. Timer/Port Counter, 16-Bit Operation

CPON
ENB ENA

CIN D—_D—Q - l l

Sxx/Oxx/CMPI| —]

Vee/s —

CMP

ACLK ——0

EN1 RCH1
CLKA1 8-Bit Counter ~CLK2
TPSSEL1 TPSSELO [*> l— RCo TPCNT2 T

Enable
+ 1 EN1
>——? TPIN.5 —p| Control

*

TPSSELO

I

EN2 8-Bit Counter

B
;

l—b Set_RC2FG

MCLK —tj 2
3

In 16-bit mode, the ripple carry signal is RC2 and is set when the counter value
is equal to OFFFFh. When the counter increments to 00000h, the negative
edge of RC2 sets the RC2FG flag generating a CPU interrupt, and indicating
that the counter has rolled over. The RC2FG flag must be reset by the ISR.
RC1FG is not set in 16-bit mode — it remains unchanged.

Like in the 8-bit operation of TPCNT1, an external event can be used to enable
or disable the timer when in 16-bit mode. When an external event on signal
CMP or TPIN.5 disables the counter, flag EN1FG of the TPCTL register is set
and a CPU interrupt is generated if the Timer/Port interrupt is enabled. The
EN1FG flag is not automatically reset, so it must be reset by the ISR. Note that
the EN1FG flag is not set if the counter is disabled through software
manipulation of the ENA or ENB bits.

Read and write access to the Timer/Port is always done using byte
instructions—even when the counter is configured in 16-bit mode. This
requires special software considerations to access the counter while it is
running to assure that the value read is correct. If a clock edge increments the
counter between readings of the TPCNT1 and TPCNT2 values, the counter
data will not be correct.

Universal Timer/Port Module 9-5



Timer/Port Module Operation

9.2.4 Enable Control

The signals ENA, ENB, TPSSELO, and TPSSEL1 control the operation of the
counter as described in Table 9—1. Therefore, the counter can be configured
to run unconditionally, to run based on signals TPIN.5 or CMP, or to stop.
Additionally, several clock choices are available within each operating mode.

Table 9-1. Timer/Port Counter Signals, 16—Bit Operation

ENB ENA TPSSelt TPSSel0 EN1 CLK1
0 0 0 0 0 CMP
0 0 0 1 0 ACLK
0 0 1 X 0 MCLK
0 1 0 0 1 CMP
0 1 0 1 1 ACLK
0 1 1 X 1 MCLK
1 0 0] 0 TPIN.5 CMP
1 0 0 1 TPIN.5 ACLK
1 0 1 0 TPIN.5 MCLK
1 0 1 1 TPIN.5 MCLK
1 1 0 0 CMP CMP
1 1 0 1 CMP ACLK
1 1 1 0 CMP MCLK
1 1 1 1 CMP MCLK

9.2.5 Comparator Input

The comparator input is typically shared with one segment line as shown in
Figure 9-3. The LCD segment function is selected for this pin after the PUC
signal is active. The comparator input is selected when the CPON bit is set.
Note that once selected, the comparator input can not be deselected without
a PUC signal. See Chapter 3 for details on the PUC signal.

Figure 9-3. Timer/Port Comparator Input

r-—-m—H—"—TF"™"FTF ~"~—F"~—F~—FF—~—~—~—Y~—~—— 77— —/—7— 1
| LCD Module SXVOXX/CMPI I
U Sy J
r--—--=-"--"-"""-"-"-"-"""7"—""""">"7" |
0l SX/OXX/CMPI
<>
O
CPON s 1

|

|

I

|

|

|

|

|

1 o y CPON I
CMP /O——< | _Vccia OT VCC|
|

|

|

|

f

|

d

0
Vssov CIN
< | <
Timer/Port Module — Schematic detail ~d
h————— e —



Timer/Port Registers

9.3 Timer/Port Registers

The Timer/Port module registers listed in Table 9-2 are byte structured and
must be accessed using byte instructions (suffix B).

Table 9-2. Timer/Port Registers

Register Short Form Register Type Address Initial State
TP Control TPCTL Read/write 04Bh Reset
TP Counter 1 TPCNT1 Read/write 04Ch Unchanged
TP Counter 2 TPCNT2 Read/write 04Dh Unchanged
TP Data TPD Read/write 04Eh Reset
TP Data Enable TPE Read/write 04Fh Reset

9.3.1 Timer/Port Control Register

The information stored in the control register (see Figure 9—4) determines the
operation of the Timer/Port module.

Figure 9—-4. Timer/Port Control Register
7 0

TPCTL
04Bh | TPSSEL 1| TPSSELO| ENB ENA EN1 | RC2FG | RC1FG| EN1FG

rw-0 rw-0 rw-0 rw-0 r-0 rw-0 w-0 rw-0

Bit O: Enable flag EN1FG is set with the negative edge of enable signal
EN1, ifan event on CMP or TPIN.5 causes EN1 to go low. Note that
EN1FG is not set if EN1 goes low as a result of software
manipulation of ENA or ENB. EN1FG must be reset by software.

The EN1FG bit can be used during the Timer/Port interrupt service
routine to determine if the interrupt event came from enable EN1
or from a ripple/carry.

Bit 1: In 8-bit mode, bit RC1FG indicates that counter TPCNT1 rolled
from OFFh to Oh (overflow condition). In 16-bit mode, RC1FG is not
active. However, if software sets RC1FG, an interrupt request will
be generated (if enabled), even if the counter is in 16-bit mode.
RC1FG must be reset by software.

Bit 2: In 8-bit mode, bit RC2FG indicates that counter TPCNT2 rolled
from OFFh to Oh (overflow condition). In 16-bit mode, RC2FG
indicates the 16-bit counter has rolled from OFFFFh to 0000h.
RC2FG must be reset by software.

Note: RC1FG and RC2FG When Software Disables the Counter

When the counter is disabled with software via bits ENA and ENB, flag
RC1FG (8-bit mode), or flag RC2FG (16-bit mode) may or may not be set
if the counter rolls over to zero at the same time.

Universal Timer/Port Module 9-7



Timer/Port Registers

Bit 3: Enable signal EN1. This bit represents the state of enable signal
EN1 and can be read by software.

The signal at TPx.5 can be used in the module internally and can
be read with bit EN1 when TPE.5 is reset.

Bits 4, 5: The value of enable signal EN1 is defined by bits ENA, ENB and
TPSSELDO, as described in Table 9-3.

Table 9-3. Bit EN1 Level/Signal

ENB ENA TPSSel0 EN1
0 0 X 0
0 1 X 1
1 0 0 TPIN.5
1 0 1 TPIN.5
1 1 0 CMP
1 1 1 CMP

Bits 6, 7: The Timer/Port clock source-select bits TPSSELO and
TPSSEL1 select the clock source for TPCNT1, as described in
Table 9-4.

Table 9-4. Timer/Port Clock Source Selection

TPSSell TPSSel0 CLK1
0 0 CMP
0 1 ACLK
1 X MCLK

9.3.1.1 Timer/Port Counter Registers TPCNT1 and TPCNT2

Both counter registers are read and written independently. The counter
registers are shown in Figure 9-5.

Figure 9-5. Timer/Port Counter Registers
7 0

TPCNT1
04Ch 27 26 25 | o4 | o3 22 21 20
rw rw rw rw w rw rw rw
7 0
TPCNT2
04Dh 27 26 25 24 | o3 22 21 20




Timer/Port Registers

9.3.1.2 Timer/Port Data Register

The data register holds the value of the six outputs, the 16-bit mode control bit,
and the comparator control bit, as shown in Figure 9-5.

Figure 9-6. Timer/Port Data Register
7 0

TPD

04Eh B16 | CPON| TPD.5 | TPD.4 | TPD.3 | TPD.2 | TPD.1 | TPD.O

w-0 w0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Bits 0to5: Bits TPD.0O to TPD.5 hold the data for the output pins TPx.0 to
TPx.5. The values are applied to these pins when the three-state
output is enabled by TPE.O to TPE.5. They are reset with a PUC.

Bit 6: The comparator CPON bit enables the comparator. It is reset with
a PUC. Current consumption is reduced by disabling the
comparator when not in use.

Bit 7: Control bit B16 selects 8- or 16-bit operation.

B16 = 0: 8-bit counter mode is selected. TPCNT1 and TPCNT2
are independent 8-bit counters.

B16 = 1: 16-bit counter mode is selected. TPCNT1 and TPCNT2
form one 16-bit counter.

9.3.1.3 Timer/Port Enable Register

The Timer/Port enable register contains the enable bits for the six outputs and
two bits for clock source selection for TPCNT2.

Figure 9—7. Timer/Port Enable Register

7 0

TPE  psseL|TpssEl
04Fh 3 2

rw-1 w-1 rw-0 rw-0 rmw-0 rw-0 rw-0 rw-0

TPES5 | TPE4 | TPE3 | TPE.2 | TPE.1| TPE.O

Bits 0 to 5:Bits TPE.O to TPE.5 are the enable bits for outputs TPx.0 to TPx.5.
The bits are reset with a PUC, with the resulting outputs being in
the high impedance state.

L 1

Note:
TPE.5 must be reset to use pin TPx.5 as an input.

Universal Timet/Port Module 9-9



Timer/Port Registers

Bits 6, 7: Timer/Port clock source-select bits TPSSEL2 and TPSSEL3 select
the clock source for TPCNT2 when bit B16 is reset, as shown in
Table 9-5. In 16-bit mode (B16 = 1) the clock source for counters
TPCNT1 and TPCNT2 are identical and are selected by TPSSELO

and TPSSEL1.

Table 9—-5. Counter TPCNTZ2 Clock Sources

9-10

B16 TPSSel3 TPSSel2 CLK2
0 0 0 TPIN.5
0 0 1 ACLK
0 1 0 MCLK
0 1 1 MCLK
1 X X = CLK1




Timer/Port Interrupts

9.4 Timer/Port Interrupts

The Timer/Port has one interrupt vector sourced by up to three interrupt flags
(RC1FG, RC2FG, and EN1FG), as shown in Figure 9—8. When in 8-bit mode,
all three flags source the Timer/Port interrupt. When in 16-bit mode, only flags
RC2FG and EN1FG source the interrupt. The Timer/Port interrupt service
routine should check the flags to determine the source of a Timer/Port interrupt
and handle it appropriately. All three flags must be reset by software. Note that
even though RC1FG is inactive in 16-bit mode, an interrupt request will be
generated (if enabled) when set by software.

Figure 9-8. Timer/Port Interrupt Scheme

ENB D Q@

EN1 >—Op>

B16 —O|D Q —r\

—-L_/T E D——E Request_Interrupt_Service
PIE —

RC1 >—Op>

HIGH D aQ

RC2 >—Op>

The Timer/Port interrupt is enabled by the TPIE bit located in the SFR register
IE2. The bit must be set to enable the Timer/Port interrupt. The initial state is
reset. See chapter 3 for a discussion of the IEx registers.

Note:

When software is used to stop the counter via the ENA and ENB bits, flags
RC1FG and RC2FG may be set (as appropriate, according to 8- or 16-bit
mode) if the counter(s) roll over at the same time.

J

Universal Timer/Port Module 9-11



Timer/Port in an ADC Application

9.5 Timer/Port in an ADC Application

9-12

In addition to supporting a variety of counting and timing applications, the Uni-
versal Timer/Port also supports slope A/D conversion. Slope A/D conversion
is extremely useful in sensor applications where the sensor is either resistive
or capacitive.

In general, slope A/D conversion involves comparing the discharge times of
two RC networks—one with a known time constant, and one with a sensor
controlling the time constant. The value of the sensor can then be determined
by a simple ratio of the discharge times.

For example, to use the Universal Timer/Port to measure a resistive sensor,
one would first charge and discharge an RC network, made up of a known
resistor value and a known capacitor value, while measuring the discharge
time. Next, the known resistor would be replaced in the circuit by the unknown
sensor and the charge/discharge cycle would be repeated, again measuring
the discharge time. The value of the sensor could then be calculated by
dividing the discharge times and multiplying by the known resistor value.

All of the required charging, discharging, timing, and switching of the resistors
or capacitors can be done completely with the Universal Timer/Port, its high-
impedance outputs, and its integrated comparator.

See the MSP430 Application Report Book and other application notes for
details and circuit diagrams on using the Universal Timer/Port in slope A/D
applications.

Application notes may be downloaded from www.ti.com/sc/msp430.



Chapter 10

Timers

fe e

The MSP430 microcontrollers offer a variety of very flexible timers that can be

used to support a wide array of applications while also optimizing ultralow-
power operation.

Topic Page
10.1 BasicTimerl ........ciiiiiininrrersnnsensrsessansnssnsananns 10-2
10.2 8-Bitinterval Timer/Counter ...........cciiiiiniiinrnncennnnnns 10-7
10.3 The Watchdog Timer .........cooieiiiriirnnrrrereenrsonnanas 10-13

10-1



Basic Timer1

10.1 Basic Timer1

The Basic Timer1 (shown in Figure 10—1) supplies other peripheral modules
or the software with low frequency control signals. The Basic Timer1 operation
supports two independent 8-bit timing/counting functions, or one 16-bit
timing/counting function.

Some uses for the Basic Timer1 include:

O Real-time clock (RTC)
(1 Debouncing keys (keyboard)
[0 Software time increments

Figure 10-1. Basic Timer1 Configuration

Control Register
BTCTL

1¢¢~H¢$¢

SSEL DIV1 0 2 1
Hold FRFQ IP IP IP

D
Hold — EN1

BTCNT1
ACLK ~CLK1
Q4Q5 Q6 Q7
| | | g
FRFQ1 —— 54
FRFQ0 ——
0l1]2]3
SSEI|_ [?IV fLco
0
ACLK:256 o 23; H°'d*>§["§2 BTCNT2
MCLK >——1——0 0"5*’ Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7
—o O_
P2
IP1——
IPO— ¢ Set Interrupt

21314 (516 |7 FlagBTIFG

10-2



Basic Timer1

10.1.1 Basic Timer1 Registers

The Basic Timer1 register is byte structured, and should be accessed using
byte processing instructions (suffix .B). Table 10—1 describes the Basic Timer1
registers.

Table 10-1.Basic Timer1 Registers

Register Short Form Register Type Address Initial State
BT Control BTCTL Read/write 040h Unchanged
BT Counter 1 BTCNTA1 Read/write 046h Unchanged
BT Counter 2 BTCNT2 Read/write 047h Unchanged

Note: The user’s software should configure these registers at power-up, as there is no defined
initial state.

10.1.1.1 Basic Timer1 Control Register

The information stored in the control register determines the operation of Basic
Timer1. The state of the different bits selects the frequency source, the
interrupt frequency, and the framing frequency of the LCD control circuitry as
shown in Figure 10-2.

Figure 10-2. Basic Timer1 Control Register

7 0
BTCTL Holl DIV | FRF FRF P. P IPO
040h SSEL old Q1 Qo[ IP2 1
w w w w w rw w w

Bits 0 to 2: The three least-significant bits IP2 to IPO determine the interrupt
interval time. It is the interval of consecutive settings of the
interrupt-request flag BTIFG, as illustrated in Figure 10-3.

Bits 3 to 4:The two bits FRFQ1 and FRFQO select the frequency f cp as
described in Figure 10-3. Devices with the LCD peripheral on the
chip use this frequency to generate the timing of the common and
select lines.

Bit 5: See bit 7.

Bit 6: The hold bit stops the counter operation.
BTCNT2 is held if the hold bit is set.
BTCNT1 is held if the hold and DIV bits are set.

Bit 7: The SSEL and DIV bits select the frequency source for BTCNT2,
as described in Table 10-2.

Timers 10-3



Basic Timer1

Table 10-2.BTCNT2 Input Frequency Sources

SSEL DIV CLK2
0 0 ACLK
0 1 ACLK/256
1 0 MCLK
1 1 ACLK/256

Figure 10-3. Basic Timer1 Control Register Function

7 0
BTCTL
040h SSEL Hold DIV | FRFQ1|FRFQO| IP2 1P1 IPO
w w rw 'w w rw rw rw
‘ I ' Interrupt
Frequency
0 0 0 | foLko/2
0 0 1 | foLko/2
0 1 110 |foike8
0 | 1 1 1| fcikol16
T 1010 |foke2
1 0 1 | foLko/64
1 1 0 | foLko/128
1 1 1 | foLko/256
0 0 fLop = facLk/32
0 1 fLcp = facL/64
1 0 fLep = facLk/128
1 1 fLcp = facLk/256

10.1.1.2 Basic Timer1 Counter BTCNT1

The Basic Timer1 counter BTCNT1, shown in Figure 10—4 divides the auxiliary
clock ACLK. The frame frequency for the LCD-drive is selected from four
outputs of the counter’s bits. The output of the most significant bit can be used
for the clock input to the second counter BTCNT2. The value of bits Q0 to Q7
can be read, and the software can write to bits Q0 to Q7.

Figure 10—4. Basic Timer1 Counter BTCNT1
7 0

BTCNTH1

7 6 5 4 3 2 1 0
046h 2 2 2 2 2 2 2 2

w 1w w w w w w - w

10-4



Basic Timer1

10.1.1.3 Basic Timer1 Counter BTCNT2

The Basic Timer1 counter BTCNT2, shown in Figure 10-5, divides the input-
clock frequency. The input-clock source can be MCLK, ACLK, or ACLK/256.
The interrupt period can be selected using IP0O to IP2, located in the Basic
Timer1 control register BTCTL. It selects one of the eight bits of BTCNT2 as
the source signal to set the Basic Timer1 interrupt flag BTIFG. The value of the
counter bits can be read, as well as written.

Figure 10-5. Basic Timer1 Counter BTCNT2
7 0

BTCNT?2
047h 27 26 25 24 23 22 21 20

w w w w w rw w w

10.1.2 Special Function Register Bits

Two SFR bits pertain to the Basic Timer1 Interrupt:

1 Basic Timer1 interrupt flag (BTIFG) (located in IFG2.7)
[d Basic Timer1 interrupt enable (BTIE) (located in IE2.7)

The BTIFG flag indicates that a Basic Timer1 interrupt is pending and is reset
automatically when the interrupt is accepted.

The BTIE bit enables or disables the interrupt from the Basic Timer1 and is
reset with a PUC. The Basic Timer1 interrupt is also enabled or disabled with
the general interrupt enable bit, GIE.

10.1.3 Basic Timer1 Operation

The Basic Timer1 is constantly incremented by the selected clock source.

The hold bit inhibits all functions of the module and reduces power
consumption. The Basic Timer1 registers may be accessed at any time,
regardless of the state of the hold bit.

An interrupt can be used to control system operation. The interrupt is a single
source interrupt.

The basic timer can operate in two different modes:

O Two independent 8-Bit Timer/Counters
1 One 16-bit timer/counter

Timers 10-5



Basic Timer1

10.1.3.1 8-Bit Counter Mode

In the 8-Bit Timer/Counter mode, counter BTCNT1 is incremented constantly
with ACLK. When reading the counters, the user should be aware that the
counter clock and CPU clock may be asynchronous. Therefore, special
software consideration may be required to assure a correct reading.

The BTCNT2 clock signal can be selected to be MCLK, ACLK, or ACLK/256
using the control signals SSEL and DIV. Counter BTCNT2 is incremented with
the signal selected.

One of the eight counter outputs can be selected to set the Basic Timer1
interrupt flag. Read and write access can be asynchronous when ACLK or
ACLK/256 is selected.

The hold bit stops all operations.

10.1.3.2 16-bit Counter Mode

The 16-bit timer/counter mode is selected when control bit DIV is set. In this
mode, the clock source of counters BTCNT1 and BTCNT2 is the ACLK signal.

The hold bit stops all operations.

10.1.4 Basic Timer1 Operation: Signal fi_ cp

10-6

The LCD controller uses the f| cp signal from the Basic Timer1 to generate the
timing for common and segment lines. The frequency of signal ficp is
generated from ACLK. Using a 32,768-Hz crystal, the f_ ¢p frequency can be
1024 Hz, 512 Hz, 256 Hz, or 128 Hz. Bits FRFQ1 and FRFQO allow the
correct selection of frame frequency. The proper frequency fi cp depends on
the LCD’s requirement for framing frequency and LCD multiplex rate and is
calculated by:

fLcp = 2 x MUX rate X frraming

A 3 MUX example follows:

LCD data sheet: frraming =100 Hz .... 30 Hz

FRFQ: fLc =6 X trraming
fLcp=6x100Hz=600Hz ... 6 x30Hz=180Hz
Selectf cp: 1024 Hz, 512 Hz, 256 Hz, or 128 Hz
flcp = 32,768/128 =256 Hz FRFQ1 =1; FRFQ0 =0

See the LCD Driver chapter for more details on the LCD driver.



8-Bit Interval Timer/Counter

10.2 8-Bit Interval Timer/Counter

The 8-Bit Timer/Counter supports three major applicaticn functions:

[O Serial communication or data exchange
1 Pulse counting or pulse accumulation

J Timing

Figure 10-6 shows the 8-Bit Timer/Counter functions.

Figure 10-6. 8-Bit Timer/Counter

r-------"-----"-—---—-""———— M
| Interrupt Request |
| POIEA —— irRaPo.1 |
| POIES.1 ——[‘A_—rl [
| pos ; POIFG.1 |
| Qﬁ 3 Sot |
| 0 Q |
| — 1 ] Clear |
| |.| IRQA: Interrupt Request Accepted |
| ISCTL ‘LL, P0.1 - 8bT/C Interrupt Logic |
e — L e e e e ?_ﬁ_ MDB
Cary | g |e 8b
| i Counter Preload
+—D Q D Enable Reg.
Clear 8
Detect Start Q Load
Cond. CLK
Wite To TCDAT $ .
P 1
MCLK »l 3
ACLK 2
O
~ | -
A SSEL1 MSB
SSELO
F——————————
| = PODR2 | — iscTL_|
TXE
| EN2 | < 8
| P0.2 L POOUT2 | _ENCNT < |
< >- T -
| | _RXACT
<
| ! | PUC _TXD
| “1 | Set 1 RXD LSB
| . f Q D dqp Q
b Jd < > ot Interval/Timer ¥
pp— RXD FF T Control Register
B ~ PUC

Timers 10-7



8-Bit Interval Timer/Counter

10.2.1 Operation of 8-Bit Timer/Counter

The 8-Bit Timer/Counter includes the following major blocks:
[ 8-bit up-counter with a preload register

8-bit control register

Input clock selector

Edge detection, (for example, a start bit of asynchronous protocols)

O odud

Input and output data latch, triggered by the carry-out signal from the 8-bit
counter

10.2.1.1 8-Bit Timer/Counter With Preload Register

The 8-bit counter counts up with the selected input clock. Two counter inputs,
load and enable, control the operation.

Figure 10-7 shows the 8-bit counter functions.

Figure 10-7. 8-Bit Counter Example

8-Bit Preload Register

Counter is loaded with 037h Carry
each time the carry signal 4—— 8bCounter CLK Y

Clock Selected Via
Input Multiplexer

goes high. Load Enable
CLK
Q7-Q0 | FA | FB | FC | FD | FE | FF{ | 00/37| 38 | 39 | 3A | 3B |
CARRY
LOAD

<— Ngik=100h-037h —p)

Either of two events controls the load function: a carry from the counter or a
write access loads the counter with the data of the preload register. Note that
writing to the counter (TCDAT register) loads the counter with the preload
value, not the contents of the write instruction.

The software may write or read the preload register. The preload register acts
as a buffer and can be written to immediately after the load of the counter is
complete.

When the enable signal is set high, the counter counts up each time a
positive-clock edge is applied to the counter’s clock input.

10-8



8-Bit Interval Timer/Counter

10.2.1.2 8-Bit Control Register

The information stored in the 8-bit control register selects the operating mode
of the timer/counter and controls the function.

10.2.1.3 Input Clock Selector

Two bits in the 8-bit control register select the source for the clock input of the
8-bit counter. The four sources are the system clock MCLK, the auxiliary clock
ACLK, the external signal from pin P0.1, and the signal from the logical .AND.
of MCLK and pin P0.1.

10.2.1.4 Edge Detection

Serial protocols such as UART need start-bit edge detection at the receiver to
determine the start of data transmission. This edge detection is supported by
the 8-Bit Timer/Counter and used to implement a UART with the timer.

10.2.1.5 Input and Output Data Latch, RXD_FF and TXD_FF

The clock used to latch data into the input and output data latches is the carry
signal from the 8-bit counter. Both latches are used as single-bit buffers and
change their outputs with the predefined timing.

10.2.2 8-Bit Timer/Counter Registers

The timer/counter registers, described in Table 10-3, are accessed using byte
instructions.

Table 10-3.8-Bit Timer/Counter Registers

Register Short Form Register Type Address Initial State
TC Control TCCTL Read/write 042h Reset

Preload TCPLD Read/write 043h Unchanged
Counter TCDAT Read/(write) 044h Unchanged

10.2.2.1 8-Bit Timer/Counter Control Register

The information stored in the control register, as shown in Figure 10-8,
determines the operation of the 8-Bit Timer/Counter.

Figure 10-8. 8-Bit Timer/Counter Control Register
7 0

TCCTL
040n | SSEL1 | SSELO|ISCTL | TXE |ENCNT[RXACT| TXD | RXD

w-0 w-0 w—0 w0 rw-0 rw-0 rw-0 r(-1)

Bit O: Bit RXD is read only. The signal from external pin P0.1 is latched
with the carry signal of the 8-bit counter.

Bit 1: Register bit TXD is buffered and clocked out with the carry signal
from the 8-bit counter at pin P0.2 .

Timers 10-9



8-Bit Interval Timer/Counter

Table 10-4.Clock Input Source

10-10

Bit 2:

Bit 3:

Bit 4:

Bit 5:

Bit RXACT controls the edge detect logic. The edge detect logic
needs a reset ENCNT bit (bit 3) for correct counter-enable
operation.

RXACT = 0: The edge-detect FF is cleared and it cannot be the
source for enabling the counter operation.

RXACT =1: The edge-detect FF is enabled. A positive or
negative edge at pin P0.1, selected by POIES.1, sets the FF, and
the counter is prepared for count operation. Once the FF is set, it
remains set until it is reset with RXACT = 0.

Bit ENCNT sets the counter-enable signal. The 8-bit counter
increments its value with each rising edge of the clock input.

Together with bit RXACT (bit2, 0), this bit provides start/stop
operation.

Signal TXE controls the three-state output buffer for the TXD bit:

TXE =0: The direction control bit PODIR.2 (see I/O chapter)
determines if the buffer is active or in high-impedance
state.

TXE =1: Output buffer active (independent of the value of
PODIR.2)

Signal ISCTL controls the interrupt source between the I/O pin P0.1

and the carry signal of the 8-bit counter.

ISCTL=0: The I/O pin P0.1 is the source of interrupt POIFG.1.

ISCTL =1: The carry signal from the 8-bit counter is the source
of interrupt POIFG.1.

Bits 6, 7: Bits SSELO and SSEL1 select the source of the clock input.

Table 10-4 describes the clock input source.

SSEL1 SSELO Clock Source
0 0 Signal at pin P0.1 (according to POIES.1)
1 0 MCLK
0 1 ACLK
1 1 Signal pin P0.1(according to POIES.1) .AND. MCLK




8-Bit Interval Timer/Counter

10.2.2.2 8-Bit Timer/Counter Preload Register

The information stored in the preload register, not the data included with the
instruction, is loaded into the 8-bit counter when a write access to the counter
(TCDAT) is performed, as shown in the following code:

;j=========  Definitions =================================

Dummy .EQU 0 ; Value for dummy is not loaded into
; counter

TCDAT .EQU 044h ; Address of 8-Bit Timer/Counter

;==Write pre-load register contents to 8-bit Timer/Counter=
MOV.B #Dummy, &TCDAT

The pre-load register (TCPLD) can be accessed using the

address 043h.

10.2.2.3 8-Bit Counter Data

The data of the 8-bit counter can be read using address 044h. Writing to the
counter loads the contents of the preload register—not the data included with
the instruction.

10.2.3 Special Function Register Bits, 8-Bit Timer/Counter Related

The 8-Bit Timer/Counter has no individual interrupt bits; it shares the interrupt
bits with port PO. Bit ISCTL, in control register TCCTL, selects the interrupt
source for the interrupt flag.

The port0 signal P0.1/RXD, or the carry signal of the 8-bit counter is used for
the interrupt source. One SFR bit and one port PO bit configure the interrupt
events on P0.1/RXD.1 as follows:

O PO0.1/RXD interrupt enable POIE.1 (located in IE1.3, initial state is reset)

1 PO0.1/RXD interrupt edge select POIES.1 (located in POIES, initial state is
reset)

The interrupt flag is a single-source flag that automatically resets when the
processor system services the interrupt. The enable bit and edge select bit
remain unchanged.

10.2.4 Implementing a UART With the 8-Bit Timer/Counter

The 8-Bit Timer/Counter is uniquely capable of implementing a UART function,
with the following features:

J Automatic start-bit detection — even from all ultralow-power modes
Hardware baud-rate generation

Hardware latching of RXD and TXD data

Baud rates of 75 to 115,200 baud

O o g

Timers 10-11



8-Bit Interval Timer/Counter

Figure 10-9.

This UART implementation is different from other microcontroller
implementations where a UART may be implemented with general-purpose
1/O and manual bit manipulation via software polling. Those implementations
require great CPU overhead and therefore increase power consumption and
decrease the usability of the CPU.

In this particular implementation, the 8-Bit Timer/Counter is configured as the
baud clock and waits for the start bit. With the falling edge of the start bit, the
counter begins counting (see Figure 10-9).

Start Bit Detection
POIES. 1 A 8b
PO.1 vee {p @ Enable | CoUner
Qﬁi Clear
! Edge T
Detect CLK
RXACT /|\
ENCNT

Clock Source

Note that no CPU overhead is required for the start-bit detection. Start-bit
detection is automatic and occurs if the processor is in active mode, or low
power modes 0—4. When the counter reaches full-scale, the TXD and RXD
data is automatically latched, the baud rate is automatically preloaded into the
counter, the counter automatically begins counting, and an interrupt is
generated for the CPU to retrieve the RXD data or write the next TXD data.
Software overhead is only required to read and write the RXD and TXD data.
(see Figure 10-10).

Figure 10-10. Data Latching

10-12

Carry 8b
Counter

A

CLK

Clock Source

Pl‘JC
Set
TXD— Q D |— To POOUT.2 FromP0.1 —(JD Q RXD
< Set
TXD_FF RXD_FF |

PUC

A complete application note including connection diagrams and complete
software listing, may be found at www.ti.com/sc/msp430.



The Watchdog Timer

10.3 The Watchdog Timer

The primary function of the watchdog-timer module (WDT) is to perform a
controlled-system restart after a software problem occurs. If the selected time
interval expires, a system reset is generated. If the watchdog function is not
needed in an application, the module can work as an interval timer, to generate
an interrupt after the selected time interval. The WDT diagram is shown in
Figure 10-11.

Figure 10—11.Schematic of Watchdog Timer

See Interrupt
Definition

Int. WDTQn

Flag N

A

4

Q6

WDTCNT

Q9

Q13

A A A A

Q15

Pulse
Generator

L

r-—‘l\)mh

_\ Clear

PUC

MCLK

-

I (Asyn)

16b
Counter

CLK

ACLK

0 —
11—
0 —
1 —
1 —»
0 —
11—
0 —P

=
]
-
o
_'
—
=
[%2])
@

Password
Cmp.

Prrrrr

EQU

H

} Write Enable

Low Byte R

EQU : |
oLD I _
-

NMIES
NMI

TMSEL
CNTCU—]

SSEL

1S1

A A A A

IS0

:LSB .

Watchdog Timer
Control Register

Some features of the Watchdog Timer include:

O Eight software-selectable time intervals

1 Two operating modes: as watchdog or interval timer

- PUC
-+

MDB

1

16

<+

[ Expiration of the time interval in watchdog mode, which generates a
system reset; or in timer mode, which generates an interrupt request

[d Safeguards which ensure that writing to the WDT control register is only
possible using a password

[ Support of ultralow-power using the hold mode

Timers

10-13



The Watchdog Timer

10.3.1 Watchdog Timer Register

Figure 10-12.
15

The watchdog-timer counter (WDTCNT) is a 16-bit up-counter that is not
directly accessible by software. The WDTCNT is controlled through the
watchdog-timer control register (WDTCTL), shown in Figure 10-12, which is
a 16-bit read/write register located at the low byte of word address 0120h. Any
read or write access must be done using word instructions with no suffix or .w
suffix. In both operating modes (watchdog or timer), it is only possible to write

to WDTCTL using the correct password.

Watchdog Timer Control Register

8 7

I1S1

1S0

WDTCTL HoLp|NmiEs] NMi [TmsELenTCL sSEL
0120h
mw-0 rw-0 rw-0 rw-0 ro(w) mw-0 rw-0 rw-0
WDTCTL o 069 >
read
WDTCTL o o5An >

write

Bits 0, 1: Bits ISO and IS1 select one of four taps from the WDTCNT, as
described in Table 10-5. Assuming ferystal = 32,768 Hz and

fsystem = 1 MHz, the following intervals are possible:

Table 10-5.WDTCNT Taps

10-14

SSEL IS1 ISO Interval [ms]

0 1 1 0.064 tycLk x 28

0 1 0 05 tmeLk x 29

1 1 1 1.9 tacLk x 28

0 0 1 8 tveLk x 213

1 1 0 160 tagkx2°

0 0 0 32 tmeLk x 218 <— Value after PUC (reset)
1 0 1 250 tacLk x 213

1 0 0 1000 tpckx215

Bit2: The SSEL bit selects the clock source for WDTCNT.
SSEL=0: WDTCNT is clocked by MCLK.
SSEL=1: WDTCNT is clocked by ACLK.

Bit 3: Counter clear bit. In both operating modes, writing a 1 to this bit

restarts the WDTCNT at 00000h. The value read is not defined.

Bit4: The TMSEL bit selects the operating mode: watchdog or timer.

TMSEL = 0: Watchdog mode
TMSEL = 1: Interval-timer mode




The Watchdog Timer

Bit 5: The NMI bit selects the function of the RST/NMI input pin. It is
cleared by the PUC signal.
NMI=0:  The RST/NMI input works as reset input.
As long as the RST/NMI pin is held low, the internal
signal is active (level sensitive).
NMi=1:  The RST/NMIinput works as an edge-sensitive non-
maskable interrupt input.

Bit 6: If the NMI function is selected, this bit selects the activating edge
of the RST/NMI input. It is cleared by the PUC signal.
NMIES = 0: A rising edge triggers an NMI interrupt.
NMIES = 1: A falling edge triggers an NMI interrupt.
CAUTION: Changing the NMIES bit with software can generate
an NMl interrupt.

Bit 7: This bit stops the operation of the watchdog counter. The clock
multiplexer is disabled and the counter stops incrementing. It holds
the last value until the hold bit is reset and the operation continues.
It is cleared by the PUC signal.

HOLD =0: The WDT is fully active.
HOLD =1: The clock multiplexer and counter are stopped.

10.3.1.1 Accessing the WDTCTL (Watchdog Timer Control Register)

Figure 10-13.

Figure 10-14.

The WDTCTL register can be read or written to. As illustrated in Figure 10—13,
WDTCTL can be read without the use of a password. A read access is
performed by accessing word address 0120h. The low byte contains the value
of WDTCTL. The value of the high byte is always read as 069h.

Reading WDTCTL

15 8 7 0
WDTCTL
0120h o1 1t o]t o o0 1 Read Data
rrr r rrtrr rw-x, (w)
6 9

Write access to WDTCTL, illustrated in Figure 10-14, is only possible using
the correct high-byte password. To change register WDTCTL, write to word
address 0120h. The low byte contains the data to write to WDTCTL. The high
byte is the password, which is 05Ah. A system reset (PUC) is generated if any
value other than 05Ah is written to the high byte of address 0120h.

Writing to WDTCTL

15 8 7 0
WDTCTL
0120h o1 0 1 1 0 1 O Write Data
(W) (w) (w) (w) (w) (w) (W) (w) w-X, (W)
5 A

Timers 10-15



The Watchdog Timer

10.3.2 Watchdog Timer Interrupt Control Functions

The Watchdog Timer (WDT) uses two bits in the SFRs for interrupt control.

[ The WDT interrupt flag (WDTIFG) (located in IFG1.0, initial state is reset)
[ The WDT interrupt enable (WDTIE) (located in IE1.0, initial state is reset)

When using the watchdog mode, the WDTIFG flag is used by the reset
interrupt service routine to determine if the watchdog caused the device to
reset. If the flag is set, then the Watchdog Timer initiated the reset condition
(either by timing out or by a security key violation). If the flag is cleared, then
the PUC was caused by a different source. See chapter 3 for more details on
the PUC and POR signals.

When using the Watchdog Timer in interval-timer mode, the WDTIFG flag is
set after the selected time interval and a watchdog interval-timer interrupt is
requested. The interrupt vector address in interval-timer mode is different from
that in watchdog mode. In interval-timer mode, the WDTIFG flag is reset
automatically when the interrupt is serviced.

The WDTIE bit is used to enable or disable the interrupt from the Watchdog
Timer when it is being used in interval-timer mode. Also, the GIE bit enables
or disables the interrupt from the Watchdog Timer when it is being used in
interval-timer mode.

10.3.3 Watchdog Timer Operation

The WDT module can be configured in two modes: watchdog and the interval-
timer modes.

10.3.3.1 Watchdog Mode

10-16

When the WDT is configured to operate in watchdog mode, both a watchdog
overflow and a security violation trigger the PUC signal, which automatically
clears the appropriate system register bits. This results in a system
configuration for the WDTCTL bits where the WDT is set into the watchdog
mode and the RST/NMI pin is switched to the reset configuration.

After a power-on reset or a system reset, the WDT module automatically
enters the watchdog mode and all bits in the WDTCTL register and the
watchdog counter (WDTCNT) are cleared. The initial conditions at register
WDTCTL cause the WDT to start running at a relatively-low frequency, due to
the range of the digitally-controlled oscillator (DCO) automatically being setin
these situations. Since the WDTCNT is reset, the user software has ample
time to set up or halt the WDT and to adjust the system frequency.



The Watchdog Timer

10.3.3.2 Timer Mode

When the module is used in watchdog mode, the software should periodically
reset the WDTCNT by writing a 1 to bit CNTCL of WDTCTL to prevent
expiration of the selected time interval. If a software problem occurs and the
time interval expires because the counter is no longer being reset, a system
reset is generated and a system PUC signal is activated. The system restarts
at the same program address that follows a power up. The cause of reset can
be determined by testing bit 0 of interrupt flag register 1 in the SFRs. The
approptriate time interval is selected by setting bits SSEL, 1S0, and IS1
accordingly.

Setting WDTCTL register bit TMSEL to 1 selects the timer mode. This mode
provides periodic interrupts at the selected time interval. A time interval can
also be initiated by writing a 1 to bit CNTCL in the WDTCTL register.

When the WDT is configured to operate in timer mode, the WDTIFG flag is set
after the selected time interval, and it requests a standard interrupt service.
The WDT interrupt flag is a single-source interrupt flag and is automatically
reset when it is serviced. The enable bit remains unchanged. In interval-timer
mode, the WDT interrupt-enable bit and the GIE bit must be set to allow the
WDT to request an interrupt. The interrupt vector address in timer mode is
different from that in watchdog mode.

I L

Note: Watchdog Timer, Changing the Time Interval

Changing the time interval without clearing the WDTCNT may result in an
unexpected and immediate system reset or interrupt. The time interval must
be changed together with a counter-clear command using a single
instruction (for example, MOV #05A0Ah,&WDTCTL).

Changing the clock source during normal operation may resultin an incorrect
interval. The timer should be halted before changing the clock source.

L J

10.3.3.3 Operation in Low-Power Modes

The MSP430 devices have several low-power modes. Different clock signals
are available in different low-power modes. The requirements of the user’s
application and the type of clocking circuit on the MSP430 device determine
how the Watchdog Timer and clocking signals should be configured. Review
the clock-system chapter to determine the clocking circuit, clock signals, and
low-power modes available. For example, the WDT should not be configured
in watchdog mode with MCLK as its clock source if the user wants to use
low-power mode 3 because MCLK is not active in LPM3, therefore the WDT
would not function properly.

The WDT hold condition can also be used to support low power operation. The
hold condition can be used in conjunction with low-power modes when
needed.

Timers 10-17



The Watchdog Timer

10.3.3.4 Software Example
The following example illustrates the watchdog-reset operation.

; After RESET or power-up, the WDTCTL register and WDTCNT
; are cleared and the initial operating conditions are
; watchdog mode with a time interval of 32 ms.
;Constant definitions:
WDTCTL .EQU 0120h ; Address of Watchdog Timer
WDTPW .EQU 05A00h; Password

T250MS .EQU 5 ; SSEL, IS0, ISl set to 250 ms
TO5MS .EQU 2 ; SSEL, IS0, ISl set to 0.5 ms
CNTCL .EQU 8 ; Bit position to reset WDTCNT
TMSEL .EQU 010h ; Bit position to select timer mode

; As long as watchdog mode is selected, watchdog reset has
; to be done periodically through an instruction e.g.:

MOV #WDTPW+CNTCL, &WDTCTL

; To change to timer mode and a time interval of 250 ms,
; the following instruction sequence can be used:

MOV #WDTPW+CNTCL+TMSEL+T250MS, &WDTCTL
; Clear WDTCNT and
; select 250 ms and timer
; mode

; Note: The time interval and clear of WDTCNT should be

; modified within one instruction to avoid
; unexpected reset or interrupt

; Switching back to watchdog mode and a time interval of
; 0.5 mg is performed by:

MOV #WDTPW+CNTCL, &WDTCTL ; Reset WDT counter

MOV #WDTPW+TO5MS, &WDTCTL ; Select watchdog mode
; and 0.5 ms

10-18



Chapter 11

Timer

This section describes the basic functions of the MSP430 general-purpose
16-bit Timer_A.

Note:

Throughout this chapter, the word countis used in the text. As used in these
instances, it refers to the literal act of counting. It means that the counter must
be in the process of counting for the action to take place. If a particular vaiue
is directly written to the counter, then the associated action will not take place.
For example, the CCRO interrupt flag is set when the timer counts up to the
value in CCRO. The counter must countfrom CCR0-1 to CCRO. If the CCRO
value were simply written directly to the timer with software, the interrupt flag
would notbe set, even though the values in the timer and the CCRO registers
are the same.

Topic Page
111 Introduction ... i s 11-2
11.2 Timer_AOperation .........ccooiiiiiiiiiriiinnnnnrcnsnnnnannnes 11-4
11.3 TimerModes .......c.ciniiiiiiniiiran s eressnnnnnnnns 11-6
11.4 Capture/Compare BIOCKS .........coviiiiiriirininnnrnnnnannns 11-13
115 TheOutput Unit ... .o i e i 11-19
11.6 Timer_ABRegisters .........cooiimiiiiiiiiniineiiiininnnnnns 11-25
117 Timer_AUART ... . it iie e steasnanrennsnanenns 11-34




Introduction

11.1 Introduction

Timer_A is an extremely versatile timer made up of :
[ 16-bit counter with 4 operating modes
[ Selectable and configurable clock source

[d Five independently configurable capture/compare registers with
configurable inputs

[ Five individually configurable output modules with 8 output modes

Timer_A can support multiple, simultaneous, timings; multiple capture/
compares; multiple output waveforms such as PWM signals; and any com-
bination of these. ’

Additionally, Timer_A has extensive interrupt capabilities. Interrupts may be
generated from the counter on overflow conditions and from each of the cap-
ture/compare registers on captures or compares. Each capture/compare
block is individually configurable and can produce interrupts on compares or
on rising, falling, or both edges of an external capture signal.

The block diagram of Timer_A is shown in Figure 11-1.



Introduction

Figure 11—-1. Timer_A Block Diagram

TPSSEL1 TPSSELO Timer Clock Data 16-Bit Timer

1 o

i |
| I

| TAGLK 0 15 . |
l ACLK —© ; Input ) >C?_6E(-Bit Timer Mode |
I MCLK —©0 3 Divider ) RC Control Je— Equo I
i INCLK —© T T T l
' |
[

v

v

I [
ID1 DO porcLr | G2V Mc1 Mco [Set TAIFG
Timer Bus 3
I_::__::::::_—__:__________:_—.::___::::::J-::::::::::_‘
I . o Capture/Compare Register CCRO

CCISo1 CCIS00 { 2 OMO02 OMO1 OMOO |

| | o | Capture/Compare
| CCIloA ] Canture "] Register CCRO |
| cciop —° o Capture P ™ outout Unito | Quto |
I GND —© Mode utput Unf |

Ven —0 03 ‘ Comparator 0 |

| ce | I EQUO l
| CCI0  ccMo1 CCMOO |
gt g ) A, d

o Capture/Compare Register CCR1—i
CCIS11 CCiS10 { L OM12 OM11 OM10
o] Capture/Compare

r
I

I CCl1A Capture Register CCR1 [ =
| ccHB —o ; Capture P 1 e i1 _C;ut1 |
I GND —o o= Mode . — utput Unit l

omparator

| Vece —° | —’i | =
I

I EQU1
CClt  ccm11 comito
e e e — L e e e e d
—————————————————————————————— e ——————
Capture/Compare Register CCR2 |
0 Capture/Compare I

<
Q
(@]

4

=
: CcCis21 ?CISZO { 15 9 OM22 OM21 OM20
|
|
|
|
|

I

CCI2A Register CCR2 |1 |
1 Capture g

cciB —©° Capture > . ut2 |

GND —© 2 Mode l 1 Output Unit 2 _0’ |

Comparator 2 I '

l EQU2 |

o —_—— Jd

rr—--m-m=----"---"---""""-r--"""rr-/_-/_—_——_ =/

I 0 Capture/Compare Register CCR3|
CCIS31 CCIS30 { L OM32 OM31 OM30 |

| I 1o »| Capture/Compare | |

| CCi3A 1 Capture Register CCR3 out3 |

| co 2 Capture 3 M ouputunis |3 I

| vee o 3 —bl Comparator 3 i |

I | EQU3

I CCI3  cCcM31 CCM30 I

e e e e e ————————— d

r ———————————————————— e S S e S e ST S S S —— —— -

[ Capture/Compare Register CCR4l
CCiS41 CClS40 { 1 2 | omez omat om0 |

I || 0 Capture/Compare l | |

| CCl4A ] Capture Register CCR4 Out 4 |

14B —0 t u

| CgN Do o2 Csl'z o ¥  ouputunit4 > {

| Vog —© 3 »  Comparator 4 '

| —I I EQU4

I CCl4  coM41 CCM40 |

e e e —————— J

Timer_A 11-3



Timer_A Operation

11.2 Timer_A Operation

The 16-bit timer has 4 modes of operation selectable with the MCO and MC1
bits in the TACTL register. The timer increments or decrements (depending on
mode of operation) with each rising edge of the clock signal. The timer can be
read or written to with software. Additionally, the timer can generate an inter-
rupt with its ripple-carry output when it overflows.

11.2.1 Timer Mode Control

The timer has four modes of operation as shown in Figure 11-2 and described
in Table 11-1: stop, up, continuous, and up/down. The operating mode is soft-
ware selectable with the MCO and MC1 bits in the TACTL register.

Figure 11-2. Mode Control

Data
15 I 0
Timer Clock >CL1K6-B“ Timer » Mode
RC Control Equo

»

l |
T Carry/Zero M(I:1 MCO Set_TAIFG

POR
0 0  Stop Mode
0 1 Up Mode
1 0
1 1

Continuous Mode
Up/Down Mode

Table 11-1. Timer Modes

Mode Control
MC1 MCO |Mode Description
0 0 Stop The timer is halted.
0 1 Up The timer counts upward until value is equal to
value of compare register CCRO.
1 0 Continuous | The timer counts upward continuously.
1 1 Up/Down The timer counts up until the timer value is
equal to compare register 0 and then it counts
down to zero.

11-4



Timer_A Operation

11.2.2 Clock Source Select and Divider

The timer clock can be sourced from internal clocks (i.e. ACLK, MCLK) or from
an external source (TACLK) as shown in Figure 11-3. The clock source is se-
lectable with the SSELO and SSEL1 bits in the TACTL register. It is important
to note that when changing the clock source for the timer, errant timings can
occur. For this reason it is recommended to stop the timer before changing the
clock source.

The selected clock source may be passed directly to the timer or divided by
2,4, or 8, as shown in Figure 11-4. The ID0 and ID1 bits in the TACTL register
select the clock division. Note that the input divider is reset by a POR signal
(see chapter 3, System Resets, Interrupts, and Operating Modes for more in-
formation on the POR signal) or by setting the CLR bit in the TACTL register.
Otherwise, the input divider remains unchanged when the timer is modified.
The state of the input divider is invisible to software.

Figure 11-3. Schematic of 16-Bit Timer

SSEL1 SSELO

TACLK
ACLK —o
MCLK__4

INCLK —o

Timer Clock Data

0 I 15

16-Bit Timer » Mode
>CLK
RC Control Equo

l I |
Carry/Zero MC'1 ,\},Co Set_TAIFG

Input
Divider

N

3

POR/CLR
0 0 Pass 0 0  Stop Mode
0 1 12 0 1 Up Mode
1 0 1/4 1 0 Continuous Mode
1 1 1/8 1 1 Up/Down Mode

Figure 11-4. Schematic of Clock Source Select and Input Divider

SSEL1 SSELO
1,

TACLK
ACLK —o
MCLK__o

INCLK o

Input Divider
1 T a7 ol 4T a » 16-Bit Timer Clock
C C C
2 l . ' +
3 ]
D1 DO POR CLR
0 0 Pass
0 1 1/2
1 0 1/4
1 1 1/8

Timer_A 11-5



Timer Modes

11.2.3 Starting the Timer

11.3 Timer Modes

The timer may be started or restarted in a variety of ways:

0 Release Halt Mode: The timer countsin the selected direction when a tim-
er mode other than stop mode is selected with the MCx bits.

O Halted by CCRO = 0, restarted by CCRO > 0 when the mode is either up
or up/down: When the timer mode is selected to be either up or up/down,
the timer may be stopped by writing O to capture/compare register 0
(CCRQO). The timer may then be restarted by writing a non-zero value to
CCRO. In this scenario, the timer starts incrementing in the up direction
from zero.

(O Setting the CLR bit in TACTL register: Setting the CLR bit in the TACTL
register clears the timer value and input clock divider value. The timer in-
crements upward from zero with the next clock cycle as long as stop-mode
is not selected with the MCx bits.

[1J TARisloaded with 0: When the counter (TAR register) is loaded with zero
with a software instruction the timer increments upward from zero with the
next clock cycle as long as stop-mode is not selected with the MCx bits.

11.3.1 Timer — Stop Mode

Stopping and starting the timer is done simply by changing the mode control
bits (MCx). The value of the timer is not affected.

When the timer is stopped from up/down mode and then restarted in up/down
mode, the timer counts in the same direction as it was counting before it was
stopped. For example, if the timer is in up/down mode and counting in the down
direction when the MCx bits are reset, when they are set back to the up/down
direction, the timer starts counting in the down direction from its previous
value. If this is not desired in an application, the CLR bit in the TACTL register
can be used to clear this direction memory feature.

11.3.2 Timer — Up Mode

The up mode is used if the timer period must be different from the 65,536
(16-bit) clock cycles of the continuous mode period. The capture/compare
register CCRO data define the timer period.

The counter counts up to the content of compare register CCRO, as shown in
Figure 11-5. When the timer value and the value of compare register CCRO
are equal (or if the timer value is greater than the CCRO value), the timer
restarts counting from zero.



Timer Modes

Figure 11-5. Timer Up Mode

OFFFFh
CCRO

Flag CCIFGO is set when the timer equals the CCRO0 value. The TAIFG flag is
set when the timer counts from CCRO to zero. All interrupt flags are set
independently of the corresponding interrupt enable bit, but an interrupt is
requested only if the corresponding interrupt enable bit and the GIE bit are set.
Figure 11-6 shows the flag set cycle.

Figure 11-6. Up Mode Flag Setting

Timer
Clock

NS\

Timer _Xccro-1 ccro X_on_X_ih X Xccro-1Xccro X _on X_1h X

Set Flag

TAIFG
Set Flag
CCIFGO

11.3.2.1 Timer in Up Mode ~ Changing the Period Register CCRO Value

Changing the timer period register CCRO while the timer is running can be a
little tricky. When the new period is greater than or equal to the old period, the
timer simply counts up to the new period and no special attention is required
(see Figure 11-7). However, when the new period is less than the old period,
the phase of the timer clock during the CCRO update affects how the timer
reacts to the new period.

If the new, smaller period is written to CCRO during a high phase of the timer
clock, then the timer rolls to zero (or begins counting down when in the
up/down mode) on the next rising edge of the timer clock. However, if the new,
smaller period is written during a low phase of the timer clock, then the timer
continues to increment with the old period for one more clock cycle before
adopting the new period and rolling to zero (or beginning counting down). This
is shown in Figure 11-8.

Timer_A 11-7



Timer Modes

Figure 11-7. New Period > OId Period

Ti_mer CCROold =2
Register CCROnew =3

ol1l2lol1l213lol1l21310l1

CCRoO 2 ] 3

Figure 11-8. New Period < Old Period

Timer Timer
Register CCROold = 5 Register CCROold =5
5 CCROnew =2 5 CCROnew =2
4+ — 4 —_y
> I S —— > T I ——
‘ | g : B L
6 R EanEs = Ea. TR
| [
01213145011 23101 P01 2|01 O[TR[B4E0[TRB40 RO 2O
GGRO 5 X 2 CCRO 5 X 2
— — _GCRO Loaded With 2 During High Clock Phase_ _____GCRQ Loaded With 2 During Low Clock Phase
Timer Clock ]YW,I Timer Clock iy
I
Timer {7 Xoornib) Timer X__n X 1 X 0Oornf X
CCRO CCRold CCRO _CCRold X___ CCRnew
I
Load New CCRO Load New CCRO
During High Phase of Clock During Low Phase of Clock
1 Up mode: 0; up/down mode: n—1 1 Up mode: 0; up/down mode: n

11-8



Timer Modes

11.3.3 Timer — Continuous Mode

The continuous mode is used if the timer period of 65,536 clock cycles is used
for the application. A typical application of the continuous mode is to generate
multiple, independent timings. In continuous mode, the capture/compare
register CCRO works in the same way as the other compare registers.

The capture/compare registers and different output modes of each output unit
are useful to capture timer data based on external events or to generate
various different types of output signals. Examples of the different output
modes used with timer-continuous mode are shown in Figure 11-25.

In continuous mode, the timer starts counting from its present value. The
counter counts up to OFFFFh and restarts by counting from zero as shown in
Figure 11-9.

Figure 11-9. Timer Continuous Mode

OFFFFh

Oh

The TAIFG flag is set when the timer counts from OFFFFh to zero. The interrupt
flag is set independently of the corresponding interrupt enable bit, as shown
in Figure 11—10. Aninterrupt is requested if the corresponding interrupt enable
bit and the GIE bit are set.

Figure 11-10.Continuous Mode Flag Setting

Timer
Clock

Timer }( FFFE X FFFF X on X 1h X X FrrE X FFFF X oh X 1h x:

Set Interrupt
Flag TAIFG

Timer_A 11-9



Timer Modes

11.3.3.1 Timer — Use of the Continuous Mode

The continuous mode can be used to generate time intervals for the
application software. Each time an interval is completed, an interrupt can be
generated. In the interrupt service routine of this event, the time until the next
event is added to capture/compare register CCRx as shown in Figure 11-11.
Up to five independent time events can be generated using all five
capture/compare blocks.

Figure 11—11. Output Unit in Continuous Mode for Time Intervals

CCRof CCRul
CCROe CCROk
CCRod // CCROj /V

CCROG CCROI

CCROb // CCROh //
cCRoa| 1 cCRog| A oo
oh L r

OFFFFh

Interrupt Events At T At T AL At At At At At At D AL A T At

Time intervals can be produced with other modes as well, where CCRO is used
as the period register. Their handling is more complex since the sum of the old
CCRx data and the new period can be higher than the CCRO value. When the
sum CCRxold plus At is greater than the CCRO0 data, the CCRO value must be
subtracted to obtain the correct time interval. The period is twice the value in
the CCRO register.

11.3.4 Timer — Up/Down Mode

The up/down mode is used if the timer period must be different from the 65,536
clock cycles, and if symmetrical pulse waveform generation is needed. In
up/down mode, the timer counts up to the content of compare register CCRO,
then back down to zero, as shown in Figure 11-12. The period is twice the
value in the CCRO register.

Figure 11-12. Timer Up/Down Mode
CCRO

Oh

11-10



Timer Modes

The up/down mode also supports applications that require dead times
between output signals. For example, to avoid overload conditions, two
outputs driving an H-bridge must never be in a high state simultaneously. In
the following example (see Figure 11-13), the tgeaq iS:

tdead = ttimer X (CCR1 — CCR3)=
With:  tgeag Time during which both outputs need to be inactive
timer Cycle time of the timer clock

CCRx Content of capture/compare register x

Figure 11—13. Output Unit in Up/Down Mode (Il)

OFFFFh
CCRO
CCR1
CCR3 \
Oh
—» «— | —» 4 DeadTime
Output Mode 6: PWM Toggle/Set
‘ Output Mode 2: PWM Toggle/Reset
TAIFG EQU1 EQU1 TAIFG EQU1 EQU1 Interrupt Events

EQU3 EQUO EQUS EQU3 EQUO EQU3

The count direction is always latched with a flip-flop (Figure 11-14). This is
useful because it allows the user to stop the timer and then restartitin the same
direction it was counting before it was stopped. For example, if the timer was
counting down when the MCx bits were reset, then it will continue counting in
the down direction if it is restarted in up/down mode. If this is not desired, the
CLRbitin the TACTL register must be used to clear the direction. Note that the
CLR bit affects other setup conditions of the timer. Refer to Section 11.6 for a
discussion of the Timer_A registers.

Figure 11—14. Timer Up/Down Direction Control

POR CLR
in TACTL

Up/Down For
Up/Down Mode Set

‘ 16-Bit Timer TAR
TAR => CCRO ———} P Q » Low: Down Direction

High: Up Direction

Timer Clock Reset

Timer_A 11-11



Timer Modes

Inup/down mode, the interrupt flags (CCIFGO and TAIFG) are set atequal time
intervals (Figure 11-15). Each flag is set only once during the period, but they
are separated by 1/2 the timer period. CCIFGO is set when the timer counts
from CCRO0-1 to CCRO, and TAIFG is set when the timer completes counting
down from 0001h to 0000h. Each flag is capable of producing a CPU interrupt
when enabled.

Figure 11-15.Up/Down Mode Flag Setting

Up/Down

Timer
Clock

Timer _XCcRo-1X CCRo_XCCRO-1XCCR0-2X X 2h X_ih X on X 1 X

Set
CCIFGO
Set
TAIFG

\
s

11.3.4.1 Timer In Up/Down Mode — Changing the Value of Period Register CCRO

Changing the period value while the timer is running in up/down mode is even
trickier than in up mode. Like in up mode, the phase of the timer clock when
CCRO is changed affects the timer’s behavior. Additionally, in up/down mode,
the direction of the timer also affects the behavior.

If the timer is counting in the up direction when the new period is written to
CCRO, the conditions in the up/down mode are identical to those in the up
mode. See Section 11.3.2.1 for details. However, if the timer is counting in the
down direction when CCRO is updated, it continues its descent until it reaches
zero. The new period takes effect only after the counter finishes counting down
to zero. See Figure 11-16.

Figure 11-16.Altering CCRO — Timer in Up/Down Mode

11-12

Timer
Register

OoO=NwhL O

CCRO

0] 112/3|4|5|4|3|2(|10]1|2|314|3|2|1|0{1]2|3|2/1|0j12|1 0,123 4543210121

5

X 2 X 4 X 2 X 5 A2




Timer Modes

11.4 Capture/Compare Blocks

Five identical capture/compare blocks (shown in Figure 11-17) provide
flexible control for real-time processing. Any one of the blocks may be used
to capture the timer data at an applied event, or to generate time intervals.
Each time a capture occurs or a time interval is completed, interrupts can be
generated from the applicable capture/compare register. The mode bit CAPX,
in control word CCTLX, selects the compare or capture operation and the
capture mode bits CCMx1 and CCMxO0 in control word CCTLx define the
conditions under which the capture function is performed.

Both the interrupt enable bit CCIEx and the interrupt flag CCIFGx are used for
capture and compare modes. CCIEx enables the corresponding interrupt.
CCIFGx is set on a capture or compare event.

The capture inputs CCIxA and CCIxB are connected to external pins orinternal
signals. Different MSP430 devices may have different signals connected to
CCIxA and CCIixB. The data sheet should always be consulted to determine
the Timer_A connections for a particular device.

Figure 11—-17.Capture/Compare Blocks

CCISx1 CCIsSx0
1,

CCIxA

CCIxB —©
GND —©
VCC —20

Overflow x

Logic }— COVx

Timer Bus
CAPx ™

——P|

W N (=

| f 15 0
Capture Capture | cantire/Compare Register <"::

Mode CCRx
CCMx1 CCMx0 Ll
0 0 Disabled
0 1 Positive Edge Comparator x 4
1 0 Negative Edge CAPx
1 1 Both Edges EQUx o
L
Set_CCIFGx
EN
Y}— SCCix
A

CCIx

Timer_A 11-13



Timer Modes

11.4.1 Capture/Compare Block — Capture Mode

The capture mode is selected if the mode bit CAPX, located in control word
CCTLx, is set. The capture mode is used to fix time events. It can be used for
speed computations or time measurements. The timer value is copied into the
capture register (CCRx) with the selected edge (positive, negative, or both) of
the input signal. Captures may also be initiated by software as described in
section 11.4.1.1.

If a capture is performed:
O The interrupt flag CCIFGX, located in control word CCTLX, is set.

O Aninterrupt is requested if both interrupt enable bits CCIEx and GIE are
set.

The input signal to the capture/compare block is selected using control bits
CCISx1 and CCISx0, as shown in Figure 11—18. The input signal can be read
at any time by the software by reading bit CCIx. The input signal may also be
latched with compare signal EQUx (see SCClIx bit below) when in compare
mode. This feature was designed specifically to support implementing serial
communications with Timer_A. See section 11.7 for more details on using
Timer_A as a UART.

Figure 11—18.Capture Logic Input Signal

CCISx1 CCISx0

CCIxA — O

CCIxB —©O
GND —©O
Vee —©

11-14

o

w N |—=

CAPx

CMPx EQUxX —¢ 1

| j
0
Capture 0 Set_CCIFGx

Mode T ©

l Timer Synchronize
CCMx1 CCMx0 Clock Capture SCSx Capture

—-3

0 Disabled

1 Positive Edge
0 Negative Edge
1 Both Edges EN VL sceix

- - O O

?

CClix

The capture signal can also be synchronized with the timer clock to avoid race
conditions between the timer data and the capture signal. This is illustrated in
Figure 11—19. The bit SCSx in capture/compare control register CCTLx
selects the capture signal synchronization.



Timer Modes

Figure 11—19.Capture Signal

Timer
Clock

Timer
CClx
Capture

Set
CCIFGx

:X n-2 X n-1 )? :n X nit X 2 X 8 X ned X 5 X n+6)c
|

L

i
L

\y

Applications with slow timer clocks can use the nonsynchronized capture
signal. In this scenario the software can validate the data and correct it if
necessary as shown in the following example:

2

Software example for the handling of asynchronous

capture signals

The data of the capture/compare register CCRx are taken
by the software in the according interrupt routine

- they are taken only after a CCIFG was set.

The timer clock is much slower than the system clock

MCLK.

CCRx_Int_hand. ..

CMP
JEQ
MOV

Data_Valid

’

RETI

&CCRx, &TAR

Data_Valid
&TAR, &CCRx

Start of interrupt
handler

Test if the data
CCRX = TAR

The data in CCRx is

; wrong, use the timer data
; The data in CCRx are valid

Overflow logic is provided with each capture/compare register to flag the user
if a second capture is performed before data from the first capture was read
successfully. Bit COVx in register CCTLx is set when this occurs as shown in
Figure 11-20.

Timer_A 11-15



Timer Modes

Figure 11-20.Capture Cycle

Idle

Capture Capture Read

No
Capture
Taken

Read
Taken
Capture

Capture Read and No Capture

Capture
Clear Bit COV

in Register CCTL

Second
Capture
Taken
COV =1

Idle

Overflow bit COVx is reset by the software as described in the following
example:

; Software example for the handling of captured data
; looking for overflow condition

; The data of the capture/compare register CCRx are taken
; by the software and immediately with the next

; instruction the overflow bit is tested and a decision is
; made to proceed regularly or with an error handler

CCRx_Int_hand ; Start of handler Interrupt

MOV &CCRx,RAM_Buffer
BIT #COV, &CCTLx
JNZ Overflow_Hand

RETI
Overflow_Hand BIC #COV, &CCTLx ; reset capture
; overflow flag
; get back to lost
; synchronization

; RETT

Note: Capture With Timer Halted

The capture should be disabled when the timer is halted. The sequence to
follow is: stop the capture, then stop the timer. When the capture function is
restarted, the sequence should be: start the capture, then start the timer.

[

11-16



Timer Modes

11.4.1.1 Capture/Compare Block, Capture Mode — Capture Initiated by Software

In addition to internal and external signals, captures can be initiated by
software. This is useful for various purposes, such as:

[ To measure time used by software routines
1 To measure time between hardware events
[ To measure the system frequency

Two bits, CCISx1 and CCISx0, and the capture mode selected by bits CCMx1
and CCMx0 are used by the software to initiate the capture. The simplest
realization is when the capture mode is selected to capture on both edges of
CClIx and bit CCISx1 is set. Software then toggles bit CCISx0 to switch the
capture signal between Vg and GND, initiating a capture each time the input
is toggled, as shown in Figure 11-21.

Figure 11-21.Software Capture Example

cce'sx\y _— -
CCisx0 S \ /S
cox </ \ /
Capture _/™\ /\ / \
CCISx1 CCISx0
| CMPx
0 1
CCIxA ] j
CCIxB —© Capture
GND i Mode L Capture
Ve —O
cc cox | |
CCMx1 CCMx0
Both Edges Selected 1 1

The following is a software example of a capture performed by software:

; The data of capture/compare register CCRx are taken

; by the software. It is assumed that CCMx1l, CCMx0, and
; CCISx1l bits are set. Bit CCISO selects the CCIx

; signal to be high or low.

XOR #CCISx0, &CCTLx

Timer_A 11-17



Timer Modes

11.4.2 Capture/Compare Block - Compare Mode

11-18

The compare mode is selected if the CAPx bit, located in control word CCTLX,
is reset. In compare mode all the capture hardware circuitry is inactive and the
capture-mode overflow logic is inactive.

The compare mode is most often used to generate interrupts at specific time
intervals or used in conjunction with the output unit to generate output signals
such as PWM signals. If the timer becomes equal to the value in compare
register x, then:

3 Interrupt flag CCIFGx, located in control word CCTLX, is set.
O Aninterrupt is requested if interrupt enable bits CCIEx and GIE are set.

(1 Signal EQUx is output to the output unit. This signal affects the output
OUTX, depending on the selected output mode.

The EQUO signal is true when the timer value is greater or equal to the CCRO
value. The EQU1 to EQU4 signals are true when the timer value is equal to
the corresponding CCR1 to CCR4 values.



Timer Modes

11.5 The Output Unit

Each capture/compare block contains an output unit shown in Figure 11-22.
The output unit is used to generate output signals such as PWM signals. Each
output unit has 8 operating modes that can generate a variety of signals based
on the EQUO and EQUXx signals. The output mode is selected with the OMx
bits located in the CCTLx register.

Figure 11-22.Output Unit

OUTXx

Output
EQUO> » Control
EQUX>— Block
P

OMx2 OMx1 OMx0

~ 2002200

- 020 -20-=0

I OUTx Signal
p Set Q [ N

Reset

Timer Clock

POR

OUTx

Output mode: OUTx signal reflects the value of the OUTXx bit
Set mode: OUT x signal reflects the value of signal EQUx
PWM toggle/reset: EQUx toggles OUTx. EQUO resets OUTXx.
PWM set/reset: EQUx sets OUTx. EQUO resets OUTx
Toggle: EQUx toggles OUTx signal.

Reset: EQUx resets OUTXx.

PWM toggle/set: EQUx toggles OUTx. EQUO sets OUTXx.
PWM reset/set: EQUx resets OUTx. EQUx sets OUTx.

Note: OUTx signal updates with rising edge of timer clock for all modes except

mode 0.
Modes 2, 3, 6, 7 not useful for output unit 0.

Timer_A

11-19



Timer Modes

11.5.1 Output Unit — Output Modes

11-20

The output modes are defined by the OMx bits and are discussed below. The
OUTx signal is changed with the rising edge of the timer clock for all modes
except mode 0. Output modes 2, 3, 6, and 7 are not useful for output unit 0.

Output mode 0:

Output mode 1:

Output mode 2:

Output mode 3:

Output mode 4:

Output mode 5:

Output mode 6:

Output mode 7:

Output mode:

The output signal OUTx is defined by the OUTx bit in control
register CCTLx. The OUTXx signal updates immediately
upon completion of writing the bit information.

Set mode:

The output is set when the timer value becomes equal to
capture/compare data CCRXx. It remains set until a reset of
the timer, or until another output mode is selected.

PWM toggle/reset mode:

The output is toggled when the timer value becomes equal
to capture/compare data CCRx. It is reset when the timer
value becomes equal to CCRO.

PWM set/reset mode:

The output is set when the timer value becomes equal to
capture/compare data CCRXx. Itis reset when the timer value
becomes equal to CCRO.

Toggle mode:

The output is toggled when the timer value becomes equal
to capture/compare data CCRx. The output period is double
the timer period.

Reset mode:

The output is reset when the timer value becomes equal to
capture/compare data CCRx. It remains reset until another
output mode is selected.

PWM toggle/set mode:

The output is toggled when the timer value becomes equal
to capture/compare data CCRx. It is set when the timer
value becomes equal to CCRO.

PWM toggle/set mode:

The output is reset when the timer value becomes equal to
capture/compare data CCRXx. It is set when the timer value
becomes equal to CCRO.



Timer Modes

11.5.2 Output Control Block

The output control block prepares the value of the OUTx signal, which is
latched into the OUTx flip-flop with the next positive timer clock edge, as shown
in Figure 11-23 and Table 11-2. The equal signals EQUx and EQUO are
sampled during the negative level of the timer clock, as shown in Figure 11-23.

Figure 11-23.Output Control Block

OUTx

Sj t OUTx Signal
Output D ' a

EQUO >—
Control )
EQUX>—— Bolgcrlg Timer Clock > Reset
POR

-
B OUTx

OMx2 OMx1 OMx0

The timer is Incremented with the rising edge of the timer clock.

Timer l

Clock

e A A AN

Timer X o

TAR

1
T i { I
: TAR =n : ‘ | |
| | I
EQUx / [ \ { ! |
f
I CCRx=n : | :
| |
EQUO / TAR=0 \

or
TAR = CCRO

EQUO, Delayed '/__\_

Used in Up Mode Only

EQUO delayed is used in up mode, not EQUO. EQUO is active high when
TAR = CCRO0. EQUO delayed is active high when TAR = 0.

Timer_A 11-21



Timer Modes

Table 11-2. State of OUTx at Next Rising Edge of Timer Clock

Mode EQUO EQUx D

0 X X x(OUTx bit)

1 X 0 OUTXx (no change)
X 1 1 (set)

2 0 0 OUTx (no change)
0 1 OUTXx (toggle)
1 0 0 (reset)
1 1 1 (set)

3 0 0 OUTx (no change)
0 1 1 (set)
1 0 0 (reset)
1 1 1 (set)

4 X 0 OUTx (no change)
X 1 OUTXx (toggle)

5 X 0 OUTx (no change)
X 1 0 (reset)

6 0 0 OUTx (no change)
0 1 OUTXx (toggle)
1 0 1 (set)
1 1 0 (reset)

7 0 0 OUTXx (no change)
0 1 0 (reset)
1 0 1 (set)
1 1 0 (reset)

11.5.3 Output Examples

The following are some examples of possible output signals using the various
timer and output modes.

11.5.3.1 Output Examples — Timer in Up Mode

The OUTx signal is changed when the timer counts up to the CCRx value, and
rolls from CCRO to zero, depending on the output mode, as shown in Figure
11-24.

11-22



Timer Modes

Figure 11-24. Output Examples — Timer in Up Mode

OFFFFh
CCRO

CCR1

Oh

EQUO

Example, EQU1 Used

Output Mode 1: Set

Output Mode 2: PWM Toggle/Reset

Output Mode 3: PWM Set/Reset

I,
Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: PWM Toggle/Set

-

Output Mode 7: PWM Reset/Set

EQU1

EQUO

EQU1

11.5.3.2 Output Examples — Timer in Continuous Mode

EQUO

Interrupt Events

The OUTx signal is changed when the timer reaches the CCRx and CCRO
values, depending on the output mode, as shown in Figure 11-25.

Figure 11-25. Output Examples — Timer in Continuous Mode

Output Mode 2: PWM Toggle/Reset

Output Mode 3: PWM Set/Reset

" Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: PWM Toggle/Set

Output Mode 7: PWM Reset/Set

OFFFFh
CCRo »
CCR1 /
Oh
T Output Mode 1: Set
—_——— _.‘ ————
-
TAOV EQU1 EQUO TAOV EQU1 EQUO

Interrupt Events

Timer_A 11-23



Timer Modes

11.5.3.3 Output Examples — Timer in Up/Down Mode

The OUTx signal changes when the timer equals CCRx in either count

direction and when the timer equals CCRO, depending on the output mode, as
shown in Figure 11-26.

Figure 11-26. Output Examples — Timer in Up/Down Mode (1)

OFFFFh
CCRO
CCR3
" AN
s Output Mode 1: Set
I [[Output Mode 2: PWM Toggle/Reset
| Output Mode 3: PWM Set/Reset
I R 17 = _— 1 _1Output Mode 4: Toggle
[ _ Output Mode 5: Reset
N Output Mode 6: PWM Toggle/Set
T T Output Mode 7: PWM Reset/Set
TIMOV L5 EQUO oy o TIMOV L jo EQUO oo