
"TEXAS
INSfRUMENTS

TMS320C30 Assetnbly
Language Tools

r

1988 1988 Digital Signal Processing Products

TAfS320C30 Assembly
Language Tools

User's Guide

• TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publicatio'n without
notice. TI advises its customers to obtain the latest version of the relevant in
formation to verify, before placing orders, that the information being relied
upon is current.

TI warrants performance of its semiconductor products to current specifica
tions in accordance with Tl's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this
warranty. Unless mandated by government requirements~specific testing of
all parameters of each device is not necessarily performed.

TI assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does TI warrant or represent that license, either express or implied, is
granted under any patent right, copyright, mask work right, or other intellec
tual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are
used.

Copyright © 1988, Texas Instruments Incorporated

Contents

Section

1
1.1
1.2
1.3
1.4
1.5

2
2.1
2.2
2.3

3
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.3
3.3.1
3.3.2
3.4
3.5
3.6
3.6.1
3.6.2

4
4.1
4.2
4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6

Introduction
Software Development Tools Overview
Getting Started
Manual Organization
Related Documentation
Style and Symbol Conventions

Software Installation
Installation for PCs
Installation for VAX/VMS
Installation for UNIX Systems

Introduction to Common Object File Format
Sections
How the Assembler Handles Sections

Uninitialized Sections ..
Initialized Sections
Named Sections
Section Program Counters
Absolute Sections
An Example That Uses Sections Directives

How the Linker Handles Sections
Default Allocation
Placing Sections in the Memory Map

Relocation
Loading a Program
Symbols in a COFF File

External Symbols
The Symbol Table .

Assembler Description
Assembler Development Flow
Invoking the Assembler
Specifying Alternate Directories for Assembler Input

-i Assembler Option
Environment Variable (A-DIR)

Source Statement Format
Label Field
Mnemonic Field
Operand Field'
Comment Field

Constants
Binary Integers
Octal Integers .
Decimal Integers
Hexadecimal Integers
Character Constants
Floating-Point Constants

Page

1-1
1-2
1-4
1-5
1-6
1-7

2-1
2-2
2-3
2-4

3-1
3-2
3-3
3-3
3-4
3-5
3-6
3-6
3-6
3-10
3-10
3-13
3-15
3-16
3-17
3-17
3-17

4-1
4-2
4-3
4-4
4-4
4-5
4-6
4-6
4-7
4-7
4-7
4-8
4-8
4-8
4-9
4-9
4-9
4-10

iii

4.5.7
4.6
4.7
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.9
4.10

5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6
6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7
7.1
7.2
7.3
7.4
7.5
7.6
7.7

iv

Assembly-Time Constants
Character Strings
Symbols ...
Expressions

Operators

" .
... ~

Expression Overflow or Underflow
Well- Defined Expressions
Conditional Expressions

Relocatable Symbols and Legal Expressions
Source Listings
Cross-Reference Listings .. ;

Assembler Directives
Directives Summary
Sections Directives
Directives that Initialize Memory
Directives that Align the Section Program Counter
Directives that Format the Output Listing
Conditional Assembiy Directives
Directives that Reference Other Files
Directives Reference

Instruction Set
Summary

Addressing Modes
Optional Syntaxes
Condition Codes
Instruction Set Summary Table

Three-Operand Instructions
Parallel Instructions
Load and Store Instructions
Arithmetic Instructions
Logical Instructions ...
Program -Control Instructions
Interlocked-Operation Instructions
The LOP Instruction

Macro Language
Macro Directives Summary
Macro Libraries
Defining Macros
Macro Parameters
Conditional Blocks
Repeatable Blocks
Unique Labels

4-10
4-11
.{11
4-12
4-12
4-13
4-13
4-13
4-13
4-15
4-17

5-1
5-2
5-4
5-6
5-9
5-10
5-11
5-12
5-13

6-1
6-2
6-2
6-3
6-4
6-5
6-17
6-18
6-21
6-22
6-22
6-23
6-23
6-24

7-1
7-2
7-3
7-4
7-6
7-7
1-8
7-9

8 Archiver Desctiption
8.1 Archiver Development Flow
8.2 Invoking the Archiver
8.3 Archiver Examples

8-1
8-2
8-3
8-4

9 Linker Description 9-1
9.1 Linker Development Flow 9-2
9.2 Invoking the Linker 9-3
9.3 Linker Options 9-4
9.3.1 Relocation Capability (-a and -r Options) 9-4
9.3.2 C Language Options (-c and -cr Options) 9-6
9.3.3 Define an Entry Point (-e symbol Option) 9-6
9.3.4 Set Default Fill Value (-f cc Option) 9-6
9.3.5 Make All Global Symbols Static (-h Option) 9-7
9.3.6 Alter the Library Search Algorithm (-i dir and -I filename Options/C-DIR 9-7
9.3.7 Create a Map File (-m filename Option) 9-9
9.3.8 Name an Output Module (-0 filename Option) 9-10
9.3.9 Specify a Quiet Run (-q Option) 9-10
9.3.10 Strip Symbolic Information (-s Option) 9-10
9.3.11 Introduce an Unresolved Symbol (-u symbol Option) 9-10
9.4 Linker Command Files 9-11
9.5 Object Libraries 9-13
9.6 The MEMORY Directive 9-14
9.6.1 Default Memory Model .. 9-14
9.6.2 MEMORY Directive Syntax 9-14
9.7 The SECTIONS Directive ... 9-16
9.7.1 Default Sections Configuration 9-16
9.7.2 SECTIONS Directive Syntax 9-16
9.7.3 Specifying Input Sections 9-18
9.7.4 Specifying the Address of an Output Section (Allocation) 9-20
9.7.5 Grouping Output Sections Together 9-22
9.8 Overlay Pages . 9-23
9.8.1 Using the MEMORY Directive to Define Overlay Pages 9-23
9.8.2 Using Overlay Pages with the SECTIONS Directive 9-24
9.8.3 Page Definition Syntax 9-25
9.9 Default Allocation 9-27
9.9.1 Allocation Algorithm 9-27
9.9.2 General Rules for Output Sections 9-27
9.10 Special Section Types (DSECT, COPY, and NOLOAD) 9-29
9.11 Assigning Symbols at Link Time 9-30
9.11.1 Syntax of Assignment Statements 9-30
9.11.2 Assigning the SPC to a Symbol 9-30
9.11.3 Assignment Expressions 9-31
9.11.4 Symbols Define~ by the Linker . 9-32
9.12 Creating and Filling Holes 9-33
9.12.1 Initialized and Uninitialized Sections 9-33
9.12.2 Creating Holes 9-33
9.12.3 Filling Holes 9-35
9.12.4 Explicit Initialization of Uninitialized Sections 9-36
9.13 Partial (Incremental) Linking 9-37
9.14 Linking.C Code 9-38
9.14.1 Runfime Initialization 9-38
9.14.2 Object Libraries and Runtime Support 9-38
9.14.3 Autoinitialization (ROM and RAM Models) 9-38

v

9.14.4 The -c and -cr Linker Options
9.15 Linker Example

10
10.1
10.2
10.3
10.4

A
B
C
o
E
F

vi

Object Format Converter Description
Object Format Converter Development Flow
Invoking the Object Format Converter
Examples
Halt Conditions

Common Object File Format
Symbolic Debugging Directives
Assembler Error Messages
linker Error Messages
ASCII Character Set
Glossary

9-40
9-41

10-1
10-2
10-3
10-4
10-4

A-1
B-1
C-1
0-1
E-1
F-1

Illustrations

Figure

1 -1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
4-1
4-2
4-3
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
7-1
8-1
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
10-1
A-1
A-2
A-3
A-4
A-5
A-6
A-7

TMS320C30 Assembly Language Development Flow .. "
Partitioning Memory into Logical Blocks
Using Sections Directives
Object Code Generated by Figure 3-2
Placing the Object Code from Figure 3-2 into Memory (Default Allocation)
Combining Input Sections from Two Files (Default Allocation)
MEMORY and SECTIONS Directives for Figure 3-7
Rearranging the Memory Map from Figure 3-4
An Example of Code that Generates Relocation Entries
Assembler Development Flow
Sample Assembler Listing
Cross- Reference Listing Format
Examples of Sections Directives
Examples of Initialization Directive!>
An Example of the .field Directive
An Example of the .space Dire.ctive
An Example of the .align Directive
An Example of the .even Directive
An Example of Conditional Assembly Directives
An Example of the .align Directive . '..
An Example of the .asect Directive •..............................
An Example of the .even Directive ...•............................
An Example of the .field Directive
An Example of the .space Directi~
An Example of the .usect Directive
An Example of a Conditional Block
Archiver Development Flow
Linker Development Flow
An example of a Linker Command File
An Example of a Command File with Linker Directives
An Example of the MEMORY Directive
Memory Map Defined in Figure 9-4
An Example of the SECTIONS Directive
Section Allocation Defined by Figure 9-6
The Most Common Method of Specifying Section Contents•
Overlay Page Example ' '
ROM Model of Autoinitialization
RAM Model of Autoinitialization
Linker Command File, demo.cmd .. .
Output Map File, demo.map
Object Format Converter Development Flow
COFF File Structure
Sample COFF Object File
An Example of Section Header Pointers for the .text Section-
Line Number Blocks .. .
Line Number Entries Example
Symbol Table Contents
Symbols for Blocks

Page

1-2
3-2
3-8
3-9
3-11
3-12
3-13
3-14
3-15
4-2
4-16
4-17
5-5
5-7
5-7
5-8
5-9
5-9
5-11
5-14
5-16
5-24
5-27
5-43
5-48
7-7
8-2
9-2
9-11
9-12
9-14
9-15
9-16
9-18
9-18
9-24
9-39
9-40
9-42
9-43
10-2
A-2
A-3
A-7
A-9
A-10
A"11
A-13

vii

A-8
A-9

Table

Symbols for Functions
Sample String Table

Tables

Operators
Expressions with AiIl.solute and Relocatable Symbols
Symbol Attributes for Cross-Reference Listings
Directives Summary .. .
Indirect Addressing Mode
Condition Codes .. .
Summary Three-Operand Instructions
Summary of Parallel Instructions
Summary of Load and Store Instructions
Summary of Arithmetic Instructions
Summary of Logical Instruction;s
Summary of Program-Control Instructions
Summary of Interlocked-Operation Instructions
Linker Options Summary
Operators in Assignment Expressions .,
File Header Contents
File Header Flags (Bytes 18 and 19)
Optional File Header Contents
Section Header Contents
Section Header Flags (Bytes 36 and 37)
Relocation Entry Contents
Relocation Types (Bytes 8 and 9)
Line Number Entry Format
Symbol Table Entry Contents
Special Symbols in the Symbol Table
Symbol Storage Classes
Special Symbols and Their Storage Classes
Symbol Values and Storage Classes
Section Numbers .. .
Basic Types .. .
Derived Types .. .
Auxiliary Symbol Table Entries Format
Section Format for Auxiliary Table Entries
Section Format for Auxiliary Table Entries

4-1
4-2
4-3
5-1
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
9-1
9-2
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24
A-25
A-26

Tag Name Format for Auxiliary Table Entries

viii

End of Structure Format for Auxiliary Table Entries
Function Format for Auxiliary Table Entries
Array Format for Auxiliary Table Entries
End of Blocks and Functions Format for Auxiliary Table Entries
Beginning of Blocks and Functions Format for Auxiliary Table Entries
Structure, Union, and Enumeration Names Format for Auxiliary Table Entries

A-13
A-14

Page

4-12
4-13
4-17
5-2
6-3
6-4
6-17
6-19
6-21
6-22
6-22
6723
6-23
9-4
9-32
A-4
A-4
A-5
A-6
A-6
A-8
A-8
A-9
A-12
A-12
A-15
A-15
A-16
A-17
A-18
A-18
A-19
A-19
A-20
A-20
A-20
A-21
A-21
A-21
A-22
A-22

Section 1

Introduction

The TMS320C30 Digital Signal Processor is an advanced CMOS 32-bit
microprocessor that is optimized for signal processing applications. The
TMS320C30 is the third geryeration in the Texas Instruments family of digital
signal processors.

The TMS320C30 is well supported by a full set of hardware and software
development tools, including a C compiler, a full-speed in-circuit emulator,
and a software simulator. This document discusses the spftware development
tools that are included with the TMS320C30 assembly language package:

• Assembler
• Archiver
• Linker
• Object format converter

These tools can be installed on the following systems:

• IBM-PC/PC-DOSand compatibles
• VAXNMS (revisions 3.7 and up)
• VAX/Ultrix
• Sun-3 Workstations with UNIX

The TMS320C30 assembly language tools create and use object files that are
in common object file format. or COFF. COFF object files contain separate
blocks (called sections) of code and data that you can load into different
TMS320C30 memory spaces. You will be able to program the TMS320C30
more efficiently if you have a basic understanding of COFF; Section 3, Intro
duction to Common Object File Format, discusses this object format in detail.

Topics covered in this introductory section include:

Section Page
1.1 Software Development Tools Overview ... 1-2
1.2 Getting Started .. 1 -4
1.3 Manual Organization .. 1 -5
1.4 Related Documentation .. 1 -6
1.5 Style and Symbol Conventions ... 1 -7

1-1

Introduction - Software Development Tools Overview

1.1 Software Development Tools Overview

1-2

Figure 1-1 shows the TMS320C30 assembly language development flow.
The center section of the illustration highlights the most common path; the
other portions are optional.

Maoro
Souroe
Files

C Souroe

Figure 1-1. TMS320C30 Assembly Language Development Flow

Introduction - Software Development Tools Overview

• The C compiler translates C source code into TMS320C30 assembly
language source code. The C compiler is not included as part of the
assembly language tools package.

• The assembler translates assembly language source files into machine
language object files. Source files can contain instructions, assembler
directives, and macro directives. You can use assembler directives to
control various aspects of the assembly process, such as the source list
ing format, data alignment, and section content.

• The linker combines object files into a single executable object module.
As it creates the executable module, it performs relocation and resolves
external references. The linker accepts relocatable COFF object files
(created by the assembler) as input. It can also accept archive library
members and output modules created by a previous linker run. Linker
directives allow you to combine object file sections, bind sections or
symbols to specific addresses or within memory ranges, and define or
redefine global symbols.

• The archiver allows you to collect a group of files into a single archive
library. Both the assembler and linker can use archive libraries as input.
For example, you could collect several macros together into a macro li
brary; the assembler can search through a library and use the members
that the source file calls as macros. You could use the archiver to collect
a group of object files into an object library; the linker can link in the li
brary members that resolve external references.

• The main purpose of this development process is to produce a module
that can be executed in a system that contains a TMS320C30. You can
use one of several debugging tools to refine and correct your code be
fore downloading it to a TMS320C30 system. These debugging tools
share a common screen-oriented interface that displays and maintains
machine status information and controls execution of the system that is
being developed. Note that only linked object files can be executed.

The simulator is a software program that simulates TMS320C30
functions. The simulator can execute linked COFF object modules.
The simulator is not included with the TMS320C30 assembly lan
guage package.

The XDS (extended development support) emulator is a realtime,
in-circuit emulator with the same screen-oriented interface as the
software simulator. The emulator is not included with the
TMS320C30 assembly language package.

The software development system (SWDS) is a PC-resident
tool that executes code on a TMS320C30. The SWDS is not in
cluded with the TMS320C30 assembly language package.

• Most EPROM programmers do not accept COFF object files as input.
The object format converter converts a COFF object file into TI
tagged, Intel, or Tektronix object format. The converted file can be
downloaded to an EPROM programmer.

1-3

Introduction - Getting Started

1.2 Getting Started

1-4

The tools you will probably use most often are the assembler and the linker.
This section provides a quick walkthrough so that you can get started without
reading the whole user's guide. These examples show the most common
methods for invoking the assembler and linker.

1) Create two short source files to use for the walkthrough; call them
filea. asm and fileb. asm.

filea.asm fileb.asm
.file "fileb"
.global addvec

.file "filea"

.global addvec
vector .word 10,20,30,40 addvec LDI O,RO

LDI vector,ARO
CALL addvec

2) Assemble filea. asm; enter:

asm30 fi1ea

RPTS 3
ADDI *ARO++,RO
RETS

The asm30 command invokes the assembler. f ilea. asm is the input
source file. (If the input file extension is .asm, you don't have to specify
the extension; the assembler uses .asm as the default.) This example
creates an object file called f ilea. obj. The assembler always creates
an object file. You can specify a name for the object file, but if you don't,
the assembler will use the input filename with an extension of .obj.

Now assemble f i1eb . asm; enter:

asm30 fi1eb -1

This time, the assembler creates an object file called f ileb. obj. The-I
(lowercase "L") option tells the assembler to create a listing file; the list~
ing file for this example is called f ileb .1st.

3) Link filea.obj and fileb.rlbj; enter:

1nk30 fi1ea fi1eb -0 proq.out

The Ink30 command invokes the linker. f ilea. obj and f ileb. obj
are the input object files. (It the input file extension is .obj, you don't
have to specify the extension; the linker uses .obj as the default.) The
linker combines f ilea. obj and fcileb. obj to create an executable ob
ject module called prog. out (the -0 option supplies the name of the
output module).

You can find more information about l,nvoking the tools in the following sec
tions:

Section Page
4.2 Invoking the Assembler .. 4-3
8.2 Invoking the Archiver•.. 8-3
9.2 Invoking the Linker ... 9-3
10.2 Invoking the Object Format Converter ... 10-3

Introduction - Manual Organization

1.3 Manual Organization
Section 1 Introduction

Provides an overview of the assembly language tools and'the assembly lan
guage development process, gives quick examples for invoking the tools, lists
related documentation, and explains the style and symbol conventions used
throughout this document.

Section 2 Software Installation
Contains instructions for installing the assembly language tools on VAX/VMS,
VAX/Ultrix, Sun-3/UNIX, and IBM-PC/PC-DOS systems.

Section 3 Introduction to Common Object File Format
Discusses the basic COFF concept of sections and how they can help you
to use the assembler and linker more efficiently. Read Section 3 before using
the assembler and linker.

Section 4 Assembler Description
Tells you how to invoke the assembler and discusses source statement format,
valid constants and expressions, and assembler output.

Section 5 Assembler Directives
Divided into two parts; the first part describes the directives according to
function, and the second part is an alphabetical reference.

Section 6 Instruction Set Summary
Summarizes the TMS320C30 instruction set alphabetically and by function;
also summarizes addressing modes and optional syntax forms.

Section 7 Macro Language
Describes macro directives and macro creation.

Section 8 Archiver Description
Contains instructions for invoking the archiver, creating new archive libraries,
and modifying existing libraries.

Section 9 Linker Description
Tells you how to invoke the linker, provides details of linker operation, dis
cusses linker directives, and presents a detailed linking example.

Section 10 Object Format Converter Description
Tells you how to invoke the object format converter so that you can convert a
COFF object file into an Intel, Tektronix, or TI-tagged object format.

Appendix A Common Object File Format
Contains specific information about the internal format of COFF object files.

Appendix B Symbolic Debugging Directives
Lists the symbolic debugging directives that theTMS320C30 C compiler uses.

Appendix C Assembler Error Messages
Appendix D Linker Error Messages

List the assembler and linker error messages.

Appendix E ASCII Character Set
Provides a table of the ASCII character set.

Appendix F Glossary
Defines a glossary of terms and acronyms used in this book.

Introduction - Related Documentation

1.4 Related Documentation

1-6

The following TMS320C30 documents are available from Texas Instruments:

• The TMS320 Family Development Support Reference Guide
(literature number SPRU011) describes the wide range of TMS320
products that are available.

• Details on Signal Processing is a quarterly newsletter that provides
information about new TMS320 family products, new documentation,
development tool updates, and similar information. If you would like
your name added to the newsletter mailing list, call the Texas Instru
ments Customer Response Center (1-800-232-3200).

• The Third-Generation TMS320 User's Guide (literature number
SPRU031) discusses hardware and software aspects of the
TMS320C30, such as pin functions, architecture, and interfaces, and
contains the TMS320C30 instruction set.

• The TMS320C30 C Compiler Reference Guide (literature number
SPRU034) tells you how to use the TMS320C30 C compiler. This C
compiler accepts standard Kernighan and Ritchie C source code and
produces TMS320C30 assembly language source code. We suggest
that you use The C Programming Language (written by Brian W. Ker
nighan and Dennis M. Ritchie, published by Prentice-Hall) as a com
panion to the TMS320C30 C Compiler Reference Guide.

Introduction - Style and Symbol Conventions

1.5 Style and Symbol Conventions

• In this document program listings, program examples, screen displays,
filenames, and symbol names are shown in a special font. Examples
use a bold version of the special font for emphasis. Here is
a sample program listing:

0011 0005 0001 .field I, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 . even

• In a syntax description, the instruction, command, or directive is in a
bold face font and parameters are in italics. Portions of a syntax that
are in bold face should be entered as shown; portions of a syntax that
are in italics describe the type of information that should be entered.
Here is an example of a directive syntax:

.asect "section name", address

.asect is the directive. This directive has two parameters, indicated by
section name and address. When you use .asect, the first parameter must
be an actual section name, enclosed in double quotes; the second pa
rameter must be an address.

• Square brackets ([and]) indicate an optional parameter. For example,
the asm30 command has several optional parameters:

asm30 [input file [object file [listing file]]] [-options]

The first parameter, input file, is optional.
The second parameter, object file, is optional; in addition, you can
specify an object file only if you also specified an input file.
The third parameter, listing file, is optional; in addition, you can
specify a listing file only if you also specified an input file and an
object file.
The fourth parameter, -options, is optional; you can specify options
even if you specified no other parameters.

Square brackets are also used as part of the path name specification for
VMS pathnames; in this case, the brackets are actually part of the path
name (they aren't optional).

• Braces ({ and}) indicate a list. The I symbol (read as or) separates
items within a list. Here's an example of a list:

{ * I *+ I *- }

This list provides three choices: *, *+, or *-.

• Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

1-7

Introduction

1-8

Section 2

Software Installation

This section contains step-by-step instructions for installing the assembler,
archiver, linker, and object format converter. This software can be installed
on the following systems:

• DEC VAXNMS1

• IBM-PC withPC-DOS2 (versions 2.1 and up) and compatibles

• UN IX3 Systems

VAX/Ultrix
SUN-3

You will find installation. instructions for these systems in the following sec
tions:

Section Page
2.1 Installation for PCs ... 2-2
2.2 Installation for VAXNMS .. 2-3
2.3 Installation for UNIX Systems .. 2-4

Section 1.5 (page 1 -7) lists style and symbol conventions that are used in this
section.

VAX and VMS are trademarks of Digital Equipment Corporation.

2 PC-DOS is a trademark of International Business Machines.

3 UNIX is a registered trademark of AT&T.

2-1

Software Installation - pes

2.1 Installation for pes

2-2

The TMS320C30 software package is shipped on two double-sided, dou
ble-density diskettes. The disk labelled ASM/LiNK/ARCH contains the as
sembler, linker, and archiver. The disk labelled ROM/DEMO contains the
object format converter. The tools execute in batch mode. At least 512K bytes
of memory space must be available in your system.

These instructions are for both hard disk systems and dual floppy drive sys
tems. On a dual-drive system, the PC-DOS system diskette should be in drive
B. The instructions use these symbols for drive names:

A: Floppy disk drive for hard disk systems or source drive for dual-drive
systems.

B: Destination or system disk drive for dual-drive systems.
C: Winchester (hard disk) for hard disk systems.

1) Make backups of the product diskettes.

2) Create a directory to contain the TMS320C30 software.

• On hard disk systems, enter: MD C:\C30TOOLS

• On dual-drive systems, enter: MD B: \C30TOOLS

3) Copy the TMS320C30 tools onto the hard disk or the system disk.

• On hard disk systems, enter: COpy A: \11 • 11 C: \ C3 OTOOLS \ "" • ""

• On dual-drive systems, enter: COpy A:\""."" B:\C30TOOLS\"".""

Software Installation - VAX/VMS Systems

2.2 Installation for VAX/VMS

The TMS320C30 software tape was created with the VMS BACKUP utility at
1600 BPI. These tools were developed on version 4.5 of VMS. If you are
using an earlier version of VMS, you may need to relink the object files; refer
to the Release Notes for relinktog instructions.

1) Mount the tape on your tape drive.

2) Execute the following VMS commands. Note that you must create a
destination directory for the tools; in this example, DEST: directory
represents that directory. Replace TAPE with the name of the tape drive
you are using.

$ allocate
$ init/den=1600
$ mount/for/den=1600
$ backup
$ dismount
$ dealloc

TAPE:
TAPE:C30
TAPE:
TAPE:ASM30.bck DEST[:directoryl
TAPE:
TAPE:

3) The product tape contains a file called setup. com. This file sets up
VMS symbols that allow you to execute the tools in the same manner
as other VMS commands. Enter the following command to execute the
file:

$ @setup DEST:directory

This sets up symbols that you can use to call the various tools. As the
file is executed, it will display the defined symbols on the screen.

You may want to include the commands from setup. com in your
login. com file. This automatically defines symbols for running the
tools each time you log in.

2-3

Software Installation - UNIX Systems

2.3 Installation for UNIX Syst~ms

2-4

The TMS320C30 product tape was made 'at 1600 BPI using tar utility. Follow
these instructions to install the assembly language tools package:

1} Mount the tape on your tape drive.

2} Make sure that the directory that you'" store the tools in is the current
directory,

3} Enter the tar command for your system; for example,

tar x

This copies the entire tape intOthe directory.

Section 3

Introduction to Common Object File Format

The assembler and linker create object files that can be executed by the
TMS320C30. The format that these object files are in is called common object
file format, or COFF.

COFF object format makes modular programming easier because it encourages
you to think in terms of blocks of code and data when you write an assembly
language program. These blocks are known as sections. Both the assembler
and the linker provide directives that allow you to create and manipulate sec
tions.

This chapter provides an overview of COFF sections and includes the follow
ing topics:

Section Page
3.1 Sections .. 3-2
3.2 How the Assembler Handles Sections ... 3-3
3.3 How the Linker Handles Sections .. 3-9
3.4 Relocation ... / 3-14
3.5 Loading a Program 3-15
3.6 Symbols in a COFF File ... 3-16

Appendix A details COFF object structure; for example, it describes the fields
in a file header and the structure of a symbol table entry. Appendix A is mainly
useful for those of you who are interested in the internal format of object files.

3-1

Common Object File Format - Sections

3.1 Sections

3-2

The smallest relocatable unit of an object file is called a section. A section
is a relocatable block of code or data which will (ultimately) occupy contig
uous space in TMS320C30 memory. Each section of an object file is separate
and distinct from the other sections. COFF object files always contain three
default sections:

• The .text section usually contains executable code.
• The .data section usually contains initialized data.
• The .bss section usually reserves space for uninitialized variables.

In addition, the assembler and linker allow you to create, name, and link
named sections that can be used similarly to the .data, .text, and .bss sections.

It is important to note that there are two basic types of sections:

• Initialized sections contain data or code. The .text and .data sections
are initialized; named sections created with the .sect and .asect assem
bler directives are also initialized.

• Uninitialized sections reserve space in the memory map for uninitial
ized data. The .bss section is uninitialized; named sections created with
the .usect assembler directive are also uninitialized.

The assembler provides several directives that allow you to associate various
portions of code and data with the appropriate sections. The assembler builds
these sections during the assembly process, creating an object file that is or
ganized similarly to the object file shown in Figure 3-1.

One of the linker's functions is to relocate sections into the target memory map
(this is called allocation). Since most systems contain several different types
of memory, using sections can help you to use target memory more efficiently.
All sections are independently relocatable; you can place different sections
into various blocks of target memory. For example, you can define a section
that contains an initialization routine, and then allocate the routine into the
portion of the memory map that contains EPROM.

Figure 3-1 shows the relationship between sections in an object file and a
hypothetical target memory.

Object File Target Memory

o

Figure 3-1. Partitioning Memory into logical Blocks

Introduction to COFF - How the Assembler Handles Sections

3.2 How the Assembler Handles Sections
The assembler's main function in regard to sections is to identify the portions
of an assembly language program that belong in a particular section. The as
sembler has six directives that support this function:

• The .bss and .usect directives reserve defined amounts of space in
memory (usually RAM). This reserved space is used for storing vari
ables.

• The .text directive identifies the source statements that follow it as
executable code. The statements following a .text directive are assem
bled into the .text section.

• The .data directive identifies the source statements that follow it as
initialized data. The statements following a .data directive are assembled
into the .data section.

• The .sect and .asect directives define named sections that can be
used like the .text and .data sections. The .sect directive creates a section
with relocatable addresses; the .asect directive creates a section with
absolute addresses. The statements following a .sect or .asect directive
are assembled into the appropriate named section.

The .bss and .usect directives create uninitialized sections; the .text, .data,
.sect, and .asect directives create initialized sections.

Note:

If you don't use any of the sections directives, the assembler assembles
everything into t!he .text section.

3.2.1 Uninitialized Sections

Uninitialized sections reserve space in TMS320C30 memory; they are usually
allocated into RAM. These sections have no actual contents in the object file;
they simply reserve memory. A program can use this space at run time for
creating and storing variables.

Uninitialized data areas are built by using the .bss and .usect assembler direc
tives. The .bss directive reserves space in the .bss section. The .usect directive
reserves space in a specific uninitialized, named section. Each time you invoke
the .bss directive, the assembler reserves more space in the .bss section. Each
time you invoke the .usect directive, the assembler reserves more space in the
specified named section.

You will usually allocate all variables into the .bss section. Occasionally, you
may find it convenient to reserve additional space for variables and allocate
this space separately from .bss; you can use .usect for this purpose.

The syntaxes for these directives are:

.bss symbol, size in words
symbol .usect "section name", size in words

3-3

I~bduction to COFF - How the Assembler Handles Sections

• The symbol points to the first word reserved by this invocation of the
.bss or .usect directive. The symbol corresponds to the name of the
variable that you're reserving space for. It can be referenced by any other
section and can also be declared as a global symbol (with the .global
assembler directive).

• The size is an absolute expression. The .bss directive reserves size words
in the .bss section; the .usect directive reserves size words in section
name.

• The section name parameter tells the assembler which named section to
reserve space in. (For more information about named sections, see
Section 3.2.3.)

The .text, .data, .sect, and .asect directives tell the assembler to stop assembl
ing into the current section and begin assembling into the indicated section.
The .bss and .usect directives, however, do not end the current section and
begin a new one; they simply "escape" from the current section temporarily.
The .bss and .usect directives can appear anywhere in an initialized section
without affecting the contents of the initialized section.

3.2.2 Initialized Sections

3-4

Initialized sections contain executable code or initialized data. The contents
of these sections are stored in the object file and placed in TMS320C30 me
mory when the program is loaded. Each initialized section is separately relo
catable and may reference symbols that are defined in other sections. The
linker automatically resolves these section-relative references.

Four directives tell the assembler to place code or data into a section. The
syntaxes for these directives are:

.text

.data

.sect "section name"

.asect "section name", address

When the assembler encounters one of these directives, it stops assembling
into the current section (acting as an implied "end current section" command).
It then assembles subsequent code into the respective section until it en
counters a .text, .data, .asect, or .sect directive.

Sections are built up through an iterative process. For example, when the
assembler first encounters a .data directive, the .data section is empty. The
statements following this first .data directive are assembled into the .data
section (until the assembler encounters a .te"t, .sect, or .asect directive). If the
assembler encounters subsequent .data directives, it adds the statements fol
lowing these .data directives to the state~ents that are already in the .data
section. This creates a single .data sectiolil that can be allocated contiguously
into memory. .

Introduction to COFF - How the Assembler Handles Sections

3.2.3 Named Sections

Named sections are sections that you create. You can use them like the de
fault .text, .data, and .bss sections, but they are assembled separately from the
default sections.

For example, repeated use of the .text directive builds up a single .text section
in the object file. When linked, this .text section is allocated into memory as
a single unit. Suppose there is a portion of executable code (perhaps an in
itialization routine) that you don't want allocated with .text. If you assemble
this segment of code into a named section, it is assembled separately from
.text, and you will be able to allocate it into memory separately from .text.
(Note that you can also assemble initialized data that is separate from the .data
section, and you can reserve space for uninitialized variables that is separate
from the .bss section.)

Three directives let you create named sections:

.. The .usect directive creates sections that are used like the .bss section.
These sections reserve space in RAM for variables.

• The .sect and .asect directives create sections that can be used like the
default .text and .data sections. The .sect directive creates named sec
tions with relocatable addresses; the .asect directive creates named sec
tions with absolute addresses.

The syntaxes for these directives are:

symbol .usect "section name", size in words
.sect "section name"
.asect "section name", address

The section name parameter is the name of the section. Section names are
significant to 8 characters. You can create up to 32,767 separate named sec
tions.

Each time you invoke one of these directives with a new name, you create a
new named section. Each time you invoke one of these directives with a name
that was already used, the assembler assembles code or data (or reserves
space) into the section with that name. You cannot use the same names with
different directives. That is, you cannot create a section with the .usect di
rective and then try to use the same section with .sect.

3-5

Introduction to COFF - How the Assembler Handles Sections

3.2.4 Section Program Counters

The assembler maintains a separate program counter for each section. These
program counters are known as section program counters, or spes.

An SPC represents the current address within a section of code or data. Ini
tially, the assembler sets each SPC to O. As the assembler fills a section with
code and data, it increments the appropriate SPC. If you resume assembling
into a section, the assembler remembers the appropriate SPC's previous value
and continues incrementing at that point.

The assembler treats each section as if it begins at address 0; the linker relo
cates each section according to its final location in the memory map.

3.2.5 Absolute Sections

The .asect directive defines a named section whose addresses are absolute
with respect to a specified address. Absolute sections are useful for loading
code from off-chip memory into faster on-chip memory.

The syntax for this directive is:

.asect "section name", address

The section name parameter· identifies the name of the absolute section (Sec
tion 3.2.3 describes named sections). The address parameter identifies the
section's absolute starting address in target memory. In order to use an ab
solute section, you must know which location you want the section to execute
from, and specify it as the address parameter.

Most sections directives create sections with relocatable addresses. These
sections always have an initial SPC value of 0; the linker relocates these sec
tions appropriately. The initial SPC value for an absolute section, however, is
the specified address. The addresses of all code assembled into an absolute
section are offsets from this address. The linker does relocate sections defined
with .asect; however, any labels defined within an absolute section retain their
absolute (runtime) addresses. Thus, references to these labels refer to their
runtime addresses, even though the section is not initially loaded at this ad
dress.

3.2.6 An Example That Uses Sections Directives

3-6

Figure 3-2 shows how you can build COFF sections incrementally, using the
sections directives to swap back and forth between the different sections. You
can use sections directives:

• To begin assembling code or data into a section for the first time, or
• To continue assembling into a section that already contains code. In this

case, the assembler simply appends the new code to the code that is
already assembled into the section.

The format of this example is a listing file. By using a listing file, this example
shows how the SPCs are modified during assembly. A line in a listing file has
four fields:

Introduction to COFF - How the Assembler Handles Sections

0001
0002
0003
0004 000000
0005 000000 00000011

000001 00000022
000002 00000033

0006
0007
0008
0009 000000
0010 000001
0011
0012
0013
0014
0015 000003 00000123
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

000000
000000
000001
000002
000002
000003
000004

0032 000004

0869000A
08610000

02412001
6E46FFFE
15210000+

0033 000004 OOOOOOAA
000005 OOOOOOBB
000006 OOOOOOCC

0034
0035
0036
0037 000000
0038 000001
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053

000005
000005
000006
000007
000007
000008
000009

0054 000000

0869000A
08610000

OAC12001
6E46FFFE
15210007+

0055 000000 00000000'
000001 00000005'

** Assemble ,an initialized table into .data **

coeff
.data
.word 011h, 022h, 033h

** Reserve space in .bss for two variables **

.bss

.bss
varl,l
buffer, 10

** Still in .data **

ptr .word 0123h

** Assemble code into the .text section **

.text
add: LDI 10,ARl

LDI O,Rl
aloop:

ADDI *ARO++,Rl
DBNZ AR1,aloop
STI Rl,@varl

** Assemble another initialized table into **
** the .data section **

ivals
.data
.word OAAh, OBBh, OCCh

** Define another section for more variables **

var2
inbuf

.usect

.usect
"newvars" , 1
"newvars",7

** Assemble more code into .text **

.text
mpy: LDI 10,ARl

LDI O,Rl
mloop:

MPYI *ARO++,Rl
DBNZ AR1,mloop
STI Rl,@var2

** Define a named section for into vectors **

.sect

.word
"vectors"
add, mpy

Figure 3-2. Using Sections Directives

3-7

Introduction to COFF - How the Assembler Handles Sections

3-8

As Figure 3-3 shows, the file in Figure 3-2 creates five sections:

.text contains 10 words of object code .

. data contains 7 words of object code.

vectors is a named section created with the .sect directive; it contains 2
words of initialized data .

. bss reserves 11 words in memory.

newvars is a named section created with the .usect directive; it reserves 8
words in memory.

The second column identifies the object code that is assembled into these
sections; the first column identifies the source statements that generated the
object code.

Line Numbers

25
26
28
29
30
50
51
53
54
55

6
6
6

18
37
37
37

62
62

12,13

43,44

Object Code

.text section

.data section

vectors

Figure 3-3. Object Code Generated by Figure 3-2

Introduction to COFF - How the Linker Handles Sections

3.3 How the linker Handles Sections
The linker has two main functions in regard to sections. First, the linker uses
the sections in COFF object files as building blocks; it combines input sections
(when more than one file is being linked) to create output sections in an ex
ecutable COFF output module. Second, the linker chooses memory addresses
for the output sections.

The linker provides two directives that support these functions:

• The MEMORY directive allows you to define the memory map of a tar
get system. You can name portions of memory and specify their starting
addresses and their lengths.

• The SECTIONS directive tells the linker how to combine input sections
and where to place the output sections in memory.

It is not always necessary to use linker directives. If you don't use them, the
linker uses the default allocation algorithm described in Section 3.3.1. When
you do use linker directives, you must specify them in a linker command file.

Refer to the following sections for more information about linker command
files and linker directives:

Section Page
9.4 Linker Command Files ... 9-11
9.6 The MEMORY Directive .. 9-14
9.7 The SECTIONS Directive ... 9-16

3.3.1 Default Allocation

You can link files without specifying a MEMORY or SECTIONS directive. The
linker uses a default model to combine sections (if necessary) and allocate
them into memory. When using the default model, the linker:

1) Assumes that memory begins at address Oh.
2) Assumes that 224 words are available to allocate object code into.
3) Allocates the .text section into memory, beginning at address O.
4) Allocates the .data section into memory, immediately following .text.
5) Allocates the .bss section into memory, immediately following .data.
6) Allocates all named sections into memory, immediately following .bss.

Named sections are allocated in the order that they're encountered in the
input files.

Note that the. linker does not actually place an object code into memory; it
assigns addresses to sections so that a loader can place the code in memory.

Figure 3-4 shows how a single file would be allocated using default allo
cation.

3-9 .

Introduction to COFF - How the Linker Handles Sections

3-10

.text
OOOOOOh

size = 10 words

OOOOOAh

.data

size = 7 words

000011h

vectors size = 11 words

.bss
00001Ch

size = 8 words

newvars 000024h

size = 2 words

Figure 3-4. Placing the Object Code from Figure 3-2 into Memory
(Default Allocation)

As Figure 3-4 shows, the linker:

1) Allocates the .text section first, beginning at address Oh. The .text sec
tion contains 10 words of object code.

2) Allocates the .data section next, beginning at address Ah. The .data
section contains 7 words of object code.

3) Allocates the .bss section Ihird, beginning at address 11 h. The .bss
section reserves 11 words in memory.

4) Allocates the named sectioh newvars at address 1 Ch. (newvars was
the first named section encountered in the original input file - see Figure
3-2.) The newvars sectiolil reserves 8 words in memory.

5) Allocates the named sectibn vectors at address 24h. The vectors
section contains 2 words of object code.

Figure 3-5 shows a simple example of how two files might be linked together.
When you link several files using the default algorithm, the linker combines
all inp~t sections that have the same name into one output section that has

Introduction to COFF - How the Linker Handles Sections

this same name. For example, the linker combines the .text sections from two
input files to create one .text output section.

Figure 3-5. Combining Input Sections from Two Files (Default Allocation)

In Figure 3-5, filel.obj and file2.obj each contain the .text, .data, and
.bss default sections and a named section called vars; f ile2. obj also con
tains a named section called Init. As Figure 3-5 shows, the linker:

1) Combines filel .text with file2 .text to form one .text output section.
The .text output section is allocated at address Oh.

2) Combines filel .data with file2 .data to form the .data output sec
tion. The .data output section is allocated following the .text output
section.

3) Combines filel .bss with file2 .bss to form the .bss output section.
The .bss output section is allocated following the .data output section.

4) Combines filel vars with file2 vars to form the vars output sec
tion. (The vars section is the first named section that is encountered
during the link, so it is allocated before the second named section,
Init.) The vars output section is allocated following the .bss output
section.

5) Allocates the Init section from file2 after the vars section.

3-11

Introduction to COFF - How the Linker Handles Sections

3.3.2 Placing Sections in the Memory Map

3-12

Figure 3-4 and Figure 3-5 illustrate the linker's default methods for combining
sections and allocating them into memory. Sometimes you may not want to
use the default setup. For example, you may not want to combine all of the
.text sections into a single .text section. Or, you might want a named section
placed at address 40h instead of the .text section. Most memory maps are
comprised of various types of memories (DRAM, ROM, EPROM, etc.) in var
ying amounts; you may want to place a section in a particular type of memory.

The next two illustrations show another possible combination of the sections
from Figure 3-4

• Figure 3-6 contains MEMORY and SECTIONS definitions.

• Figure 3-7 shows how the sections from figure Figure 3-6 are allocated
into memory.

/**/
/* Linker command file */
/**/

MEMORY
{

VECS:
ROM:
RAMO:
RAMI:

SECTIONS
{

vectors
.text
.data
.bss
newvars

origin
origin
origin
origin

OOOOOOh
000040h
801000h
80I400h

OOOOOOh {
{
{
{
{

length
length
length
length

> ROM
> ROM
> RAMO
> RAMI

40h
FCOh
400h
400h

Figure 3-6. MEMORY and SECTIONS Directives for Figure 3-7

• The MEMORY directive in Figure 3-6 defines four memory ranges:

VECS
ROM
RAMO
RAMI

The origin for each of these ranges identifies the range's starting address
in memory. The length specifies the length of the range. For example,
memory range RAMO, with starting address 801000h and length 400h,
defines the addresses 801 OOOh through 8013FFh in memory.

Introduction to COFF - How the Linker Handles Sections

.text

.data

vectors

.bss

newvars

• The SECTIONS directive in Figure 3-6 defines the order in which the
sections are allocated into memory. The vectors section must begin
at address O. Both .text and .data are allocated into the ROM area that
was defined by the MEMORY directive. The .bss section is allocated
into RAMO, and newvars is allocated into RAMl.

Object Code Memory
OOOOOOh

(interrupt vectors)

000002h

000040h
(Internal ROM)

0OOO4Ah

0OOO51h

B01000h
(RAM blockO)

801400h
(RAM block1)

801408h

801800h

Figure 3-7. Rearranging the Memory Map from Figure 3-4

3-13

Introduction to COFF - Relocation

3.4 Relocation

0001

The assembler treats each section as if it began at address O. All relocatable
symbols (labels) are relative to address 0 in their sections. Of course, all sec
tions can't actually begin at address 0 in memory, so the linker relocates
sections by:

• Allocating sections in the memory map so that they begin at the appro
priate address,

• Adjusting symbol values to correspond to the new section addresses,
and

• Patching references to relocated symbols to reflect the adjusted symbol
values.

The linker uses relocation entries to adjust references to symbol values. The
assembler creates a relocation entry each time a relocatable symbol is refer
enced. The linker then uses these entries to patch the references after the
symbols are relocated. Figure 3-8 contains a code segment that generates
relocation entries.

.ref X
0002 00000000 .text
0003 00000000 6000000001
0004 00000001 082000002+
0005 00000002 060000000 Y:

BR X
LDI @Y,RO
IDLE

Generates a relocation entry
Generates a relocation entry

3-14

Figure 3-8. An Example of Code that Generates Relocation Entries

In Figure 3-8, both the symbols X and Yare relocatable. x is defined in some
other module; Y is defined in the .text section of this module. When assem
bled, x has a value of 0 (,the assembler assumes all undefined external symbols
have values of 0) and 'y has a value of 2 (relative to address 0 in the .text
section). The assembler generates two relocation entries, one for x and one
for Y. The reference to X is. an external reference (indicated by the! character
in the listing). The reference to Y is to an internally defined relocatable symbol
(indicated by +).

After linking, suppose that x is relocated to address 100h. Suppose also that
the .text section is relocated to begin at address 200h; Y now has a relocated
value of 202h. The linker uses the two relocation entries to patch the two
references in the object code:

60000000
08200002

BR X
LDI @Y,RO

becomes
becomes

60000100
08200202

Each section in a COFF object file has a table of relocation entries. The table
contains one relocation entry for each relocatable reference in the section. The
linker usually removes relocation entries after it uses them. This prevents the
output file from being relocated again (if it is relinked or when it is loaded).
A file that contains no relocation entries is an absolute file (all its addresses
are absolute addresses). If you want the linker to retain relocation entries,
invoke the linker with the -r option.

Introduction 'to-COFF - Loading a Program

3.5 Loading a Program

The linker produces executable GOFF object modules. An executable object
file has the same GOFF format as object files that are used as linker input;
however, the sections in an executable object file are combined and relocated
to fit into target memory.

In order to run a program, the data in the executable object module must be
transferred (or loaded) into target system memory.

Several methods can be used for loading a program, depending on the exe
cution environment. Some of the more common situations are listed below.

• The TMS320G30 debugging tools (including the software simulator,
XDS emulator, and software development system) have built-in loaders.
Each of these tools has a LOAD command that invokes a GOFF loader;
the loader reads the executable file and copies the program into target
memory.

• If you are using a ROM- or EPROM-based system, you can use the ob
ject format converter (which is included with the assembly language
package) to convert the executable GOFF object module into one of
several object file formats. You can then use the converted file with an
EPROM programmer to burn the program into an EPROM.

• Some TMS320G30 programs are loaded under the control of an operat
ing system or monitor software running directly on the target system.
In this type of application, the target system usually has an interface to
the file system on which the executable module is stored. You must
write a custom loader for this type of system. The loader must compre
hend the file system (in order to access the file) as well as the memory
organization of the target system (to load the program into memory).

3-15

Introduction to COFF - Symbols in a COFF File

3.6 Symbols in a COFF File

A COFF file contains a symbol table that stores information about symbols in
the program. The linker uses this table when it performs relocation. Debug
ging tools can also use the symbol table to provide symbolic debugging.

3.6.1 External Symbols

External symbols are symbols which are defined in one module and referenced
in another module. You can use the .global directive to identify symbols as
external. In a source module, an external symbol can be either:

• Defined in the current module, or
• Defined in another module and referenced in the current module.

The following code segment illustrates these definitions.

X: LDI RO,Rl
LDI @y,RO
.global X
. global y

Define x
Reference y
DEF of x
REF of Y

The .global definition of x says that it is an external symbol defined in this
module, and that other modules can reference x. The .global definition of y
says that it is an undefined symbol that is defined in some other module.

The assembler places both x and y in the object file's symbol table. When the
file is linked with other object files, the entry for x defines unresolved refer
ences to x from other files. The entry for y causes the linker to look through
the symbol tables of other files to look for y's definition.

The linker must match all references with corresponding definitions. If the
linker cannot find a symbol's definition, it prints an error message about the
unresolved reference. This type of error prevents the linker from creating an
executable object module.

3.6.2 The Symbol Table

3-16

The assembler always generates an entry in the symbol table when it en
counters an external symbol (both definitions and references). The assembler
also creates special symbols that point to the beginning of each section; the
linker uses these symbols to'relocate references to other symbols in a section.

The assembler does not usually create symbol table entries for any other type
of symbol because the linker does not use them. For example, labels are not
included in the symbol table unless they are declared with .global. For sym
bolic debugging purposes, it is sometimes useful to have entries in the symbol
table for each symbol in a program. To accomplish this, invoke the assembler
with the -s option.

Section 4

Assembler Description

The assembler translates assembly language source files into machine lan
guage object files. These object files are in common object file format
(COFF), discussed in Section 3. Source files can contain these assembly
language elements:

• Assembler directives (described in Section 5),
• Assembly language instructions (summarized in Section 6), and
• Macro directives (described in Section 7).

The assembler:

• Is a two-pass assembler.
• Processes the source statements in a text file to produce a relocatable

object file.
• Produces a source listing (if requested) and provides you with control

over this listing.
• Appends a cross-reference listing to the source listing (if requested).
• Allows you to segment your code into sections.
• Maintains an SPC (section program counter) for each section of object

code.
• Defines and references global symbols.
• Assembles conditional blocks.
• Supports macros, allowing you to define macros inline or in a macro li-

brary.

Section Page
4.1 Assembler Development Flow .. 4-2
4.2 Invoking the Assembler ... 4-3
4.3 Specifying Alternate Directories for Assembler Input 4-4
4.4 Source Statement Format .. 4-6
4.5 Constants ... 4-8
4.6 Character Strings .. 4-11
4.7 Symbols ... 4-11
4.8 Expressions ... 4-12
4.9 Source Listings ... 4-15
4.10 Cross- Reference Listings .. 4-17

4-1

Assembler Description - Development Flow

4.1 Assembler Development Flow

4-2

Figure 4-1 illustrates the assembler's role in the assembly language develop
ment flow. The assembler accepts assembly language source files as input and
creates a COFF object file that can be linked.

Macro
Source
Files

Executable
'-----I COFF Object

File
r---------~

C Source

Figure 4-1. Assembler Development Flow

Assembler Description - Invoking the Assembler

4.2 Invoking the Assembler

To invoke the assembler, enter:

asm30 [input file [object file [listing file]]} [-options]

input file names the assembler source file. If you do not supply an ex
tension, the assembler assumes that the input file has the de
fault extension .asm. If you do not supply an input filename
when you invoke the assembler, the assembler will prompt you
for one.

object file names the object file that the assembler creates. If you do not
supply an extension, the assembler uses .obj as a default ex
tension. If you do not supply an object filename the assembler
creates a file that uses the input filename with the .obj exten
sion.

listing file names the optional listing file that the assembler can create. If
you do not supply a name for a listing file, the assembler does
not create one, unless you use the -I (lowercase "L") option.
In this case, the assembler uses the input filename with the .1st
extension. If you supply a filename without an extension, the
assembler uses .1st.

option identifies the assembler options that you want to use. Case is
insignificant for assembler options. Options can appear any
where on the command line; precede each option with a hy
phen (-). You can string the options together; for example, -Ic
is equivalent to -I -c. Valid options include:

-I (lowercase "L") produces a listing file.

-i specifies a directory where the assembler can find files
named by the .copy, .include, or .mlib directives. The format
of the -i option is -ipathname. You can specify up to 10
directories in this manner; each path name must be preceded
by the -i option.

-x produces a cross-reference table and appends it to the end
of the listing file. If you use -x but do not request a listing
file, the assembler creates one anyway, but the listing con
tains only the cross-reference table.

-s puts all defined symbols in the object file's symbol table.
Usually, the assembler puts only global symbols into the
symbol table. When you use Os, symbols that are defined
as labels or as assembly-time constants are also placed in
the symbol table.

-c makes case insignificant. For example, the symbols ABC
and abc will be equivalent. If you do not use this option
case is significant.

-q (quiet) suppresses the banner and all progress information.

4-3

Assemb1er Description - Alternate Directories

4.3 Specifying Alternate Directories for Assembler Input
The .copy and .include directives tell the assembler to read source statements
from another file; the .mlib directive names a library that contains macro defi
nitions. Section 5, Assembler Directives, provides examples of the .copy, .in
clude, and .mlib directives. The syntax for these directives is:

.copy "filename"

.include "filename"

.mlib "filename"

The filename names a copy/include file that the assembler reads statements
from or a macro library that contains macro definitions. The filename can be
a complete pathname or a filename with no path information. If you provide
a path name, the assembler uses that path and does not look for the file in any
other directories. If you do not provide path information, the assembler
searches for the file in:

1) The directory that contains the current source file. (The current source
file refers to the file that is being assembled when the .copy, .include, or
.mlib directive is encountered.)

2) Any directories named with the -i assembler option.

3) Any directories set with the environment variable A-DIR.

You can augment the assembler's directory search algorithm by using the -i
assembler option or the environment variables A-DIR.

4.3.1 -i Assembler Option

4-4

The assembler option names an alternate directory that contains copy/include
files or macro libraries. The format of the -i option is:

asm30 -ipathname source filename

You can use up to 10 -i options per invocation; each -i option names one
pathname. In assembly source, you can now use the .copy, .include, or .mlib
directive without specifying any path information. If the assembler doesn't
find the file in the directory that contains the current source file, it searches the
paths provided by the -i options.

For example, assume that a file called source. asm is in the current directory;
source. asm contains the following directive statement:

.copy "copy.asm".

The complete path/filename for copy. asm is:

• c:\c30\files\copy.asm (DOS),
• [c30.files]copy.asm (VMS), or
• /c30/files/copy. asm(UNIX).

This is how you invoke the assemble.r:

DOS: asm30 -ic:\c30\files source.asm
VMS: asm30 -i[c30.files] source.asm
UNIX: asm30 -i/c30/files source.asm

Assembler Description - Alternate Directories

The assembler first searches for copy. asm in the current directory, because
source. asm is in the current directory. Then, the assembler searches in the
directory named with the -i option.

4.3.2 Environment Variable (A-DIR)

An environment variable is a system symbol that you define and assign a string
to. The assembler uses an environment variable named A-DIR to name al
ternate directories that contain copy/include files or macro libraries. The
command for assigning the environment variable is:

DOS: set A-DIR=pathname;another pathname .. .
VMS: assign A-DIR "pathname;another pathname ... "
UNIX: setenv A-DIR "pathname;another pathname ... "

The pathnames are directories that contain copy/include files or macro li
braries. You can separate the pathnames with a semicolon or with blanks. In
assembly source, you can now use the .copy, .include, or .mlib directive
without specifying any path information. If the assembler doesn't find the file
in the directory that contains the current source file or in directories named
by -i, it searches the paths named by the environment variable.

For example, assume that a file called source. asm contains these statements:

. copy "copyl.asm"

. copy "copy2.asm"

Assume that the complete path and file information for these copy files is:

• c:\320\files\copy1.asm and c:\dsys\copy2.asm (DOS),
• [320.files)copyl.asm and [dsys)copy2.asm(VMS),or
• /320/f iles/copl. asm and /dsys/cop2. asm (UNIX)

This is how you set the environment variables and invoke the assembler:

set A-DIR=c:\dsys; c:\exec\files
asm30 -ic:\320\files source.asm

assign A-DIR "[dsys]; [exec.files]"
asm30 -i[320.files) source.asm

UNIX: setenv A-DIR "/exec/files i/dsys"
asm30 -i/320/files source.asm

The assembler first searches for copyl. asm and copy2. asm in the current di
rectory, because source. asm is in the current directory. Then the assembler
searches in the directory named with the icon -i option, and finds copyl. asm.
Finally, the assembler searches the directory named with A-DIR and finds
copy2.asm.

Note that the environment variable remains set until you reboot the system or
reset the variable by entering:

DOS:
VMS:
UNIX:

set A-DIR=
deassign A-DIR
setenv A-DIR" "

4-5

Assemble Description - Source Statement Format

4.4 Source Statement Format

TMS320C30 assembly language source programs consist of source state
ments that can contain assembler directives, assembly language instructions,
macro directives, and comments. Source statement lines can be as long as the
source file format allows. The assembler reads up to 200 characters per line.
If the statement contains more than 200 characters, the assembler truncates
the line and issues a warning.

The next several lines show examples of source statements:

SYM
Begin:

.set
ADDI
LDI

OA5h
SYM+5,R1
R1,R2

i Symbol SYM = OA5h
i Add (SYM+5) to the contents of R1
i Move contents of R1 to R2

A source statement can contain four ordered fields. The general syntax for
source statements is:

[Iabel[:}] mnemonic [operand listj [;commentj

where

• Statements must begin with a label, a blank, an asterisk, or a semicolon.
• Labels are optional; if used, they must begin in column 1.
• One or more blanks must separate each field. (Note that tab characters

are equivalent to blanks.)
• Comments are optional. Comments that begin in column 1 can begin

with an asterisk or a semicolon (* or ;), but comments that begin in any
other column must begin with a semicolon.

4.4.1 Label Field

4-6

Labels are optional for all assembly language instructions and for most (but
not all) assembler directives. A label must begin in column 1 of a source
statement. A label can contain up to 32 alphanumeric characters (A-Z, a-z,
0-9, -, and $) .. Labels are case sensitive, and the first character cannot be a
number. A label can be followed by a colon (:); the colon is not treated as
part of the label name. If you don't use a label, then the first character position
must contain a blank, a semicolon, or an asterisk.

When you use a label, its value is the current value of the section program
counter (the label points to the statement it's associated with). If, for example,
you use the .word directive to initialize several words, a label would point to
the first word. In the following example, the label Start has the value 3Fh.

0002 * Assume some other code was assembled
0003 00003F OOOOOOOA Start: .word OAh,3,7

000040 00000003
000041 00000007

Assemble Description - Source Statement Format

A label on a line by itself is a valid statement. It assigns the current value of
the section program counter to the label - this is equivalent to the following
directive statement:

label .set $; ($ represents the current value of the SPC)

When a label appears on a line by itself, it points to the instruction on the next
line (the SPC is not incremented):

0005 000042 Here:
0006 000042 08010000 LDI RO,R1

4.4.2 Mnemonic Field

The mnemonic field follows the label field. The mnemonic field cannot start
in column 1, or it would be interpreted as a label. The mnemonic field can
contain one of the following opcodes:

• Machine-instruction mnemonic (such as ADDI, MPYF, LDI)

• Assembler directive (such as .data, .Iist, .set)

• Macro directive (such as SMACRO, SLOOP, SENDLOOP)

• A macro invocation

4.4.3 Operand Field

The operand field is a list of operands that follows the mnemonic field. An
operand can be a constant (see Section 4.5). a symbol (see Section 4.7), or
a combination of constants and symbols in an expression (see Section 4.8).
You must separate operands with commas.

4.4.4 Comment Field

A comment can begin in any column and extends to the end of the source line.
A comment can contain any ASCII character including a blank. Comments
are printed in the assembly source listing but they do not affect the assembly.

A source statement that contains only a comment is valid. If it begins in col
umn 1, it can start with a ; or a *. Comments that begin anywhere else on the
line must begin with a;. The * symbol designates a comment only if it ap
pears in column 1 .

4-7

Assembler Description - Constants

4.5 Constants
The assembler supports seven types of constants:

• Binary integer constants,
• Octal integer constants,
• Decimal integer constants,
• Hexadecimal integer constants,
• Floating-point constants,
• Character constants, and
• Assembly-time constants.

The assembler maintains each constant internally as a 32-bit quantity.

Note that constants are not sign extended. For example, the constant
OFFFFH is equal to 0000FFFF,6 or 65,535,0; it does not equal -1.

4.5.1 Binary Integers

A binary integer constant is a string of up to 32 binary digits (Os and 1 s) fol
lowed by the suffix B (or b). If less than 32 digits are specified, the assembler
right-justifies the value and zero-fills the unspecified bits. Examples of valid
binary constants include:

OOOOOOOOB Constant equal to 0'0 or 0'6

0100000b Constant equal to 32,0 or 2016

01 b Constant equal to 110 or 1'6

11111000B Constant equal to 248,0 or OF8,6

4.5.2 Octal Integers

4-8

An octal integer constant is a string of up to 11 octal digits (0 through 7)
followed by the suffix 0 (or q). Examples of valid octal constants include:

100

1000000

2260

Constant equal to 8'0 or 8'6

Constant equal to 32,768, 0 or 8000,6

Constant equal to 150,0 or 96,6

Assembler Description - Constants

4.5.3 Decimal Integers

A decimal integer constant is a string of decimal digits ranging from
-2,147,483,647 to 4,294,967,295. Examples of valid decimal constants in
clude:

1000

-32768

25

Constant equal to 100010 or 3E816

Constant equal to -32,76810 or -800016

Constant equal to 2510 or 1916

4.5.4 Hexadecimal Integers

A hexadecimal integer constant is a string of up to eight hexadecimal digits
followed by the suffix H (or h). Hexadecimal digits include the decimal values
0-9 and the letters A-F and a-f. A hexadecimal constant must begin with a
decimal value (0-9). If less than eight hexadecimal digits are specified, the
assembler right-justifies the bits. Examples of valid hexadecimal constants
include:

78h

OFh

37ACH

Constant equal to 120,0 or 007816

Constant equal to 1510 or 000F16

Constant equal to 14,25210 or 37 AC16

4.5.5 Character Constants

A character constant is a string of one to four characters enclosed in single
quotes. The characters are represented internally as 8-bit ASCII characters.
Two consecutive single quotes are required to represent each single quote
within a character constant. A character constant consisting only of two sin
gle quotes (no letter) is valid and is assigned the value O. If less than four
characters are specified, the assembler right-justifies the bits. Examples of
valid character constants include:

'ab'

'C'

"'0'

'abed'

Represented internally as 0000626116

Represented internally as 0000004316

Represented internally as 00004427,6

Represented internally as 6463626116

Note the difference between character constants and character strings (Sec
tion 4.6 discusses character strings). A character constant represents a single
integer value; a string is a list of characters.

4-9

Assembler Description - Constants

4.5.6 Floating-Point Constants

A floating-point constant is a string of decimal digits, followed by an optional
decimal point, fractional portion. and exponent portion. The syntax for a
floating-point number is:

[+ I - J [nnn 1 • [nnn lEI e [+ 1- 1 nnn J 1

where nnn is a string of decimal digits. A floating-point constant may be
preceded with a + or a -. You must specify a decimal point; for example, 3.e5
is valid, but 3e5 is illegal. The exponent indicates a power of 10.

Valid floating-point constants include:

3
3.14
.3
-0.314e13
+314.5ge-2

Floating-point constants cannot be used in expressions; the only valid
floating-point operations are unary + and -. Floating-point constants that are
used in instructions are represented in short format (16 bits). All other float
ing-point constants are represented in single-precision format (32 bits).

For more information about floating-point format, refer to the Third-Genera
tion TMS320 User's Guide.

4.5.7 Assembly-Time Constants

4-10

If you use the .set directive to assign a constant value to a symbol, the symbol
becomes an assembly-time constant. In order to use this constant in ex
pressions, the value that is assigned to it must be absolute. For example:

sym .set 3
LDI sym,RO ; Load the constant 3 into RO

If you assign a floating-point constant to a symbol, then the symbol can be
used only as a floating-point constant. ,Similarly, if you assign an integer
constant to a symbol, then the symbol can be used only as an integer constant.
The following example is illegal:

sym .set 3
LDF sym,RO

; Integer constant
; Invalid - floating-point
; constant required

You can also use the .set directive to assign symbolic constants for register
names. In this case, the symbol becomes a synonym for the register:

sym .set RO
LDI lO,sym

Assembler Description - Character Strings/Symbols

4.6 Character Strings

A character string is a string of characters enclosed in double quotes. Double
quotes within character strings are represented by two consecutive double
quotes. The maximum string length varies - it is defined for each directive that
requires a character string. Characters are represented internally as 8-bit ASCII
characters. Appendix E lists valid characters.

Examples of valid character strings include:

"sample program" Defines a 14-character string, sample program

" P LA N "" C '1111' Defines an 8-character string, PLAN "e"

Character strings are used for:

• Filenames (as in . copy "filename")

• Section names (as in . sect "section name")

• Data initialization directives (as in .byte "charstring")

4.7 Symbols

Symbols are used as labels and in operands. A symbol name is a string of up
to 32 alphanumeric characters (A-Z, a-,z, 0-9, $, and -). The first character in
a symbol cannot be a number; symbols cannot contain embedded blanks. The
symbols you define are case sensitive; for example, the assembler will recog
nize ABC, Abc, and abc as three unique symbols. (You can override this with
the -c assembler option.) This type of symbol is valid only during the assem
bly in which it is defined, unless you use the .global directive to declare it as
an external symbol.

Symbols that are used as labels become symbolic addresses that are associ
ated with locations in the program. Labels must be unique; do not re-use
them for other statements. Mnemonic opcodes and assembler directive names
(without the "." prefix) are valid label names.

Symbols that are used in operands must be defined in the assembly by ap
pearing as labels or as operands of a .global, .set, or .bss directive.

The assembler has several predefined symbols, including:

• $ (the dollar sign character), which represents the current value of the
section program counter (SPC).

• These register symbols:

ARo-AR7
BK
DP

IF
IE
IOF

IRO
IR1
PC

RE
RC
RS

Ro-R7
SP
ST

4-11

Assembler Description - Expressions

4.8 Expressions

An expression is a constant, a symbol, or a series of constants and symbols
separated by arithmetic operators. The range of valid expression values is
-2,147,483,647 to 4,294,967,295.

Three main factors influence the order of expression evaluation:

• Parentheses. Expressions that are enclosed in parentheses are always
evaluated first.

Example: 8/(4/2) = 4, but 8/4/2 = 1

• Precedence groups. Operators (listed in Table 4-1) are divided into
four precedence groups. When the order of expression evaluation is not
determined by parentheses, the highest-precedence operation is evalu
ated first.

Example: 8 + 4/2 = 10 (4/2 is evaluated first)

• Left-to-right evaluation. When parentheses and precedence groups
do not determine the order of expression evaluation, the expressions are
evaluated from left to right. (Note that the highest-precedence group is
evaluated from right to left.)

Example: 8/4*2 = 4, but 8/(4*2) = 1

Note that all expressions are represented internally as 32-bit values. For ex
ample, -2 is represented as FFFF FFFEh, not as FFFEh.

4.8.1 Operators

4-12

Table 4-1 lists the operators that can be used in expressions. They are listed
according to precedence group.

Table 4-1. Operators

Group 1 (Highest Precedence) Group 3
Right-to-Left Evaluation Left-to-Right Evaluation

+ Unary plus (positive expression) + Addition
- Unary minus (negative expression) - Subtraction - (COM) 1s complement 1 (OR) Bitwise OR
! (NOT) Logical NOT (if expr. = 0, 1 (XOR) Bitwise exclusive OR

is returned, else 0 is returned) & Bitwise AND

Group 2 Group 4 (Relational Operators)
Left-to-Right Evaluation Left-to-Right Evaluation

* Multiplication < Less than
/ Division > Greater than
% (MOD) Modulo <= Less than or equal to

« (SHL) Shift left >= Greater than or equal to
» (SHR) Shift right = Equal to (= =)

<> Not equal to

Note: Operators in parentheses indicate an alternate form.

Assembler Description - Expressions

4.8.2 Expression Overflow or Underflow

The assembler checks for overflow and underflow conditions when arithmetic
operations are performed at assembly time. The assembler issues a Value
Truncated warning whenever an overflow or underflow occurs. The assem
bler does not check for overflow or underflow in multiplication.

4.8.3 Well-Defined Expressions

Some assembler directives require well-defined expressions as operands.
Well-defined expressions contain only symbols or assembly-time constants
that are defined before they are encountered in the expression. The evaluation
of a well-defined expression must be absolute. An example of a well-defined
expression is:

lOOOh+X Where x was previously defined as an absolute symbol.

4.8.4 Conditional Expressions

The assembler supports relational operators that can be used in any ex
pression; they are especially useful for conditional assembly. Relational oper
ators include:

= Equal
-- Equal
< = Less than or equal
> = Greater than or equal

1=
<
>

r'llot equal
Less than
Greater than

4.8.5 Relocatable Symbols and legal Expressions

Table 4-2 summarizes valid operations on absolute, relocatable, and external
symbols. An expression cannot multiply or divide by a relocatable or external
symbol. An expression cannot contain unresolved symbols that are relocata
ble with respect to different sections.

Table 4-2. Expressions with Absolute and Relocatab!e Symbols

A is ... B is ... Resu;ts of A+B ~re ... I Results of A-lB ~~

Assembler Description - Expressions

4-14

Here are some examples of expressions that use absolute and relocatable
symbols. These examples use four symbols that are defined in the same sec
tion:

intern_1:
LAB1:
intern_2:

.global extern-1

.word I liD'

.set 2

Defined in an external module
Relocatable, defined in current module
LAB1 = 2
Relocatable, defined in current module

• Example 1:

The statements in this example use an absolute symbol, LABL The first
statement puts the value 51 into register ARO. The second statement
loads the value 27 into register ARO.
LDI
LDI

LAB1 + ((4+3) * 7), ARO
LABl + 4 + 3 * 7, ARO

• Example 2:

ARO
ARO

51
27

All legal expressions can be reduced to one of two forms:

relocatable symbol ± absolute symbol

or

absolute value

Unary operators can only be applied to absolute values; they cannot be
applied to relocatable symbols. Expressions that cannot be reduced to
contain only one relocatable symbol are illegal. The first statement in the
following example is legal; the statements that follow it are not.
LDI extern_l - 10, ARO
LDI 10-extern-I, ARO
LDI -(intern-1), ARO
LDI extern-I/IO, ARO
LDI intern_l + extern-1, ARO

• Example 3:

Legal
Can't negate reloc. symbol
Can't negate reloc. symbol
I isn't an additive operator
Multiple relocatables

The first statement below is legal; although intern_l and intern_2
are relocatable, their difference is absolute because they're in the same
section. Subtracting one relocatable symbol from another reduces the
expression to relocatable symbol + absolute value. The second state
ment is illegal because the sum of two relocatable symbols is not an
absolute value.
LDI
LDI

intern_l - intern_2 + extern-I,ARO
intern_l + intern_2 + extern-I,ARO

• Example 4:

Legal
Illegal

An external symbol's placement in an expression is important to ex
pression evaluation. Although the statement below is similar to the first
statement in the previous example, it is illegal. This is because of left
to-right operator precedence; the assembler attempts to add intern-l
to extern-I.
LDI intern_l + extern-2 - intern_2, ARO ; Illegal

Assembler Description - Source Listings

4.9 Source Listings

1 2

A source listing shows source statements and the object code they produce.
To obtain a listing file, invoke the assembler with the -I (lowercase "L") op
tion.

At the top of each source listing page are two banner lines, a blank line, and
a title line. Any title supplied by a .title directive is printed on this line; a page
number is printed to the right of the title. If you don't use the .title directive,
the title area is left blank. The assembler inserts a blank line below the title
line.

Each line in the source file produces a line in the listing file that contains a
source statement number, an SPC value, the object code assembled, and the
source statement. A source statement may produce more than one word of
object code. The assembler lists the SPC value and object code on a separate
line for each additional word. Each additional line is listed immediately fol
lowing the source statement line.

3 4
0027 000006
0028 000007
0029 000008

03E20018 Begin: ASH 24,R2
02000002 ADD! R2,RO
78800000 RETS

shift to top of word
add to LSBs

Field 1 Source Statement Number. The source statement number is a
4-digit decimal number. The assembler numbers source lines as it
encounters them in the source file; some statements increment the
line counter but are not listed (for example, .title statements and
statements following a .nolist are not listed). The difference be
tween two consecutive source line numbers indicates the number
of statements in the source file that are not listed. Source lines
generated by a macro call, a .copy directive, or an .include directive
are renumbered starting at 0001. The original sequence continues
after the copying or macro expansion is complete. The assembler
precedes the line numbers of copied files with a letter code to
identify the level of copying. An A indicates the first level, B indi
cates a second level, etc.

Field 2 Section Program Counter. This field contains the section program
counter, or SPC, value (hexadecimal). Each section (.text, .data,
.bss, and named sections) maintains a separate SPC. Some direc
tives do not affect the SPC; they leave this field blank.

Field 3 Object Code. This field contains the hexadecimal representation of
the object code. All machine instructions and directives use this
field to list object code. This field also indicates the relocation type
by appending one of the following characters to the end of the field:

Undefined external reference
Relocatable with respect to the .text section

" Data relocatable (.data, .sect)
+ .bss relocatable

4-15

Assembler Description - Source Listings

Field 4 . Source Statement Field. This field contains the characters of the
source statement as they were scanned by the assembler. The
maximum line length accepted by the assembler is 200 characters.
Spacing in this field is determined by the spacing in the source
statement.

TMS320C30 Assembler Version 1.0 87.100 Fri May 29 14:13:54 1987
(cl Copyright 1987, Texas Instruments Inc.
TMS320C30 Integer Multiply PAGE 1

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018 000000
0019 000000 C20100CO
0020
0021 000001 03EOFFE8
0022 000002 03E1FFE8
0023 000003 OAC00001
0024 000004 OAC1COOO
0025 000005 880800CO
0026
0027 000006 03E20018
0028 000007 02000002
0029 000008 78800000
0030

* TMS320C30 32x32 Integer Multiply
* Inputs: x in RO, y in R1 *
*
*
*
*
*
*
*

ARO points to 2 words of temporary memory

Outputs: x * y in RO

Operation:
Let xO = 8 MSBs of x, yO = 8 MSBs of y

* result = (xO * yl + (yO * xl + xy
*********************~*********************************

. global mpy32

mpy32:
STI

II STI
ASH
ASH
MPYI
MPYI
MPYI

II ADDI
ASH
ADDI
RETS
.end

RO,*ARO
R1, *+ARO
-24,RO
-24,R1
*+ARO,RO
*ARO,R1
*ARO, *+ARO, RO
RO,R1,R2
24,R2
R2,RO

save x
save y
xO into RO
yO into R1
mpy upper bytes: xO * y

yO * x
mpy lower words
add product MSBs
shift back to top of word
add to LSBs

No Errors, No Warnings

Figure 4-2. Sample Assembler listing

4-16

Assembler Description - Cross-Reference listings

4.10 Cross-Reference listings

A cross-reference listing shows symbols and their definitions. To obtain a
cross-reference listing. invoke the assembler with the -x option or use the
.option directive. The assembler will append the cross-reference to the end
of the source listing.

TMS320C30 Assembler Version 1.0 87.100 Fri May 29 14: 13 :54 1987
(c) Copyright 1987, Texas Instruments Inc.

LABEL

K16
K24
K32
K8
KFLOAT
ext

labelO

labell

PAGE 3

VALUE DEFN REF

OOOOAABB 0007 0041
OOAABBCC 0008 0049
AABBCCDD 0009 0057
OOOOOOAA 0006 0071
E5541885 0010 0065
REF 0011 0026 0034 0042 0050

0058 0072
00000002+ 0019 0028 0036 0044 0052 0060

0074
00000003' 0028 0027 0035 0043 0051 0059

0073

Figure 4-3. Cross-Reference listing Format

• The label column contains each symbol that was defined or referenced
during the assembly.

• The value column contains a 4-digit hexadecimal number which is the
value assigned to the symbol or a name that describes the symbol's at
tributes. A value may also be followed by a character that describes the
symbol's attributes. Table 4-3 lists these characters and names.

• The definition (DEFN) column contains the statement number that
defines the symbol. This column is blank for undefined symbols.

• The reference (REF) column lists the line numbers of statements that
reference the symbol. A blank in this column indicates that the symbol
was never used.

Table 4-3. Symbol Attributes for Cross-Reference listings

Character
Meaning or Name

REF External reference (global symbol)

UNDF Undefined
,

Symbol defined in a .text section

" Symbol defined in a .data section
+ Symbol defined in a .bss section

4-17

Assembler Description

4-18

Section 5

Assembler Directives

Assembler directives supply program data and control the assembly process.
Assembler directives allow you to:

• Reserve space in memory for uninitialized variables
• Control the appearance of listings
• Initialize memory
• Assemble conditional blocks
• Define global variables
• Specify libraries that the assembler can obtain macros from
• Examine symbolic debugging information

This section is divided into two parts: the first part (Sections 5-1 through
5-7) describes the directives according to function, and the second part
(Section 5.8) is an alphabetical reference. You will find the following topics
in this section:

Section Page
5.1 Directives Summary .. 5-2
5.2 Sections Directives ... 5-4
5.3 Directives that Initialize Memory ... 5-6
5.4 Directives that Align the Section Program Counter 5-9
5.5 Directives that Format the Output Listing 5-10
5.6 Conditional Assembly Directives .. 5-11
5.7 Directives that Reference Other Files ... 5-12
5.8 Directives Reference ... 5-13

The TMS320C30 C compiler uses several directives for symbolic debugging.
Unlike other directives, symbolic debugging directives are not used in most
assembly language programs. Appendix B discusses these directives; they are
not discussed in this section.

5-1

Assembler Directives - Directives Summary

5.1 Directives Summary

Table 5-1 summarizes the assembler directives. Note that all source state
ments that contain a directive may have a label and a comment. To improve
readability, they are not shown as part of the directives' syntax.

Table 5-1. Directives Summary

Sections Directives
Mnemonic and Syntax Description

.asect "section name", address Assemble into an absolute named (initialized)
section

.bss symbol, size in words Reserve size words in the .bss (uninitialized data)
section

.data Assemble into the .data (initialized data) section

.Iabel "symbol" Define a label in an absolute section

.sect "section name" Assemble into a named (initialized) section

.text Assemble into the .text (executable code) section

symbol .usect "section name", size in words Reserve size words in a named (uninitialized)
section

Directives that Initialize Memory
Mnemonic and Syntax Description

.byte valuel [. ... , vaf:Jen} Initialize one or more successive bytes in the cur
rent section

.field value {size in bits} Initialize a variable-length field

.float valuet [, ... , va/uan} Initialize one or more 32-bit. single-precision,'
floating-point constants I

.hword valuel [, valuenJ t Initialize one or more 16-bit (half-word) values ,

oint value 1 [.... , va/uen} - initialize one or more 32-bit int~gers I
~?n!!. valuer [. ... , va/ueni ___________ -+-'_n_i_ti_3_liz_e_o_n_e_o_f_m __ ore 32-bit integers

!-=-s~ym;.;=b~o..;.I..;..~sa;;..t.:..,;.v..:;a:..:iu;..;e:...-. _____________ +i _I:..:.n:..:.it;.:.i~a:..:.liz;;..e;...::.a~,_assembly-time co.:..;.~"s:..:.t:.::a_n:..:.t_" ____ --l
.space size in wards Reserve size words in the current section , .. _---..,
~!lg "~'!!f!..J" [. "stringn"} _ Initialize one or more text:..:.st_f_in,..,g;;,.s _______ -I

.word va/wit [•. ,,' va/USn} initialize one or more 32-bit integers

Directives that Afign the Section Pr::;gram Counter (SPC)

Mnemonic and Syntax Description
r--:--.-------'----~----~~--------_+--------------~~~~----------~
~~ .. _.---_---_, __ ------_t_A_li.::.g..;.n-t:..:.h..;.e-S~P-C_o-n-a-.;.3-2_-w_o_rd.:..:...,:{_c_a_c_h.e_I:..' _b_o_u_n..;.d..;.3_r~Y_-i

.even Align the SPC on a word boundary
~----.-------------------------~--~-~--------~~~~~--------~

Dirfiictives that Format the Output Listing

f-_____ ._M_,.~emonic and Syntax Description

.length p.!!ge lenfJ~_' ____________ i_S_6_t_t_h_6-,p,-a-,9::..e_Ie_n-,g;;,.t_h_o_f_t_h_e_sQ_u_r_c_e_l_is_t_in,..,9::..... ___ -I
~____ Restart the .. _ s_o_u_r_c_e_l_is_t,_in...:g"-_________ ~

~_"_, Allow macro listings (de!_a_u_lt"l. ______ , ___ _

r::;~~----' -. 2,hib~~!~~~,__ .-~
L.~Qii~ _____ ~ ___ . __ . ___ , ____ .~13P the source listing

Assembler Directives - Directives Summary

Table 5-1. Directives Summary (Concluded)

Directives that Format the Output Listing (continued)

Mnemonic and Syntax Description

.option {BIDIFILIM!TIX} Select output listing options

.page Eject a page in the source listing

. title "string" Print a title in source page heading

.width page width Set the page width of the source listing

Conditional Assembly Directives

Mnemonic and Syntax Description

.if expression Begin conditional assembly

.else Optional conditional assembly

.endif End conditional assembly

Directives that Reference Other Fifes

Mnemonic and SYntax

.copy [,,]filename[,,]

.def symbol1 r·.·. symboln]

Description

Include source statements from another file

Identify one or more symbols that are defined in
the current module and used in other modules

, .giobal symbol1 r symboln] Identify one or more global (external) symbols

.incltlde ("]filename["] Include source statements from another file
-------~~----~~--------------_+--------------------------------__4 .mHo ("]filename("] Specify the name of a macro library j

.ref symbol1 r symbolnJ Identify one or more symbols that are used in the
current module but defined in another module

Miscellaneous Directives

Mnemonic and Syntax Description

.end Program end

Symbolic Debugging Directivest

I-I _____ M_, nemonic and Syntax Description

.bloc;': beg innin..:g:..._li_n_e_n_u_m_b_e_' ________ II-B_e...:9::...i_n_8_C_b_l_o_c_k ____________ ._--l

.enc~;cck ending line number End a C block .-

.6rH::1,1>'1C ending line number End a function definition .. ---_., --------,-.--.-~.--

! .eos ___ ._____ End a structure, enu~~~~L?n, or union definition -i
~:et<lg ":.e.'!.?!!..:!J:'i.:,"~_, ___ ~ __ ~9i~..?!:.!~~:.~~tion definition I

~~~:J:,!,:':'-__ ! DeMe a program Identifier ! 
I .ftmc. iJeginn..0g 10.& number I Begin IJ function definition .---1 

I .liT''::: ,,:~::ur;"li;er riJddress} ; Sr::.::~!:: the ~.~.~2~.r::.?er of a C source sta~~~~ 
! .IT'0r"'ter name. va/I.e (tvpe, storage class., !Define a member of a structure, enumeration. or I 
1 __ ~~i:::...!2:...!!:.!::/!/ __ . __ .. _ .. _, ____ ._____ I union .J 
L~~2.2~:.~~~_~~ __ .... '"~. _____________ _i. S6~in a Btr~cture definition -" .. .,.,---J 
! s~/""r! .ner::1e, valuf3 {t)lpe .. sfcrc{;£ :;/DS';~ f S~ec;fv symbolic debug Information for R global 1 
!--:~ze. !..':'j- dims.! _, ___ ~ ... ". __ . __ , _ .-1 v"riat:l.~:...loca~_~~.~.~ie. or a function I 
~:"'J name,_Size ._ .. ~_. _____ .. _____ ..... J .~gln ':.,unlon de~::Et:.~ ______ . ____ ._..._J 
t S";/~coHG df.Ougging C:i(BC~i\i6'5 drB discussed In Appendix B 

5 .. 3 



Assembler Directives - Sections Directives 

5.2 Sections Directives 

5-4 

Six directives associate the various portions of an assembly language program 
with the appropriate sections: 

• The .bss directive reserves space in the .bss section for variables. 

• The .usect directive reserves space in an uninitialized named section. 
The .usect directive is similar to the .bss directive, but it allows you to 
reserve space separately from the .bss section. 

• The .text directive identifies portions of code in the .text section. The 
.text section usually contains executable code. 

• The .data directive identifies portions of code in the .data section. The 
.data section usually contains initialized data. 

• The .sect directive defines initialized named sections, and associates 
subsequent code or data with that section. Named sections are initial
ized and contain code or data. 

• The .asect directive creates initialized named sections that have abso
lute addresses. (Within an absolute section, you can use the .label di, 
rective to define labels with absolute addresses.) 

Section 3 discusses COFF sections in detail. 

Figure 5-1 shows how you can use sections directives to associate code and 
data with the proper sections. This is an output listing; column 1 shows line 
numbers, and column 2 shows the section program counter. Each section has 
its own program counter, or SPC. When code is first placed in a section, its 
SPC equals O. When you resume assembling into a section, its SPC will re
sume counting as if there had been no intervening code. 

After the code in Figure 5-1 is assembled, the sections contain the following: 

.text 

.data 

var-defs 
.bss 
xy 

Initializes words with the values 1,2, 3,4, 5, 6, 7, and 8 
Initializes words with the values 9, 10, 11, 12, 13, 14, 15, 
and 16 
Initializes words with the values 17 and 18 
Reserves 19 words 
Reserves 20 words 

Note that the .bss and .usect directives do not end the current section or begin 
new sections; they reserve the specified amount of space, and then the as
sembler resumes assembling code or data into the current section. 



Assembler Directives - Sections Directives 

0001 ********************************************* 
0002 * Start assembling into the .text section * 
0003 ********************************************* 
0004 000000 .text 
0005 000000 00000001 .word 1, 2 

000001 00000002 
0006 000002 00000003 .word 3, 4 

000003 00000004 
0007 
0008 ********************************************* 
0009 * Start assembling into the .data section * 
0010 *****~*************************************** 
0011 000000 .data 
0012 000000 00000009 .word 9, 10 

000001 OOOOOOOA 
0013 000002 OOOOOOOB .word 11, 12 

000003 OOOOOOOC 
0014 
0015 ********************************************* 
0016 * Start assembling into named section, * 
0017 * var_defs * 
0018 ********************************************* 
0019 000000 .sect "var_defs" 
0020 000000 00000011 .word 17, 18 

000001 00000012 
0021 
0022 ********************************************* 
0023 * Resume assembling into the .data section * 
0024 ********************************************* 
0025 000004 .data 
0026 000004 OOOOOOOD .word 13, 14 

000005 OOOOOOOE 
0027 
0028 000000 .bss sym,19 Reserve space in .bss 
0029 
0030 000006 OOOOOOOF .word 15, 16 Still in .data 

000007 00000010 
0031 
0032 ********************************************* 
0033 * Resume assembling into the .text section * 
0034 ********************************************* 
0035 000004 .text 
0036 000004 00000005 .word 5, 6 

000005 00000006 
0037 
0038 000000 usym .usect "xy" ,20 Reserve space in xy 
0039 
0040 000006 00000007 .word 7, 8 Still in .text 

000007 00000008 
0041 

Figure 5-1. Examples of Sections Directives 

5-5 



Assembler Directives - Directives that Initialize Memory 

5.3 Directives that Initialize Memory 

5-6 

Several directives assemble values into the current section: 

• The .set directive equates a value with a symbol. This type of symbol 
is known as an assembly-time constant; it can be used in the same 
manner as a numeric constant (for example, in expressions). 

This example defines a symbol named bval and assigns the value 4 to 
it. The symbol bval can then be used as a constant. 
0001 00000004 bval .set 4 
0002 000000 00000004 .byte bval, bval*2, bval+12 

000001 00000008 
000002 00000010 

Note that the set directive produces no object code. 

• The .byte directive places one or more 8-bit values into consecutive 
words in the current section. This directive is similar to .word, except 
that the width of each value is restricted to 8 bits. 

• The .hword directive places one or more 16-bit half-word values into 
consecutive words in the current section. This directive is similar to 
.word, except that the width of each value is restricted to 16 bits. 

• The .word, .int, and .long directives place one or more 32-bit values 
into consecutive locations in the current section. 

• The .string directive places 8-bit characters from one or more character 
strings into the current section. This directive is similar to .byte, except 
that four 8-bit values are packed into each word. The last word in a 
string is padded with null characters (Os) if necessary. 

• The .float directive calculates the single-precision (32-bit) floating
point representations of specified floating-point values, and stores them 
in consecutive words in the current section. Here's an example of a .float 
directive and the object code that it generates: 
0005 000003 0274ED9l .float 7.654 

Figure 5-2 compares the . byte, .hword, .word, and .string directives; for this 
example, assume the following code was assembled: 
0001 000000 OOOOOOAB 
0002 000001 OOOOCDEF 
0003 000002 89ABCDEF 
0004 000003 706C6568 

.byte 

.hword 

.word 

. string 

OABh 
OCDEFh 
089ABCDEFh 
"help" 



Assembler Directives - Directives that Initialize Memory 

Word contents Code 

31 0 
I 

I I ! I 0 0 0 0 0 0 A B .byte OASh 

'---v--' 
1 byte 

2 0 0 0 0 C D I E F .hword OCDEFh 

v 
2 bytes (half word) 

3 l 8 9 A B i C D I E F 
J 

.word 089ABCDEFh 

whole word 

4 I 70 I 6C I 65 I 68 I .strlng "help" 
~~~'---v--' 
pie h

Figure 5-2. Examples of Initialization Directives

• The .field directive places a single value into a specified number of bits
in the current word. You can pack multiple fields into a single word; the
assembler will not increment the SPC until a word is filled.

Figure 5-3 shows how fields are packed into a word. For this example,
assume the following code has been assembled; notice that the SPC
doesn't change (the fields are packed into the same word):

0006 000004 00000003
0007 000004 00000083
0008 000004 00002083

1514131211109

.field

.field

.field

8 7 654

3,4
8,5
16,7

3 2 1 0
o 0 1 1 I .field 3,4

'--v----'
4 bits

o 1 0 0 0 Iq:Q 111 .fIeld 8,5

Figure 5-3. An Example of the .field Directive

5-7

Assembler Directives - Directives that Initialize Memory

5-8

• The .space directive reserves a specified number of words in the current
section. The assembler fills these reserved words with Os.

Figure 5-4 shows an example of the .space directive; assume the fol
lowing code has been assembled:

0154 00027A 080FOOOC
0155 00027B 00000000
0156 000296 OOOOOOOF

Current
SPC = 27Ah

",'_ _-
-----~ ,

LDI AR4,AR7
.space 27
.word 15

Figure 5-4. An Example of the .space Directive

New SPC = 296h
after assembling a
.space directive to
reserve 27 words

Assembler Directives - Directives that Align the SPC

5.4 Directives that Align the Section Program Counter

(a) Current
SPC = OC11h

• The .align directive aligns the SPC on a 32-word boundary. This en
sures that the code following the .align directive begins on a cache
boundary. If the SPC is already aligned at a 32-word boundary, then it
is not incremented and .align has no effect. Figure 5-5 shows an ex
ample of the .align directive; assume that the following code has been
assembled:

0201 000C11 00000000
0202 000C20 00000004

.a1ign

.byte 4

P+*H-OCOOh (b) New SPC = OC200
after assembling

32 instruotion
words

an .allgn directive

r---------t---OC20h

32 instruotion
wcrds

1-------+--OC40h

,---...... -------' -...

Figure 5-5. An Example of the .align Directive

• The .even directive aligns the SPC so that it points to the next full word.
You should use .even after using .field directives; if the .field directive
doesn't fill a word, the .even directive forces the assembler to write out
the full word and fill the unused bits with Os.

Figure 5-3 (page 5-7) illustrates the .field directive; Figure 5-6 shows
the effect of assembling a .even directive after a .field directive. Assume
the following code has been assembled:

0006 000004 00000003
0007 000004 00000083
0008 000004 00002083
0009 000005

.field

.field

.field

. even

3,4
8,5
16,7

31 0
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l~t(j:JtJtg)Q¢')WltJ.t'~~'Pjtit: in
\ A I

V v
These bits are filled with Os These bits were filled by .field directives

after assembling an .even directive

Figure 5-6. An Example of the .even Directive

5-9

Assembler Directives - Directives that Format the Output listing

5.5 Directives that format the Output listing
Seven directives format the listing file:

.. The .length directive controls the page length of the listing file. You
can use this directive to adjust listings for various output devices.

• The .width directive controls the page width of the listing file. You can
use this directive to adjust listings for various output devices.

9 The .Iist and .nolist directives turn the output listing on and off. You
can use the .nolist directive to stop the assembler from printing selected
source statements in the listing file. Use the .Iist directive to turn the
listing back on.

e The .mlist and .mnolist directives allow and inhibit macro expa:1sion
listings.

8 The .option directive controls several features in the listing file. This
directive has several operands:

B Limits the listing of .byte directives to 1 line.
H Limits the listing of .hword directives to 1 line.
F Resets the S, H, L, M, and T options.
l Limits the listing of .Iong, .int, and .word directives to 1 line.
M Limits macro expansions to 1 line.
T Limits the listing of .string directives to 1 line.
X Produces a cross-reference listing of symbols. (You can also ob

tain a cross-reference listing by invoking the assembler with the -x
option.)

@ The .page directive causes a page eject in the output nstir.;:.

~ The .title directive supplies a title that the assembler prints ::m ths sec
ond line of each page.

Assembler Directives - Conditional Assembly Directives

5.6 Conditional Assembly Directives

,
I
I

I

Three directives allow you to assemble conditional blocks of code:

@ The .if directive marks the beginning of a conditional block. The .if di-
rective has one parameter, which is an expression.

If this expression evaluates to true (a nonzero value), then the as
sembler assembles the code that follows it (up to an .else or .en
dif).

If this expression evaluates to false (0), then the assembler as
sembles code that follows an .else (if present) or an .endif (if no
.else is present).

@ The .else directive identifies a block of code that the assembler assem
bles if the if-expression is false (0). This directive is optional in the
conditional block; if an expression is false and there is no .else statement,
then the assembler continues with the code that follows the .endif.

o The .andif directive terminates a conditional block.

The assembler supports several relational operators that are especial!y useful
for conditional expressions; see Section 4.8.4 on page 4-13 for more infor
mation about relational operators. Figure 5-7 shows an example of conditional
assembly.

0001 00000001 syml .set 1
0002 00000002 sym2 .set 2
0003 00000003 sym3 .set 3
0004 00000004 sym4 .set 4
00()S It_I: .if syml < sym2

I 0005 00C008 ClOOOClO01 .byte syml
(JOO7 .else

I 8008 .byte sym2
(}~)(l9 .endif
O()2.0 If_2, .if sVl!l.l + sym2 81'm4 !
0011 .byte s)7ml + sy:::l2 I
C;C :::"2 .else I J~;:3 CiJC-JOl 0()()QOClCl4 .byte sym4
OC,j,~ .endif k
C.\(ll5 If_3 : .if s"ml <> sym4 sym2 !
8«:.6 :'=-'8'::'~~'2 0::000001 .byte syrr,l ! .:)~):.. I .else
0010 .byte sym4 sYIIl2
8C}:9 ."naif

l ____ .. _., __ . ___ "' __ ~ .-,~
Ffgure 5-7. An Example of Conditional Assembly Directives

:::.-

Assembler Directives - Directives that Reference Other Files

5.7 Directives that Reference Other Files

5-12

These directives supply information for or about other files.

• The .copy and .include directives tell the assembler to begin reading
source statements from another file. When the assembler is done reading
the source statements in the copy/include file, it resumes reading source
statements from the current file. The statements read from a copied file
are printed in the listing file; the statements read from an included file
are not printed in the listing file.

• The .global directive declares a symbol to be external so that it is avail
able to other modules at link time. The .global directive does double
duty, acting as a .def for defined symbols and as a .ref for undefined
symbols. Note that the linker will resolve an undefined global symbol
only if it is used in the program.

• The .def directive identifies a symbol that is defined in the current
module and can be used by other modules. The assembler puts the
symbol in the symbol table.

• The .ref directive identifies a symbol that is used in the current module
but defined in another module. The assembler marks the symbol as an
undefined external symbol and puts it in the object symbol table so the
linker can resolve its definition.

• The .mlib directive supplies the assembler with the name of an archive
library that contains macro definitions. When the assembler encounters
a macro that is not defined in the current module, it will then be able to
search for it in the specified macro library.

Assembler Directives - Directives Reference

5.8 Directives Reference
The remainder of this chapter is a reference. Generally, the directives are or
ganized alphabetically, one directive per page; however, related directives
(such as .if/.else/.endif) are presented together on one page. Here's an al
phabetical table of contents for the directives reference:

Directive Page
.align .. 5-14
.asect ... 5-15
.bss .. 5-17
.byte ... 5-18
.copy .. 5-19
.data ... 5-20
.def ... 5-26
.else ... 5-29
.end .. 5-21
.endif ... 5-29
.even .. 5-22
.field ... 5-23
.float .. 5-25
.global .. 5-26
.hword ... 5-28
.if .. 5-29
.include .. 5-18
.int .. 5-30
.Iabel .. 5-15
.Iength ... 5-31
.Iist ... 5-32
.Iong .. 5-30
.mlib ... 5-33
.mlist .. 5-34
.mnolist ... 5-34
.nolist ... 5-32
.option ... 5-35
.page .. 5-36
.ref .. 5-26
.sect ... 5-37
.set ... 5-38
.space .. 5-39
.string .. 5-40
.text .. 5-41
.title .. 5-42
.usect ... 5-43
.width .. 5-31
.word ... 5-30

5-13

.align Align SPC on a 32-Word Boundary

Syntax .align

Description The .align directive aligns the section program counter on the next 32-word
boundary. If necessary, the assembler assembles words containing NOPs.
This directive is useful for aligning code on a cache boundary.

Example

5-14

Using the .align directive has two effects:

• The assembler aligns the SPC on a 32-word boundary within the
current section.

• The assembler, sets a flag that forces the linker to align the entire sec
tion on a 32-word boundary. This ensures that individual alignments
remain intact whEm a section is loaded into memory.

This example aligns the SPC on the next 32-word boundary to ensure that
the code that follows it will start on a cache boundary. Figure 5-8 shows
how this code aligns the SPC.

0001
0002
0003
0004
0005
0006
0007
0008
0009

000000 08010000

000020

000020 08010000 x:
000021 08010000
000022 00000000

000040

Oh

(a) LDI RO, R1 (b) .allgn

LDI

.a1ign

LDI
LDI
. space

.a1ign

(c) LDI RO, R1
LDI RO, R1
.space 25

RO,R1

RO,R1
RO,R1
25

(d) .allgn

Figure 5-8. An Example of the .align Directive

Define an Absolute Section .asect/.label

Syntax

Description

Example

.aseet "section name" [, address]

.Iabel symbol

The .asect directive defines a named section whose addresses are absolute
with respect ~o address.

• The section name is a required parameter that identifies the name of
the absolute section. The name must be enclosed in double quotes.

• The address required parameter identifies the section's absolute start
ing address in target memory. This address is required the first time
that you assemble into a specific absolute section. If you use .asect
to continue assembling into an absolute section that already contains
code, you cannot use the address parameter.

Absolute sections are useful for loading sections of code from off-chip
memory into faster on-chip memory. In order to use an absolute section,
you must know which location you want the section to execute from, and
specify it as the address parameter.

Most sections directives create sections with relocatable addresses. The
starting SPC value for these sections is always zero; the linker then relocates
them where appropriate. The starting SPC value for an absolute section,
however, is the specified address. The addresses of all code assembled into
an absolute section are offsets from the specified address. The linker does
relocate sections defined with .asect; however, any labels defined within
an absolute section retain their absolute (runtime) addresses. Thus, refer
ences to these labels refer to their runtime addresses, even though the sec
tion is not initially loaded at its runtime address.

All labels in an absolute section have absolute addresses. The .Iabel direc
tive creates "labels" with relocatable addresses; this allows you to define a
symbol that points to the section's loadtime location in off-chip memory.
The .Iabel directive can only be used within an absolute section.

Note that after you define a section with .asec!. you can use the .sect di
rective later in the program to continue assembling code into the absolute
section.

This example defines an absolute section called abs. At run time, this sec
tion will start at address 100h in on-chip RAM. copy_start is a relo
catable symbol that points to the section's loadtime address in off-chip
ROM. The symbols abs-code and abs_end are absolute addresses;
abs_code - abs-end yields the number of lines of code to move. The
function copy copies the section from ROM into RAM.

Figure 5-9 shows how the code is copied from one part of memory to an
other.

5-15

.asect/.label Define an Absolute Section

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033

00010ll
000100
000100
000101
000102
000103

000000
000000
000001

000000
000000
000001
000002
000003
000004

000005

08600000
13FB0064
02402001
78800000

00000100+
00000100+

08280000+
08290001+
08402001
13FBOO03
DA002120

78800000

**
* Define an absolute section. This section can *
* be linked and loaded into external ROM, then *
* copied into internal RAM and run. *
**

.asect "abs", 100h ; dest addr in RAM

. label copy_start ; src addr in ROM
abs_code: LDl O,RO

RPTS 100
ADDl *ARO++,RO

abs_end: RETS

**
* This function copies the absolute section
* from ROM to RAM.

*
*

**
. data

L1 .word copy_start ptr to code in ROM
L2 .word abs_code dest addr in RAM

.text
copy: LDl @L1,ARO load src ptr

LDl @L2,AR1 load dest ptr
LDl *ARO++,RO , load first word
RPTS abs-end - abs_code
LDl *ARO++,RO copy all bytes

II STl RO,*AR1++
RETS end copy

**
* Main program -- copy the routine into RAM,
* then run.

*
*

**
0034 000006 62000000+
0035 000007 62000100
0036 000008 78800000

run: CALL
CALL
RETS

copy
abs_code

5-16

External ROM

----I 08600000
13FB0064
02402001
78800000

Internal RAM

08600000

• ••••• 1 13FB0064
02402001
78800000

~-- abs_oode = 100h

Figure 5-9. An Example of the .asect Directive

Assemble into .bss Section .bss

Syntax

Description

Example

.bss symbol, size in words

The .bss directive reserves space in the .bss section for variables. This di
rective is usually used to allocate variables into RAM.

• The symbol is a required parameter. It defines a symbol that points
to the first location reserved by the directive. The symbol name
should correspond to the variable that you're reserving space for.

• The size is a required parameter; it must be an absolute expression.
The assembler allocates size words In the .bss section. There is no
default size.

Note that the .usect directive is similar to the .bss directive; it also reserves
space in memory. However, .usect creates named uninitialized sections that
can be allocated separately from the .bss section.

Other section directives (.text. .data, .sect. and .asect) end the current sec
tion and begin assembling into another section. The .bss directive, how
ever, does not affect the current section. The assembler assembles the .bss
directive and then resumes assembling code into the current section. For
more information about COFF sections, see Section 3.

This example uses the .bss directive to allocate space for two variables,
array and dflag-. The symbol array points to 100 words of uninitialized
space (the .bss SPC = 0). The symbol dflag points to 1 word of unini
tialized space (the .bss SPC = 100). This example reserves a total of 101
words in the .bss section. Note that symbols declared with the .bss direc
tive can be referenced in the same manner as other symbols and can also
be declared external.

5-17

.bss

5-18

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030

000000
000000 08010000

000000

000001 08020001

000064

000002 08020064+

Assemble into .bss Section

* Begin assembling into .text *

.text
LDI RO,R1

* Allocate 100 words in _bss *

.bss array,lOO

* Still in .text *

LDI R1,R2

* Allocate 1 word in .bss *
-*******************************

.bss dflag,l

* Still in .text *

LDI @dflag,RO

* Declare external .bss symbol *

.global array

Initialize Byte . byte

Syntax

Description

Example

.byte valuet [, ... , valuenJ

The .byte directive places one or more 8-bit values into consecutive words
in the current section. Each value can be either:

• An expression which the assembler evaluates and treats as an 8-bit
signed number.

• A character string enclosed in double quotes. Each character repres
ents a separate value.

Values are not packed or sign extended; each byte value occupies the least
significant 8 bits of a full 32-bit word. The assembler truncates values that
are greater than 8 bits. You can use up to 100 values, but the total line
length cannot exceed 200 characters. Each character in a string is counted
as a separate operand.

If you use a label, it points to the location at which the assembler places the
first byte.

This example places the 8-bit values 10, -1, 97, 98, 99, and 97 into six
consecutive words in memory. The label strx has the value 64h, which is
the location of the first initialized word .

0002 000064 OOOOOOOA strx:
000065 OOOOOOFF
000066 00000061
000067 00000062
000068 00000063
000069 00000061

. byte 10 , -1, II abc II , I a I

5-19

.copy / .include Read Statements from Another Source File

Syntax

Description

5-20

.copy [" jfilename[" j

.include ["]fi/ename{" j .

(The quote marks surrounding the filename are optional.)

The .copy and .include directives tell the assembler to read source state
ments from a different file. The assembler:

1) Stops assembling statements in the current source file.

2) Assembles the statements in the copied/included file, and

3) Resumes assembling statements in the main source file, starting with
the statement that follows the .copy or .include directive.

The filename is a required parameter that names a source file; the filename
may be enclosed in double quotes. The filename must follow operating
system conventions. You can specify a full pathname (for example, . copy
c: \dsp\f ilel. asm). If you do not specify a full pathname, the assembler
searches for the file in:

1) The directory that contains the current source file.

2) Any directories named with the -i assembler option.

3) Any directories specified by the environment variable A-DIR.

For more information about the -i option and the environment variable, see
Section 4.3, Specifying Alternate Directories for Assembler Input, on page
4-4.

The statements that are assembled from a copy file are printed in the as
sembly listing. The statements that are assembled from an included file are
not printed in the assembly listing, regardless of the number of .Iist/.nolist
directives that are assembled.

The .copy and .include directives may be nested within a file being copied
or included. The assembler limits this type of nesting to eight levels; the
host operating system may set additional restrictions. The assembler pre
cedes the line numbers of copied files with a letter code to identify the level
of copying. An A indicates the first copied file, B indicates a second copied
file, etc.

Read Statements from Another Source File .copy/.include

Example 1 This example uses the .copy directive to read and assemble source state
ments from other files and then resumes assembling into the current file.

Listing file:

0001 000000 00000000 . space 20
0002 . copy "byte.asm"

AOO01 ** In byte.asm
AOO02 000014 00000020 .byte 32, l+'A'

000015 00000042
AOO03 . copy "word.asm"
BOO01 ** In word.asm
BOO02 000016 OOOOAABB .word OAABBh, 56q

000017 0000002E
AOO04 ** Back in byte.asm
AOO05 000018 0000006A .byte 67h+3

0003
0004 ** Back in original file
0005 000019 656E6F44 .string "Done"

Example 2 This example uses the .include directive to read and assemble source
statements from other files and then resumes assembling into the current
file.

include.asm
(source file)

byte2.asm
(first include file)

. space 29 ** In byte2.asrn

. include "byte2. asm" .byte 32, 1 + 'A'
.inc1ude "word2.asm"

**Back in original file ** Back in byte2.asm
.string "Done" .byte 67h+3

. space 29

word2.asm
(second include file)

** In word2.asrn
.word OABCDh, 56q

Listing file

0001 0000
0002 .inc1ude "byte2.asm"

5-21

.data Assemble into .data Section

Syntax .data

Description The .data directive tells the assembler to begin assembling source code into
the .data section; .data becomes the current section. The .data section is
normally used to contain tables of data or preinitialized variables.

Example

5-22

Section 3 provides a detailed explanation about COFF sections.

Note that the assembler assumes that .text is the default section. Therefore,
at the beginning of an assembly, the assembler assembles code into the
.text section unless you specify an explicit section control directive.

This example assembles code into the .data and .text sections.

0001
0002
0003
0004 000000
0005 000000 00000000
0006
0007
0008
0009
0010 000000
0011 000000 00800000
0012
0013
0014
0015
0016 OOOOCC
0017 OOOOCC FFFFFFFF
0018
0019 OOOOCD OOOOOOFF
0020
0021 OOOOCE 08010000
0022
0023
0024
0025
0026
0027 000001
0028 000001 08010000
0029
0030
0031
0032
0033
0034 OOOOCF

**
** Reserve space in .data **
**

.data

.space OCCh

**
** Assemble into .text **
**

.text
ABSI RO

**
** Assemble into .data **
**
table: .data

.word -1 Assemble 32-bit
constant into .data

.byte OFFh Assemble 8-bit
constant into .data

LDI RO,Rl Assemble code into
.data

**
** Assemble into .text **
**

.text
LDI RO,Rl

**
**
**

Resume assembling into .data
at address OCFh

**
**

**
.data

End Assembly .end

Syntax .end

Description The .end directive is an optional directive that terminates assembly. It
should be the last source statement of a program. The assembler will ignore
any source statements that follow an .end directive.

Example

Note that this directive has the same effect as an end-of-file.

Caution:

Do not use the .end directive to terminate a macro; use the
$ENDM macro directive instead.

This example shows how the .end directive terminates assembly. If any
source statements followed the .end directive, the assembler would ignore
them.

0001 000000 Text-Start: .text
0002 000000 OOOOOOOA .byte OAh
0003 000001 OOOOAAAA .word OAAAAh
0004 000002 41414141 . string "AAAAAAAA"

000003 41414141
0005 .end

5-23

.even

Syntax

Description

Example

5-24

Align SPC at Next Word Boundary .

.even

The .even directive aligns the section program counter on the next full
word. When you use the .field directive, you can follow it with the .even
directive. This forces the assembler to write out a partially filled word before
initializing fields in the next word. The assembltlr will fill the unused bits
with Os. If the SPC is already on a word boundary (no word is partially
filled), then .even has no effect.

Here's an example of the .even directive. Word 0 is initialized with several
fields; the .even directive causes the next field to be placed in word 1 .

0001
0002
0003
0004 000000 00000003
0005
0006
0007
0008
0009 000000 0000002F
0010
0011
0012
0013
0014 000001
0015
0016
0017
0018
0019
0020 000001 00000007

* Initialize a 2·bit field *

.field 03h,2

* Initialize a 5-bit field *

.field OBh,5

********~~**********************

* Write out the word *

. even

*
*

This field is in the
next word

*
*

.field 07h,3

Figure 5-10 shows how this example initializes word O. The first 7 bits are
initialized by .field directives; the remaining bits are set to 0 by the .even
directive.

31
1000 ,

v
This pert of the word Is filled by the .even directive.

o

''---v-----'
This part Is filled
by .field directives.

Figure 5-10. An Example of the .even Directive

Initialize Field . field

Syntax .field value [.size in bits]

Description The .field directive initializes multiple-bit fields within a single word of
memory. This directive has two operands:

• The value is a required parameter; it is an expression that is evaluated
and placed in the field. If the value is relocatable, size must be 32.

• The size is an optional parameter; it specifies a number from 1-32,
which is the number of bits the field consists of. If you do not specify
a size, the assembler uses a default size of 32 bits. Note that the as
sembler will truncate the value if you specify a field that is not wide
enough to contain the value. For example, .field 3,1 will cause the
assembler to truncate the value 3 to 1; the assembler will also print
an error message.

Successive field directives pack values into the specified number of bits in
the current word. Fields are packed starting at the least significant part of
the word, moving towards the most significant part as more fields are ad
ded. If the assembler encounters a field size that will not fit in the current
word, it writes out the word, increments the SPC, and begins packing fields
into the next word.

You can use the .even directive to force the next .field directive to begin
packing into a new word.

If you use a label, it points to the word that contains the field.

5-25

.field Initialize Field

Example This example shows how fields are packed into a word. Notice that the
SPC does not change until a word is filled and the next word is begun.

5-26

0001
0002
0003
0004 000000 OOBBCCDD
0005
0006
0007
0008
0009 000000 OABBCCDD
0010
0011
0012
0013
0014
0015 000001 OOOOOOOC
0016
0017
0018
0019
0020 000001 0000001C
0021
0022
0023
0024
0025
0026
0027 000002 00000001'

* Initialize a 24-bit field *

. field OBBCCDDh,24

* Initialize a 5-bit field *

.fie1d OAh,5

*
*

Initialize a 4-bit field
(new word)

*
*

. field OCh,4

* Initialize a 3-bit field *

X: .fie1d Olh,3

***************~*****************
* 'Initialize J 32-bit relo- *
* eatable field in the next *
* word *

.field X

Figure 5-11 (page 5-27) shows how the directives in this example affect
memory.

Initialize Field .field

Word 31 0 Code
(a) 0 r-I "'-------0-o-1-1-1-0-1 -1-1 -1-0-0-1 -1-0-0-1 -1-0-1-1-1-0--'1<-'1 .field 088CCDDh, 24

v
24-blt field

I

(b) 0 I 0 1 0 1 0 If 01 t1041110011001 101:1fO:fl .field OAh, 5
'-v-----'

5-blt field

1 ~I ___________________ ~~1-1~0~0~1
~
4-blt field

(d) 1 o 0 1 [1 dti\o:l .fIeld 01h, 3
'--,.r-J

3-blt field

(e) 1 I 0' 0 0 0 0 0 IQQ>1Ii lo·pl .field x

2 10 000 0 1 I

Figure 5-11. An Example of the .field Directive

5-27

.float Initialize Floating-Point Value

Syntax .float value1 [, ... , valuenl

Description The .float directive places the floating-point representation of one or more
floating-point constants into successive words in the current section. Each
value must be a floating-point constant, or a symbol that has been equated
to a floating-point constant. Each constant is converted to a floating-point
value in TMS320C30 single-precision (32-bit) format.

Example Here are some examples of the Jloat directive.

0001 000000 53FBA6AF .float -1.0e25
0002 000001 01400000 .f1oat 3
0003 000002 06760000 .f1oat 123, 0.5

000003 FFOOOOOO
0004 01490FCF PI: .set 3.14159
0005 012dF94C E: .set 2.71828
0006 000004 01490FCF .f1oat PI,E

012dF94C

5-28

Global Symbol Definitions .global/ .ref / .def

Syntax .global symbol1 [, ... , symbolnJ

.def symbol1 [, ... , symbolnl

.ref symbol1 £, ... , symbolnl
..

Description The .global, .def, and .ref directives identify symbols that can be referenced
externally.

Example

• The .def directive identifies a symbol that is defined in the current
module and can be accessed by other files. The assembler will place
this symbol in the symbol table.

• The .ref directive identifies a symbol that is used in the current mod
ule but defined in another module. The linker resolves the symbol's
definition.

• The .global directive acts as a .ref or a .def. as needed.

A global symbol is defined in the same manner as any other symbol; that is,
it appears as a label or is defined by the .set, .usect, or .bss directive. As
with all symbols, if a global symbol is defined more than once, the linker
issues a multiple-definition error. Note that .ref always creates an entry for
a symbol, whether the module uses the symbol or not; .global however,
only creates a symbol table entry if the module actually uses the symbol.

A symbol may be declared global for two reasons:

1) If the symbol is not defined in the current source module (this in
cludes macro, .copy, and include files), then the .global or .ref direc
tive tells the assembler that the symbol is defined in an external
module. This prevents the assembler from issuing an unresolved ref
erence error. At link time, the linker looks for the symbol's definition
in other modules.

2) If the symbol is defined in the current module, then the .global or .def
directive declares that the symbol and its definition can be used ex
ternally in other modules. These types of references are resolved at
link time.

This exalllple uses four files:

• filel.1st and file3.1st are equivalent. Both files define the
symbol Init and make it available to other modules; both files use the
external symbols x, y, and z. filel.1st uses the .global directive
to identify these global symbols; f ile3. 1st uses .ref and .def to
identify the symbols.

• f ile2. 1st and f ile4. 1st are equivalent. Both files define the
symbols x, y, and z and make them available to other modules; both
files use the external symbol Init. file2 .1st uses the .global di
rective to identify these global symbols; file4 .1st uses .ref and .def
to identify the symbols.

5-29

.global/ .ref/ .def

file1.lst:

0001
0002
0003
0004
0005 000000
0006 000000 08010000
0007 000001 OOOOOOOO!
0008
0009
0010
0011

file2.lst:

0001
0002
0003
0004
0005
0006 00000001
0007 00000002
0008 00000003
0009 000000 OOOOOOOO!
0010
0011
0012
0013

file3.lst:

0001
0002
0003
0004
0005 000000
0006 000000 08010000
0007 000001 OOOOOOOO!
0008
0009
0010
0011

file4.1st:

0001
0002
0003
0004
0005
0006 00000001
0007 00000002
0008 00000003
0009 000000 OOOOOOOO!
0010
0011
0012
0013

5-30

Global Symbol Definitions

Global symbol defined in this file
. global Init

Global symbols defined in file2.lst
. global x,y,z

Init: Symbol definition
LDI
.word

.end

RO,R1
x

Global symbols defined in this file
. global x,y,z

Global symbol defined in fi1e1.1st
. global Init

; Symbol definitions
x: .set 1
y: .set 2
z: .set x + y

.word Init

.end

; G~bbal symbol defined in this file
.def Init

; GLobal symbols defined in file4.lst
.ref x,y,z

InLt: Symbol definition
LDI
.word

.end

RO,R1
x

Global symbols defined in this file
.def x,y,z

Global symbol defined in file3.lst
.ref Init

; Symbol definitions
x: .set 1
y: .set 2
z: .set x + y

.word Init

.end

Initialize Half Word .hword

Syntax .hword value1 [, ... , valuenl

Description The .hword directive places one or more 16-bit values into consecutive
words in the current section. Each value may be either:

Example

• An expression which the assembler evaluates and treats as a 16-bit
signed number.

• A character string ,enclosed in double quotes. Each character repres-
ents a separate value.

Values are not packea or sign extended; each value occupies the least sig
nificant 16 bits of a full 32-bit word.

The assembler truncates any value that is greater than 16 bits. The .hword
directive can have up to 100 operands, but they must fit on a single line.

If you use a label, it points to the location of the first word that is initialized.

This example assembles several 16-bit values into words in the current
section. The label vlist has the value 6Ah, which is the location of the
first initialized word.

0003 00006A OOOOOOOA v1ist: .hword 10,-1,"abc",'ab'
00006B OOOOFFFF
00006C 00000061
00006D 00000062
00006E 00000063
00006F 00006261

5-31

.if/.else/.endif Conditional Assembly

Syntax .if well-defined expression
code to assemble if expression is true

.et_
code to assemble if expression is false

.endif .

Description Three directives provide conditional assembly:

Example

5-32

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019

• The .if directive marks the beginning of a conditional block. The ex-
pression is a required parameter.

If this expression evaluates to true (a nonzero value), then the
assembler assembles the code that follows it (up to an .else or
.endif). .

If this expression evaluates to false (0), then the assembler as
sembles code that follows an .else (if present) or an .endif (if
no .else is present).

• The .else dir3ctive identifies a block of code that is assembled when
the if-expression evaluates to false (0). This directive is optional in
the conditional block; if an expression is false and there is no .else
statement, then the assembler continues with the code that follows
the .endif.

• The .endif directive terminates a conditional block.

Here are some examples of conditional assembly:

00000001 sym1 .set 1
00000002 sym2 .set 2
00000003 sym3 .set 3
00000004 sym4 .set 4

If_4: .if sym4 sym2 * sym2
000003 00000004 .byte sym4 Equal values

.else

.byte sym2 * sym2 Unequal values

.endif
If_5: .if syml <= 10

000004 OOOOOOOA .byte 10 Less than/equal
.else
.byte sym1 Greater than
• end if

If_6: .if sym3 * sym2 1= sym4 + sym2
.byte sym3 * sym2 Unequal values
.else

000005 00000006 .byte sym4 + sym2 ; Equal values
.en4if

Initialize 32-Bit Integer .int/.long/.word

Syntax .int value, [, ... , valuenJ

.Iong value, D ... , valuenJ

.word value, [, ... , valuenJ

Description The .int, .Iong, and .word directives are equivalent. These directives place
one or more values into consecutive 32-bit fields in the current section.
Each value is either:

Example 1

Example 2

Example 3

• An expression which the assembler evaluates and treats as a 32-bit
signed number.

• A character string enclosed in double quotes. Each character repres-
ents a separate value.

The values can be either absolute or relocatable expressions. If an ex
pression is relocatable, the assembler generates a relocation entry that refers
to the appropriate symbol; the linker can then correctly patch (relocate) the
reference. This allows you to initialize memory with pointers to variables
or labels.

You can use as many values as fit on a single line. If you use a label, it
points to the first word that is initialized.

This example uses the .int directive to initialize words. Notice that the
symbol symptr puts the symbol's address in the object code and generates
a relocatable reference (indicated by the' character appended to the object
word).

0005 000070 08010000 symptr LDI RO,R1
0006 000071 OOOOOOOA .int 10,symptr,-l,"abc", 'abc'

000072 00000070'
000073 FFFFFFFF
000074 00000061
000075 00000062
000076 00000063
000077 00636261

This example initializes two 32-bit fields and defines DATI to point to the
first location. The contents of the reSUlting 32-bit fields are OFFFFABCDh
and 141h.

0001 000000 FFFFABCD
000001 00000141

DATI: . long OFFFFABCDH, 'A'+100h

This example initializes five words. The symbol WordX points to the first
word.

0001 000000 00000C80 wordX: .word 3200,l+'AB',-'AF',OF4l0h,'A'
000001 00004242
000002 FFFFB9BF
000003 0000F410
000004 00000041

5-33

.Iength/. width Set Listing Page Size

Syntax

Description

Example

.length page length

.width page width

The .length directive sets the page length of the output listing file. It af
fects the current page and following pages; you can reset the page length
with another .length directive.

• Default length: 60 lines
• Minimum length: 20 lines
• Maximum length: 32,767 lines

The .width "directive sets the page width of the output listing file. It affects
the next line assembled and following lines; you can reset the page width
with another .width directive.

• Default width: 80 characters
• Minimum width: 80 characters
• Maximum width: 200 characters

Note that the width refers to a full line in a listing file; the line counter value,
SPC value, and object code are counted as part of the width of a line.
Comments and other portions of a source statement that extend beyond the
page width are truncated in the listing.

The assembler does not list the .width and .Iength directives.

This example sets the page length and the page width to various values.

TMS320C30 Assembler version 1. 0, 87.089 Thu May 28 14:44:06 1987
(c) Copyright 1987, Texas Instruments Inc. ***** Length and Width ***** PAGE 1

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 000000
0012 000000
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022 000000
0023 000000

5-34

*** ** The page length is limited to 60 ** ** lines per page. The page width is **
::******;!~!;;~*;~*~~*;~~;~;;;;~*~;;*;!~;******::

.1ength 60

.wj,dth 80

***********~*************************************

* * *** * * **** *'-* *** * * * ** ** *** *** ****** ** * * **** * * * * * * ** The page length is limited to 50 ** ** lines "per page. The page width is ** ** limited to 250 characters per line. **

.1ength 50

.width 250

Start/Stop Source Listing .list/ .nolist

Syntax .Iist

Description

Example

.nolist

The .nolist directive suppresses the source listing output until a .Iist direc
tive is encountered. The .Iist directive tells the assembler to resume printing
the source listing after it has been stopped by a .nolist directive. By default,
the assembler behaves as if a .Iist directive has been specified. The .nolist
directive can be used to reduce assembly time and the size of the source
listing; it is frequently used in macro definitions to inhibit the listing of the
macro expansion.

The assembler does not print the .Iist or .nolist directives, or the source
statements that appear after a .nolist directive; however, it continues to in
crement the line counter. You can nest the .Iist/.nolist directives; each
.nolist needs a matching .Iist to restore the listing. At the beginning of an
assembly, the assembler acts as if it has assembled a .Iist directive.

Note:

If you don't request a listing file when you invoke the assembler, the
assembler ignores the .Iist directive.

This example uses the .copy directive to insert source statements from an
other file. The first time the .copy directive is encountered, the assembler
lists the copied source lines in the listing file. The second time .copy is
encountered, the assembler does not list the copied source lines because a
.nolist directive was assembled. Note that the .nolist, the second .copy, and
.Iist directives do not appear in the listing file; note also that the line counter
is incremented even when source statements are not listed.

Source file:

.copy byte.asm

.nolist

. copy byte.asm

.list
* Back in original file

.string IIDone"

listing file:

0001
AOOOl
A0002 000000 00000020

000001 00000042
0006
0007 000004 656E6F44

. copy byte.asm
* In byte.asm (copy file)

.byte 32, l+'A'

* Back in original file
. string IIDone ll

5-35

.mlib Define Macro library

Syntax .mlib ["Jfilename["J

Description The .mlib directive provides the assembler with the name of a macro library.

Example

5-36

A macro library is a collection of files that contain macro definitions. These
files are bound into a single file (called an archive or library) by the ar
chiver. Each file in a macro library may contain one macro definition that
corresponds to the name of the file.

Note that:

• Macro library members must be source files (not object files).

• The filename of a macro library member must be the same as the
macro name and its extension must be .asm.

The filename must follow host operating system conventions; it may be
enclosed in double quotes. You can specify a full pathname (for example,
.mlib C:\dsp\macs.lib). If you do not specify a full path name, the
assembler searches for the file in:

1 } The directory that contains the current source file.

2} Any directories named with the -i asseml:!ler option.

3} Any directories specified by the environment variable A-DIR.

For more information about the -i option and the environment variable, see
Section 4.3, Specifying Alternate Directories for Assembler Input, on page
4-4.

When the assembler encounters an .mlib directive, it opens the library and
creates a table of its contents. The assembler enters the names of the indi
vidual library members into the opcode table as library entries; this redefines
any existing opcodes or macros that have the same name. If one of these
macros is called, the assembler extracts the entry from the library and loads
it into the macro table. The assembler expands the library entry in the same
manner as other macros, but it does not place the source code into the
listing. Only macros that are actually called from the library are extracted.

This example creates a macro library that defines two macros, inc1 and
decl. The file incl. asm contains the definition of inc1, and declo asm
contains the definition of decl.

inc1.asm
* Macro for incrementing
inc1 $MACRO REG

ADDI 1, :REG: /
$ENDM

dec1.asm
* Macro for decrementing
dec1 $MACRO REG

SUBI 1, :REG:
$ENDM

Define Macro Library .mlib

Use the archiver to create a macro library:

ar30 -a mac incl.asm decl.asm

Now you can use the .mlib directive to reference the macro library and call
the incl and decl macros:

.mlib
incl
decl

"mac.lib"
RO
Rl

Macro call
Macro call

5-37

.mlist/.mnolist Start/Stop Macro Expansion

Syntax

Example

0001
0002
0003
0004
0005

lOOOl 000000
000001
000002

0006
0007
0008
0009

10001 000009
OOOOOA
OOOOOB
OOOOOC
000000
OOOOOE

5-38

.mlist

.mnolist

Two directives provide you with the ability to control the listing of macro
expansions in the listing file:

• The .mlist directive allows macro expansions in the listing file.

• The .mnolist directive inhibits macro expansions in the listing file.

By default, all macro expansions are listed. As the example below shows,
the line counters for macro expansion lines are preceded with an exclama
tion mark (!). The line counter restarts counting at 1 during a macro ex
pansion; it resumes counting from its previous value when the macro
expansion is complete.

This example defines a macro named str_3. The first time the macro is
called, the macro expansiort is listed (by default). The second time the
macro is called, the macro expansion is not listed because a .mnolist direc
tive was assembled. The third time the macro is called, the macro expansion
is again listed because a .mlistdirective was assembled.

str_3

67646572
6E656572
65756C62

6F727548
7075536E
6F697265
63694072
61676968
0000006E

$MACRO
.string
$ END

str_3
. string

.mnolist
str_3
.mlist
str_3
.string

parm1 ,parm2 ,parm3
:parm1:, :parm2:, :parm3:

"red","green","hlue't
"red","green","blue"

"Socrates", "Plato" ,"Aristotle"

"Huron", "Superior" ,IIMichigan"
IIHuron" , "Superior" , "Michiganll

Select Listing Options .option

Syntax

Description

Example

.option option list

The .option directive selects several options for the assembler output listing.
The option list is a list of options separated by commas; each option selects
a listing feature. Valid options include:

B Limit the listing of .byte directives to one line.
F Reset the B, H, L, M, and T options.
H Limit the listing of .hword directives to one line.
L Limit the listing of .Iong, .int, and word directives to one line.
M Limit the listing for a macro expansion to a single line.
T Limit the listing of .string directives to one line.
X Produce a symbol cross-reference listing.

Options are not case sensitive.

This example limits the listings of the .byte, .hword, .Iong, .word, .int, and
.string directives to one line each.

0001 **
0002 * Limit the listing of .byte, .hword, *
0003 * .int, .word, .long, and . string *
0004 * directives to one line each *
0005 **
0006 .option B,H,L,T
0007 000000 OOOOOOBD .byte -'C',OBOh,5
0008 000003 0000002E; .hword 56q,OAAAAh
0009 000005 AABBCCDD .long OAABBCCDDh,536+'A'
0010 000007 000015M .word 5546,78h
0011 000009 00000015' .int 010101b,356q,85
0012 OOOOOC 65747845. .string "Extended Registers"
0013
0005 **
0015 * Reset the listing options *
0005 **
0017 000011 . option F
0018 000011 OOOOOOBD .byte -'C' ,OBOh,5

000012 OOOOOOBO
000013 00000005

0019 000014 0000002E .hword 56q,OAAAAh
000015 OOOOAAAA

0020 000016 AABBCCDD .long OAABBCCDDh,536+'A'
000017 00000259

0021 000018 000015AA .word 5546,78h
000019 00000078

0022 00001A 00000015 .int 010101b,356q,85
00001B OOOOOOEE
00001C 00000055

0023 00001D 65747845 .string "Extended Registers"
00001E 6465646E
00001F 67655220
000020 65747369
000021 00007372

5-39

_page

Syntax

Description

Example

Eject Page in Usting

.page

The .page directive produces a page eject in the listing file. The source
statement is not printed in the source listing, but the line counter is incre
mented. Using the .page directive to divide a source listing into logical di
visions improves program readability.

This example causes the assembler to begin a new page of the source list
ing.

Source file:

.title

.string

.page

.string

Listing file:

"**** An example of the .page directive ****"
"Page I"

1 The directive won't be printed
"Page 2"

TMS320C30 Assembler Version 1.00, 87.089 Thu May 28 14:51:38 1987

PAGE 1
(c) Copyright 1987, Texas Instruments Inc.
**** An example of the .page directive ****

0002 000000 65676150 . string "Page I"
000001 00003120

TMS320C30 Assembler Version 1.00, 87.089
(c) Copyright 1987, Texas Instruments Inc.
**** An example of the .page directive ****

0004 000002 65676150
000003 00003220

5-40

.string "Page 2"

Thu May 28 14:51:38 1987

PAGE 2.

AsseAlble into Named Section .sect

Syntax

Description

Example

0001
0002
0003
0004 000000

.sect "section name"

The .sect directive defines named sections that are used like the default .text
and .data sections. The .sect directive begins assembling source code into
the named section. Named sections can be used for data or code that must
be allocated into memory separately from .text or .data.

The section name identifies a section that the assembler assembles code
into. The name is significant to 8 characters and must be enclosed in dou
ble quotes.

Note that the .asect directive is similar to the .sect directive; however, .asect
creates a named section that has absolute addresses. If you use the .asect
directive to define an absolute named section, you can use the .sect direc
tive later in the program to continue assembling code into the absolute
section.

Section 3 provides additional information about named sections.

This example defines a section, SYID-Defs, and assembles code into it.

** Begin assembling into .text section **

0005 000000 07020001
0006 000001 07040003
0007

.text
LDF
LDF

R1,R2
R3,R4

; Assembled into .text
; Assembled into .text

0008
0009
0010
0011 000000
0012 000000 0148F5C2
0013 000001 OOOOOOOF
0014 00.0002 07060005
0015
0016
0017
0018
0019 000000
0020 000002 080A0009
0021 000003 00000003

0022
0023
0024
0025

000004 00000004

0026 000003
0027 000003 AABBCCDD
0028

** Begin assembling·into Sym-Defs section **

.sect "Sym-Defs"

.float 3.14

.hword OFh
LDF R5,R6; Assembled into Sym-Defs

** Resume assembling into .text section **

.text
LDI
.byte

AR1,AR2 ; Assembled into .text
3,4

** Resume assembling into Sym-Defs section **

.sect "Sym-Defs"

. long Oaabbccddh

5-41

.set

Syntax

Description

Example

5-42

Define Assembly-Time Constant

symbol .set value

The .set directive assigns a value to a symbol. The symbol can then be used
in place of the value in source statements. This allows you to equate
meaningful names with constants, registers, and other values.

• The symbol must appear in the label field.

• The value must be a well-defined expression; that is, a" symbols in the
expression must be previously defined in the current source module.

Undefined external symbols and symbols that are defined later in the mod
ule cannot be used in the expression. If the expression is relocatable, the
symbol to which it is assigned is also relocatable.

The value of the expression appears in the object field of the listing. This
value is not part of the actual object code and is not written to the output
file.

This example shows how symbols can be assigned with .set.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040

OOOOOOOB
000000 0840C300

00000035
000001 08600035

000002 OOOOOOOA
00000003'

000003 08200003+

01490FCF
000004 01490FCF

00000035
000005 08600035

** Equate symbol FP to register **
** AR3 and use it instead of the **

::***;;~~~;;;***********************::
FP .set AR3

LDI *FP,RO

**************************~***********
** Set symbol count to an integer **
** expression and use it.as an **
** immediate operand **

count .set

LDI
100/2 + 3
count,RO

** Set symbol symtab to a relo- **
** eatable expression and use it **
** as a relocatable operand **

label .word 10
symtab .set 1abe1+1

LDI @symtab,RO

** Set symbol PI to a floating- **
** point constant and use it as **
** an operand **
*~************************************
PI .set

.float
3.14159
PI

** Set symbol nsyms equal to the **
** symbol count and use it as you **
** would use count **

nsyms .set count

LDI nsyms,RO

Reserve Space .space

Syntax .space size in words

Description The .space directive reserves size number of words in the current section
and fills them with Os. The section program counter is incremented to point
to the word following the reserved space.

The .space directive is equivalent to size number of . word 0 directives.

Example This example reserves 100 O-filled words in the .text section. Note that the
SPC equals 03h before the .space directive is assembled; after the .space
directive is assembled, the SPC is incremented to equal 067h.

0001
0002
0003
0004 000000
0005 000000 OOOOOOOA

000001 OOOOOOOB
0006 000002 00004230
0007
0008
0009
0010 000003 00000000
0011 000067 OOOOOOOC
0012 000068 00000003'

* Begin assembling into .text *

.text

.word OAh , OBh

. string "ARO"

* Reserve a block of 100 words in .text *

SF-X: .space

.word

.word

100
OCh i Still in .text
Sp_X

.text section
Oh

3h

67h

Figure 5-12. An Example of the .space Directive

5-43

.string Initialize Text

Syntax .string "stringt" [, ... , "stringn" 1

Description The .string directive places 8-bit characters from a character string into the
current section. The data is packed so that each word contains four 8-bit
values. Each string is either:

Example

• An expression which the assembler will evaluate and treat as a 32-bit
signed number.

• A character string enclosed in double quotes. Each character repres-
ents a separate valu(l}.

Values are packed into words starting with the least significant byte of the
word and moving toward the most significant portion as more bytes are
added. Any unused s,pace is padded with null bytes (Os).

The assembler truncates any values that are greater than 8 bits. You may
have up to 100 operands, but they must fit on a single source statement
line.

If you use a label, it points to the first word that is initialized.

This example places 8-bit values into words in the current section.

0001 000000 44434241
0002 000001 54535251
0003 000002 73756F48

Str_3: . string
. string
. string

"ABeD"
51h, 52h, 53h, 54h
"Houston"

000003 006E6F74
0004 000004 00000030

5-44

. string 36 + 12

Assemble into .text Section .text

Syntax

Description

Example

.text

The .text directive tells the assembler to begin assembling into the .text
section, which normally contains executable code. The section program
counter is set to 0 if nothing has yet been assembled into the .text section.
If code has already been assembled into the .text section, the section pro
gram counter is restored to its previous value in the section.

Note that the assembler assumes that .text is the default section. Therefore,
at the beginning of an assembly, the assembler assembles code into the
.text section unless you specify one of the other initialized-section direc
tives (.data, .sect, or .asect).

For more information about COFF sections, see Section 3.

This example assembles code into the .text and .data sections. The .text
section contains bytes 1, 2, 3, and 4, and the .data section contains bytes
5,6, 7, and 8.

0001
0002
0003
0004 000000
0005 000000 00000005

000001 00000006
0006
0007
0008
0009
0010 000000
0011 000000 00000001
0012 000001 00000002

0013
0014
0015
0016

000002 00000003

0017 000002
0018 000002 00000007

000003 00000008
0019
0020
0021
0022
0023 000003
0024 000003 00000004

** Begin assembling into .data section **

.data

.byte 5,6

** Begin assembling into .text section **

.text

.byte 1

.byte 2,3

** Resume assembling into .data **

.data

.byte 7,8

** Resume assembling into .text **

.text

.byte 4

5-45

.title

Syntax

Description

Example

Define Page Title

.title "string"

The .title directive supplies a title that is printed in the heading on each
listing page. The source statement itself is not printed, but the line counter
is incremented. The string is a quote-enclosed title of up to 50 characters.
If you supply more than 50 characters, the assembler truncates the string
and issues a warning.

The assembler prints the title on the page that follows the directive, and on
subsequent pages until another .title directive is processed. If you want a
title on the first page of a listing, then the first source statement must con
tain a .title directive.

This example prints the title *** Floating Point Routines *** in the
page headings of the source listing.

Source statement:

.title n*** Floating Point Routines ***"

listing file:

TMS320C30 Assembler Version 1.00, 87.089 Tue Apr 21 11:39:03 198
(cl Copyright 1987, Texas Instruments Inc.

*** Floating Point Routines ***

TMS320C30 Assembler version 1.00, 87.089
(cl Copyright 1987, Texas Instruments Inc.

*** Floating Point Routines ***

5-46

PAGE 1

Tue Apr 21 11:39:03 198

PAGE 2

Reserve Uninitialized Space .usect

Syntax symbol .usect "section name", size in words

Description The .usect directive reserves space for variables in an uninitialized, named
section. This directive is similar to the .bss directive; both simply reserve
space for data and have no contents. However, .usect defines additional
sections that can be placed anywhere in memory, independently of the .bss
section.

Example

• The symbol points to the first location reserved by this invocation of
the .usect directive. The symbol corresponds to the name of the var
iable that you're reserving space for.

• The section name must be enclosed in double quotes; only the first 8
characters are significant. This parameter names the uninitialized
section.

• The size is an expression that defines the number of words that will
be reserved in section name.

Other sections directives (.text. .data, .sect, and .asect) end the current
section and tell the assembler to begin assembling into another section.
The .usect and .bss directives, however, do not affect the current section.
The assembler assembles the .usect and the .bss directives and then re
sumes assembling into the current section.

You can repeat the .usect directive to define more than one variable in the
specified section. Variables which can be located contiguously in memory
can be defined in the same section by using multiple .usect directives with
the same section name.

For more information about COFF sections, see Section 3.

This example uses the .usect directive to define two uninitialized, named
sections, varl and var2. The symbol ptr points to the first word reserved
in the varl section. The symbol aJtray points to the first word in a block
of 100 words reserved in varl, and dflag points to the first word in a
block of 50 words in varl. The symbol vee points to the first word re
served in the var2 section.

Figure 5-13 shows how this example reserves space in two uninitialized
sections, varl and var2.

5-47

·usect

5-48

0001
0002
0003
0004 000000
0005 000000 08010000
0006
0007
0008
0009
0010 000000
0011
0012
0013
0014
0015 000001
0016
0017 000001 08020001
0018
0019
0020
0021
0022 000002
0023
0024 000002 08030002
0025
0026
0027
0028
0029 000000
0030
0031 000003 08200000
0032
0033
0034
0035
0036

ptr

array

dflag

Reserve Uninitialized Space

* Assemble into .text *

.text
LDI RO,Rl

* Reserve 1 word in var1 *

ptr . usect "varl", I

* Reserve 100 more words in var1 *
~*******************************
array .usect "var1", 100

LDI R1,R2 ; Still in .text

* Reserve 50 more words in var1 *

dflag .usect "varl", 50

LDI R2,R3 ; Still in .text

* Reserve 100 words in var2 *

vec .usect "var2", 100

LDI @vec,RO ; Still in .text

* Declare an external .usect symbol *

. global array

Section var1 Section var2
vee --.... ,-----1

1 word

100 words

100 words

100 words reserved In var2

50 words

151 words reserved In var1

Figure 5-13. An Example of the .usect Directive

Section 6

Instruction Set

The TMS320C30 supports a base set of general-purpose instructions as well
as arithmetic-intensive instructions that are particularly suited for digital signal
processing and other numeric-intensive applications.

This section does not cover topics such as opcodes or instruction timing; the
Third-Generation TMS320 User's Guide discusses the instruction set in detail.
The Third-Generation TMS320 User's Guide also contains an alphabetical
presentation which is similar to the directives reference that begins on page
5-13.

This section provides a general summary of the TMS320C30 instruction set:

• Section 6.1 lists the syntax, operation, and description of each in
struction.

• Section 6.2 and Section 6.3 summarize and describe optional syntaxes
of three-operand instructions and parallel instructions, respectively.

• Section 6.4 through Section 6.8 describe the functional categories of the
instruction set.

Section Page
6.1 Summary .. 6-2
6.2 Three-Operand Instructions .. 6-17
6.3 Parallel Instructions .. 6 -18
6.4 Load and Store Instructions .. 6-21
6.5 Arithmetic Instructions ... 6-22
6.6 Logical Instructions .. 6-22
6.7 Program-Control Instructions ... 6-23
6.8 Interlocked-Operation Instructions .. 6-23
6.9 The LDP Instruction ... 6-24

6-1

Instruction Set - Summary

6.1 Summary

Section 6.1.4 lists the TMS320C30 instruction set alphabetically. Each table
entry shows the instruction's syntax and operation. contains a brief de
scription, and shows any optional syntaxes. The key for Section 6.1.4 lists the
valid addressing modes that can be used for various operands. Section 6.1.1
summarizes these addressing modes, Section 6.1.2 summarizes the optional
syntaxes, and Section 6.1.3 summarizes the condition codes used with con
ditional instructions. Section 6.1.4 begins on page 6-5.

6.1.1 Addressing Modes

6-2

The Third-Generation TMS320 User's Guide discusses addressing modes in
detail. This section summarizes the addressing modes mentioned in Section
6.1.4.

• General addressing modes:

Register mode: The operand is a CPU register. For floating-point
operations, use an extended register (Ro-R7). For integer operations,
use any register.

Short immediate mode: The operand is a 16-bit immediate value.
Short immediate operands may be signed integers. unsigned integers,
or floating-point values, depending on the instruction.

Direct mode: The operand is the contents of a 24-bit address, specified
by @addr. The 8 MSBs of the address are specified by the DP register;
the 16 LSBs are specified by the instruction word. (You can use the
LDP instruction to load the page number into the data page pointer re
gister.)

Indirect mode: An auxiliary register indicates the address of the oper
and. Table 6-1 lists the various forms that indirect operands may take.
The displacement may be specified as a value from 0-255 or as one of
the index registers (IRO or IR1).

It is not necessary to specify the displacement if it is 1, because the as
sembler assumes a default displacement of 1. For example, * + +ARn is
equivalent to *++ARn(1).

• Three-operand addressing modes:

Register mode: Same as for general addressing modes.

Indirect mode: Same as for general addressing modes, except the dis
placement is limited to 0, 1, IRO, or IR1.

• Parallel addressing mode:

Register mode: The operand is an extended register (Ro-R7). In some
cases, only RO/R1 or R2/R3 can be used as an operand.

Indirect mode: Same as for general addressing modes, except the dis
placement is limited to 0, 1, IRO, or IR1.

• Long-immediate addressing mode:

The operand is a 24-bit immediate value (usually specified by a label).

Instruction Set - Summary

• Conditional branch addressing mode:

Register mode: Same as for general addressing modes; the contents
of the register are loaded into the PC.

PC-relative mode: A signed 16-bit displacement is added to the PC.
The destination address is usually specified as a label; the assembler
calculates the displacement.

Table 6-1. Indirect Addressing Mode

Operand Description

*ARn Indirect with no displacement

*+ARn(disp) Indirect with predisplacement or preindex add

*-ARn(disp) Indirect with predisplacement or preindex subtract

*++ARn(disp) Indirect with predisplacement or preindex add and modification

* --ARn(disp) Indirect with predisplacement or preindex subtract and modification

*ARn++(disp)[%] t Indirect with postdisplacement or postindex add and modification

* ARn--(disp)[%] t Indirect with postdisplacement or postindex subtract and modification

*ARn++(IRO)B Indirect with postindex (IRO) and bit-reversed modification
. . ..

t Optional circular modification (speclf.led by %)

6.1.2 Optional Syntaxes

The assembler allows a relaxed syntax form for several instructions. These
optional forms simplify the assembly language so that you can ignore spe
cial-case syntax for some instructions.

• If the source and destination register are the same, you need only specify
the register once. Instructions that can use this optional syntax include:

ABSF
ABSI

For example,
ABSI RO,RO

FIX
FLOAT

NEGB
NEGF

NEGI
NORM

can be written as

NOT
RND

ABSI RO

• You can omit the displacement for indirect operands; the assembler will
assume a displacement of 1. Instructions that use general addressing
modes, three-operand addressing modes, or parallel addressing modes
may have indirect address operands. For example,

LDI *ARO++(l),RO can be written as LDI *ARO++,RO

• Long-immediate mode operands can be written with an @ symbol. The
branch and call instructions can use this optional syntax. For example,

BR label can be written as BR @label

6-3

Instruction Set - Summary

6.1.3 Condition Codes

The TMS320C30 supports conditional loads, branches, traps, calls, and re
turns. These instructions use the condition codes in Table 6-2.

Tabte 6-2. Condition Codes

Unconditional Compares

Condo Code Desctiption Flags

U 00000 Unconditional don't care

Unsigned Compares

Condo Code Description Flags

LO 00001 Lower than C
LS 00010 Lower or same CORZ
HI 00011 Higher than CANDZ
HS 00100 Higher or same C
EO 00101 Equal Z
NE 00101 Not equal Z

Signed Compares

Condo Code Description Flags

LT 00111 Less than N
LE 01000 Less than or equal NOR Z
GT 01001 Greater than NANDZ
GE 01010 Greater than or equal N
EO 00101 Equal Z
NE 00101 Not equal Z

Compare to Zero

Condo Code Description Flags

Z 00101 Zero Z
NZ 00110 Not zero Z
P 01001 Positive NANDZ
N 00111 Negative N

NN 01011 Nonnegative N

Compare to Condition Flags

Condo Code Description Flags

NN 01011 Nonnegative N
N 00111 Negative N

NZ 00110 Nonzero Z
Z 00101 Zero Z

NV 01100 No overflow 'ij
V 01101 Overflow V

NUF 01110 No underflow 'iJF
UF 01111 Underflow UF
NC 00100 No carry C
C 00001 Carry C

NLV 10000 No latched overflow LV
LV 10001 Latched overflow LV

NLUF 10010 No latched floating-point underflow LUF
LUF 10011 Latched floating-point underflow LUF
ZUF 10100 Zero or floating-point underflow Z OR UF

6-4

Instruction Set - Summary

6.1.4 Instruction Set Summary Table

Syntax Description

ABSF Src,Rn Absolute Value of a Floating-Point Number

[ABSF Rn] OQeration: ISrcl --+ Rn

Load the absolute value of a floating-point number into an extended-
precision register.

ABSI Src,Dreg Absolute Value of an Integer

[ABSI Dreg] OQeration: I Srcl --+ Dreg

Load the absolute value of an integer into a register.

ADDC Src,Dreg Add Integers with Carry

OQeration: Src + Dreg + C --+ Dreg

Add the source, the contents of the destination register, and the carry bit
together, and store the sum in the destination register. The operands are
signed integers.

ADDC3 Src1,Src2,Dreg Add Integers with Carry (3-0perand)

[ADDC Srcl,Src2,Dreg] OQeration: Src1 + Src2 + C --+ Dreg

Add the two source operands and the carry bit together, and store the sum
in the destination register. The operands are signed integers.

ADDF Src,Rn Add Floating-Point Values

OQeration: Src + Rn Rn

Add the source operand to the contents of an extended-precision register,
and store the sum into the register. The operands are floating-point num-
bers.

ADDF3 Src1,Src2,Rn Add Floating-Point Values (3-0perand)

[ADDF Srcl,Src2,Rn] OQeration: Src1 + Src2 Rn

Add the two source operands together and store the sum in the destination
register. The operands are floating-point numbers.

ADDI Src,Dreg Add Integers

OQeration: Src + Dreg Dreg

Add the source operand to the contents of the destination register and store
the sum in the destination register. The operands are signed integers.

ADDI3 Srcl,Src2,Dreg Add Integers (3-0perand)

[ADDI Srcl.Src2,Dreg] OQeration: Src1 + Src2 --+ Dreg

Add the two source operands together and store the sum in the destination
register. The operands are signed integers.

Note: Optional syntaxes are shown in [brackets].
Key:
Src - General addressing modes
Src1 - Three-operand addressing modes
Src2 - Three-operand addressing modes
Csrc - .. Conditional branch addressing modes
Sreg - Register mode (any register)
Count - Shift value (general addressing modes)

Dreg - Register mode (any register)
Rn - Register mode (Ro-R7)
Daddr - Destination memory address
ARn - Auxiliary register n (ARo-AR7)
Addr - 24-bit immediate address (label)
Cond - Condition code (see Table 6-2, pg. 6-4)

6-5

Instruction Set - Summary

Syntax Description

AND3 Src 1,Src2,Dreg Bitwise Logical AND (3-0perand)

[AND Src1,Src2,Dreg] OQeration: Src1 AN D Src2 -+ Dreg

Perform a bitwise logical AND of the two source operands and store
the result in the destination register. All the operands are unsigned
integers.

ANON Src,Dreg Bitwise Logical AND with Complement

OQeration: Dreg AND -Src -+ Dreg

Perform a bitwise logical AND of the destination register and the bit-
wise logical complement of the source operand. and store the result
into the destination register. Both operands are unsigned integers.

ANDN3 Src1,Src2,Dreg Bitwise Logical ANON (3-0perand)

[ANON Src1.Src2.Dreg] OQeration: Src1 AND 7E Src2 -+ Dreg

Perform a bitwise logical AND of source operand 1 and the bitwise
logical complement of the source operand 2. and store the result into
the destination register. All the operands are unsigned integers.

ASH Count.Dreg Arithmetic Shift

OQeration: If Count> 0
Dreg « Count -+ Dreg

Else
Dreg » ICountl -+ Dreg

If Count is greater than or equal to O. left shift the contents of the
destination register by Count. Low-order bits are filled with Os. and
high-order bits are shifted out through the carry bit.

If Count is less than O. right shift the contents of the destination reg-
ister by the absolute value of Count. High-order bits are sign ex
tended. and low-order bits are shifted out through the carry bit.

Both operands are signed integers.

ASH3 Count,Src,Dreg Arithmetic Shift (3-0perand)

[ASH Count,Src,Dreg] OQeration: If Count> 0
Src «Count -+ Dreg

Else
Src » ICountl -+ Dreg

If Count is greater than or equal to O. left shift the source operand by
Count. Low-order bits will be filled with Os. and high-order bits are
shifted out through the carry bit.

If Count is less than O. right shift the contents of the destination reg-
ister by the absolute value of Count. High-order bits are sign ex-
tended. and low-order bits are shifted out through the carry bit.

The shifted value is stored in the destination register. Both operands
are signed integers.

Bcond Csrc Branch Conditionally (standard)

[Bcond @Csrc] OQeration: If cond = true
If Csrc is a register. Csrc -+ PC
If Csrc is an immediate value. Csrc + PC + 1 -+ PC

Else
continue

Perform a branch if the condition is true. If Csrc is a register or a label.
its contents are loaded into the PC. If Csrc is a 16-bit immediate value.
it is added to the PC. You can precede labels with an @ symbol.

6-6

Instruction Set - Summary

Syntax Description

BcondD Csrc Branch Conditionally (delayed)

[BcondD @Csrc] Ot;!eration: If cond = true
If Csrc is a register. Csrc PC
If Csrc is an immediate value. Csrc + PC + 3 PC

Else
continue

Perform a branch if the condition is true. If Csrc is a register or a label. its
contents are loaded into the PC. If Csrc is a 16-bit immediate value. it is
added to the PC. You can precede labels with an @ symbol.

BR Addr Branch Unconditionally (standard)

[BR @Addr] Ot;!eration: Addr PC

Perform an unconditional branch. The source operand is a label or a 24-bit
unsigned immediate value. If the D is specified. the branch is delayed. If
the operand is a label. you can precede it with an @ symbol.

BRD Addr Branch Unconditionally (delayed)

[BRD @Addr] Ot;!eration: Addr PC

Perform an unconditional branch. The source operand is a label or a 24-bit
unsigned immediate value. If the D is specified. the branch is delayed. If
the operand is a label. you can precede it with an @ symbol.

CALL Addr Call Subroutine

[CALL @Addr] Ot;!eration: Next PC *++SP
Addr PC

Call a subroutine. If the operand is a label. you can precede it with an @
symbol.

CALLcond Csrc Call Subroutine Conditionally

[CALLcond @Csrc] Ot;!eration: If cond = true
Next PC *++SP
If Csrc is a register. Csrc PC
If Csrc is an immediate value. Csrc + PC PC

Else
continue

Call a subroutine if the condition is true. If Csrc is a register or a label. its
contents are loaded into the PC. If Csrc is a 16-bit immediate value. it is
added to the PC. You can precede labels with an @ symbol.

CMPF Src.Rn Compare Floating-Point Values

Ot;!eration: Set flags on Rn - Src

Compare the source and destination operands by subtracting the source
from the destination and setting the appropriate status bits. The result of
the subtraction is not stored - this is a nondestructive compare. Both op-
erands are floating-point numbers.

Note: Optional syntaxes are shown in [brackets].
Key:
Src - General addressing modes
Src1 - Three-operand addressing modes
Src2 - Three-operand addressing modes
Csrc - Conditional branch addressing modes
Sreg - Register mode (any register)
Count - Shift value (general addressing modes)

Dreg - Register mode (any register)
Rn - Register mode (RD-R7)
Daddr - Destination memory address
ARn - Auxiliary register n (ARO-AR7)
Addr - 24-bit immediate address (label)
Cond - Condition code (see Table 6-2. pg. 6-4)

6-7

Instruction Set - Summary

Syntax Description

CMPF3 Src2.Src1 Compare Floating-Point Values (3-0perand)

[CMPF Src2.Src1] O!:1eration: Set flags on Src1 - Src2

Compare the two source operands by subtracting source 2 from source 1
and setting the appropriate status bits. The result of the subtraction is not
stored - this is a nondestructive compare. Both operands are floating-point
numbers.

CMPI Src.Dreg Compare Integers

O!:1eration: Set flags on Dreg - Src

Compare the source and destination operands by subtracting the source
from the destination and setting the appropriate status bits. The result of
the subtraction is not stored - this is a nondestructive compare. Both op-
erands are integers.

CMPI3 Src2.Src1 Compare Integers (3-0perand)

[CMPI Src2.Src1] O!:1eration: Set flags on Src1 - Src2

Compare the two source operands by subtracting source 2 from source 1
and setting the appropriate status bits. The result of the subtraction is not
stored - this is a nondestructive compare. Both operands are integers.

DBcond ARn.Csrc Decrement and Branch Conditionally (standard)

[DBcond ARn.@Csrc] O!:1eration: ARn - 1 -> ARn
If cond = true and ARn > 0

If Csrc is a register. Csrc -> PC
If Csrc is an immediate value, Csrc + PC + 1 -> PC

Else
continue

Decrement the specified auxiliary register and branch if the condition is true
and the specified auxiliary register is not zero. If Csrc is a register or a label,
its contents are loaded into the PC. If Csrc is a 16-bit immediate value, it
is added to the PC. You can precede labels with an @ symbol.

DBcondD ARn.Csrc Decrement and Branch Conditionally (delayed)

[DBcond ARn.@Csrc] O!:1eration: ARn - 1 -> ARn
If cond = true and ARn .::: 0

PC + 3 -> PC
If Csrc is a register, Csrc -> PC
If Csrc is an immediate value, Csrc + PC + 3 PC

Else
continue

Decrement the specified auxiliary register and branch if the condition is true
and the specified auxiliary register is not zero. If Csrc is a register or a label,
its contents are loaded into the PC. If Csrc is a 16-bit immediate value, it
is added to the PC. You can precede labels with an @ symbol.

FIX Src,Dreg Convert Floating-Point Value to Integer

[FIX Dreg] O!:1eration fix(Src) -> Dreg

Convert a floating-point operand to the nearest integer which is less than
or equal to its absolute value and load the result into the destination reg-
ister.

FLOAT Src.Rn Convert Integer to Floating-Point Value

[FLOAT Rn] O!:1eration: float(Src) -> Rn

Convert an integer into a floating-point value and load the result into an
extended-precision register.

Count - Shift value (general addressing modes) Cond - ConditIOn code (see Table 6-2, pg. 6-4)

6-8

InstruQtion Set - Summary

Syntax Description

lACK Src Interrupt Acknowledge

Ooeration: Perform a dummy read operation with lACK = O.
At end of dummy read, set lACK = 1.

Perform a dummy read operation with lACK = O. lACK is set to 1 at the
end of the dummy read. This instruction can be used to generate an ex-
ternal interrupt acknowledge.

If the specified address is off-chip the processor reads the data at that ad-
dress. Then, the lACK signal and the address can be used to signal an in-
terrupt acknowledge to external devices. The data read by the processor is
not used.

IDLE Idle Until Interrupt

Or;!eration: 1 -+ ST(GI E)
Next PC -+ PC
Idle until interrupt

Load the next PC value into the PC and idle until an interrupt is received.
When an interrupt is received, the contents of the PC are pushed onto the
system stack.

LDE Src,Rn Load Floating-Point Exponent

Or;!eration: Src(exponent) -+ Rn (exponent)

Load the exponent portion of a word into the exponent field of an ex-
tended-precision register.

LDF Src,Rn Load Floating-Point Value

Or;!eration: Src -+ Rn

Load a floating point-value into an extended-precision register.

LDFcond Src,Rn Load Floating-Point Value Conditionally

Or;!eration: If cond = true
Src -+ Rn

Else
Rn is not changed

If the specified condition is true, a floating-point value is loaded into an
extended-precision register. If the condition is false, the value is not
loaded.

LDFI Src,Dreg Load Floating-Point Value, Interlocked

Or;!eration: Signal interlocked operation
Src -+ Rn

The source operand is loaded into the destination register and an inter-
locked operation is signaled over the XFO and XF1 pins. The operands are
floating-point values.

LDI Src,Dreg Load Integer

0l2eration: Src -+ Dreg

Load the contents of the source operand into a register. The source oper-
and is a signed integer.

Note: Optional syntaxes are shown in [brackets].
Key:
Src
Src1
Src2
Csrc
Sreg

- General addressing modes
- Three-operand addressing modes
- Three-operand addressing modes
- Conditional branch addressing modes
- Register mode (any register)

Dreg - Register mode (any register)
Rn - Register mode (RO-R7)
Daddr - Destination memory address
ARn - Auxiliary register n (ARO-AR7)
Addr - 24-bit immediate address (label)

6-9

Instruction Set - Summary

Syntax Description

LDlcond Src,Dreg Load Integer Conditionally

Oueration: If cond = true
Src -+ Dreg

Else
Dreg is not changed

If the specified conditi·on is true, the contents of the source operand are
loaded into a register. The source operand is an integer. If the condition
is false, the source operand is not loaded.

LDII Src,Dreg Load Integer, Interlocked

Oueration: Signal interlocked operation
Src -+ Dreg

The source operand is loaded into the destination register and an inter-
locked operation is signaled over the XFO and XF1 pins. The operands are
signed integers.

LDM Src,Rn Load Floating-Point Mantissa

Oueration: Src(mantissa) -+ Rn(mantissa)

Load the mantissa portion of a word into the mantissa field of an extend-
ed-precision register.

LSH Count,Dreg Logical Shift

°ueration: If Count> 0
Dreg <"<Count -+ Dreg

Else
Dreg » ICountl -+ Dreg

If Count is greater than or equal to zero, left shift the contents of the des-
tination register by Count. Low-order bits are filled with Os and high-order
bits are shifted out through the carry bit.

If Count is less than zero, right shift the contents of the destination register
by the absolute value of Count. High-order bits are filled with Os and
low-order bits are shifted out through the carry bit.

The Count operand is a signed integer; Dreg is an unsigned integer.

LSH3 Count,Src,Dreg Logical Shift (3-0perand)

[LSH Count, Src, Dreg] Oueration: If Count> 0
Src <"< Count -+ Dreg

Else
Src » ICountl -+ Dreg

If Count is greater than or equal to zero, left shift the source operand by
Count. Low-order bits are filled with Os and high-order bits are shifted out
through the carry bit. The result is stored in the destination register.

If Count is less than zero, right shift the source operand by the absolute
value of Count. High-order bits are filled with Os and low-order bits are
shifted out through the carry bit.

The Count operand is a signed integer; Src is an unsigned integer. The
result is stored in the destination register.

MPYF Src,Rn Multiply Floating-Point Values

Oueration: Src x Rn -+ Rn

Multiply the source operand by the contents of an extended-precision re-
gister and store the result into the register. Both operands are floating-
point numbers.

6-10

Instruction Set - Summary

Syntax Description

MPYF3 Src1.Src2.Rn Multiply Floating-Point Values (3-0perand)

[MPYF Src1.Src2.Rn] 0l2eration: Src1 x Src2 Rn

Multiply the two source operands together and store the result into the
extended-precision register. All the operands are floating-point numbers.

M PYI Src.Dreg Multiply Integers

0l2eration: Src x Dreg Dreg

Multiply the sou'rce operand by the contents of the destination register and
store the result in the register. Both operands are 24-bit signed integers;
the result is the 32 LSBs of the product.

MPYI3 Srcl.Src2.Dreg Multiply Integers (3-0perand)

[MPYI Src1.Src2.Dreg] 0l2eration: Src1 x Src2 Dreg

Multiply the two source operands and store the result in the register. All
the operands are 24-bit signed integers; the result is the 32 LSBs of the
product.

NEGB Src.Dreg Negate Integer with Borrow

[NEGB Dreg] 0l2eration: o - Src - C Dreg

Load the difference between the source operand. O. and the carry bit into
the destination register. The operands are Signed integers.

NEGF Src.Rn Negate Floating-Point Value

[NEGF Rn] 0l2eration: 0- Src -+ Rn

Load the difference between the source operand and 0 into the extend-
ed-precision register. The operands are floating-point numbers.

NEGI Src.Dreg Negate Integer

[NEGI Dreg] 0l2eration: o - Src -+ Dreg

Load the difference between the source operand and 0 into the destination
register. The operands are signed integers.

NOP No Operation

[NOP Src] 0l2eration: No ALU or multiplier operations.
ARn is modified if Src is specified in indirect mode.

Modify the source operand (if specified). or perform no operation. Src
must be an indirect operand.

NORM Src.Rn Normalize Floating-Point Value

[NORM Rn] Ol2eration: normalize(Src) Rn

Normalize a floating-point number and load the result into an extended-
precision register.

NOT Src.Dreg Bitwise Logical Complement

[NOT Dreg] 0l2eration: Src Dreg

Load the bitwise logical complement of the source operand into the desti-
nation register.

Note: Optional syntaxes are shown in [brackets].
Key:
Src - General addressing modes
Src1 - Three-operand addressing modes
Src2 - Three-operand addressing modes
Csrc - Conditional branch addressing modes
Sreg - Register mode (any register)
Count - Shift value (general addressing modes)

Dreg - Register mode (any register)
Rn - Register mode (RD-R7)
Daddr - Destination memory address
ARn - Auxiliary register n (ARO-AR7)
Addr - 24-bit immediate address (label)
Cond - Condition code (see Table 6-2. pg. 6-4)

6-11

Instruction Set - Summary

Syntax Description

OR Src.Dreg Bitwise Logical OR

0l2eration: Dreg OR Src -+ Dreg

Load the bitwise logical OR of the source and the destination into the
destination register. The operands are unsigned integers.

OR3 Src1.Src2.Dreg Bitwise Logical OR (3-0perand)

[OR Src1.Src2.Dreg] Ol2eration: Src1 OR Src2 -+ Dreg

Load the bitwise logical OR of the two source operands into the destina-
tion register. The operands are unsigned integers.

POP Dreg Pop Integer from Stack

0l2eration: 'SP-- -+ Dreg

Pop the contents of the top of the system stack into the destination register.
The value popped from the stack is an integer.

POPF Rn Pop Floating-Point Value from Stack

0l2eration: 'SP-- -+ Rn

Pop the contents of the top of the system stack into an extended-precision
register. The value popped from the stack is a floating-point number.

PUSH Sreg Push Integer on Stack

0l2eration: Sreg -+ *++SP

Push the contents of the source register onto the top of the system stack.
The value pushed on the stack is an integer.

PUSHF Rn Push Floating-Point Value on Stack

0l2eration: Rn -+ *++SP

Push the contents of an extended-precision register onto the top of the
system stack. The value pushed on the stack is a floating-point number.

RETlcond Return from Interrupt Conditionally or Unconditionally

[RETI] 0l2eration: If cond ~ true
'SP-- -+ PC
1 -+ ST(GIE)

Else
continue

Perform a return from an interrupt routine. If the condition is true or if there
is no condition, pop the top of the system stack into the PC and set the
global interrupt enable bit to 1 .

RETScond Return from Subroutine Conditionally or Unconditionally

[RETS] 0l2eration: If cond = true
'SP-- PC

Else
continue

Perform a return from a subroutine. If the condition is true or missing. pop
the top of the system stack into the PC.

RND Src.Rn Round Floating-Point Value

[RND Rn] 0l2eration: round(Src) -+ Rn

Round the source operand to the nearest single-precision floating-point
number and load it into an extended-precision register.

6-12

Instruction Set - Summary

Syntax Description

ROL Dreg Rotate Left

OQeration: Dreg rotated left 1 bit Dreg

Rotate the contents of the destination register left one bit and store the
result back into the destination register. The carry bit is set to the original
value of the MSB.

ROLC Dreg Rotate Left through Carry

OQeration: D reg rotated I eft 1 bit through carry Dreg

Rotate the contents of the destination register left one bit through the carry
bit and store the result back into the destination register. The carry bit is
set to the original value of the MSB and the new LSB value is set to the
original value of the carry bit.

ROR Dreg Rotate Right

OQeration: Dreg right-rotated 1 bit through carry bit Dreg

Rotate the contents of the destination register right one bit and store the
result back into the destination register. The carry bit is set to the original
value of the LSB.

RORC Dreg Rotate Right through Carry

OQeration: Dreg rotated right 1 bit through carry Dreg

Rotate the contents of the destination register right one bit through the
carry bit and store the result back into the destination register. The carry
bit is set to the original value of the LSB and the new MSB value is set to
the original value of the carry bit.

RPTB Val Repeat Block of Instructions

O!1eration: Val RE
1 ST(RM)
next PC RS

Repeat a block of instructions by the number in the RC (repeat count) re-
gister. Val is a 24-bit immediate value that is loaded into the repeat end
address (RE) register. The RM (repeat mode) status bit is set to 1. and the
address of the next instruction is loaded into the repeat start address (RS)
register.

RPTS Val Repeat Single Instruction

OQeration: Val RC
1 ST(RM)
next PC RSA
next PC REA

Repeat a single instruction by the number in the RC (repeat count) register.
Val is a 24-bit immediate value that is loaded into the RC (repeat counter)
register. The RM (repeat mode) and RS (repeat single) status bits are set
to 1. and the address of the next instruction is loaded into the repeat start
address (RSA) and repeat end address (REA) registers.

Note: Optional syntaxes are shown in [brackets].
Key:
Src - General addressing modes
Src1 - Three-operand addressing modes
Src2 - Three-operand addressing modes
Csrc - Conditional branch addressing modes
Sreg - Register mode (any register)
Count - Shift value (general addressing modes)

Dreg - Register mode (any register)
Rn - Register mode (Ro-R7)
Daddr - Destination memory address
ARn - Auxiliary register n (ARO-AR7)
Addr - 24-bit immediate address (label)
Cond - Condition code (see Table 6-2. pg. 6-4)

6-13

Instruction Set - Summary

Syntax Description

SIGI Signal, Interlocked

O(;!eration: Signal interlocked operation
Wait for interlock acknowledge
Clear interlock

An interlocked operation is signaled over XFO and XF1. After the inter-
locked operation is acknowledged, it ends.

STF Rn,Daddr Store Floating-Point Value

O(;!eration: Rn -+ Daddr

Store the contents of an extended-precision register into a word in memory.
The value that is stored is a floating-point number.

STFI Rn,Daddr Store Floating-Point Value, Interlocked

O(;!eration: Rn -+ Daddr
Signal end of interlocked operation

The contents of the source operand are stored at the destination. An in-
terlocked operation is signaled over XFO and XF1. The operands are
floating-point values.

STI Sreg,Daddr Store Integer

O(;!eration: Sreg -+ Daddr

Store the contents of the source register into a word in memory. The value
that is stored is an integer.

STII Sreg,Daddr Store Integer, Interlocked

O(;!eration: Sreg -+ Daddr
Signal end of interlocked operation

The contents of the source operand are stored at the destination. An in-
terlocked operation is signaled over XFO and XF1. The operands are signed
integers.

SUBB Src,Dreg Subtract Integers with Borrow

O(;!eration: Dreg - Src - C -+ Dreg

Load the difference between the destination register, the source operand,
and the carry bit into the destination register. The operands are signed in-
tegers.

SUBB3 Src2,Src1,Dreg Subtract Integers with Borrow (3-0perand)

[SUBB Src2,Src1,Dreg] O(;!eration: Src1 - Src2 - C -+ Dreg

Load the difference between the source operands and the carry bit into the
destination register. The operands are signed integers.

SUBC Src,Dreg Subtract Integers Conditionally

O(;!eration: If Dreg - Src ~ 0
[(DregcSrc) « 1] OR 1 -+Dreg

Else
Dreg «1 -+ Dreg

If the difference between the destination and the source operands is greater
than or equal to 0, then shift the difference left 1 bit. set the LSB to 1, and
store the result in the destination register.

If the difference between the destination and the source is less than zero,
left shift the contents of the destination register by 1 bit.

SUBC is equivalent to a single step of an integer divide. The operands are
unsigned integers.

6-14

Instruction Set - Summary

Syntax Description

SUBF Src,Rn Subtract Floating-Point Values

O~eration: Rn - Src -+ Rn

Subtract the source operand from the contents of the extended-precision
register and store the result in the register. Both operands are floating-
point numbers.

SUBF3 Src2,SrcT,Rn Subtract Floating-Point Values (3-0perand)

[SUBF Src2,SrcT,Rn] O~eration: Src1 - Src2 -+ Rn

Subtract source 2 from source 1 and store the result in the extended-
precision register. All the operands are floating-point numbers.

SUBI Src,Dreg Subtract Integers

O~eration: Dreg - Src -+ Dreg

Subtract the source operand from the contents of the destination register
and store the result in the destination register. Both operands are signed
integers.

SUBI3 Src2,SrcT,Dreg Subtract Integers (3-0perand)

[SUBI Src2,Src1,Dreg] O~eration: Src1 - Src2 -+ Dreg

Subtract source 2 from source 1 and store the result in the destination re-
gister. All the operands are signed integers.

SUBRB Src,Dreg Subtract Reverse Integer with Borrow

O~eration: Src - Dreg - C -+ Dreg

Load the difference between the source, destination, and carry bit into the
destination register. Both operands are signed integers.

SUBRF Src,Rn Subtract Reverse Floating-Point Value

O~eration: Src - Rn -+ Rn

Subtract the contents of the extended-precision register from the source
operand and store the result into the register. Both operands are float-
ing-point numbers.

SUBRI Src,Dreg Subtract Reverse Integer

O~eration: Src - Dreg -+ Dreg

Subtract the contents of the destination register from the source operand
and store the result into the destination register. Both operands are signed
integers.

SWI Software Interrupt

O~eration: Perform emulator interrupt sequence.

Note: Optional syntaxes are shown in [brackets].
Key:
Src - General addressing modes
Src1 - Three-operand addressing modes
Src2 - Three-operand addressing modes
Csrc - Conditional branch addressing modes
Sreg - Register mode (any register)
Count - Shift value (general addressing modes)

Dreg - Register mode (any register)
Rn - Register mode (RQ-R7)
Daddr - Destination memory address
ARn - Auxiliary register n (ARQ-AR7)
Addr - 24-bit immediate address (label)
Cond - Condition code (see Table 6-2. pg. 6-4)

6-15

Instruction Set - Summary

Syntax Description

TRAPcondN Trap Conditionally or Unconditionally

[TRAP N] OQeration: 0-+ ST(GIE)
If cond= true

next PC -+ *++SP
trap vector N -+ PC

Else
Set ST(GIE) to original state
continue

If the condition is true or missing, the PC contents are pushed on the sys-
tem stack, the PC is loaded with the contents of the specified trap vector
(N), and interrupts are disabled. N is an immediate value from 0-31.

TSTB Src.Dreg Test Bit Fields

Ol2eration: Dreg AND Src

Perform a bitwise logical AND of the source and destination and set the
appropriate flags on the result. This is a nondestructive compare; the re-
sults of the compare are not stored. The source operand is an unsigned
integer.

TSTB3 Src1.Src2 Test Bit Fields (3-0perand)

[TSTB Src1.Src2] 0l2eration: Src1 AND Src2

Perform a bitwise logical AND of the two source operands and set the ap-
propriate flags on the result. This is a nondestructive compare; the results
of the compare are not stored. The source operands are unsigned integers.

XOR Src.Dreg Bitwise Exclusive OR

OQeration: Dreg XOR Src -+ Dreg

Perform a bitwise exclusive OR of the source and destination operands and
store the result in the destination register. The source operand is an un-
signed integer.

XOR3 Src2.Src1.Dreg Bitwise Exclusive OR (3-0perand)

[XOR Src2.Src1.Dreg] 0l2eration: Src1 XOR Src2 -+ Dreg

Perform a bitwise exclusive OR of the two source operands and store the
result in the destination register. The source operands are unsigned inte-
gers.

Note: Optional syntaxes are shown in [brackets].
Key:
Src - General addressing modes
Src1 - Three-operand addressing modes
Src2 - Three-operand addressing modes
Csrc - Conditional branch addressing modes
Sreg - Register mode (any register)
Count - Shift value (general addressing modes)

6-16

Dreg - Register mode (any register)
Rn - Register mode (Ro-R7)
Daddr - Destination memory address
ARn - Auxiliary register n (ARO-AR7)
Val - Immediate value
Cond - Condition code (see Table 6-2, pg. 6-4)

Instruction Set - Three-Operand Instructions

6.2 Three-Operand Instructions

Instruction

ADDC3

ADDI3

ANDN3

CMPF3

LSH3

MPYI3

SUBB3

SUBI3

XOR3

Most instructions have only two operands; however, several arithmetic and
logical instructions have three-operand versions. Three-operand instructions
allow the TMS320C30 to read two operands from memory or the register file
in a single cycle.

• Two-operand instructions have a single source operand (or shift count)
and a destination operand.

• Three-operand instructions may have two source operands (or one
source operand and a count operand) and a destination operand. A
source operand may be a memory word or a register. The destination
of a three-operand instruction is always a register.

Table 6-3 lists the instructions that have three-operand versions.

Table 6-3. Summary Three-Operand Instructions

Description Instruction Description

Add with carry ADDF3 Add floating-point values

Add integers AND3 Bitwise logical AND

Bitwise logical AND with ASH3 Arithmetic shift
complement

Compare floating-point values CMPI3 Compare integers

Logical shift MPYF3 Multiply floating-point values

Multiply integers OR3 Bitwise logical OR

Subtract integers with borrow SUBF3 Subtract floating-point values

Subtract integers TSTB3 Test bit fields

Bitwise exclusive-OR

Note:

You can omit the 3 for all three-operand instructions.

6-17

Instruction Set - Parallel Instructions

6.3 Parallel Instructions

6-18

Some of the TMS320C30 instructions can occur in pairs that will be executed
in parallel. Table 6-4 lists the valid instruction pairs. These parallel in
structions allow:

• Parallel loading of register,
• Parallel arithmetic operations, and
• Arithmetic or logical instructions that can be used in parallel with a store

instruction.

Each instruction in a pair is entered as a separate source statement; the second
instruction must be preceded by two vertical bars (I I). This example shows
the syntax for parallel instructions:

label: ADDI3 RO,*ARO,Rl
STI R4,*+ARll.

; Part 1 (label is optional)
; Part 2 II

Note that the first instruction in the pair may have a label, but the second in
struction cannot have a label.

The assembler allows several relaxed syntax forms for parallel instructions:

• The vertical bars can be placed in column 1 or anywhere between col
umn 1 and the mnemonic. Here is another example of valid syntax for
parallel instructions:

label: MPYI3 RO,*AR1,RO
I I ADDI3 *AR2,Rl,R2

• The instructions in a parallel instruction pair may be specified in either
order. For instance, the preceding example could also be specified as:

label: ADDI3 *AR2,Rl,R2
I I MPYI3 RO,*AR1,RO

• If one of the instructions in a pair uses a three-operand instruction, you
can omit the 3 for that instruction.

MPYI3
II ADDI3

RO, *AR1, RO can be
*AR2,Rl,R2 written as

MPYI
II ADDI

RO, *ARl ,RO
*AR2,Rl,R2

• All commutative operations cai!1 be written in either order. For example,

ADDI * ARO , Rl , R2 can l1e written as ADDI Rl, *ARO ,R2

• The third operand of a three-operand instruction specifies a destination
register. You can omit the third operand if it is the same as the second
operand. This allows you to use three-operand instructions that look like
two-operand instructions. For example,

ADDI3 *ARO,R2,R2
MPYI3 *AR1,RO,RO

can be
written as

ADD:!: *ARO,R2
MPYI *AR1,RO

• Instructions that can use the preceding two syntaxes include:

ADDC3
ADDF3
ADDI3

AND3
ANDN3
ASH3

LSH3
MPYF3
MPYI3

OR3
SUBB3

SUBI3
XOR3

Instruction Set - Parallel Instructions

Note that all registers are read at the beginning of the execution cycle and
loaded at the end of the execution cycle. If an instruction in a pair reads a
register and another instruction writes to the same register, then the former
instruction uses the contents of the register before it is modified by the latter
instruction.

Table 6-4. Summary of Parallel Instructions

Parallel Arithmetic with Store Instructions
Syntax Operation

ABSF Src2,Ost1 I Src21 -+ Ost1

" STF Src3,Ost2 " Src3 -+ Ost2

ABSI Src2,Ost1 ISrc21 -+ Ost1

" STI Src3,Ost2 " Src3 -+ Ost2

ADDF3 Src1 ,Src2, Ost1 Src1 + Src2 -+ Ost1
II STF Src3,Ost2 " Src3 -+ Ost2

ADDI3 Src1 ,Src2, Ost1 Src1 + Src2 -+ Ost1
II STI Src3,Ost2 II Src3 -+ Ost2

AND3 Src2,Src1 ,Ost1 Src1 AND Src2 -+ Ost1
II STI Src3,Ost2 " Src3 -+ Ost2

ASH3 Count,Src2,Ost1 If Count> °
" STI Src3,Ost2 Src2 < < Count -+ Ost1

" Src3 -+ Ost2
Else

Src2 » ICountl -+ Ost1

" Src3 -+ Ost2

FIX Src2,Ost1 Fix(Src2) -+ Ost1

" STI Src3,Ost2 " Src3 -+ Ost2

FLOAT Src2,Ost1 Float(Src2) -+ Ost1

"
STF Src3,Ost2 " Src3 -+ Ost2

LDF Src2,Ost1 Src2 -+ Ost1

" STF Src3,Ost2

"
Src3 -+ Ost2

LDI Src2,Ost1 Src2 -+ Ost1
II STI Src3,Ost2 " Src3 -+ Ost2

LSH3 Count,Src2,Ost1 If Count> °
"

STI Src3,Ost2 Src2 « Count -+ Ost1

" Src3 -+ Ost2
Else

Src2 » ICountl -+ Ost1

" Src3 -+ Ost2

MPYF3 Src2,Src1,Ost1 Src1 x Src2 -+ Ost1

" STF Src3,Ost2 " Src3 -+ Ost2

Key:
Src1 - Register mode (Ro-R7) Src2 -Indirect mode (disp. = 0, 1, IRO, IR1)
Src3 - Register mode (Ro-R7) Sr42 - Indirect mode (disp. = 0, 1, I RO, I R1)
Dst1 - Register mode (Ro-R7) Dst2 -Indirect mode (disp. = 0, 1, IRO, IR1)
Op3 - Register mode (RO or R1) Op6 - Register mode (R2 or R3)
Op1.0p2.0p4.0p5 - Two of these operands must be specified using register mode and
two must be specified using indirect mode

6-19

Instruction Set - Parallel Instructions

6-20

Table 6-4. Summary of Parallel Instructions (Concluded)

Parallel Arithmetic with Store Instructions (continued)
Syntax Operation

MPYI3 Src2,Src2,Ost1 Src1 x Src2 -+ Ost1
II STI Src3,Ost2 II Src3 -+ Ost2

NEGF Src2,Ost1 o - Src2 -+ Ost1
II STF Src3,Ost2 II Src3 -+ Ost2

NEGI Src2,Ost1 o - Src2 -+ Ost1
II STI Src3,Ost21 II Src3 -+ Ost2

NOT Src2,Ost1 Src2 -+ Ost1
II STI Src3,Ost2 II Src3 -+ Ost2

OR3 Src2,Src1,Ost1 Src1 OR Src2 -+ Ost1
II STI Src3,Ost2 II Src3 -+ Ost2

STF Src1,Ost1 Src1 -+ Ost1
II STF Src3,Ost2 II Src3 -+ Ost2

STI Src1,Ost1 Src1 -+ Ost1
II STI Src3,Ost2 II Src3 -+ Ost2

SUBF3 Src2,Src1 ,Ost1 Src1 - Src2 -+ Ost1
II STF Src3,Ost2 II Src3 -+ Ost2

SUBI3 Src2,Src1 ,Ost1 Src1 - Src2 -+ Ost1
II STI Src3,Ost2 II Src3 -+ Ost2

XOR3 Src2,Src1 ,Ost1 Src1 XOR Src2 -+ Ost1
II STI Src3,Ost2 II Src3 -+ Ost2

Parallel Load Instructions
Syntax Operation

LDF Src2,Ost1 Src2 -+ Ost1
II LDF Src4,Ost2 II Src4 -+ Ost2

LDI Src2,Ost1 Src2 -+ Ost1
II LDI Src4,Ost2 II Src4 -+ Ost2

Parallel Multiply and Add/Subtract Instructions
Syntax Operation

MPYF3 Op1,Op2,Op3 Op1 x Op2 -+ Op3
II ADDF3 Op4,Op5,Op6 II Op4 + Op5 -+ Op6

MPYF3 Op1,Op2,Op3 Op1 x Op2 -+ Op3
II SUBF3 Op4,Op5,Op6 II Op4 - Op5 -+ Op6

MPYI3 Op1,Op2,Op3 Op1 x Op2 -+ Op3
II ADDI3 Op4,Op5,Op6 II Op4 + Op5 -+ Op6

MPYI3 Op1,Op2,Op3 Op1 x Op2 -+ Op3
II SUBI3 Op4,Op5,Op6 II Op4 - Op5 -+ Op6

Key:
Src1 - Register mode (Ro-R7) Src2 - Indirect mode (disp. = 0, 1, I RO, I R1)
Src3 - Register mode (Ro-R7) Sr42 - Indirect mode (disp. = 0, 1, I RO, I R1)
Dst1 - Register mode (Ro-R7) Dst2 - Indirect mode (disp. = 0, 1, I RO, I R1)
Op3 - Register mode (RO or R1) OpS - Register mode (R2 or R3)
Op1.0p2.0p4.0p5 - Two of these operands must be specified using register mode and
two must be specified using indirect mode

Instruction Set - Load and Store Instructions

6.4 Load and Store Instructions

Instruction

LDE
LDF

LDFcond

LDI

LDlcond

LDM

The TMS320C30 supports 12 load and store instructions, which are summa
rized in Table 6-5. These instructions:

• Load a word from memory into a register,
• Store a word from a register into memory, or
• Manipulate data on the system stack.

The TMS320C30 also provides you with the ability to load data conditionally;
this is useful for locating the maximum or minimum value in a data set.

Table 6-5. Summary of load and Store Instructions

Description Instruction Description

Load floating-point exponent POP Pop integer from stack

Load floating-point value POPF Pop floating-point value from
stack

Load floating-point value PUSH Push integer on stack
conditionally

Load integer PUSHF Push floating-point value on
stack

Load integer conditionally STF Store floating-point value

Load floating-point mantissa STI Store integer

6-21

Instruction Set - Arithmetic/Logical Instructions

6.5 Arithmetic Instructions

Instruction

ABSF

ABSI

ADDC

ADDF

ADDI

ASH

CMPF

CMPI

FIX

FLOAT

MPYF

MPYI

The TMS320C30 supports a complete set of arithmetic instructions. These
instructions provide integer operations, floating-point operations, and multi
precision arithmetic. Table 6-6 summarizes these instructions.

Table 6-6. Summary of Arithmetic Instructions

Description Instruction Description

Absolute value of a floating- NEGB Negate integer with borrow
point number

Absolute value of an integer NEGF Negate floating-point value
t Add integers with carry NEGI Negate integer
t Add floating-point values NORM Normalize floating-point value
t Add integers RND Round floating-point value
t Arithmetic shift SUBB t Subtract integers with borrow
t Compare floating-point values SUBC Subtract integers conditionally
t Compare integers SUBF t Subtract floating-point values

Convert floating-point value to SUBRB Subtract reverse-integer with
integer borrow

Convert integer to floating-point SUBRF Subtract reverse floating-point
value value

t Multiply floating-point values SUBRI Subtract reverse integer
t Multiply integers

t Two and three operand versions

6.6 Logical Instructions

Instruction

AND

ANDN

LSH

NOT

OR

ROL

The TMS320C30 supports a complete set of logical instructions, which are
summarized in Table 6-7.

Table 6-7. Summary of Logical Instructions

Description Instruction Description
t Bitwise logical AND ROLC Rotate left through carry
t Bitwise logical AND with ROR Rotate right

complement
t Logical shift RORC Rotate right through carry

Bitwise logical complement TSTB t Test bit fields
t Bitwise logical OR XOR t Bitwise exclusive OR

Rotate left

t Two and three operand versions

6-22

Instruction Set - Program-Control/Interlocked Instructions

6.7 Program-Control Instructions

Instruction

Bcond[D]

BR[D]

CALL

CALLcond

DBcond[D]

IDLE

SWI

These instructions control program flow by providing repeat modes (zero
overhead looping) and branching. The repeat modes support repetition of a
block of code or of a single line of code. Both standard and delayed branching
are supported. Table 6-8 lists the program-control instructions.

Table 6-8. Summary of Program-Control Instructions

Description Instruction Description

Branch conditionally (standard NOP No operation
or delayed)

Branch unconditionally RETI cond Return from interrupt
standard or delayed) conditionally

Call subroutine RETS cond Return from subroutine
conditionally

Call subroutine conditionally RPTB Repeat block of instructions

Decrement and branch RPTS Repeat single instruction
conditionally

Idle until interrupt Tkf>.P cond Trap conditionally

Software interrupt

6.8 Interlocked-Operation Instructions

Instruction

LDFI

LDII

SIGI

The interlocked-operations instructions support multiprocessor communi
cation. Table 6-9 lists the interlocked-operation instructions.

Table 6-9. Summary of Interlocked-Operation Instructions

Description Instruction Description

Load floating-point value, STFI Store floating-point value,
interlocked interlocked

Load integer, interlocked STII Store integer, interlocked

Signal, interlocked

6-23

Instruction Set - LOP Instruction

6.9 The lOP Instruction

6-24

The LOP (load data page) instruction is a special form of the LOI (load inte
ger) instruction. LOP allows you to load a register (usually the OP register)
with the page number of a relocatable address. A page number is represented
by the eight MSBs of a 24-bit address. The page number is combined with
the 16 LSBs of an instruction word to form a direct address.

The syntax for the LOP instruction is:

[label] LOP expression [,register]

LOP assembles as an LOI instruction with an immediate source operand.

• The expression is a relocatable address, which is usually represented by
a symbol name.

• The 8 MSBs of the address are loa,ded into the destination register. If
you do not specify a register, the assembler will use the OP register as a
default.

At link time, expression may be relocated to a different page than it occupied
at assembly time. The assembler generates a special relocation type that al
lows the linker to patch the correct page number into the LOP instruction.

The following example illustrates use of the LOP instruction. Assume a vari
able named sym is defined in the .bss section as shown:

.bss sym,l ; Allocate sym in .bss

To read the value of sym using direct addressing, you must first load the OP
register with the 8-bit pointer to the page on which sym is located. Normally,
you do not know at assembly time where the .bss section will be loaded, so
you must use an LOP instruction to load OP before accessing the variable:

LDP sym ; 'Load DP with page number of sym
LDI @sym, RO ; Use direct addressing to access sym

Note that the register operand was omitted from the LOP instruction; OP was
used as the default.

Section 7

Macro Language

The assembler supports a macro language that allows you to create your own
"commands." This is especially useful when a program executes a particular
task several times. The macro language allows you to:

• Define your own macros
• Redefine existing opcodes and macros
• Access macro libraries created with the archiver
• Manipulate strings within a macro
• Define conditional and repeatable blocks within a macro
• Control macro expansion listing

There are three phases of macro use:

• Macro definition. Macros must be defined before they can be in
voked. There are two methods for defining macros:

1) Macros can be defined in the source file where they are used (or
in a separate text file that is included with a .copy or .include di
rective). Because macros must be defined before they are called,
it is a good practice to place all the definitions at the beginning of
the file.

2)/VIacros 9an also be defined in a macro library. A macro library
is a collection of files in archive format, created by the archiver.
Each member of the archive file (macro library) may contain one
macro definition that corresponds to the name of the member. You
can access a macro library by using the .mlib directive. Because
macros must be defined before they can be called, the .mlib direc
tive must appear in the source code before any of the macros in the
library are called.

• Macro invocation. Once a macro has been defined, the macro name
can be used as an opcode in a source program. This is referred to as a
macro call.

• Macro expansion. When the source program calls a macro, the as
sembler substitutes the statements within the macro definition for the
macro call statement.

This section discusses the following topics:

Section Page
7.1 Macro Directives Summary .. 7-2
7.2 Macro Libraries .. 7-3
7.3 Defining Macros .. 7-4
7.4 Macro Parameters ... 7-6
7.5 Conditional Blocks .. 7-7
7.6 Repeatable Blocks ... 7-8
7.7 Unique Labels .. , 7-9

7-1

Macro Language - Macro Directives Summary

7.1 Macro Directives Summary

Directive Description

$MACRO Macro Definition Directive

Syntax: macro name $MACRO [parm1[, ... , parmnl}

The $MACRO directive begins a macro definition. It must be the first statement in
a macro definition. $MACRO assigns a name to the macro and declares the macro
parameters.

macro name is the name of the macro. A macro name may be 1 to 32 alphanumeric
characters; it must begin with a letter. Parms are optional parameters. When a
macro is called, the assembler will associate the first operand in the macro call with
the first parameter of the macro definition, and so on.

$IF Begin Conditional Block Directive

Syntax: $1 F expression

The $IF directive begins a conditional block. If the expression evaluates to a non-
zero value, then the code following the $IF directive (up to an $ELSE or $ENDIF
directive) will be assembled.

$ELSE Alternate Conditional Block Directive

Syntax: $ELSE

The $ELSE directive may be used within a conditional block. If the expression in
an $1 F directive evaluates to 0, then code following a corresponding $ELSE directive
(up to an $ENDIF directive) will be assembled.

$ENDIF Terminate Conditional Block Directive

Syntax: $ENDIF

The $ENDIF directive terminates a conditional block.

$ENDM Terminate Macro Definition Directive

Syntax: $ENDM

The $ENDM directive terminates a macro definition.

$LOOP Begin Repeatable Block Directive

Syntax: $LOOP expression

The $LOOP directive begins a repeatable block. The expression is evaluated only
once; the expression should evaluate to a value in the range 0-32767.

$ENDLOOP Terminate Repeatable Block Directive

Syntax: $ENDLOOP

The $ENDLOOP directive terminates a repeatable block.

7-2

Macro Language - Macro Libraries

7.2 Macro libraries

A macro library is a collection of files that contain macro definitions. These
files, or members, are bound into a single file (called an archive) by the ar
chiver. Each member of a macro library may contain one macro definition.
The macro name and the member name must be the same, and the macro
filename's extension must be .asm. The files in a macro library must be unas
sembled source files. You can access the macro library by using the .mlib as
sembler directive:

.mlib "macro library filename"

When the assembler encounters an .mlib directive, it opens the library and
creates a table of its contents. The assembler enters the names of the indi
vidual members within the library into the opcode table as library entries; this
redefines any existing opcodes or macros that have the same name. If one of
these macros is called, the assembler extracts the entry from the library and
loads it into the macro table. The assembler expands the library entry in the
same manner as other macros, but it does not place the source code into the
listing. Only macros that are actually called from the library are extracted, and
they are extracted only once.

You can create a macro library with the archiver by simply including the de
sired files in an archive. A macro library is no different from any other archive,
except that the assembler expects the macro library to contain macro defi
nitions.

The following example creates a macro library called mac lib. lib:

ar30 -a maclib.lib macl.asm mac2.asm mac3.asm mac4.asm

This example adds four macro files (macl. asm, mac2. asm, mac3. asm, and
mac4. asm) to the library mac lib .lib. Note that this could be a new or an
existing library; if the library already existed, this example would simply ap
pend the macros to the end of the library.

Now you can specify mac lib . lib to the assembler with an .mlib directive,
and call any of the macros that it contains:

.mlib
macl

"maclib.lib"
; Macro call

The assembler assumes that the files in the archive contain macro definitions
with the same names as the members. The assembler expects only macro
definitions in a macro library; putting object code or miscellaneous source files
into the library may produce undesirable effects.

7-3

Macro Language - Defining Macros

7.3 Defining Macros

7-4

A macro definition is a series of source statements in the following format.

macname $MACRO [parmtl [,parm21 ... [.parmnl

model statements or macro directives

$ENDM

where:

macname names the macro. It must be placed in the source statement's
label field. Macro names are significant to 32 characters. The
assembler places this name in the internal opcode table, replac
ing any instruction or previous macro definition with the same
name.

$MACRO identifies this source statement as the first line of a macro defi
nition; it must be placed in the opcode field.

parms are optional parameters which may appear as operands for the
$MACRO directive. Parameters are not required by all macros.

model statements
are instructions or assembler directives that are used each time
the macro is invoked.

macro directives

$ENDM

control the expansion of the macro or manipulate macro param
eters.

terminates the macro definition.

The contents of a single macro definition must be contained in the same file.
Macro definitions cannot be nested, but other directives, instructions, and
macro calls can be used in a macro definition. The assembler performs only
limited error checking of macro definitions (during the definition phase). so
multiple expansions of a macro mav produce duplicate error messages.

When a macro is called, the asse'l1oler substitutes the model statements and
macro directives within the defipition for the macro call in the source code.
Example 7-1 shows an example of a macro definition, how it is called, and
how it is expanded in the source code.

Macro language - Defining Macros

Example 7-1. Macro Definition, Call, and Expansion

Macro Definition: The following code defines a macro, MOVREG, that has three
parameters.

0001
0002
0003
0004
0005
0006
0007
0008

**
MOVREG $MACRO

LDI
LDI
$LOOP
NOP
$ENDLOOP
$ENDM

pl,p2,pN
:pl:, :p2:
:p2:, :pN:
2

; Begin macro definition
Model statement
Model statement
Begin repeat block
Model statement
End repeat block
End macro definition

Macro Call: The MOVREG macro is invoked in the source code.

0009
0010

MOVREG RO,Rl,R2

; Macro call

Macro Expansion: The assembler substitutes the functional lines of the macro de
finition for the macro call. The macro parameters are replaced with the operands sup
plied in the macro call.

0001 000000 08010000
0002 000001 08020001
0003 000002 OC800000
0004 000003 OC800000

LDI
LDI
NOP
NOP

RO,Rl
Rl,R2

When the assembler encounters a macro definition, it places the macro name
in the opcode table. This redefines any previously defined macro, library entry,
directive, or instruction mnemonic that has the same name as the encountered
macro. This allows you to expand the functions of directives and instructions,
as well as to add new instructions.

Caution:

When you specify a macro library with the .mlib directive, the
assembler places all the entries in the specified library into the
opcode table - not just the macros that are called. Make sure
that the macros and instructions you want to use are not rede
fined by macros in a macro library.

7-5

Macro Language - Macro Parameters

7.4 Macro Parameters

Macros can declare local parameters whose scope is limited to the defining
macro. These parameters do not conflict with symbols defined outside the
macro. Only the first eight characters of a parameter name are significant. A
single macro can declare a maximum of 128 parameters.

The assembler assigns initial values to macro parameters when the macro is
called. For example, consider the following macro definition line:

ADDUP . $MACRO vall,va12,sum

This example defines three parameters (vall, va12, and sum). The assembler
assigns values to these parameters when it expands the macro; each parameter
corresponds to an operand in the macro call.

The value that is aSSigned to a macro parameter is called a string value. The
assembler will substitute a parameter's string value into a model statement
when you enclose the parameter name in colons. Parameters can be used this
way anywhere in a model statement (as a label, an operand, etc.).

Example 7-2 shows a macro that has four parameters.

Example 1-2. Using Parameter Values

7-6

0001 packword $MACRO b1,b2,b3,b4
0002 * Make sure these are all in one word
0003 .even
0004 .field :b1: ,8
0005 .field :b2: ,8
0006 .field :b3: ,8
0007 .field :b4: ,8
0008 $ENDM
0009
0010 00000003 A .set 03h
0011 00000010 B .set 10h
0012 00000009 C .set 09h
0013 00000044 D .set 44h
0014
0015 000000 0000003·7 .field 37h,12
0016
0017 packword A,B,C,D
0001 000001 .even
0002 000001 00000003 .field A,8
0003 000001 00001003 .field B,8
0004 000001 00091003 .field C,8
0005 000001 44091003 .field D,8

The packword macro packs four values into the four bytes of a word. The
parameters bl, b2, b3, and b4 are assigned values corresponding to the values
that are passed when the macro is called.

Macro Language - Conditional Blocks

7.5 Conditional Blocks

The $IF, $ELSE, and $ENDIF directives are used to construct conditional
blocks within macro definitions. Conditional blocks can be nested up to ten
levels deep. Blocks at all nesting levels must always be terminated with an
$ENDIF. The general format of a conditional block is:

$IF well-defined expression
code to assemble if expression is true ("p 0)

$ELSE
code 'to assemble if expression is false (=0)

$ENDIF

If the expression in the $IF statement evaluates to a nonzero value (true), then
the code that follows it (up to an $ELSE or $ENDIF) will be assembled. If the
expression evaluates to 0 (false), then the assembler does not assemble the
code that follows the $IF statement; if an $ELSE directive is present, the as
sembler assembles the code that follows it (up to the $ENDIF).

All directives ($IF, $ELSE, and $ENDIF) in a single conditional block must
appear in the same source module; the $ENDIF cannot appear in an included
file. A conditional block not terminated by the end of a source file (or upon
encountering an $ENDM directive) will produce an error.

Conditional assembly directives that appear in a macro definition are evaluated
each time the macro is expanded, not as it is defined. Unassembled code
(code following a false $IF or an unused $ELSE) is not scanned; no
copy/include files are opened and no macros are defined in such blocks.

Figure 7 -1 shows an example of a macro with a conditional block.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012

lOOOl

CMPR

00000001 sym1
00000002 sym2

000000
000000 20746F6E
000001 61757165
000002 0000006C

$MACRO p1,p2
$IF :p1: <> :p2:
.string "not equal"
$ELSE
. str ing "equal"
$ENDIF
$ENDM

.set 1

.set 2

CMPR syml, sym2
.string "not equal"

Figure 7-1. An Example of a Conditional Block

7-7

Macro Language - Repeatable Blocks

7.6 Repeatable Blocks

Repeatable blocks allow a section of code (or a section of a macro definition)
to be repeatedly expanded. This is particularly useful for table generation. The
format of a repeatable block is:

$lOOP well-defined expressions

model statements or macro directives

$ENDlOOP

The assembler evaluates the expression once when it enters the loop, and then
it repeats the block expression number of times. The expression may be any
legal expression or macro expression.

The restrictions that apply to conditional blocks also apply to repeatable
blocks. You can nest up to 10 blocks; you can nest conditional blocks within
repeatable blocks, and repeatable blocks within conditional blocks. The as
sembler checks to see if blocks are nested properly; if they are not, the as
sembler produces an error message. The following example shows improper
nesting:

$LOOP expression 1

$IF expression 2
$ENDLOOP

$ENDIF

Note that the two blocks overlap rather than nest properly. This is an error,
and the macro definition will be ignored.

Example 7-3 shows an example of a repeatable block.

Example 7-3. A Repeatable Block

7-8

0001 fill
0002
0003
0004
0005
0006
0007

!0001 000000 AABBCCDD
!0002 000001 AABBCCDD
!0003 000002 AABBCCDD

. .
0030 00001D AABBCCDD
0031 00001E AABBCCDD
0032 OOOOIF AABBCCDD

$MACRO
$LOOP
.word
$ENDLOOP
$ENDM

fill
.word
.word
.word

.word

.word

.word

f-val
32
:f_val:

OAABBCCDDh
OAABBCCDDh
OAABBCCDDh
OAABBCCDDh

OAABBCCDDh
OAABBCCDDh
OAABBCCDDh

Macro language - Unique labels

7.7 Unique Labels

Labels must be unique. If you use an ordinary label in a macro, and the macro
is expanded more than once, the label in the macro defines the label/symbol
more than once - this is illegal. The macro language supports a special form
of label that allows you to create unique labels within macros. To form a
unique label, simply follow the label name with a question mark; the syntax
for a unique label is:

label?

Symbols that are defined in this manner can be used like any other symbol;
you can declare them as global symbols, you can use them in expressions, etc.

7-9

Macro Language

7-10

Section 8

Archiver Description

The TMS320C30 archiver lets you combine several individual files into a sin
gle file called an archive or a library. Each file within the archive is called a
member. Once you have created an archive file, you can use the archiver to
add more files to it. delete or replace existing members, or extract members.

You can build libraries out of any type of files. Both the assembler and the
linker accept archive libraries as input; the assembler can use libraries that
contain individual source files, and the linker can use libraries that contain in
dividual object files.

One of the most useful applications of the archiver is to build a library of ob
ject modules. For example, you could write several arithmetic routines, as
semble them, and then use the archiver to collect the object files into a single,
logical group. You can then specify the object library as linker input. The
linker will search through the library and include any members that resolve
external references.

You can also use the archiver to build macro libraries. You can create several
separate source files, each of which contains a single macro, and then use the
archiver to collect these macros into a single, functional group. The .mlib as
sembler directive lets you specify the name of a macro library to the assembler;
during the assembly process, the assembler will search the specified library for
the macros that you call. Section 7 discusses macros and macro libraries in
detail.

This section contains the following topics:

Section Page
8.1 Archiver Development Flow .. 8-2
8.2 Invoking the Archiver ... 8-3
8.3 Archiver Examples ... 8-4

8-1

Archiver Description - Development Flow

8.1 Archiver Development Flow

8-2

Figure 8-1 shows the archiver's role in the assembly language development
process. Both the assembler and the linker accept libraries as input.

I

Assembler
Source

Figure 8-1. Archiver Development Flow

Archiver Description - Invoking the Archiver

8.2 Invoking the Archiver

To invoke the archiver, enter:

ar30 [-Jcommand[optionJ libname [filenamet ... filenamenJ

ar30 is the command that invokes the archiver; libname names an archive li
brary. If you don't specify an extension for libname, the archiver uses the de
fault extension . lib. The filenames name individual member files that are
associated with the library. If you don't specify an extension for a filename,
the archiver uses the default extension .obj.

The command tells the archiver how to manipulate the members in the library.
A command can be preceded by an optional hyphen. You must use one of
the following commands when you invoke the archiver, but you can only use
one command per invocation. Valid archiver commands include:

a adds the specified files to the library. Note that this command does not
replace an existing member that has the same name as an added file; it
simply appends new members to the end of the archive. It is possible for
an archive to contain several members that have the same name. If you
want to replace existing members, use the r command.

d deletes the specified members from the library.

r replaces the specified members in the library. If you don't specify any
filenames, the archiver replaces the library members with files of the same
name in the current directory. If the specified file is not found in the li
brary, the archiver adds it instead of replacing it.

t prints a table of contents of the library. If you specify filenames, only
those files are listed. If you don't specify any filenames, the archiver lists
all the members in the specified library.

x extracts the specified files. If you don't specify any member names, the
archiver extracts all the members in the library. When the archiver extracts
a member, it simply copies the member into the current directory; it
doesn't remove it from the library.

In addition to one of the commands, you can specify the following options:

e tells the archiver not to use the default extension .obj for member names.

q (quiet) suppresses the banner and status messages.

s prints a list of the global symbols that are defined in the library. (This
option is valid only with the -a, -r, and -d commands.)

v (verbose) provides a file-by-file description of the creation of a new li
brary from an old library and its constituent members.

Note:

It is possible (but not desirable) for a library to contain several members
with the same name. If you attempt to delete, replace, or extract a mem
ber, and the library contains more than one member with the specified
name, then the archiver deletes, replaces, or extracts the first member with
that name.

8-3

Archiver Description - Examples

8.3 Archiver Examples

8-4

Here are some examples of using the archiver.

• Example 1:

This example creates a library called funct ion. 1 ib that contains the
files sine.obj, cos.obj, and flt.obj.

ar30 -a fURction sine cos fIt
TMS320C30 Archiver Version 1.10.01
(cl Copyright 1987, 1988, Texas Instruments Inc.

==> new archive 'function. lib'
==> building archive 'function. lib'

Since these examples use the default extensions (.lib for the library
and .obj for the'l,l1embers), it is not necessary to specify them.

• Example 2:

You can print a table of contents of function. lib with the -t option:

ar30 -t function
TMS320C30 Archiver
(cl Copyright 1987,

FILE NAME

• Example 3:

sine.obj
cos.obj
flt.obj

Version 5.xx 87.160
T.exas Instruments Inc.

SIZE DATE

248
248
248

Mon Nov 19 01:25:44 1984
Mon Nov 19 01:25:44 1984
Mon Nov 19 01:25:44 1984

You can explicitly specify extensions if you don't want the archiver
to use the default extensions; for example:

ar30 -ave function.fn sine.asm cos .asm flt.asm
TMS320C30 Archiver Version 1.10.01
(cl Copyright 1987, 1988, Texas Instruments Inc.

==> add 'sine.asm'
==> add 'cos.asm'
==> add 'flt.asm'
==> building archive 'function.fn'

This creates a library called function. fn that contains the files
sine. asm, cos. asm, and fIt. asm. (-v is the verbose option.)

• Example 4:

If you wanted to add some new members to a library, specify:

ar30 -as function tan.obj arctan.obj area.obj
TMS320C30 Archiver Version 1.10.01
(cl Copyright 1987, 1988, Texas Instruments Inc.

==> symbol defined: 'K2'
==> symbol defined: 'Rossignol'
==> building archive 'function. lib'

ar30 -a function tan.obj arctan.obj area.obj

Archiver Description - Examples

Since this example doesn't specify an extension for the libname, the ar
chiver adds the files to the library called function. lib. If func
tion. lib didn't exist, the archiver would create it. (The -s option tells
the archiver to list the global symbols that are defined in the library.)

• Example 5:

If you want to modify a member of a library, you can extract it, edit it,
and replace it. In this example, assume there's a library named mac
ros.lib that contains the members push.asm, pop.asm, and
swap.asm.

ar30 -x macros push.asm

The archiver makes a copy of push. asm and places it in the current di
rectory; it doesn't remove push. asm from the library, though. Now you
can edit the extracted file. To replace the copy of push. asm that's in the
library with the copy that was changed, enter:

ar30 -r macros push.asm

8-5

Archiver Description

8-6

Section 9

Linker Description

The TMS320C30 linker creates executable modules by combining COFF ob
ject files. The concept of COFF sections is basic to linker operation; Section
3 discusses COFF sections in detail.

As the linker combines object files, it performs the following tasks:

• It allocates sections into the target system's configured memory.
• It relocates symbols and sections to assign them to final addresses.
• It resolves undefined, external references between input files.

The linker supports a C-like command language that controls memory con
figuration, output section' definition, and address binding. The language
supports expression assignment and evaluation, and provides two powerful
directives, MEMORY and SECTIONS, that allow you to:

• Define a memory model that conforms to target system memory,
• Combine object file see;tions,
• Allocate sections into specific areas of memory, and
• Define or redefine global symbols at link time.

Topics in this section includet

Section Page
9.1 Linker Development Flow .. 9-2
9.2 Invoking the Linker ... 9-3
9.3 Linker Options ... 9-4
9.4 Linker Command Files ... 9-11
9.5 Object Libraries ... 9-13
9.6 The MEMORY Directive .. 9-14
9.7 The SECTIONS Directive ... 9-16
9.8 Overlay Pages , ... 9-23
9.9 Default Allocation ... 9-27

9.10 Special Section Types (DSECT, COPY, and NOLOAD) 9-29
9.11 Assigning Symbols at Link Time .. 9-30
9.12 Creating and Filling Holes ... 9-33
9.13 Partial (Incremental) Linking .. 9-37
9.14 Linking C Code ... 9-38
9.15 Linker Example .. 9-41

9-1

Linker Description - Development Flow

9.1 Linker Development Flow

9-2

Figure 9-1 illustrates the linker's role in the assembly language development
process. The linker accepts several types of files as input, including object
files, command files, libraries, and partially linked files. The linker creates an
executable COFF object module that can be downloaded to one of several
development tools or executed by a TMS320C30.

Macro
Source
Files

Assembler
Source

C Source

Figure 9-1. Linker Development Flow

Linker Description - Invoking the Linker

9.2 Invoking the linker
The general syntax for invoking the linker is:
I Ink30 [-options] filename, ... filenamen

Ink30 is the command that invokes the linker. The options (discussed in
Section 9.3) can appear anywhere on the command line or in a linker com
mand file. The filenames can be object files, linker command files, or archive
libraries. The default extension for all input files is .obj; any other extension
must be explicitly specified. The linker can determine whether the input file is
an object file or an ASCII file that contains linker commands. The default
output filename is a.out.

There are three methods for invoking the linker:

• Specify options and filenames on the command line. This example links two
files, filel.obj and file2.obj, and uses the -0 option to create an output
module named link. out.

lnk30 filel.obj file2.obj -0 link.out

• Enter the Ink30 command with no filenames and no options; the linker will
prompt for them:

Command files :
Object files [.objl
Output files [1 :
Options :

For command files, enter one or more command file names.

For object files, enter one or more object file names. The default extension is
obj. Separate the filenames with spaces or commas; if the last character is a
comma, the linker will prompt for an additional line of object file names.

The output file is the name of the linker output module. This overrides any -0
options entered with any of the other prompts. If there are no -0 options and
you do not answer this prompt, the linker will create an object file with the
default filename of a.out.

The options prompt is for additional options, although you can also enter op
tions in a command file. Enter them with hyphens, just as you would on the
command line.

• Put filenames and options in a linker command file. For example, assume the
file linker. cmd contains the following lines:

-0 link. out
filel.obj
file2.obJ

Now you can invoke the linker from the command line; specify the command
file name as an input file: Ink30 linker. cmd

When you use a command file, you can also specify other options and files on
the command line. For example, you could enter:
Ink30 -m link.map linker.cmd file3.obj

The linker reads and processes a command file as soon as it encounters it on
the command line, so it links the files in this order: filel.obj, file2.obj,
and f ile3 . obj. This example creates an output file called link. out and a
map file called link. map.

9-3

Linker Description - Linker Options

9.3 linker Options

Option

-s

-sr
-c

-cr

-e

-f fill value

-h

-i dir

-I filenamet

-m filenamet

-0 filenamet
-q

-r
-s
-u symbol

Linker options control linking operations. They can be placed on the com
mand line or in a command file. All linker options must be preceded by a hy
phen (-). The order in which options are specified is unimportant, except for
the -I and -i options. Options are separated from arguments (if they have
them) by an optional space. Table 9-1 summarizes the linker options.

Table 9-1. Linker Options Summary

Description

Produce an absolute, executable module. This is the default; if neither -a nor
-r is specified, the linker acts as if -a is specified.

Produce a relocatable, executable object module.
Use linking conventions defined by the ROM autoinitialization model of the C
compiler.

Use linking conventions defined by the RAM autoinitialization model of the C
compiler.

Defines a global symbol that specifies the primary entry point for the output
module.

Set the default fill value for holes within output sections; fill value is a 4-byte
constant.
Make all global symbols static.

Alter the library-search algorithm to look in dir before looking in the default lo-
cation. This option must appear before the -I option.

Name an archive library file as linker input; filename is an archive library name.

Produce a map or listing of the input and output sections, including holes, and
place the listing in filename.

Name the executable output module. The default filename is a.out.

Request a quiet run (suppress the banner).

Retain relocation entries in the output module.
Strip symbol table information and line number entries from the output modules.

Place an unresolved external symbol into the output module's symbol table.
t The filename must follow operating system conventIons.

9.3.1 Relocation Capability {-a and -r Options}

9-4

One of the tasks the linker performs is relocation. Relocation is the process
of adjusting all the references to a symbol when the symbol's address changes.
The linker supports two options (-a and -r) that allow you to choose whether
you will produce an absolute or a relocatable output module.

• Producing an Absolute Output Module (-a Option)

When you use the -a option without the -r option, the linker produces
an absolute, executable output module. Absolute files contain no relo
cation entries. Executable files:

Contain special symbols defined by the linker (Section 9.11.4,
page 9-32, describes these symbols),
Contain an optional header that describes information such as the
program entry point and
Contain no unresolved references.

linker Description - linker Options

This example links filel. obj and file2. obj and creates an absolute
output module called a. out:

Ink30 -a filel.obj file2.obj

Note:

If you do not use the -a or the -r option, the linker acts as if you specified
-a.

• Producing a Relocatable Output Module (-r Option)

When you use the -r option without the -a option, the linker retains re
location entries in the output module. If the output module will be re
located (at load time) or rei inked (by another linker execution), use -r
to retain the relocation entries.

The linker produces an unexecutable file when you use the -r option
without -a. A file that is not executable does not contain special linker
symbols or an optional header. The file may contain unresolved refer
ences, but these references do not prevent creation of an output module.

This example links f ilel. obj and f ile2. obj and creates a relocatable
output module called a. out:

Ink30 -r filel.obj file2.obj

The output file a. out can be relinked with other object files or relocated
at load time. (Linking a file that will be rei inked with other files is called
partial/inking. For more information, see Section 9.13, page 9-37.)

• Producing an Executable Relocatable Output Module (-ar)

If you invoke the linker with both the -a and -r options, the linker pro
duces an executable, relocatable object module. The output file contains
special linker symbols, contains an optional header, and all symbol ref
erences are resolved (this is normal for a relocatable file); however, the
relocation information is retained.

This example links filel. obj and file2. obj and creates an executa
ble, relocatable output module called xr. out:

Ink30 -ar filel.obj file2.obj -0 xr.out

Note that you can string the options together (Ink30 -ar) or you can
enter them separately (Ink30 -a -r).

• Relocating or Relinking an Absolute Output Module

The linker issues a warning message (but continues executing) when it
encounters a file that contains no relocation or symbol table information.
Relinking an absolute file can only be successful if each input file con
tains no information that needs to be relocated (that is, each file has no
unresolved references and is bound to the same virtual address that it
was bound to when the linker created it).

9-5

Linker Description - Linker Options

9.3.2 C Language Options (-c and -cr Options)

The -c and -cr options cause the linker to use linking conventions that are
required by the TMS320C30 C compiler.

• The -c option tells the linker to use the ROM autoinitialization model.
• The -cr option tells the linker to use the RAM autoinitialization model.

For more information about linking C code, see section Section 9.14 on page
9-38.

9.3.3 Define an Entry Point (-e global symbol Option)

The memory address that a program begins executing from is called the entry
point. When a loader loads a program into target memory, the program
counter must be initialized to the entry point; the PC then points to the be
ginning of the program.

The linker can assign one of four possible values to the entry point. These
values are listed below in the order in which the linker tries to use them. If
you use one of the first three values, it must be an external symbol in the
symbol table. Possible entry point values include:

1) The value specified by the -e option. The syntax is -e <global sym
bol> where global symbol defines the entry point and must appear as
an eternal symbol in one of the input files to be linked.

2) The value of symbol _c_intOO (if present). _c_intOO must be the
entry point if you are linking code produced by the C compiler.

3) The value of symbol -IlIain (if present).

4) Zero (default value).

This example links file 1. obj and f ile2 .obj and sets the entry point to the
value of the symbol begin. This symbol must be defined as external in f ilel
or file2.

lnk30 -e begin filel.obj file2.obj

9.3.4 Set Default Fill Value (-f cc Option)

9-6

The -f option fills the holes formed within output sections or initializes unini
tialized sections when they are combined with initialized sections. This allows
you to initialize memory areas during link time without reassembling a source
file. The argument cc is a 4-byte constant (up to eight hexadecimal digits).
If you do not use -f. the linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value AABBCCDDh:

lnk30 -f OAABBCCDDh filel.obj file2.obj

Linker Description - Linker Options

9.3.5 Make All Global Symbols Static (-h Option)

The -h option makes all global symbols static. This "hides" symbols, because
static symbols are not visible to externally linked modules. This allows ex
ternal symbols with the same name (in different files) to be treated as unique.

The -h option effectively nullifies all .global assembler directives. All symbols
become local to the module in which they were defined, so no external refer
ences are possible. .

.,

For example, as!~me filel. obj and file2. obj both define global symbols
called ext. By ~sing the -h option, these files can be linked without conflict.
The symbol ext defined infilel.obj is treated separately from the symbol
ext defined in file2 .obj.

Ink30 -h filel.obj file2.obj

9.3.6 Alter the Library Search Algorithm (-i dir & -I filename/C-DIR)

Usually when you want to specify a library input, you simply enter the library
name as you would any other input filename; the linker looks for the library in
the current directory. For example, suppose the current directory contains the
library obj ect • lib. Assume that this library defines symbols that are refer
enced in the file filel.obj. This is how you link the files:

lnk30 filel.obj object. lib

If you want to use a library that is not in the current directory, use the -I
(lowercase "L") linker option. The syntax for this option is -I filename. The
filename is the name of an archive library; the space between -I and the
filename is optional.

You can augment the linker's directory search algorithm by using the -i linker
option or the environment variable. The linker searches for object libraries in
the following order:

1) It searches directories named with the -i linker option.
2) It searches directories named with the environment variable C-DIR.
3) If C-DIR is not set, it searches directories named with the assembler's

environment variable, A-DIR.
4) It searches the current directory.

9-7

Linker Description - Linker Options

9.3.6.7 -i Linker Option

The -i option names an alternate directory that contains object libraries. The
syntax for this option is -i dir. dir names a directory that contains object li
braries; the space between -i and the directory name is optional. When the
linker is searching for object libraries named with the -I option, it searches
through directories hamed with -i first. Each -i option specifies only one di
rectory, but you can use several -i options per invocation. When you use the
-i option to name an alternate directory, it must precede the -I option on the
command line or in a command file.

As an example, assume that two archive libraries called r .lib and lib2.lib
reside in directories called:

• \ld and \ld2 (DOS)
• [ldj and [ld2j (VMS), or
• lId and Ild2 (UNIX).

You can use both libraries during a link:

DOS: Ink30 fl.obj f2.obj -i\ld -i\ld2 -lr.lib -llib2.lib

VMS: lnk30 fl.obj f2.obj -i[ld] -i[id2] -lr.lib -1Iib2.lib

UNIX: Ink30 fl.obj f2.obj -i/ld -i/ld2 -lr.lib -llib2.lib

9.3.6.2 Environment Variable (C-DIR)

9-8

An environment variable is a system symbol that you define and assign a string
to. The linker uses an environment variable named C-DIR to name alternate
directories that contain object libraries. The command for assigning the envi
ronment variable is:

DOS: set C-DIR=pathname; another pathname ...

VMS: assign C-DIR"pathname, another pathname ... "

UNIX: setenv C-DIR"pathname; another pathname ... "

The pathnames are directories that contain object libraries. Use the -I option
on the command line or in a command file to tell the linker which libraries to
search for.

As an example, assume that two archive libraries called r .lib and lib2 .lib
reside in directories called:

• \ldir and \ldir2 (DOS),
• [ldir] and [ldir2] (VMS), or
• Ildir and Ild2 (UNIX).

You can use both libraries during a link; set the environment variable first:

DOS: set C-DIR=\1dir;\1dir2
Ink30 fl.obj f2.obj -1 r.1ib -1 1ib2.1ib

Linker Description - Linker Options

VMS: assign C-DIR "[1dirl ; [1dir2]"
Ink30 fl.obj f2. obj -1r . lib -1 lib2.lib

UNIX: setenv c-!)IR "/1dir;/1dir2
1nk30 fl.6bj f2.obj -1 r.1ib -1 1ib2.1ib

Note that the environment variable remains set until you reboot the system or
reset the variable by entering:

DOS: set C.:..DIR=

VMS: deassign C-DIR

UNIX: setenv C_DIR "

The assembler uses an environment variable named A-DIR to name alternate
directories that contain copy/include files or macro libraries. If C-DIR is not
set. the linker will search for objeCt libraries in the directories named with
A-DIR. .

Section 9.5 (page 9-13) contains more information about object libraries.

9.3.7 Create a Map File (-m filename Option)

The -m option creates a link map listing and puts it in filename. This map
describes:

• Memory configuration,
• Input and output section allocation, and
• The addresses of external symbols after they have been relocated.

The map file contains the name of the output module, the entry point, and
may also contain up to three tables:

• A table showing the new memory configuration, if any nondefault
memory is specified.

• A table showing the linked addresses of each output section and the
input sections that make up the output sections.

• A table showing each external symbol and its address. This table has
two columns: the left column contains the symbols sorted by name and
the right column contains the symbols sorted by address.

This example links filel.obj and file2.obj and creates a map file called
map.out:

1nk30 fi1el.obj file2.obj -m map. out

Section 9.15 (page 9-41) shows an example of a map file.

9-9

Linker Description - Linker Options

9.3.8 Name an Output Module (-0 filename Option)

The linker always creates an executable output module. If you do not specify
a filename for the output module, the linker gives it the default name a.out.
If you want to write the output module to have another name, use the -0 op
tion. The filename is the new output module name.

This example links f ilel. obj and f ile2. obj and creates an output module
named run. out:

Ink30 -0 run. out filel.obj file2.obj

9.3.9 Specify a Quiet Run (-q Option)

The -q option suppresses the linker's banner when -q is the first option on the
command line or in a command file. This option is useful for batch operation.

9.3.10 Strip Symbolic Information (-s Option)

The -s option creates a smaller output module by omitting symbol table in
formation and line number entries. The -s option is useful for production ap
plications, when you must create the smallest possible output module.

This example links filel. obj and file2. obj and places the output mod
ule, stripped of line numbers and symbol table information, named nol
ink. out:

Ink30 -0 nolink.out -5 filel.obj file2.obj

Note that using the -s option limits later use of a symbolic debugger, and may
prevent a file from being rei inked.

9.3.11 Introduce an Unresolved Symbol (-u symbol Option)

9-10

The -u option introduces an unresolved symbol into the linker's symbol table.
This forces the linker to search through a library and include the module that
defines the symbol. Note that the linker must encounter the -u option before
it links in the member that defines the symbol.

For example, suppose a library named rts. lib contains a member that d~
fines the symbol symtab, none of the object files you are linking reference to
symtab. However, suppose you plan to relink the output module, and you
would like to include the library member that defines symtab in this link.
Using the -u option as shown below forces the linker to search rts. lib for
the member that defines symtab and to link in the member.

Ink30 -u symtab filel.obj file2.obj rts.lib

If you did not use -u, this member would not be included because there is no
explicit reference to it in filel.obj or file2.obj.

Linker Description - Command Files

9.4 Linker Command Files

linker command files allow you to put linking information in a file; this is
useful when you often invoke the linker with the same information. linker
command files are also useful because they allow you to use the MEMORY
and SECTIONS directives to customize your application. You must use these
directives in a command file; you cannot use them on command line. Com
mand files are ASCII files that contain one or more of the following:

• Input filenames, which specify object files, archive libraries, or other
command files. (If a command file calls another command file as input.
this statement must be the last statement in the calling command file.
The linker does not return from the called command files.)

• Linker options, which can be used in the command file in the same
manner that they are used on the command line.

• The MEMORY and SECTIONS linker directives. The MEMORY directive
allows you to specify the target memory configuration. The SECTIONS
directive controls how sections are built and allocated.

• Assignment statements, which define and assign values to global sym-
bols.

To invoke the linker with a command file, enter the Ink30 command and fol
low it with the name of the command file:

Ink30 command file name

The linker processes input files in the order that it encounters them. If the
linker recognizes a file as an object file, it links the file. Otherwise, it assumes
a file is a command file and begins reading and processing commands from
it.

Figure 9-2 shows a sample linker command file called link. cmd. (Figure
9-12 on page 9-42 contains another example of a linker command file.)

/**/
/* Sample Linker Command File * /
/**/
a.obj /* First input filename */
b.obj /* Second input filename */
-0 prog.out /* Option to specify output file */
-m prog.map /* Option to specify map file */

Figure 9-2. An example of a Linker Command File

This sample file in Figure 9-2 contains only filenames and options. (Note that
you can place comments in a command file by delimiting them with /* and
* /.) To invoke the linker with this command file, enter:

lnk30 link.cmd

9-11

Linker Description - Command Files

9-12

You can also place other parameters on the command line when you use a
command file:

lnk30 -r link.cmd c.obj d.obj

The linker processes the command file as soon as it encounters it, so a. obj
and b. obj are linked into the output module before c. obj and d. obj.

You can also specify multiple command files. It. for example, you have a file
called names. 1st that contains filenames and another file called dir. cmd
that contains linker directives, you can enter:

lnk30 names. 1st dir.cmd

A command file can call another command file; this type of nesting is limited
to 16 levels. If a command file names another command file as input, this
statement must be the last statement in the calling command file.

Blanks and blank lines that appear in a command file are insignificant except
as delimiters. This also applies to the format of linker directives in a command
file. Figure 9-3 shows a sample command file that contains linker directives.
(linker directive formats are discussed in later sections.)

/**/
/* Sample Linker Command File with Directives */
/**/
a.obj b.obj c.obj /* Input filenames */
-0 prog.out -m prog.map /* Options */

MEMORY
{

RAM: 0

ROM: 0

SECTIONS
{

lOOh
OlOOOh

. text: {} > ROM

. data: {} > ROM

.bss: {} > RAM

1
1

/* MEMORY directive

OlOOh
fllOOh

/* SECTIONS directive

*/

*/

Figure 9-3. An Example of a Command File with Linker Directives

The following names are reserved as key words for linker directives. Do not
use them as symbol or section names in a command file.

align
ALIGN
block
BLOCK
COPY
DSECT
group
GROUP

I (lowercase I'Ll')
len
length
LENGTH
MEMORY
NOLOAD
o
org

origin
ORIGIN
page
PAGE
range
SECTIONS
spare

Linker Description - Object Libraries

9.5 Object Libraries
An object library is a partitioned archive file that contains complete object files
as members. Usually, a group of related modules are grouped together into a
library. When you specify an object library as linker input, the linker includes
any members of the library that define existing unresolved symbol references.
You can use the TMS320C30 archiver to build and maintain archive libraries;
Section 8 contains more information about the archiver.

Using object libraries can reduce linking time and can reduce the size of the
executable module. If a normal object file that contains a function is specified
at link time, it is linked whether it is used or not; however, if that same function
is placed in an archive library, it is only included if it is referenced.

The order in which libraries are specified is important because the linker in
cludes only those members that resolve symbols that are undefined when the
library is searched. The same library can be specified as often as necessary; it
is searched each time it is included. A library has a table that lists all external
symbols defined in the library; the linker searches through the table until it
determines that it cannot use the library to resolve any more references.

The following example links several object files and libraries; assume that:

• Input files f 1. obj and f 2. obj both reference an external function
named clrscr.

• Input file f 1. obj references the symbol origin.
• Input file f2. obj references the symbol f illclr.
• Library libc . lib, member 0, contains a definition of origin.
• Library liba.lib, member 3, contains a definition of fillclr.
• Member 1 of both libraries defines clrscr.

If you enter: lnk30 f1.obj liba.lib f2.obj libc.lib

then:

• Member 1 of liba .lib satisfies both references to clrscr, because
the library is searched and clrscr is defined before f2. obj references
it.

• Member 0 of 1 ibc . 1 ib satisfies the reference to or igin.
• Member 3 of liba. lib satisfies the reference to f illclr.

If, however, you enter: lnk30 f1.obj f2.obj libc.lib liba.lib

then the references to clrscr are satisfied by member 1 of libc .lib.

If none of the linked files reference symbols defined in a library, you can use
the -u option to force the linker to include a library member. The next example
creates an undefined symbol rout1 in the linker's global symbol table:

lnk30 -u rout1 libc.lib

If any members of 1 ibc . 1 ib define rout 1, then the linker includes those
members. Note that it is not possible to control the allocation of individual
library members; members are allocated according to the SECTIONS directive
default allocation algorithm.

Section 9.3.6 (page 9-7) describes methods for specifying directories that
contain object libraries.

9-13

Linker Description - The MEMORY Directive

9.6 The MEMORY Directive
The linker determines where output sections should be allocated into memory;
the linker must have a model of target memory to accomplish this task. The
MEMORY directive allows you to specify a model of target memory, so you
can define the types of memory your system contains and the address ranges
they occupy. The linker maintains the model as it allocates output sections,
and uses the model to determine which locations in the target system can be
used for object code.

The memory configurations of TMS320C30 systems differ from application to
application. The MEMORY directive allows you to specify a variety of con
figurations to meet all applications. After you use the MEMORY directive to
define a memory model, you can use the SECTIONS directive to allocate out
put sections into defined memory.

9.6.1 Default Memory Model

If you do not use the MEMORY directive, the linker uses a default memory
model that is based on the TMS320C30 architecture. This model assumes that
the full 24-bit address space (2~4 locations) is present in the system and
available for use.

9.6.2 MEMORY Directive Syntax

9-14

The MEMORY directive identifies ranges of memory that are physically present
in the target system and can be used by a program. Each memory range has
a name, a starting address, and a length.

When you use the MEMORY directive, be sure to identify all the memory
ranges that are available to load object code into. Memory that is defined by
the M EMORY directive is configured memory; any memory that you do not
explicitly account for with the MEMORY directive is unconfigured
memory. The linker does not place any part of a program into unconfigured
memory. You can represent nonexistent memory spaces by simply not in
cluding an address range in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY
(uppercase), followed by a list of memory range specifications enclosed in
braces. The MEMORY directive in Figure 9-4 defines a system that has 4K
of ROM at address 0 and 8K of RAM \at address OEOOOh.

1***/
/* Sample command file with MEMORY directive */
/***/
filel.obj file2.obj /* Input files */
-0 prog.out /* Options */

MEMORY
{

ROM
RAM

origin OOOOOh
origin OEOOOh

length lOOOh
length 2000h

Figure 9-4. An Example of the MEMORY Directive

Linker Description - The MEMORY Directive

Now you could use the SECTIONS directive to tell the linker where to link the
sections. For example, you could allocate the .text and .data sections into the
area named ROM and allocate the .bss section into the area named RAM.

The general syntax of the MEMORY directive is:

MEMORY
{

}

name 1 [(attr)] :
name n [(attr)] :

origin = constant. length = constant
origin = constant. length = constant

name names a memory ranytl. A memory name may be 1 to 8 characters;
valid characters include A-Z, a-z, $, ., and -. The names have no
significance to the program; they simply identify memory ranges for
the linker. Memory range Mames are internal to the linker and are not
retained in the output file or in the symbol table.

attr specifies 1 to 4 optional attributes that are associated with the named
range. Valid attributes include R (readable memory). W (writable
memory), X (executable mempry), and I (initializable memory); attri
butes must be enclosed in parentheses. If you do not specify any
attributes for a memory range, .then the range has all four attributes.
All memory in the default mode~ has all four attributes. The following
example defines a memory range that is readable and executable:
MEMORY
{ ROM (RX) : 0 = 0, 1 = OlOUOh

origin specifies the starting address of a memory range. It may be entered
as origin, org, or o. The value, specified in words, is a long integer
constant, and may be decimal, octal. or hexadecimal.

length specifies the length of a memory rarige. It may be entered as length,
len, or I. The value is specified in words as a long integer constant
(decimal, octal, or hexadecimal).

Figure 9-5 illustrates the memory map defined by Figure 9-4.

Memory

1000h

OEOOOh

10000h

,-,-,-,-,-,-;..o..:.~"-,-,, OFFFFFFh

Figure 9-5. Memory Map Defined in Figure 9-4

9-15

Linker Description - The SECTIONS Directive

9.7 The SECTIONS Directive
The SECTIONS directive tells the linker how to combine sections from input
files into sections in the output module and where to place the output sections
in memory. In summary, the SECTIONS directive:

• Describes how input sections are combined into output sections,
• Defines output sections in the executable program,
• Specifies where output sections are placed in memory (in relation to

each other and to the entire memory space), and
• Permits renaming of output sections.

9.7.1 Default Sections Configuration

If you do not specify a SECTIONS directive, the linker uses a default algorithm
for combining and allocating the sections. Section 9.9 (page 9-27) describes
this algorithm in detail.

9.7.2 SECTIONS Directive Syntax

9-16

The SECTIONS directive is specified in a command file by the word SEC
TIONS (uppercase), followed by a list of output section specifications en
closed in braces. Figure 9-6 contains an example of the SECTIONS directive.

/***/
/* Sample command file with SECTIONS directive */
/***/
filel.obj file2.obj /* Input files */
-0 prog.out /* Options */

SECTIONS
{

.text OlOOOh : ()

.data

.bss

filel.obj(.data)

filel.ob~ (init)
file2.obJ(.data)

ALIGN(16) : ()

Figure 9-6. An Example of the SECTIONS Directive

The general syntax of the SECTIONS directive is:

SECTIONS
{

}

section specification 1
section specification 2
section specification n

Linker Descriptitm - The SECTIONS Directive

Each section specification defines an output section. (An output section is a
section in the output file.) The syntax for a section specification is:

name [binding ill align(n)] :
{

input sections
assignments

} [=fil/ value] [> named memory]

name

binding

align(n)

input
sections

assignment

fill value

> named
memory

names the section in the output file. Only the first 8 characters
of output section names are significant.

is optional and assigns the section to a specific physical ad
dress in target memory. Section 9.7.4 (page 9-20) discusses
assigning an address to an output section.

is optional and specifies that the section should be aligned on
an address boundary (the actual address is determined by the
linker). Section 9.7.4 (page 9-20) discusses aligning an out
put section.

is a list of input sectiools that are combined to form the output
section. The list is enclosed in braces. Section 9.7.3 (page
9-18) discusses specifying input sections in detail.

is optional and defines the value of symbols at link time or
creates uninitialized spaces (called holes) between input sec
tions within the output section. Section 9.11 (page 9-30)
discusses linker assignment statements, and Section 9.12
(page 9-33) provides more information about holes.

is optional and specifies a value for filling holes in the section.
See Section 9.12 (page 9-33) for more information about fill
values for holes.

Is optional and specifies that an output section should be al
located into a memory range that was named by the MEMORY
directive. Section 9.7.4 (page 9-20) discusses named memory.

Figure 9-7 shows how the sections in Figure 9-6 (page 9-16) are allocated.
Figure 9-6 defines four output sections, .text, .data, init, and .bss:

• The .text output section combines the .text sections from f ilel. obj
and file2.obj. Notice that the braces ({}) are empty in this section
specification; this tells the linker to include all input sections that have
the same name as the output section.

An address was specified for this output section; this causes the .text
output section to begin at address 01000h in the target memory (this is
known as binding).

• The .data output section contains the .data section from filel.obj.

• The init section is composed of the init (named) section in f ilel. obj
and the .data section in f ile2. obj.

9-17

linker Description - The SECTIONS Directive

• The .bss output section is composed of the .bss sections from
filel. obj and f ile2. obj. This output section will be aligned on the
next available 16-word boundary.

Object Module

.::."} , " .

. .. . :, .text output section;
.. ~ust start at address 1000h

In memory .. <::>~ .

.. H:. :'::!'} .data oupUt section

, } ,," .~ .. ee'.'

}
.bss output section;
must be aligned on a
16-word address in memory

Figure 9-7. Section Allocation Defined by Figure 9-6

9.7.3 Specifying Input Sections

9-18

An input section specificlltion identifies the sections from input files that are
combined to form an output section. The linker combines input sections by
concatenating them in the order in which they are specified. The size of an
output section is the sum,of the sizes of the input sections that make up the
output section.

Figure 9-8 shows the most common type of section specification; note that
no input sections are listed.

SECTIONS
{

.text

.data

.bss

Figure 9-8. The Most Common Method of Specifying Section
Contents

In the example shown in Figure 9-8, the linker takes all the .text sections from
the input files and combines them into the .text output section. The linker
concatenates the .text input sections in the order that it encounters them in the

Linker Description - The SECTIONS Directive

input files. The linker performs similar operations with the .data and .bss sec
tions. You can use this type of specification for any output section.

You can explicitly specify the input sections that form an output section. Each
input section is identified by its filename and section name:

SECTIONS
(

.text :
(

fl.obj (.text)
f2.obj(secl)
f3.obj
f4.obj(.text, sec2)

/* Build .text output section */

/* Link .text section from fl.obj */
/* Link secl section from f2.obj */
/* Link ALL sections from f3.obj */
/* Link .text and sec2 from f4.obj */

Note that it is not necessary for input sections to have the same name as each
other or of the output section they become part of. If a file is listed with no
sections, all of its sections are included in the output section. If any additional
input sections have the same name as an output section, but are not explicitly
specified by the SECTIONS directive, they are automatically linked in at the
end of the output section. For example, if the linker found more .text sections
in the preceding example, and these .text sections were not specified any
where in the SECTIONS directive, then the linker would concatenate these
extra sections after f4. obj (sec2).

The specifications in Figure 9-8 are actually a shorthand method for the fol
lowing:

SECTIONS
{

}

.text

.data

.bss

* (.text)
* (.data)
* (.bss)

The * (. text) means the unallocated .text sections from all the input files.
This format is useful when:

• You want the output section to contain all input sections that have a
certain name, but the output section name is different from the input
sections' name.

• You want the linker to allocate the input sections before it processes
additional input sections or commands within the braces.

Here's an example that uses this method:

SECTIONS
{

.text

}
. data {

abc.obj (xqt)
* (.text)

*(.data)
fil.obj (table)

9-19

Linker Description - The SECTIONS Directive

In this example, the .text output section contains a named section xqt from
file abc. obj, which is followed by all the .text input sections. The .data sec
tion contains all the .data input sections, followed by a named section table
from the file f il. obj. Note that this method includes all the unallocated
sections. For example, if one of the .text input sections was already included
in another output section when the linker encountered * (. text), the linker
could not include that first .text input section in the second output section.

9.7.4 Specifying the Address of an Output Section (Allocation)

9-20

After you specify the contents of each output section, you must identify the
physical location in target memory where you want to load the section. Each
section has an address field in its section header that tells a loader where the
section should go. The process of calculating the address of the output sec
tions is called allocation.

If you do not specify an explicit starting address for an output section, the
linker uses a default algorithm ,to allocate the section. Generally, the linker
puts sections wherever they fit into configured memory.

You can override this default allocation by telling the linker where a section
should be loaded. You can use three methods to control section allocation:

• Binding

You can supply a specific starting address for an output section by fol
lowing the section name with an address:

.text OlOOOh : { ... }

This example specifies that the .text section must begin at location
1000h. The binding address must be a 24-bit constant.

Output sections can be bound anywhere in configured memory (as
suming there is enough space), but they cannot overlap. If there is not
enough space to bind a section to a specified address, the linker issues
an error message.

Note that you cannot bind a section to an address if you use alignment
or named memory. If you try to do this, the linker issues an error mes
sage.

• Alignment

You can tell the linker to place an output section at an address that falls
on an n-word boundary, where n is apower of 2. For example,

SECTIONS
{

.data ALIGN(32) : { .•. }

In this example, the .data output section is not bound to a specific ad
dress; it is linked at the next available address in configured memory that
is a multiple of 32 words.

Linker Description - The SECTIONS Directive

The assembler also supports a method for specifying alignment. The
.align assembler directive allows you to align code or data on a 32-word
(cache) boundary. When you use .align, the assembler sets a flag that
tells the linker to align the entire section. This ensures that all the
alignments within the section are correct when the section is relocated.

• Named Memory

You can allocate a section into a memory range that was defined by the
MEMORY directive. This example names ranges and links sections into
them.

MEMORY
{

ROM (RIX) : origin = Oh, length lOOOh
RAM (RWIX): origin 3000h, length lOOOh

SECTIONS
{

.text > ROM

.data ALIGN(64) > RAM

.bss > RAM

In this example, the linker places the .text into the area called ROM. The
.data and .bss output sections are allocated into RAM. You can align a
section within a named memory range; the .data section is aligned on a
64-word boundary within the RAM range.

Similarly, you can link a section into an area of memory that has partic
ular attributes. To do this, specify a set of attributes (enclosed in pa
rentheses) instead of a memory name. Using the same MEMORY
directive declaration, you can specify:

SECTIONS
(

.text: { ... } > (x) /* .text --> executable memory */

.data: [. .. } > (RI) /* .data --> read or in it memory */

.bss : (... } > (RW) /* .bss --> read or write memory */

In this example, the .text output section can be linked into either the
ROM or RAM area because both areas have the X attribute. The .data
section can also go into either ROM or RAM because both areas have
the R and I attributes. The .bss output section, however, must go into
the RAM area because only RAM was declared with the Wattribute.

You cannot control where in the named memory range a section is allo
cated, although the linker uses lower memory addresses first and avoids
fragmentation when possible. In the preceding examples, assuming no
other sections had been bound to addresses that would interfere with
this allocation process, the .text section would start at address O. If a
section must start on a specific address, use binding instead of named
memory.

9-21

Linker Description - The SECTIONS Directive

9.7.5 Grouping Output Sections Together

9-22

The SECTIONS directive has a GROUP option that forces several output sec
tions to be allocated contiguously. For example, assume that a section named
term-rec contains a termination record for a table in the .data section. You
can force the linker to allocate. data and term-rec together:

SECTIONS
(

. text : (}

.bss : (}
GROUP lOOOh
(

.data : (}
term-rec : (

/* Normal output section
/* Normal output section
/* Specify a group of sections

*/
*/
*/

/* First section in the group */
/* Allocated immediately after .data */

You can use binding, alignment, or named memory to allocate a GROUP in the
same manner as a single output section. In the preceding example, the
GROUP is bound to address 1000h. This means that .data is allocated at
1000h, and term-rec follows it in memory.

Note:

When you use the GROUP option, binding, alignment, or allocation into
named memory can be specified for the group only. You cannot use
binding, named memory, or alignment for sections within a group.

linker Description - Overlay Pages

9.8 Overlay Pages

Some target systems use an overlay memory configuration in which all or part
of the memory space is overlayed by "shadow" memory. This allows the sys
tem to map different banks of physical memory in and out of a single address
range in response to hardware selection signals. In this situation, multiple
areas of physical memory overlay each other at one address space. You may
want the linker to load various output sections into each of these areas or into
areas that are not mapped at load time.

The linker supports this feature by providing overlay pages. Overlay pages
allow you to define a memory model that has multiple address spaces. To the
linker, each possible overlay configuration represents a separate address space.
Each address range is treated as a separate page and must be configured se
parately with the MEMORY directive. You can then use the SECTIONS di
rective to specify which sections will be mapped into various pages.

9.S.1 Using the MEMORY Directive to Define Overlay Pages

Each separately configured address space is called a page. To the linker, each
page represents a completely separate memory that has the full 24-bit range
of addressable locations. This allows you to link two or more sections at the
same (or overlapping) addresses if they are on different pages.

Pages are numbered sequentially, beginning with O. Page 0 represents the
"normal" address space of the TMS320C30. The default memory model re
sides entirely on page O. If a memory range is specified without a page num
ber, the linker assumes it is in page O. This allows you to ignore the. page
feature for most cases; usually all sections can be linked in page 0 with no
overlays.

For example, assume that your'system can select between three 4K banks of
physical memory to map into the address space from 1000h to 2000h. Al
though only one bank can be selected at a time, you can initialize each bank
with different data. Assume you have three output sections called sectO,
sect1, and sect2 that must be linked into the three banks of memory. This
is how you would use the MEMORY directive to obtain this configuration:

/**/
/* Example of MEMORY directive with overlay pages */
/**/
MEMORY
{

PAGE 0:

PAGE 1:
PAGE 2:

ROM
RAM
OVELMEM
OVELMEM
OVELMEM

origin
origin
origin
origin
origin

Oh,
100000h,
1000h,
1000h,
1000h,

length
length
length
length
length

1000h
OFOOOOOh
1000h
1000h
1000h

Figure 9-9 (page 9-24) illustrates this configuration; it shows each available
block of physical memory in the system and the section that must be loaded
into it.

9-23

Linker Description - Overlay Pages'

1 OOOOOh r:::r:~~7T;:;'771

OFFFFFFh ~=~==~

Figure 9-9. Overlay Page Example

This example defines three separate address spaces. Page 0 is the "normal"
address space of the TMS320C30. It contains the memory ranges ROM and
RAM; suppose they represent all the memory in the normal address space. Page
o also contains the first bank of overlay memory (OVR-MEM). The other two
address spaces contain only the additional banks of overlay memory, both la
beled OVIL.MEM. Note that all three OVR-MEM ranges cover the same address
range. This is possible because each range is on a different page and therefore
represents a different memory space.

9.8.2 Using Overlay Pages with the SECTIONS Directive

9-24

The SECTIONS directive allows you to tell the linker which page an output
section should be linked into. Each output section of the program is assigned
a page as well as an address. You can assign an output section to an overlay
page by following the section specification with the PAGE option and a page
number. Continuing the example from the previous discussion, the SEC
TIONS definition would be:

SECTIONS
{

.text: {} > ROM /* Link .text in ROM on page 0 */

.data: {} > RAM /* Link .data in RAM on page 0 */

.bss {} > RAM /* Link .bss in RAM on page 0 */
sectO: {} > OVR.....MEM PAGE 0 /* Link sectO into bank 0 (page 0) */
sectl: {} > OVR.....MEM PAGE 1 /* Link sectl into bank 1 */
sect2: {} > OVR.....MEM PAGE 2 1* Link sect2 into bank 2 */

If you don't specify a page number for an output section, the linker assumes
page O. In this example, .text, .data, and .bss are all linked into the named
memory areas on page O. (The PAGE 0 could have been omitted from the
sectO definition as well.)

The PAGE specifications for sectO, sectl, and sect2 tell the linker to link
these output sections into the corresponding overlay pages. As a result, they
all are linked to address 1000h, but in different memory spaces. When the

Linker Description - Overlay Pages

program is loaded, a loader can configure hardware in such a way that each
of these sections is loaded into the appropriate bank of memory.

Within a page, you can bind output sections or use named memory areas in
the usual way. In the preceding example, notice how sectl is allocated into
the memory range OVR-MEM. This allows you to define the allocation of sec
tions within a page, just as you can in a single memory space.

For example, the following statement:

sectl l200h: (} PAGE 1

links sectl at address 1200h in page 1. If you do not specify any binding
or named memory range for the section, the linker allocates the section into
the page wherever it can (just as it normally does with a single memory
space). For example, sect2 could also be specified as:

sect2 : {} PAGE 2

Because OVR-MEM is the only memory on page 2, it is not necessary (but ac
ceptable) to specify >OVR-MEM for the section.

9.8.3 Page Definition Syntax

As illustrated in the preceding examples, overlay pages are specified in the
MEMORY directive by using the following syntax:

MEMORY
{

}

PAGE 0: memory range
memory range

PAGE n : memory range
memory range

Each page is introduced by the keyword PAGE and a page number, followed
by a colon and a list of memory ranges the page contains. Memory ranges are
specified in the normal way. You can define up to 255 overlay pages. Be
cause each page represents a completely independent address space, memory
ranges on different pages can have the same name. Configured memory on
any page can overlap configured memory on any other page. Within a single
page, however, all memory ranges must have unique names and must not
overlap.

Any memory ranges listed outside the scope of a PAGE specification default
to page O. Consider the following example:

MEMORY
{

ROM org Oh len lOOOh
EPROM org lOOOh len lOOOh
RAM org 2000h len OEOOOh

PAGE 1: XROM org Oh len lOOOh
XRAM org 2000h len OEOOOh

The memory ranges ROM, EPROM, and RAM are all on page 0 (because no page
is specified). XROM and XRAM are on page 1. Note that XROM on page 1
overlays ROM on page 0 and XRAM on page 1 overlays RAM on page O.

9-25

Linker Description - Overlay Pages

9-26

In the output link map (obtained with the -m linker option), the listing of the
memory model is keyed by pages. This provides you with an easy method of
verifying that you specified the memory model correctly. Also, the listing of
output sections has a PAGE column that identifies the memory space into
which each section will be loaded.

Linker Description - Default Allocation

9.9 Default Allocation

The MEMORY and SECTIONS directives provide flexible methods for build
ing, combining, and allocating sections. However, any memory locations or
sections that you choose not to specify must still be handled by the linker.
The linker has default algorithms that it uses to build and allocate sections,
within the specifications you supply. Section 9.9.1 and Section 9.9.2 describe
default allocation algorithms.

9.9.1 Allocation Algorithm

If you do not use the MEMORY directive, the linker assumes that the full
24-bit address space is configured and allocates output sections into memory
beginning at address O.

If you do not use the SECTIONS directive, the linker allocates the output
sections as though the following SECTIONS directive was specified:

SECTIONS
{

. text {

.data {

.bss {

All .text input sections are concatenated to form a .text output section in the
executable output file. All .data input sections are combined to form a .data
output section, and all .bss sections are combined to form a .bss output sec
tion. Each output section is then allocated into configured memory.

If the input files contain named sections the linker links them in after the .bss
section. Input sections that have the same name are combined into a sir19le
output section with this name.

Note:

When you use the SECTIONS directive, the linker performs no part of the
default allocation. Allocation is performed according to the rules specified
by the SECTIONS directive and the rules discussed in Section 9.9.2.

9.9.2 General Rules for Output Sections

An output section can be formed in one of two ways:

Rule 1:

Rule 2:

As the result of a SECTIONS directive definition.

By combining input sections with the same names into output
sections that are not defined in a SECTIONS directive.

If an output section is formed as a result of a SECTIONS directive (rule 1), this
definition completely determines its contents. (See Section 9.7, page 9-16,
for examples of how to specify the contents of output sections.)

An output section can also be formed when input sections are encountered
that are not specified by any SECTIONS directive (rule 2). In this case, the

9-27

Linker Description - Default Allocation

9-28

linker combines all such input sections that have the same name into an out
put section with this name. For example, suppose the files f 1. obj and
f2.obj both contain named sections called Vectors and that the SEC
TIONS directive does not define an output section to contain them. The linker
will combine the two vectors sections from the input files into a single out
put section named Vectors, allocate it into memory, and include it in the
output file.

After the linker determines the composition of all the output sections, it must
allocate them into configured memory. The MEMORY directive specifies
which portions of memory are configured, or if there is no MEMORY directive,
the linker uses the default configuration.

The linker's allocation algorithm attempts to minimize memory fragmentation.
This allows memory to be used more efficiently and increases the probability
that your program will fit into memory. This is the algorithm:

1) Any output section for which you have listed a specific binding address
is placed in memory at that address.

2) Any output section that is included in a specific named memory range
or that has memory attribute restrictions is allocated. Each output sec
tion is placed into the first available space within the named area, con
sidering alignment where necessary.

3) Any remaining sections are allocated in the order in which they were
defined. Sections not defined in a SECTIONS directive are allocated in
the order in which they were encountered. Each output section is placed
into the first available memory space, considering alignment where nec
essary.

Linker Description - Special Section Types

9.10 Special Section Types (DSECT, COpy, and NOlOAD)

You can assign three special types to output sections: DSECT, COPY, and
NOLOAD. These types affect the way that the program is treated when it is
linked and loaded. You can assign a type to a section by placing the type
(enclosed in parentheses) after the section definition. For example,

SECTIONS
{

secl 200000h (DSECT)
sec2 400000h (COPY)
sec3 600000h (NOLOAD)

{f1.obj}
{f2.obj}
{f3.obj}

• The DSECT type creates a "dummy section" with the following qualities:

It is not included in the output section memory allocation. It takes
up no memory and is not included in the memory map listing.

It can overlay other output sections, other DSECTs, and unconfig
ured memory.

Global symbols defined in a dummy section are relocated normally.
They appear in the output module's symbol table with the same
value they would have if the DSECT had actually been loaded.
These symbols can be referenced by other input sections.

Undefined external symbols found in a DSECT cause specified ar
chive libraries to be searched.

The section's contents, relocation information, and line number
information are not placed in the output module.

In the preceding example, none of the sections from f 1. obj are allo
cated, but all the symbols are relocated as though the sections were
linked at address 200000h. The other sections can refer to any of the
global symbols in secl.

• A COPY section is similar to a DSECT section, except that its contents
and associated information are written to the output module. The .cinit
section that contains initialization tables for the C compiler has this at
tribute under the RAM model.

• A NOLOAD section differs from a normal output section in one respect:
the section's contents relocation information and line number informa
tion are not placed in the output module. The linker allocates space for
the section, the section is listed in the memory map listing, etc.

9-29

Linker Description - Assigning Symbols at Link Time

9.11 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols
and assign values to them at link time. You can use this feature to assign an
allocation-dependent value to a variable or a pointer.

9.11.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of C as
signment statements:

symbol
symbol +=
symbol
symbol *=
symbol /=

expression;
expression;
expression;
expression;
expression;

Assigns the value of expression to symbol
Adds the value of expression to symbol
Subtracts the value of expression from symbol
Multiplies symbol by expression
Divides symbol by expression

The symbol should be defined externally in the program. If it is not, the linker
defines a new symbol and enters it into the symbol table. The expression must
follow the rules defined in Section 9.11.3. Assignment statements must be
terminated with a semicolon.

The linker processes assignment statements after it allocates all the output
sections. Thus, if an expression contains a symbol, the address used for that
symbol reflects the symbol's address in the executable output file.

For example, suppose a program reads data from one of two tables identified
by two external symbols, Tablel and Table2. The program uses the symbol
cur-tab as the address of the current table; cur_tab must point to Tablel
or Table2. You could accomplish this in the assembly code, but you would
need to reassemble the program in order to change tables. Instead, you can
use a linker assignment statement to assign cur_.tab at link time:

prog.obj /* Input file */
cur_tab = Tablell /* Assign cur_tab to one of the tables */

9.11.2 Assigning the SPC to a Symbol

9-30

A special symbol, denoted by a dot (.), represents the current value of the SPC
during allocation. The linker's "." symbol is analogous to the assembler's "$"
symbol. The "." symbol can only be used in assignment statements within a
SECTIONS directive, because "." is only meaningful during allocation, and the
allocation process is controlled by the SECTIONS directive.

For example, suppose a program needs to know the address of the beginning
of the .data section. You can create an external undefined variable Dstart in
the program by using the .global directive. Then, assign the value of "." to
Dstart:

SECTIONS
{

.text: {}

. data: { Dstart

.bss : {}
/* Dstart = current SPC value */

This defines Dstart to be the ultimate linked address of the .data section.
The linker will relocate all references to Dstart.

Linker Description - Assigning Symbols at Link Time

A special type of assignment assigns a value to the "." symbol. This adjusts
the location counter within an output section and creates a hole between two
input sections. Any value assigned to "." to create a hole is relative to the
beginning of the section, not to the address actually represented by".". As
signments to "." and holes are described in Section 9.12.

9.11.3 Assignment Expressions

These rules apply to linker expressions:

• Expressions can contain global symbols, constants, and the C language
operators listed in Table 9-2.

• All numbers are treated as long (32-bit) integers.

• Constants are identified in the same manner as they are by the assembler.
That is, numbers are recognized as decimals unless they have a suffix (H
or h for hexadecimal and Q or q for octal). C language prefixes are also
recognized (0 for octal and Ox for hex). Hexadecimal constants must
begin with a digit. No binary constants are allowed.

• Symbols within an expression have only the value of the symbol's ad
dress. No type checking is performed.

• Linker expressions can be absolute or relocatable. If an expression
contains any relocatable symbols (and zero or more constants or abso
lute symbols), it is relocatable. Otherwise, the expression is absolute.
If a symbol is assigned the value of a relocatable expression, the symbol
is relocatable; if assigned the value of an absolute expression, the symbol
is absolute.

The linker supports the C language operators listed in Table 9-2 in order of
precedence. Operators in the same group have the same precedence.

Besides the operators listed in Table 9-2, the linker also has an align operator
that allows a symbol to be aligned on an n-word boundary within an output
section (n is a power of 2). For example, the expression:

. = align(16) i

aligns the SPC within the current section on the next 16-word boundary.
Because the align operator is a function of the current SPC, it can only be used
in the same context as "." - that is, within a SECTIONS directive.

9-31

Linker Description - Assigning Symbols at Link Time

Table 9-2. Operators in Assignment Expressions

Group 1 (Highest Precedence) Group 6

! Logical Not - Bitwise Not & Bitwise AND
- Negative

Group 2 Group 7

* Multiplication
/ Division I Bitwise OR
% Mod

Group 3 Group 8

+ Addition - Minus && Logical AND

Group 4 Group 9
» Arithmetic right shift
« Arithmetic left shift " Logical OR

Group 5 Group 10 (Lowest Precedence)

'. == Equal to
Assignment != Not equal to =

> Greater than += A+=B A=A+B
< Less than - = A-=B A=A-B

<= Less than or equal to * = A*=B A=A*B
>= Greater than or equal to / = A/=B A=A/B

9.11.4 Symbols Defined by the Linker

9-32

The linker automatically defines three symbols that a program can use at run
time to determine where a section is linked. These symbols are external, so
they appear in the link map. They can be accessed in any assembly language
module if they are declared with a .global directive.

Values are assigned to these symbols as follows:

.text is assigned the first address following the .text output section.
(It marks the beginning of executable code.)

etext is assigned the first address following the .text output section.
(It marks the end of executable code.)

.data is assigned the first address following the .data output section.
(It marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section.
(It marks the end of initialized data tables.)

.bss is assigned the first address of the .bss output section.
(It marks the beginning of uninitialized data.)

end is assigned the first address following the .bss output section.
(It marks the end of uninitialized data.)

cinit is assigned the first address of the .cinit section (when -c or -cr is
used).

Linker Description - Creating and Filling Holes

9.12 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections
that have nothing linked into them. These areas are called holes. In special
cases, uninitialized sections can also be treated as holes. This section de
scribes how the linker handles such holes and how you can fill holes (and
uninitialized sections) with a value.

9.12.1 Initialized and Uninitialized Sections

There are two rules to remember about the contents of an output section. An
output section contains:

Rule 1:

Rule 2:

Raw data for the entire section or

No raw data.

A section that has raw data is referred to as initialized. This means that the
object file contains the actual memory image contents of the section. When
the section is loaded, this image is loaded into memory at the section's speci
fied starting address. The .text and .data sections always have raw data if
anything was assembled into them. Named sections defined with the .sect or
.asect assembler directives also have raw data.

By default, the .bss section and .usect sections have no raw data (they are
uninitialized). They occupy space in the memory map, but have no actual
contents. Uninitialized sections typically reserve space in RAM for variables.
In the object file, an uninitialized section has a normal section header and may
have symbols defined in it; however, no memory image is stored in the section.

9.12.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when
you force the linker to leave extra space between input sections when building
an output section. When such a hole is created, the linker must follow rule 1
and supply raw data for the hole.

Holes can only be created within output sections. There can also be space
between output sections, but such spaces are not holes. There is no way to
fill or initialize space between output sections.

To create a hole in an output section, you must use a special type of linker
assignment statement within an output section definition. The assignment
statement modifies the SPC (denoted by".") by either adding to it, assigning
a greater value to it, or aligning it to an address boundary. The operators, ex
pressions, and syntax of assignment statements are described in Section 9.11
(page 9-30).

9-33

Linker Description - Creating and Filling Holes

9-34

The following example shows how holes can be created in output sections
using assignment statements:

SECTIONS
(

outsect:
(

file1.obj (.text)
. += lOOh;
file2.obj(.text)
. = align(16);
file3.obj

/* Create a hole with size lOOh */

/* Create a hole to align the SPC */

The output section outsect is built as follows:

• The .text section from file1.obj is linked in.
• The linker creates a 256-word hole.
• The .text section from f ile2. obj is linked in after the hole.
• The linker creates another hole by aligning the SPC on a 16-word

boundary.
• Finally, the .text section from f ile3. obj is linked in.

All values assigned to the "." symbol within a section refer to the relative ad
dress within the section. The linker handles assignments to the "." symbol as
if the section started at address 0 (even if you specify a binding address).
Consider the statement. = align (16) in the preceding example. This
statement effectively aligns f ile3. obj .text to start on a 16-word boundary
within outsect. If outsect is ultimately allocated to start on an address that
is not aligned, then file3 .text will not be aligned either.

Expressions that decrement "." are illegal. For example, it is invalid to use the
-= operator in an assignment to ".". The most common operators used in as
signments to "." are + = and align.

If an output section contains all input sections of a certain type (such as .text),
you can use the following statements to create a hole at the beginning or end
of the output section:

.text: { .+= lOOh; /* Hole at the beginning */

.data: {
* (.datal
. +=lOOh; /* Hole at the end */

Another way to create a hole in an output section is to combine an uninitial
ized section with initialized sections to form a single output section. In this
case, the linker treats the uninitialized section as a hole and supplies data for
it. An example of creating a hole in this way is:

SECTIONS
{

outsect:
{

filel.obj(.text)
filel.obj (.bss) /* This becomes a hole */

Because the .text section has raw data, all of outsect must also contain raw
data (rule 1). Therefore, the uninitialized .bss section becomes a hole.

Linker Description - Creating and Filling Holes

Note that uninitialized sections only become holes when they are combined
with initialized sections. If mUltiple uninitialized sections are linked together
the resulting output section is also uninitialized.

9.12.3 Filling Holes

Whenever there is a hole in an initialized output section, the linker must supply
raw data to fill it. The linker fills holes with a 4-byte fill value that is replicated
through memory until it fills the hole. The linker determines the fill value as
follows:

1) If the hole is formed by combining an uninitialized section with an ini
tialized section, you can specify a fill value for that specific initialized
section. Follow the section name with an = symbol and a 4-byte con
stant:
SECTIONS
{

outsect:
{

file1.obj (.text)
file2.obj(.bss) = OFFh /* Fill this hole */

/* with OOOOOOFFh */

2) You can also specify a fill value for all the holes in an output section by
supplying the fill value after the section definition. For example,
SECTIONS
{

outsect:
{

• += lOh;
file1.obj (.text)
file1.obj (.bss)

} = OFFOOh

/* This creates a hole */

/* This creates another hole */
/* This fills both holes with */
/* OOOOFFOOh */

3) If you do not specify an initialization value for a hole, the linker fills the
hole with the value specified with -f. For example, suppose the com
mand file link. cmd contains the following SECTIONS directive:

SECTIONS
{

.text: { .= 100;} /* Create a 100-word hole */

Now invoke the linker with the -f option:

lnk30 -f OFFFFFFFFh link.cmd

This fills the hole with OFFFFFFFFh.

4) If you do not invoke the linker with -f, the linker fills holes with Os.

Whenever a hole is created and filled in an initialized output section, the hole
is identified in the link map along with the value the linker uses to fill it.

9-35

Linker Description - Creating and Filling Holes

9.12.4 Explicit Initialization of Uninitialized Sections

9-36

An uninitialized section only becomes a hole when it is combined with an in
itialized section. When uninitialized sections are combined with each other,
the resulting output section remains uninitialized and has no raw data in the
output file.

However, you can force an uninitialized section to be initialized simply by
specifying an explicit fill value for it in the SECTIONS directive. This causes
the entire section to have raw data (the fill value). For example,

SECTIONS
{

.bss: {} = ll223344h /* Fills .bss with l1223344h */

Note:

Because filling a section (even with Os) causes raw data to be generated
for the entire section in the output file, your output file will be very large
if you specify fill values for large, sections or holes.

Linker Description - Partial (Incremental) Linking

9.13 Partial (Incremental) Linking
An output file that has been linked can be linked again with additional mod
ules. This is known as partial linking or incremental linking. Partial linking
allows you to partition large applications, link each part separately, and then
link all the parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

• Intermediate files must have relocation information. Use the -r option
when you link the file the first time.

• Intermediate files must have symbolic information. By default, the linker
retains symbolic information in its output. Do not use the -s option if
you plan to relink a file, because -s strips symbolic information from the
output module.

• Intermediate link steps should only be concerned with the formation of
output sections, and not with allocation. All allocation, binding, and
MEMORY directives should be performed in the final link.

The following example shows how you can use partial linking.

• Step 1: Link the file f ilel. corn; use the -r option to retain relocation infor
mation in the output file ternpout 1. out.

lnk30 -r -0 tempoutl filel.com

f ilel. corn contains:

SECTIONS
(

551: (
f1.obj
f2.obJ

fn.obj
}

• Step 2: Link the file f ile2 . corn; use the -r option to retain relocation infor
mation in the output file ternpout2 . out.

Ink30 -r -0 tempout2 file2.com

f ile2 . corn contains:

SECTIONS
(

552:(
gl.obj
g2.obJ

gn:obj
}

• Step 3: Link ternpout 1. out and ternpout2. out:

lnk30 -m final.map -0 final.out tempoutl.out tempout2.out

9-37

linker Description - linking C Code

9.14 Linking C Code

The TMS320C30 C compiler produces assembly language source code that
can be assembled and linked. For example, a C program consisting of mod
ules progl, prog2, etc., can be assembled and then linked to produce an
executable file called prog, out:

Ink30 -c -0 prog.out pro~l.obj prog2.obj ... rts.lib

The -c option tells the linker to use special conventions that are defined by the
C environment. The archiVe library rts. lib contains C runtime support
functions.

For more information about:C, including the runtime environment and runtime
support functions, see the TMS320C30 C Compiler Reference Guide.

9.14.1 Runtime Initialization

All C programs must be lin~ed with an object module called boot. obj, which
contains code and data for initializing the runtime environment.

When the program begins running, this code is executed first and performs the
following actions:

• Sets up the system stack
• Processes the runtime-initialization table and autoinitializes global vari-

ables (in the ROM model)
• Disables interrupts and calls -main

The runtime support object library, rts .lib, contains boot. obj. You can
use the archiver to extract boot. obj from the library, and then link it in di
rectly, or you can simply include rts . lib as an input file and the linker will
extract boot. obj when you use the -c or -cr option.

9.14.2 Object libraries and Runtime Support

The TMS320C30 C Compiler Reference Guide describes additional runtime
support functions that are included in rts .lib. If your program uses any of
these functions, you must link rts. lib with your object files.

You can also create your own object libraries and link them. The linker will
include and link only those modules in a library that resolve undefined refer
ences.

9.14.3 Autoinitialization (ROM and RAM Models)

9·38

The C compiler produces tables of data that are used to autoinitialize global
variables. These are contained ina special section called .cinit. The initial
ization tables can be used for autoinitialization in either of two ways.

• ROM Model (-c option)

Variables are initialized at run time. The .cinit section is loaded into
memory along with all the other sections. The linker defines a special
symbol called cinit that points to the beginning of the tables in mem-

Linker Description - Linking C Code

ory. When the program begins running, the C boot routine copies data
from the tables into the specified variables in the .bss section. This al
lows initialization data to be stored in ROM and then copied to RAM
each time the program is started.

Figure 9-10 illustrates the ROM autoinitialization model.

Object File Memory

Figure 9-10. ROM Model of Autoinitialization

• RAM Model (-cr option)

Variables are initialized at load time. This can enhance performance by
reducing boot time and can save memory used by the initialization ta
bles. (Note that you must use a smart loader to take advantage of the
RAM model of autoinitialization.)

When you use -cr, the linker marks the .cinit section with a special at
tribute. This attribute tells the linker not to load the .cinit section into
memory. The linker also sets the cinit symbol to -1; this informs the
C boot routine that initialization tables are not present in memory. Thus,
no runtime initialization is performed at boot time.

When the program is loaded, the loader must be able to:

Detect the presence of the .cinit section in the object file.

Detect the presence of the attribute that tells it not to copy the
.cinit section.

Understand the format of the initialization tables (this is described
in the TMS320C30 C Compiler Reference Guide).

The loader then uses the initialization tables directly from the object file
to initialize variables in .bss.

Figure 9-11 (page 9-40) illustrates the RAM autoinitialization model.

9-39

Linker Description - Linking C Code

Object File Memory

Figure 9-11. RAM Model of Autoinitialization

9.14.4 The -c and -cr Linker Options

9-40

The following list outlines what happens when you invoke the linker with the
-c or -cr option.

• The symbol _c_intOO is defined as the program entry point.
_c_intOO is the start of the C boot routine in boot. obj; referencing
_c_intOO ensures that boot. obj will automatically be linked in from
the runtime support library rts. lib.

• The .cinit output section is padded with a termination record so that the
boot routine (ROM model) or the loader (RAM model) knows when to
stop reading the initialization tables.

• In the ROM model (-c option), the linker defines the symbol cinit as
the starting address of the .cinit section. The C boot routine uses this
symbol as the starting point for autoinitialization.

• In the RAM model (-cr option):

The linker sets the symbol cinit to -1. This indicates that the
initialization tables are not in memory, so no initialization is per
formed at boot time.

The STYP-COPY flag (010h) is set in the .cinit section header.
STYP-COPY is the special attribute that tells the loader to perform
autoinitialization directly and not to load the .cinit section into
memory. The linker does not allocate space in memory for the .cinit
section.

Linker Description - Example

9.15 Linker Example

This example links three object files named demo.obj, fft.obj and ta
bles.obj and creates a program called demo. out. The symbol SETUP is the
program entry point.

Assume that target memory has the following configuration:

Address Range

OOOOOOh to OOOFFFt
801000h to 8013FFh
801400h to 8017FFh
801800h to OFFFFFFh

Contents

4K on-chip ROM
Internal RAM block BO
Internal RAM block B1
External RAM

The output sections are constructed from the following input sections:

• A set of interrupt vectors from section int-vecs in the file tables. obj
must be linked at address 0 in ROM.

• Executable code, contained in the .text sections of demo. obj and
fft. obj, must also be linked into ROM.

• Two tables of coefficients, which are in the .data sections of the files
tables.obj and fft. obj must be linked into RAM block BO. The
remainder of block BO must be initialized to the value OFFCC1122h.

• The .bss section from fft. obj, which contains variables, must be linked
into block B1 of data RAM. The unused part of this RAM must be ini
tialized to OFFFFFFFFh.

• The .bss section from demo.pbj, which contains buffers and variables,
must be linked into external RAM.

Figure 9-12 shows the linker command file for this example; Figure 9-13
shows the map file.

9-41

Linker Description - Example

9-42

/**/
/**** Specify Linker Options . ****/
/**/

-e SETUP
-0 demo.out
-m demo.map

/*
/*
/*

Define the entry point
Name the output file
Create a load map

*/
*/
*/

/**/
/**** Specify the Input Files ****/
/**/

demo.obj
fft.obj
tables.obj

/**/
/**** Specify the Memory Configuration ****/
/**/

MEMORY
[

ROM: origin OOOOOOOh length
RAM-BO: origin 0801000h length
RAM-BI: or~g~n 0801400h length
RAM or~g~n 0801800h length

OIOOOh
0400h
0400h
07FE800h

}
/************************************~**************** *****************/
/**** Specify the Output Sections ****/
/**/

SECTIONS
[

. text: [} >ROM

int_vecs Oh: [}

.data:
(

tables.obj(.data)
fft.obj (.data)

= 400h;
} = OFFCCl122h > RAM-BO

fftvars:
[

fft.obj (.bss)
} = OFFFFFFFFh > RAM-Bl

.bss: [} > RAM

/* Link all .text sect~ons into'ROM

/* Link interrupts at ~

/* Link the .data sections

/* .data input section
/* .data input section
/* Create a hole to end of block
/* Fill and link into BO

/* Create a new fftvars section

/* Fill and link into Bl

/* Link all remaining .bss sections

*/

*/

*/

*/
*/
*/
*/

*/

*/

*/

/**/
/**** End of Command File ****/
/**/

Figure 9-12. Linker Command File, demo.cmd

Invoke the linker with the following command:

Ink30 demo.cmd

This creates the map file shown in Figure 9-13 and an output file called
demo. out that can be run on the TMS320C30.

Linker Description - Example

TMS320C30 COFF Linker, Version 1.00, 87.070
***********************************~****************** ***********

OUTPUT FILE NAME: <demo. out>
ENTRY POINT SYMBOL: "SETUP" address: 00000040

MEMORY CONFIGURATION
name origin

-------- --------
ROM 00000000
RAM-BO 00801000
RAM-B1 00801400
RAM 00801800

SECTION ALLOCATION MAP

output
section page origin
-------- ----------
int_vecs 0 00000000

00000000

.text 0 00000040
00000040
0000018E

.data 0 00801000
008010000
0080100A5
0080100B9

fftvars 0 00801400

length

000001000
000000400
000000400
0007FE800

attributes

RWIX
RWIX
RWIX
RWIX

length
attributes/

input sections

00000040
00000040

000001BO
0000014E
00000064

00000400
000000A5
00000014
00000347

demo.obj (int_vecs)

demo.obj (.text)
fft.obj (.text)

tables.obj (.data)
fft.obj (.data)
--HOLE-- [fill = ffcc122]

00801400

.bss 0 00801800

0000001A
0000001A

0000009A
0000009A

fft.obj (.bss) [fill = ffffffffJ

UNINITIALIZED
00801800

GLOBAL SYMBOLS
address name

00000040
00801400
0080180A
000001F2
00801800
0000008A
00000166
00000184
00000170
0000017A
0000004A
00000120

[12 symbols]

SETUP
edata
end
etext
extvar
fft
list
main
plasm
p2asm
start
sub

demo.obj (.bss)

address name

00000040 SETUP
0000004A start
0000008A fft
00000120 sub
00000166 list
00000170 plasm
0000017A p2asm
00000184 main
000001F2 etext
00801400 edata
00801800 extvar
0080189A end

Figure 9-13. Output Map File, demo.map

9-43

Linker Description

9-44

Section 10

Object Format Converter Description

Most EPROM programmers do not accept COFF object files as input. The
object format converter converts a COFF object file into one of three object
formats that most EPROM programmers accept as input:

• Tektronix hex object format

• Intel hex object format

• TI-tagged object format

The object format converter accepts one COFF object file as input. If you are
converting to TI-tagged object format, the utility produces one output file. If
you are converting to Tektronix or Intel object format, the utility produces four
output files (one output file for each set of bytes, from least significant to
most significant bytes).

This section contains the following topics:

Section Page
10.1 Object Format Converter Development Flow 10-2
10.2 Invoking the Object Format Converter ... 10-3
10.3 Examples .. 10-4
10.4 Halt Conditions ... 10-4

10-1

Object Format Converter Description - Development Flow

10.1 Object Format Converter Development Flow

10-2

Figure 10-1 illustrates the object format converter's role in the assembly lan
guage development process.

Macro
Source
Files

Assembler
Source

C Source

Figure 10-1. Object Format Converter Development Flow

ObjecfFormat Converter Description - Invocation

10.2 Invoking the Object Format Converter

To invoke the object format converter, enter:

rom30 [-option] [COFF input file]

rom30 is the command that invokes the object format converter; all parame
ters are optional.

The filename is the name of the file that you want to convert. If you do not
specify an input filename, the object format converter prompts for one. If you
specify a filename without an extension, the utility assumes that the filename
has a default extension of .obj.

There are three options which can be entered anywhere on the line. The op
tions identify the format of the output file:

-i specifies Intel hex object format for the output.

-t specifies TI-tagged object format for the output.

-x specifies Tektronix hex object format for the output.

If you don't supply an option, the object format converter produces Tektronix
hex format output files. The object format converter uses the input filename
(without it's extension) to name output files; it chooses the file extension
depending on the type of output you've requested:

• For TI-tagged format, the object format converter produces one output
file with an extension of . tag.

• For Intel or Tektronix format, the object format converter produces four
files with the following extensions:

.bO is the extension for the file that contains the least significant
bytes .

. bl is the extension for the file that contains the next-to-Ieast
significant bytes .

. b2 is the extension for the file that contains the next-to-most
significant bytes .

. b3 is the extension for the file that contains the most significant
bytes.

When the object format converter finishes converting the input file, it prints
the message Translation complete.

10-3

Object Format Converter Description - Examples/Halt Conditions

10.3 Examples

Here are some examples of using the object format converter.

• Example 1:

You can invoke the object format converter with no options and no
filename:

rom30

The utility will print the following banner and prompt:

COFF Object Converter Version 5.01, 87.610
(c) Copyright 1987, Texas Instruments Inc.

Coff file [.obj):

If, for example, you respond to the prompt with a filename of fft, the
object format converter uses the file fft. obj as an input file. It pro
duces four Tektronix-format output files named fft .bO, fft .b1,
fft .b2, and fft .b3.

• Example 2:

If you enter:

rom30 -i in

the utility uses in. obj as the input file. It creates four Intel-format files
named in.bO, in.b1, in.b2, and in.b3.

• Example 3:

If you enter:

rom30 in.tmp -t

the object format converter uses in. tmp as the input file. It produces
a single TI-tagged output file named in. tag.

10.4 Halt Conditions

10-4

There are two situations in which the object format converter aborts exe
cution:

1) If any of the specified files cannot be opened, the code conversion utility
prints the message Input COFF file cannot be opened and aborts.

2) If you supply the utility with the name of an invalid object file, the object
format converter prints the message Corrupt input file and aborts.

Appendix A

Common Object File Format

The TMS320C30 assembler and linker create object files that are in common
object file format (COFF). COFF is an implementation of an object file format
of the same name that was developed by AT&T for use on UNIX-based sys
tems. This object file format has been chosen because it encourages modular
programming and provides more powerful and flexible methods for managing
code segments and target system memory.

One of the basic COFF concepts is sections. Section 3, Introduction to
Common Object File Format, discusses COFF sections in detail. If you un
derstand section operation, you will be able to use the TMS320C30 assembly
language tools more efficiently.

This appendix contains technical details about COFF object file structure.
Most of this information pertains to the symbolic debugging information that
is produced by the TMS320C30 C compiler. The main purpose of this ap
pendix is to provide supplementary information for those of you who are in
terested in the internal format of object files.

Topics in this appendix include:

Section Page
A.1 File Structure ... A-2
A.L-'/File Header .. A-4
A.3 Optional File Header .. A-5
A.4 Section Headers .. A-6
A.5 Relocation Information .. A-8
A.6 Line Number Table ... A-9
A.7 Symbol Table .. A-11

A-1

Appendix A - COFF File Structure .

A.1 File Structure

A-2

The elements of a COFF object file describe the file's sections and symbolic
debugging information. These elements include:

• A file header,
• Optional header information,
• A table of section headers,
• Raw data for each section (except .bss),
• Relocation information for each section (except .bss),
• Line number entries for each section (except .bss),
• A symbol table, and
• A string table.

The assembler and linker produce obtect files with the same COFF structure;
however, a program that is linked for the final time will not contain relocation
entries. Figure A-1 illustrates the ovefall object file structure.

Symbol Table

Section Headers

Raw Data
(executable code
and Initialized data)

Relocation Information

Line Number
Entries

Figure A-1. COFF File Structure

Appendix A - COFF File Structure

Figure A-2 shows a typical example of a COFF object file that contains the
three default sections, .text, .data, and .bss, and a named section (referred to
as <named». By default, the .text, .data, and .bss sections, respectively, are
placed in the object file, followed by any named sections in the order in which
they were encountered. Although the .bss section has a section header, no
tice that it has no raw data, no relocation information, and no line number
entries; named sections created with .usect do not have this type of informa
tion, either. This is because the .bss and .usect directives simply reserve space
for uninitialized data; their sections contain no actual code.

Symbol Table

section
Headers

Raw
Data

Relocation
Information

Line Number
Entries

Figure A-2. Sample COFF Object File

A-3

Appendix A - File Header

A.2 File Header

A-4.

The file header contains 20 bytes of information that describe the general
format of an object file. TaQle A-1 shows the structure of the file header.

Table A-1. File Header Contents

Byte
Type Description Number

0-1 Unsigned short integer Magic number (093h), indicates that the
file can be executed in a TMS320C30 sys-
tem

2-3 Unsigned short integer Number of section headers

4-7 Long integer Time and date stamp, indicates when the
file was created

8-11 Long integer File pointer,. contains the symbol table's
starting address

12-15 Long integer Number of entries in the symbol'table

16-17 Unsigned short integer Number of bytes in the optional header.
This field is either 0 or 28; if it is 0, then
there is no optional file header.

18-19 Unsigned short integer Flags (see Table A-2)

Table A-2 lists the flags that can appear in bytes 18 and 19 of the file header.
Any number and combination of these flags can be set at the same time (for
example, if bytes 18 and 19 are set to 0003h,tb£ln F-RELFLG and F-EXEC
are both set.)

Table A-2. File Header Flags (Bytes 18 and 19)

Mnemonic Flag Description

F-RELFLG 0001h Relocation information was stripped from
the file

F-EXEC 0002h The file is executableI(Ti contains no unre-
solved external refe~nces)

F-LNNO 0004h Line numbers werEi;$t,tipped from the file

F-LSYMS 0010h Local symbols we(e'stripped from the file

F-AR32WR 0040h The file has the byte ordering used by the
TMS320C30 support tools, (32 bits per
word, least significant byte first)

Appendix A - Optional File Header

A.3 Optional File Header

The linker creates the optional file header and uses it to perform relocation at
download time. Partially linked files do not contain optional file headers.
Table A-3 illustrates the optional file header format.

Table A-3. Optional File Header Contents

Byte
Type Description Number

0-1 Short integer Magic number (0108h)

2-3 Short integer Version stamp

4-7 Long integer Size (in words) of executable code

8-11 Long integer Size (in words) of initialized words

12-15 Long integer Size (in bits) of uninitialized data

16-19 Long integer Beginning address of executable code

24-27 Long integer Beginning address of initialized data

A-5

Appendix A - Section Headers

A.4 Section Headers

A-6

COFF object files contain a table of section headers that specify where each
section begins in the object file. Each section of the file has its own section
header.

Table A-4. Section Header Contents

Byte
Type Description Number

0-7 Character Eight-character section name, padded with
nulls

8-11 Long integer Section's physical address

12-15 Long integer Section's virtual address

16-19 Long integer Section size in words

20-23 Long integer File pointer to raw data

24-27 Long integer File pointer to relocation entries

28-31 Long integer File pointer to line number entries

32-33 Unsigned short integer Number of relocation entries

34-35 Unsigned short integer Number of line number entries

36-37 Unsigned short integer Flags (see Table A-5)

38 Character Reserved.

39 Character Memory page number.

Table A-5 lists the flags that can appear in bytes 36 and 37 of the section
header.

Table A-5. Section Header Flags (Bytes 36 and 37)

Mnemonic Flag Description

STYP-REG OOOOh Regular section (allocated, relocated,loaded)

STYP-DSECT 0OO1h Dummy section (relocated, not allocated, not loaded)

STYP-NOLOAD 0OO2h Noload section (allocated, relocated, not loaded)

STYP-GROUP 0OO4h Grouped section (formed from several input sections)

STYP-PAD 0OO8h Padding section (loaded, not allocated, not relocated)

STYP-COPY 0010h Copy section (not allocated, relocated, loaded; relo-
cation and line number entries are processed normally)

STYP-TEXT 0020h Section contains executable code

STYP-DATA 0040h Section contains initialized data

STYP-BSS 0080h Section contains uninitialized data

STYP-ALIGN 0100h Section is aligned on a cache boundary

Note: The term loaded means that the raw data for this section appears in the object file

The flags listed in Table A-5 can be combined; for example, if the flags word
is set to 024h, then both STYP-GROUP and STYP-TEXT are set.

Appendix A - Section Headers

Figure A-6 illustrates how the pointers in a section header would point to the
various elements in an object file that are associated with the .text section .

. text
Section Header L...:..:.:.:..:..:-"----'---.L---'--+--'--f-...l....--t--"---"----'----'--L-l

....... ____ 41", ... -- ... --

Figure A-3. An Example of Section Header Pointers for the .text Section

As Figure A-2 (page A-3) shows, the .bss section and uninitialized sections
defined with .usect vary from this format. Although there is a section header
for each uninitialized section, these sections have no raw data, no relocation
information, no line number information, and occupy no actual space in the
object file. Therefore, the number of relocation entries, the number of line
number entries, and the file pointers in an uninitialized section header are zero.
Section headers for uninitialized sections simply tell the linker how much
space for variables it should reserve in the memory map.

A-7

Appendix A - Relocation Information

A.5 Relocation Information

A-8

A COFF object file has one relocation entry for each relocatable reference.
The assembler automatically generates relocation entries. The linker reads the
relocation entries as it reads each input section and performs relocation. The
relocation entries determine how references within an input section are
treated.

The relocation information entries use the 1 O-byte format shown in Table A-5.

Ta.ble A-6. Relocation Entry Contents

Byte
Type Description Number

0-3 Long integer Virtual address of the reference

4-5 Unsigned short integer Symbol table index (0-65535)

6-7 Unsigned short integer Reserved

8-9 Unsigned short integer Relocation type (see Table A-7)

Table A-7 lists the relocation types that can appear in bytes 8 and 9 of the
relocation entry.

Table A-7. Relocation Types (Bytes 8 and 9)

Mnemonic Flag Relocation Type

R-ABS OOOOh No relocation

R-REL24 005h 24-bit direct reference

R-RELWdRD 0010h 16-bit direct reference to symbol's
address

R-RELLONG 0011h 32-bit direct reference to symbol's
address

R-PCRWOfi!D 0013h 16 bits, PC relative

R-OCRLONG 0018h 1 's complement 32-bit direct

R-GSPPCR16 0019h 16-bit relative (in words)

R-PARTLS16 0020h Truncate to lower 16 bits

R-PARTMS8 0021h Relocate bits 24 through 16

Appendix A - Line Number Table

A.6 Line Number Table
The object file contains a table of line number entries thpt are useful for sym
bolic debugging. When the C compiler produces several lines of assembly
language code, it creates a line number entry that maps these lines back to the
original line of C source code that generated them. Each single line number
entry contains 6 bytes of information. Table A-8 shows the format of a line
number entry.

Table A-S. Line Number Entry ForJlllat

Byte
Type Description Number

0-3 Long integer This entry may have one of two values:
1) If it is the first entry in a block of line

number entries, it points to a symbol
entry in the symbol table

2) If it is not the first entry in a block, it
is the physical address of the line indi-
cated by bytes 4-5

4-5 Unsigned short integer This entry may have one of two values:
1) If this field is 0, then this is the first line

of a function entry
2) If this field is not 0, then this is the line

number of a line of C source code

Figure A-4 shows how line number entries are grouped into blocks.

Symbol Index 0
physical address line number

physical address line number

Symbol Index 0
physical address line number

physical address line number

Figure A-4. line Number Blocks

As Figure A-4 shows, each entry is divided into halves:

" For the first line of a function,

Bytes 0-3 point to the name of a symbol or a function in the
symbol table.
Bytes 4-5 contain a 0, which indicates the beginning of a block.

.. For the remaining lines in a function,

Bytes 0-3 show the physical address (the number of words cre
ated by a line of C source).
Bytes 4-5 show the address of the original C source, relative to its
appearance in the C source program.

The line entry table can contain many of these blocks.

A-9

Appendix A - Line Number Table

A-10

Figure A-9 illustrates an example of line number entries for a function named
XYZ. As shown, the function name is entered as a symbol in the symbol table.
The first portion on XYZ'S block of line number entries points to the function
name in the symbol table. Assume that the original function in the C source
contained three lines of code. The first line of code produces 4 words of as
sembly language code, the second line produces 3 words, and the third line
produces 10 words. Figure A-9 shows what the line number entries would
look like for this example.

"~----'~'--------r----t--....,-.

----o----I----f--~-
4 2
7 3

'-

I I
~ XYZ

Line Number
Entries

Symbol Table

Figure A-5. Line Number Entries Example

(Note that the symbol table entry for XYZ has a field that points back to the
beginning of the line number block.)

Since line numbers are not often needed, the linker provides an option (-s)
that strips line number information from the object file. This provides a more
compact object module.

Appendix A - Symbol Table

A.7 Symbol Table

The order of symbols in the symbol table is very important; they appear in the
sequence shown in Figure A-3.

File Name 1

Function 1

Local symbols
for Function 1

Function 2

Local symbols
for Function 2

File Name 2

Function 1

Local symbols
for Function 1

Static variables

Defined global symbols

Undefined global symbols

Figure A-6. Symbol Table Contents

Static variables refer to symbols defined in C that have storage class static
outside any function. If you have several modules that use symbols with the
same name, making them static confines the scope of each symbol to the
module that defines it (this eliminates multiple-definition conflicts).

The entry for each symbol in the symbol table contains the symbol's:

• Name (or a pointer into the string table)

• Type
• Value
• Section it was defined in
• Storage class
• Basic type (integer, character, etc.)
• Derived type (array, structure, etc.)

• Dimensions
• Line number of the source code that defined the symbol

Section names are also defined in the symbol table.

A-11

Appendix A - Symbol Table

All symbol entries, regardless of the symbol's class and type, have the same
format in the symbol table. Each symbol table entry contains the 18 bytes of
information listed in Table A-9. Some symbols may not have all the charac
teristics listed above; if a particular field is not set, it will be set to null.

Table A-9. Symbol Table Entry Contents

Byte
Type Description Number

0-7 Character This field contains one of the following:
1) An 8-character symbol name, padded

with nulls
2) A pointer into the string table if the

symbol name is longer than 8 charac-
ters

8-11 Long integer Symbol value; storage class dependent
12-13 Short integer Sllction number of the symbol
14-15 Unsigned short integer Basic and derived type specification

16 Character Storage class of the symbol
17 Character Number of auxiliary entries (always 0 or 1)

A.7.1 Special Symbols

A-12

The symbol table contains some 'special symbols that are generated by the
compiler, assembler, and linker. Each special symbol contains ordinary sym
bol table information as well as an 'auxiliary entry. Table A-10 lists these
symbols.

Table A-10. Special Symbols in the Symbol Table

Symbol Description
.file File name
.text Address of .text section
.data Address of .data section
.bss Address of .bss section
.bb Address of the beginning of a block
.eb Address of the end of a block
.bf Address of the beginning of a function
.ef Address of the end of a function
.target Pointer to a structure or union that is returned by a function
.nfake Dummy tag name for a structure, union, or enumeration
.eos End of a structure, union, or enumeration
etext Next available address after the end of the .text output section
edata Next available address after the end of the .data output section
end Next available address after the end of the .bss output section

Several of these symbols appear in pairs:

• .bb/.eb indicate the beginning and end of a block.
• .bf/.ef indicate the beginning and end of a function.
• .nfake/.eos name and define the limits of structures, unions, and enu

merations that were not named. The .eos symbol is also paired with
named structures, unions, and enumerations.

Appendix A - Symbol Table

When a structure, union, or enumeration has no tag name, the compiler as
signs it a name so that it can be entered into the symbol table. These names
are of the form .nfake, where n is an integer. The compiler begins numbering
these symbol names at O.

A.7.1.1 Symbols and Blocks

In C, a block is a compound statement that begins and ends with braces and
contains symbol definitions. The symbol definitions for any particular block
are grouped together in the symbol table, and are delineated by the .bb/.eb
special symbols. Note that blocks can be nested in C, and their symbol table
entries can also be nested correspondingly. Figure A-7 shows how block
symbols are grouped in the symbol table.

Symbol Table
Block 1: .bb

Symbols for
block 1

.eb
Block 2: .bb

Symbols for
block 2

.eb

Figure A-7. Symbols for Blocks

A.7.1.2 Symbols and Functions

The symbol definitions for a function appear in the symbol table as a group,
delineated by .bf/.ef special symbols. The symbol table entry for the function
name precedes the .bf special symbol. Figure A-8 shows the format of symbol
table entries for a function.

Function Name
.bf

Symbols for
the function

.ef

Figure A-S. Symbols for Functions

If a function returns a structure or union, then a symbol table entry for the
special symbol .target will appear between the entries for the function name
and the .bf special symbol.

A-13

Appendix A - Symbol Table

A.7.2 Symbol Names

The first 8 bytes of a symbol table entry (bytes 0-7) indicate a symbol's name:

• If the symbol name is 8 characters or less, then this field has type char
acter. The name is padded with nulls (if necessary) and stored in bytes
0-7.

• If the symbol name is greater than 8 characters, then this field is treated
as two long integers. The entire symbol name is stored in the string ta
ble. Bytes 0-3 contain 0, and bytes 4-7 are an offset into the string ta
ble.

A.7.3 String Table

A-14

Symbol names that are longer than eight characters are stored in the string
table. The field in the symbol table entry that would normally contain the
symbol's name instead contains a pointer to the symbol's name in the string
table. Names are stored contiguously in the string table, delimited by a null
byte. The first four bytes of the string table contain the size of the string table
in bytes; thus, offsets into the string table are greater than or equal to four.

Figure A-5 shows an example of a string table that contains two symbol
names, Adaptive-Filter and Fourier-Transform. The index in the string table
is 4 for Adaptive-Filter and 20 for the Fourier-Transform.

40

'A' 'd' 'a' 'p'

't' 'j' 'v' 'e'
,

'F' 'i' 'I' -
't' 'e' 'r' '\0
'F' '0' 'u' 'r'

'j' 'e' 'r'
,
-

,

'T' 'r' 'a' 'n'

's' 'f' '0' 'r'

'm' '\0' '\0' '\0'

Figure A-9. Sample String Table

Appendix A - Symbol Table

A.7.4 Storage Classes

Mnemonic

C-NULL

C-AUTO

C-EXT

C-STAT

C-REG

C-EXTDEF

C-LABEL

C-ULABEL

C-MOS

C-ARG

C-STRTAG

C-MOU

Byte 16 of the symbol table entry indicates the storage class of the symbol.
Storage classes refer to the method in which the C compiler accesses a sym
bol. Table A-11 lists valid storage classes.

Table A-11. Symbol Storage Classes

Value Storage Class Mnemonic Value Storage Class

0 No storage class C-UNTAG 12 Union tag

1 Automatic variable C-TPDEF 13 Type definition

2 External symbol C-USTATIC 14 Uninitialized static

3 Static C-ENTAG 15 Enumeration tag

4 Register variable C-MOE 16 Member of an enumer-
ation

5 External definition C-REGPARM 17 Register parameter

6 Label C-FIELD 18 Bit field

7 Undefined label C-BLOCK 100 Beginning or end of a
block; used only for the
.bb and .eb special
symbols

8 Member of a structure C-FCN 101 Beginning or end of a
function; used only for
the .bf and .ef special
symbols

9 Function argument C-EOS 102 End of structure; used
only for the .eos special
symbol

10 Structure tag C-FILE 103 Filename; used only for
the .file special symbol

11 Member of a union C-LlNE 104 Used only by utility
programs

Some special symbols are restricted to certain storage classes. Table A-12
lists the,se symbols and their storage classes.

Table A-12. Special Symbols and Their Storage Classes

Special Restricted to
this

Symbol Storage Class

.file C-FILE

.bb C-BLOCK

.eb C-BLOCK

.bf C-FCN

.ef C-FCN

.eos C-EOS

.text C-STAT

.data C-STAT

.bss C-STAT

A-15

Appendix A - Symbol Table

A.7.S Symbol Values

A-16

Bytes 8-11 of a symbol table entry indicate a symbol's value. A symbol's va
lue depends on the symbol's storage class; Table A-13 summarizes the stor
age classes and related values.

Table A-13. Symbol Values and Storage Classes

Storage Class Value Description

C-AUTO Stack offset in bits

C-EXT Relocatable address

C-STAT Relocatable address

C-REG Register number

C-LABEL R~IQcatable address

C-MOS Offset In, bits

C-ARG Stack offset '., bits

C-STRTAG 0

C-MOU Offset in bits

C-UNTAG 0

C-TPDEF 0

C-ENTAG 0

C-MOE Enumeration value

C-REGPARM Register number

C-FIELD Bit displacement

C-BLOCK Relocatable address

C-FCN Relocatable address

C-FILE 0

If a symbol's storage class is C-FILE, then the symbol's value is a pointer to
the next .file symbol. Thus, the .file symbols form a one-way linked list in the
symbol table. When there are no more .file symbols, the final .file symbol
points back to the first .file symbol in the symbol table.

The value of a relocatable symbol is its virtual address. When the linker relo
cates a section, the value of a relocatable symbol changes accordingly.

Appendix A - Symbol Table

A.7.6 Section Number

Bytes 12-13 of a symbol table entry contain a number that indicates which
section the symbol was defined in. Table A-14 lists these numbers and the
sections they indicate.

Table A-14. Section Numbers

Mnemonic
Section

Description Number

N-DEBUG -2 Special symbolic debugging symbol

N-ABS -1 Absolute symbol

N-UNDEF 0 Undefined external symbol

N-SCNUM 1 .text section

N-SCNUM 2 .data section

N-SCNUM 3 .bss section

N-SCNUM 4-65,535 Section number of a named section, in
the order in which the named sections
are encountered

Note that if there were no .text, .data, or .bss sections, the numbering of
named sections would begin with 1.

If a symbol has a section number of 0, -1, or -2, then it is not defined in a
section. A section number of -2 indicates a symbolic debugging symbol,
which includes structure, union, and enumeration tag names, type definitions,
and filenames. A section number of -1 indicates that the symbol has a value
but is not relocatable. A section number of 0 indicates a relocatable external
symbol that is not defined in the current file.

A.1.1 Type Entry

Bytes 14-15 of the symboi table entry define the symbol's type. Each symbol
symbol has:

• One basic type
• One to six derived types

The format for this 16-bit type entry is:

Size (in bits):

A-17

Appendix A - Symbol Table

Bits 0-3 of the type field indicate the basic type. Table A-15 lists valid basic
types.

Table A-15. Basic Types

Mnemonic Value Type

T-NULL 0 Type not assigned

T-CHAR 2 Character

T-SHORT 3 Short integer

T-INT 4 Integer

T-LONG 5 Long integer

T-FLOAT 6 Floating point

T_DOUBLE 7 Double word

T-STRUCT 8 Structure

T-UNION 9 Union

T-ENUM 10 Enumeration

T-MOE 11 Member of an enumeration

T-UCHAR 12 Unsigned character

T-USHORT 13 Unsigned short integer

T-UINT 14 Unsigned integer

T-ULONG 15 Unsigned long integer

Bits 4-15 of the type field are arranged as six 2-bit fields which can indicate
1 to 6 derived types. Table A-16 lists the possible derived types.

Table A-16. Derived Types

Mnemonic Value Type

DT-NON 0 No derived type

DT-PTR 1 Pointer

DT-FCN 2 Function

DT-ARY 3 Array

An example of a symbol with several derived types would be a symbol with a
type entry of 00000000110100112. This entry indicates that the symbol is a
pointer to an array of short integers.

Appendix A - Symbol Table

A.7.S Auxiliary Entries

Name

.file

Each symbol table may have one or no auxiliary entry. An auxiliary symbol
table entry contains the same number of bytes as a symbol table entry (18),
but the format of an auxiliary entry depends on the symbol's type and storage
class. Table A-17 summarizes these relationships.

Table A-17. Auxiliary Symbol Table Entries Format

Storage
Type Entry

Auxiliary
Class Derived Basic Entry Format

Type 1 Type
C-FILE DT-NON T-NULL Filename (see Table A-18)

.text, .data .. bss C-STAT DT-NON T-NULL Section (see Table A-19)
tagname C-STRTAG DT-NON T-NULL Tag name (see Table A-20)

C-UNTAG
C-ENTAG

.eos C-EOS DT-NON T-NULL End of structure (see Table A-21)
fcname C-EXT DT-FCN (See note 1) Function (see Table A-22)

C-STAT
arrname (See note 2) DT-ARY (See note 1) Array (see Table A-23)
.bb, .eb C-BLOCK DT-NON T-NULL Beginning and end of a block

(see Table A-24 and Table A-25)
.bf, .ef C-FCN DT-NON T-NULL Begin~ng and end of a function

(see T ble A-24 and Table A-25)
Name related to a (See note 2) DT-PTR T-STRUCT Name related to a structure, union,
structure, union DT-ARR T-UNION or enumeration (see Table A-26)
or enumeration DT-NON T-ENUM

Notes: 1) Any except T-MOE
2) C-AUTO, C-STAT, C-MOS, C-MOU, C-TPDEF

In Table A-17, tagname refers to any symbol name (including the special
symbol.nfake). fcname and arrname refer to any symbol name.

Any symbol that satisfies more than one condition in Table A-17 should have
a union format in its auxiliary entry. Any symbol that does not satisfy any of
these conditions should not have an auxiliary entry.

A.7.B.1 File Names

Each of the auxiliary table entries for a filename contains a 14-character file
name in bytes 0-13. Bytes 14-17 are not used.

Table A-18. Section Format for Auxiliary Table Entries

Byte
Type Description Number

0-13 Character Filename
14-17 - Not used

Appendix A - Symbol Table

A.7.B.2 Sections

The auxiliary table entries for sections have the format shown in Table A-18.

Table A-19. Section Format for Auxiliary Table Entries

Byte
Type Description Number

0-3 Long integer Section length
4-6 Unsigned short integer Number of relocation entries
7-8 Unsigned short integer Number of line number entries
9-17 - Not used (zero filled)

A.7.B.3 Tag Names

Table A-20 illustrates the format of auxiliary table entries for tag names.

Table A-20. Tag Name Format for Auxiliary Table Entries

Byte
Type Description Number

0-5 - Not used (zero filled)
6-7 Unsigne~ short integer Size of structure, union, or enumeration

8-11 - Not used (zero filled)
12-15 Long inteJller Index of next entry beyond this structure,

union, or enumeration
16-17 - Not used (zero filled)

A.7.B.4 End of Structure

A-20

Table A-21 illustrates tfle Jormat of auxiliary table entries for ends of struc
tures.

Table A-21. End of Structure Format for Auxiliary Table Entries

Byte
Type Description Number

0-3 Long integer Tag index
4-5 - Not used (zero filled)
6-7 Unsigned short integer Size of structure, union, or enumeration

8-17 - Not used (zero filled)

Appendix A - Symbol Table

A.7.8.5 Functions

Table A-22 illustrates the format of auxiliary table entries for functions.

Table A-22. Function Format for Auxiliary Table Entries

Byte
Type Description Number

0-3 Long integer Tag index
4-7 Long integer Size of function (in bits)

8-11 Long integer File pointer to line number
12-15 Long integer Index of next entry beyond this function
16-17 - Not used (zero filled)

A.7.8.6 Arrays

Table A-23 illustrates the format of auxiliary table entries for arrays.

Table A-23. Array F\>rmat for Auxiliary Table Entries

Byte
Type Description Number

0-3 Long integer Tag index
4-5 Unsigned short integer Line number declaration
6-7 Unsigned short integer Size of array
8-9 Unsigned short integer First dimension

10-11 Unsigned short integer Second dimension
12-13 Unsigned short integer Third dimension
14-15 Unsigned s\1ort integer fourth dimension
16-17 - Not used (zero filled)

A. 7.8. 7 End of Blocks and Functions

Table A-24 illustrates the format of auxiliary table entries for the ends of
blocks and functions.

Table A-24. End of Blocks and Functions Format for Auxiliary
Table Entries

Byte
Type Description Number

0-3 - Not used (zero filled)
4-5 Unsigned short integer C source line number
6-17 - Not used (zero filled)

A-21

Appendix A - Symbol Table

A.7.B.B Beginning of Blocks and Functions

Table A-25 illustrates the format of auxiliary table entries for the beginnings
of blocks and functions.

Table A-25. Beginning of Blocks and Functions Format for
Auxiliary Table Entries

Byte
Type Description Number

0-3 - Not used (zero filled)
4-5 Unsigned short integer C source line number
6-11 - Not used (zero filled)

12-15 Long integer Index of next entry past this block
16-17 - Not used (zero filled)

A.7.B.9 Names Related to Structures, Unions, and Enumerations

A-22

Table A-26 illustrates the format of auxiliary table entries for the names of
structures, unions, and enumerations.

Table A-26. Structure, Union. and Enumeration Names Format for
Auxiliary Table Entries

Byte
Type Description Number

0-3 Long integer Tag index
4-5 - Not used (zero filled)
6-7 Unsigned short integer Size of the structure, union, or enumeration

8-17 - Not used (zero filled)
16-17 - Not used (zero filled)

Appendix B

Symbolic Debugging Directives

The TMS320C30 assembler supports several directives that the TMS320C30
C compiler uses for symbolic debugging:

• The .sym directive defines a global variable, a local variable, or a func
tion. Several parameters allow you to associate various debugging in
formation with the symbol or function.

• The .stag, .etag, and .utag directives define structures, enumerations,
and unions, respectively. The .member directive specifies a member
of a structure, enumeration, or union. The .eos directive ends a struc
ture, enumeration, or union definition.

• The .func and .endfunc directives specify the bounds of C blocks.

• The .file directive defines a symbol in the symbol table that identifies
the current source file name.

• The .Iine directive identifies the line number of a C source statement.

These symbolic debugging directives are not usually listed in the assembly
language file that the compiler creates. If you want them to be listed, invoke
the code generator with the -0 option, as shown below:

cg30 -0 <input file>

This appendix contains an alphabetical directory of the symbolic debugging
directives. Each directive contains an example of C source and the resulting
assembly language code.

8-1

.block/ .endblock Define a Block

Syntax .bloclc begmning line number

.endblock ending line number

Description The .block and .endblock directives specify the beginning and end ota C
block. The line numbers are optional; they specify the location in the
source file where the block is defined.

Example

8-2

Note that block definitions can be nested. The assembler will detect im
proper block nesting.

Here is an example of C source that defines a block, and the resulting as
sembly language code.

C source:

/* Beginning of a block */
int a,b;
a = b;

/* End of a block

Resulting assembly lan'guag$ code:

.block 0

.sym -a,~,4,a,32

.s:srm:.b,2,4,a,32

.l~ne 'i
LDI *+FP(2),RO
STI RO,*+FP~l)
.endblpck 7

*/

Supply a File Identifier .file

Syntax .file "filename"

Description The .file directive all01llts a debugger to map locations in memory back to
lines in a C source file. Filename is the name of the file that contains the
orginal C source program. The first 14 characters of the filename are sig
nificant.

Example

You can also use the .file directive in assembly code to provide a name in
the file and improve program readability.

Here's an example of the .file directive. The file name named text.c con
tained the C source that produced this directive.

.file "text.e"

8-3

.func/.endfunc Define a Function

Syntax

Description

Example

6-4

.func beginning line number

.endfunc ending line number

The .func and .endfunc directives specify the beginning and end of a C
function. The line numbers are optional; they specify the location in the
source file where the function is defined.

Note that function definitions cannot be nested.

Here is an example of C source that defines a function, and the resulting
assembly language code.

C source:

I?ower(x, n)
~nt x,n;

/* Beginning of a function */

(
int i, p;
P = 1;
for (i = 1; i <= n; ++i)

p = p * X;
return p; 1* End of function */

Define a Function .func/.endfunc

Resulting assembly language code:

0007 .slm _power,_power,36,2,0
0008 . g obal _power
0009
0010 .func 2
0011 *************************************
0012 * FUNCTION DEF : -power
0013 *************************************
0014 000000 _power:
0015 000000 OF2BOOOO PUSH FP
0016 000001 080BOO14 LDI SP,FP
0017 000002 02740001 ADDI 1,SP
0018 000003 OF240000 PUSH R4
0019 .sym _x,-2,4,9,32
0020 .sym _n,-3,4,9,32
0021 .sym _i,l,4,1,32
0022 .s~m _p,4,4,4,32
0023 000004 .l~ne 5
0024 000004 08640001 LDI 1,R4
0025 000005 .1ine 6
0026 000005 15440301 STI R4,*+FP(l)
0027 000006 L3:
0028 000006 08400301 LDI *+FP(l),RO
0029 000007 04COOB03 CMPI *+FP(3),RO
0030 000008 6A090008 BGT L2
0031 000009 .line 7
0032 000009 08000004 LDI R4,RO
0033 OOOOOA 08410B02 LDI *-FP(2),R1
0034 OOOOOB 620000001 CALL I-MULT
0035 oooooe 08040000 LDI RO,R4
0036 OOOOOD 08410301 LDI *+FP (1) ,R1
0037 OOOOOE 02610001 ADDI 1,R1
0038 OOOOOF 15410301 STI R1,*+FP(l)
0039 000010 60000006+ BR L3
0040 000011 L2:
0041 000011 .1ine 8
0042 000011 08000004 LDI R4,RO
0043 000012 EPIO_1 :
0044 000012 OE240000 POP R4
0045 000013 18740001 SUBI 1,SP
0046 000014 OE2BOOOO POP FP
0047 000015 78880000 RETS
0048
0049 .endfunc 11

8-5

.line Create a Line Number Entry

Syntax line line number[,address]

Description The .Iine directive creates a line number entry in the object file. Line num
ber entries are used in symbolic debugging to associate addresses in the
object code with the lines in the source code that generated them.

Example

B-6

The .Iine directive has two operands:

• Line number indicates the line of the C source that generated a por
tion of code. Line numbers are relative to the beginning of the current
function. This is a required parameter.

• Address is an expression which is the address associated with the line
number. This is an optional parameter; if you don't specify an ad
dress, the assembler will use the current SPC value.

The .Iine directive is followed by the assembly language source statements
that are generated by the indicated line of C source. For example, assume
that the lines of C source below are line 4 and 5 in the original C source;
lines 5 and 6 produce the assembly language source statements that are
shown below.

C source:

for (i = 1i i <= ni ++i)
p = P * Xi

Resulting assembly language code:

0023 000004 .line 5
0024 000004 08640001 LDl 1,R4
0025 000005 .1ine 6
0026 000005 15440301 STl R4,*+FP(1)
0027 000006 L3:
0028 000006 08400301 LDl *+FP(l),RO
0029 000007 04COOB03 CMPl *+FP(3),RO
0030 000008 6A090008 BGT L2
0031 000009 .1ine 7
0032 000009 08000004 LDl R4,RO
0033 OOOOOA 08410B02 LDl *-FP(2),R1
0034 OOOOOB 620000001 CALL I-MULT
0035 OOOOOC 08040000 LDI RO,R4
0036 OOOOOD 08410301 LDl *+FP(1),R1
0037 OOOOOE 02610001 ADDI 1,R1
0038 OOOOOF 15410301 BTl R1,*+FP(1)
0039 000010 60000006+ BR L3

Define a Member .member

Syntax

Description

Example

.member name,value[,type,storage class,size,tag,dimsj

The .member directive defines a member of a structure, union, or enumer
ation. It is only valid when it appears in a structure, union, or enumeration
definition.

• Name is the name of the member that is put in the symbol table. The
first 32 characters of the name are significant.

• Value is the value associated with the member. Any legal expression
(absolute or relocatable) is acceptable.

• Type is the C type of the member. Appendix A contains more infor
mation about C types.

• Storage class is the C storage class of the member. Appendix A
contains more information about C storage classes.

• Size is the number of bits of memory required to contain this member.

• Tag is the name of the type (if any) or structure of which this member
is a type. This name must have been previously declared by a .stag,
.etag, or .utag directive.

• Dims may be one to four expressions separated by commas. This al-
lows up to four dimensions to be specified for the member.

The order of parameters is s'lgnificant. Name and value are required pa
rameters. All other parameters may be omitted or empty (adjacent commas
indicate an empty entry). This allows you to skip a parameter and specify
a parameter that occurs later in the list. Operands that are omitted or empty
assume a null value.

Here is an example of a C structure definition and the corresponding as
sembly language statements:

C source:

struct doc {
char title;
char <;Troup;
int Job-number;

doc_info;

Resulting assembly language code:

.stag

. member

. member

. member

.eos

doc,48
_title,O,2,8,t:I
-9'roup,8,2,8,8
_]ob-number,16,4,8,32

B-7

.stag/ .etag/ .utag/ .eos Define a Structure

Syntax

Description

Example 1

8-8

.stag name[,size}
member defiriitions
.aos

.etag name[,size}
member definitions
.eos

.utag name[,sizeJ
member definitions
.eos

The .stag directive begins a structure definition. The .etag directive begins
an enumeration definition. The .utag directive begins a union definition.
The .eos directive ends a structure, enumeration, or union definition.

• Name is the name of,the structure, enumeration, or union. The first
32 characters of the name are significant. This is a required parame
ter.

• Size is the number of bits the structure, enumeration, or union occu
pies in memory. This is an optional parameter; if omitted, the size is
unspecified.

The .stag, .etag, or.utag directive should be followed by a number of
.member directives, which define members in the structure. The .member
directive is the only directive that can appear inside a structure, enumer
ation, or union definition.

The assembler does not allow nested structures, enumerations, or unions.
The C compiler "unwinds" nested structures by defining them separately
and then referencing them from the structure they are referenced in.

Here is an example of a structure definition.

C source:

struct doc
{

char title;
char "1roup;
int Job-number;

doc-info;

Resulting assembly language code:

.stag _doc,96

.member _title,O,2,8,32

.member -"1roup,32,2,8,32

.member -Job-number,64,4,8,32

.eos

Define a Structure .stag/ .etag/ .utag/ .eos

Example 2

Example 3

Here is an example of a union definition.

C source:

union u_tag (
int vall;
float val2;
char valc;

valu;

Resulting assembly language code:

.utag _u-tag,96

.member _vall,O,2,8,32

.member _va12,32,4,8,32

.member _valc,64,4,8,32

.eos

Here is an example of an enumeratibn,definition.

C Source:

enum o-ty (reg_I, reg_2, result} optypes;

Resulting assembly language code:

.etag _o_ty,32

.member _reg_I,O,ll,16,32

.member _reg_2,I,ll,16,32

.member _result,2,ll,16,32

.eos

B-9

.sym

Syntax

Description

Example

B-10

Define a Symbol

.sym name,valueDtype,storage class,size,tag,dimsj

The .sym directive specifies symbolic debug information about a global
variable, local variable, or a function.

• Name is the name of the variable that is put in the object symbol ta
ble. The first 32 characters of the name are significant.

• Value is the value associated with the variable. Any legal expression
(absolute or relocatable) is acceptable.

• Type is the C type of the variable. Appendix A contains more infor
mation about C types.

• Storage class is the C storage class of the variable. Appendix A con
tains more information about C storage classes.

• Size is the number of wores of memory required to contain this vari
able.

• Tag is the name of the type (if any) or structure of which this variable
is a type. This name must have been previously declared by a .stag,
.etag, or .utag directive.

• Dims may be up to four expressions separated by commas. This al-
lows up to four dimensions to be specified for the variable.

The order of parameters is significant. Name and value are required pa
rameters. All other parameters may be omitted or empty (adjacent commas
indicate an empty entry). This allows you to skip a parameter and specify
a parameter that occurs later in the list. Operands that are omitted or empty
assume a null value.

These lines of C source produce the .sym directives shown below:

C source:

struct s { int memberl, member2; } str;
int ext;
int array[5] [10];
long *ptr;
int strcmp();

main(argl,arg2)
int argl;
char *arg2;

register rl;

Resulting assembly language code:

.sym _str,_str,8,2,64,_s

.sym _ext,_ext,4,2,32

.sym _array,_array,244,2,1600,,5,lO

.sym _ptr,_ptr,2l,2,32

.sym -main,-main,36,2,O

.sym _argl,_argl,-2,4,9,32

.sym _arg2,_arg2,-3,18,9,32

.sym _rl,4,4,4,32

Appendix C

Assembler Error Messages

The assembler issues several types of error messages:

• Fatal,
• Nonfatal, and
• Macro errors.

When the assembler completes it second pass, it reports on any errors that it
encountered during the assembly. It also prints these errors in the listing file
(if one is created); an error is printed following the source line that incurred
it.

This section discusses the three types of assembler error messages; they are
listed in alphabetical order. Most errors are fatal errors; ifan error is not fatal
or if it is a macro error, this is noted in the list.

absolute value required: A relocatable symbol was used where an absolute
symbol was expected.

address required: This instruction requires an address as an operand.

auxiliary register required for indirect: This instruction requires an
auxiliary register as an operand.

blank missing: A blank or blanks must separate each field of the source
statement.

cannot open library: A library name specified with the .mlib directive does
not exist or is already being used.

closing (')') missing: Mismatched parenthesis.

closing quote missing: All strings must be enclosed in quotes.

comma missing: The assembler expected a comma but did not find one.
This usually means that more operands were expected.

copy file open error: A file specified by a .copy directive does not exist or
is already being used.

divide by zero: An expression or well-defined expression contains invalid
division.

duplicate definition: The symbol appears as an operand of a REF state
ment, as well as in the the label field of the source, or, the symbol appears
more than once in the label field of the source .

. else needs corresponding .if: An .else directive was not preceded by a .if
directive.

SEND statement missing ill macro (macro error message): Within the
macro library, an end of file was encountered before a SEND card.

C-1

-

Appendix C - Assembler Error Messages

C-2

expression out of bounds:

expression syntax error: Unbalanced parentheses or in'/alid operations on
relocatable symbols.

extended register required: This instruction requires an extended register
(RO-R7) as an operand.

filename missing: The specified filename cannot be found.

floating-point number not valid in expression: Floating-point numbers
cannot be used in expressions; you must use an integer instead.

$IF level exceeded (macro error message): The maximum nesting level of
$IF directives is 44.

illegal label: A label cannot be used for the second instruction of a parallel
instruction pair.

illegal structure, union, or enumeration tag

illegal structure definition

include/copy files not allowed in macro: You can't use the .copy di
rective within a macro.

incompatible addressing modes: An invalid combination of addressing
modes has been used in an instruction.

incorrect macro definition (macro error message): Within the macro li
brary, a macro was not found or a macro name was not given for a macro call.

index register required for displacement: Use an index register for in
direct addressing.

indirect address required: This instruction expects an indirect address as
an operand.

indirect displacement must be 0 or 1: The indirect placement for parallel
instructions or three-operand instructions must be 0 or 1.

indirect displacement or out of bounds: The displacement for this in
struction must be in the range 0-255.

invalid branch displacement: The specified displacement is a absolute but
the SPC is relative, or the displacement is an external value, or the relative
displacement is too large.

invalid bit-reversed modification

invalid circular modification

invalid expression: This may indicate invalid use of a relocatable symbol in
arithmetic.

invalid floating-point constant:

invalid $IF structure (macro error message): The macro does not have
matching $IF, $ELSE, and $ENDIF statements.

invalid $IF/$lOOP nesting (macro error message): An $IF used within a
$LOOP must end within the $LOOP; a $LOOP within an $IF must end within
the $IF.

Appendix C - Assembler Error Messages

invalid macro expansion (macro error message)

invalid macro library pathname (macro error message): The macro library
name that was specified with an .mlib directive is invalid.

invalid macro qualifier (macro error message): The only valid macro qua
lifiers are S, V, L, A. SS, SV, SL, and SA.

invalid macro verb (macro error message)

invalid opcode: The command field of the source record has an entry that
is not a defined instruction, directive, or macro name.

invalid option: An option specified by the .option directive is invalid.

invalid parallel instruction combination: The instructions specified as
parallel instructions are not a valid pair.

invalid symbol: The symbol has invalid characters in it.

invalid symbol in macro expansion (macro error message)

invalid use of .asect

label required: The flagged directive must have a label.

long macro variable qualifier (macro error message): Macro variable
qualifiers may be only one or two characters long.

library not archive: A file specified with an .mlib directive is not an archive
file.

loop nesting level exceeded (macro error message)

macro line too long (macro error message): In a macro definition, macro
directive lines may be only 53 characters long. Model statements, when fully
expanded, may be only 55 characters long.

macro nesting level exceeded (macro error message)

missing first half of parallel instruction: The first instruction in a parallel
instruction pair is missing or invalid.

operand missing: An operand must be supplied.

operand must be register or indirect: Three-operand and parallel in
structions require register or indirect operands.

overflow in floating-point constant: Floating-point value to large to be
represented.

pass1/pass2 operand conflict: A symbol in the symbol table did not have
the same value in pass 1 and pass 2.

positive value required

RO or R1 multiply destination required: The destination operand for an
MPYIIADD pair or an MPYIISUB pair must be RO or R1.

R2 or R3 ADD/SUB destination required: The destination operand for
parallel ADD or SUB instructions must be R2 or R3.

register required: This instruction requires a register as an operand.

relocatable field must be 32 bits

C-3

Appendix C - Assembler Error Messages

C-4

string required: You must supply a string that is enclosed in double quotes.

symbol required: The .global directive requires a symbol as an operand.

symbol used in both REF and DEF: A REF symbol is already defined.

syntax error:

syntax error in macro assignment (macro error message)

syntax error in macro expansion (macro error message)

too many macro variables (macro error message): The total number of
macro parameters, variables and labels in a single macro definition may not
exceed 128.

unbalanced symbol table entries: For .block and .tunc directives.

undefined symbol: An undefined symbol was used where a well-defined
expression is required.

underflow in floating-point constant: Floating-point value is too small
to represent.

unexpected .endif encountered: An .endif directive was not preceded by
an .if directive.

variable already defined (macro error message): A macro variable cannot
be redefined within a macro.

warning - illegal relative branch: A branch has been requested to a dif
ferent section.

warning - immediate operand not absolute

warning - null string defined: An empty string (one whose length = 0)
is defined for string input, for directives that require a null string operand.

warning - register converted to immediate

warning - same destination registers: Parallel instructions must use
different destination registers.

warning - symbol truncated: The maximum length for a symbol is eight
characters. The assembler ignores the extra characters.

warning - trailing operand(s): The assembler found fewer or more oper
ands than expected in the flagged instruction.

warning - value out of range

warning - value truncated: The expression given was to large to fit within
the instruction opcode or the required number of bits.

Appendix 0

Linker Error Messages

The linker issues several types of error messages:

• Syntax and commalid error~
• Allocation errors
• 1/0 errors

This section discusses the three tYpes of errors; they are listed alphabetically
within each category. The symbol'"(...)" is used in these listings to represent
the name of an object that the linker is attempting to interact with when an
error occurs.

• Syntax/Command Errors

These errors are caused by incorrect use of linker directives, misuse of
an input expression, invalid options, Check the syntax of all expressions,
check the input directives for accuracy. Review the various options you
are using and check for conflicts.

absolute symbol (...) being redefined: An absolute symbol may
not be redefined.

adding name (...) to multiple output sections: The input section
is mentioned twice in the SECTION directive.

ALIGN illegal in this context: Alignment of a symbol may only be
performed within a SECTIONS directive.

attempt to decrement "."

bad attribute value in MEMORY directive: (...): An attribute
must be R, W, X, or I.

bad flag value in SECTIONS directive, option (...)

bad fill value: The fill value must be a 2-byte constant.

binding excludes alignment: The section will be bound at the spe
cified address regardless of the C\lignment of that address.

both -r and -s flags ar:e set; -s flag turned off: Since the -s op
tion strips the relocation i:nformation and -r requests a relocatable object
file, these options are in conflict with each other.

-c requires fill value of 0 in .cinit: The value parameter has been
overridden.

-f flag does not specify a 2-byte number

cannot align a section within GROUP - (...) not aligned

cannot bind a section within a GROUP

0-1

Appendix 0 - Linker Error Messages

0-2

cannot specify an owner for sections within a GROUP: The
entire group is treated as one unit, so the group may be aligned or
bound to an address, but the sections making up the group may not be
handled individually.

cannot specify a page for a section within a GROUP

DSECT (...) can't be given an owner: Since dummy sections do
not participate in memory allocation, it is meaningless for a dummy
section to be given an owner or an attribute.

DSECT (...) can't be linked to an attribute

-e flag does not specify a legal symbol name (...)

entry point other than -c-intOO specified: For -c option only.

entry point symbol (...) undefined

errors in input - (...) not built

fill value on -f flag truncated to (...) bytes (warning)

ifile (comfile) nesting exceeded with file (...): Command file
nesting is allowed up to 16 levels.

illegal operator in expression

misuse of "." symbol in assignment instruction: The dot symbol
cannot be used in assignment statements that are outside SECTIONS
directives.

no input files

number (...) not a power of 2: For the ALIGN operator.

-0 file name too large (>128 char), truncated to (string)

-0 flag does specify a valid file name: string

option flag does not specify a number

option is invalid flag

section (...) not built: The most likely cause of this is a syntax error
in the SECTIONS directive.

semicolon required after expression

statement ignored: Caused by a syntax error in a expression.

symbol referencing errors - (...) not built

symbol (...) from file (...) being redefined: A defined symbol may
not be redefined in an assignment statement.

syntax error: scanned line = (...)
unexpected EOF(end of file): Syntax error in the linker command
file.

undefined symbol in expression

Appendix 0 - Linker Error Messages

• Allocation Errors

These error messages appear during the allocation phase of linking.
They generally appear if a section or group does not fit at a certain ad
dress or if the MEMORY and SECTION directives conflict in some way.
If you are using a linker command file, check that MEMORY and SEC
TION directives allow enough room to ensure that no sections overlap
and that no sections are being placed in unconfigured memory.

binding address C •••) for section C •••) is outside all memory on
page C •••)

binding addre~s C •••) for section C •••) overlays previously allo
cated section

binding address C •••) incompatible with alignment for section
C···) :
can't allocate output section, C •••) of size C •••) on page (...)

can't allocate section C .•.) with attribute C ..•) on page C ...)

default allocation failed: C •••) is too large

GROUP containing section (...) is too big

internal symbol C •••) redefined in file C •••): Ignored.

memory types C ••.) and C .••) on page C •..) overlap

no owner C •••) for section (...) on page C .•.): Invalid or nonexistent
memory range.

output file C ..•) not executable Warning.

PC-relative displacement overflow at address C •••) in file C •••)

section C ..•) at address C •••) overlays previously allocated sec
tion C •.•) at address

section C •••), bound at address C .••), won't fit into page C •..) of
configured memory

section C •••) enters unconfigured memory at address C •••)

section C •••) in file C •••) is too big

undefined symbol C •••) first referenced in file C •••): Unless the
-r option is used, the linker requires that all referenced symbols are de
fined.

• I/O Errors:

The following error messages indicate that the input file is corrupt, no
nexistent, or unreadable or because the linker cannot write to the output
file. Make sure that the input file is in the correct directory and that the
file system is not out of space. If the input file is corrupt, try reassem
bling it.

cannot complete output file C •••), write error

cannot create output file C •••):

0-3

Appendix 0 - Linker Error Messages

0-4

can't open C ... }

can't read C ... }

can't seek C ... }

could not create map file C ... }

fail to copy C ... }

fail to read C ••• }

fail to seek C ... }

fail to skip (...)

fail to write C ... }

file C ... } has no relocation information

file (...) is of unknown type, magic number = C ... }

illegal relocation type C ... } found in sectionCs} of file (...)

internal error: aux table overflow

invalid archive size for file (...)

I/O error on output file (...)

library (...) member has no relocation information

line number entry found for absolute symbol

memory allocation failure

no symbol map produced - not enough memory

relocation symbol not found: index C ... }, section C ... }, file (...)

relocation entries out of order in section (...) of file (...)

section (...) not found: An input section specified in a SECTIONS
directive was not found in the input file.

sections .text, .data, or .bss not found: Optional header may be
useless.

seek to C ...) failed

Base
Char

Base
Char

10 16 10 16
0 00 NULL 32 29 SP

1 01 SOH 33 21 !
2 02 STX 34 22 "
3 03 ETX 35 23 #
4 04 EOT 36 24 $

5 05 ENQ 37 25 %
6 06 ACK 38 26 &
7 07 BEL 39 27 ,

8 08 BS 40 28 (

9 09 HT 41 29)
10 OA LF 42 2A .
11 08 VT 43 28 +
12 OC FF 44 2C
13 00 CR 45 20 -
14 OE SO 46 2E
15 OF SI 47 2F /
16 10 DLE 48 30 0
17 11 DC1 49 31 1
18 12 DC2 50 32 2
19 13 DC3 51 33 3
20 14 DC4 52 34 4
21 15 NAK 53 35 5
22 16 SYN 54 36 6
23 17 ETB 55 37 7
24 18 CAN 56 38 8
25 19 EM 57 39 9
26 1A SUB 58 3A :
27 18 ESC 59 38 ;

28 1C FS 60 3C <

29 10 GS 61 30 -
30 1E RS 62 3E >

31 1F US 63 3F ?

Appendix E

ASCII Character Set

Base
Char

Base
Char

10 16 10 16
64 40 @ 96 60
65 41 A 97 61 a
66 42 B 98 62 b
67 43 C 99 63 c
68 44 D 100 64 d
69 45 E 101 65 e
70 46 F 102 66 f
71 47 G 103 67 9
72 48 H 104 68 h
73 49 I 105 69 i
74 4A J 106 6A j
75 48 K 107 68 k
76 4C L 108 6C I
77 40 M 109 60 m
78 4E N 110 6E n
79 4F 0 111 6F 0

80 50 P 112 70 P
81 51 Q 113 71 q
82 52 R 114 72 r
83 53 S 115 73 s
84 54 T 116 74 t
85 55 U 117 75 u
86 56 V 118 76 v
87 57 W 119 77 w

88 58 X 120 78 x
89 59 Y 121 79 y

90 5A Z 122 7A z
91 58 [123 78 {
92 5C \ 124 7C >

93 50 J 125 70 }

94 5E 0' 126 7E -
95 5F - 127 7F DEl

E-1

Appendix E - ASCII Character Set

E-2

Appendix F

Glossary

absolute address: An address that is permanently assigned to a
TMS320C30 memory location.

absolute section: An initialized named section defined with the .asect di
rective. All addresses in an absolute section are absolute.

alignment: A process in which the linker places an output section at an
address that falls on an n-bit boundary, where n is a power of 2. You can
specify alignment with the SECTIONS linker directive.

allocation: A process in which the linker determines the final memory ad
dresses of output sections.

archive library: A collection of individual files that have been grouped into
a single file.

archiver: A software program that allows you to collect several individual
files into a single file called an archive library. The archiver also allows you
to delete, extract, or replace members of the archive library, as well as add new
members.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions, directives, and
macro directives. The assembler substitutes absolute operation codes for
symbolic operation codes, and absolute or relocatable addresses for symbolic
addresses.

assembly-time constant: A symbol that is assigned a constant value with
the .set directive.

assignment statement: A statement that assigns a value to a variable.

attribute component: Provides information about the origin and structure
of a macro variable or macro symbol.

autoinitialization: The process of initializing global C variables (contained
in the .cinit section) before beginning program execution.

auxiliary entry: A symbol may have an extra entry in the symbol table that
contains additional information about the symbol (whether the symbol is a
filename, a section name, a fl)nction name, etc.).

binding: A process in which you specify a distinct address for an output
section or a symbol.

block: A set of declarations and statements that are grouped together with
braces .

. bss: This is one of the default COFF sections. You can use the .bss direc
tive to reserve a specified amount of space in the memory map that can later
be used for storing data. The .bss section is uninitialized.

F-1

Appendix F - Glossary

F-2

cache memory: A fast local memory onboard the TMS320C30. Blocks of
code that are executed repeatedly can be loaded into the cache; this reduces
the number of memory cycles and speeds program execution.

C compiler: A program that translates C source statements into
TMS320C30 assembly language source statements.

command file: A file that contains linker options and names input files for
the linker.

comment: A source statement (or portion of a source statement) that is
used to document or improve readability of a source file. Comment are not
compiled, assembled, (H linked; they have no effect on the object file.

common object file format (COFF): An object file that promotes mod
ular programming by supporting the concept of sections.

conditional processing: A method of processing one block of source
code or an alternate block of source code, based upon the evaluation of a
specified expression.

configured memory: Memory that the linker has specified for allocation.

constant: A numeric yalue that can be used as an operand.

cross-reference listil: An output file created by the assembler that lists
the symbols that were fined, what line they were defined on, which lines
referenced them, and the r final values .

. data: This is one of th~ default COFF sections. The .data section is an ini
tialized section that contains usually initialized data. You can use the .data
directive to assemble codl::!. into the .data section.

digital signal processoo; A microprocessor/microcomputer that performs
algorithmic or numerical computational procedures upon digitized signals it
has received and then send$ the results to a host system or peripheral device.

digital signals: Digital rel\lresentation of a continuous signal. Usually am
plitude is represented at disctete time intervals with a digital value.

directive: Special-purpose commands that control the actions and func
tions of a software tool (as opposed to assembly language instructions, which
control the actions of a device).

emulator: A hardware development system that emulates TMS320C30
operation.

entry point: The starting execution point in target memory.

enumeration:

executable module: An object file that has been linked and can be exe
cuted in a TMS320C30 system.

expression: A constant, a symbol, or a series of constants and symbols se
parated by arithmetic operators.

external symbol: A symbol that is used in the current program module but
defined in a different program module.

field: For the TMS320C30, a software-configurable data type whose length
can be programmed to be any value in the range of 1-32 bits.

Appendix F - Glossary

file header: A portion of a COFF object file that contains general informa
tion about the object file (such as the number of section headers, the type of
system the object file can be downloaded to, the number of symbols in the
symbol table, and the symbol table's starting address).

global: Describes a symbol that is either 1) defined in the current module
and accessed in another, or 2) accessed in the current module but defined in
another.

GROUP: An option of the SECTIONS directive that forces specified output
sections to be allocated contiguously (as a group).

high-level language debugging: The ability of a compiler to retain sym
bolic and high-level language information (such as type and function defi
nitions) so that a debugging tool can use this information.

hole: An area between the input sections that comprise an output section
which contains no actual code or data.

incremental linking: Linking files that have already been linked.

initialized section: A COFF section that contains executable code or ini
tialized data. These sections can be built up with the .data, .text, .sect, or
.asect directives.

input section: A section from an object file that will be linked into an ex
ecutable module.

label: A symbol which begins in column 1 of a source statement and cor
responds to the address of that statement.

length component: A component of a macro variable or macro symbol
that contains t~e number of characters that make up the string.

line number entry: An entry in a COFF output module that maps lines of
assembly code back to the original C source file that created them.

linker: A software tool that combines object files to form an object module
that can be allocated into TMS320C30 system memory and executed by the
TMS320C30.

listing file: An output file created by the assembler that lists source state
ments, their line numbers, and their effects on the SPC.

loader: A device that loads an executable module into TMS320C30 system
memory or to a debugging tool.

member: The elements or variables of a structure, union, or enumeration.

macro: A user-defined routine that can be used as an instruction.

macro call: The process of invoking a macro.

macro definition: A block of source statements that define the name and
the code that make up a macro.

macro expansion: The source statements that are substituted for the macro
call and subsequently assembled.

macro library: An archive library composed of macros. Each file in the li
brary must contain one macro; it's name must be the same as the macro name
it defines, and it must have an extension of .asm.

F-3

Appendix F - Glossary

F-4

macro variable: A variable that is valid within a macro definition or during
a macro expansion.

magic number: An entry in the COFF file header that identifies an object
file as a module that can be executed by the TMS320C30.

map file: An output file created by the linker that shows the memory con
figuration, section composition and allocation, and symbols and the addresses
at which they were defined.

memory map: A map of TMS320C30 target system memory space, which
is partitioned into functional blocks.

mnemonic: An instruction name that the assembler translates into machine
code.

model statement: Instructions or assembler directives in a macro defi
nition that are assembled each time a macro is invoked

named section: A section that is defined with the .sect, .asect, or .usect
directive. The .sect and .asect directives define initialized named sections that
can be used like the .text and .data default sections. The .usect directive de
fines uninitialized named sections that can be'\used like the .bss default sec
tion.

object file: A file that has been assembled or linked and contains ma
chine-language object code.

object format converter: A program that converts COFF object files into
Intel-format or Tektronix-format object files.

object library: An archive library made up of individual object files.

operand: The arguments, or parameters, of an assembly language in
struction, assembler directive, or macro directive.

optional header: A portion of , COFF object file that the linker uses to
perform relocation at download tiroe.

options: Command parameters that allow you to request additional or spe
cific functions when you invoke a software tool.

output module: A linked, executable object file that can be downloaded
and executed on a target system.

output section: A final, allocated section in a linked, executable module.

overlay pages: Multiple areas of physical memory that overlay each other
at the same address. The TMS320C30 system can map different pages into
the same address space in response to hardware select signals.

partial linlting: Linking a file that wi" be linked again.

RAM model: An autoinitialization model used by the linker when linking
C code. The linker uses this model when you invoke the linker with the -cr
option. The RAM model allows variables to be initialized at load time instead
of run time.

raw data: Executable code or initialized data in an output section.

relocation: A process in which the linker adjusts a" the references to a
symbol when the symbol's address changes.

Appendix F - Glossary

ROM model: An autoinitialization model used by the linker when linking
C code. The linker uses this model when you invoke the linker with the -c
option. In the ROM model, the linker loads the .cinit section of data tables
into memory, and variables are initialized at run time.

section: A relocatable block of code or data that will ultimately occupy
contiguous space in the TMS320C30 memory map.

section header: A portion of a COFF object file that contains information
about a section in the file. Each section has its own header; the header points
to the section's starting address, contains the section's size, etc.

section program counter: See SPC.

sign-extend: To fill the unused MSBs of a value with the value's sign bit.

simulator: A software development system that simulates TMS320C30
operation.

source file: A file that contains C code or TMS320C30 assembly language
code that will compiled or assembled to form an object file.

SPC: Section Program Counter. An element of the assembler that keeps
track of the current location within a section; each section has its own SPC.

static: Refers to a variable whose scope is confined to a function or a pro
gram. The values of static variables are not discarded when the function or
program is exited; their previous value is resumed when the function or pro
gram is re-entered.

storage class: Any entry in the symbol table that indicates how a symbol
should be accessed.

string component: A copy of a string that is passed to a macro variable
by a macro parameter or assigned to a macro symbol with an $ASG directive.

string table: Symbol names that are longer than 8 characters cannot be
stored in the symbol table; instead, they are stored in the string table. The
name portion of the symbol's entry points to the location of the string in the
string table.

structure: A collection of one or more variables grouped together under a
single name.

symbol: A string of alphanumeric characters that represents an address or
a value.

symbolic debugging: The ability of a software tool to retain symbolic in
formation so that it can be used by a debugging tool such as a simulator or
an emulator.

symbol table: A portion of a COFF object file that contains information
about the symbols that are defined and used by the file.

tag: An optional "type" name that can be assigned to a structure, union, or
enumeration.

target memory: Physical memory in a TMS320C30-based system into
which executable object code will be loaded .

. text: This is one of the default COFF sections. The .text section is an ini
tialized section that contains executable code. You can use the .text directive
to assemble code into the .text section.

F-5

Appendix F - Glossary

F-6

unconfigured memory: Memory that is not defined as part of the
TMS320G30 memory map and cannot be loaded with code or data.

uninitialized section: A GOFF section that reserves space in the
TMS320G30 memory map but that has no actual contents. These sections
are built up with the .bss and .usect directives.

union: A variable which may hold (at different times) object of different
types and sizes.

unsigned: Refers to a value that is treated as a positive number, regardless
of its actual sign.

value component: A component of a macro variable or macro symbol that
specifies the value of the variable or symbol.

well-defined expression: An expression that contains only symbols or
assembly-time constants that have been defined before they appear in the
expression.

word: A 32-bit addressable location in target memory.

A

a command (archiver) 8-3
-a option (linker) 9-4
absolute output module 9-4
absolute sections 3-6, 5-15
addressing modes 6-2
A-DIR (environment variable) 4-4,4-5
.align (assembler directive) 5-14, 5-9
alignment 9-20
allocation 9-20, 9-27
alternate directories 9-7

assembler 4-4-4-5
linker 9-7

archive libraries 4-4, 5-36, 8-1-8-5, 9-7,
9-10,9-13

archiver 1 -3, 8-1 -8-5
examples 8-4
in the development flow 1 -2, 8-2
invocation 8-3
options 8-3

arithmetic instructions 6-22
arithmetic operators 4-12, 9-32
array definitions A-21
ASCII character set E-1
.asect (assembler directive) 5-15, 3-3,

3-4, 3-~ 3-6, 5-4, 5-41
assembler 1-3,4-1-4-17

character strings 4-11
constants 4-8-4-10
cross-reference listings 4-17
directives 5-1-5-48
error messages C-1-C-4
expressions 4-12-4-14
in the development flow 1 -2, 4-2
invocation 4-3
macros 7 -1 -7-9
output 4-15-4-17
overview 4-1
relocation 3-15
sections 3-3-3-9
source listings 4-15-4-16
source statement format 4-6, 4-7
symbols 3-17,4-11

assembler directives 5-1,5-48
conditional assembly directives 5-11

.else 5-32, 5-11

.endif 5-32, 5-11

.if 5-32, 5-11
miscellaneous directives 5-23

Index

.end 5-23
sections directives 3-3-3-9, 5-4

.asect 5-15,3-3-3-9, 5-4

.bss 5-17,3-3-3-9,5-4

.data 5-22, 3-3-3-9, 5-4

.Iabel 5-15,5-4

.sect 5-41,3-3-3-9,5-4,5-15

.text 5-45, 3-3-3-9, 5-4

.usect 5-47, 3-3-3-9, 5-4
summary table 5-2
symbolic debugging directives B-1

.block/.endblock B-1, B-2

.etag/.eos B-1, B-8

.file B-1, B-3

.func/.endfunc B-1, B-4

.Iine B-1, B-6

.member B-1,B-7

.stag/.eos B-1, B-8

.sym B-1, B-10

.utag/.eos B"1, B-8
that align the SPC 5-9

.align 5-14, 5-9

.even 5-24, 5-9

.field 5-9
that format the output listing 5-10

.Iength 5-34, 5-10

.Iist 5-35, 5-10

.mlist 5-38, 5-10

.mnolist 5-38, 5-10

.nolist 5-35, 5-10

.option 5-39, 5-10

.page 5-40, 5-10

.title 5-46,5-10

.width 5-34,5-10
that initialize memory 5-6

.byte 5-19, 5-6

.field 5-25, 5-6

.float 5-28, 5-6

.hword 5-31, 5-6

.int 5-33, 5-6

.Iong 5-33, 5-6

.set 5-42, 5-6

.space 5-43, 5-6

.string 5-44, 5-6

.word 5-33, 5-6
that reference other files 5-12

.copy ,5-20, 5-12

.def 5-29,5-12

.global 5-29, 5-12

.mlib . 5-36, 5-12

.ref5-29, 5-12
assembler output 4-15-4-17,5-10

Index-1

assembly language development
flow 1-2

assembly-time constants 4-10 5-42
assigning a value to a symbol 5-42
autoinitialization 9-38, 9-40

RAM model 9-6
ROM model 9-6

auxiliary entries A-19

B

binary integers 4-8
binding 9-20
.block (assembler directive) B-1 B-2
block definitions A-13, A-21, A~22, B-2
.bss (ass~mbler directive) 5-17, 3-3, 5-4
.bss section 3-3,5-4,5-17,9-33, A-3

holes 9-36
initialization 9-36

.byte (assembler directive) 5-19, 5-6

c
C compiler 1 -6, 9-6, 9-38-9-40, A-1,

B-1-B-10
block definitions B-2
enumeration definitions B-8
file identification B-3
function definitions B-4
line number entries A-9 B-6
linking C code 9-6 '
member definitions B-7
special symbols A-12
storage classes A-1 5
structure definitions B-8
symbol table entries B-1 0
union definitions B-8

-c option (assembler) 4-3
-c optio~ (linker) 9-6, 9-38-9-40
cache alignment 5-9, 5-14
C-DIR (environment variable) 9-7
character constants 4-9
character strings 4-11
characters 4-11, E-1
COFF 1-1,3-1-3-17,9-1,10-1,

A-1-A-22
auxiliary entries A-19
file headers A-4
file structure A-2

Index-2

line number entries A-9, B-6
relocation information A-8
section headers A-6
sections 3-1 -3-17
special symbols A-12
string table A-14
symbol table A-11

command files (linker) 9-3,9-11
example 9-42

comments (in source code) 4-7,9-11
common object file format

See COFF
compiler 1 -3
condition codes (for the instruction

set) 6-4
conditional blocks 5-11, 7 -7

assembler directives 5-11 5-32
macro directives 7 -7 '

conditional expressions 4-13
configuredmemory 9-14, 9-27
constants'" 4-8

assembly-time constants 4-10, 5-42
binary integers 4-8
characters 4-9
decimal integers 4-9
floating point 4-10, 5-28
hexadecimal integers 4-9
octal integers 4-8

.copy (assembler directive) 5-20, 4-4,
5-12

copy files 4-4
COpy section 9-29
-cr option (linker) 9-6, 9-38-9-40
cross-reference listings 4-17

D

d command (archiver) 8-3
.data (assembler directive) 5-22 3-3

3-4,5-4 ' ,
.data section 3-3, 5-4, 9-33, A-3
.datasection 5-22
decimal integers 4-9
.def (assembler directive) 5-29,5-12
default fill value for holes 9-6
default sections 3-2 5-22 5-45
defining macros 7 -4 '
development tools overview 1 -2
directives

See assembler directives
DSECT section 9-29
dummy section 9-29

E

e option (archiver) 8-3
-e option (linker) 9-6
.else (assembler directive) 5-32,5-11
$ELSE (macro directive) 7-2,7-7
emulator 1-3
.end (assembler directive) 5-23
.endblock (assembler directive) 8-1, 8-2
.endfunc (assembler directive) 8-1, 8-4
.endif (assembler directive) 5-32,5-11
$ENDIF (macro directive) 7-2,7-7
$ENDLOOP (macro directive) 7-2,7-8
$ENDM (macro directive) 7-2
entry points for the linker 9-6
enumeration definitions 8-8
enviroment variables 4-4

A-DIR (assembler) 4-4
environment variables 9-8

A-DIR (assembler) 4-5
C-CIR 9-7
C-DIR (linker) 9-7,9-8

.eos (assembler directive) 8-1,8-8
EPROM programmers 1-3,10-1
error messages

assembler C-1-C-4
linker D-1 - D-4

.eta9 (assembler directive) 8-1, 8-8

.even (assembler directive) 5-24, 5-9
expressions 4-12, 9-30

conditional 4-13
that are well defined 4-13
that contain arithmetic

operators 4-12
that contain relocatab!e

symbols 4-13
underflow/underflow 4-13

external symbols 4-13,5-12,5-29,5-42

F

-f option (linker) 9-6
.field (assembler directive) 5-25, 5-6
.file (assembler directive) 5-12,8-1,8-3
file headers A-4
file identification 8-3
.float (assembler directive) 5-28, 5-6
floating point 4-10, 5-28
.func (assembler directive) 8-1, 8-4
function definitions A-13, A-21, A-22,

8-4

G

.global (assembler directive) 5-29,3-17,
5-12

global symbols 9-7
GROUP option (SECTIONS

directive) 9-22

H

-h option (linker) 9-7
hexadecimal integers 4-9
hi-byte file 10-3
holes 9-6, 9-33
how to use this manual 1-5
.hword (assembler directive) 5-31, 5-6

-i option (assembler) 4-3, 4-4
-i option (linker) 9-7
-i option (object format converter) 10-3
.if (assembler directive) 5-32,5-11
$IF (macro directive) 7-2,7-7
.include (assembler directive) 4-4
include files 4-4
incremental linking 9-37
initialized sections 3-2, 3-4, 5-15, 5-22,

5-41,5-45,9-33
installation instructions 2-3
instruction set 1 -6, 6-1 -6-24
instructions 2-1

PC-DOS 2-2
VAXNMS 2-3

.int (assembler directive) 5-33, 5-6
Intel object format 10-1,10-3
interlocked-operation instructions 6-23
invoking the ...

L

archiver 8-3
assembler 1 -4, 4-3
linker 1 -4, 9-3
object format converter 10-3

-I option (assembler) 4-3
-I option (linker) 9-7
.Iabel (assembler directive) 5-15, 5-4
labels 4-6
.Iength (assembler directive) 5-34,5-10
.Iine (assembler directive) 8-1,8-6
line number entries A-9, 8-6

Index-3

linker 1 -3, 9-1-9-43
COFF 3-10-3-14,9-1
command files 9-3, 9-11
command options summary 9-4
configured memory 9-14, 9-27
development flow 9-2
error messages 0-1-0-4
example 9-41-9-43
expressions 9-30
in the development flow 1 -2
invocation 9-3
linking C code 9-38-9-40
Ink30 command 9-3
loading a program 3-16
operators 9-32
relocation 3-15
sections 3-10-3-14
SECTIONS directive 9-16
symbols 3-17
unconfigured memory 9-14, 9-27

linker command files 9-3
linker command options 9-4-9-10
linking C code 9-6, 9-38-9-40
.Iist (assembler directive) 5-35, 5-10
listing control 5-35, 5-38, 5-39, 5-40,

5-46
listing file 4-15-4-16,5-10
listing page size 5-34
Ink30 command 9-3

-a option 9-4
-c option 9-6, 9-38-9-40
-cr option 9-6, 9-38-9-40
-e option 9-6
-f option 9-6
-h option 9-7
-m option 9-9
-0 option 9-10
options summary 9-4
-q option 9-10
-r option 9-4
-s option 9-10
-u option 9-10

load instructions 6-21
loading a program 3-16
lo-bytefile 10-3
logical instructions 6-22
.Iong (assembler directive) 5-33, 5-6
$LOOP (macro directive) 7-2, 7-8

Index-4

M

-m option (linker) 9-9
MACLI B files 5-36, 7-3
$MACRO (macro directive) 7-2, 7-4
macro libraries 4-4, 5-36, 7 -3, 8-1
macros 7-1,7-9

calls 7-1
conditional blocks 7 -7
definitions 7-4
directives summary 7-2
MACUB files 5-36, 7-3
macro libraries 5-36, 7-3
.mlib directive 5-36, 7-3
parameters 7-6
redefining opcodes 7-5
repeatable blocks 7-8
substitution 7-1
unique labels 7-9

manual organization 1-5
map file 9-9

example 9-43
.member (assembler directive) B-1, B-7
member definitions B-7
ivI EMORY (linker directive) 3-10,

9-14-9-15
default model 9-14
overlay pages 9-23

, syntax 9-14
.mlib (assembler directive) 5-36,4-4,

5-12, 7-3
.l1tllist (assembler directive) 5-38, 5-10
mnemonics 4-1
.~nolist (assembler directive) 5-38, 5-10

N
n~med memory 9-21
mimed sections 3-5, 3-2, 3-6, 5-4, 9-33,

A-3
.asect 3-3, 3-5, 5-15
.sect 3-3, 3-5, 5-41
.usect 3-3,3-5,5-47

naming an output module 9-10
.nOlist (assembler directive) 5-35, 5-10
NOLOAO section 9-29

o
-0 option (linker) 9-10
object file format

See COFF
objectformat converter 1-3,10-1-10-4

examples 10-4
in the development flow 1 -2, 10-2
invocation 10-3

object libraries 8-1, 9-7, 9-13, 9-38
octal integers 4-8
operands 4-7
.option (assembler directive) 5-39, 5-10
optional file header A-5
output listing 4-15-4-16,5-10
overflow (in expressions) 4-13
overlay pages 9-23-9-26

p

.page (assembler directive) 5-40, 5-10
parallel instructions 6-18
partially linked files 9-37
PC-DOS software installation 2-2
predefined symbols 4-11
program-control instructions 6-23

Q

q option (archiver) 8-3
-q option (assembler) 4-:)
-q option (linker) 9-10

R

r command (archiver) 8-3
-r option (linker) 9-4, 9-37
RAM model (C compiler) 9-6,

9-38-9-40
redefining opcodes 7-5
.ref (assembler directive) 5-29, 5-12
related documentation 1 -6
relinking 9-5, 9-10

affected by -s 9-10
relocatable output module 9-5
relocatable symbols 4-13
relocation 3-15,4-10, 9-4, 9-5, A-8
repeatable blocks 7-8
ROM model (C compiler) 9-6,

9-38-9-40
runtime initialization 9-38
runtime support 9-38

s
s option (archiver) 8-3
-s option (assembler) 4-3
-s option (linker) 9-10
.sect (assembler directive) 5-41,3-3,
3-4,3-5,5-4,5-15

section headers A-6
section specifications 9-17
sections 1-1,3-1-3-17,5-15,5-45,

5-47
default sections 3-2,5-17,5-22,

5-45
named sections 3-2,3-5,5-15,

5-41,5-47
SECTIONS (linker directive) 3-10,

9-16-9-22
alignment 9-20
allocation 9-20,9-27
binding 9-20
default allocation 9-27
GROUP option 9-22
named memory 9-21
overlay pages 9-24
section specifications 9-17
syntax 9-16

.set (assembler directive) 5-42, 5-6
simulator 1 -3
software development system 1 -3
software installation 2-1-2-3

list of supported operating
systems 2-1

PC-DOS 2-2
VAX/VMS 2-3

source listings 4-15-4-16
source statement format 4-6

comment field 4-7
label field 4-6
mnemonic field 4-7
operand field 4-7
optional syntaxes 6-3
parallel instructions 6-18

.space (assembler directive) 5-43, 5-6
SPC 3-6,4-15,9-34

assembler symbol 4-7
linker symbol 9-33

special section types 9-29
special symbols in the symbol table A-12
.stag (assembler directive) 8-1, 8-8
static symbols 9-7
static variables A-11
storage classes A-15
store instructions 6-21
.string (assembler directive) 5-44, 5-6
string table A-14
stripping line number entries 9-10
stripping symbolic information 9-10

Index-5

structure definitions A-20, 8-8
style and symbol conventions 1 -7
support tools 1 -1, 1 -2
.sym (assembler directive) 8-1,8-10
symbol names A-14
symbol table 3-17, A-11
symbol table entries 8 -1 0
symbolic debugging 9-10, A-9, A-11,

8-1-8-10
assembler directives 5-1,8-1
block definitions 8-2
enumeration definitions 8-8
file identification 8-3
function definitions 8-4
line number entries 8-6
member definitions 8-7
-s assembler option 4-3
structure definitions 8-8
symbol table entries 8-10
union definitions 8-8

symbols 3-17,4-11

T

at link time 9-30
character strings 4-11
predefined 4-11
relocatable symbols in

expressions 4-13

t command (archiver) 8-3
-t option (object format converter) 10-3
Tektronix object format 10-1, 10-3
.text (assembler directive) 5-45, 3-3,

3-4,5-4
.text section 3-3, 5-4, 5-45, 9-33, A-3
.title (assembler directive) 5.-46, 5-10
TMS320C30 archiver

See archiver
TMS320C30 assembler

See assembler
TMS320C30 linker

See linker

Index-6

TMS320C30 object format converter
See object format converter

u
-u option (linker) 9-10
unconfigured memory 9-14, 9-27
underflow (in expressions) 4-13
un initialized sections 3-2,3-3,5-17,

5-47,9-33
holes 9-36
initialization 9-36

union definitions 8-8
unique labels for macros 7-9
.usect (assembler directive) 5-47, 3-3,

3-5,5-4
.utag (assembler directive) 8-1, 8-8

v
v option (archiver) 8-3
VAXNMS software installation 2-3

w
well-defined expressions 4-13
.width (assembler directive) 5-34,5-10
.word (assembler directive) 5-33, 5-6

x
x command (archiver) 8-3
-x option (assembler) 4-3
-x option (object format converter) 10-3
XDS emulator 1 -3

TI Worldwide
Sales Offices
AlAIIAMA: ttunta.,.: 500 Wynn Drive. Suite 514,
HuntsviNe, AL 36805. 12051 837·7530.

ARIZONA: PhoenIx: 8825 N. 23rd Ave., Phoenix.
AZ 85021. (8021 99S-1007;TUCSQN: 818 W. Mirack!
M Suite 43. Tucson, AZ 85705. 16021 292·2640.

CALIFORNIA: irvine: 17891 ClII1wright Dr., Irvine, CA
92714. (714) 880-1200; RoHvIII: 1 Sierra Gete
Plaza. RcMeville, CA 95678, 19161788-9208;
s.n DIego: 4333 View Ridge Ave" Suite 100,
Sen Diego. CA 92123,16191278-9601;
..... CIIn: 5363 Betsy Ros. Dr., Santa Clar., CA
9506ot. (408) 980-9000; TorNnOe: 690 Knox St .•
Torrance. CA 90502, (213) 211·7010;
W ~ 21220 Erwin St., Woodland Hills,
CA 91367. (B18) 704-7759.

COLORADO: Aurora: 1400 S. Potomac Ave.,
Suite tOt, Aurora, CO 80012. (303) 368-8000.

CONNECTICUT: W~: 9 Barne. Industrial P.,k
Rd., Barnes Indultrial Park. Watlingford.
er 06492. (2031 269-0074.

flORIDA: AIWnontII SprIng.: 370 S. North Lake Blvd,

~=Ts~LN~~~~~n~~~.I. 260-2116;
Ft. Laud.rd FL 33309, (306) 973-8502;
T : 4803 George Rd., Suite 390,
Tempe, FL 33634,18131885-7411.

GEORGIA: Non:rou: 5515 SpBlding ori'll., Norcross,
GA 30092, 14041 662-7900

~ =-1~~,~~~2V:6:~~5i~,
INDIANA: Ft. W..,...: 2020 Inwood Or ..
Ft. Wayne, IN 46815,12191424-5174;
c:.m.a: 550 Cong onal Dr., Carmel, IN 46032,
13171 573-&000.

IOWA: c.... : 373 CllIlins Rd. NE, Suite 201,
Cedar Rapids, IA 52402, 13191 395-9550. '

kANSAS: 0v.dInd PMc: 7300 College BI'IId., Ughton
Plaza, O nd Park, KS 66210, 19131 451-4511.

MARYLAND: CoIumbII: 8815 Centre Park Dr.,
Columbi. MD 21045, 13011964-2003.

MASSACHUSETTS: WIIItham: 950 Winter St .•
Waltham, MA 02154,16171895-9100.

IIIWCHIGAN: F~"': 33737 W. 12 Mile Rd .•

=nr.::::n;o7~ ~~!d (~~ 5~.3S~r.9.
Gr.nd Rapids, MI 49506, 1816) 957-4200.

,.,.NE80TA: Eden",.....: 11000 W. 78th St.,
Eden Prairie. MN 55344 18121 828-9300.

MISSOURI: It. LcMI: 1 1818 Borm.n Drive,
St. Louis. MO 83146, 13141 569-7800.

NEW .JERSEY: lain: 485E U.S. Route 1 South,
ParkW8Y Tow Iselin, NJ 08830 12011 750-1050.

NEW MEXICO: ~: 2820-D Bro.dbent Pkwy
NE, Albuquerque. NM 87107, (6051345-2565.

NEW YORK: IEMt 8yrKuse: 8366 CoU.mer Dr.,
East Syracu". NY 13057, 13151483-9291;
.wv.: 1895 Walt Whitman Rd., P.O. Box 2936,
MeMne. NY 11747, (618)454-6800;
PInaford: 2851 Clewer St., Pitt.ford, NV 14534,
(716) 38&-6770;

~'tlor.~~,~~~~~~" Poughkeepsie,

NORTH CAROLINA: CMrIDtte: 8 Woodl.wn Green.
Woodlawn Rd .• Charlotte, NC 28210, (7041

=.3~h~, ~:~:) 7:'~~~; BI'IId., Suite 100,

OHIO: ~: 23775 Commerce Park Rd.,
Be.chwood. OH 44122. (2161464-6100;
1Ieevrercnek: 4200 Colonel Glenn Hwy.,
Beavercreek, OH 45431. (513) 427-8200.

OREGON: a...rton: 6100 SW l05th St., Suite 110,
8ea'IIenon, OR 91005. 15031 843-6758.

PENNSYlVANIA:'" lei: 610 Sentry Pkwy,
Blue Ben, PA 19422. (215) 825-9500.

PUERTO RICO: HMo Rey: Merc.ntil Plaza 8Idg .•
Suite 505. H.to Rev, PR 00918, 18091 753-8700.

TENNESSEE: Johneon City: Erwin Hwy,
P.O. Dr.wer 1255, Johnson City, TN 37605
j6161481-2192.

TEXAS: AuMIn: 12501 Re.e.ch BI'IId., Au.tin, TX
78769. (6121250-7655; Rk:hwdaon: 1001 E.
C.mpbell Rd., Rich.rdson, TX 15081.
(214) 680-6082; Howton: 9100 Southwest Frwy.,
Suite 250. Houston, TX 77074, 1713) 778-6692;
s.n AntaNo: 1000 Central Parkw.y South,
S.n Antonio, TX 78232, (5121 496-1779.

UTAH: MurnIy: 5201 South Green St., Suite 200,
Murray, UT 84123,18011266-8972.

WASHINGTON: RMImond: 5010 148th NE, Bldg B,
Suite 107, Redmond. WA 98052, (206) 881-3080.

WISCONSIN: BrookfIeld: 450 N. Sunny Slope, Suite
150, Brookfield, wt 53005, (4141 782-2899.

CANADA: N.,...: 301 Moodie Ori'll8, M.Uorn Canter,
Nepe.n, Ont.,io, Canad., K2H9C4,
16131 726-1970. RIchmond till: 280 Centre St. E.,
Richmond HiU L4C1B1, Ontario, C.nada
14161884-9181; St. LHNnt: Ville St. laurent
Quebec, 9460 Trans C.nada Hwy., St. Laurent,
Quebec, Can.d. H4S1R7, 15141 336-1860.

ARGENTINA: T8x.s Instruments Argentina Vi.monte
~!~~j4~~~~9~.pital Federal, Buenos Aires, Argentina,

AUSTRAUA ,& NEW ZEALAND): Texas Instruments
Austr.li. Ltd.: 6-10 T.lavera Rd., North Ryde
ISydneyl. New South Wale., Australia 2113.
2 + 887-1122; 5th Floor, 418 St. Kild. Road,
Melbourne, Victori •• Australi. 3004, 3 + 267-4677;
171 Philip Highw.y. Eliz.beth, South Au.tr.li. 5112,
a + 255-2066.

AUSTRIA: Texas Instruments Ges.m.b.H.:
kn:j:~:~2'to. 8/16. A-2345 Brunn/Gebirge,

BElGIUM: Texas Instruments N.V. Belgium S.A.: 11,
~2in~:t~~o~ndetla.n 11, 1140 Brus.el., Belgium,

BRAZIL: Texas Instruments Electronicos do Br.sil
Ltd •. : Ru. Paa. Leme, 524-7 And.r Pinheiros, 05424
Sao Paulo, Br.zil, 0815-6166.

DENMARK: Tex.s Instruments AlS, M.irelundvej 46E.
2730 Herle'll, Denmark, 2 - 91 7400.

FWLAND: Tex.s Instrument. Finl.nd OV:
Ahen.jantie 3, P.O. Box 81, ESPOO. Finland. 190)
0-461-422.

FRANCE: Texas Instruments Fr.nce: Pari. Office, BP
678-10 Avenue Mor.ne-Saulnier, 78141 Velizy
Villacoublay cedex (1) 30 70 1003.

GERMANY (Fed. Republc of o.rmany): Texas
Instruments Deutschland GmbH: Haggertystr ... e "

~g~,:~lS~~8~i:~~~ ~~~~8~~e~aH;en
43/Kibbelstr , .19. 4300 Essen. 201-24250;
Kirchhorster.tr 2, 3000 Hennover 51,
511 +648021; M.ybachstrabe 11, 7302 Ostfildern
2-Netingen, 711 + 34030 .

~.

TEXAS
INSTRUMENTS

HONG KONG: Texas Instruments Hong Kong ttd., 8th
Floor, Wortd Shipping Ctr., 7 Canton Rd., Kowloon,
Hong Kong, {8521 3-7351223,

IRELAND: Tex .. Instruments (Irel,ndl Limited:
7/8 Harcourt Street. Stlllorg.n. Coo.Jnty Dublin, Eire,
1781677.

ITALY: Tex.s Instruments It.lia S.p.A. Di'llisione
$emiconduttori: Viale Europe. 40, 20093 Cologne
Monn.e (MII.nol, f021 253001; Vi. Castello della
M.glians. 38, 00148 Rom., 1081 5222851;
Via Amendol., 17, 40100 Bologna. 10511 564004.

JAPAN: Tokyo Marketing/Sale. (Helldqu.neral:
Texa. Instruments Japan Ltd., MS Shibaura Bldg., 9F,
4-13-23 Shibaura, Minato-ku, Tokyo 108, Japan,
03· 769-8700. Texas Instrument. Japan Ltd.: Nis.ho·
Iwai 8ldg. SF, 30 Im.bashi 3-chome, Higashi-ku,
O •• ka 541. Japan, 06-294-1881; Daini Toyot. West
Bldg. 7F, 10-27 Meieki 4-choma, Nakamur.-ku.
Nagoya 450, 052-583-8891; Daiichi Seimei Bldg. 6F •
3-1 0 Oyam.-cOO, K.n.z.w. 920. Ishikaw.·ken,
0762-23-5471; Oeiichi Olympic Tachik.wa Bldg. 6F,
'-25-12 Akebono-cho, Tachik.wa 190, Tokyo,
0425-27-6426; M.tsumoto ShoWI Bldg. 8F. 2-11
Fukashi 1 -chome, M.tsumoto 390, Nagano-ken,

~~~!·:~;!=.i-~~~~Ni:h~~~":~h~~:I~O~F , 
045-322-6741; Nihon Seimei Kyoto V •• ak. SIdg. 5F, 
843-2 Hig.shi Shiokohjtdori, Ni.hinotoh-in Higashi-iru, 
5hiokouji, Shimogyo-ku, Kyoto 600, 075·341-7713; 
2597·1. Aza Harudai, Oaz. V •• aka, Kitauki 873, Oita
ken, 09786-3-3211; Miho Plent, 2350 Kih.ra Miho
:;,~~~_~~~~~~il~un 300..Q4, lbaragi.ken, 

KOREA: Texas Instruments Korea ltd., 28th FI., Trade 
Tower. "59, Samsung-Oong, Kangn.m·ku, Seoul, 
Korea 2+551-2810. 

MEXtcO: rexas Instruments de Mexico S.A.: Alfon.o 
Reyes-115. Col. Hipodromo Condesa, Mexico, O.F., 
Mexico 06120.525/525-3860. 

MIDDLE EAST: Texas Instruments: No. 13, 1st Floor 
Mannai Bldg., Diplomatic Area, P.O. Box 26335. 
Manama Bahr.in, Arabian Gutf, 973+274681. 

NETHERlANDS: Texa. Instruments Holland a.v., 
19 Hogehilweg, 1100 AZ Amsterdam-Zuidoost, 
HolI.nd 20+ 5802911. 

NORWAY: Texa. Instruments Norway A/S: PB106, 
Refstad 0585, Oslo 5, Norway, (2) 155090. 

PEOPLES REPUBUC OF CHINA: Texas Instruments 
China Inc., Beijing Representati'lle Offtce, 7-05 Citic 
Bldg., 19 Jianguomenwai Oajje, Beijing, China, 18611 
5002255, Ext. 3750. 

PHlUPPlNES: Texas Instruments Asia Ltd.: 14th Floor, 
Ba- Lepanto Bldg., Paseo de Rox.s, Makati. Metro 
Manila, Philippine., 817-80-31. 

PORTUGAL: Texas Instruments Equipamento 
Electronico IPOItugal), Lda.: Rua Eng. Frederico Ulrich. 
2650 Morelr. Da Mai., 4470 Mai., Ponug.I, 
2-948·1003. 

SINGAPORE (+ INDIA, INDONESIA. MALAYSIA. 
THAILAND): Tex.s Instrument. Sing.pore IPTE) Ltd., 
A.ia Pacific Divi.ion. 101 Thompson Rd. 123-01, 
United Squ.re, Singapore 1130, 350-8100. 

SPAIN: rexas Instruments Espana, S.A.: C/Jose 
lazaro G.ldiano No.6, Madrid 28036, 1/458.14.58. 

SWEDEN: Texa. Instruments International Trade 
Corporation IS'IIerigefilialen): 5-164-93, Stockholm, 
Sweden, 8 - 752-5800. 

SWITZERLAND: Texas Instruments. Inc., Reid.tra •• e 
6, CH-8953 Dietikon (Zuerich) Switzerland, 
1-740 2220. 

TAIWAN: Texas Instruments Supply Co., 9th Floor 
Bank Tower. 205 Tun Hwa N. Rd., Taipei, T.iwan, 
Republic of China, 2 + 713-9311. 

UNITED KINGDOM: Texas Instruments Umited: 
Manton Lane. Bedford, MK41 7PA, England, 0234 
270111. 

A·le9 



TI Sales Offices TI Distributors 
ALABAMA; H"- (205) 837·7530. 

ARIZONA; P_ (102) 195-1007; 
Tucson (102) 212-2840. 

CAUFORNtA.: Irvine (714) 180-1200; 
Roomllo (Ill) 7 ... 1208; 

t"nta~J'~'2~; 
TOft'IInce (2'~) 2~7.7010: 
Woodlanet Hills (Bll) 70'-'7759. 

COLORADO: Aurora (303) 388-8000. 

CONNECTICUT: Woln .. lord (203) 21Il-007 •. 

~cr!~-:t~~0S)';7~='~ (30S) 260-2116: 
Tamp. (813) 88~7.11. 
GEORGIA: Norcross (404) 882·7900. 

IUINOIS: Arlington Helghb (312) 640-2925. 

INDIANA: C.rmeI (317) 573+tOOj 
Fl. W.yna (219) 424-5174. 

IOWA: Cedar Rapids (319) 395-9550. 

KANSAS: Overtand Park (913) 451-4511. 

MAAYLAND: Columbia (301) 964·2003. 

MASSACHUSETTS: Wanham (617) 895-9100. 

::~:Jc:.~:id:(~~)f:;-4~:' (313) 553·1569; 

MINNESOTA.: Eden Prairie (612) 82(1.9300. 

MISSOURI: St. louis (314) 569-7600. 

NEW JERSEY: Iselin (201) 751).1050. 

NEW MEXICO: Albuquerque (50S) 34'2555. 

NEW YORK: EIIst Syracus. (315) 463-9291; 
MoMIIo (516) ......... ; 
Plnsford (716) 385-6'710; 
PoughkHpsle (i14) 473-2900. 

NORTH CAROLINA: Charlotte (704) 527o(J933: 
R.lelgh (919) 876-2725. 

OHIO: Be.chwood (216) 484-6100: 
Beaver Creek (513) 427-6200. 

OREGON: B •• verton (S03) 64U758. 

PENNSYLVANIA: Bluo Boll (215) 825-9500. 

PUERTO RICO: Halo Roy (800) 753-8700. 

TENNESSEE: Johnson City (615) 461·2192. 

TEXAS: Audn (512) 25().7855; 
Houston (713) n8-6S92: 
AJcharclson (214) 68D-S082; 
S.n Antonio (512) 496-1779. 

UTAH: MurrQ (801) 266-8972. 

WASHINGTON: Redmond (206) 881-3080. 

WISCONSIN: Brookfl.ld (414) 782·2899. 

CANADA: Nerc.n. Ont.rlo (613) 728-1970; 

::~~;::t.H~~=r::,~)':~~'::.81: 

TI Regional 
Technology Centers 
CALIFORNIA: Irvine (71') 66fl.8105; 
s.nta CI.,. (408) 748-2220: 

GEORGIA: Norcross (404) 662·7945. 

ILUNOIS Arnngton Heights (312) 840-2909. 

MASSACHUSEn'$: Weltham (617) 895-9196. 

TEXAS: Richardson (214) 680-506e. 

CANADA: N.peen, Ontario (613) 728-1970. 

TI AUTHORIZED DISTRIBUTORS 
Arrow/Klerulff Electronics Group 
Arrow (CanadB) 
Future Electronics (Canada) 
GRS Electronics Co., Inc. 
Hall·Mark Electronics 
Marshall Industries 
Newark Electronics 
Schweber Electronics 
Time Electronics 
Wyle laboratories 
Zeus Components 
-OBSOLETE PRODUCT ONLY
Rochester ElectroniCS, Inc. 
Newburyport, Massachusetts 
(508) 462·9332 

ALABAMA: Arrow/KI.rulff ~205~ 837-6955; 
~:~:':r =) ~~~~:. ars all (205) 881-9235; 

ARIZONA: Arrow/Klerultf (602) 437-0750: 
Hal'·Mark (602) 437-1200; Marshall (&o2) 496--0290: 
Schweber (802) 431-0030; Wyle (602) 866-2888. 

CALIFORNIA: Los An' .... 'or.nJ. County: 

~~r.:.':'I:(elr8J8~JJ~sr,:.J7~~:~:O~22: 
Marshall (818) 407..0101, (818) 459-5500. 
(714) 458·5395: Schweber (818) 880-9686: 
m~11863-0200, ~13) 32CJ.8090; W)1e (818) 880·9000, 

~a::=3~al~~af.t1~1~~~=8(:;'8) 889-3838: 

~:~;~6\9~l..~a;~~00: Schwaber (916) 364-0222: 

San Dfe,to: ArrOWlklerulffJ619) 565-4800; 

~:::-w'!~.r (~~~) ~~~; w~:~~~T~~~jtr~; :r .. t.r::~~:,)B~~.:,;=:ru:8\":~~':o~ 
Schw.ber (408) 4U·7171: Wyle (40~) 727·2500: 
Zeus (408) 998·5121. 

COLORADO: Arrow/Klerulff (303) 790-4444; 
Han·Mark (303) 790·1662: Marshall (303) 451-8383: 
Schwaber (303) 799-0258: Wyle (303) 457-9953. 

CONNmCUT: Arrow{Kierulff (203) 26$07741: 
Hall-Mark (203) 271·2844; Marshall (203) 265-3822: 
Schwaber (203) 264-4700. 

FLORIDA: Ft. Laud.rd.I.: 
Arrow/Klarulff (305) 429-8200; Hall-Mark (305) 971-9280: 
Marshall (305) 9n-4880; Schweb.r (305) 977.7511: 
Orl.ndo: Arrow/Kleruttr (407) 323-0252; 
Hall·Mark (407) 830-5855; Marshall (407) 767-8585; 

~~,;~~e~11~~a~1~~~5~3Z~~J:~7) 365-3000: 
Marshall (813) 576-1399: Schwaber (813) 541-5100. 

GEORGIA: Arrow/Klerurtr (404) 449-8252: 
Han·Mark (404) 447-11000; M.rshall (404) 923-5150; 
Schweber (404) 449·9170. 

JUINOIS: Arrow/KI.rultf (312) 25()'0500: 

~:::r:rr3~~1~:'~~=:O~c=:::'(~~~) 3~~'io~; 
:ra?~~~ (~,d~}~~S~5~:.:mmgW7=3~53; 
Schweber (317) 843·1050. 

IOWA: Arrow/Kierulff (319) 395-7230; 
Schweber (319) 373-1417. 

KANSAS: KansasCIty: Arrow/Klerulff (913) 541-9542; 
Hall·Mark (913) 888-4747: Marshall (913) 492-3121: 
Schweber (913) 492·2922, 

~ 
TEXAS 

INSTRUMENTS 

MAIlYUlND: _/K .... 1I1 (301) _2; 

~,:;:::-r \::V):=; ~~";lr~l~f:'"; 
MASSACHUII!TTlI _/Klorull1 (= 151H11OO; 

=,"':~fe\~~:~;=.'\~ Sk:'10; 
Wylo (817) 273-7300; Zou. (617) 883-8800. 

MICHIGAN: DoIroI1: ArrowJl(lerulH (313) 462.2210; 

=:!!::,~~~1~=~t=n(~~~')5~~~:; 
Gr.nd Rapi!l.: Arrow/Klerum (81') 243-0912. 

~!:·':,~:le~~)~~z':~~:ll =1Wi2211; 
Schweb.r (612) 841..&280. 

:!~tf.':::31~) ~~:is='=lu::1~'1~15~~88; 
Schwaber (314) 731-0521. 

NEW HAMPSHIRE: ArrowlKlerulff (803) 668-6968; 
SChweber (603) 625-2250, 

=~~:~;~;W~~=J:O~80; 
r~~:3~~:Y: ::;::~:'(~1)8~-o~~~' 
(609) 234-911)0; Schweber (201) 227-7880. 

NEW MEXICO: Arrow/Kierutff (505) 243-4566. 

::::m ~~ ~~~oi.a; HIllI-Mar1c ~'6) 737-0&00; 
~e-:t;~Jr~:~~~~24i Schweber (51 ) 334--7474; 

~:~::::(-,1':}:;~;~:r' J~~:~:I~r7~~~3S-7820; 
Schweb.r (716) 424·2222: 
Syracu .. : Marsh.11 (801) 788-1611. 

~~~f~~~~:...:.:~~~~r:~g.J:~;878-3132. 
Gershall (919) 87&-9882; $chweb.r (919) 87e-oooo.

OHIO: C nd: Arrow/KIerulft (216) 248-3990:
Hail-Marti: (216) 349-4832; Marshall (211) 248-1788:
Schweber (2t.) 484-2970:
Columbus: Hall·Mark (814) 888-3313:

~:!C:fl ~:r:S=~:~:~~j3) 431-1800.

OKLAHOMA: Arrow/KlaNlft (918) 252.7537:
Schw.b.r (t18) 622..a0D3.

OREGON: _/Klerull1 (503) _58;
Marshall (503) 644~0; Wyle (503) G4Q..6000.

PENNSYLVANIA: ArrowfKj.rultf (4121856-7000.

~~~h~~I~l~r;:~~tr!:~~1&,:~~~, 
('12) 963-6804. 

TEXAS: Austin: Arrow/Klerurtr (512) 835-4180: 
Hall-Mark (512) 258-8848: Marshall ~512J 837.1991: 

~W::~~!!:A<f:!:r:i4~~~~34a99S7; 
Hall-Mark (214) 5~: Marshall (214) 233-5200: 
Schweber (214) 661·6010: WyI. (214) 23$-9953; 
Zeus (214) 783--7010: 

~0:::~:M:,=~~~~"'5~~j:h-.7oo: 
Hall·Mark (713) 781-8100; Ma,..hall (713) 895-9200: 
Schweber (713) 7 .... 600; Wyle (713) 87909953. 

~!r..:.:(=r,~7~~~'~:~~:1(~,) 485--1551: 
Wyle (801) 974-9953. . 

WASHINGTON: Arrow/Klerul" (208) 575-4420; 
Marshsll (206) 486-5747; Wyle (206) 881·1150. 

WISCONSIN: Arrow/Klerultf (414) 792-0150; 
~:~;:::r \~~~) '7l.:=. Marshall (414) 797-8400; 

~:::~t~:C~~~:(~)U~~::U:35-5325: 
Montre.l: Arrow Canada (514) 735-5511: 
Future (514) 694-7710: 
Ott~w.: Arrow Canada (613) 226-6903: 
Future (813) 820-8313: 
Quebec City: Arrow Canada (418) 871-7500: 
Toronto: Arrow Canada (4'6) 672·7769: 
Future (416) 638-4n1: Marshall (416) 614-2161: 
Vancouver: Arrow Canida (604) 291·2986; 
Future (604) 294·1186. 

Customer 
Response Center 
TOLL FREE: (800) 232-3200 

OUTSIDE USA: (214) 995·6611 
(8:00 a.m. - 5:00 p.m. CST) 

A·1a9 



Printed in U.S.A., November 1988 
1604911 -9705 

-I!} 
TEXAS 

INSTRUMENTS 

SPRU035 


