‘t'? TEXAS
INSTRUMENTS

TMS320C30 Assembly
Language Tools

User’s Guide

e .

c

@

®

“

(7]

- ‘
E L]

Q

®

sjooj abenbue]
Alquisssy 0£00CESHW.L

©
)
(- <]

1988 Digital Signal Processing Products

TMS320C30 Assembly
Language Tools
User’s Guide

Rip
TEXAs
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without
notice. Tl advises its customers to obtain the latest version of the Yelevant in-
formation to verify, before placing orders, that the information being relied
upon is current.

Tl warrants performance of its semiconductor products to current specifica-
tions in accordance with Tl's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this
warranty. Unless mandated by government requirements, specific testing of
all parameters of each device is not necessarily performed.

TI assumes no liability for Tl applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does Tl warrant or represent that license, either express or implied, is
granted under any patent right, copyright, mask work right, or other intellec-
tual property right of Tl covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are
used.

Copyright © 1988, Texas Instruments Incorporated

Contents

Section

1 Introduction

1.1 Software Development Tools Overview
1.2 Getting Started
1.3 Manual Organization
1.4 Related Documentation e
1.6 Style and Symbol Conventions
2 Software Installation

21 nstallation for PCs e
2.2 Installation for VAX/VMS
2.3 Installation for UNIX Systems
3 Introduction to Common Object File Format

3.1 Sections L e e
3.2 How the Assembler Handles Sections
3.21 Uninitialized Sections
3.2.2 Initialized Sections L
3.2.3 Named Sections
3.24 Section Program Counters
3.25 Absolute Sections e
3.2.6 An Exampie That Uses Sections Directives
3.3 How the Linker Handles Sections
3.31 Default Allocation
332 Placing Sections in the Memory Map
3.4 Relocation e
3.6 Loadinga Program
3.6 Symbolsina COFFFile
3.6.1 External Symbols
3.6.2 The Symbol Tabie
4 Assembler Description

4.1 Assembler Development Flow
4.2 Invoking the Assembler
4.3 Specifying Alternate Directories for Assembler Input
431 -i Assembler Optiono
432 Environment Variable (A—DIR) L.
4.4 Source Statement Formato
441 Label Field e
4.4.2 Mnemonic Field L
4.4.3 Operand Field
4.4.4 Comment Field
45 Constants e e e e e e e e e
451 Binary Integers Lo
452 Octal Integers e
4.5.3 Decimal Integers
454 Hexadecimal Integers
455 Character Constants,
456 Floating-Point Constants

Page

QU SN
P
NOOTHAN -

-
[

BN -

4.5,

7

Assembly-Time Constants
Character Strings R e e e e e e e e e e e
Symbols e e e e e e e
EXpressions L e e e e e e e e e e

Operators e e e e e

Expression Overflow or Underflow

Well-Defined Expressions

Conditional Expressions e e

Relocatable Symbols and Legal Expressions
Source Listings e e
Cross-Reference Listings

Assembler Directives

Directives Summary
Sections Directives
Directives that Initialize Memory

Directives that Align the Section Program Counter

Directives that Format the Output Listing

Conditional Assembiy Directives
Directives that Reference Other Files . . .
Directives Reference

Instruction Set

Summary
Addressing Modes
Optional Syntaxes
ConditionCodes
Instruction Set Summary Table

Three-Operand Instructions

Parallel Instructions

Load and Store Instructions

Arithmetic Instructions

Logical Instructions

Program-Control Instructions

Interlocked-Operation Instructions

The LDP Instruction

Macro Language

Macro Directives Summary
Macro Libraries
Defining Macros
Macro Parameters
Conditional Blocks
Repeatable Blocks
Unique Labels

8 Archiver Description 8-1

8.1 Archiver Development Flow 8-2

8.2 Invoking the Archiver Lo 8-3

8.3 Archiver Examples 8-4

9 Linker Description 9-1

9.1 Linker DevelopmentFlow 9-2

9.2 Invokingthelinker L o 9-3

9.3 Linker Options L e e 9-4

9.31 Relocation Capability (-aand -r Options) 9-4

932 C Language Options (-c and -cr Options) 9-6

9.3.3 Define an Entry Point (-e symbol Option) 9-6

93.4 Set Default Fill Value (-fcc Option) 9-6

9.3.5 Make All Global Symbols Static (-h Option) 9-7

9.3.6 Alter the Library Search Algorithm (-i dir and -I filename Options/C—DIR 9-7

9.3.7 Create a Map File (-m filename Option) 9-9

9.3.8 Name an Output Module (-o filename Option) 9-10
9.3.9 Specify a Quiet Run (-q Option) 9-10
9.3.10 Strip Symbolic Information (-s Option) 9-10
9.3.11 Introduce an Unresolved Symbol (-u symbol Option) 9-10
9.4 Linker Command Files, 9-11
9.5 Object Libraries e 9-13
9.6 The MEMORY Directive e 9-14
9.6.1 Default Memory Model oL 9-14
9.6.2 MEMORY Directive Syntax 9-14
9.7 The SECTIONS Directive 9-16
9.71 Default Sections Configuration 9-16
9.7.2 SECTIONS Directive Syntax e e e e 9-16
9.7.3 Specifying Input Sections Lo 9-18
9.7.4 Specifying the Address of an Qutput Section (Allocation) 9-20
9.7.5 Grouping Output Sections Together 9-22
9.8 OQverlayPages 9-23
9.81 Using the MEMORY Directive to Define Overlay Pages 9-23
982 Using Overlay Pages with the SECTIONS Directive 9-24
9.8.3 Page Definition Syntax 0oL 9-25
9.9 Default Allocation 9-27
9.91 Allocation Algorithin L Lo 9-27
9.9.2 General Rules for Qutput Sections 9-27
9.10 Special Section Types (DSECT, COPY, and NOLOAD) 9-29
9.11 Assigning Symbols at Link Time 9-30
9.11.1 Syntax of Assignment Statements 9-30
9.11.2 Assigning the SPCtoaSymbol 9-30
9.11.3 Assignment Expressions Lo 9-31
9.11.4 Symbols Defined by the Linker 9-32
9.12 Creating and FillingHoles 9-33
9.12.1 Initialized and Uninitialized Sections 9-33
9.12.2 Creating Holes 9-33
9.123 Filling Holeso 9-35
9.12.4 Explicit Initialization of Uninitialized Sections 9-36
9.13 Partial (Incremental) Linking, 9-37
9.14 LinkingCCode 9-38
9.141 Runtime Initialization L 0L 9-38
9.14.2 Object Libraries and Runtime Support 9-38
9.14.3 Autoinitialization (ROM and RAM Models) 9-38

9.14.4 The -c and -cr Linker Options
Linker Example

9.15

mTmooO®w>

Vi

Object Format Converter Description
Object Format Converter Development Flow

Invoking the Object Format Converter . . .
Examples
Halt Conditions

Common Object File Format
Symbolic Debugging Directives
Assembler Error Messages
Linker Error Messages

ASCIl Character Set

Glossary

lllustrations

Figure

I I R I D A A A A A A R A R A e I e e e e e e e e e e
WN—=O

Pl 2 POONOOPRPWN_ 2220300 NOOAPRPWN_,PWON_LPONOOOTRWON= =

2 OOOOOVOWOOWOWOOWOWOONOICICITCITICIOITITICIVITINARPRWWWWWWWW =
—
NOOPWN

a0 O

>>>>>>>

TMS320C30 Assembly Language Development Flow
Partitioning Memory into Logical Blocks
Using Sections Directives,
Object Code Generated by Figure 3-2
Placing the Object Code from Figure 3-2 into Memory (Default Allocation)

Combining Input Sections from Two Files (Default Allocation)
MEMORY and SECTIONS Directives for Figure 3-7
Rearranging the Memory Map from Figure 3-4
An Example of Code that Generates Relocation Entries
Assembler Development Flow L
Sample Assembler Listing
Cross-Reference Listing Format
Examples of Sections Directives
Examples of Initialization Directives,
An Example of the .field Directive
An Example of the .space Directive
An Example of the .align Directive
An Example of the .even Directive
An Example of Conditional Assembly Dlrectvves
An Example of the .align Directive
An Example of the .asect Directive
An Example of the .even Directive i,
An Example of the .field Directive
An Example of the .space Directive
An Example of the .usect Directive
An Example of a Conditional Block
Archiver Development Flow
Linker Development Flow
An example of a Linker Command File oot
An Example of a Command File with Linker Directives
An Example of the MEMORY Directive
Memory Map Defined in Figure 9-4
An Example of the SECTIONS Directive «
Section Allocation Defined by Figure 9-6
The Most Common Method of Specn‘vmg Sectlon Contents
Overlay Page Example e
ROM Model of Autoinitialization
RAM Model of Autoinitialization
Linker Command File, demo.cmd
Output Map File, demo.map e
Object Format Converter Development Flow —
COFF File Structure e e e et
Sample COFF Object File
An Example of Section Header Pointers for the .text Section
Line Number Blocks
Line Number Entries Example
Symbol Table Contents e,
Symbols for Blocks

Symbols for Functions - A-13

A-8
A-9 Sample String Table e A-14
Tables

Table Page
4-1 OPeIatOrS ..t e e e 4-12
4-2 Expressions with Ahsolute and Relocatable Symbols 4-13
4-3 Symbol Attributes for Cross-Reference Listings 4-17
5-1 Directives SUMMaArY e 5-2
6-1 Indirect Addressing Mode 6-3
6-2 Condition Codest 6-4
6-3 Summary Three-Operand Instructions 6-17
6-4 Summary of Parallel Instructions 6-19
6-5 Summary of Load and Store Instructions 6-21
6-6 Summary of Arithmetic Instructions 6-22
6-7 Summary of Logical Instructions 6-22
6-8 Summary of Program-Control Instructions 6-23
6-9 Summary of Interlocked-Operation Instructions 6-23
9-1 Linker Options Summary 9-4
9-2 Operators in Assignment Expressions 9-32
A-1 File Header Contents A-4
A-2 File Header Flags (Bytes 18 and 19) A-4
A-3 Optional File Header Contents A-5
A-4 Section Header Contentst A-6
A-5 Section Header Flags (Bytes 36 and 37) , A-6
A-6 Relocation Entry Contents i A-8
A-7 Relocation Types (Bytes8and 9), A-8
A-8 Line Number Entry Format A-9
A-9 Symbol Table Entry Contents A-12
A-10 Special Symbols in the Symbol Table A-12
A-11 Symbol Storage Classes A-15
A-12 Special Symbols and Their Storage Classes A-15
A-13 Symbol Values and Storage Classes A-16
A-14 Section Numbers e A-17
A-T5 BasiC TYPES ..ottt e e A-18
A-16 Derived TyPeS ..ottt e A-18
A-17 Auxiliary Symbol Table Entries Format A-19
A-18 Section Format for Auxiliary Table Entries- A-19
A-19 Section Format for Auxiliary Table Entries A-20
A-20 Tag Name Format for Auxiliary Table Entries A-20
A-21 End of Structure Format for Auxiliary Table Entries A-20
A-22 Function Format for Auxiliary Table Entries A-21
A-23 Array Format for Auxiliary Table Entries A-21
A-24 End of Blocks-and Functions Format for Auxiliary Table Entries A-21
A-25 Beginning of Blocks and Functions Format for Auxiliary Table Entries ... A-22
A-26 Structure, Union, and Enumeration Names Format for Auxiliary Table Entries A-22

viii

Section 1

Introduction

The TMS320C30 Digital Signal Processor is an advanced CMOS 32-bit
microprocessor that is optimized for signal processing applications. The
TMS320C30 is the third generation in the Texas Instruments family of digital
signal processors.

The TMS320C30 is well supported by a full set of hardware and software
development tools, including a C compiler, a full-speed in-circuit emulator,
and a software simulator. This document discusses the software development
tools that are included with the TMS320C30 assembly language package:

[] Assembler

® Archiver

® Linker

® Object format converter

These tools can be installed on the following systems:

® IBM-PC/PC-DOS and compatibles
® VAX/VMS (revisions 3.7 and up)
® VAX/UlItrix

) Sun-3 Workstations with UNIX

The TMS320C30 assembly language tools create and use object files that are
in common object file format, or COFF. COFF object files contain separate
blocks (called sections) of code and data that you can load into different
TMS320C30 memory spaces. You will be able to program the TMS320C30
more efficiently if you have a basic understanding of COFF; Section 3, Intro-
duction to Common Object File Format, discusses this object format in detail.

Topics covered in this introductory section include:

Section Page
1.1 Software Development Tools OVEIVIEWcccccevcmvieivecinceieceenn. 1-2
1.2 Getting Started haereenrereatetaarreeaaten st eea et eeaaree et earanesete s et e aaarreeaenaeas

1.3 Manual Organizationcc..coceeieeiecieieieieecte ettt e

1.4

1.5

Related Documentation
Style and Symbol Conventionscccccoveeiriiennciininerc e 1-7

1-1

Introduction - Software Development Tools Overview

1.1 Software Development Tools Overview

Figure 1-1 shows the TMS320C30 assembly language development flow.
The center section of the illustration highlights the most common path; the
other portions are optional.

Assembler C Source
Source

¥ C Compiler
Archiver
Assembler
Source
Macro
Library
Archiver
Library of
Object
Executable Files
COFF Object
F
Object
Format
Converter
Software
EPROM . XDS
Programmer Simulator TMS320C30 De\g;lsotgrr?‘ent Emulator

Figure 1-1. TMS320C30 Assembly Language Development Flow

1-2

Introduction - Software Development Tools Overview

The C compiler translates C source code into TMS320C30 assembly
language source code. The C compiler is not included as part of the
assembly language tools package.

The assembler translates assembly language source files into machine
language object files. Source files can contain instructions, assembler
directives, and macro directives. You can use assembler directives to
control various aspects of the assembly process, such as the source list-
ing format, data alignment, and section content.

The linker combines object files into a single executable object module.
As it creates the executable module, it performs relocation and resolves
external references. The linker accepts relocatable COFF obiject files
(created by the assembler) as input. It can also accept archive library
members and output modules created by a previous linker run. Linker
directives allow you to combine object file sections, bind sections or
symbols to specific addresses or within memory ranges, and define or
redefine global symbols.

The archiver allows you to collect a group of files into a single archive
library. Both the assembler and linker can use archive libraries as input.
For example, you could collect several macros together into a macro li-
brary; the assembler can search through a library and use the members
that the source file calls as macros. You could use the archiver to collect
a group of object files into an obiject library; the linker can link in the li-
brary members that resolve external references.

The main purpose of this development process is to produce a module
that can be executed in a system that contains a TMS320C30. You can
use one of several debugging tools to refine and correct your code be-
fore downloading it to a TMS320C30 system. These debugging tools
share a common screen-oriented interface that dispiays and maintains
machine status information and controls execution of the system that is
being developed. Note that only /inked object files can be executed.

— The simulator is a software program that simulates TMS320C30
functions. The simulator can execute linked COFF object modules.
The simulator is not included with the TMS320C30 assembly lan-
guage package.

- The XDS (extended development support) emulator is a realtime,
in-circuit emulator with the same screen-oriented interface as the
software simulator. The emulator is not included with the
TMS320C30 assembly language package.

- The software development system (SWDS) is a PC-resident
tool that executes code on. a TMS320C30. The SWDS is not in-
cluded with the TMS320C30 assembly language package.

Most EPROM programmers do not accept COFF object files as input.
The object format converter converts a COFF object file into TI-
tagged, Intel, or Tektronix object format. The converted file can be
downloaded to an EPROM programmer.

1-3

Introduction - Getting Started

1.2 Getting Started

1-4

The tools you will probably use most often are the assembler and the linker.
This section provides a quick walkthrough so that you can get started without
reading the whole user’'s guide. These examples show the most common
methods for invoking the assembler and linker.

1) Create two short source files to use for the walkthrough; call them
filea.asmand fileb.asm

filea.asm fileb.asm
.file "filea" .file "fileb"
.global addvec .global addvec
vector .word 10,20,30,40 addvec LDI 0,RO
LDI vector ,ARQO RPTS 3
CALL addvec ADDI *ARO++, RO
RETS

2) Assemble filea.asm; enter:
asm30 filea

The asm30 command invokes the assembler. filea.asm is the input
source file. (If the input file extension is .asm, you don’t have to specify
the extension; the assembler uses .asm as the default.) This example
creates an object file called filea.obj. The assembler ailways creates
an object file. You can specify a name for the object file, but if you don't,
the assembler will use the input filename with an extension of .obj.

Now assemble £ileb.asm; enter:
asm30 fileb -1

This time, the assembler creates an object file called fileb.obj. The -I
(lowercase "L") option telis the assembler to create a listing file; the list-
ing file for this example is called fileb.1st.

3) Link filea.obj and fileb.nbij; enter:
1nk30 filea fileb -o prog.out

The Ink30 command invokes the linker. filea.obj and fileb.obj
are the input object files. (It the input file extension is .obj, you don't
have to specify the extension; the linker uses .obj as the default.) The
linker combines filea.obj and fileb.obj to create an executable ob-
ject module called prog.out (the -o option supplies the name of the
output module).

You can find more information about invoking the tools in the following sec-
tions:

Section
4.2 Invoking the Assemblercocoiiiiiiiieee e
8.2 Invoking the Archiver ..
9.2 Invoking the Linker ...
10.2 Invoking the Object Format Converter

Introduction - Manual Organization

1.3 Manual Organization

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

Section 8

Section 9

Section 10

Appendix A
Appendix B

Appendix C
Appendix D

Appendix E

Appendix F

Introduction

Provides an overview of the assembly language tools and the assembly lan-
guage development process, gives quick examples for invoking the tools, lists
related documentation, and explains the style and symbol conventions used
throughout this document.

Software Installation
Contains instructions for installing the assembly language tools on VAX/VMS,
VAX/UIltrix, Sun-3/UNIX, and IBM-PC/PC-DOS systems.

Introduction to Common Object File Format

Discusses the basic COFF concept of sections and how they can help you
to use the assembler and linker more efficiently. Read Section 3 before using
the assemblei and linker.

Assembler Description
Tells you how to invoke the assembler and discusses source statement format,
valid constants and expressions, and assembler output.

Assembler Directives
Divided into two parts; the first part describes the directives according to
function, and the second part is an alphabetical reference.

Instruction Set Summary
Summarizes the TMS320C30 instruction set alphabetically and by function;
also summarizes addressing modes and optional syntax forms.

Macro Language)
Describes macro directives and macro creation.

Archiver Description
Contains instructions for invoking the archiver, creating new archive libraries,
and modifying existing libraries.

Linker Description
Tells you how to invoke the linker, provides details of linker operation, dis-
cusses linker directives, and presents a detailed linking example.

Object Format Converter Description
Tells you how to invoke the object format converter so that you can convert a
COFF object file into an Intel, Tektronix, or Tl-tagged object format.

Common Object File Format
Contains specific information about the internal format of COFF object files.

Symbolic Debugging Directives
Lists the symbolic debugging directives that theTMS320C30 C compiler uses.

Assembler Error Messages
Linker Error Messages
List the assembler and linker error messages.

ASCIl Character Set
Provides a table of the ASCII character set.

Glossary
Defines a glossary of terms and acronyms used in this book.

Introduction - Related Documentation

1.4 Related Documentation

1-6

The following TMS320C30 documents are available from Texas Instruments:

The TMS320 Family Development Support Reference Guide
(literature number SPRUO0O11) describes the wide range of TMS320
products that are available.

Details on Signal Processing is a quarterly newsletter that provides
information about new TMS320 family products, new documentation,
development tool updates, and similar information. If you would like
your name added to the newsletter mailing list, call the Texas Instru-
ments Customer Response Center (1-800-232-3200).

The Third-Generation TMS320 User's Guide (literature number
SPRUO031) discusses hardware and software aspects of the
TMS320C30, such as pin functions, architecture, and interfaces, and
contains the TMS320C30 instruction set.

The TMS320C30 C Compiler Reference Guide (literature number
SPRUO034) tells you how to use the TMS320C30 C compiler. This C
compiler accepts standard Kernighan and Ritchie C source code and
produces TMS320C30 assembly language source code. We suggest
that you use The C Programming Language (written by Brian W. Ker-
nighan and Dennis M. Ritchie, published by Prentice-Hall) as a com-
panion to the TMS320C30 C Compiler Reference Guide.

Introduction - Style and Symbol Conventions

1.5 Style and Symbol Conventions

In this document program listings, program examples, screen displays,
filenames, and symbol names are shown in a special font. Examples
use a bold version of the special font for emphasis. Here is
a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

In a syntax description, the instruction, command, or directive is in a
bold face font and parameters are in jtalics. Portions of a syntax that
are in bold face should be entered as shown; portions of a syntax that
are in jtalics describe the type of information that should be entered.
Here is an example of a directive syntax:

.asect "section name”, address

.asect is the directive. This directive has two parameters, indicated by
section name and address. When you use .asect, the first parameter must
be an actual section name, enclosed in double quotes; the second pa-
rameter must be an address.

Square brackets ([and]) indicate an optional parameter. For example,
the asm30 command has several optional parameters:

asm38 [input file [object file [listing file]]] [-options]

- The first parameter, input file, is optional.

- The second parameter, object file, is optional; in addition, you can
specify an object file only if you also specified an /nput file.

- The third parameter, /isting file, is optional; in addition, you can
specify a /isting file only if you also specified an /input file and an
object file.

- The fourth parameter, -options, is optional; you can specify options
even if you specified no other parameters.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the path-
name {(they aren’t optional).

Braces ({ and }) indicate a list. The | symbol (read as or) separates
items within a list. Here’s an example of a list:

{*xr %)
This list provides three choices: *, *+, or *-.

Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

byte value; [, ..., value,]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

1-7

Introduction

1-8

Section 2

Software Installation

This section contains step-by-step instructions for installing the assembler,
archiver, linker, and object format converter. This software can be installed
on the following systems:

® DEC VAX/VMS?

[IBM-PC with PC-DOS2 (versions 2.1 and up) and compatibles

[] UNIX? Systems

- VAX/Ultrix
- SUN-3
You will find installation. instructions for these systems in the following sec-
tions:
Section . Page
2.1 Installation fOr PCScocciieicceereeceeeetee ettt sve et e 2-2
2.2 Installation for VAX/VIMS ...ttt e e e et e e 2-3
2.3 Instailation for UNIX Systemscccceeiriiieininein e 2-4

Section 1.5 (page 1-7) lists style and symbol conventions that are used in this
section.

1 VAX and VMS are trademarks of Digital Equipment Corporation.
2 PC-DOS is a trademark of International Business Machines.
3 UNIX is a registered trademark of AT&T.

2-1

Software Installation - PCs

2.1

2-2

Installation for PCs

The TMS320C30 software package is shipped on two double-sided, dou-
ble-density diskettes. The disk labelled ASM/LINK/ARCH contains the as-
sembler, linker, and archiver. The disk labelled ROM/DEMO contains the
object format converter. The tools execute in batch mode. At least 512K bytes
of memory space must be available in your system.

These instructions are for both hard disk systems and dual floppy drive sys-
tems. On a dual-drive system, the PC-DOS system diskette should be in drive
B. The instructions use these symbols for drive names:

A:

B:
C:

1)
2)

3)

Floppy disk drive for hard disk systems or source drive for dual-drive
systems.

Destination or system disk drive for dual-drive systems.
Winchester (hard disk) for hard disk systems.

Make backups of the product diskettes.
Create a directory to contain the TMS320C30 software.

(] On hard disk systems, enter: MD C:\C30TOOLS

([] On dual-drive systems, enter: MD B:\C30TOOLS
Copy the TMS320C30 tools onto the hard disk or the system disk.

® On hard disk systems, enter: COPY A:*.* C:\C30TOOLS*.*

(] On dual-drive systems, enter: COPY A:*.* B:\C30TOOLS*.*

Software Installation - VAX/VMS Systems

2.2 Installation for VAX/VMS

The TMS320C30 software tape was created with the VMS BACKUP utility at
1600 BPI. These tools were developed on version 4.5 of VMS. If you are
using an earlier version of VMS, you may need to relink the object files; refer
to the Release Notes for relinking instructions.

1)
2)

3)

Mount the tape on your tape drive.

Execute the following VMS commands. Note that you must create a
destination directory for the tools; in this example, DEST:directory
represents that directory. Replace TAPE with the name of the tape drive
you are using.

$ allocate TAPE:

$ init/den=1600 TAPE:C30

$ mount/for/den=1600 TAPE:

$ backup TAPE:ASM30.bck DEST[:directory]
$ dismount TAPE:

$ dealloc TAPE:

The product tape contains a file called setup.com. This file sets up
VMS symbols that allow you to execute the tools in the same manner
as other VMS commands. Enter the following command to execute the
file:

$ @setup DEST:directory

This sets up symbols that you can use to call the various tools. As the
file is executed, it will display the defined symbols on the screen.

You may want to include the commands from setup.com in your
login.com file. This automatically defines symbols for running the
tools each time you log in.

2-3

Software Installation - UNIX Systems

2.3 Installation for UNIX Systems

2-4

The TMS320C30 product tape was madeat 1600 BPI using tar utility. Follow
these instructions to install the assembly language tools package:

1) Mount the tape on your tape drive.

2) Make sure that the directory that you'll store the tools in is thé current
directory:

3) Enter the tar command for your system; for example,
tar x

This copies the entire tape into the directory.

Section 3

Introduction to Common Object File Format

The assembler and linker create object files that can be executed by the
TMS320C30. The format that these object files are in is called common object
file format, or COFF.

COFF object format makes modular programming easier because it encourages
you to think in terms of blocks of code and data when you write an assembly
language program. These blocks are known as sections. Both the assembler
and the linker provide directives that allow you to create and manipulate sec-
tions.

This chapter provides an overview of COFF sections and includes the follow-
ing topics:

Section
Bl SECHOMNS vttt etee e e et e s rae e ees e taesaa e e ste s e beeearee s seeenneeeaneeesaneen
How the Assembler Handles Sections

How the Linker Handles Sectionscccccoevvvvicccvennns

Loading @ Programccoocoiiiiiieiieieeee e
Symbols in @ COFF File ..o e

DO WN
s
o
o
3]
o
(=
(o]
E]
w
N
S

Appendix A details COFF object structure; for example, it describes the fields
in a file header and the structure of a symbol table entry. Appendix A is mainly
useful for those of you who are interested in the internal format of object files.

3-1

Common Object File Format - Sections

3.1 Sections

3-2

The smallest relocatable unit of an object file is called a section. A section
is a relocatable block of code or data which will (ultimately) occupy contig-
uous space in TMS320C30 memory. Each section of an object file is separate
and distinct from the other sections. COFF object files always contain three
default sections:

o The .text section usually contains executable code.
[] The .data section usually contains initialized data.
[] The .bss section usually reserves space for uninitialized variables.

In addition, the assembler and linker allow you to create, name, and link
named sections that can be used similarly to the .data, .text, and .bss sections.

It is important to note that there are two basic types of sections:

[] Initialized sections contain data or code. The .text and .data sections
are initialized; named sections created with the .sect and .asect assem-
bler directives are also initialized.

[Uninitialized sections reserve space in the memory map for uninitial-
ized data. The .bss section is uninitialized; named sections created with
the .usect assembler directive are also uninitialized.

The assembler provides several directives that allow you to associate various
portions of code and data with the appropriate sections. The assembler builds
these sections during the assembly process, creating an object file that is or-
ganized similarly to the object file shown in Figure 3-1.

One of the linker’s functions is to relocate sections into the target memory map
(this is called allocation). Since most systems contain several different types
of memory, using sections can help you to use target memory more efficiently.
All sections are independently relocatable; you can place different sections
into various blocks of target memory. For example, you can define a section
that contains an initialization routine, and then allocate the routine into the
portion of the memory map that contains EPROM.

Figure 3-1 shows the relationship between sections in an object file and a
hypothetical target memory.

Object File Target Memory
F 0

Figure 3-1. Partitioning Memory into Logical Blocks

Introduction to COFF - How the Assembler Handles Sections

3.2 How the Assembler Handles Sections

The assembler’'s main function in regard to sections is to identify the portions
of an assembly language program that belong in a particular section. The as-
sembler has six directives that support this function:

[] The .bss and .usect directives reserve defined amounts of space in
memory (usually RAM). This reserved space is used for storing vari-
ables.

® The .text directive identifies the source statements that follow it as
executable code. The statements following a .text directive are assem-
bled into the .text section.

(] The .data directive identifies the source statements that follow it as
initialized data. The statements following a .data directive are assembled
into the .data section.

[] The .sect and .asect directives define named sections that can be
used like the .text and .data sections. The .sect directive creates a section
with relocatable addresses; the .asect directive creates a section with
absolute addresses. The statements following a .sect or .asect directive
are assembled into the appropriate named section.

The .bss and .usect directives create uninitialized sections; the .text, .data,
.sect, and .asect directives create /nitialized sections.

Note:

If you don’t use any of the sections directives, the assembler assembles
everything into the .text section.

3.2.1 Uninitialized Sections

Uninitialized sections reserve space in TMS320C30 memory; they are usually
allocated into RAM. These sections have no actual contents in the object file;
they simply reserve memory. A program can use this space at run time for
creating and storing variables.

Uninitialized data areas are built by using the .bss and .usect assembler direc-
tives. The .bss directive reserves space in the .bss section. The .usect directive
reserves space in a specific uninitialized, named section. Each time you invoke
the .bss directive, the assembler reserves more space in the .bss section. Each
time you invoke the .usect directive, the assembler reserves more space in the
specified named section.

You will usually allocate all variables into the .bss section. Occasionally, you
may find it convenient to reserve additional space for variables and allocate
this space separately from .bss; you can use .usect for this purpose.

The syntaxes for these directives are:

.bss symbol, size in words
symbol .usect "section name”, size in words

Introduction to COFF - How the Assembler Handles Sections

[] The symbo/ points to the first word reserved by this invocation of the
.bss or .usect directive. The symbo/ corresponds to the name of the
variable that you're reserving space for. It can be referenced by any other
section and can also be declared as a global symbol (with the .global
assembler directive).

® The size is an absolute expression. The .bss directive reserves size words
in the .bss section; the .usect directive reserves size words in section
niame.

® The section name parameter tells the assembler which named section to
reserve space in. (For more information about named sections, see
Section 3.2.3.)

The .text, .data, .sect, and .asect directives tell the assembler to stop assembl-
ing into the current section and begin assembling into the indicated section.
The .bss and .usect directives, however, do not end the current section and
begin a new one; they simply "escape” from the current section temporarily.
The .bss and .usect directives can appear anywhere in an initialized section
without affecting the contents of the initialized section.

3.2.2 Initialized Sections

3-4

Initialized sections contain executable code or initialized data. The contents
of these sections are stored in the object file and placed in TMS320C30 me-
mory when the program is loaded. Each initialized section is separately relo-
catable and may reference symbols that are defined in other sections. The
linker automatically resolves these section-relative references.

Four directives tell the assembler to place code or data into a section. The
syntaxes for these directives are:

.text

.data

.sect "section name”

.asect "section name”, address

When the assembler encounters one of these directives, it stops assembling
into the current section (acting as an implied “end current section” command).
It then assembles subsequent code into the respective section until it en-
counters a .text, .data, .asect, or .sect directive.

Sections are built up through an iterative process. For example, when the
assembiler first encounters a .data directive, the .data section is empty. The
statements following this first .data directive are assembled into the .data
section (untii the assembler encounters a .text, .sect, or .asect directive). If the
assembler encounters subsequent .data directives, it adds the statements fol-
lowing these .data directives to the statements that are already in the .data
section. This creates a single .data section that can be allocated contiguously
into memory. '

introduction to COFF - How the Assembler Handles Sections

3.2.3 Named Sections

Named sections are sections that you create. You can use them like the de-
fault .text, .data, and .bss sections, but they are assembled separately from the
default sections.

For example, repeated use of the .text directive builds up a single .text section
in the object file. When linked, this .text section is allocated into memory as
a single unit. Suppose there is a portion of executable code {perhaps an in-
itialization routine) that you don’t want allocated with .text. |f you assemble
this segment of code into a named section, it is assembled separately from
.text, and you will be able to allocate it into memory separately from .text.
(Note that you can also assemble initialized data that is separate from the .data
section, and you can reserve space for uninitialized variables that is separate
from the .bss section.)

Three directives let you create named sections:

® The .usect directive creates sections that are used like the .bss section.
These sections reserve space in RAM for variables.

® The .sect and .asect directives create sections that can be used like the
default .text and .data sections. The .sect directive creates named sec-
tions with relocatable addresses; the .asect directive creates named sec-
tions with abso/ute addresses.

The syntaxes for these directives are:

symbol .usect "section name”, size in words
.sect "section name”
.asect "section name”, address

The section name parameter is the name of the section. Section names are
significant to 8 characters. You can create up to 32,767 separate named sec-
tions.

Each time you invoke one of these directives with a new name, you create a
new named section. Each time you invoke one of these directives with a name
that was already used, the assembler assembles code or data (or reserves
space) into the section with that name. You cannot use the same names with
different directives. That is, you cannot create a section with the .usect di-
rective and then try to use the same section with .sect.

3-5

Introduction to COFF - How the Assembler Handles Sections

3.2.4 Section Program Counters

The assembler maintains a separate program counter for each section. These
program counters are known as section program counters, or SPCs.

An SPC represents the current address within a section of code or data. Ini-
tially, the assembler sets each SPC to 0. As the assembler fills a section with
code and data, it increments the appropriate SPC. If you resume assembling
into a section, the assembler remembers the appropriate SPC's previous value
and continues incrementing at that point.

The assembler treats each section as if it begins at address O; the linker reio-
cates each section according to its final location in the memory map.

3.2.5 Absolute Sections

The .asect directive defines a named section whose addresses are absolute
with respect to a specified address. Absolute sections are useful for loading
code from off-chip memory into faster on-chip memory.

The syntax for this directive is:
.asect "section name", address

The section name parameter- identifies the name of the absolute section (Sec-
tion 3.2.3 describes named sections). The address parameter identifies the
section’s absoclute starting address in target memory. In order to use an ab-
solute section, you must know which location you want the section to execute
from, and specify it as the address parameter.

Most sections directives create sections with relocatable addresses. These
sections always have an initial SPC value of 0O; the linker relocates these sec-
tions appropriately. The initial SPC value for an absolute section, however, is
the specified address. The addresses of all code assembled into an absolute
section are offsets from this address. The linker does relocate sections defined
with .asect; however, any labels defined within an absolute section retain their
absolute (runtime) addresses. Thus, references to these labels refer to their
runtime addresses, even though the section is not initially loaded at this ad-
dress.

3.2.6 An Example That Uses Sections Directives

3-6

Figure 3-2 shows how you can build COFF sections incrementally, using the
sections directives to swap back and forth between the different sections. You
can use sections directives:

® To begin assembling code or data into a section for the first time, or

® To continue assembling into a section that already contains code. In this
case, the assembler simply appends the new code to the code that is
already assembled into the section.

The format of this example is a listing file. By using a listing file, this example
shows how the SPCs are modified during assembly. A line in a listing file has
four fields:

.

Introduction to COFF - How the Assembler Handles Sections

000000
000000
000001
000002

000000
000001

000003

000000
000000
000001
000002
000002
000003
000004

000004
000004
000005
000006

000000
000001

000005
000005
000006
000007
000007
000008
000009

000000
000000
000001

00000011
00000022
00000033

00000123

0869000A
08610000

02412001
6E46FFFE
15210000+

000000AA
000000BB
0000060cCC

08690002
08610000

0AC12001
6E46FFFE
15210007+

00000000
00000005

khkkhkkkkhxdhkdbhkhhhkhhhdkhohhhhdkhkbhhrd kb kbbb kkkx

** Assemble an initialized table into .data **
LR EEEEE LR SRS SRS SRR SRR SRR RS EEREEEEEEREREEEEEEEES

.data
coeff .word 011lh, 022h, 033h

LEEEEEEE SRR SR EEE SRS SRR EEEEEEEEEEEEEREESEEEES]

** Reserve space in .bss for two variables **
IEE RS EEEEE RIS R LRSS R RS RS E R EEEEE SRR ESEEE SR

.bss varl,1l

.bss buffer, 10
LR R R RS SRR SRS R R RS RS EEEEEEEEEEEEEE RN
** Still in .data * %
hhkkhkkkhhkhhhkhdhhhkhkhkhhhhkbhhhhhhhkhkhdkhhkhkrhhkrhkdhkd
ptr .word 0123h
LR RS R SRS E RS S E S SRR SRS R RS SRR EE R R R RS SR EE S
** Assemble code into the .text section * &
khkkkhkhkkhkhhhhdhhkhhdbhdhhhhhhhhhdrhhhrhkrhkdrhhkrhdhkk

.text
add: LDI 10,AR1

LDI 0,R1
aloop:

ADDI *ARO++,R1

DBNZ AR1,aloop

STI R1,@varl
khkkkhkkhkhkkhkhkkhkhhhhkhkkhhkhkhhkhkhdhhhhhhkhhhkhkhhhdhhhkhhhdkd
** Assemble another initialized table into * %
** the .data section * ok
LR R R R R R R R R R RS AT RS RS RIS RS EE R R R
) .data
ivals .word OAAh, OBBh, 0CCh

Fhkkkhkkhkhkkkkhhhhhhkhkhhkhhhhdhhhhkdrhhkhhhkdhhkkhkxxk

** Define another section for more variables **
khkkkhkhhhhhhhkhkhhhkrdhhkhohkhbdhhrhdddhkrdkdrdhhkrrhdnk

var2 .usect "newvars'", 1l
inbuf .usect “"newvars",7
khkkkkhkkhkkhkhhhhhkhdhkhrokhhdhhhhdrrhhhhdrxhhdhhkhhhkhdhisk
** Assemble more code into .text *k
LR E X R T R R R R SR SRR RS E SRR S SRR R X R
.text
mpy : LDI 10,AR1
LDI 0,R1
mloop:
MPYI *ARO++,R1
DBNZ AR1l,mloop
STI R1,@var2
LR R R R R R R R R R RS RS RS SR EEE RS EEE RS EEE SR
** Define a named section for int. vectors ok
XSRS SRR SRR SRR SRR SRR RS EEEREREEEEEEEEEE RS
.sect "vectors"
.word add, mpy

Figure 3-2. Using Sections Directives

3-7

Introduction to COFF - How the Assembler Handles Sections

3-8

As Figure 3-3 shows, the file in Figure 3-2 creates five sections:
.text contains 10 words of object code.
.data contains 7 words of object code.

vectors is a named section created with the .sect directive; it contains 2
words of initialized data.

.bss reserves 11 words in memory.

newvars is a named section created with the .usect directive; it reserves 8
words in memory.

The second column identifies the object code that is assembled into these
sections; the first column identifies the source statements that generated the
object code.
Line Numbers Object Code
lext section

25
26

.data section

vectors

12,13

43,44

Figure 3-3. Object Code Generated by Figure 3-2

Introduction to COFF - How the Linker Handles Sections

3.3 How the Linker Handles Sections

The linker has two main functions in regard to sections. First, the linker uses
the sections in COFF object files as building blocks; it combines input sections
(when more than one file is being linked) to create output sections in an ex-
ecutable COFF output module. Second, the linker chooses memory addresses
for the output sections.

The linker provides two directives that support these functions:

® The MEMORY directive allows you to define the memory map of a tar-
get system. You can name portions of memory and specify their starting
addresses and their lengths.

[] The SECTIONS directive tells the linker how to combine input sections
and where to place the output sections in memory.

It is not always necessary to use linker directives. If you don’t use them, the
linker uses the default allocation algorithm described in Section 3.3.1. When
you do use linker directives, you must specify them in a linker command file.

Refer to the following sections for more information about linker command
files and linker directives:

Section
9.4 Linker Command Fil€Sooooiiiiieieieeeee e eeaeees
9.6 The MEMORY Directive
9.7 The SECTIONS Directive

3.3.1 Default Allocation

You can link files without specifying a MEMORY or SECTIONS directive. The
linker uses a default model to combine sections (if necessary) and allocate
them into memory. When using the default model, the linker:

1) Assumes that memory begins at address Oh.

2) Assumes that 24 words are available to allocate object code into.

3) Allocates the .text section into memory, beginning at address 0.

4) Allocates the .data section into memory, immediately following .text.

5) Allocates the .bss section into memory, immediately following .data.

6) Allocates a// named sections into memory, immediately following .bss.
Named sections are allocated in the order that they're encountered in the
input files.

Note that the linker does not actually place an object code into memory; it
assigns addresses to sections so that a /oader can place the code in memory.

Figure 3-4 shows how a sing/e file would be allocated using default allo-
cation.

3-9

Introduction to COFF - How the Linker Handles Sections

fext

Object Code

000000h

size = 10 words

00000AR
.data
size = 7 words
000011h
vectors size = 11 words
00001Ch
.bss
size = 8 words
newvars 000024h
size = 2 words

Figure 3-4. Placing the Object Code from Figure 3-2 into Memory

(Default Allocation)

As Figure 3-4 shows, the linker:

1)
2)
3)

4)

5)

Allocates the .text section first, beginning at address Oh. The .text sec-
tion contains 10 words of object code.

Allocates the .data section next, beginning at address Ah. The .data
section contains 7 words of object code.

Allocates the .bss section third, beginning at address 11h. The .bss
section reserves 11 words m memory.

Allocates the named sectioh newvars at address 1Ch. (newvars was
the first named section encountered in the original input file - see Figure
3-2.) The newvars section reserves 8 words in memory.

Allocates the named section vectors at address 24h. The vectors
section contains 2 words of object code.

Figure 3-5 shows a simple example of how two files might be linked together.
When you link several files using the default algorithm, the linker combines
all input sections that have the same name into one output section that has

Introduction to COFF - How the Linker Handles Sections

this same name. For example, the linker combines the .text sections from two

input

file1.0bj

files to create one .text output section.

Memory

file2.0bj

Figure 3-5. Combining Input Sections from Two Files (Default Allocation)

In Figure 3-5, filel.obj and file2.obj each contain the .text, .data, and
.bss default sections and a named section called vars; file2.0obj also con-
tains a named section called Init. As Figure 3-5 shows, the linker:

1)

2)

3)

4)

5)

Combines filel .text with £ile2 .text to form one .text output section.
The .text output section is allocated at address Oh.

Combines filel .data with file2 .data to form the .data output sec-
tion. The .data output section is allocated following the .text output
section.

Combines filel .bss with file2 .bss to form the .bss output section.
The .bss output section is allocated following the .data output section.

Combines filel vars with file2 vars to form the vars output sec-
tion. (The vars section is the first named section that is encountered
during the link, so it is allocated before the second named section,
Init.) The vars output section is allocated following the .bss output
section.

Allocates the Init section from file2 after the vars section.

Introduction to COFF - How the Linker Handies Sections

3.3.2 Placing Sections in the Memory Map

Figure 3-4 and Figure 3-5 illustrate the linker’s default methods for combining
sections and allocating them into memory. Sometimes you may not want to
use the default setup. For example, you may not want to combine all of the
.text sections into a single .text section. Or, you might want a named section
placed at address 40h instead of the .text section. Most memory maps are
comprised of various types of memories (DRAM, ROM, EPROM, etc.) in var-
ying amounts; you may want to place a section in a particular type of memory.

The next two illustrations show another possible combination of the sections
from Figure 3-4

Figure 3-6 contains MEMORY and SECTIONS definitions.

Figure 3-7 shows how the sections from figure Figure 3-6 are allocated
into memory.

**/

* Linker command file */
/***‘k***'k**/

MEMORY

{
VECS: origin = 000000h length = 40h
ROM: origin = 000040h length = FCOh
RAMO: origin = 801000h length = 400h
RAM1: origin = 801400h length = 400h

3

SECTIONS

{
vectors 000000h {1
.text { } > ROM
.data { 3 > ROM
.bss { } > RAMO
newvars {1 > RaM1

Figure 3-6. MEMORY and SECTIONS Directives for Figure 3-7

The MEMORY directive in Figure 3-6 defines four memory ranges:

- VECS
- ROM
- RAMO
- RAM1

The origin for each of these ranges identifies the range’s starting address
in memory. The /ength specifies the length of the range. For example,
memory range RAMO, with starting address 801000h and length 400h,
defines the addresses 801000h through 8013FFh in memory.

Introduction to COFF - How the Linker Handles Sections

dext

.data

vectors

bss

newvars

The SECTIONS directive in Figure 3-6 defines the order in which the
sections are allocated into memory. The vectors section must begin
at address 0. Both .text and .data are allocated into the ROM area that
was defined by the MEMORY directive. The .bss section is allocated

into RAMO, and newvars is allocated into RAM1.

Memory

nused memory

nused memory

000000h
(interrupt vectors)

000002h

000040h
(internal ROM)

00004An

000051h

801000h
(RAM blockO0)

801400h
(RAM block1)

801408h
801800h

Figure 3-7. Rearranging the Memory Map from Figure 3-4

Introduction to COFF - Relocation

3.4 Relocation

The assembler treats each section as if it began at address 0. All relocatable
symbols (labels) are relative to address O in their sections. Of course, ali sec-
tions can’t actually begin at address O in memory, so the linker relocates
sections by:

{ Allocating sections in the memory map so that they begin at the appro-
priate address,

[] Adjusting symbol values to correspond to the new section addresses,
and

[] Patching references to relocated symbols to reflect the adjusted symbol
values.

The linker uses relocation entries to adjust references to symbol values. The
assembler creates a relocation entry each time a relocatable symbol is refer-
enced. The linker then uses these entries to patch the references after the
symbols are relocated. Figure 3-8 contains a code segment that generates
relocation entries.

0001
0002
0003
0004
0005

.ref X
00000000 .text
00000000 600000000! BR X ; Generates a relocation entry
00000001 082000002+ LDI @Y,RO ; Generates a relocation entry
00000002 060000000 Y: IDLE

Figure 3-8. An Example of Code that Generates Relocation Entries

In Figure 3-8, both the symbols X and Y are relocatable. X is defined in some
other module; Y is defined in the .text section of this module. When assem-
bled, X has a value of O (the assembler assumes all undefined external symbols
have values of 0) and Y has a value of 2 (relative to address O in the .text
section). The assembler generates two relocation entries, one for x and one
for Y. The reference to X is an external reference (indicated by the ! character
in the listing). The reference to Y is to an internally defined relocatable symbol
(indicated by +).

After linking, suppose that X is relocated to address 100h. Suppose also that
the .text section is relocated to begin at address 200h; Y now has a relocated
value of 202h. The linker uses the two relocation entries to patch the two
references in the object code:

60000000 BR X becomes 60000100
08200002 LDI @Y,RO becomes 08200202

Each section in a COFF object file has a table of relocation entries. The table
contains one relocation entry for each relocatable reference in the section. The
linker usually removes relocation entries after it uses them. This prevents the
output file from being relocated again (if it is relinked or when it is loaded).
A file that contains no relocation entries is an absolute file (all its addresses
are absolute addresses). If you want the linker to retain relocation entries,
invoke the linker with the -r option.

introduction to COFF - Loading a Program

3.5 Loading a Program

The linker produces executable COFF object modules. An executable object
file has the same COFF format as object files that are used as linker input;
however, the sections in an executable object file are combined and relocated
to fit into target memory.

In order to run a program, the data in the executable object module must be
transferred (or loaded) into target system memory.

Several methods can be used for loading a program, depending on the exe-
cution environment. Some of the more common situations are listed below.

The TMS320C30 debugging tools (including the software simulator,
XDS emulator, and software development system) have built-in loaders.
Each of these tools has a LOAD command that invokes a COFF loader;
the loader reads the executable file and copies the program into target
memory.

If you are using a ROM- or EPROM-based system, you can use the ob-
ject format converter (which is included with the assembly language
package) to convert the executable COFF object module into one of
several object file formats. You can then use the converted file with an
EPROM programmer to burn the program into an EPROM.

Some TMS320C30 programs are loaded under the control of an operat-
ing system or monitor software running directly on the target system.
In this type of application, the target system usually has an interface to
the file system on which the executable module is stored. You must
write a custom loader for this type of system. The loader must compre-
hend the file system {in order to access the file) as well as the memory
organization of the target system (to load the program into memory).

Introduction to COFF - Symbols in a COFF File

3.6 Symbols in a COFF File

A COFF file contains a symbol table that stores information about symbols in
the program. The linker uses this table when it performs relocation. Debug-
ging tools can also use the symbol table to provide symbolic debugging.

3.6.1 External Symbois

External symbols are symbols which are defined in one module and referenced
in another module. You can use the .global directive to identify symbols as
external. In a source module, an external symbol can be either:

[Defined in the current module, or
® Defined in another module and referenced in the current module.

The following code segment illustrates these definitions.

X: LDI RO,R1 ; Define x
LDI @y,RO ; Reference y
.global x ; DEF of x
.global vy ; REF of y

The .global definition of x says that it is an external symbol defined in this
module, and that other modules can reference x. The .global definition of y
says that it is an undefined symbol that is defined in some other module.

The assembler places both x and y in the object file’'s symbol table. When the
file is linked with other object files, the entry for x defines unresolved refer-
ences to x from other files. The entry for y causes the linker to look through
the symbol tables of other files to look for y’s definition.

The linker must match all references with corresponding definitions. If the
linker cannot find a symbol’s definition, it prints an error message about the
unresolved reference. This type of error prevents the linker from creating an
executable object module.

3.6.2 The Symbol Table

The assembler always generates an entry in the symbol table when it en-
counters an external symbol (both definitions and references). The assembler
also creates special symbols that point to the beginning of each section; the
linker uses these symbols to relocate references to other symbols in a section.

The assembler does not usually create symbol table entries for any other type
of symbol because the linker does not use them. For example, labels are not
included in the symbol table unless they are declared with .global. For sym-
bolic debugging purposes, it is sometimes useful to have entries in the symbol
table for each symbol in a program. To accompilish this, invoke the assembler
with the -s option.

Section 4

Assembler Description

The assembler translates assembly language source files into machine lan-
guage object files. These object files are in common object file format
(COFF), discussed in Section 3. Source files can contain these assembly
language elements:

® Assembler directives (described in Section 5),
o Assembly language instructions (summarized in Section 6), and
° Macro directives (described in Section 7).

The assembler:

L] Is a two-pass assembler.
[] Processes the source statements in a text file to produce a relocatable
object file.

(] Produces a source listing (if requested) and provides you with conirol
over this listing.

® Appends a cross-reference listing to the source listing (if requested).
Allows you to segment your code into sections.

® Maintains an SPC (section program counter) for each section of object
code.

Defines and references global symbols.
Assembles conditional blocks.

Supporis macros, allowing you to define macros inline or in a macro li-
brary.

ction
1 Assembier Development FIOW ..o
2 Invoking the Assembler ...

3 Specifying Alternate Directories for Assembler Input
4 Source Statement Format
5 Constantsccooeeeieenncnens
6 Character Strings

7 Symbols ...covveiiiiienne

8 Expressions ...

9 SOUICE LISHINGS ..eiiviiiiiiie ettt e s
1

Se
4.
4.
4,
4.
4.
4.
4.
4.
4.
4.10 Cross-Reference LiStingsccocoeiiiiiiiiniicieeeeee e

4-1

Assembler Description - Development Flow

41 Assembler Development Flow

Figure 4-1 illustrates the assembler’s role in the assembly language develop-
ment flow. The assembler accepts assembly language source files as input and
creates a COFF obiject file that can be linked.

4-2

Archiver

i
i

Assembler
Source

C Source

C Compiler

Assembler
Source

o

%
Linker Archiver
% Library of
Object
Executable Files
COFF Object
File
Object
Format
Converter
Software
EPROM ’ XDSs
Programmer Simulator TM8320C30 De\éil&ggent Emulator

Figure 4-1. Assembler Development Flow

Assembler Description - Invoking the Assembler

4.2 Invoking the Assembler

To invoke the assembler, enter:

asm30 [input file [object file [listing file]]] [-options]

input file

object file

listing file

option

names the assembler source file. If you do not supply an ex-
tension, the assembler assumes that the input file has the de-
fault extension .asm. If you do not supply an input filename
when you invoke the assembler, the assembler will prompt you
for one.

names the object file that the assembler creates. If you do not
supply an extension, the assembler uses .0bj as a default ex-
tension. If you do not supply an object filename the assembler
creates a file that uses the input filename with the .0b/ exten-
sion.

names the optional listing file that the assembler can create. If
you do not supply a name for a listing file, the assembler does
not create one, unless you use the -| (lowercase “"L”) option.
In this case, the assembler uses the input filename with the ./st
extension. If you supply a filename without an extension, the
assembler uses ./st.

identifies the assembler options that you want to use. Case js
insignificant for assembler options. Options can appear any-
where on the command line; precede each option with a hy-
phen (-). You can string the options together; for example, -lc
is equivalent to -1 -c. Valid options include:

-1 (lowercase "L"”) produces a listing file.

-i specifies a directory where the assembler can find files
named by the .copy, .include, or .mlib directives. The format
of the -i option is -ipathname. You can specify up to 10
directories in this manner; each pathname must be preceded
by the -i option.

-x produces a cross-reference table and appends it to the end
of the listing file. If you use -x but do not request a listing
file, the assembler creates one anyway, but the listing con-
tains only the cross-reference table.

-s puts all defined symbols in the object file’s symbol table.
Usually, the assembler puts only global symbols into the
symbol table. When you use -s, symbols that are defined
as labels or as assembly-time constants are also placed in
the symbol table.

-¢c makes case insignificant. For example, the symbois ABC
and abc will be equivalent. /f you do not use this option,
case is significant.

-q (quiet) suppresses the banner and all progress information.

4-3

Assembler Description - Alternate Directories

4.3 Specifying Alternate Directories for Assembler Input

4.3.1

4-4

The .copy and .include directives tell the assembler to read source statements
from another file; the .miib directive names a library that contains macro defi-
nitions. Section 5, Assembler Directives, provides examples of the .copy, .in-
clude, and .mlib directives. The syntax for these directives is:

.copy "filename”
.include “filename”
.mlib "filename”

The filename names a copy/include file that the assembler reads statements
from or a macro library that contains macro definitions. The filename can be
a complete pathname or a filename with no path information. If you provide
a pathname, the assembler uses that path and does not /ook for the file in any
other directories. If you do not provide path information, the assembler
searches for the file in:

1) The directory that contains the current source file. (The current source
file refers to the file that is being assembled when the .copy, .inciude, or
.mlib directive is encountered.)

2) Any directories named with the -i assembler option.
3) Any directories set with the environment variable A—DIR.

You can augment the assembler’s directory search algorithm by using the -i
assembler option or the environment variables A—DIR.

-i Assembler Option

The assembler option names an alternate directory that contains copy/inciude
files or macro libraries. The format of the -i option is:

asm30 -ipathname source filename

You can use up to 10 -i options per invocation; each -i option names one
pathname. In assembly source, you can now use the .copy, .include, or .mlib
directive without specifying any path information. If the assembler doesn't
find the file in the directory that contains the current source file, it searches the
paths provided by the -i options.

For example, assume that a file called source.asm is in the current directory;
source.asm contains the following directive statement:

.copy ''copy.asm".

The complete path/filename for copy.asm is:

[} c:\c30\files\copy.asm (DOS),
® [c30.files]copy.asm (VMS), or
® /c30/files/copy.asm(UNIX).

This is how you invoke the assembler:

DOS: asm30 -ic:\c30\files source.asm

MS: asm30 -i[c30.files] source.asm

UNIX: asm30 -i/c30/files source.asm

<

Assembler Description - Alternate Directories

The assembler first searches for copy.asm in the current directory, because
source.asm is in the current directory. Then, the assembler searches in the
directory named with the -i option.

4.3.2 Environment Variable (A—DIR)

An environment variable is a system symbol that you define and assign a string
to. The assembler uses an environment variable named A—DIR to name al-
ternate directories that contain copy/include files or macro libraries. The
command for assigning the environment variable is:

DOS: set A—DIR=pathname;another pathname ...
VMS: assign A—DIR "pathname;another pathname ...
UNIX: setenv A—DIR "pathname;another pathname ...

”

"

The pathnames are directories that contain copy/include files or macro li-
braries. You can separate the pathnames with a semicolon or with blanks. In
assembly source, you can now use the .copy, .include, or .mlib directive
without specifying any path information. If the assembler doesn’t find the file
in the directory that contains the current source file or in directories named
by -i, it searches the paths named by the environment variable.

For example, assume that a file called source. asm contains these statements:

.copy ‘'"copyl.asm"
.copy ‘"copy2.asm"

Assume that the complete path and file information for these copy files is:

(] c:\320\files\copyl.asm and c:\dsys\copy2.asm (DOS),
(] [320.files]copyl.asm and [dsys]copy2.asm (VMS), or
L] /320/files/copl.asm and /dsys/cop2.asm (UNIX)

This is how you set the environment variables and invoke the assembler:

DOS: set A DIR=c:\dsys; c:\exec\files
asm30 -ic:\320\files source.asm

VMS: assign A_DIR "[dsys]l; [exec.files]"
asm30 =-i[320.files] source.asm

UNIX: setenv A _DIR "/exec/files;/dsys"
asm30 -i/320/files source.asm

The assembler first searches for copyl.asmand copy?2.asm in the current di-
rectory, because source.asm is in the current directory. Then the assembler
searches in the directory named with the icon -i option, and finds copyl.asm.
Finally, the assembler searches the directory named with A—DIR and finds
copy2.asm.

Note that the environment variable remains set until you reboot the system or
reset the variable by entering:

DOS: set A _DIR=
VMS: deassignA DIR
UNIX: setenv A _DIR" "

4-5

Assemble Description - Source Statement Format

4.4 Source Statement Format

TMS320C30 assembly language source programs consist of source state-
ments that can contain assembler directives, assembly language instructions,
macro directives, and comments. Source statement lines can be as long as the
source file format allows. The assembler reads up to 200 characters per line.
If the statement contains more than 200 characters, the assembler truncates
the line and issues a warning.

The next several lines show examples of source statements:

SYM .set OASh ; Symbol SYM = OA5h
Begin: ADDI SYM+5,R1 ; Add (SYM+5) to the contents of R1
LDI R1,R2 ; Move contents of R1 to R2

A source statement can contain four ordered fields. The general syntax for
source statements is:

[label[:]] mnemonic [operand list] [;comment]

where

® Statements must begin with a label, a blank, an asterisk, or a semicolon.
[] Labels are optional; if used, they must begin in column 1.

e One or more blanks must separate each field. (Note that tab characters
are equivalent to blanks.)

(] Comments are optional. Comments that begin in column 1 can begin
with an asterisk or a semicolon (* or ;), but comments that begin in any
other column must begin with a semicolon.

4.4.1 Label Field

Labels are optional for all assembly language instructions and for most (but
not all) assembler directives. A label must begin in column 1 of a source
statement. A label can contain up to 32 alphanumeric characters (A-Z, a-z,
0-9, —, and $). Labels are case sensitive, and the first character cannot be a
number. A label can be followed by a colon (:); the colon is not treated as
part of the label name. If you don’t use a label, then the first character position
must contain a blank, a semicolon, or an asterisk.

When you use a label, its value is the current value of the section program
counter (the label points to the statement it's associated with). If, for example,
you use the .word directive to initialize several words, a label would point to
the first word. In the following example, the label Start has the value 3Fh.

0002 * Assume some other code was assembled
0003 00003F 0000000A Start: .word 0ah,3,7

000040 00000003

000041 00000007

4-6

Assemble Description - Source Statement Format

A label on a line by itself is a valid statement. It assigns the current value of
the section program counter to the label - this is equivalent to the following
directive statement:

label .set S ; (S represents the current value of the SPC)

When a label appears on a line by itself, it points to the instruction on the next
line (the SPC is not incremented):

0005 000042 Here:
0006 000042 08010000 LDI RO,R1

4.4.2 Mnemonic Field

The mnemonic field follows the label field. 7he mnemonic field cannot start
in column 1, or it would be interpreted as a label. The mnemonic field can
contain one of the following opcodes:

[] Machine-instruction mnemonic (such as ADDI, MPYF, LDI)
[] Assembler directive (such as .data, .list, .set)

[] Macro directive (such as $MACRO, $LOOP, SENDLOOP)

[J

A macro invocation

4.4.3 Operand Field

The operand field is a list of operands that follows the mnemonic field. An
operand can be a constant (see Section 4.5), a symbol (see Section 4.7), or
a combination of constants and symbols in an expression (see Section 4.8).
You must separate operands with commas.

4.4.4 Comment Field

A comment can begin in any column and extends to the end of the source line.
A comment can contain any ASCII character including a blank. Comments
are printed in the assembly source listing but they do not affect the assembly.

A source statement that contains only a comment is valid. If it begins in col-
umn 1, it can start with a ; or a *. Comments that begin anywhere else on the
line must begin with a ;. The * symbol designates a comment only if it ap-
pears in column 1.

4-7

Assembler Description - Constants

4.5 Constants

The assembler supports seven types of constants:

Binary integer constants,

Octal integer constants,
Decimal integer constants,
Hexadecimal integer constants,
Floating-point constants,
Character constants, and
Assembly-time constants.

The assembler maintains each constant internally as a 32-bit quantity.

Note that constants are not sign extended. For example, the constant
OFFFFH is equal to 0000FFFF1g or 65,5351(; it does not equal -1.

4.5.1 Binary Integers

A binary integer constant is a string of up to 32 binary digits (Os and 1s) fol-
lowed by the suffix B (or b). If less than 32 digits are specified, the assembler
right-justifies the value and zero-fills the unspecified bits. Examples of valid
binary constants include:

00000000B Constant equal to Oqg or Oqg
0100000b Constant equal to 321 or 2046
01b Constant equal to 11g or 116
11111000B Constant equal to 2481¢ or OF81¢

4.5.2 Octal Integers

4-8

An octal integer constant is a string of up to 11 octal digits (O through 7)
followed by the suffix Q (or q). Examples of valid octal constants include:

100 Constant equal to 819 or 81¢
100000Q Constant equal to 32,7681 or 800016
226Q Constant equal to 1501 or 9616

Assembler Description - Constants

4.5.3 Decimal Integers

A decimal integer constant is a string of decimal digits ranging from
-2,147,483,647 to 4,294,967,295. Examples of valid decimal constants in-

clude:

1000 Constant equal to 10001 or 3E81¢
-32768 Constant equal to -32,7681¢ or -80001¢
25 Constant equal to 251 or 1944

4.5.4 Hexadecimal Integers

A hexadecimal integer constant is a string of up to eight hexadecimal digits
followed by the suffix H (or h). Hexadecimal digits include the decimal values
0-9 and the letters A-F and a—f. A hexadecimal constant must begin with a
decimal value (0-9). If less than eight hexadecimal digits are specified, the
assembler right-justifies the bits. Examples of valid hexadecimal constants

include:

78h Constant equal to 12019 or 007814
OFh Constant equal to 151¢g or 000F ¢
37ACH Constant equal to 14,2524 or 37ACqs

4.5.5 Character Constants

A character constant is a string of one to four characters enclosed in single
quotes. The characters are represented internally as 8-bit ASCIl characters.
Two consecutive single quotes are required to represent each single quote
within a character constant. A character constant consisting only of two sin-
gle quotes (no letter) is valid and is assigned the value 0. If less than four
characters are specified, the assembler right-justifies the bits. Examples of
valid character constants include:

‘ab’ Represented internally as 0000626116
‘c’ Represented internally as 0000004315
"D’ Represented internally as 0000442716
‘abcd’ Represented internally as 6463626116

Note the difference between character constants and character strings (Sec-
tion 4.6 discusses character strings). A character constant represents a single
integer value; a string is a list of characters.

Assembler Description - Constants

4.5.6 Floating-Point Constants

A floating-point constant is a string of decimal digits, followed by an optional
decimal point, fractional portion. and exponent portion. The syntax for a
floating-point number is:

[/- 1 {nonl . { nnn | E{e [+{-] nnn]]

where nnn is a string of decimal digits. A floating-point constant may be
preceded with a + or a -. You must specify a decimal point; for exampie, 3.eb
is valid, but 3e5 is illegal. The exponent indicates a power of 10.

Valid floating-point constants include:

3

3.14

3
-0.314e13
+314.59%e-2

Floating-point constants cannot be used in expressions; the only valid
floating-point operations are unary + and -. Floating-point constants that are
used in instructions are represented in short format (16 bits). All other fioat-
ing-point constants are represented in single-precision format (32 bits).

For more information about floating-point format, refer to the Third-Genera-
tion TMS320 User's Guide.

4.5.7 Assembly-Time Constants

If you use the .set directive to éssign a constant value to a symbol, the symbol
becomes an assembly-time constant. In order to use this constant in ex-
pressions, the value that is assigned to it must be absolute. For example:

sym .set 3
LDI sym, RO ; Load the constant 3 into RO

If you assign a floating-point constant to a symbol, then the symbol can be
used only as a floating-point constant. -Similarly, if you assign an integer
constant to a symbol, then the symbol can be used only as an integer constant.
The following example is illegal:

sym .set 3 ; Integer constant
LDF sym,RO ; Invalid - floating-point
; constant required

You can also use the .set directive to assign symbolic constants for register
names. In this case, the symbol becomes a synonym for the register:

sym .set RO
LDI 10,sym

Assembler Description - Character Strings/Symbols

4.6 Character Strings

A character string is a string of characters enclosed in double quotes. Double
quotes within character strings are represented by two consecutive double
quotes. The maximum string length varies - it is defined for each directive that
requires a character string. Characters are represented internally as 8-bit ASCII
characters. Appendix E lists valid characters.

Examples of valid character strings include:
"sample program” Defines a 14-character string, sample program
"PLAN ""C""" Defines an 8-character string, PLAN "C"

Character strings are used for:

L] Filenames (as in .copy "filename")
(] Section names (as in .sect "section name")
[) Data initialization directives (as in .byte "charstring")

4.7 Symbols

Symbols are used as labels and in operands. A symbol name is a string of up
to 32 alphanumeric characters (A-Z, a-z, 0-9, $, and —). The first character in
a symbol cannot be a number; symbols cannot contain embedded blanks. The
symbols you define are case sensitive; for example, the assembler will recog-
nize ABC, Abc, and abc as three unique symbols. (You can override this with
the -c assembler option.) This type of symbol is valid only during the assem-
bly in which it is defined, unless you use the .global directive to declare it as
an external symbol.

Symbols that are used as labels become symbolic addresses that are associ-
ated with locations in the program. Labels must be unique; do not re-use
them for other statements. Mnemonic opcodes and assembler directive names
(without the ".” prefix) are valid label names.

Symbols that are used in operands must be defined in the assembly by ap-
pearing as labels or as operands of a .global, .set, or .bss directive.

The assembler has several predefined symbols, including:

(] $ (the dollar sign character), which represents the current value of the
section program counter (SPC).

[) These register symbols:

ARO-AR7 IF IRO RE RO-R7
BK IE IR1 RC SP
DP IOF PC RS ST

Assembler Description - Expressions

4.8 Expressions

An expression is a constant, a symbol, or a series of constants and symbols

sepa

rated by arithmetic operators. The range of valid expression values is

-2,147,483,647 to 4,294,967,295.

Three main factors influence the order of expression evaluation:

Parentheses. Expressions that are enclosed in parentheses are always
evaluated first.

Example: 8/(4/2) = 4, but 8/4/2 =1

Precedence groups. Operators (listed in Table 4-1) are divided into
four precedence groups. When the order of expression evaluation is not
determined by parentheses, the highest-precedence operation is evalu-
ated first.

Example: 8 + 4/2 = 10 (4/2 is evaluated first)

Left-to-right evaluation. When parentheses and precedence groups
do not determine the order of expression evaluation, the expressions are
evaluated from left to right. (Note that the highest-precedence group is
evaluated from right to left.)

Example: 8/4"2 = 4, but 8/(472) =1

Note that all expressions are represented internally as 32-bit values. For ex-

amp

le, -2 is represented as FFFF FFFEh, not as FFFEh.

4.8.1 Operators

Tabl

e 4-1 lists the operators that can be used in expressions. They are listed

according to precedence group.

Table 4-1. Operators

Group 1 (Highest Precedence) Group 3
Right-to-Left Evaluation Left-to-Right Evaluation
+ Unary plus (positive expression) + Addition
- Unary minus (negative expression) - Subtraction
~ (COM) 1s complement A (OR)Bitwise OR
! (NOT) Logical NOT (if expr. = 0, 1 (XOR) Bitwise exclusive OR
is returned, else 0 is returned) & Bitwise AND
Group 2 Group 4 (Relational Operators)
Left-to-Right Evaluation Left-to-Right Evaluation
* Multiplication < | Less than
/ Division > Greater than
% | (MOD) Modulo <= | Less than or equali to
<< | (SHL) Shift left >= | Greater than or equal to
>> | (SHR) Shift right = Equal to (= =
<> | Not equal to

Note: Operators in parentheses indicate an alternate form.

Assembler Description - Expressions

4.8.2 Expression Overflow or Underflow

The assembler checks for overflow and underflow conditions when arithmetic
cperations are performed at assembly time. The assembler issues a Value
Truncated warning whenever an overflow or underflow occurs. The assem-
bler does not check for overflow cr underflow in multiplication.

4.8.3 Well-Defined Expressions

Some assembler directives require well-defined expressions as operands.
Well-defined expressions contain only symbols or assembly-time constants
that are defined before they are encountered in the expression. The evaluation
of a weil-defined expression must be absolute. An example of a well-defined
expression is:

1000h+X Where X was previously defined as an absoiute symbol.

4.8.4 Conditional Expressions

The assembler supports relational operators that can be used in any ex-
pression; they are especially useful for conditional assembly. Relational oper-
ators include:

= Equal I= Not egual
== Equal < Less than
<= Less than cr equal > Greater than
>=

Greater than or equal

4.8.5 Rslocatable Symbols and Legal Expressions

Table 4-2 summarizes valid operations on absolute, relocatable, and external
symbols. An expression cannot multiply or divide by a relocatable or external
symbei. An expression cannot coniain unrescived symbols that are reiocata-
bie with respect tc different sections.

Table 4-2. Expressions with Absclute and Relocatable Symbols

Alds... B is... Resuits of A+ B are. .. 1| Resuyits of A-B are...
absoiute absoluts absclute atsolute
absoiute external external filegas
absoiute rglccatable relocatable itlegal

relocatable absoiute relocatable relocatable
relccatable ! legal | abeciute
- i +
relccotable) ! illegal 3 { e
axternal © absoluts i
relocatable

, othersss (s 18 wlegal.

Assembler Description - Expressions

Here are some examples of expressions that use absolute and relocatable
symbols. These examples use four symbols that are defined in the same sec-

tion:

intern-1:
LABl:
intern-2:

.global extern-1 ; Defined in an external module
.word '"p! ; Relocatable, defined in current module
.set 2 ; LABL = 2]

; Relocatable, defined in current module
Exampie 1:

The statements in this example use an absolute symbol, LAB1. The first
statement puts the value 51 into register ARO. The second statement
loads the value 27 into register ARO.

LDI LABl + ((4+3) * 7), ARO ; ARO = 51
LDI LAB1 + 4 + 3 * 7, ARO ; ARO = 27
Example 2:

All legal expressions can be reduced to one of two forms:
relocatable symbol + absolute symbol
or
absolute value

Unary operators can only be applied to absolute values; they cannot be
applied to relocatable symbols. Expressions that cannot be reduced to
contain only one relocatable symbol are illegal. The first statement in the
following example is legal; the statements that follow it are not.

LDI extern-1 - 10, ARO ; Legal

LDI 10-extern-1, ARO ; Can't negate reloc. symbol
LDI ~-(intern-1), ARO ; Can't negate reloc. symbol
LDI extern-1/10, ARO ; / isn't an additive operator
LDI intern-1 + extern-1, ARO ; Multiple relocatables
Example 3:

The first statement below is legal; although intern—1 and intern-2
are relocatable, their difference is absolute because they're in the same
secticn. Subtracting one relocatable symbol from another reduces the
expression to relocatable symbol/ + absolute value. The second state-
ment is illegal because the sum of two relocatable symbols is not an
absolute value.

LDI intern—1 - intern-2 + extern—1,AR0O ; Legal
LDI intern-1 + intern-2 + extern_1,ARO ; Illegal

Example 4:

An external symbol’s placement in an expression is important to ex-
pression evaluation. Although the statement below is similar to the first
statement in the previous example, it is illegal. This is because of left-
to-right operator precedence; the assembler attempts to add intern-1
to extern-1.

LDI intern—1 + extern-2 - intern—2, ARO ; Illegal

Assembler Description - Source Listings

4.9 Source Listings

A source listing shows source statements and the object code they produce.
To obtain a listing file, invoke the assembler with the -l (lowercase “"L") op-
tion.

At the top of each source listing page are two banner lines, a blank line, and
a title line. Any title supplied by a .title directive is printed on this line; a page
number is printed to the right of the title. If you don’t use the .title directive,
the title area is left blank. The assembler inserts a blank line below the title
line.

Each line in the source file produces a line in the listing file that contains a
source statement number, an SPC value, the object code assembled, and the
source statement. A source statement may produce more than one word of
object code. The assembler lists the SPC value and object code on a separate
line for each additional word. Each additional line is listed immediately fol-
lowing the source statement line.

1 2 3 4

0027 000006 O03E20018 Begin: ASH 24,R2 ; shift to top of word
0028 000007 02000002 ADDI R2,RO ; add to LSBs

0029 000008 78800000 RETS

Field 1 Source Statement Number. The source statement number is a
4-digit decimal number. The assembler numbers source lines as it
encounters them in the source file; some statements increment the
line counter but are not listed (for example, .title statements and
statements following a .nolist are not listed). The difference be-
tween two consecutive source line numbers indicates the number
of statements in the source file that are not listed. Source lines
generated by a macro call, a .copy directive, or an .include directive
are renumbered starting at 0001. The original sequence continues
after the copying or macro expansion is complete. The assembler
precedes the line numbers of copied files with a letter code to
identify the level of copying. An A indicates the first level, B indi-
cates a second level, etc.

Field 2 Section Program Counter. This field contains the section program
counter, or SPC, value (hexadecimal). Each section (.text, .data,
.bss, and named sections) maintains a separate SPC. Some direc-
tives do not affect the SPC; they leave this field blank.

Field 3 Object Code. This field contains the hexadecimal representation of
the object code. All machine instructions and directives use this
field to list object code. This field also indicates the relocation type
by appending one of the following characters to the end of the field:

! Undefined external reference

' Relocatable with respect to the .text section
Data relocatable (.data, .sect)

+ .bss relocatable

”

Assembler Description - Source Listings

Field 4 Source Statement Field. This field contains the characters of the

source statement as they were scanned by the assembler.

The

maximum line length accepted by the assembler is 200 characters.
Spacing in this field is determined by the spacing in the source
statement.

TMS320C30 Assembler
(c) Copyright 1987, Texas
TMS320C30 Integer Multiply

\%

No Errors, No Warnings

ersion 1.0 87.100
Instruments Inc.

0002 hhkhkkhhkhhkhhhkhkhhhkhhkhkhkhkdhkhhhhhdhhhhhdhdhhdhhdhhdhhkhhrrhhhkx
0003 * TMS320C30 32x32 Integer Multiply

0004 *

0005 * Inputs: x in RO, y in R1

0882 : ARO points to 2 words of temporary memory

0

0008 * Outputs: x * y in RO

0009 *

0010 * Operation:

0011 * Let x0 = 8 MSBs of x, y0 = 8 MSBs of y

0012 *

0013 * result = (x0 * y) + (y0 * x) + x

0014 Kk R KKK KA R AR RA AR A AR AR AR A I AR AR AT AR R AR R F R AR R AR Rk k Ak ko hkk ok
0015

0016 .global mpy32

0017

0018 000000 mpy32:

0019 000000 C20100CO STI RO, *ARO ; save x

0020 | STI R1, *+ARO ; save

0021 000001 O3EOFFE8 ASH -24,R0 ; x0 into RO

0022 000002 O3ELFFES8 ASH -24,R1 ; yO into R1

0023 000003 OAC00001 MPYI *+AR0, RO ; mpy upper bytes: x0 * y
0024 000004 0AC1C000 MPYI *ARO,R1 ; yO * x
0025 000005 880800CO MPYI *AR0O, *+ARO,RO ; mpy lower words

0026 I ADDI RO,R1,R2 ; add product MSBs

0027 000006 03E20018 ASH 24 ,R2 ; shift back to top of word
0028 000007 02000002 ADDI R2,RO ; add to LSBs

0029 000008 78800000 RETS

0030 .end

Fri May 29 14:13:54 1987

PAGE 1

Figure 4-2. Sample Assembler Listing

Assembier Bescription - Cross-Reference Listings

4.70 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. Tc cbtain a
cross-reference listing, invoke the assembler with the -x opticn or use the
.cption directive. The assembler will append the cross-reference to the end
of the source iisting.

LABEL
Klé
K24
K32

K8
KFLOAT
ext

label0
labell

TMS320C30 Assembler Version 1.0 87.100 Fri May 29 14:13:54 1987
(c) Copyright 1987, Texas Instruments Inc.
PAGE 3
VALUE DEFN REF
0OCOOAABB 0007 0041
O0AABBCC 0008 0049
AABBCCDD 0009 0057
000000AA 0006 0071
E5541885 0010 0065
REF 0011 0026 0034 0042 0050
0058 0072
00000002+ 0019 8022 0036 0044 0052 0060
07
00000003 0028 0027 0035 0043 0051 0059
, 0073

Figure 4-3. Cross-Reference Listing Format

The label column contains each symbol that was defined or referenced
during the assembly.

The value column contains a 4-digit hexadecimal number which is the
value assigned to the symbol or a name that describes the symbol’s at-
tributes. A value may also be followed by a character that describes the
symbol’s attributes. Table 4-3 lists these characters and names.

The definition (DEFN) column contains the statement number that
defines the symbol. This column is blank for undefined symbols.

The reference (REF) column lists the line numbers of statements that

reference the symbol. A blank in this column indicates that the symbol
was never used.

Table 4-3. Symbol Attributes for Cross-Reference Listings

Character .
or Name Meaning
REF External reference (global symbol)
UNDF Undefined
! Symbol defined in a .text section
i Symbol defined in a .data section
+ Symbol defined in a .bss section

Assembler Description

Section b

Assembler Directives

Assembler directives supply program data and control the assembly process.
Assembler directives allow you to:

Reserve space in memory for uninitialized variables
Control the appearance of listings

Initialize memory

Assemble conditional blocks

Define global variables

Specify libraries that the assembler can obtain macros from
Examine symbolic debugging information

This section is divided into two parts: the first part (Sections 5-1 through
5-7) describes the directives according to function, and the second part
(Section 5.8) is an alphabetical reference. You will find the following topics
in this section:

Section
5.1 DireCtives SUMMANYocociiiiiieiieeiiie e aeeeesaeeeseesesesseeesseasaseesseeasneeeas
Sections Directivesccccoeeeveecieneenne
Directives that Initialize Memory
Directives that Align the Section Program Counter
Directives that Format the Output Listingcccceeeeeeee
Conditional Assembly Directivescc.cocoevenenenenenneennn
Directives that Reference Other Files ..o
Directives Referenceccccooiviiiicciiiee e

aoooo oo
ONOOITPWN

The TMS320C30 C compiler uses several directives for symbolic debugging.
Unlike other directives, symbolic debugging directives are not used in most
assembly language programs. Appendix B discusses these directives; they are
not discussed in this section.

5-1

Assembler Directives - Directives Summary

5.1 Directives Summary

Table 5-1 summarizes the assembler directives.

Note that all source state-

ments that contain a directive may have a label and a comment. To improve
readability, they are not shown as part of the directives’ syntax.

Table 5-1. Directives Summary

Sections Directives

Mnemonic and Syntax

Description

= £

.asect "secltion name”, address

Assemble into an absolute named (initialized}
section

.bss symbol, size in words

Reserve size words in the .bss (uninitialized data)
section

.data

Assemble into the .data (initialized data) section

fabel "symbol”

Define a fabel in an absolute section

.sect "section name”

Assemble into a named (initialized) section

text

Assemble into the .text (executable code) section

symbol .usect "section name”, size in words

Reserve size words in a named (uninitialized)
section

Directives that Initialize Memory

Minemonic and Syntax

Description

byte valuey [..... valusn]

initialize one or more successive bytes in the cur-
rent section

field value [.size in bits]

tnitialize a variable-length field

float valuey [...., valuep]

Initialize one or more 32-bit, single-precision,
floating-point constants

Jword valtues [, valuey]

initialize one or more 18-bit (half-word) values

it values /.., valuey]

initialize one or more 32-bit integers

Jong vaivey /... value,]

initialize one or more 32-bit integers

symbol .set value

initiatize an assembly-time constany

Space size in words

Fieserve size words In the current saction

string “siring:” [,.., "stringp"]

Initialize one or more text strings

word valucy [,..., valuep]

initialize one or more 32-bit integers

Directives that Align the Section Program Counter (SPC)

Mnemonic and Syntax Deascription
atign Align the SPC on a 32-word {cache} boundary
aven Align the SPC on a word boundary

Liirectives that Format the Output Listing

Minemonic and Svntax

Description

Jdength page fength

Set the page length of the source listing

dist Restart the source listing

st Allow macro listinge {default)

minolist) inhibil macro listings 7
nolist o T

+ Stop the source isiing

iy

oy
P

Assembler Directives - Directives Summary

Table 5-1. Directives Summary (Concluded)

Directives that Format the Output Listing (continued)

VMinemonic and Syntax

Cescription

cption {B[D|FILIM|TIX}

Select output listing opticns

.page

Eiect a page in the source listing

title "string”

Print a title in source page heading

width page width

Set the page width of the source listing

Conditional Assembly Directives

Mnemonic and Syntax

Description

AT expression

Begin conditional assembly

.else

Opticnal conditional assembly

endif

End conditional assembly

Directives that Reference Other Files

Mnemonic and Svntax

Description

include source statements from another file

.copy ["]fiilename["]
.def symboly [,..., symbol,]

identify one or more symbols that are defined in
the current module and used in other modules

.gichal symboly [...., symboi,]

identify one or more global (external) symbols

[dnciude []filename[”]

include source statements from ancther file

.miik [Jfilename[”]

Specify the name of a macro library

.ref symbeiy [...., symbol,]

Identify one or more symbols that are used in the
current module but defined in another module

Misceilaneous Directives

Mnemonic and Syntax Description
.end Prcgram end
Symbolic Debugging DirectivesT
Mnemonic and Syntax Description

kicek seginning fine number

Begin a € block

endiiock ending /ine number

znd a C block

®

ndfunc ending line number

End a function definition

o

T3

End a structure, enumeration, or union definition

a

0]

y#=Inl 716, 528

Zegin an enumeration definition

Aile Trilaname”

Detfine a program identifier

i Begin a function definition

Specitv the line number of a C scurce statement

cecify symbolic debug information for 8 gicoa

| variagie, local variabie, or a function

i

Zecin a union definition

i Apcendix B

Assembler Directives - Sections Directives

5.2 Sections Directives

Six di

rectives associate the various portions of an assembly language program

with the appropriate sections:

The .bss directive reserves space in the .bss section for variables.

The .usect directive reserves space in an uninitialized named section.
The .usect directive is similar to the .bss directive, but it allows you to
reserve space separately from the .bss section.

The .text directive identifies portions of code in the .text section. The
.text section usually contains executable code.

The .data directive identifies portions of code in the .data section. The
.data section usually contains initialized data.

The .sect directive defines initialized named sections, and associates
subsequent code or data with that section. Named sections are initial-
ized and contain code or data.

The .asect directive creates initialized named sections that have abso-
lute addresses. (Within an absolute section, you can use the .label di-
rective to define labels with absolute addresses.)

Section 3 discusses COFF sections in detail.

Figure 5-1shows how you can use sections directives to associate code and
data with the proper sections. This is an output listing; column 1 shows line
numbers, and column 2 shows the section program counter. Each section has
its own program counter, or SPC. When code is first placed in a section, its
SPC equals 0. When you resume assembling into a section, its SPC will re-

sume

counting as if there had been no intervening code.

After the code in Figure 5-1 is assembled, the sections contain the following:

.text
.data

Initializes words with the values 1, 2, 3,4, 5, 6,7, and 8
Initializes words with the values 9, 10, 11,12, 13, 14, 15,
and 16

var—defs Initializes words with the values 17 and 18

.bss
Xy

Reserves 19 words
Reserves 20 words

Note that the .bss and .usect directives do not end the current section or begin
new sections; they reserve the specified amount of space, and then the as-
sembler resumes assembling code or data into the current section.

Assembler Directives - Sections Directives

0001
0002
0003
0004
0005

0006

0007
0008
0009
0010
0011
0012

0013

0014
0015
0016
0017
0018
0019
0020

0021
0022
0023
0024
0025
0026

0027
0028
0029
0030

0031
0032
0033
0034
0035
0036

0037

0038
0039
0040

0041

000000
000000
000001
000002
000003

000000
000000
000001
000002
000003

000000
000000
000001

000004
000004
000005

000000

000006
000007

000004
000004
000005

000000

000006
000007

00000001
00000002
00000003
00000004

00000009
0000000A
0000000B
0000000C

00000011
00000012

0000000D
0000000E

0000000F
00000010

00000005
00000006

00000007
00000008

LR R S R S S R RS SRR SRR RS SRS SRS SR

* Start assembling into the .text section *
khkkkkhhhhkhhdhhhhkdhhhhhhkhhhhhhhkhhhhkhkhhhkhdhhhhdx

.text
.word 1, 2
.word 3, 4

EEEE R R LR ESEEEEEEEEREEEEEEEEEEEEREREEEEEEEEEE]

* Start assembling into the .data section *
kkkkkhkhhkhkkhkhkkhhhkhkkhhkkhkrhhhhhhkhohhhkhhhhhrhkhhkkhrhkhdx

.data
.word 9, 10

.word 11, 12

EEEE RS R L RS EEEEEEEEEEEEEEEEREEREEEEEEEEEEEEES]

* Start assembling into named section, *
* var—defs *
IR E RS SRS R EE SRS EEEEEEEEEEEEEEREEESESES SRS
.sect "var—defs"
.word 17, 18

EEEE RS S EEEE SR EEEEEEEREEEEEEEESEEEREEEEEEEEEES

* Resume assembling into the .data section *
khkkhkhkhkhkhkkhkdhhkrhhhhkhhkhdkkhddkhdhhhhkhhrhdhhkhhohkrdrd
.data
.word 13, 14

.bss sym,19 ; Reserve space in .bss
.word 15, 16 ; Still in .data
kkkkkhkkhkhhhhdhhhdhhhhhhkhdhkhdhhhhdhkrhhhhdohdhhdrd
* Resume assembling into the .text section *
IR EE RS R RS RS SRS SRS R R EEREEEEEEEEEREEEREE TS
-text
.word 5, 6
usym .usect "xy",20 ; Reserve space in xy

.word 7, 8 ; Still in .text

Figure 5-1. Examples of Sections Directives

5-5

Assembler Directives - Directives that Initialize Memory

5.3 Directives that Initiaiize Memory

Several directives assemble values into the current section:

5-6

The .set directive equates a value with a symbol. This type of symbol
is known as an assembly-time constant; it can be used in the same
manner as a numeric constant (for example, in expressions).

This example defines a symbol named bval and assigns the value 4 to
it. The symbol bval can then be used as a constant.

0001 00000004 bval .set 4

0002 000000 00000004 .byte bval, bval*2, bval+l2

000001 00000008
000002 00000010

Note that the set directive produces no object code.

The .byte directive places one or more 8-bit values into consecutive
words In the current section. This directive is similar to .word, except
that the width of each value is restricted to 8 bits.

The .hword directive places one or more 16-bit half-word values into
consecutive words in the current section. This directive is similar to
.word, except that the width of each value is restricted to 16 bits.

The .word, .int, and .long directives place one or more 32-bit values
into consecutive locations in the current section.

The .string directive places 8-bit characters from one or more character
strings into the current section. This directive is similar to .byte, except
that four 8-bit values are packed into each word. The last word in a
string is padded with null characters (0Os) if necessary.

The .float directive calculates the single-precision (32-bit) floating-
point representations of specified floating-point values, and stores them
in consecutive words in the current section. Here's an example of a .float
directive and the object code that it generates:

0005 000003 0274ED91 .float 7.654

Figure 5-2 compares the .byte, .hword, .word, and .string directives; for this
example, assume the following code was assembled:

0001 000000 000000AB .byte OABh

0002 000001 OQOQCDEF .hword O0CDEFh
0003 000002 89ABCDEF .word 089ABCDEFh
0004 000003 706C6568 .string "help"

Assembier Directives - Directives that Initialize Memory

Word Contents Code
31 o]
1 o] 0 o] ol Q o] A B .byte CABh
\.______V_____,/
1 byte
2 0 0 0 0 C D E F .hword OCDEFh

/

Vv
2 bytes (half word)

3 8 <] A B C D E F word 0BSABCDEFh
- \
whole word
4 70 6C 85 68 string "help”
e — —
p | e h

Figure 5-2. Examples of Initialization Directives

The .field directive places a single value into a specified number of bits
in the current word. You can pack multiple fields into a single word; the
assembler will not increment the SPC until a word is filled.

Figure 5-3 shows how fields are packed into a word. For this example,
assume the following code has been assembled; notice that the SPC
doesn’t change (the fields are packed into the same word):

0006 000004 00000003 .field 3,4
0007 000004 00000083 .field 8,5
0008 000004 00002083 .field 16,7

field 8,5

field 16,7

Figure 5-3. An Example of the .field Directive

5-7

Assembler Directives - Directives that Initialize Memory

The .space directive reserves a specified number of words in the current
section. The assembler fills these reserved words with Os.

Figure 5-4 shows an example of the .space directive; assume the fol-
lowing code has been assembled:

0154 00027A 080F000C LDI AR4,AR7
0155 000278 00000000 .space 27
0156 000296 0000000F ‘word 15

(a) Current
SpC = 2 27 words

‘_z’(b) New SPC = 296h

after assembling a
.space directive to
-~ et tmael - - -~ reserve 27 words

Figure 5-4. An Example of the .space Directive

Assembler

Directives - Directives that Align the SPC

5.4 Directives that Align the Section Program Counter

® The .align directive aligns the SPC on a 32-word boundary. This en-
sures that the code following the .align directive begins on a cache
boundary. If the SPC is already aligned at a 32-word boundary, then it
is not incremented and .align has no effect. Figure 5-5 shows an ex-
ample of the .align directive; assume that the following code has been

assembled:
0201 000C11 00000000 .align
0202 000C20 00000004 .byte 4

———

0CO00h

(b) New SPC = 0C200

(\A

(a) Current
SPC = 0C1th

after assembling
32 instruction an .align directive

words

0C20h

32 instruction
words

0C40h

Figure 5-5. An Example of the .align Directive

o The .even directive aligns the SPC so that it points to the next full word.

You should use .even after using .field directives; if the .field directive
doesn’t fill a word, the .even directive forces the assembler to write out
the full word and fill the unused bits with Os.

Figure 5-3 (page 5-7) illustrates the .field directive; Figure 5-6 shows
the effect of assembling a .even directive after a .field directive. Assume
the following code has been assembled:

0006 000004 00000003 .field 3,4
0007 000004 00000083 .field 8,5
0008 000004 00002083 .field 16,7
0009 000005 .even
31
[0000000000000000
\ N /
vV \%4
These bits are filled with Os These bits were filled by .field directives

after assembling an .even directive

Figure 5-6. An Example of the .even Directive

5-9

Assembler Directives - Directives that Format the Qutput Listing

5.5 Directives that Format the Output Listing

Seven directives format the listing file:

%

®

@

The .length directive controis the page length of the listing file. You
can use this directive to adjust listings for various output devicas.

The .width directive controls the page width of the listing filz. You can
use this directive to adjust listings for various output devices.

The .list and .nolist directives turn the output listing on and off. You
can use the .nolist directive to stop the assembler from printing selected
source statements in the listing file. Use the .list directive to turn the
listing back on.

The .miist and .mnolist directives allow and inhibit macro expansion
iistings.

The .option directive controls several features in the listing file. This
directive has several operands:

Limits the listing of .byte directives to 1 line.

Limits the listing of .hword diractives to 1 line.

Resets the B, H, L, M, and T options.

Limits the listing of .long, .int, and .word directives to 1 line.
Limits macro expansions to 1 line.

Limits the listing of .string diractives to 1 line.

Produces a cross-reference listing of symbols. (You czn also ob-
iain a cross-referance listing by invoking the assembier with the -x
option.)

x%gﬂmxm

The .page directive causes 2 page gject in the output listing.

The .title directive supplies a title that the assembier printe on ths sac-
ond line of sach page.

Assembler Directives - Conditional Assembly Directives

5.6 Conditional Assembiy Directives

Three directives allow you to assemble conditional blocks of code:

d The .if directive marks the beginning of a conditional block. The .if di-
rective has one parameter, which is an expression.

- if this expression evaluates to true (a nonzero value), then the as-
sembler assembles the code that follows it (up to an .else or .en-
dif).

- If this expression evaluates to false (0), then the assembler as-
sembles code that foliows an .else (if present) or an .endif (if no
.else is present).

D The .else directive identifies a block of code that the assembier assem-
bies if the if-expression is false (0). This directive is optional in the
condgitional block; if an expression is false and there is no .else statement,
then the assembler continues with the code that foliows the .endif.

] The .endif directive terminates a conditional biock.

The assembler supports several relational operators that are especially useful
for conditional expressions; see Section 4.8.4 on page 4-13 for more infor-
mation about reiational operators. Figure 5-7 shows an example of conditional

assembly.
0001 00000001 syml
0002 00000002 sSym2
000000063 sym3
00000004 symd
If 1: sym2
00000001
TE-2 sym2 = symé
- sym2
ao00d004
i
i I£.2: sym4d - svm2
E 00000001
! .byte sym4 - evmZ

.endif

Figure 5-7. An Example of Conditional Assembly Directives

Assembler Directives - Directives that Reference Other Files

5.7 Directives that Reference Other Files

These directives supply information for or about other files.

The .copy and .include directives tell the assembler to begin reading
source statements from another file. When the assembler is done reading
the source statements in the copy/include file, it resumes reading source
statements from the current file. The statements read from a copied file
are printed in the listing file; the statements read from an included file
are not printed in the listing file.

The .global directive declares a symbol to be external so that it is avail-
able to other modules at link time. The .global directive does double
duty, acting as a .def for defined symbols and as a .ref for undefined
symbols. Note that the linker will resolve an undefined global symbol
only if it is used in the program.

The .def directive identifies a symbol that is defined in the current
moduie and can be used by other modules. The assembler puts the
symbol in the symbol table.

The .ref directive identifies a symbol that is used in the current module
but defined in another module. The assembler marks the symbol as an
undefined external symbol and puts it in the object symbol table so the
linker can resolve its definition.

The .mlib directive supplies the assembler with the name of an archive
library that contains macro definitions. When the assembler encounters
a macro that is not defined in the current module, it will then be able to
search for it in the specified macro library.

Assembler Directives - Directives Reference

5.8 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are or-
ganized alphabetically, one directive per page; however, related directives
(such as .if/.else/.endif) are presented together on one page. Here's an al-
phabetical table of contents for the directives reference:

Directive Page
F= 11 To | o T SO ORU RSN 5-14
F2 1= o PR 5-15
0 Y- RSO 5-17
DY e et b e et e ne e e ne e 5-18
(o707 ¢}V TSP PO RO TPPURPPPRROPPN 5-19
(o b1 & [OU USROS SRTRUPN 5-20
[o L3 SRS SUSSUUSETRRUPON 5-26
=YL YOO SR RO UO SRRSO 5-29
=Y T RSP RRROPRN 5-21
=Y Lo L1 TP SRR PP 5-29
L3V o U 5-22
L= [« TP PSR OSSPSR 5-23
L (o -} SRS RO SRR USRI 5-25
fo 11 o - | I USROS SRS 5-26
03V VoY (o USSR 5-28
FE et e e e e te e e e e e e b— et e e e aateea e aaeaeaannreeeennnereeanereannreean 5-29
INCIUAE ettt et e et e e e te e e b e e sateeeaseestaseneseanes 5-18
] 2 RSSO ORR 5-30
71 oY= PO 5-156
JENGTN e 5-31

=3 S OO 5-32
1 (o] 3 [« TR SR P PP SR URRSTOTRUR 5-30
211 L] o SO UEURUS USROSt 5-33
TN IS T oottt ettt ee e ettt e et et e e e e e ee e e e e e s et eseeeeae e e et ee et e e etnaatantana—arana————————————————— 5-34
{2012 o 113 SRS 5-34
T o113 PR RR 5-32
(o] o34 To o TR USSR 5-35
[T 1= SO SSUUP RPN UUPRTUPRPIOE 5-36
(= SRR 5-26
LT PR 5-37
L=1=1 SRS U R PSSRSO 5-38
L] o 7= o T OO PP PPN 5-39
LY (]« TR OO O SO U O UYUSOU TSP 5-40
BEXE ittt ettt et et e et e et e et e e e n e e aree—aeeeteeabaeeeabeeareeantaatneeeareeeneeaneate 5-41

1] 4 U USSR 5-42
L1 =T o PSSO 5-43
ATV o 1 1 o USROS 5-31

WOTA otiiiiiiiitiiieccttee e e ettt e e e et e e e ebereesessee e easaeaeeasssessanasssseessnneeesaasseeeeesnneeaensaeeanrn 5-30

.align Align SPC on a 32-Word Boundary

Syntax .align

Deascription The .align directive aligns the section program counter on the next 32-word
boundary. If necessary, the assembler assembles words containing NQOPs.
This directive is useful for aligning code on a cache boundary.

Using the .align directive has two effects:

® The assembler aligns the SPC on a 32-word boundary within the
current section.

@ The assembler sets a flag that forces the linker to align the entire sec-
tion on a 32-word boundary. This ensures that individual alignments
remain intact when a section is loaded into memory.

Example This example aligns the SPC on the next 32-word boundary to ensure that
the code that follows it will start on a cache boundary. Figure 5-8 shows
how this code aligns the SPC.

0001 000000 08010000 LDI RO,R1
0002

0003 000020 .align

0004

0005 000020 08010000 x: LDI RO,R1
0006 000021 08010000 LDI RO,R1
0007 000022 00000000 .space 25
0008

G009 000040 .align

SPC = 0Oh SPC = 20h
i : : 1
'] 1]
I] 1]
1 1] i
(a) LDI RO, R1 (b) .align
40h
SPC = 36h SPC = 40h
' ol :
] H H]
! i ' i
' ' ' '
(c) LDI RO, R1 (d) .align
LDI RO, R1
.space 25

Figure 5-8. An Example of the .align Directive

Define an Absolute Section .asect/.label

Syntax

Description

Example

.asect "section name" [, address]

.label symbo/

The .asect directive defines a named section whose addresses are absolute
with respect to address.

® The section name is a required parameter that identifies the name of
the absolute section. The name must be enclosed in double quotes.

e The address required parameter identifies the section’s absolute start-
ing address in target memory. This address is required the first time
that you assemble into a specific absolute section. If you use .asect
to continue assembling into an absolute section that already contains
code, you cannot use the address parameter.

Absolute sections are useful for loading sections of code from off-chip
memory into faster on-chip memory. In order to use an absolute section,
you must know which location you want the section to execute from, and
specify it as the address parameter.

Most sections directives create sections with relocatable addresses. The
starting SPC value for these sections is always zero; the linker then relocates
them where appropriate. The starting SPC value for an absolute section,
however, is the specified address. The addresses of all code assembled into
an absolute section are offsets from the specified address. The linker does
relocate sections defined with .asect; however, any labels defined within
an absolute section retain their absolute (runtime) addresses.” Thus, refer-
ences to these labels refer to their runtime addresses, even though the sec-
tion is not initially loaded at its runtime address.

All labels in an absolute section have absolute addresses. The .label direc-
tive creates "labels” with relocatable addresses; this allows you to define a
symbol that points to the section’s loadtime location in off-chip memory.
The .label directive can only be used within an absolute section.

Note that after you define a section with .asect, you can use the .sect di-
rective later in the program to continue assembling code into the absolute
section.

This example defines an absolute section called abs. At run time, this sec-
tion will start at address 100h in on-chip RAM. copy—start is a relo-
catable symbol that points to the section’s loadtime address in off-chip
ROM. The symbols abs_code and abs_end are absolute addresses;
abs_code - abs—end yields the number of lines of code to move. The
function copy copies the section from ROM into RAM.

Figure 5-9 shows how the code is copied from one part of memory to an-
other.

.asect/.label

Define an Absolute Section

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036

000100v
000100
000100
000101
000102
000103

000000
000000
000001

000000
000000
000001
000002
000003
000004

000005

000006
000007
000008

copy_start ————

khkkhkkhkhhkhkhkhhhhkhhkhrhhhhkhhdhhddhkhdkdbhkdhorrdhhxsk
* Define an absolute section. This section can *
* be linked and loaded into external ROM, then *

*

* copied into internal RAM and run.
LSS R RS RS EEE S S R RS SRR RS REE SRS EEEEE S

.asect "abs", 100h ; dest addr in RAM
.label copy-start ; src addr in ROM
08600000 abs_code: LDI 0,RO
13FB0064 RPTS 100
02402001 ADDI *AR0++, RO
78800000 abs_end: RETS
kkkkkhkhhhhkhhkhhhkhkhhhhhkhhkhhhhkhdohhhhhhkhdhrhdhhhk
* This function copies the absolute section *
* from ROM to RAM. *
FhhkhkkhdhAhhhdbhkhhhddhhddhhddbhhkhhkdrrddhhdbrhrbhrhxk
.data
00000100+ L1 .word copy-start ; ptr to code in ROM
00000100+ L2 .word abs_code ; dest addr in RAM
.text
08280000+ copy: LDI @L1,ARO ; load src ptr
08290001+ LDI @L2,AR1 ; load dest ptr
08402001 LDI *ARO++,R0O ; load first word
13FB0O00O3 RPTS abs—end - abs-—code
DA002120 LDI *ARO++,RO ; copy all bytes
11 STI RO, *AR1++
78800000 RETS ; end copy
RS E SRR SRS SR RS R RS EEEES RS RS SR EEE LR R
* Main program -- copy the routine into RAM, *
* then run. *
IE RS S SRS E RS RS E SRR RS EEE R E SRR E SRS EEEE SRR S
62000000+ run: CALL copy
62000100 CALL abs—code
78800000 RETS
External ROM Internal RAM

Figure 5-9. An Example of the .asect Directive

08600000
13FB0064
02402001
78800000

'
]
]
1

08600000 |+—— abs_code = 100h
13FB0064
02402001
78800000 |«——— abs_end

Assemble into .bss Section .bss

Syntax

Description

Example

.bss symbol, size in words

The .bss directive reserves space in the .bss section for variables. This di-
rective is usually used to allocate variables into RAM.

[] The symbol is a required parameter. [t defines a symbol that points
to the first location reserved by the directive. The symbol name
should correspond to the variable that you're reserving space for.

[] The size is a required parameter; it must be an absolute expression.
The assembler allocates size words in the .bss section. There is no
default size.

Note that the .usect directive is similar to the .bss directive; it also reserves
space in memory. However, .usect creates named uninitialized sections that
can be allocated separately from the .bss section.

Other section directives (.text, .data, .sect, and .asect) end the current sec-
tion and begin assembling into another section. The .bss directive, how-
ever, does not affect the current section. The assembler assembles the .bss
directive and then resumes assembling code into the current section. For
more information about COFF sections, see Section 3.

This example uses the .bss directive to allocate space for two variables,
array and dflag. The symbol array points to 100 words of uninitialized
space (the .bss SPC = 0). The symbol dflag points to 1 word of unini-
tialized space (the .bss SPC = 100). This example reserves a total of 101
words in the .bss section. Note that symbols declared with the .bss direc-
tive can be referenced in the same manner as other symbols and can also
be declared external.

.bss Assemble into .bss Section

0001 LR RS EEEEEEE SR EEEEEREEEEEEEEEEEE]
0002 * Begin assembling into .text *
0003 EEE R R R R R R EEEE R EEEEE RS
0004 000000 .text

0005 000000 08010000 LDI RO,R1

0006

c007 Kkkkkkkk Ak kkhkhkhkk bk hhkkkk ok kx
0008 * Allocate 100 words in .bss *
0009 LR EEEE RS EEE R SRR EEEEEEEEEEE RSN
0010 000000 .bss array, 100

0011

0012 Kk kkkhhkkkhkkhhkhhkkkhkkkkhkkkkkk
CC13 * Still in .text *
0014 EEE AR SRS RS EEEE RS L ETEREEE SRS
0015 000001 08020001 LDI R1,R2

C016

o017 LR EEEE R E RS EEEEEEEEEEEEEE RS
0018 * Allocate 1 word in .bss *
0019 LR R R R R R R EEEEEE R R
0020 ©0C064 .bss dflag,l

0021

0022 KRR KAKKARKKARKARK KRR RRK AR XA RK
0023 * Still in .text *
0024 L)
0025 000002 08020064+ LDI edflag,RO

C026

0027 EEEREEEEREEEEEEEEEEEEEESEEEEESEEEE]
0028 * Declare external .bss symbol *
0029 LR AR E RS EE R EEEEEEEEEEEEEEEE SRS
C030 .global array

Initialize Byte .byte

Syntax

Description

Example

.byte valuey [..... value,]

The .byte directive places one or more 8-bit values into consecutive words
in the current section. Each value can be either:

(] An expression which the assembler evaluates and treats as an 8-bit
signed number.

° A character string enclosed in double quotes. Each character repres-
ents a separate value.

Values are not packed or sign extended; each byte value occupies the least
significant 8 bits of a full 32-bit word. The assembler truncates values that
are greater than 8 bits. You can use up to 100 values, but the total line
length cannot exceed 200 characters. Each character in a string is counted
as a separate operand.

If you use a label, it points to the location at which the assembler places the
first byte.

This example places the 8-bit values 10, -1, 97, 98, 99, and 97 into six
consecutive words in memory. The label strx has the value 64h, which is
the location of the first initialized word.

0002 000064 0000000A strx: .byte 10,-1,"abc",'a’
000065 OOOOOOFF
000066 00000061
000067 00000062
000068 00000063
000069 00000061

.copy/.include Read Statements from Another Source File

Syntax

Description

5-20

.copy ["]filename["]
.include [”Jfilename["]

(The quote marks surrounding the filename are optional.)

The .copy and .include directives tell the assembler to read source state-
ments from a different file. The assembler:

1) Stops assembling statements in the current source file.
2) Assembles the statements in the copied/included file, and

3) Resumes assembling statements in the main source file, starting with
the statement that follows the .copy or .include directive.

The filename is a required parameter that names a source file; the filename
may be enclosed in double quotes. The filename must follow operating
system conventions. You can specify a full pathname (for example, . copy
c:\dsp\filel.asm). If you do not specify a full pathname, the assembler
searches for the file in:

1) The directory that contains the current source file.
2) Any directories named with the -i assembler option.
3) Any directories specified by the environment variable A—DIR.

For more information about the -i option and the environment variable, see
Section 4.3, Specifying Alternate Directories for Assembler Input, on page
4-4.

The statements that are assembled from a copy file are printed in the as-
sembly listing. The statements that are assembled from an included file are
not printed in the assembly listing, regardless of the number of .list/.nolist
directives that are assembled.

The .copy and .include directives may be nested within a file being copied
or included. The assembler limits this type of nesting to eight levels; the
host operating system may set additional restrictions. The assembler pre-
cedes the line numbers of copied files with a letter code to identify the level
of copying. An A indicates the first copied file, B indicates a second copied
file, etc.

Read Statements from Another Source File

.copy/.include

Example 1 This example uses the .copy directive to read and assemble source state-
ments from other files and then resumes assembling into the current file.
Listing file:
0001 000000 00000000 .space 20
0002 .copy "byte.asm"
A0001 *#* In byte.asm
A0002 000014 00000020 .byte 32, 1+'A’
000015 00000042
A0003 .copy "word.asm"
B0O0O1 ** In word.asm
B0002 000016 OOOOAABB .word OAABBh, 56g
000017 0000002E
A0004 ** Back in byte.asm
A0005 000018 0000006A .byte 67h+3
0003
0004 ** Back in original file
0005 000019 656E6F44 .string "Done"
Example 2 This example uses the .include directive to read and assemble source

statements from other files and then resumes assembling into the current

file.

byte2.asm
(first include file)

include.asm
(source file)

word2.asm
(second include file)

.space 29
.include "byte2.asm"

** In byte2.asm
.byte 32, 1 + 'A'
.include "word2.asm"

**Back in original file ** Back in byte2.asm

** In word2.asm
.word OABCDh, 569

.string "Done" .byte 67h+3
Listing file
0001 0000 .space 29
0002 .include "byte2.asm"

5-21

.data

Assemble into .data Section

Syntax

Description

Example

5-22

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034

.data

The .data directive tells the assembler to begin assembling source code into
the .data section; .data becomes the current section. The .data section is
normally used to contain tables of data or preinitialized variables.

Section 3 provides a detailed explanation about COFF sections.

Note that the assembler assumes that .text is the default section. Therefore,
at the beginning of an assembly, the assembler assembles code into the
.text section unless you specify an explicit section control directive.

This example assembles code into the .data and .text sections.

khkhkkhhkkhhkhdhkdhhhhkhhkdrhhhdkrdrhhrhkhhhdk

* Reserve space in .data **
LR R RS SRS S S S SRS RS RS E R R R LR EE SRS
000000 .data
000000 00000000 .space 0CCh
A SRR SRR SRS R R SRR R R EEEE RS EEE]
*% Assemble into .text **k
khkkhkhkhhkhhhhhhkhhhkdhhhhhhhhhbhhkhdhhhhhhhhdhrh
000000 .text
000000 00800000 ABSI RO
khkhkhkhkhkhhkhhhkhkhhhhkrhdhhhhkdhdrhhdhdhrhbhkhhhrddn
* % Assemble into .data *
khkkhhhkhkdkhhhhhdhhhdhhhhhhhdrhhhkdhdhrbhhhi
0000cc table: .data
0000CC FFFFFFFF .word -1 Assemble 32-bit

constant into .data

0000CD OOOOOQOFF .byte OFFh Assemble 8-bit
constant into .data
0000CE 08010000 LDI RO,R1 Assemble code into

.data

Ne Ne Se e e we

XSS R E R RS SRR RS SR AR R R R RS

*% Assemble into .text *k
khkkhhkhkkhhdhhdhhkhddhhhhhdhdbhhhdrhkhhhrdrhdi
000001 .text
000001 08010000 LDI RO,R1
2 E SRR SRS E SRR R RS RS SRR R RS R RS RS
* % Resume assembling into .data **
* at address OCFh bl
IR RS S RS SRS RS SRR S S SRR RS R R R R EE R S E
0000CF .data

End Assembly .end

Syntax

Description

Example

.end

The .end directive is an optional directive that terminates assembly. It
should be the last source statement of a program. The assembler will ignore
any source statements that follow an .end directive.

Note that this directive has the same effect as an end-of-file.

Caution:

Do not use the .end directive to terminate a macro; use the
SENDM macro directive instead.

This example shows how the .end directive terminates assembly. If any
source statements followed the .end directive, the assembler would ignore
them.

0001 000000 Text—-Start: .text

0002 000000 0000000A .byte Oah

0003 000001 OOOOAAAA .word OAAAANQ

0004 000002 41414141 .string "AAAAAAAA"
000003 41414141

0005 .end

5-23

.even Alignh SPC at Next Word Boundary

Syntax .even

Description The .even directive aligns the section program counter on the next full
word. When you use the .field directive, you can follow it with the .even
directive. This forces the assembler to write out a partially filled word before
initializing fields in the next word. The assembler will fill the unused bits
with Os. If the SPC is already on a word boundary (no word is partially
filled), then .even has no effect.

Example Here’s an example of the .even directive. Word 0 is initialized with several
fields; the .even directive causes the next field to be placed in word 1.

0001 khkhkhhkkhhhhhrhkhhkhdrhrhhohdrhkhhhkhk
0002 * Initialize a 2-bit field *
0003 khkhkkkhkkhkhkkhhhhhkhhhhrkhkkhhhhhdrhhhxihhd
0004 000000 00000003 .field 03h,2

0005

0006 khkkkhkkkkhkhkkhhhkhhhkdhkhhhkhkhhkhkhhhkx*k
0007 * Initialize a 5-bit field *
0008 IR SRS AR E RS RS SR EEEEEE RS
0009 000000 0000002F .field OBh,5

0010

0011 dkkkkhhkhhkhhkhdhhdhhhkhhhkhrhhhhhdhx
0012 * Write out the word *
0013 R RS S E SRR S SRR RS RS RS R ER SRS
0014 000001 .even

0015

0016 hkkkkhhkkdhhhkhkhhhhddbhhhhrhddrrddhhx
0017 * This field is in the *
0018 * next word *
0019 *****************************_***
0020 000001 00000007 .field 07h,3

Figure 5-10 shows how this example initializes word 0. The first 7 bits are
initialized by .field directives; the remaining bits are set to 0 by the .even
directive.

31
IO 0000000000000000000CO0O0O0 O Off
\ /\

/

\'4 A4
This part of the word is filled by the .even directive. This part is filled
by .field directives.

Figure 5-10. An Example of the .even Directive

5-24

Initialize Field field

Syntax

Description

.field value [,size in bits]

The .field directive initializes multiple-bit fields within a single word of
memory. This directive has two operands:

[] The value is a required parameter; it is an expression that is evaluated
and placed in the field. If the value is relocatable, size must be 32.

[] The size is an optional parameter; it specifies a number from 1-32,
which is the number of bits the field consists of. If you do not specify
a size, the assembler uses a default size of 32 bits. Note that the as-
sembler will truncate the value if you specify a field that is not wide
enough to contain the value. For example, .field 3,1 will cause the
assembler to truncate the value 3 to 1; the assembler will also print
an error message.

Successive field directives pack values into the specified number of bits in
the current word. Fields are packed starting at the least significant part of
the word, moving towards the most significant part as more fields are ad-
ded. If the assembler encounters a field size that will not fit in the current
word, it writes out the word, increments the SPC, and begins packing fields
into the next word.

You can use the .even directive to force the next .field directive to begin
packing into a new word.

If you use a label, it points to the word that contains the field.

5.25

field Initialize Field

Example This example shows how fields are packed into a word. Notice that the
SPC does not change until a word is filled and the next word is begun.

Oool khkhkkdhhrhhhhhhhhhhdhhhhhkhddrhdhhdk
0002 * Initialize a 24-bit field *
0003 KAk kAR KRR KR Ak hhhhhhhhhkhhkhhhkhk
0004 000000 OOBBCCDD .field OBBCCDDh, 24

0005

0006 ek ok ok ok % ok e %k ok gk ok ok ok sk ok ok ke ok ok ke ke ok ok ke ok ke ok ke e ok
0007 * Initialize a 5-bit field *
0008 khkkkkkdhkhkhhhhkhkdhkhhkkdhkhdhkhdhhhhkhkd
0009 000000 OABBCCDD .field 0Ah,5

0010

Ooll khkhkhkkhkdhhhkhhkkhdhhkhhkdhhhhrrhdhhhhhdd
0012 * Initialize a 4-bit field *
0013 * (new word) *
0014 Akhkkrh kAR Rk Ak kA kkhkkkkkkkkhhk k%
0015 000001 0000000C .field OCh, 4

0016

0017 KA AR AR IR R KR KA AR AR A AR R Ak kK ok
0018 * Initialize a 3-bit field *
0019 Kk kkkhhhhhhhkhhhkhhhkkhkkkkkhkk k&
0020 000001 0000001C x: .field 01h,3

0021

0022 KA FRKKRKKRF IR R RR A KKK Kk hh ok ko k kK
0023 * Initialize & 32-bit relo- %*
0024 * catable field in the next *
0025 * word *
0026 Kk hh kIR KRR KK KA XK AR ARk Rk khhk k%
0027 000002 00000001" .field x

Figure 5-11 (page 5-27) shows how the directives in this example affect
memory.

5-26

Initialize Field field

Word 34 o Code
() 0 | 00111011110011001101110 1] field 0BBCCDDh, 24
\ /
\'%4
24-bit field
(b) 0 | 01010
5-bit field
{c)o [0 0o0]o oltot110 0 field oCh, 4
1| 1100]
____v._/
4-bit fleld
(d) 1 | 0011 | fleld o1h, 3

——
3-bit field

(€)1 /0000000000000000000000 00 0[O

2|0000OOOOO00000000000000000000001|

Figure 5-11. An Example of the .fieid Directive

5-27

.float

Initialize Floating-Point Value

Syntax

Description

Example

5-28

.float valueq [..... value,]

The .float directive places the floating-point representation of one or more
floating-point constants into successive words in the current section. Each
value must be a floating-point constant, or a symbol that has been equated
to a floating-point constant. Each constant is converted to a floating-point
value in TMS320C30 single-precision (32-bit) format.

Here are some examples of the .float directive.

0001
0002
0003

0004
0005
0006

000000
000001
000002
000003

000004

53FBAGAF
01400000
06760000
FF000000
01490FCF
012dr94C
01490FCF
012dF94cC

.float
.float
.float

.set
.set
.float

-1.0e25
3
123, 0.

3.14159
2.71828
PI,E

5

Global Symbol Definitions .global/.ref/.def

Syntax

Description

Example

.global symbol; [..... symbol,]

.def symboly [,..., symbol,]

.ref symboly [..... symbol,]

The .global, .def, and .ref directives identify symbols that can be referenced
externally.

The .def directive identifies a symbol that is defined in the current
module and can be accessed by other files. The assembler will place
this symbol in the symbol table.

The .ref directive identifies a symbol that is used in the current mod-
ulcic but defined in another module. The linker resolves the symbol’s
definition.

The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol; that is,
it appears as a label or is defined by the .set, .usect, or .bss directive. As
with all symbols, if a global symbol is defined more than once, the linker
issues a multiple-definition error. Note that .ref always creates an entry for
a symbol, whether the module uses the symbol or not; .global however,
only creates a symbol table entry if the module actually uses the symbol.

A symbol may be declared global for two reasons:

1)

2)

If the symbol is not defined in the current source module (this in-
cludes macro, .copy, and include files), then the .global or .ref direc-
tive tells the assembler that the symbol is defined in an external
module. This prevents the assembler from issuing an unresolved ref-
erence error. At link time, the linker looks for the symbol’s definition
in other modules.

If the symbol /s defined in the current module, then the .global or .def
directive declares that the symbol and its definition can be used ex-
ternally in other modules. These types of references are resolved at
link time.

This example uses four files:

filel.1lst and file3.1lst are equivalent. Both files define the
symbol Init and make it available to other modules; both files use the
external symbols x, y, and z. filel.lst uses the .global directive
to identify these global symbols; £ile3.1st uses .ref and .def to
identify the symbols.

file2.1st and file4d.1lst are equivalent. Both files define the
symbols x, y, and z and make them available to other modules; both
files use the external symbol Init. file2.lst uses the .global di-
rective to identify these global symbols; file4. 1st uses .ref and .def
to identify the symbols.

5-29

.global/.ref/.def Global Symbol Definitions

filel.Ist:

0001 ; Global symbol defined in this file
0002 global Init

0003 ; Global’ symbols defined in file2.lst
0004 .global X,¥,2

0005 000000 Init: ; Symbol definition
0006 000000 08010000 LDI RO,R1

0007 000001 00000000! .word X

0008 ; .

0009 ; .

0010 ; .

0011 .end

file2.Ist:

0001 ; Global symbols defined in this file
0002 .global X,¥,

0003 ; Global symbol deflned in filel.lst
0004 .global Init

0005 ; Symbol definitions

0006 00000001 X: .set 1

0007 00000002 y: set 2

0008 00000003 z: .set Xx +y

0009 000000 00000000! .word Init

0010 ; .

0011 H .

0012 ; .

0013 .end

file3.Ist

0001 ; Global symbol defined in this file
0002 .def Init

0003 ; GiLobal symbols defined in filed.lst
0004 .ref X,y,2

0005 000000 Init: ; Symbol definition
0006 000000 08010000 LDI RO,R1

0007 000001 00000000! .word X

0008 ; .

0009 ; .

0010 3 .

0011 .end

filed.Ist:

888% ; Global gymbols defined in this file
0003 ; Global symbol deflned in file3.1lst
0004 .ref Init

0005 ; Symbol definitions

0006 00000001 X: .set 1

0007 00000002 y: .set 2

0008 00000003 z: .set X +y

8829 000000 00000000! .word Init

0011 ; .

0012 ; .

0013 .end

5-30 '

Initialize Half Word

.hword

Syntax

Description

Example

.hword valuey [...., value,]

The .hword directive places one or more 16-bit values into consecutive
words in the current section. Each value may be either:

{ An expression which the assembler evaluates and treats as a 16-bit
signed number.

° A character string enclosed in double quotes. Each character repres-

ents a separate value.

Values are not packed or sign extended; each value occupies the least sig-
nificant 16 bits of a full 32-bit word.

The assembler truncates any value that is greater than 16 bits. The .hword
directive can have up to 100 operands, but they must fit on a single line.

If you use a label, it points to the location of the first word that is initialized.

This example assembles several 16-bit values into words in the current
section. The label vlist has the value 6Ah, which is the location of the
first initialized word.

0003 00006A
00006B
00006C
00006D
00006E
00006F

0000000A
OOOOFFFF
00000061
00000062
00000063
00006261

vlist: .hword 10,-1,"abc",'ab'

5-31

.if/.else/.endif ' Conditional Assembly

Syntax

.if well-defined expression

code to assemble if expression is true
.else ;

code to assemble if expression is false
.endif

Description Three directives provide conditional assembly:

Example

5-32

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019

[) The .if directive marks the beginning of a conditional block. The ex-
pression is a required parameter.

- If this expression evaluates to true (a nonzero value), then the
assembler assembles the code that follows it (up to an .else or
.endif).

- If this expression evaluates to fa/se (0), then the assembler as-
sembles code that follows an .else (if present) or an .endif (if
no .else is present).

[] The .else dirdctive identifies a block of code that is assembled when
the if-expression evaluates to false (0). This directive is optional in
the conditional block; if an expression is false and there is no .else
statement, then the assembler continues with the code that follows
the .endif.

[] The .endif directive terminates a conditional block.

Here are some examples of conditional assembly:

00000001 syml .set 1
00000002 sym2 .set 2
00000003 sym3 .set 3
00000004 symé .set 4
1f_4: Lif symd = sym2 * sym2
000003 00000004 .byte symé ; Equal values
.else
.byte sym2 * sym2 ; Unequal values
.endif
If_5: Lif syml <= 10
000004 0000000A .byte 10 ; Less than/equal
.else
.byte syml ; Greater than
.endif
If_6: .if sym3 * sym2 != sym4 + sym2
.byte sym3 * sym2 ; Unequal values
.else
000005 00000006 .byte sym4 + sym2 ; Equal values
.endif

Initialize 32-Bit Integer .int/.long/.word

Syntax

Description

Example 1

Example 2

Example 3

.int valuey [,..., value,]
.long valuey [...., value,]

.word valuey [,..., valuep]

The .int, .long, and .word directives are equivalent. These directives place
one or more values into consecutive 32-bit fields in the current section.
Each value is either:

[] An expression which the assembler evaluates and treats as a 32-bit
sighed number.

[] A character string enclosed in double quotes. Each character repres-
ents a separate value.

The values can be either absolute or relocatable expressions. If an ex-
pression is relocatable, the assembler generates a relocation entry that refers
to the appropriate symbol; the linker can then correctly patch (relocate) the
reference. This allows you to initialize memory with pointers to variables
or labels.

You can use as many values as fit on a single line. If you use a label, it
points to the first word that is initialized.

This example uses the .int directive to initialize words. Notice that the
symbol symptr puts the symbol’s address in the object code and generates
a relocatable reference (indicated by the ' character appended to the object
word).

0005 000070 08010000 symptr LDI RO,R1
0006 000071 0000000A .int 10, symptr,-1,"abc", 'abc’
000072 00000070
000073 FFFFFFFF
000074 00000061
000075 00000062
000076 00000063
000077 00636261

This example initializes two 32-bit fields and defines DAT1 to point to the
first location. The contents of the resulting 32-bit fields are OFFFFABCDh
and 141h.

0001 000000 FFFFABCD DAT1l: .long OFFFFABCDH, 'A'+100h
000001 00000141

This example initializes five words. The symbol WordX points to the first
word.

0001 000000 00000C80 WordX: .word 3200,1+'AB',-'AF',0F410h,'A’
000001 00004242
000002 FFFFB9BF
000003 0000F410
000004 00000041

5-33

dength/.width Set Listing Page Size

Syntax .length page length
.width page width

Description The .length directive sets the page length of the output listing file. It af-
fects the current page and following pages; you can reset the page length
with another .length directive.
® Default length: 60 lines
e Minimum length: 20 lines
® Maximum length: 32,767 lines
The .width directive sets the page width of the output listing file. It affects
the next line assembled and following lines; you can reset the page width
with another .width directive.
[] Default width: 80 characters
[} Minimum width: 80 characters
[] Maximum width: 200 characters
Note that the width refers to a full line in a listing file; the line counter value,
SPC value, and object code are counted as part of the width of a line.
Comments and other portions of a source statement that extend beyond the
page width are truncated in the listing.
The assembler does not list the .width and .length directives.

Example This example sets the page length and the page width to various values.

TMS320C30 Assembler Version 1.0, 87.089 Thu May 28 14:44:06 1987

(c) Copyright 1987, Texas Instruments Inc.

%%% " Length and Width *x* PAGE 1

0002

0003 XSRS SRS RS SEEE SRS RS EEEE R AR RS EEEEEEEEEE]

0004 hhkhkkhhhkhkhhhhhhdhhhhhkhhhhhkhkhdhhhhhkhhhkdhrhhkhhihhd

0005 **x The page length is limited to 60 * %

0006 *x lines per page. The page width is **x

0007 *x limited to 80 characters per line. *x

0008 X R R R R R R R R R RS R RS

0009 kkkhhkhhkhhhhhhhkhhhhhkhhhdhrhhhhhhdhhhkhkdhdhhddhhhd

0010

0011 000000 .length 60

0012 000000 .width 80

1

881‘31 ***********if*************************************

0015 EEEEE R TR A SRS TR SR A SRR RS S RS SRR R RS R EE RS

0016 * % The page length is limited to 50 * %

0017 * ok lines per page. The page width is * %

0018 ** limited to 250 characters per line. **k

0019 R R R R R R R R R R R R R R SRR

0020 khkhhkhkkkhkhkhkhkkhkhhhhkhhhkhhkhkkhhhkhhkhhkhhhhkhrdhkhkhkhkx

0021

0022 000000 .length 50

0023 000000 .width 250

5-34

Start/Stop Source Listing Jdist/.nolist

Syntax

Description

Example

Jdist

.nolist

The .nolist directive suppresses the source listing output until a .list direc-
tive is encountered. The .list directive tells the assembler to resume printing
the source listing after it has been stopped by a .nolist directive. By default,
the assembler behaves as if a .list directive has been specified. The .nolist
directive can be used to reduce assembly time and the size of the source
listing; it is frequently used in macro definitions to inhibit the listing of the
macro expansion.

The assembler does not print the .list or .nolist directives, or the source
statements that appear after a .nolist directive; however, it continues to in-
crement the line counter. You can nest the .list/.nolist directives; each
.nolist needs a matching .list to restore the listing. At the beginning of an
assembly, the assembler acts as if it has assembled a .list directive.

Note:

If you don’t request a listing file when you invoke the assembler, the
assembler ignores the .list directive.

This example uses the .copy directive to insert source statements from an-
other file. The first time the .copy directive is encountered, the assembler
lists the copied source lines in the listing file. The second time .copy is
encountered, the assembler does not list the copied source lines because a
.nolist directive was assembled. Note that the .nolist, the second .copy, and
list directives do not appear in the listing file; note also that the line counter
is incremented even when source statements are not listed.

Source file:
.copy byte.asm
.nolist
.copy byte.asm
.list

* Back in original file
.string "Done"

Listing file:

0001 .copy byte.asm
A0001 * In byte.asm (copy file)
A0002 000000 00000020 .byte 32, 1+'A’

000001 00000042
0006 * Back in original file
0007 000004 656E6F44 .string "Done"

5-35

.mlib

Define Macro Library

Syntax

Description

Example

5-36

.mlib /"]filename["]

The .mlib directive provides the assembler with the name of a macro library.
A macro library is a collection of files that contain macro definitions. These
files are bound into a single file (called an archive or library) by the ar-
chiver. Each file in a macro library may contain one macro definition that
corresponds to the name of the file.

Note that:
° Macro library members must be source files (not object files).

® The filename of a macro library member must be the same as the
macro name and its extension must be .asm.

The filename must follow host operating system conventions; it may be
enclosed in double quotes. You can specify a full pathname (for example,
.mlib C:\dsp\macs.lib). If you do not specify a full pathname, the
assembiler searches for the file in:

1) The directory that contains the current source file.
2) Any directories named with the -i assembler option.
3) Any directories specified by the environment variable A—DIR.

For more information about the -i option and the environment variable, see
Section 4.3, Specifying Alternate Directories for Assembler Input, on page
4-4

When the assembler encounters an .mlib directive, it opens the library and
creates a table of its contents. The assembler enters the names of the indi-
vidual library members into the opcode table as library entries; this redefines
any existing opcodes or macros that have the same name. |f one of these
macros is called, the assembler extracts the entry from the library and loads
it into the macro table. The assembler expands the library entry in the same
manner as other macros, but it does not place the source code into the
listing. Only macros that are actually called from the library are extracted.

This example creates a macro library that defines two macros, incl and
decl. The file incl.asm contains the definition of incl, and decl.asm
contains the definition of dec1.

incl.asm ; decl.asm
* Macro for incrementing * Macro for decrementing
incl SMACRO REG decl $SMACRO REG)
ADDI 1,:REG: / SUBI 1, :REG:
$SENDM $ENDM

Define Macro Library .mlib

Use the archiver to create a macro library:
ar30 -a mac incl.asm decl.asm

Now you can use the .mlib directive to reference the macro library and call
the incl and decl macros:

.mlib '"mac.lib"
incl RO ; Macro call
decl R1 ; Macro call

5-37

.mlist/.mnolist

Start/Stop Macro Expansion

Syntax

Example

0001
0002
0003
0004
0005
10001

0006
0007
0008
0009
10001

5-38

000000
000001
000002

000009
00000A
00000B
00000C
00000D
00000E

.mlist
.mnolist

Two directives provide you with the ability to control the listing of macro
expansions in the listing file:

® The .mlist directive allows macro expansions in the listing file.

® The .mnolist directive inhibits macro expansions in the listing file.

By default, all macro expansions are listed. As the example below shows,
the line counters for magro expansion lines are preceded with an exclama-
tion mark (!). The line counter restarts counting at 1 during a macro ex-
pansion; it resumes counting from its previous value when the macro
expansion is complete.

This example defines a macro named str—3. The first time the macro is
called, the macro expansion is listed (by default). The second time the
macro is called, the macro expansion is not listed because a .mnolist direc-
tive was assembled. The third time the macro is called, the macro expansion
is again listed because a .mlist directive was assembled.

str-3 $MACRO parml,parm2,parm3
.string :parml:, :parm2:, :parm3:
SEND
str3 "red","green","blue"
67646572 .string "red","green","blue"
6E656572
65756C62
.mnolist
str-3 "Socrates","Plato","Aristotle"
.mlist
str_3 "Huron","Superior","Michigan"
6F727548 .string "Huron","Superior","Michigan"
7075536E
6F697265
63694D72
61676968
0000006E

Select Listing Options

.option

Syntax

Description

Example

.option option list

The .option directive selects several options for the assembler output listing.
The option list is a list of options separated by commas; each option selects
a listing feature. Valid options include:

X-Hz2rImnw

Limit the listing of .byte directives to one line.

Reset the B, H, L, M, and T options.

Limit the listing of .hword directives to one line.

Limit the listing of .long, .int, and word directives to one line.
Limit the listing for a macro expansion to a single line.

Limit the listing of .string directives to one line.

Produce a symbol cross-reference listing.

Options are not case sensitive.

This example limits the listings of the .byte, .hword, .long, .word, .int, and
.string directives to one line each.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0005
0015
0005
0017
0018

0019
0020
0021
0022

0023

000000
000003
000005
000007
000009
00000C

000011
000011
000012
000013
000014
000015
000016
000017
000018
000019
00001A
00001B
00001C
00001D
00001E
00001F
000020
000021

000000BD
0000002F,
AABBCCDD
000015A%
00000015
65747845

000000BD
000000BO
00000005
0000002E
0000AARA
AABBCCDD
00000259
000015AA
00000078
00000015
000000EE
00000055
65747845
6465646E
67655220
65747369
00007372

dkhkkkkkkhkhkdhkhhhhhhhhdhrddhhkhhhhdhhhhhhkhhdhn
* Limit the listing of .byte, .hword, *
* .int, .word, .long, and .string *
* directives to one line each *
R R R R RS S SRS R R RS RS ES R R EE R R EREEE R RS R

.option B,H,L,T

.byte -'C',0BOh,5

.hword 56q,0AAAAQ

.long OAABBCCDDh,536+'A’
.word 5546,78h

.int 010101b, 356q,85
.string "Extended Registers"

khkhkkkhkkhhkhkkhhhhhhkhhhdhhhkhhkrdhkrhrhkrrirhd

* Reset the listing options *
IR SRS RS RS E SRS SRR SRR RS R E R EEEREEESE]

.option F
.byte -'C',0BOh,5

.hword 56g,0AAAAN

.long OAABBCCDDh,536+'A'
.word 5546,78h

.int 010101b, 356q9,85
.string "Extended Registers"

5-39

.page Eject Page in Listingb

Syntax .page

Description The .page directive produces a page eject in the listing file. The source
statement is not printed in the source listing, but the line counter is incre-
mented. Using the .page directive to divide a source listing into logical di-
visions improves program readability.

Example This example causes the assembler to begin a new page of the source list-
ing. .

Source file:

.title "**** An example of the .page directive *¥**x"

.string "Page 1"

.page ; The directive won't be printed

.string "Page 2"

Listing file:
TMS320C30 Assembler Version 1.00, 87.089 Thu May 28 14:51:38 1987
(c) Copyright 1987, Texas Instruments Inc.
**** An example of the .page directive ***%% PAGE 1
0002 000000 65676150 .string "Page 1"
000001 00003120

TMS320C30 Assembler Version 1.00, 87.089 Thu May 28 14:51:38 1987
(c) Copyright 1987, Texas Instruments Inc.
**%* An example of the .page directive *¥*%* PAGE 2
0004 000002 65676150 .string "Page 2"

000003 00003220

5-40

Assemble into Named Section .sect

Syntax

Description

Example

0001

0002

0003

0004 000000

0005 000000

0006 000001

0007

0008

0009

0010

0011 000000

0012 000000

0013 000001

0014 000002

0015

0016

0017

0018

0019 000000

0020 000002

0021 000003
000004

0022

0023

0024

0025

0026 000003

0027 000003

0028

.sect "section name”

The .sect directive defines named sections that are used like the default .text
and .data sections. The .sect directive begins assembling source code into
the named section. Named sections can be used for data or code that must
be allocated into memory separately from .text or .data.

The section name identifies a section that the assembler assembles code
into. The name is significant to 8 characters and must be enclosed in dou-
ble quotes.

Note that the .asect directive is similar 10 the .sect directive; however, .asect
creates a named section that has absolute addresses. If you use the .asect
directive to define an absolute named section, you can use the .sect direc-
tive later in the program to continue assembling code into the absolute
section.

Section 3 provides additional information about named sections.

This example defines a section, Sym_Defs, and assembles code into it.

tZE SR R SRR IR SRR LSRR R RS SRR TR

*x Begin assembling into .text section **
EE R R E AL EEEEEE R R SRR EEEEEEEEEEEEEEREEEEEREEREEEESEESS]
.text
07020001 LDF R1,R2 ; Assembled into .text
07040003 LDF R3,R4 ; Assembled into .text
khhkkhkhhkhhkhhkhhhkhhhhkhkhhkdhhkhhkhhhdkrhhhhhdkdhhkdrhkrhkh
* % Begin assembling into Sym-Defs section el
LR SRS AR RS AR R R RS AR EEEEEEEEEEEEELEEERESESE]
.sect "Sym_Defs"
0148F5C2 .float 3.14
0000000F .hword OFh
07060005 LDF R5,R6 ; Assembled into Sym Defs
LR XSRS E S S RS RS S A RS R RS SRR EEEEE ST
** Resume assembling into .text section * %
LR R R R R R T A R R R R R R R
.text
080A0009 LDI AR1,AR2 ; Assembled into .text
00000003 .byte 3,4
00000004
Krkkkhkhkkhkhkkhhkhkhhhhkkhhhhhhhhkkhkkhkkkhhkkhhhhhkhkkkhrhkk
*% Resume assembling into Sym-Defs section %
khkkhkhkkhkkkhkhhdhhhkhkhkhhhhkkkhhkkkkkkkhkhkhkhhhkkhkkhkkkkk
.sect "Sym.Defs" '
AABBCCDD .long Oaabbccddh

5-41

.set

Define Assembly-Time Constant

Syntax

Description

Example

5-42

symbol .set value

The .set directive assigns a value to a symbol. The symbol can then be used
in place of the value in source statements. This allows you to equate
meaningful names with constants, registers, and other values.

[] The symbo/ must appear in the label field.

e The value must be a well-defined expression; that is, all symbols in the
expression must be previously defined in the current source module.

Undefined external symbols and symbols that are defined later in the mod-
ule cannot be used in the expression. If the expression is relocatable, the
symbol to which it is assigned is also relocatable.

The value of the expression appears in the object field of the listing. This
value is not part of the actual object code and is not written to the output
file.

This example shows how symbols can be assigned with .set.

0001 EEEEE R SRS EE SR LR SR EEEEEEEEEEEEEE]
0002 *x Equate symbol FP to register *k
0003 *k AR3 and use it instead of the **
0004 *x register *x
0005 EE X E R R T E EEE RS RS RS RS SRS EE R LR
0006 0000000B FP .set AR3

0007 000000 0840C300 LDI *FP,RO

8888 IR E SRS RS TR SRS R RS SRS S SRS EE L S SR
0010 » ** gSet symbol count to an integer **
0011 ** expression and use it .as an il
0012 ** immediate operand ok
0013 RS SRS SR RS R RS RS EEEEEEE LRSS
0014 00000035 count .set 100/2 + 3

0015 000001 08600035 LDI count,RO

88%% Khkhkhkhkkhhhhhhhhddhkhhkdhdhdhdrhdihbbrhdhhk
0018 kel Set smeol symtab to a relo- b
0019 *x catable expression and use it **
0020 *x as a relocatable operand *x
0021 LR EE SR AL RS SRS IS SRR T RS EE R EE RS L]
0022 000002 0000000A label .word 10

0023 00000003' symtab .set label+l

88§§ 000003 08200003+ LDI @symtab,R0O

0026 R AR RS R R LSRR EEEEEEERSEEEEEEREEESEESE]
0027 ** Set symbol PI to a floating- * &
0028 * ok point constant and use it as bl
0029 *x an operand *x
0030 khkkkkkhkhkhhhkkkkkkkhdhhkhhkhkhhkhkhhhhkxkhdhdk
0031 01490FCF PI .set 3.14159

00%2 000004 01490FCF .float PI

8832 khkkkhkhkhkhkhhhhkhkhkhkhhhhhhhkhhkhkhhkhhhhkhkhs
0035 * % Set symbol nsyms equal to the **
0036 *x symbol count and use it as you *¥*
0037 *x would use count il
0038 AR RS AR EE SR SRR SRR AR SRR EEEEEEEE]
0039 00000035 nsyms .set count

0040 000005 08600035 LDI nsyms, RO

Reserve Space

.space

Syntax

Description

Example

0001
0002
0003
0004
0005

0006
0007
0008
0009
0010
0011
0012

000000
000000
000001
000002

000003
000067
000068

.space size in words

The .space directive reserves size number of words in the current section
and fills them with Os. The section program counter is incremented to point

to the wo

rd following the reserved space.

The .space directive is equivalent to size number of .word 0 directives.

This example reserves 100 O-filled words in the .text section. Note that the
SPC equals 03h before the .space directive is assembled; after the .space
directive is assembled, the SPC is incremented to equal 067h.

0000000A
0000000B
00004230

00000000
0000000C
00000003

hhkhkhhkhhkkhkdhhkkdhhhkhhkhkhhkhkhhkhhkkhhkhkhrkkhhkhkkkkkkkxk

* Begin assembling into .text
khkkkkhkkkkhkhkhkhkhkkkkhhkkhkhkkhkkhkhkhkhkhkdkhkkhkkhhkkkhkkkkx%x
.text
.word OAh, OBh

.string "ARO"

khkkkhkhkkhkkkhkkhkhkkhhkkkhkhkkkkkkkhhkkkhkkkkkkkkkkkkk*

* Reserve a block of 100 words in .text

khkkhkhkkhkhkkkhhkkhhkhkhkhkhkhhkhkhkhkhkhhkhhkkhhkkkhkkkhkkxkkkxk

Sp-X: .space 100
.word OCh ; Still in .text
.word Sp—X

text section
Oh [

3h

67h

Figure 5-12. An Example of the .space Directive

5-43

.string

Initialize Text

Syntax

Description

Example

0001
0002
0003

0004

5-44

000000
000001
000002
000003
000004

.string "string1"” [...., "string,"]

The .string directive places 8-bit characters from a character string into the
current section. The data is packed so that each word contains four 8-bit
values. Each string is either:

® An expression which the assembler will evaluate and treat as a 32-bit
signed number.

® A character string eryclosed in double quotes. Each character repres-
ents a separate valué.

Values are packed into words starting with the least significant byte of the
word and moving toward the most significant portion as more bytes are
added. Any unused space is padded with null bytes (0s).

The assembler truncates any values that are greater than 8 bits. You may
have up to 100 operands, but they must fit on a single source statement
line.

If you use a label, it points to the first word that is initialized.

This example places &-bit values into words in the current section.

44434241 Str_3: .string "ABCD"

54535251 .string 51h, 52h, 53h, 54h
73756F48 .string "Houston"

O06E6F74

00000030 .string 36 + 12

Assemble into .text Section .text

Syntax

Description

Example

.text

The .text directive tells the assembler to begin assembling into the .text
section, which normally contains executable code. The section program
counter is set to O if nothing has yet been assembled into the .text section.
If code has already been assembled into the .text section, the section pro-
gram counter is restored to its previous value in the section.

Note that the assembler assumes that .text is the default section. Therefore,
at the beginning of an assembly, the assembler assembles code into the
.text section unless you specify one of the other initialized-section direc-
tives (.data, .sect, or .asect).

For more information about COFF sections, see Section 3.
This example assembles code into the .text and .data sections. The .text

section contains bytes 1, 2, 3, and 4, and the .data section contains bytes
5,6, 7, and 8.

OOOl ISR SRS EE R RS E RS R R R R R R RS EE RS
0002 ** Begin assembling into .data section **
0003 LR R TS SRS EE RS EEEEEEEEEEEE R EEER SRS SR
0004 000000 .data
0005 000000 00000005 .byte 5,6

000001 00000006
0006
0007 tE RS EEEESEEEEEE SRR RS R EEEEEEEEEESEEEEE]
0008 ** Begin assembling into .text section **
0009 khkhhkhkhhkkdhhkhhhhkhhhhkhhdhhkhkrhkhdkhhkdrhhdkkk
0010 000000 .text
0011 000000 00000001 .byte 1
0012 000001 00000002 .byte 2,3

000002 00000003
0013
0014 Fhkhkhhhhkhkhkhkhhhhhkhhhhhhhhkkh bk kkkkkk*
0015 il Resume assembling into .data &
0016 R EEE SR RS EE R RS R RS EEE RS EEEEEEEESEREE S
0017 000002 .data
0018 000002 00000007 .byte 7,8

000003 00000008
0019
0020 IR RS SR RS SRS RS EE SRR RS R EEEEEEEEEEEES]
0021 *k Resume assembling into .text *k
0022 AR S EE S S SRS E RS RS R R R R R R E R R R EEEEE RS EE]
0023 000003 .text
0024 000003 00000004 .byte 4

5-45

title

Define Page Title

Syntax title ”"string”

Description The .title directive supplies a title that is printed in the heading on each

listing page. The source statement itself is not printed, but the line counter
is incremented. The string is a quote-enclosed title of up to 50 characters.
If you supply more than 50 characters, the assembler truncates the string
and issues a warning.
The assembler prints the title on the page that follows the directive, and on
subsequent pages until another .title directive is processed. If you want a
title on the first page of a listing, then the first source statement must con-
tain a .titie directive.

Example This example prints the title *** Floating Point Routines *** in the
page headings of the source listing.

Source statement:
.title "#%% Floating Point Routines ***"
Listing file:
TMS320C30 Assembler Version 1.00, 87.089 Tue Apr 21 11:39:03 198
(c) Copyright 1987, Texas Instruments Inc.

**% Floating Point Routines **%* PAGE 1
TMS320C30 Assembler Version 1.00, 87.089 Tue Apr 21 11:39:03 198
(c) Copyright 1987, Texas Instruments Inc.

*%% Floating Point Routines **% PAGE 2

5-46

Reserve Uninitialized Space .usect

Syntax

Description

Example

symbol .usect "'section name”, size in words

The .usect directive reserves space for variables in an uninitialized, named
section. This directive is similar to the .bss directive; both simply reserve
space for data and have no contents. However, .usect defines additional
sections that can be placed anywhere in memory, independently of the .bss
section.

(] The symbol/ points to the first location reserved by this invocation of
the .usect directive. The symbo/ corresponds to the name of the var-
iable that you're reserving space for.

° The section name must be enclosed in double quotes; only the first 8
characters are significant. This parameter names the uninitialized
section.

{ The size is an expression that defines the number of words that will
be reserved in section name.

Other sections directives (.text, .data, .sect, and .asect) end the current
section and tell the assembler to begin assembling into another section.
The .usect and .bss directives, however, do not affect the current section.
The assembler assembles the .usect and the .bss directives and then re-
sumes assembling into the current section.

You can repeat the .usect directive to define more than one variable in the
specified section. Variables which can be located contiguously in memory
can be defined in the same section by using multiple .usect directives with
the same section name.

For more information about COFF sections, see Section 3.

This example uses the .usect directive to define two uninitialized, named
sections, varl and var2. The symbol ptr points to the first word reserved
in the var1 section. The symbol axray points to the first word in a block
of 100 words reserved in varl, and dflag points to the first word in a
block of 50 words in varl. The symbol vec points to the first word re-
served in the var2 section.

Figure 5-13 shows how this example reserves space in two uninitialized
sections, varl and var?2.

5-47

.usect

Reserve Uninitialized Space

5-48

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036

000000
000000

000000

000001
000001

000002
000002

000000
000003

08010000

08020001

08030002

08200000

hhkhkkkhkhhhkhhkhrhhhkkxhhdhhbrhhrhkhhdx

* Assemble into .text *
tZ2 R AR R AR EEEE RS R LR EEESEEEREESES]

.text
LDI RO,R1

khkkkkkkrhkkhddhhhkhhkkhhdkhdrhhrhkrhbhrs

* Reserve 1 word in varl *
LR RS SRR E SRS SRS SRR SR LR EEEE R

ptrx .usect "varl", 1

Khkhhhhhkkhhkhhhhkhkkhhkkrkhkrkhhhhhhhrhhdhhx

* Reserve 100 more words in varl *
j******************************

array .usect "varl", 100

LDI R1,R2 ; Still in

LR R R R R R R R R R R R R RS

* Reserve 50 more words in varl *
khkkhhkhdhhkhkhhhdhhhdhdhhkdddhhhhhrhrhdhddx

dflag .usect "varl", 50
LDI R2,R3 ; Still in

IR E SRR SRS R RS EEE RS SRR X

* Reserve 100 words in var2 *
dhkkhkkkhhhhdhkhdbhrhddddhhhrroddrbrbdrhbddd

vec .usect "var2", 100

LDI @vec,RO ; Still in

R RS R R RS I RS SR R SRR T RS

* Declare an external .usect symbol *
RS R TR RS AT AR SRS R RS EE TR EEEE]

.global array

Section vari Section var2
ptr ———» VEC ————]
1 word

array 100 words

100 words

100 words reserved in var2
dflag ———»|
50 words

151 words reserved in vari

Figure 5-13. An Example of the .usect Directive

.text

.text

.text

Section 6

Instruction Set

w—

The TMS320C30 supports a base set of general-purpose instructions as well
as arithmetic-intensive instructions that are particularly suited for digital signal
processing and other numeric-intensive applications.

This section does not cover topics such as opcodes or instruction timing; the
Third-Generation TMS320 User's Guide discusses the instruction set in detail.
The Third-Generation TMS320 User's Guide also contains an alphabstical
presentation which is similar to the directives reference that begins on page
5-13.

This section provides a general summary of the TMS320C30 instruction set:

® Section 6.1 lists the syntax, operation, and description of each in-
struction.

] Section 6.2 and Section 6.3 summarize and describe optional syntaxes
of three-operand instructions and parallel instructions, respectively.

] Section 6.4 through Section 6.8 describe the functional categories of the
instruction set.

Section
SUMMATY ettt ae s e e e s ir s e e s s aesstae e nae e e s nnen
Three-Operand Instructionscccccevveeeeeeiiinecene

Parallel INStructionscccccccveevveveieveecieeeeecveene

Load and Store InStructionsc....ccccceeeeereeieenns

Arithmetic Instructions
Logical Instructionscccoccoviiiincniinic e
Program-Control Instructionsccccceevveeennnee
Interlocked-Operation Instructions
The LDP Instructioncccoceveereievecieecrieeeenen.

000020000
OCONOOARWN -

6-1

Instruction Set - Summary

6.1 Summary

Section 6.1.4 lists the TMS320C30 instruction set alphabetically. Each table
entry shows the instruction’s syntax and operation, contains a brief de-
scription, and shows any optional syntaxes. The key for Section 6.1.4 lists the
valid addressing modes that can be used for various operands. Section 6.1.1
summarizes these addressing modes, Section 6.1.2 summarizes the optional
syntaxes, and Section 6.1.3 summarizes the condition codes used with con-
ditional instructions. Section 6.1.4 begins on page 6-5.

6.1.1 Addressing Modes

6-2

The Third-Generation TMS320 User's Guide discusses addressing modes in
detail. This section summarizes the addressing modes mentioned in Section
6.1.4.

° General addressing modes:

Register mode: The operand is a CPU register. For floating-point
operations, use an exiended register (RO-R7). For integer operations,
use any register.

Short immediate mode: The operand is a 16-bit immediate value.
Short immediate operands may be signed integers, unsigned integers,
or floating-point values, depending on the instruction.

Direct mode: The operand is the contents of a 24-bit address, specified
by @addr. The 8 MSBs of the address are specified by the DP register;
the 16 LSBs are specified by the instruction word. (You can use the
LDP instruction to load the page number into the data page pointer re-
gister.)

Indirect mode: An auxiliary register indicates the address cf the oper-
and. Table 6-1 lists the various forms that indirect operands may take.
The displacement may be specified as a value from 0-255 or as one of
the index registers (1RO or {R1).

It is not necessary to specify the displacement if it is 1, because the as-
sembler assumes a default displacement of 1. For example, *++ARn is
equivalent to *++ARn(1).

° Three-operand addressing modes:
Register mode: Same as for general addressing modes.

Indirect mode: Same as for general addressing modes, except the dis-
placement is limited to 0, 1, IR0, or IR1.

° Parallel addressing mode:

Register mode: The operand is an extended register (R0O-R7). In some
cases, only RO/R1 or R2/R3 can be used as an operand.

Indirect mode: Same as for general addressing modes, except the dis-
placement is limited to O, 1, IR0, or IR1.

° Long-immediate addressing mode:

The operand is a 24-bit immediate value (usually specified by a label).

Instruction Set - Summary

[] Conditional branch addressing mode:
Register mode: Same as for general addressing modes; the contents
of the register are loaded into the PC.
PC-relative mode: A signed 16-bit displacement is added to the PC.
The destination address is usually specified as a label; the assembler
calculates the displacement.
Table 6-1. Indirect Addressing Mode
Operand Description
*ARn Indirect with no displacement
*+ARn(disp) Indirect with predisplacement or preindex add
*-ARn(disp) Indirect with predisplacement or preindex subtract
*++ARn(disp) Indirect with predisplacement or preindex add and modification
*--ARn(disp) Indirect with predisplacement or preindex subtract and modification
*ARn++(disp)[%] t Indirect with postdisplacement or postindex add and modification
*ARn--(disp)[%] T Indirect with postdisplacement or postindex subtract and modification
*ARn++(IR0)B Indirect with postindex (IR0) and bit-reversed modification

t Optional circular modification (specified by %)

6.1.2 Optional Syntaxes

The assembler allows a relaxed syntax form for several instructions. These
optional forms simplify the assembly language so that you can ignore spe-
cial-case syntax for some instructions.

If the source and destination register are the same, you need only specify
the register once. Instructions that can use this optional syntax include:

ABSF FIX NEGB NEGI NOT
ABSI FLOAT NEGF NORM RND
For example,

ABSI RO,RO can be written as ABSI RO

You can omit the displacement for indirect operands; the assembler will
assume a displacement of 1. Instructions that use general addressing
modes, three-operand addressing modes, or parallel addressing modes
may have indirect address operands. For example,

LDI *ARO++(1),RO can be written as LDI *ARO++,RO

Long-immediate mode operands can be written with an @ symbol. The
branch and call instructions can use this optional syntax. For example,

BR label can be written as BR @label

Instruction Set - Summary

6.1.3 Condition Codes

The TMS320C30 supports conditional loads, branches, traps, calls, and re-
turns. These instructions use the condition codes in Table 6-2.

Talsdle 6-2. Condition Codes

Unconditional Compares

Cond. Code Description Flags

U 00000 Unconditional don’t care
Unsigned Compares

Cond. Code Description Flags
LO 00001 Lower than C
LS 00010 | Lower or same CORZ
HI 00011 Higher than CAND Z
HS 00100 | Higher or same C
EQ 00101 Equal Z
NE 00101 Not equal Z

Signed Compares
Cond. Code Description Flags

LT 00111 Less than N
LE 01000 | Less than or equal NORZ
GT 01001 Greater than N AND Z
GE 01010 | Greater than or equal N
EQ 00101 Equal Z
NE 00101 Not equal Z

Compare to Zero
Cond. Code Description Flags

4 00101 Zero
NZ 00110 Not zero
P 01001 Positive
N 00111 Negative
NN 01011 Nonnegative

Compare to Condition Flags
Cond. Code Description Flags

NN 01011 Nonnegative
N 00111 Negative
NZ 00110 Nonzero
4 00101 Zero
NV 01100 No overflow
\' 01101 Overflow
NUF 01110 | No underflow
UF 01111 Underflow
NC 00100 | No carry
C 00001 Carry
NLV 10000 No latched overflow
LV 10001 Latched overflow
NLUF 10010 | No latched floating-point underflow
LUF 10011 Latched floating-point underflow
ZUF 10100 | Zero or floating-point underflow Z OR UF

|

>
ZlZ ZzNIN

o

NI

i
c oo 0lS Y< <inNz Z
-n-nl<<| -n-nl

6-4

Instruction Set - Summary

6.1.4 Instruction Set Summary Table

Syntax Description
ABSF Src,Rn Absolute Value of a Floating-Point Number
[ABSF Rn] Operation: |Src| = Rn

Load the absolute value of a floating-point number into an extended-
precision register.

ABSI Src,Dreg
[ABSI Dreg]

Absolute Value of an Integer

Operation: |Src| = Dreg
Load the absolute value of an integer into a register.

ADDC Src,Dreg

Add Integers with Carry
Operation: Src + Dreg + C = Dreg

Add the source, the contents of the destination register, and the carry bit
together, and store the sum in the destination register. The operands are
signed integers.

ADDC3 Src1,Src2,Dreg
[ADDC Src1.Src2,Dreg]

Add Integers with Carry (3-Operand)
Operation: Src1 + Src2 + C = Dreg

Add the two source operands and the carry bit together, and store the sum
in the destination register. The operands are signed integers.

ADDF Src,Rn

Add Floating-Point Values
Operation: Src + Rn = Rn

Add the source operand to the contents of an extended-precision register,
and store the sum into the register. The operands are floating-point num-
bers.

ADDF3 Src1,Src2,Rn
[ADDF Src1,Src2,Rn]

Add Floating-Point Values (3-Operand)
Operation: Src1 + Src2 = Rn

Add the two source operands together and store the sum in the destination
register. The-operands are floating-point numbers.

ADDI Src,Dreg

Add Integers
Operation: Src + Dreg = Dreg

Add the source operand to the contents of the destination register and store
the sum in the destination register. The operands are signed integers.

ADDI3 Src1,Src2,Dreg
[ADDI Src1,Src2,Dreg]

Add Integers (3-Operand)
Operation: Src1 + Src2 — Dreg

Add the two source operands together and store the sum in the destination
register. The operands are signed integers.

Note: Optional syntaxes are shown in [brackets].

Key:

Src - General addressing modes Dreg - Register mode (any register)
Src1 - Three-operand addressing modes Rn - Register mode (RO-R7)

Src2 - Three-operand addressing modes Daddr - Destination memory address
Csrc —.Conditional branch addressing modes ARn - Auxiliary register n (ARO-AR7)
Sreg - Register mode (any register) Addr - 24-bit immediate address (label)

Count — Shift value (general addressing modes)

Cond - Condition code (see Table 6-2, pg. 6-4)

6-5

Instruction Set - Summary

Syntax

Description

AND3 Src1,Src2,Dreg
[AND Src1,Src2,Dreg]

Bitwise Logical AND (3-Operand)
Operation: Src1 AND Src2 = Dreg

Perform a bitwise logical AND of the two source operands and store
the result in the destination register. All the operands are unsigned
integers.

ANDN Src,Dreg

Bitwise Logical AND with Compliement
Operation: Dreg AND ~Src = Dreg

Perform a bitwise logical AND of the destination register and the bit-
wise logical complement of the source operand, and store the result
into the destination register. Both operands are unsigned integers.

ANDN3 Src1,Src2,Dreg
[ANDN Src1,Src2,Dreg]

Bitwise Logical ANDN (3-Operand)
Operation: Src1 AND 7E Src2 — Dreg

Perform a bitwise logical AND of source operand 1 and the bitwise
logical complement of the source operand 2, and store the result into
the destination register. All the operands are unsigned integers.

ASH Count,Dreg

Arithmetic Shift

Operation: If Count > 0
Dreg << Count = Dreg
Else
Dreg >> |Count| = Dreg

If Count is greater than or equal to O, left shift the contents of the
destination register by Count. Low-order bits are filled with Os, and
high-order bits are shifted out through the carry bit.

If Count is less than 0, right shift the contents of the destination reg-
ister by the absolute value of Count. High-order bits are sign ex
tended, and low-order bits are shifted out through the carry bit.

Both operands are signed integers.

ASH3 Count,Src,Dreg
[ASH Count Src,Dreg]

Arithmetic Shift (3-Operand)

Operation: |f Count > 0
Src << Count —* Dreg
Else
Src >> |Count| = Dreg

If Count is greater than or equal to O, left shift the source operand by
Count. Low-order bits will be filled with Os, and high-order bits are
shifted out through the carry bit.

If Count is less than O, right shift the contents of the destination reg-
ister by the absolute value of Count. High-order bits are sign ex-
tended, and low-order bits are shifted out through the carry bit.

The shifted value is stored in the destination register. Both operands
are signed integers.

Bcond Csrc
[Bcond @Csrc]

Branch Conditionally (standard)

Operation: If cond = true
If Csrc is a register, Csrc = PC
If Csrc is an immediate value, Cstc + PC + 1 = PC
Else
continue

Perform a branch if the condition is true. If Csrc is a register or a label,
its contents are loaded into the PC. If Csrc is a 16-bit immediate value,
it is added to the PC. You can precede labels with an @ symbol.

6-6

Instruction Set - Summary

Syntax

Description

BcondD Csrc
[BcondD @Csrc]

Branch Conditionally (delayed)

Operation: If cond = true
If Csrc is a register, Csrc = PC
Af Csrc is an immediate value, Csrc + PC + 3 = PC
Else
continue

Perform a branch if the condition is true. If Csrc is a register or a label, its
contents are loaded into the PC. If Csrc is a 16-bit immediate value, it is
added to the PC. You can precede labels with an @ symbol.

BR Addr
[BR @Addr]

Branch Unconditionally (standard)
Operation: Addr = PC

Perform an unconditional branch. The source operand is a label or a 24-bit
unsigned immediate value. If the D is specified, the branch is delayed. If
the operand is a label, you can precede it with an @ symbol.

BRD Addr
[BRD @Addr]

Branch Unconditionally (delayed)
Operation: Addr = PC

Perform an unconditional branch. The source operand is a label or a 24-bit
unsigned immediate value. If the D is specified, the branch is delayed. If
the operand is a label, you can precede it with an @ symbol.

CALL Addr
[CALL @Addr]

Call Subroutine

Operation: Next PC = *++SP
Addr = PC

Call a subroutine. If the operand is a label, you can precede it with an @
symbol.

CAlLLcond Csrc
[CALLcond @Csrc]

Call Subroutine Conditionally

Operation: If cond = true
Next PC = *++SP
If Csrc is a register, Csrc = PC
If Csrc is an immediate value, Csrc + PC = PC
Else
continue

Call a subroutine if the condition is true. If Csrc is a register or a label, its
contents are loaded into the PC. If Csrc is a 16-bit immediate value, it is
added to the PC. You can precede labels with an @ symbol.

CMPF Src.Rn

Compare Floating-Point Values
Operation: Set flags on Rn - Src

Compare the source and destination operands by subtracting the source
from the destination and setting the appropriate status bits. The result of
the subtraction is not stored — this is a nondestructive compare. Both op-
erands are floating-point numbers.

Note: Optional syntaxes are shown in [brackets].

Key:
Src - General addressing modes Dreg - Register mode (any register)
Src1 -~ Three-operand addressing modes Rn - Register mode (RO-R7)

Src2 - Three-operand addressing modes

Daddr — Destination memory address

Csrc - Conditional branch addressing modes ARn - Auxiliary register n (ARO-AR7)
Sreg - Register mode (any register) Addr - 24-bit immediate address (label)

Count — Shift value (general addressing modes)

Cond - Condition code (see Table 6-2, pg. 6-4)

Instruction Set - Summary

Syntax

Description

CMPF3 Src2,Srct
[CMPF Src2,SrcT]

Compare Floating-Point Values (3-Operand)
Operation: Set flags on Src1 - Src2

Compare the two source operands by subtracting source 2 from source 1
and setting the appropriate status bits. The result of the subtraction is not
stored — this is a nondestructive compare. Both operands are floating-point
numbers.

CMPI Src,Dreg

Compare Integers
Operation: Set flags on Dreg - Src

Compare the source and destination operands by subtracting the source
from the destination and setting the appropriate status bits. The result of
the subtraction is not stored — this is a nondestructive compare. Both op-
erands are integers.

CMPI3 Src2,Srct
[CMPI Src2,SrcT]

Compare Integers (3-Operand)
Operation: Set flags on Src1 - Src2

Compare the two source operands by subtracting source 2 from source 1
and setting the appropriate status bits. The result of the subtraction is not
stored — this is a nondestructive compare. Both operands are integers.

DBcond ARn,Csrc
[DBcond ARn,@Csrc]

Decrement and Branch Conditionally (standard)

Operation: ARn -1 = ARn
If cond = true and ARn > 0
If Csrc is a register, Csrc = PC
If Csrc is an immediate value, Csrc + PC + 1 = PC
Else
continue

Decrement the specified auxiliary register and branch if the condition is true
and the specified auxiliary register is not zero. If Csrc is a register or a label,
its contents are loaded into the PC. If Csrc is a 16-bit immediate value, it
is added to the PC. You can precede labels with an @ symbol.

DBcondD ARn,Csrc
[DBcond ARn,@Csrc]

Decrement and Branch Conditionally (delayed)

Operation: ARn -1 = ARn
If cond = true and ARn > 0
PC +3 = PC
If Csrc is a register, Csrc = PC
If Csrc is an immediate value, Cstc + PC + 3 = PC
Else
continue

Decrement the specified auxiliary register and branch if the condition is true
and the specified auxiliary register is not zero. If Csrc is a register or a label,
its contents are loaded into the PC. If Csrc is a 16-bit immediate value, it
is added to the PC. You can precede labels with an @ symbol.

FIX Src,Dreg
[FIX Dreg]

Convert Floating-Point Value to Integer
Operation fix(Src) = Dreg

Convert a floating-point operand to the nearest integer which is less than
or equal to its absolute value and load the result into the destination reg-
ister.

FLOAT Src.Rn
[FLOAT An]

Convert Integer to Floating-Point Value
Operation: float(Src) = Rn

Convert an integer into a floating-point value and load the result into an
extended-precision register.

Count — Shift value (general addressing modes) Cond - Condition code (see Table 6-2, pg. 6-4)

6-8

Instruction Set - Summary

Syntax Description
IACK Src Interrupt Acknowledge
Operation: Perform a dummy read operation with IACK = 0.
At end of dummy read, set IACK = 1.
Perform a dummy read operation with IACK = 0. IACK is set to 1 at the
end of the dummy read. This instruction can be used to generate an ex-
ternal interrupt acknowledge.
If the specified address is off-chip the processor reads the data at that ad-
dress. Then, the IACK signal and the address can be used to signal an in-
terrupt acknowledge to external devices. The data read by the processor is
not used.
IDLE Idle Until Interrupt
Operation: 1 — ST(GIE)
Next PC = PC
Idle until interrupt
Load the next PC value into the PC and idle until an interrupt is received.
When an interrupt is received, the contents of the PC are pushed onto the
system stack.
LDE Src,An Load Floating-Point Exponent
Operation: Src(exponent) = Rn(exponent)
Load the exponent portion of a word into the exponent field of an ex-
tended-precision register.
LDF Src,Rn Load Floating-Point Value
Operation: Src = Rn
Load a floating point-value into an extended-precision register.
LDFcond Src.Rn Load Floating-Point Value Conditionally

Operation: If cond = true
Src = Rn
Else
Rn is not changed

If the specified condition is true, a floating-point value is loaded into an
extended-precision register. If the condition is false, the value is not
loaded.

LDFl Src,Dreg

Load Floating-Point Value, Interlocked

Operation: Signal interlocked operation
Src = Rn

The source operand is loaded into the destination register and an inter-
locked operation is signaled over the XFO and XF1 pins. The operands are
floating-point values.

LDl Src.Dreg

Load Integer
Operation: Src = Dreg

Load the contents of the source operand into a register. The source oper-
and is a signed integer.

Note: Optional syntaxes are shown in [brackets].

Key:

Src - General addressing modes Dreg - Register mode (any register)
Src1 - Three-operand addressing modes Rn - Register mode (RO-R7)

Src2 - Three-operand addressing modes Daddr — Destination memory address
Csrc - Conditional branch addressing modes ARn - Auxiliary register n (ARO-AR7)
Sreg - Register mode (any register) Addr - 24-bit immediate address (label)

6-9

Instruction Set - Summary

Syntax

Description

LDIcond Src,Dreg

Load Integer Conditionally

Operation: If cond = true
Src = Dreg
Else
Dreg is not changed

If the specified condition is true, the contents of the source operand are
loaded into a register. The source operand is an integer. |f the condition
is false, the source operand is not loaded.

LDlUl Src,Dreg

Load Integer, Interlocked

Operation: Signal interlocked operation
Src — Dreg

The source operand is loaded into the destination register and an inter-
locked operation is signaled over the XFO and XF1 pins. The operands are
signed integers.

LDM Src.Rn

Load Floating-Point Mantissa
Operation: Src(mantissa) = Rn(mantissa)

Load the mantissa portion of a word into the mantissa field of an extend-
ed-precision register.

LSH Count,Dreg

Logical Shift

Cperation: If Count > 0
Dreg << Count = Dreg
Else
Dreg >> |Count| = Dreg

If Count is greater than or equal to zero, left shift the contents of the des-
tination register by Count. Low-order bits are filled with Os and high-order
bits are shifted out through the carry bit.

If Count is less than zero, right shift the contents of the destination register
by the absolute value of Count. High-order bits are filled with Os and
low-order bits are shifted out through the carry bit.

The Count operand is a signed integer; Dreg is an unsigned integer.

LSH3 Count,Src,Dreg
[LSH Count,Sre,Dreg]

Logical Shift (3-Operand)

Operation: if Count > 0
Src << Count = Dreg
Else
Src >> [Count| = Dreg

If Count is greater than or equal to zero, left shift the source operand by
Count. Low-order bits are filled with Os and high-order bits are shifted out
through the carry bit. The result is stored in the destination register.

If Count is less than zero, right shift the source operand by the absolute
value of Count. High-order bits are filled with Os and low-order bits are
shifted out through the carry bit.

The Count operand is a signed integer; Src is an unsigned integer. The
result is stored in the destination register.

MPYF Src,Rn

Multiply Floating-Point Values
Operation: Src x Rn = Rn

Multiply the source operand by the contents of an extended-precision re-
gister and store the result into the register. Both operands are floating-
point numbers.

Instruction Set - Summary

Syntax

Description

MPYF3 Src1,Src2,Rn
[MPYF Src?,Src2,Rn]

Multiply Floating-Point Values (3-Operand)
Operation: Src1 x Src2 = Rn

Multiply the two source operands together and store the result into the
extended-precision register. All the operands are floating-point numbers.

MPYI Src,Dreg

Multiply Integers
Operation: Src x Dreg — Dreg

Multiply the source operand by the contents of the destination register and
store the result in the register. Both operands are 24-bit signed integers;
the result is the 32 LSBs of the product.

MPYI3 Src1,Src2,Dreg
[MPYI Src1,Src2,Dreg]

Multiply Integers (3-Operand)
Operation: Src1 x Src2 — Dreg

Multiply the two source operands and store the result in the register. All
the operands are 24-bit signed integers; the result is the 32 LSBs of the
product.

NEGB Src,Dreg
[NEGB Dreg]

Negate Integer with Borrow
Operation: 0 - Src - C = Dreg

Load the difference between the source operand, 0, and the carry bit into
the destination register. The operands are signed integers.

NEGF Src,Rn
[NEGF Rn]

Negate Floating-Point Value
Operation: 0 - Src = Rn

Load the difference between the source operand and 0 into the extend-
ed-precision register. The operands are floating-point numbers.

NEG! Src,Dreg
[NEGI Dreg]

Negate Integer
Operation: 0 - Src = Dreg

Load the difference between the source operand and O into the destination
register. The operands are signed integers.

NOP No Operation
[NOP Src] Operation: No ALU or multiplier operations.
ARn is modified if Src is specified in indirect mode.
Modify the source operand (if specified), or perform no operation. Src
must be an indirect operand.
NORM Src,Rn Normalize Floating-Point Value
[NORM Rn] Operation: normalize(Src) = Rn

Normalize a floating-point number and load the result into an extended-
precision register.

NOT Src,Dreg
[NOT Dreg]

Bitwise Logical Complement
Operation: Src — Dreg

Load the bitwise logical complement of the source operand into the desti-
nation register.

Note: Optional syntaxes are shown in [brackets].

Key:

Src - General addressing modes Dreg - Register mode (any register)
Src1 - Three-operand addressing modes Rn - Register mode (RO-R7)

Src2 - Three-operand addressing modes Daddr — Destination memory address
Csrc - Conditional branch addressing modes ARn - Auxiliary register n (ARO—-AR7)
Sreg - Register mode (any register) Addr - 24-bit immediate address (label)

Count - Shift value (general addressing modes)

Cond - Condition code (see Table 6-2, pg. 6-4)

Instruction Set - Summary

Syntax

Description

OR Src,Dreg

Bitwise Logical OR
Operation: Dreg OR Src = Dreg

Load the bitwise logical OR of the source and the destination into the
destination register. The operands are unsigned integers.

OR3 Src1,Src2,Dreg
[OR Src1,Src2,Dreg]

Bitwise Logical OR (3-Operand)
Operation: Src1 OR Src2 — Dreg

Load the bitwise logical OR of the two source operands into the destina-
tion register. The operands are unsigned integers.

POP Dreg Pop Integer from Stack
Operation: *SP-- = Dreg
Pop the contents of the top of the system stack into the destination register.
The value popped from the stack is an integer.
POPF Rn Pop Floating-Point Value from Stack
Operation: *SP-- = Rn
Pop the contents of the top of the system stack into an extended-precision
register. The value popped from the stack is a floating-point number.
PUSH Sreg Push Integer on Stack
Operation: Sreg = *++SP
Push the contents of the source register onto the top of the system stack.
The value pushed on the stack is an integer.
PUSHF An Push Floating-Point Value on Stack
Operation: Rn = *++SP
Push the contents of an extended-precision register onto the top of the
system stack. The value pushed on the stack is a floating-point number.
RETIcond Return from Interrupt Conditionally or Unconditionally
[RETI] Operation: If cond = true
*SP-- = PC
1 — ST(GIE)
Else
continue
Perform a return from an interrupt routine. If the condition is true or if there
is no condition, pop the top of the system stack into the PC and set the
global interrupt enable bit to 1.
RETScond Return from Subroutine Conditionally or Unconditionally
[RETS] Operation: If cond = true
*SP-- = PC
Else
continue
Perform a return from a subroutine. If the condition is true or missing, pop
the top of the system stack into the PC.
RND Src.Rn Round Floating-Point Value
[RND An] Operation: round(Src) = Rn

Round the source operand to the nearest single-precision floating-point
number and load it into an extended-precision register.

Instruction Set - Summary

Syntax Description
ROL Dreg Rotate Left
Operation: Dreg rotated left 1 bit = Dreg
Rotate the contents of the destination register left one bit and store the
result back into the destination register. The carry bit is set to the original
value of the MSB.
ROLC Dreg Rotate Left through Carry
Operation: Dreg rotated left 1 bit through carry = Dreg
Rotate the contents of the destination register left one bit through the carry
bit and store the result back into the destination register. The carry bit is
set to the original value of the MSB and the new LSB value is set to the
original value of the carry bit.
ROR Dreg Rotate Right
Operation: Dreg right-rotated 1 bit through carry bit = Dreg
Rotate the contents of the destination register right one bit and store the
result back into the destination register. The carry bit is set to the original
value of the LSB.
RORC Dreg Rotate Right through Carry
Operation: Dreg rotated right 1 bit through carry = Dreg
Rotate the contents of the destination register right one bit through the
carry bit and store the result back into the destination register. The carry
bit is set to the original value of the LSB and the new MSB value is set to
the original value of the carry bit.
RPTB Va/ Repeat Block of Instructions
Operation: Val = RE
1 = ST(RM)
next PC = RS
Repeat a block of instructions by the number in the RC (repeat count) re-
gister. Val is a 24-bit immediate value that is loaded into the repeat end
address (RE) register. The RM (repeat mode) status bit is set to 1, and the
address of the next instruction is loaded into the repeat start address (RS)
register.
RPTS Va/ Repeat Single Instruction
Operation: Val = RC
1 = ST(RM)
next PC = RSA
next PC - REA
Rebeat a single instruction by the number in the RC (repeat count) register.
Val is a 24-bit immediate value that is loaded into the RC (repeat counter)
register. The RM (repeat mode) and RS (repeat single) status bits are set
to 1, and the address of the next instruction is loaded into the repeat start
address (RSA) and repeat end address (REA) registers.

Note: Optional syntaxes are shown in [brackets].

Key:

Src - General addressing modes Dreg - Register mode (any register)
Src1 - Three-operand addressing modes Rn ~ Register mode (RO-R7)

Src2 - Three-operand addressing modes Daddr — Destination memory address
Csrc - Conditional branch addressing modes ARn - Auxiliary register n (ARO~AR7)
Sreg - Register mode (any register) Addr - 24-bit immediate address (label)

Count — Shift value (general addressing modes) Cond - Condition code (see Table 6-2, pg. 6-4)

Instruction Set - Summary

Syntax

Description

SIGI

Signal, Interiocked

Operation: Signal interlocked operation
Wait for interlock acknowledge
Clear interlock

An interlocked operation is signaled over XFO and XF1. After the inter-
locked operation is acknowledged, it ends.

STF Rn,Dador

Store Floating-Point Value
Operation: Rn — Daddr

Store the contents of an extended-precision register into a word in memory.
The value that is stored is a floating-point number.

STFI Rn,Dadadr

Store Floating-Point Value, Interlocked

Operation: Rn — Daddr
Signal end of interlocked operation

The contents of the source operand are stored at the destination. An in-
terlocked operation is signaled over XFO and XF1. The operands are
floating-point values.

STl Sreg,Daddr

Store Integer
Operation: Sreg —* Daddr

Store the contents of the source register into a word in memory. The value
that is stored is an integer.

STH Sreg,Daddr

Store Integer, Interlocked

Operation: Sreg —> Daddr
Signal end of interlocked operation

The contents of the source operand are stored at the destination. An in-
terlocked operation is signaled over XFO and XF1. The operands are signed
integers. :

SUBB Sr¢,Dreg

Subtract Integers with Borrow
Operation: Dreg - Src - C = Dreg

Load the difference between the destination register, the source operand,
and the carry bit into the destination register. The operands are signed in-
tegers.

SUBB3 Src2,Src1,Dreg
[SUBB Src2,Src1,.Dreg]

Subtract Integers with Borrow (3-Operand)
Operation: Src1 - Src2 - C = Dreg

Load the difference between the source operands and the carry bit into the
destination register. The operands are signed integers.

SUBC Src,Dreg

Subtract Integers Conditionally

Operation: If Dreg - Src > 0
[(Dreg-Src) << 1] OR 1 —Dreg
Else
Dreg <<1 — Dreg

If the difference between the destination and the source operands is greater
than or equal to O, then shift the difference left 1 bit, set the LSB to 1, and
store the result in the destination register.

If the difference between the destination and the source is less than zero,
left shift the contents of the destination register by 1 bit.

SUBC is equivalent to a single step of an integer divide. The operands are
unsigned integers.

Instruction Set - Summary

[SUBF Src2,Src1,Rn]

Syntax Description
SUBF Src.Rn Subtract Floating-Point Values
Operation: Rn - Src = Rn
Subtract the source operand from the contents of the extended-precision
register and store the result in the register. Both operands are floating-
point numbers.
SUBF3 Src2,Src1,Rn Subtract Floating-Point Values (3-Operand)

Operation: Src1 - Src2 = Rn

Subtract source 2 from source 1 and store the result in the extended-
precision register. All the operands are floating-point numbers.

SUBI Src,Dreg

Subtract Integers

Operation:
Subtract the source operand from the contents of the destination register
and store the result in the destination register. Both operands are signed
integers.

Dreg - Src = Dreg

SUBI3 Src2,Src1,Dreg
[SUBI Src2,Src1,Dreg]

Subtract Integers (3-Operand)
Operation: Src1 - Src2 = Dreg

Subtract source 2 from source 1 and store the result in the destination re-
gister. All the operands are signed integers.

SUBRB Src,Dreg

Subtract Reverse Integer with Borrow
Operation: Src - Dreg - C = Dreg

Load the difference between the source, destination, and carry bit into the
destination register. Both operands are signed integers.

SUBRF Src,Rn

Subtract Reverse Floating-Point Value
Operation: Src - Rn = Rn

Subtract the contents of the extended-precision register from the source
operand and store the result into the register. Both operands are float-
ing-point numbers.

SUBRI Src,Dreg

Subtract Reverse Integer
Operation: Src - Dreg = Dreg

Subtract the contents of the destination register from the source operand
and store the result into the destination register. Both operands are signed
integers.

Swi Software Interrupt
Operation: Perform emulator interrupt sequence.

Note: Optional syntaxes are shown in [brackets].
Key:
Src - General addressing modes Dreg - Register mode (any register)
Src1 - Three-operand addressing modes Rn — Register mode (RO-R7)
Src2 - Three-operand addressing modes Daddr — Destination memory address
Csrc — Conditional branch addressing modes ARn - Auxiliary register n (ARO-AR7)
Sreg - Register mode (any register) Addr - 24-bit immediate address (label)

Count - Shift value (general addressing modes)

Cond - Condition code (see Table 6-2, pg. 6-4)

Instruction Set - Summary

Syntax Description
TRAPcond N Trap Conditionally or Unconditionally
[TRAP N] Operation: 0 — ST(GIE)

If cond= true
next PC = *++SP
trap vector N = PC
Eise
Set ST(GIE) to original state
continue

If the condition is true or missing, the PC contents are pushed on the sys-
tem stack, the PC is loaded with the contents of the specified trap vector
(NV), and interrupts are disabled. N is an immediate value from 0-31.

TSTB Src,Dreg

Test Bit Fields
Operation: Dreg AND Src

Perform a bitwise logical AND of the source and destination and set the
appropriate flags on the result. This is a nondestructive compare; the re-
sults of the compare are not stored. The source operand is an unsigned
integer.

TSTB3 Src1,Src2
[TSTB Src1,Src2]

Test Bit Fields (3-Operand)
Operation: Src1 AND Src2

Perform a bitwise logical AND of the two source operands and set the ap-
propriate flags on the result. This is a nondestructive compare; the results
of the compare are not stored. The source operands are unsigned integers.

XOR Src,Dreg

Bitwise Exclusive OR
Operation: Dreg XOR Src — Dreg

Perform a bitwise exclusive OR of the source and destination operands and
store the result in the destination register. The source operand is an un-
signed integer.

XOR3 Src2,Src1,Dreg
[XOR Src2,Src1,Dreg]

Bitwise Exclusive OR (3-Operand)
Operation: Src1 XOR Src2 — Dreg

Perform a bitwise exclusive OR of the two source operands and store the
result in the destination register. The source operands are unsigned inte-
gers.

Note: Optional syntaxes are shown in [brackets].

Key:
Src

Srcl
Src2
Csrc
Sreg

= General addressing modes Dreg - Register mode (any register)

~ Three-operand addressing modes Rn - Register mode (RO—R7)

~ Three-operand addressing modes Daddr — Destination memory address

~ Conditional branch addressing modes ARn - Auxiliary register n (ARO-AR7)
~ Register mode (any register) Val = Immediate value

Count — Shift value (general addressing modes) Cond - Condition code (see Table 6-2, pg. 6-4)

Instruction

Set - Three-Operand Instructions

6.2 Three-Operand Instructions

Most instructions have only two operands; however, several arithmetic and
logical instructions have three-operand versions. Three-operand instructions
allow the TMS320C30 to read two operands from memory or the register file
in a single cycle.

[) Two-operand instructions have a single source operand (or shift count)
and a destination operand.

(] Three-operand instructions may have two source operands (or one
source operand and a count operand) and a destination operand. A
source operand may be a memory word or a register. The destination
of a three-operand instruction is always a register.

Table 6-3 lists the instructions that have three-operand versions.

Table 6-3. Summary Three-Operand Instructions

Instruction Description Instruction Description
ADDC3 Add with carry ADDF3 Add floating-point values
ADDI3 Add integers AND3 Bitwise logical AND
ANDN3 Bitwise logical AND with ASH3 Arithmetic shift

complement
CMPF3 Compare floating-point values CMPI3 Compare integers
LSH3 Logical shift MPYF3 Multiply floating-point values
MPYI3 Multiply integers OR3 Bitwise logical OR
SUBB3 Subtract integers with borrow SUBF3 Subtract floating-point values
SUBI3 Subtract integers TSTB3 Test bit fields
XOR3 Bitwise exclusive-OR'

Note:

You can omit the 3 for all three-operand instructions.

Instruction Set - Parallel Instructions

6.3 Parallel Instructions

6-18

Some of the TMS320C30 instructions can occur in pairs that will be executed
in parallel. Table 6-4 lists the valid instruction pairs. These parallel in-
structions allow:

o Parallel loading of register,
L Parallel arithmetic operations, and

® Arithmetic or logical instructions that can be used in parallel with a store
instruction.

Each instruction in a pair is entered as a separate source statement; the second
instruction must be preceded by two vertical bars (| |). This example shows
the syntax for parallel instructions:

label: ADDI3 RO, *ARO,R1 ; Part 1 (label is optional)
|1 STI R4, *+AR11. ; Part 2

Note that the first instruction in the pair may have a label, but the second in-
struction cannot have a label.

The assembler allows several relaxed syntax forms for parallel instructions:

[) The vertical bars can be placed in column 1 or anywhere between col-
umn 1 and the mnemonic. Here is another example of valid syntax for
parallel instructions:

label: MPYI3 RO, *AR1,RO
|| ADDI3 *AR2,R1,R2

° The instructions in a parallel instruction pair may be specified in either
order. For instance, the preceding example could also be specified as:

label: ADDI3 *AR2,R1,R2
|| MPYI3 RO,*AR1,RO

[] If one of the instructions in a pair uses a three-operand instruction, you
can omit the 3 for that instruction.

MPYI3 RO, *AR1,RO can be MPYI RO, *AR1,RO

|| ADDI3 *AR2,R1,R2 written as || ADDI *AR2,R1,R2

® All commutative operations can be written in either order. For example,

ADDI *ARO,R1,R2 can be written as ADDI R1,*ARO,R2

[] The third operand of a three-operand instruction specifies a destination
register. You can omit the third operand if it is the same as the second
operand. This allows you to use three-operand instructions that look like
two-operand instructions. For example,

ADDI3 *ARO,R2,R2 can be ADDI *ARO,R2
MPYI3 *AR1,RO,RO written as MPYI *AR1,RO

{] Instructions that can use the preceding two syntaxes include:
ADDC3 AND3 LSH3 OR3 SUBI3
ADDF3 ANDN3 MPYF3 SUBB3 XOR3
ADDI3 ASH3 MPYI3

Instruction Set - Parallel Instructions

Note that all registers are read at the beginning of the execution cycle and

loaded at the end of the execution cycle.

If an instruction in a pair reads a

register and another instruction writes to the same register, then the former
instruction uses the contents of the register before it is modified by the latter

instruction.
Table 6-4. Summary of Parallel Instructions
Parallel Arithmetic with Store Instructions
Syntax Operation
ABSF Src2,Dst1 |Src2| = Dst1
|| STF Src3,Dst2 || Src3 — Dst2
ABS! Src2,Dst1 |Src2| — Dstt
I STI Src3,Dst2 || Src3 = Dst2
ADDF3 Src1,Src2,Dst1 Src1 + Src2 — Dst1
|| STF Src3,Dst2 || Src3 = Dst2
ADDI3 Src1,Src2,Dst1 Src1 + Src2 — Dst1
1| STI Src3,Dst2 || Src3 — Dst2
AND3 Src2,Src1,Dst1 Src1 AND Src2 — Dst1
|| STI Src3,Dst2 || Src3 = Dst2
ASH3 Count,Src2,Dst1 If Count > 0
1| STI Src3,Dst2 Src2 << Count = Dst1
|| Src3 — Dst2
Else
Src2 >> |Count| = Dst1
|| Src3 = Dst2
FIX Src2,Dst1 Fix(Src2) — Dst1
Il STI Src3,Dst2 || Src3 — Dst2
FLOAT Src2,Dst1 Float(Src2) — Dst1
|| STF Src3,Dst2 || Src3 = Dst2
LDF Src2,Dst1 Src2 — Dst1
II STF Src3,Dst2 || Src3 — Dst2
LDI Src2,Dst1 Src2 — Dstl
|| STI Src3,Dst2 || Src3 = Dst2
LSH3 Count,Src2,Dst1 If Count > 0
It STI Src3,Dst2 Src2 << Count — Dst1
|| Src3 — Dst2
Else
Src2 >> |Count| — Dst1
|| Src3 — Dst2
MPYF3 Src2,Src1,Dst1 Src1 x Src2 — Dst1
|| STF Src3,Dst2 || Src3 — Dst2

Key:

Src1 — Register mode (RO-R7)
Src3 - Register mode (R0-R7)

Src2 - Indirect mode (disp. = 0, 1, IRO, IR1)
Sr42 - Indirect mode (disp. = 0, 1, IR0, IR1)
Dst1 - Register mode (RO—-R7) Dst2 - Indirect mode (disp. = 0, 1, IR0, IR1)
Op3 - Register mode (RO or R1) Op6 - Register mode (R2 or R3)
Op1,0p2,0p4.0p5 — Two of these operands must be specified using register mode and
two must be specified using indirect mode

6-19

Instruction Set - Parallel Instructions

6-20

Table 6-4. Summary of Parallel Instructions (Concluded)

Parallel Arithmetic with Store Instructions (continued)

Syntax QOperation
MPYI3 Src2,Src2,Dst1 Srct x Src2 — Dstl
|| ST! Src3,Dst2 || Src3 — Dst2
NEGF Src2,Dst1 0 - Src2 = Dst1
|| STF Src3,Dst2 1| Src3 = Dst2
NEGI Src2,Dst1 0 - Src2 — Dst1
1| ST! Src3,Dst21 || Src3 = Dst2
NOT Src2,Dst1 Src2 —> Dst1
Il STI Src3,Dst2 || Src3 = Dst2
OR3 Src2,Src1,Dst1 Src1 OR Src2 — Dsti
1| STI Src3,Dst2 || Src3 = Dst2
STF Src1,Dst1 Src1 — Dstl
|| STF Src3,Dst2 || Src3 — Dst2
STI Src1,Dst1 Src1 — Dst1
1| STIi Src3,Dst2 || Sre3 = Dst2
SUBF3 Src2,Src1,Dstl Src1 - Src2 — Dstl
|| STF Src3,Dst2 || Src3 — Dst2
SUBI3 Src2,Srct,Dst1 Src1 - Src2 = Dst1
I STI Src3,Dst2 |l Src3 — Dst2
XOR3 Src2,Src1,Dst1 Src1 XOR Src2 — Dst1
I STI Src3,Dst2 || Src3 — Dst2
Parallel Load Instructions
Syntax Operation
LDF Src2,Dst1 Src2 = Dst1
|| LDF Src4,Dst2 || Src4 — Dst2
LDI Src2,Dst1 Src2 = Dst1
|| LDI Src4,Dst2 || Src4 — Dst2
Parallel Multiply and Add/Subtract Instructions
Syntax Operation
MPYF3 Op1,0p2,0p3 Op1 x Op2 — Op3
|| ADDF3 Op4,0p5,0p6 || Op4 + Op5 — Op6
MPYF3 Op1,0p2,0p3 Op1 x Op2 = Op3
|| SUBF3 Op4,0p5,0p6 || Op4 - Op5 — Opb6
MPYI3 Op1,0p2,0p3 Opt1 x Op2 = Op3
|| ADDI3 Op4,0p5,0p6 || Op4 + Op5 — Op6
MPYI3 Op1,0p2,0p3 Op1 x Op2 — Op3
|| SUBI3 Op4,0p5,0p6 |l Op4 - Opb5 = Op6

Key:

Src1 - Register mode (RO-R7)
Src3 - Register mode (RO-R7)
Dst1 - Register mode (RO-R7)

Src2 - Indirect mode (disp. =
Sr42 - Indirect mode (disp. =
Dst2 - Indirect mode (disp. = 0, 1, IR0, IR1)

0,1, IR0, IRT1)
0, 1, IR0, IR1)

Op3 - Register mode (RO or

Op1,0p2,0p4,0p5 — Two of these operands must be specified using register mode and

R1) Op6 - Register mode (R2 or R3)

two must be specified using indirect mode

Instruction Set - Load and Store Instructions

6.4 Load and Store Instructions

The TMS320C30 supports 12 load and store instructions, which are summa-
rized in Table 6-5. These instructions:

[] Load a word from memory into a register,

[] Store a word from a register into memory, or
[] Manipulate data on the system stack.

The TMS320C30 also provides you with the ability to load data conditionally;
this is useful for locating the maximum or minimum value in a data set.

Table 6-5. Summary of Load and Store Instructions

Instruction Description Instruction Description

LDE Load floating-point exponent POP Pop integer from stack

LDF Load floating-point value POPF Pop floating-point value from
stack

LDFcond Load floating-point value PUSH Push integer on stack

conditionally

LDI Load integer PUSHF Push floating-point value on
stack

LDlicond Load integer conditionally STF Store floating-point value

LDM Load floating-point mantissa STI Store integer

6-21

Instruction Set - Arithmetic/Logical Instructions

6.5 Arithmetic Instructions

The TMS320C30 supports a complete set of arithmetic instructions. These
instructions provide integer operations, floating-point operations, and multi-
precision arithmetic. Table 6-6 summarizes these instructions.

Table 6-6. Summary of Arithmetic Instructions

Instruction Description Instruction Description

ABSF Absolute value of a floating- NEGB Negate integer with borrow
point number

ABSI Absolute value of an integer NEGF Negate floating-point value

ADDC t| Add integers with carry NEGI Negate integer

ADDF t| Add floating-point values NORM Normalize floating-point value

ADDI t] Add integers RND Round floating-point value

ASH t| Arithmetic shift SUBB t| Subtract integers with borrow

CMPF t| Compare floating-point values SUBC Subtract integers conditionally

CMPI t| Compare integers SUBF t] Subtract floating-point values

FIX Convert floating-point value to - SUBRB Subtract reverse-integer with
integer borrow

FLOAT Convert integer to floating-point SUBRF Subtract reverse floating-point
value value

MPYF t| Multiply floating-point values SUBRI Subtract reverse integer

MPYI t| Multiply integers

t Two and three operand versions

6.6 Logical Instructions

The TMS320C30 supports a complete set of logical instructions, which are
summarized in Table 6-7.

Table 6-7. Summary of Logical Instructions

Instruction Description Instruction Description
AND t| Bitwise logical AND ROLC Rotate left through carry
ANDN 1| Bitwise logical AND with ROR Rotate right

complement
LSH t] Logical shift RORC Rotate right through carry
NOT Bitwise logical complement TSTB t| Test bit fields
OR t| Bitwise logical OR XOR t| Bitwise exclusive OR
ROL Rotate left

t Two and three operand versions

6-22

Instruction Set - Program-Control/Interlocked Instructions

6.7 Program-Control Instructions

These instructions control program flow by providing repeat modes (zero-
overhead looping) and branching. The repeat modes support repetition of a
block of code or of a single line of code. Both standard and delayed branching
are supported. Table 6-8 lists the program-control instructions.

Table 6-8. Summary of Program-Control Instructions

6.8 Interlocked-Operation Instructions

Instruction Description Instruction Description
Bcond[D] Branch conditionally (standard NOP No operation
or delayed)
BR[D] Branch unconditionally RETI cond Return from interrupt
standard or delayed) conditionally
CALL Call subroutine RETS cond Return from subroutine
conditionally
CAlLLcond Call subroutine conditionally RPTB Repeat block of instructions
DBcond[D] Decrement and branch RPTS Repeat single instruction
conditionally
IDLE Idle until interrupt THAP cond Trap conditionally
SWI Software interrupt

The interlocked-operations instructions support multiprocessor communi-
cation. Table 6-9 lists the interlocked-operation instructions.

Table 6-9. Summary of Interlocked-Operation Instructions

Instruction Description Instruction Description
LDFI Load floating-point value, STFI Store floating-point value,
interlocked interlocked
LDl Load integer, interlocked STII Store integer, interlocked
SIGI Signal, interlocked

6-23

Instruction Set - LDP Instruction

6.9 The LDP Instruction

6-24

The LDP (load data page) instruction is a special form of the LDI (load inte-
ger) instruction. LDP allows you to load a register (usually the DP register)
with the page number of a relocatable address. A page number is represented
by the eight MSBs of a 24-bit address. The page number is combined with
the 16 LSBs of an instruction word to form a direct address.

The syntax for the LDP instruction is:
[label] LDP expression[,register]

LDP assembles as an LDI instruction with an immediate source operand.

[] The expression is a relocatable address, which is usually represented by
a symbol name.

® The 8 MSBs of the address are loaded into the destination register. If
you do not specify a register, the assembler will use the DP register as a
default.

At link time, expression may be relocated to a different page than it occupied
at assembly time. The assembler generates a special relocation type that al-
lows the linker to patch the correct page number into the LDP instruction.

The following example illustrates use of the LDP instruction. Assume a vari-
able named sym is defined in the .bss section as shown:

.bss sym,1 ; Allocate sym in .bss

To read the value of sym using direct addressing, you must first load the DP
register with the 8-bit pointer to the page on which sym is located. Normally,
you do not know at assembly time where the .bss section will be loaded, so
you must use an LDP instruction to load DP before accessing the variable:

LDP sym ;lLoad DP with page number of sym
LDI @sym, RO ; Use direct addressing to access sym

Note that the register operand was omitted from the LDP instruction; DP was
used as the default.

Section 7

Macro Language

The assembler supports a macro language that allows you to create your own
“commands.” This is especially useful when a program executes a particular
task several times. The macro language allows you to:

Define your own macros

Redefine existing opcodes and macros

Access macro libraries created with the archiver
Manipulate strings within a macro

Define conditional and repeatable blocks within a macro
Control macro expansion listing

There are three phases of macro use:

{ Macro definition. Macros must be defined before they can be in-
voked. There are two methods for defining macros:

1) Macros can be defined in the source file where they are used (or
in a separate text file that is included with a .copy or .include di-
rective). Because macros must be defined before they are called,
it is a good practice to place all the definitions at the beginning of
the file.

2) Macros can also be defined in a macro library. A macro library
is a collection of files in archive format, created by the archiver.
Each member of the archive file (macro library) may contain one
macro definition that corresponds to the name of the member. You
can access a macro library by using the .mlib directive. Because
macros must be defined before they can be called, the .mlib direc-
tive must appear in the source code before any of the macros in the
library are called.

[] Macro invocation. Once a macro has been defined, the macro name
can be used as an opcode in a source program. This is referred to as a
macro call.

® Macro expansion. When the source program calls a macro, the as-
sembler substitutes the statements within the macro definition for the
macro call statement.

This section discusses the following topics:

Section

7.1 Macro Directives SUMMArYcccoeeiiireininiene e sree e e see s seeeneas
.2 Macro Librariesc..c.......
Defining Macros
Macro Parameters
Conditional Blocks
Repeatable Blocks
UNiQue Labels ..ottt

NNNNNN
NOOTRA_WN

it

Macro Language - Macro Directives Summary

7.1 Macro Directives Summary

Directive Description
$MACRO Macro Definition Directive
Syntax: macro name $MACRO [parmq[, ..., parmp]]
The $MACRO directive begins a macro definition. It must be the first statement in
a macro definition. SMACRO assigns a name to the macro and declares the macro
parameters.
macro name is the name of the macro. A macro name may be 1 to 32 alphanumeric
characters; it must begin with a letter. Parms are optional parameters. When a
macro is called, the assembler will associate the first operand in the macro call with
the first parameter of the macro definition, and so on.
SIF Begin Conditional Block Directive
Syntax: S$IF expression
The $IF directive begins a conditional block. If the expression evaluates to a non-
zero value, then the code following the $IF directive (up to an $ELSE or $SENDIF
directive) will be assembled.
SELSE Alternate Conditional Block Directive
Syntax: $ELSE
The $ELSE directive may be used within a conditional block. If the expression in
an $IF directive evaluates to O, then code following a corresponding $ELSE directive
(up to an SENDIF directive) will be assembled.
SENDIF Terminate Conditional Block Directive
Syntax: $SENDIF
The $ENDIF directive terminates a conditional block.
$SENDM Terminate Macro Definition Directive
Syntax: $ENDM
The SENDM directive terminates a macro definition.
$LOOP Begin Repeatable Block Directive
Syntax: $LOOP expression
The $LOOP directive begins a repeatable block. The expression is evaluated only
once; the expression should evaluate to a value in the range 0-32767.
SENDLOOP Terminate Repeatable Block Directive
Syntax: $ENDLOOP
The $SENDLOOP directive terminates a repeatable block.

7-2

Macro Language - Macro Libraries

7.2 Macro Libraries

A macro library is a collection of files that contain macro definitions. These
files, or members, are bound into a single file (called an archive) by the ar-
chiver. Each member of a macro library may contain one macro definition.
The macro name and the member name must be the same, and the macro
filename's extension must be .asm. The files in a macro library must be unas-
sembled source files. You can access the macro library by using the .mlib as-
sembler directive:

.mlib “macro library filename”

When the assembler encounters an .mlib directive, it opens the library and
creates a table of its contents. The assembler enters the names of the indi-
vidual members within the library into the opcode table as library entries; this
redefines any existing opcodes or macros that have the same name. If one of
these macros is called, the assembler extracts the entry from the library and
loads it into the macro table. The assembler expands the library entry in the
same manner as other macros, but it does not place the source code into the
listing. Only macros that are actually called from the library are extracted, and
they are extracted only once.

You can create a macro library with the archiver by simply including the de-
sired files in an archive. A macro library is no different from any other archive,
except that the assembler expects the macro library to contain macro defi-
nitions.

The following example creates a macro library called maclib.lib:

ar30 -a maclib.lib macl.asm mac2.asm mac3.asm mac4d.asm

This example adds four macro files (macl.asm, mac2.asm, mac3.asm, and
mac4.asm) to the library maclib.1lib. Note that this could be a new or an
existing library; if the library already existed, this example would simply ap-
pend the macros to the end of the library.

Now you can specify maclib.1ib to the assembler with an .mlib directive,
and call any of the macros that it contains:

.mlib "maclib.1lib"
macl ; Macro call

The assembler assumes that the files in the archive contain macro definitions
with the same names as the members. The assembler expects only macro
definitions in a macro library; putting object code or miscellaneous source files
into the library may produce undesirable effects.

7-3

Macro Language - Defining Macros

7.3 Defining Macros

7-4

A macro definition is a series of source statements in the following format.

macname SMACRO [parm{] [, parm3] ... [,parm,]

"

"
model statements or macro directives
n

”

”

$SENDM
where:

macname names the macro It must be placed in the source statement’s
label field. Macro names are significant to 32 characters. The
assembler places this name in the internal opcode table, replac-
ing any instruction or previous macro definition with the same
name.

$MACRO identifies this source statement as the first line of a macro defi-
nition; it must be placed in the opcode field.

parms are optional parameters which may appear as operands for the
$MACRO directive. Parameters are not required by all macros.

model statements
are instructions or assembler directives that are used each time
the macro is invoked.

macro directives
control the expansion of the macro or manipulate macro param-
eters.

$SENDM terminates the macro definition.

The contents of a single macro definition must be contained in the same file.
Macro definitions cannot be nested, but other directives, instructions, and
macro calls can be used in a macro definition. The assembler performs only
limited error checking of macro definitions (during the definition phase), so
multiple expansions of a macro may produce duplicate error messages.

When a macro is called, the assembler substitutes the model statements and
macro directives within the defirition for the macro call in the source code.
Example 7-1 shows an example of a macro definition, how it is called, and
how it is expanded in the source code.

Macro Language - Defining Macros

Example 7-1. Macro Definition, Call, and Expansion

Macro Definition: The following code defines a macro, MOVREG, that has three

parameters.

Oool IS E RS E R RS R R RS RS S R RS R RS R EE R R R R EEEREEE SR
0002 MOVREG $SMACRO pl,p2,pN ; Begin macro definition
0003 LDI :pl:, :p2: ; Model statement

0004 LDI ip2:, :pN: ; Model statement

0005 $LOOP 2 ; Begin repeat block
0006 NOP ; Model statement

0007 SENDLOOP ; End repeat block

0008 $ENDM ; End macro definition

Macro Call: The MOVREG macro is invoked in the source code.

0009
0010

Macro Expansion: The assembler substitutes the functional lines of the macro de-
finition for the macro call. The macro parameters are replaced with the operands sup-
plied in the macro call.

10001 000000 08010000 LDI RO,R1
10002 000001 08020001 LDI R1,R2
10003 000002 0C800000 NOP
10004 000003 0C800000 NOP

LR RS EE SRR EEEEE RS E RS R SIS SRS RS E R SRR L LS
MOVREG RO,R1,R2 ; Macro call

When the assembler encounters a macro definition, it places the macro name
in the opcode table. This redefines any previously defined macro, library entry,
directive, or instruction mnemonic that has the same name as the encountered
macro. This allows you to expand the functions of directives and instructions,
as well as to add new instructions.

Caution:

When you specify a macro library with the .mlib directive, the
assembler places all the entries in the specified library into the
opcode table - not just the macros that are called. Make sure
that the macros and instructions you want to use are not rede-
fined by macros in a macro library.

Macro Language - Macro Parameters

7.4 Macro Parameters

Macros can declare local parameters whose scope is limited to the defining
macro. These parameters do not conflict with symbols defined outside the
macro. Only the first eight characters of a parameter name are significant. A
single macro can declare a maximum of 128 parameters.

The assembler assigns initial values to macro parameters when the macro is
called. For example, consider the following macro definition line:

ADDUP SMACRO vall,val2,sum

This example defines three parameters (vall, val2, and sum). The assembler
assigns values to these parameters when it expands the macro; each parameter
corresponds to an operand in the macro call.

The value that is assigned to a macro parameter is called a string value. The
assembler will substitute a parameter’s string value into a model statement
when you enclose the parameter name in colons. Parameters can be used this
way anywhere in a model statement (as a label, an operand, etc.).

Example 7-2 shows a macro that has four parameters.

Example 7-2. Using Parameter Values

7-6

0001 packword SMACRO bl,b2,b3,b4d
0002 * Make sure these are all in one word
0003 .even

0004 .field :bl:,8
0005 .field :b2:,8
0006 .field :b3:,8
0007 .field :b4:,8
0008 SENDM

0009

0010 00000003 A .set 03h
0011 00000010 B .set 10h
0012 00000009 C .set 0%h
0013 00000044 D .set 44h
0014

0015 000000 00000039 .field 37h,12
0016

0017 packword A,B,C,D
10001 000001 .even

10002 000001 00000003 .field A,8
10003 000001 00001003 .field B,8
10004 000001 00091003 .field c,8
10005 000001 44091003 .field D,8

The packword macro packs four values into the four bytes of a word. The
parameters b1, b2, b3, and b4 are assigned values corresponding to the values

that are passed when the macro is called.

Macro Language - Conditional Blocks

7.5 Conditional Blocks

The $IF, $ELSE, and $ENDIF directives are used to construct conditional
blocks within macro definitions. Conditional blocks can be nested up to ten
levels deep. Blocks at all nesting levels must always be terminated with an
$ENDIF. The general format of a conditional block is:

SIF well-defined expression

cade to assemble if expression is true (# 0)
SELSE

code to assemble if expression is false (=0)
$ENDIF

If the expression in the $IF statement evaluates to a nonzero value (true), then
the code that follows it (up to an $SELSE or $SENDIF) will be assembled. If the
expression evaluates to O (fa/se), then the assembler does not assemble the
code that follows the $IF statement; if an $ELSE directive is present, the as-
sembler assembles the code that follows it (up to the SENDIF).

All directives ($IF, SELSE, and $SENDIF) in a single conditional block must
appear in the same source module; the SENDIF cannot appear in an included
file. A conditional block not terminated by the end of a source file (or upon
encountering an SENDM directive) will produce an error.

Conditional assembly directives that appear in a macro definition are evaluated
each time the macro is expanded, not as it is defined. Unassembled code
(code following a false $IF or an unused $ELSE) is not scanned; no
copy/include files are opened and no macros are defined in such blocks.

Figure 7-1 shows an example of a macro with a conditional block.

0001 CMPR S$MACRO pl,p2
0002 $SIF tpl: <> :p2:
0003 .string "not equal"
0004 $SELSE
0005 .string "equal"
0006 SENDIF
0007 SENDM
0008
0009 00000001 syml .set 1
0010 00000002 sym2 .set 2
0011
0012 000000 CMPR syml, sym2
10001 000000 20746F6E .string "not equal”
000001 61757165
000002 0000006C

Figure 7-1. An Example of a Conditional Block

7-7

Macro Language - Repeatable Blocks

7.6 Repeatable Blocks

Repeatable blocks allow a section of code (or a section of a macro definition)
to be repeatedly expanded. This is particularly useful for table generation. The
format of a repeatable block is:

$LOOP well-defined expressions
model statements or macro directives
$SENDLOOP

The assembler evaluates the expression once when it enters the loop, and then
it repeats the block expression number of times. The expression may be any
legal expression or macro expression.

The restrictions that apply to conditional blocks also apply to repeatable
blocks. You can nest up to 10 blocks; you can nest conditional blocks within
repeatable blocks, and repeatable blocks within conditional blocks. The as-
sembler checks to see if blocks are nested properly; if they are not, the as-
sembler produces an error message. The following example shows improper
nesting:

SLOOP expression 1
$Iﬁ expression 2
SENDLOOP

SENDIF

Note that the two blocks overlap rather than nest properly. This is an error,
and the macro definition will be ignored.

Example 7-3 shows an example of a repeatable block.

Example 7-3. A Repeatable Block

7-8

0001 £ill SMACRO f_val

0002 $SLOOP 32

0003 .word :f_val:
0004 $ENDLOOP

0005 SENDM

0006

0007 fill OAABBCCDDh
10001 000000 AABBCCDD .word OAABBCCDDh
10002 000001 AABBCCDD .word OAABBCCDDh
10003 000002 AABBCCDD .word OAABBCCDDh
10030 00001D AABBCCDD .word OAABBCCDDh
10031 00001E AABBCCDD .word OAABBCCDDh
10032 00001F AABBCCDD .word OAABBCCDDh

Macro Language - Unique Labels

7.7 Unique Labels

Labels must be unique. If you use an ordinary label in a macro, and the macro
is expanded more than once, the label in the macro defines the label/symbol
more than once - this is illegal. The macro language supports a special form
of label that allows you to create unique labels within macros. To form a
unique label, simply follow the label name with a question mark; the syntax
for a unique label is:

label?

Symbols that are defined in this manner can be used like any other symbol;
you can declare them as global symbols, you can use them in expressions, etc.

7-9

Macro Language

Section 8

Archiver Description

The TMS320C30 archiver lets you combine several individual files into a sin-
gle file called an archive or a library. Each file within the archive is called a
member. Once you have created an archive file, you can use the archiver to
add more files to it, delete or replace existing members, or extract members.

You can build libraries out of any type of files. Both the assembler and the
linker accept archive libraries as input; the assembler can use libraries that
contain individual source files, and the linker can use libraries that contain in-
dividual object files.

One of the most useful applications of the archiver is to build a library of ob-
ject modules. For example, you could write several arithmetic routines, as-
semble them, and then use the archiver to collect the object files into a single,
logical group. You can then specify the object library as linker input. The
linker will search through the library and include any members that resolve
external references.

You can also use the archiver to build macro libraries. You can create several
separate source files, each of which contains a single macro, and then use the
archiver to collect these macros into a single, functional group. The .mlib as-
sembler directive lets you specify the name of a macro library to the assembler;
during the assembly process, the assembler will search the specified library for
the macros that you call. Section 7 discusses macros and macro libraries in
detail.

This section contains the following topics:

Section Page
8.1 Archiver Development FIOW ..., 8-2
8.2 Invoking the ArChiVer ..o 8-3
8.3 Archiver EXampPlescccooeoeeiiiiiieeeeecie e e 8-4

8-1

Archiver Description - Development Flow

8.1 Archiver Development Flow

Figure 8-1 shows the archiver’s role in the assembly language development
pro/c’ess. Both the assembler and the linker accept libraries as input.

Assembler
Source

C Source

C Compiler

Assembler
Source

Archiver

Library of
Object
Files

Executavte
COFF Object
File

:

Object
Format
Converter
Software
EPROM . XDS
Programmer Simuiator TMS320C30 DE\ée;ll&zrr:\]ent Emulator

Figure 8-1. Archiver Development Flow

8-2

Archiver Description - Invoking the Archiver

8.2 Invoki

ng the Archiver

To invoke the archiver, enter:

ar30 /-Jcommand/[option] libname [filenamej ... filename,] |

ar30 is the command that invokes the archiver; /ibname names an archive li-
brary. If you don't specify an extension for /ibname, the archiver uses the de-
fault extension ./ib. The filenames name individual member files that are
associated with the library. If you don’t specify an extension for a filename,
the archiver uses the default extension .obj.

The command tells the archiver how to manipulate the members in the library.
A command can be preceded by an optional hyphen. You must use one of
the following commands when you invoke the archiver, but you can only use
one command per invocation. Valid archiver commands include:

a adds the specified files to the library. Note that this command does not
replace an existing member that has the same name as an added file; it
simply appends new members to the end of the archive. It is possible for
an archive to contain several members that have the same name. If you
want to replace existing members, use the r command.

d deletes the specified members from the library.

r replaces the specified members in the library. If you don’t specify any
filenames, the archiver replaces the library members with files of the same
name in the current directory. If the specified file is not found in the li-
brary, the archiver adds it instead of replacing it.)

t prints a table of contents of the library. If you specify filenames, only
those files are listed. If you don’t specify any filenames, the archiver lists
all the members in the specified library.

x extracts the specified files. If you don’t specify any member names, the
archiver extracts all the members in the library. When the archiver extracts
a member, it simply copies the member into the current directory; it
doesn’t remove it from the library.

In addition to one of the commands, you can specify the following options:
e tells the archiver not to use the default extension .obj for member names.
q (quiet) suppresses the banner and status messages.

s prints a list of the global symbols that are defined in the library. (This
option is valid only with the -a, -r, and -d commands.)

v (verbose) provides a file-by-file description of the creation of a new li-
brary from an old library and its constituent members.

Note:

It is possible (but not desirable) for a library to contain several members
with the same name. If you attempt to delete, replace, or extract a mem-
ber, and the library contains more than one member with the specified
name, then the archiver deletes, replaces, or extracts the first member with
that name.

8-3

Archiver Description - Examples

8.3 Archiver Examples

Here are some examples of using the archiver.

[] Example 1:

This example.creates a library called function.lib that contains the
files sine.ohj, cos.obj, and £1t.obj.

ar30 -a function sine cos flt

TMS320C30 Archiver Version 1.10.01

(c) Copyright 1987, 1988, Texas Instruments Inc.
== new archive 'function.lib'
== building archive 'function.lib'

Since these examples use the default extensions (.1ib for the library
and .obj for the'members), it is not necessary to specify them.

° Example 2:

You can print a table of contents of function. 1ib with the -t option:

ar30 ~t function

TMS320C30 Archiver Version 5.xx 87.160
(c) Copyright 1987, Texas Instruments Inc.
FILE NAME SIZE DATE
sine.obj 248 Mon Nov 19 01:25:44 1984
cos.obj 248 Mon Nov 19 01:25:44 1984
flt.obj 248 Mon Nov 19 01:25:44 1984

° Example 3:

You can explicitly specify extensions if you don’t want the archiver
to use the default extensions; for example:

ar30 -ave function.fn sine.asm cos .asm flt.asm
TMS320C30 Archiver Version 1.10.01

(c) Copyrlght 1987, 1988, Texas Instruments Inc.
add 'sine. asm'

add 'cos.asm'

add 'flt.asm'

building archive 'function.fn'

VV VYV

This creates a library called function.fn that contains the files
sine.asm, cos.asm, and flt.asm. (-v is the verbose option.)

[] Example 4:

If you wanted to add some new members to a library, specify:

ar30 -as function tan.obj arctan.obj area.obj
TMS320C30 Archiver Version 1.10.01

(c) Copyright 1987, 1988, Texas Instruments Inc.
=> symbol defined: 'K2'

=> symbol defined: 'Rossignol'

=> building archive ‘'function.lib’

ar30 -a function tan.obj arctan.obj area.obj

8-4

Archiver Description - Examples

Since this example doesn’t specify an extension for the libname, the ar-
chiver adds the files to the library called function.lib. If func-
tion.lib didn’t exist, the archiver would create it. (The -s option tells
the archiver to list the global symbols that are defined in the library.)

® Example 5:

If you want to modify a member of a library, you can extract it, edit it,
and replace it. In this example, assume there’s a library named mac-
ros.lib that contains the members push.asm, pop.asm, and
swap .asm.

ar30 -x macros push.asm

The archiver makes a copy of push.asm and places it in the current di-
rectory; it doesn’t remove push.asm from the library, though. Now you
can edit the extracted file. To replace the copy of push. asm that's in the
library with the copy that was changed, enter:

ar30 -r macros push.asm

8-5

Archiver Description

8-6

Section 9

Linker Description

The TMS320C30 linker creates executable modules by combining COFF ob-
ject files. The concept of COFF sections is basic to linker operation; Section
3 discusses COFF sections in detail.

As the linker combines object files, it performs the following tasks:

[] It allocates sections into the target system’s configured memory.
® It relocates symbols and sections to assign them to final addresses.
[) It resolves undefined external references between input files.

The linker supports a C-like command language that controls memory con-
figuration, output section definition, and address binding. The language
supports expression assignment and evaluation, and provides two powerful
directives, MEMORY and SECTIONS, that allow you to:

® Define a memory model that conforms to target system memory,
[] Combine object file sections,

{ Allocate sections into specific areas of memory, and

[] Define or redefine global symbols at link time.

Topics in this section include:

Section Page
9.1 Linker Development FIOWcccccoiieiiieiciieecccee e 9-2
9.2 Invoking the LINKErcoccoeieiiiiiiiiiec e e e 9-3
9.3 LinKer OPLONS ..ooueeieeieeeee ettt st sne e enee s 9-4
9.4 Linker Command FileSccccocrviniiiiiiiiini e 9-11
9.5 Object Libraries ... 9-13
9.6 The MEMORY Dir€CHIVEcceveieiieieerceeeeeee e 9-14
9.7 The SECTIONS DirCtivVe ...c.ccecevueeeeiiererieeeesiesesee e seeee e eeeaeeensnens 9-16
9.8 OVErlay Pagescccceeuieeeiiieieee ettt 9-23
9.9 Default AlOCatIONooiiiieiieii et 9-27
9.10 Special Section Types (DSECT, COPY, and NOLOAD) 9-29
9.11 Assigning Symbols at Link Time ... 9-30
9.12 Creating and Filling Holescooioiiiiiic e 9-33
9.13 Partial (Incremental) Linkingcccccooriiiiiiiiiieiiieiecer e 9-37
9.14 Linking € COE ..ocoeuiiieieiiieeeiste e s anea 9-38
9.15 Linker EXamMPIE ..coeeoeiieceeieceeee ettt ettt 9-41

9-1

Linker Description - Development Flow

9.1 Linker Development Fiow

9-2

Figure 9-1 illustrates the linker's role in the assembly language development
process. The linker accepts several types of files as input, including object
files, command files, libraries, and partially linked files. The linker creates an
executable COFF object module that can be downloaded to one of several

development tools or executed by a TMS320C30.

Assembler C Source
Source

C Compiler
Archiver
Assembler
Source
Macro
Library
Archiver
. Library of
-2 Object
Executable Files
COFF Object
File
Object
Format
Converter
Software
EPROM . XDs
Programmer Simulator TM8320C30 Ds\é%)tgment Emulato_r

A

Figure 9-1. Linker Development Fiow

Linker Description - Invoking the Linker

9.2 Invoking the Linker

The general syntax for invoking the linker is:
| Ink30 [-options] filenamey ... filename, |

Ink30 is the command that invokes the linker. The options (discussed in
Section 9.3) can appear anywhere on the command line or in a linker com-
mand file. The filenames can be object files, linker command files, or archive
libraries. The default extension for all input files is .obj; any other extension
must be explicitly specified. The linker can determine whether the input file is
an object file or an ASCII file that contains linker commands. The default
output filename is a.out.

There are three methods for invoking the linker:

® Specify options and filenames on the command line. This example links two
files, filel.obj and file2.obj, and uses the -0 option to create an output
module named link.out.

1Ink30 filel.obj file2.obj -o link.out

o Enter the Ink30 command with no filenames and no options; the linker will
prompt for them:

Command files :
Object files [.obj]
Output files [] :
Options

For command files, enter one or more command file names.

For object files, enter one or more object file names. The default extension is
obj. Separate the filenames with spaces or commas; if the last character is a
comma, the linker will prompt for an additional line of object file names.

The output file is the name of the linker output module. This overrides any -o
options entered with any of the other prompts. If there are no -0 options and
you do not answer this prompt, the linker will create an object file with the
default filename of a.out.

The options prompt is for additional options, although you can also enter op-
tions in a command file. Enter them with hyphens, just as you would on the
command line.

® Put filenames and options in a linker command file. For example, assume the
file 1inker.cmd contains the following lines:

-0 link.out
filel.obj
file2.o0bj

Now you can invoke the linker from the command line; specify the command
file name as an input file: 1nk30 linker.cmd

When you use a command file, you can also specify other options and files on

the command line. For example, you could enter:
1nk30 -m link.map linker.cmd file3.obj

The linker reads and processes a command file as soon as it encounters it on
the command line, so it links the files in this order: filel.obj, file2.0bj,
and file3.obj. This example creates an output file called 1ink.out and a
map file called 1ink.map.

9-3

Linker Description - Linker Options

9.3 Linker Options

Linker options control linking operations. They can be placed on the com-
mand line or in a command file. All linker options must be preceded by a hy-
phen (-). The order in which options are specified is unimportant, except for

the -1 and -i options.

Options are separated from arguments (if they have

them) by an optional space. Table 9-1 summarizes the linker options.

Table 9-1. Linker Options Summary

Option Description

-a Produce an absolute, executable module. This is the default; if neither -a nor
-r is specified, the linker acts as if -a is specified.

-ar Produce a relocatable, executable object module.

-c Use linking conventions defined by the ROM autoinitialization model of the C
compiler.

-cr Use linking conventions defined by the RAM autoinitialization model of the C
compiler.

-e Defines a global symbol that specifies the primary entry point for the output

module.

-f fill value

Set the default fill value for holes within output sections; fill value is a 4-byte
constant.

-h Make all global symbols static.

-i dir Alter the library-search algorithm to look in dir before looking in the default lo-
cation. This option must appear before the -| option.

-1 filenamet Name an archive library file as linker input; filename is an archive library name.

-m filenamet

Produce a map or listing of the input and output sections, including holes, and
place the listing in filename.

-0 filenamet

Name the executable output module. The default filename is a.out.

-q

Request a quiet run (suppress the banner).

-r

Retain relocation entries in the output module.

-S

Strip symbol table information and line number entries from the output modules.

-u symbol

Place an unresolved external symbol/ into the output module’s symbol table.

1t The filename must follow operating system conventions.

9.3.1 Relocation Capability (-a and -r Options)

9-4

One of the tasks the linker performs is relocation. Relocation is the process
of adjusting all the references to a symbol when the symbol’s address changes.
The linker supports two options (-a and -r) that allow you to choose whether
you will produce an absolute or a relocatable output module.

Producing an Absolute Output Module (-a Option)

When you use the -a option without the -r option, the linker produces
an absolute, executable output module. Absolute files contain no relo-
cation entries. Executable files: ‘

Contain special symbols defined by the linker (Section 9.11.4,
page 9-32, describes these symbols),

Contain an optional héader that describes information such as the
program entry point, and

Contain no unresolved references.

Linker Description - Linker Options

This example links filel.obj and £ile2.obj and creates an absolute
output module called a.out:

Ink30 -a filel.obj file2.obj

Note:

If you do not use the -a or the -r option, the linker acts as if you specified

-a.

Producing a Relocatable Output Module (-r Option)

When you use the -r option without the -a option, the linker retains re-
location entries in the output module. [f the output module will be re-
located (at load time) or relinked (by another linker execution), use -r
to retain the relocation entries.

The linker produces an unexecutable file when you use the -r option
without -a. A file that is not executable does not contain special linker
symbols or an optional header. The file may contain unresolved refer-
ences, but these references do not prevent creation of an output module.

This example links £ilel.obj and £ile2.obj and creates a relocatable
output module called a.out:

Ink30 -r filel.obj file2.obj

The output file a.out can be relinked with other object files or relocated
at load time. (Linking a file that will be relinked with other files is called
partial linking. For more information, see Section 9.13, page 9-37.)

Producing an Executable Relocatable Output Module (-ar)

If you invoke the linker with both the -a and -r options, the linker pro-
duces an executable, relocatable object module. The output file contains
special linker symbols, contains an optional header, and all symbol ref-
erences are resolved (this is normal for a relocatable file); however, the
relocation information is retained.

This example links £ilel.obj and file2.obj and creates an executa-
ble, relocatable output module called xr.out:

1Ink30 -ar filel.obj file2.obj -o xr.out

Note that you can string the options together (Ink30 -ar) or you can
enter them separately (Ink30 -a -r).

Relocating or Relinking an Absolute Qutput Module

The linker issues a warning message (but continues executing) when it
encounters a file that contains no relocation or symbol table information.
Relinking an absolute file can only be successful if each input file con-
tains no information that needs to be relocated (that is, each file has no
unresolved references and is bound to the same virtual address that it
was bound to when the linker created it).

9-5

Linker Description - Linker Options

9.3.2 C Language Options (-c and -cr Options)

The -c and -cr options cause the linker to use linking conventions that are
required by the TMS320C30 C compiler.

° The -c option tells the linker to use the ROM autoinitialization model.
[) The -cr option tells the linker to use the RAM autoinitialization model.

For more information about linking C code, see section Section 9.14 on page
9-38.

9.3.3 Define an Entry Point (-e global symbol/ Option)

The memory address that a program begins executing from is called the entry
point. When a loader loads a program into target memory, the program
counter must be initialized to the entry point; the PC then points to the be-
ginning of the program.

The linker can assign one of four possible values to the entry point. These
values are listed below in the order in which the linker tries to use them. |If
you use one of the first three values, it must be an external symbol in the
symbol table. Possible entry point values include:

1) The value specified by the -e option. The syntax is -~e <global sym-
bol> where global symbol defines the entry point and must appear as
an eternal symbol in one of the input files to be linked.

2) The value of symbol —c—int00 (if present). _c_int00 must be the
entry point if you are linking code produced by the C compiler.

3) The value of symbol _main (if present).
4) Zero (default value).

This example links filel.obj and file2.obj and sets the entry point to the
value of the symbol begin. This symbol must be defined as external in filel
or file2.

1nk30 -e begin filel.obj file2.obj

9.3.4 Set Default Fill Value (-f cc Option)

9-6

The -f option fills the holes formed within output sections or initializes unini-
tialized sections when they are combined with initialized sections. This allows
you to initialize memory areas during link time without reassembling a source
file. The argument cc is a 4-byte constant (up to eight hexadecimal digits).
If you do not use -f, the linker uses O as the default fill value.

This example fills holes with the hexadecimal value AABBCCDDh:
1Ink30 -f OAABBCCDDh filel.obj file2.obj

Linker Description - Linker Options

9.3.5 Make All Global Symbols Static (-h Option)

9.3.6 Alter

The -h option makes all global symbols static. This “hides” symbols, because
static symbols are not visible to externally linked modules. This allows ex-
ternal symbols with the same name (in different files) to be treated as unique.

The -h option effectively nullifies all .global assembler directives. All symbols
become local to the module in which they were defined, so no external refer-
ences are possible.

For example, assume filel.obj and file2.obj both define global symbols
called ext. By using the -h option, these files can be linked without conflict.
The symbol ext defined in.filel.obj is treated separately from the symbol
ext defined in file2.o0bj.

Ink30 -h filel.obj file2.obj

the Library Search Algorithm (-i dir & -1 filename/C—DIR)

Usually when you want to specify a library input, you simply enter the library
name as you would any other input filename; the linker looks for the library in
the current directory. For example, suppose the current directory contains the
library object.lib. Assume that this library defines symbols that are refer-
enced in the file filel.obj. This is how you link the files:

Ink30 filel.obj object.lib

If you want to use a library that is not in the current directory, use the -|
(lowercase “L") linker option. The syntax for this option is -l filename. The
filename is the name of an archive library; the space between -1 and the
filename is optional.

You can augment the linker’s directory search algorithm by using the -i linker
option or the environment variable. The linker searches for object libraries in
the following order:

1) It searches directories named with the -i linker option.

2) It searches directories named with the environment variable C—DIR.

3) If C—DIR is not set, it searches directories named with the assembler’s
environment variable, A—DIR.

4) It searches the current directory.

9-7

Linker Description - Linker Options

9.3.6.1 -i Linker Option

The -i option names an alternate directory that contains object libraries. The
syntax for this option is -i dir. dir names a directory that contains object li-
braries; the space between -i and the directory name is optional. When the
linker is searching for object libraries named with the -l option, it searches
through directories named with -i first. Each -i option specifies only one di-
rectory, but you can use several -i options per invocation. When you use the
-i option to name an alternate directory, it must precede the -1 option on the
command line or in a.command file.

As an example, assume that two archive libraries called r.1ib and 1ib2.1ib
reside in directories called:

® \1d and \ 142 (DOS)

° [1d4] and [142] (VMS), or

® /idand /142 (UNIX).

You can use both libraries during a link:

DOS: 1nk30 fl.obj f2.o0bj -i\ld -i\1d2 -1r.lib -11ib2.1lib
VMS: 1nk30 fl.obj f2.obj -illd] ~i[id2] -1lr.l1lib -11ib2.1lib
UNIX: 1nk30 fl.obj f2.0bj -i/1d -i/1d2 -1r.lib -11ib2.1ib

9.3.6.2 Environment Variable (C—DIR)

9-8

An environment variable is a system symbol that you define and assign a string
to. The linker uses an environment variable named C—DIR to name alternate
directories that contain object libraries. The command for assigning the envi-
ronment variable is:

DOS: set C—_DIR=pathname; another pathname ...
VMS: assign C—DIR"pathname, another pathname... "

UNIX: setenv C—DIR"”pathname,; another pathname ... "

The pathnames are directories that contain object libraries. Use the -| option
on the command line or in a command file to tell the linker which libraries to
search for.

As an example, assume that two archive libraries called r.1ib and 1ib2.1ib
reside in directories called:

° \ldir and \1dir2 (DOS),

[] [1dir] and [1dir2] (VMS), or

® /1dir and /1d2 (UNIX).

You can use both libraries during a link; set the environment variable first:

DOS: set C_DIR=\1ldir;\ldir2
1nk30 fl.obj f2.0bj -1 r.lib -1 1ib2.1lib

Linker Description - Linker Options

VMS: assign C-DIR "[1ldir];[1ldir2]"
* Ink30 fl.obj f2.0bj -1lr.1lib -1 1ib2.1ib

UNIX: setenv C_DIR "/1ldir;/1dir2
1nk30 fl.o0bj f2.0bj -1 r.lib -1 1ib2.1lib

Note that the environment variable remains set until you reboot the system or
reset the variable by entering:

DOS: set C_DIR=
VMS: deassign C-DIR
UNIX: setenv C_DIR " "

The assembler uses an environment variable named A—DIR to name alternate
directories that contain copy/include files or macro libraries. If C_DIR is not
set, the linker will search for object libraries in the directories named with
A—DIR.

Section 9.5 (page 9-13) contains more information about object libraries.

9.3.7 Create a Map File (-m filename Option)

The -m option creates a link map listing and puts it in filename. This map
describes:

[) Memory configuration,
o Input and output section allocation, and
L The addresses of external symbols after they have been relocated.

The map file contains the name of the output module, the entry point, and
may also contain up to three tables:

[] A table showing the new memory configuration, if any nondefault
memory is specified.

(] A table showing the linked addresses of each output section and the
input sections that make up the output sections.

[] A table showing each external symbol and its address. This table has
two columns: the left column contains the symbols sorted by name and
the right column contains the symbols sorted by address.

This example links filel.obj and £ile2.obj and creates a map file called
map .out:

1Ink30 filel.obj file2.o0bj -m map.out

Section 9.15 (page 9-41) shows an example of a map file.

9-9

Linker Description - Linker Options

9.3.8 Name an Output Module (-0 filename Option)

The linker always creates an executable output module. If you do not specify
a filename for the output module, the linker gives it the default name a.out.
If you want to write the output module to have another name, use the -0 op-
tion. The filename is the new output module name.

This example links filel.obj and file2.obj and creates an output module
named run.out:

1Ink30 -o run.out filel.obj file2.obj

9.3.9 Specify a Quiet Run (-q Option)

The -q option suppresses the linker's banner when -q is the first option on the
command line or in a command file. This option is useful for batch operation.

9.3.10 Strip Symbolic Information (-s Option)

9.3.11

The -s option creates a smaller output module by omitting symbol table in-
formation and line number entries. The -s option is useful for production ap-
plications, when you must create the smallest possible output module.

This example links filel.obj and file2.obj and places the output mod-
ule, stripped of line numbers and symbol table information, named nol-
ink.out:

1nk30 -0 nolink.out -s filel.obj file2.obj

Note that using the -s option limits later use of a symbolic debugger, and may
prevent a file from being relinked.

Introduce an Unresolved Symbol (-u symbo/ Option)

The -u option introduces an unresolved symbol into the linker’s symbol table.
This forces the linker to search through a library and include the module that
defines the symbol. Note that the linker must encounter the -u option before
it links in the member that defines the symbol.

For example, suppose a library named rts.1ib contains a member that de-
fines the symbol symtab, none of the object files you are linking reference to
symtab. However, suppose you plan to relink the output module, and you
would like to include the library member that defines symtab in this link.
Using the -u option as shown below forces the linker to search rts.1ib for
the member that defines symtab and to link in the member.

1nk30 -u symtab filel.obj file2.obj rts.lib

If you did not use -u, this member would not be included because there is no
explicit reference to it in filel.obj or file2.obj.

Linker Description - Command Files

9.4 Linker Command Files

Linker command files allow you to put linking information in a file; this is
useful when you often invoke the linker with the same information. Linker
command files are also useful because they allow you to use the MEMORY
and SECTIONS directives to customize your application. You must use these
directives in a command file; you cannot use them on command line. Com-
mand files are ASCII files that contain one or more of the following:

® Input filenames, which specify object files, archive libraries, or other
command files. (If a command file calls another command file as input,
this statement must be the /ast statement in the calling command file.
The linker does not return from the called command files.)

® Linker options, which can be used in the command file in the same
manner that they are used on the command line.

[] The MEMORY and SECTIONS linker directives. The MEMORY directive
allows you to specify the target memory configuration. The SECTIONS
directive controls how sections are built and allocated.

® Assignment statements, which define and assign values to global sym-
bols.

To invoke the linker with a command file, enter the Ink30 command and fol-
low it with the name of the command file:

Ink30 command file name

The linker processes input files in the order that it encounters them. |If the
linker recognizes a file as an object file, it links the file. Otherwise, it assumes
a file is a command file and begins reading and processing commands from
it.

Figure 9-2 shows a sample linker command file called 1ink.cmd. (Figure
9-12 on page 9-42 contains another example of a linker command file.)

/******************’k***********************************/
* Sample Linker Command File */
/**************-k***************************************/
a.obj /* First input filename */
b.obj /* Second input filename *
-0 prog.out * Option to specify output file */
-m prog.map /* Option to specify map file */

Figure 9-2. An example of a Linker Command File

This sample file in Figure 9-2 contains only filenames and options. (Note that
you can place comments in a command file by delimiting them with /* and
*/.) To invoke the linker with this command file, enter:

1nk30 link.cmd

Linker Description - Command Files

You can also place other parameters on the command line when you use a
command file:

Ink30 -r link.cmd c.obj d.obj

The linker processes the command file as soon as it encounters it, so a.obj
and b.obj are linked into the output module before c.obj and d.obj.

You can also specify multiple command files. If, for example, you have a file
called names.1st that contains filenames and another file called dir.cmd
that contains linker directives, you can enter:

1nk30 names.lst dir.cmd

A command file can call another command file; this type of nesting is limited
to 16 levels. If a command file names another command file as input, this
statement must be the /ast statement in the calling command file.

Blanks and blank lines that appear in a command file are insignificant except
as delimiters. This also applies to the format of linker directives in a command
file. Figure 9-3 shows a sample command file that contains linker directives.
(Linker directive formats are discussed in later sections.)

/**/
* Sample Linker Command File with Directives *
/**/
a.obj b.obj c.obj /* Input filenames */
-0 prog.out -m prog.map /* Options */
MEMORY /* MEMORY directive */

{
RAM: o = 100h 1 = 0100h
ROM: o = 01000h 1 = N100h
}
SECTIONS /* SECTIONS directive */
{
.text: {} > ROM
.data: {} > ROM
.bss: {} > RAM
}

Figure 9-3. An Example of a Command File with Linker Directives

The following names are reserved as key words for linker directives. Do not
use them as symbol or section names in a command file.

align I (lowercase "L") origin
ALIGN len ORIGIN
block length page
BLOCK LENGTH PAGE
COPY MEMORY range
DSECT NOLOAD SECTIONS
group o spare
GROUP org

Linker Description - Object Libraries

9.5 Object Libraries

An object library is a partitioned archive file that contains complete object files
as members. Usually, a group of related modules are grouped together into a
library. When you specify an object library as linker input, the linker inciudes
any members of the library that define existing unresolved symbol references.
You can use the TMS320C30 archiver to build and maintain archive libraries;
Section 8 contains more information about the archiver.

Using object libraries can reduce linking time and can reduce the size of the
executable module. [f a normal object file that contains a function is specified
at link time, it is linked whether it is used or not; however, if that same function
is placed in an archive library, it is only included if it is referenced.

The order in which libraries are specified is important because the linker in-
cludes only those members that resolve symbols that are undefined when the
library is searched. The same library can be specified as often as necessary; it
is searched each time it is included. A library has a table that lists all external
symbols defined in the library; the linker searches through the table until it
determines that it cannot use the library to resolve any more references.

The following example links several object files and libraries; assume that:

° Input files f1.0bj and f£2.obj both reference an external function
named clrscr.

[] Input file £1.0bj references the symbol origin.

(] Input file £2.0bj references the symbol fillclr.

(] Library 1ibc.1ib, member O, contains a definition of origin.

° Library 1iba.1ib, member 3, contains a definition of £illclr.

[] Member 1 of both libraries defines clrscr.

If you enter: 1nk30 fl.0bj liba.lib f£2.obj libc.lib
then:

[] Member 1 of 1iba.lib satisfies both references to clrscr, because
the library is searched and clrscr is defined before £2.0bj references
it.

] Member 0 of 1ibc. 1ib satisfies the reference to origin.
[] Member 3 of 1iba. 1ib satisfies the reference to £illclr.

If, however, you enter: 1nk30 fl.obj f2.obj libc.lib liba.lib
then the references to clrscr are satisfied by member 1 of 1ibc.1ib.

If none of the linked files reference symbols defined in a library, you can use
the -u option to force the linker to include a library member. The next example
creates an undefined symbol rout1 in the linker's global symbol table:

1Ink30 -u routl libc.lib

If any members of 1ibc.1ib define routl, then the linker includes those
members. Note that it is not possible to control the allocation of individual
library members; members are allocated according to the SECTIONS directive
default allocation algorithm.

Section 9.3.6 (page 9-7) describes methods for specifying directories that
contain object libraries.

Linker Description - The MEMORY Directive

9.6 The MEMORY Directive

The linker determines where output sections should be allocated into memory;
the linker must have a model of target memory to accomplish this task. The
MEMORY directive allows you to specify a model of target memory, so you
can define the types of memory your system contains and the address ranges
they occupy. The linker maintains the model as it allocates output sections,
and uses the model to determine which locations in the target system can be
used for object code.

The memory configurations of TMS320C30 systems differ from application to
application. The MEMORY directive allows you to specify a variety of con-
figurations to meet all applications. After you use the MEMORY directive to
define a memory model, you can use the SECTIONS directive to allocate out-
put sections into defined memory.

9.6.1 Default Memory Model

If you do not use the MEMORY directive, the linker uses a default memory
model that is based on the TMS320C30 architecture. This model assumes that
the full 24-bit address space (2 4 locations) is present in the system and
available for use.

9.6.2 MEMORY Directive Syntax

9-14

The MEMORY directive identifies ranges of memory that are physically present
in the target system and can be used by a program. Each memory range has
a name, a starting address, and a /ength.

When you use the MEMORY directive, be sure to identify all the memory
ranges that are available to load object code into. Memory that is defined by
the MEMORY directive is configured memory; any memaory that you do not
explicitly account for with the MEMORY directive is unconfigured
memory. The linker does not place any part of a program into unconfigured
memory. You can represent nonexistent memory spaces by simply not in-
cluding an address range in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY
(uppercase), followed by a list of memory range specifications enclosed in
braces. The MEMORY directive in Figure 9-4 defines a system that has 4K
of ROM at address 0 and 8K of RAM at address OEQQOh.

/***/

* gle command file with MEMORY directive
/******** **/

filel.obj file2.0bj /* Input files */
-0 prog.out /* Options */
I?EMORY

ROM : origin = 00000h , length = 1000h

RAM origin = OEOOOh ’ length = 2000h

}

Figure 9-4. An Example of the MEMORY Directive

Linker Description - The MEMORY Directive

Now you could use the SECTIONS directive to tell the linker where to link the
sections. For example, you could allocate the .text and .data sections into the
area named ROM and allocate the .bss section into the area named RAM.

The general syntax of the MEMORY directive is:

MEMORY
name 1 [(attr)] : origin = constant , length = constant
name n [(attr)] : origin = constant , length = constant
name names a memory range. A memory name may be 1 to 8 characters;

attr

origin

length

valid characters include A-Z, a-z, $, ., and —. The names have no
significance to the program; they simply identify memory ranges for
the linker. Memory range names are internal to the linker and are not
retained in the output file or in the symbol table.

specifies 1 to 4 optional attributes that are associated with the named
range. Valid attributes include R (readable memory), W (writable
memory), X (executable memory), and 1 (initializable memory); attri-
butes must be enclosed in parentheses. If you do not specify any
attributes for a memory range, then the range has all four attributes.
All memory in the default model has all four attributes. The following
example defines a memory range that is readable and executable:

MEMORY
{ ROM (RX) : o =0, 1 = 01000h }

specifies the starting address of a-memory range. It may be entered
as origin, org, or 0. The value, specified in words, is a long integer
constant, and may be decimal, octal, or hexadecimal.

specifies the length of a memory range. It may be entered as /ength,
len, or /. The value is specified in words as a long integer constant
(decimal, octal, or hexadecimal).

Figure 9-5 illustrates the memory map defined by Figure 9-4.

Memory

Oh

1000h

OEO000Oh

10000h

1 OFFFFFFh

Figure 9-5. Memory Map Defined in Figure 9-4

Linker Description - The SECTIONS Directive

9.7 The SECTIONS Directive

The SECTIONS directive tells the linker how to combine sections from input
files into sections in the output module and where to place the output sections
in memory. In summary, the SECTIONS directive:

® Describes how input sections are combined into output sections,
[] Defines output sections in the executable program,

[] Specifies where output sections are placed in memory (in relation to
each other and to the entire memory space), and

[] Permits renaming of output sections.

9.7.1 Default Sections Configuration

If you do not specify a SECTIONS directive, the linker uses a default algorithm
for combining and allocating the sections. Section 9.9 (page 9-27) describes
this algorithm in detail.

9.7.2 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word SEC-
TIONS (uppercase), followed by a list of output section specifications en-
closed in braces. Figure 9-6 contains an example of the SECTIONS directive.

/***/
/* Sample command file with SECTIONS directive */

LR RS EFS R RS RS EEEEEE SR SRS EEEEER SRR EEEEEEEEEE RS
filel.obj file2.0bj /* Input files */
-0 prog.out /* Options */
?ECTIONS

.text 01000h : { }

.data : { filel.obj(.data) 1}

init
/ {

/ filel.obj(init)
/ N file2.0bj(.data)

.bss ALIGN(16) : { }

Figure 9-6. An Example of the SECTIONS Directive

The general syntax of the SECTIONS directive is:
SECTIONS
{

section specification 1

section specification 2
section specification n

Linker Description - The SECTIONS Directive

Each section specification defines an output section. (An output section is a
section in the output file.) The syntax for a section specification is:

name [binding or align(n)] :

input sections
assignments
Y [=fill value] [> named memory]

name

binding

align(n)

input
sections

assignment

fill value

> named
memory

names the section in the output file. Only the first 8 characters
of output section names are significant.

is optional and assigns the section to a specific physical ad-
dress in target memory. Section 9.7.4 (page 9-20) discusses
assigning an address to an output section.

is optional and specifies that the section should be aligned on
an address boundary (the actual address is determined by the
linker). Section 9.7.4 (page 9-20) discusses aligning an out-
put section.

is a list of input sectio.is that are combined to form the output
section. The list is enclosed in braces. Section 9.7.3 (page
9-18) discusses specifying input sections in detail.

is optional and defines the value of symbols at link time or
creates uninitialized spaces (called holes) between input sec-
tions within the output section. Section 9.11 (page 9-30)
discusses linker assignment statements, and Section 9.12
(page 9-33) provides more information about holes.

is optional and specifies a value for filling holes in the section.
See Section 9.12 (page 9-33) for more information about fill
values for holes.

Is optional and specifies that an output section should be al-
located into a memory range that was named by the MEMORY
directive. Section 9.7.4 (page 9-20) discusses named memory.

Figure 9-7 shows how the sections in Figure 9-6 (page 9-16) are allocated.
Figure 9-6 defines four output sections, .text, .data, init, and .bss:

{ The .text output section combines the .text sections from filel.obj
and file2.obj. Notice that the braces ({ }) are empty in this section
specification; this tells the linker to include all input sections that have
the same name as the output section.

An address was specified for this output section; this causes the .text
output section to begin at address 01000h in the target memory (this is
known as binding).

) The .data output section contains the .data section from filel.obj.

[] The init section is composed of the init (named) section in £ilel.obj
and the .data section in file2.obj.

Linker Description - The SECTIONS Directive

[] The .bss output section is composed of the .bss sections from

filel.obj and £ile2.obj. This output section will be aligned on the
next available 16-word boundary.

Object Mcdule

text output section;
must start at address 1000h
in memory

.data ouput section

> init output section

.bss output section;
> must be aligned on a
16-word address in memory

Figure 9-7. Section Allocation Defined by Figure 9-6

9.7.3 Specifying Input Sections

An input section specification identifies the sections from input files that are
combined to form an output section. The linker combines input sections by
concatenating them in the order in which they are specified. The size of an
output section is the sum. of the sizes of the input sections that make up the
output section.

Figure 9-8 shows the most common type of section specification; note that
no input sections are listed.

SECTIONS

{
.text { }
.data { }
.bss { }

Figure 9-8. The Most Common Method of Specifying Section
Contents

In the example shown in Figure 9-8, the linker takes all the .text sections from
the input files and combines them into the .text output section. The linker
concatenates the .text input sections in the order that it encounters them in the

Linker Description - The SECTIONS Directive

input files. The linker performs similar operations with the .data and .bss sec-
tions. You can use this type of specification for any output section.

You can explicitly specify the input sections that form an output section. Each
input section is identified by its filename and section name:

SECTIONS
{

.text : /* Build .text output section */
fl.obj(.text) /* Link .text section from fl.obj */
f2.0bj(secl) /* Link secl section from f2.obj */
£3.0bj * Link ALL sections from f£3.obj */

/
f4.0bj(.text, sec2) /* Link .text and sec2 from f4.obj */
3
3

Note that it is not necessary for input sections to have the same name as each
other or of the output section they become part of. If a file is listed with no
sections, all of its sections are included in the output section. If any additional
input sections have the same name as an output section, but are not explicitly
specified by the SECTIONS directive, they are automatically linked in at the
end of the output section. For example, if the linker found more .text sections
in the preceding example, and these .text sections were not specified any-
where in the SECTIONS directive, then the linker would concatenate these
extra sections after £4.0bj (sec2).

The specifications in Figure 9-8 are actually a shorthand method for the fol-
lowing:
SECTIONS
{
.text @ { *(.text) }
.data : { *(.data) 1}

.bss : { *(.bss) 1}
3

The * (.text) means the unallocated .text sections from all the input files.
This format is useful when:

® You want the output section to contain all input sections that have a
certain name, but the output section name is different from the input
sections’ name.

[] You want the linker to allocate the input sections before it processes
additional input sections or commands within the braces.

Here’s an example that uses this method:

SECTIONS
{
.text {
abc.obj (xqt) .
*(.text)
}
.data : {
*(.data)
fil.obj(table)
}
3

Linker Description - The SECTIONS Directive

In this example, the .text output section contains a named section xqt from
file abc.obj, which is followed by a/f the .text input sections. The .data sec-
tion contains a// the .data input sections, followed by a named section table
from the file fil.obj. Note that this method includes all the unallocated
sections. For example, if one of the .text input sections was already included
in another output section when the linker encountered * (.text), the linker
could not include that first .text input section in the second output section.

9.7.4 Specifying the Address of an OQutput Section (Allocation)

9-20

After you specify the contents of each output section, you must identify the
physical location in target memory where you want to load the section. Each
section has an address field in its section header that tells a loader where the
section should go. The process of calculating the address of the output sec-
tions is called allocation.

If you do not specify an explicit starting address for an output section, the
linker uses a default algorithm to allocate the section. Generally, the linker
puts sections wherever they fit into configured memory.

You can override this default allocation by telling the linker where a section
should be loaded. You can use three methods to control section allocation:
® Binding

You can supply a specific starting address for an output section by fol-

lowing the section name with an address:

.text 01000h : { ... }

This example specifies that the .text section must begin at location
1000h. The binding address must be a 24-bit constant.

Output sections can be bound anywhere in configured memory (as-
suming there is enough space), but they cannot overlap. If there is not
enough space to bind a section to a specified address, the linker issues
an error message.

Note that you cannot bind a section to an address if you use alignment
or named memory. If you try to do this, the linker issues an error mes-
sage.

° Alignment

You can tell the linker to place an output section at an address that falls
on an n-word boundary, where n is a power of 2. For example,

SECTIONS
{
.data ALIGN(32) : { ... }
In this example, the .data output section is not bound to a specific ad-

dress; it is linked at the next available address in configured memory that
is a multiple of 32 words.

Linker Description - The SECTIONS Directive

The assembler also supports a method for specifying alignment. The
.align assembler directive allows you to align code or data on a 32-word
(cache) boundary. When you use .align, the assembler sets a flag that
tells the linker to align the entire section. This ensures that all the
alignments within the section are correct when the section is relocated.

[] Named Memory

You can allocate a section into a memory range that was defined by the
MEMORY directive. This example names ranges and links sections into

them.
MEMORY
{
ROM (RIX) : origin = Oh, length = 1000h
RAM (RWIX): origin = 3000h, length = 1000h
3
SECTIONS
{
.text : { } > ROM
.data ALIGN(64) : { } > RAM
.bss : { } > RAM

3

In this example, the linker places the .text into the area called ROM. The
.data and .bss output sections are allocated into RAM. You can align a
section within a named memory range; the .data section is aligned on a
64-word boundary within the RAM range.

Similarly, you can link a section into an area of memory that has partic-
ular attributes. To do this, specify a set of attributes (enclosed in pa-
rentheses) instead of a memory name. Using the same MEMORY
directive declaration, you can specify:

SECTIONS
{

.text: {...} > (X) /* .text ~--> executable memory *
.data: {...} > (RI) /* .data --> read or init memory */
.bss ¢ {...} > (RW) /* .bss =--> read or write memory */

In this example, the .text output section can be linked into either the
ROM or RAM area because both areas have the X attribute. The .data
section can also go into either ROM or RAM because both areas have
the R and | attributes. The .bss output section, however, must go into
the RAM area because only RAM was declared with the W attribute.

You cannot control where in the named memory range a section is allo-
cated, although the linker uses lower memory addresses first and avoids
fragmentation when possible. In the preceding examples, assuming no
other sections had been bound to addresses that would interfere with
this allocation process, the .text section would start at address 0. If a
section must start on a specific address, use binding instead of named
memory.

9-21

Linker Description - The SECTIONS Directive

9.7.5 Grouping Output Sections Together

9-22

The SECTIONS directive has a GROUP option that forces several output sec-
tions to be ailocated contiguously. For example, assume that a section named
term-_rec contains a termination record for a table in the .data section. You
can force the linker to allocate .data and term-_rec together:

SECTIONS
{

.text : { 3} /* Normal output section */
.bss o {1} /* Normal output section *
GROUP 1000h : /* Specify a group of sections */
{
.data : { } /* First section in the group *
term-rec : { } /* Allocated immediately after .data */

}
}

You can use binding, alignment, or named memory to allocate a GROUP in the
same manner as a single output section. In the preceding example, the
GROUP is bound to address 1000h. This means that .data is allocated at
1000h, and term-_rec follows it in memory.

Note:

When you use the GROUP option, binding, alignment, or allocation into
named memory can be specified for the group only. You cannot use
binding, named memory, or alignment for sections within a group.

Linker Description - Overlay Pages

9.8 Overlay Pages

Some target systems use an overlay memory configuration in which all or part
of the memory space is overlayed by “shadow” memory. This allows the sys-
tem to map different banks of physical memory in and out of a single address
range in response to hardware selection signals. In this situation, multiple
areas of physical memory overlay each other at one address space. You may
want the linker to load various output sections into each of these areas or into
areas that are not mapped at load time.

The linker supports this feature by providing overlay pages. Overlay pages
allow you to define a memory model that has multiple address spaces. To the
linker, each possible overlay configuration represents a separate address space.
Each address range is treated as a separate page and must be configured se-
parately with the MEMORY directive. You can then use the SECTIONS di-
rective to specify which sections will be mapped into various pages.

9.8.1 Using the MEMORY Directive to Define Overlay Pages

Each separately configured address space is called a page. To the linker, each
page represents a completely separate memory that has the full 24-bit range
of addressable locations. This allows you to link two or more sections at the
same (or overlapping) addresses if they are on different pages.

Pages are numbered sequentially, beginning with 0. Page O represents the
"normal” address space of the TMS320C30. The default memory model re-
sides entirely on page 0. If a memory range is specified without a page num-
ber, the linker assumes it is in page 0. This allows you to ignore the page
feature for most cases; usually all sections can be linked in page 0 with no
overlays.

For example, assume that your system can select between three 4K banks of
physical memory to map into the address space from 1000h to 2000h. Al-
though only one bank can be selected at a time, you can initialize each bank
with different data. Assume you have three output sections called sectoO,
sectl, and sect?2 that must be linked into the three banks of memory. This
is how you would use the MEMORY directive to obtain this configuration:

/**/

/* Example of MEMORY directive with overlay pages */
/**/

MEMORY
{
PAGE O0: ROM : origin = Oh, length = 1000h
RAM : origin = 100000h, length = OFO000O0Oh
OVR-MEM : origin = 1000h, length = 1000h
PAGE 1: OVR-MEM : origin = 1000h, length = 1000h
PAGE 2: OVR-MEM : origin = 1000h, length = 1000h

3

Figure 9-9 (page 9-24) illustrates this configuration; it shows each available
block of physical memory in the system and the section that must be loaded
into it.

9-23

Linker Description - Overlay Pages -

Page 0 Page 1 Page 2
Oh ROM
OFFFh
1000h
1FFFh
100000h
OFFFFFFh

Figure 9-9. Overlay Page Example

This example defines three separate address spaces. Page O is the “normal”
address space of the TMS320C30. It contains the memory ranges ROM and
RAM; suppose they represent all the memory in the normal address space. Page
0 also contains the first bank of overlay memory (OVR_MEM). The other two
address spaces contain only the additional banks of overlay memory, both la-
beled ovR-MEM. Note that all three OVR_MEM ranges cover the same address
range. This is possible because each range is on a different page and therefore
represents a different memory space.

9.8.2 Using Overlay Pages with the SECTIONS Directive

9-24

.text:
.data:
.bss :
sectO:
sectl:
sect2:

The SECTIONS directive allows you to tell the linker which page an output
section should be linked into. Each output section of the program is assigned
a page as well as an address. You can assign an output section to an overlay
page by following the section specification with the PAGE option and a page
number. Continuing the example from the previous discussion, the SEC-
TIONS definition would be:

%ECTIONS

{} > ROM /* Link .text in ROM on page 0O */
{} > RaM /* Link .data in RAM on page O */
{} > RAM /* Link .bss in RAM on page O *

{} > OVR_MEM PAGE 0 /* Link sectO into bank 0 (page 0) */
{} > OVR-MEM PAGE 1 /* Link sectl into bank 1 */
{} > OVR_MEM PAGE 2 /* Link sect2 into bank 2 */

If you don’t specify a page number for an output section, the linker assumes
page 0. In this example, .text, .data, and .bss are all linked into the named
memory areas on page 0. (The PAGE O could have been omitted from the
sectO definition as well.)

The PAGE specifications for sect0, sectl, and sect2 tell the linker to link
these output sections into the corresponding overlay pages. As a result, they
all are linked to address 1000h, but in different memory spaces. When the

Linker Description - Overlay Pages

9.8.3 Page

program is loaded, a loader can configure hardware in such a way that each
of these sections is loaded into the appropriate bank of memory.

Within a page, you can bind output sections or use named memory areas in
the usual way. In the preceding example, notice how sect1l is allocated into
the memory range OVR_MEM. This allows you to define the allocation of sec-
tions within a page, just as you can in a single memory space.

For example, the following statement:
sectl 1200h: {} PAGE 1

links sectl at address 1200h in page 1. If you do not specify any binding
or named memory range for the section, the linker allocates the section into
the page wherever it can (just as it normally does with a single memory
space). For example, sect2 could also be specified as:

sect2 : {} PAGE 2

Because OVR_MEM is the only memory on page 2, it is not necessary (but ac-
ceptable) to specify >0VR_MEM for the section.

Definition Syntax

As illustrated in the preceding examples, overlay pages are specified in the
MEMORY directive by using the following syntax:

MEMORY

PAGE O : memory range
memory range

PAGE n: memory range
memory range

}

Each page is introduced by the keyword PAGE and a page number, followed
by a colon and a list of memory ranges the page contains. Memory ranges are
specified in the normal way. You can define up to 255 overlay pages. Be-
cause each page represents a completely independent address space, memory
ranges on different pages can have the same name. Configured memory on
any page can overlap configured memory on any other page. Within a single
page/, however, all memory ranges must have unique names and must not
overlap.

Any memory ranges listed outside the scope of a PAGE specification default
to page 0. Consider the following example:

I:EIEMORY
ROM : org = Oh len = 1000h
EPROM : org = 1000h len = 1000h
RAM : org = 2000h len = OEOOOh
PAGE 1: XROM : oxrg = Oh len = 1000h
XRAM : org = 2000h len = OEOOOh

3

The memory ranges ROM, EPROM, and RAM are all on page O (because no page
is specified). XROM and XRAM are on page 1. Note that XROM on page 1
overlays ROM on page 0 and XRAM on page 1 overlays RAM on page 0.

8-25

Linker Description - Overlay Pages

9-26

In the output link map (obtained with the -m linker option), the listing of the
memory model is keyed by pages. This provides you with an easy method of
verifying that you specified the memory model correctly. Also, the listing of
output sections has a PAGE column that identifies the memory space into
which each section will be loaded.

Linker Description - Default Allocation

9.9 Default Allocation

The MEMORY and SECTIONS directives provide flexible methods for build-
ing, combining, and allocating sections. However, any memory locations or
sections that you choose not to specify must still be handled by the linker.
The linker has default algorithms that it uses to build and allocate sections,
within the specifications you supply. Section 9.9.1 and Section 9.9.2 describe
default allocation algorithms.

9.9.1 Allocation Algorithm

If you do not use the MEMORY directive, the linker assumes that the full
24-bit address space is configured and allocates output sections into memory
“beginning at address 0.

If you do not use the SECTIONS directive, the linker allocates the output
sections as though the following SECTIONS directive was specified:

SECTIONS

{
.text {2
.data : { }
bss {3}

3

All .text input sections are concatenated to form a .text output section in the
executable output file. All .data input sections are combined to form a .data
output section, and all .bss sections are combined to form a .bss output sec-
tion. Each output section is then allocated into configured memory.

If the input files contain named sections the linker links them in after the .bss
section. Input sections that have the same name are combined into a single
output section with this name.

Note:

When you use the SECTIONS directive, the linker performs no part of the
default allocation. Allocation is performed according to the rules specified
by the SECTIONS directive and the rules discussed in Section 9.9.2.

9.9.2 General Rules for Output Sections
An output section can be formed in one of two ways:
Rule 1: As the result of a SECTIONS directive definition.

Rule 2: By combining input sections with the same names into output
sections that are not defined in a SECTIONS directive.

If an output section is formed as a result of a SECTIONS directive (rule 1), this
definition completely determines its contents. (See Section 9.7, page 9-16,
for examples of how to specify the contents of output sections.)

An output section can also be formed when input sections are encountered
that are not specified by any SECTIONS directive (rule 2). In this case, the

9-27

Linker Description - Default Allocation

9-28

linker combines all such input sections that have the same name into an out-
put section with this name. For example, suppose the files £1.0bj and
f2.0bj both contain named sections called Vectors and that the SEC-
TIONS directive does not define an output section to contain them. The linker
will combine the two Vectors sections from the input files into a single out-
put section named Vectors, allocate it into memory, and include it in the
output file.

After the linker determines the composition of all the output sections, it must
allocate them into configured memory. The MEMORY directive specifies
which portions of memory are configured, or if there is no MEMORY directive,
the linker uses the default configuration.

The linker's allocation algorithm attempts to minimize memory fragmentation.
This allows memory to be used more efficiently and increases the probability
that your program will fit into memory. This is the algorithm:

1) Any output section for which you have listed a specific binding address
is placed in memory at that address.

2) Any output section that is included in a specific named memory range
or that has memory attribute restrictions is allocated. Each output sec-
tion is placed into the first available space within the named area, con-
sidering alignment where necessary.

3) Any remaining sections are allocated in the order in which they were
defined. Sections not defined in a SECTIONS directive are allocated in
the order in which they were encountered. Each output section is placed
into the first available memory space, considering alignment where nec-
essary.

Linker Description - Special Section Types

9.10 Special Section Types (DSECT, COPY, and NOLOAD)

You can assign three special types to output sections: DSECT, COPY, and
NOLOAD. These types affect the way that the program is treated when it is
linked and loaded. You can assign a type to a section by placing the type
(enclosed in parentheses) after the section definition. For example,

SECTIONS

{
secl 200000h (DSECT) : {fl.obj}
sec2 400000h (COPY) : {f2.0bj}
sec3 600000h (NOLOAD) : {f3.obj}

[] The DSECT type creates a “"dummy section” with the following qualities:

- It is not included in the output section memory allocation. It takes
up no memory and is not included in the memory map listing.

- It can overlay other output sections, other DSECTs, and unconfig-
ured memory.

- Global symbols defined in a dummy section are relocated normally.
They appear in the output module’s symbol table with the same
vdlue they would have if the DSECT had actually been loaded.
These symbols can be referenced by other input sections.

- Undefined external symbols found in a DSECT cause specified ar-
chive libraries to be searched.

- The section’s contents, relocation information, and line number
information are not placed in the output module.

In the preceding example, none of the sections from f£1.obj are allo-
cated, but all the symbols are relocated as though the sections were
linked at address 200000h. The other sections can refer to any of the
global symbols in secl.

{ A COPY section is similar to a DSECT section, except that its contents
and associated information are written to the output module. The .cinit
section that contains initialization tables for the C compiler has this at-
tribute under the RAM model.

® A NOLOAD section differs from a normal output section in one respect:
the section’s contents relocation information and line number informa-
tion are not placed in the output module. The linker allocates space for
the section, the section is listed in the memory map listing, etc.

9-29

Linker Description - Assigning Symbols at Link Time

9.11 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols
and assign values to them at link time. You can use this feature to assign an
allocation-dependent value to a variable or a pointer.

9.11.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of C as-
signment statements:

symbol = expression; Assigns the value of expression to symbol
symbol = expression; Adds the value of expression to symbol
symbol -= expression; Subtracts the value of expression from symbol
symbol *= expression; Multiplies symbol by expression

symbol [= expression; Divides symbol by expression

The symbol should be defined externally in the program. If it is not, the linker
defines a new symbol and enters it into the symbol table. The expression must
follow the rules defined in Section 9.11.3. Assignment statements must be
terminated with a semicolon.

The linker processes assignment statements after it allocates all the output
sections. Thus, if an expression contains a symbol, the address used for that
symbol reflects the symbol’s address in the executable output file.

For example, suppose a program reads data from one of two tables identified
by two external symbols, Tablel and Table2. The program uses the symbol
cur—_tab as the address of the current table; cur_tab must point to Tablel
or Table2. You could accomplish this in the assembly code, but you would
need to reassemble the program in order to change tables. Instead, you can
use a linker assignment statement to assign cur—_tab at link time:

prog.obj /* Input file */
cur—tab = Tablel; /* Assign cur-—tab to one of the tables */

9.11.2 Assigning the SPC to a Symbol

9-30

A special symbol, denoted by a dot (.), represents the current value of the SPC
during allocation. The linker's “.” symbol is analogous to the assembler’s “$”
symbol. The ".” symbol can only be used in assignment statements within a
SECTIONS directive, because ".” is only meaningful during allocation, and the
allocation process is controlled by the SECTIONS directive.

For example, suppose a program needs to know the address of the beginning
of the .data section. You can create an external undefined variable Dstart in
the program by using the .global directive. Then, assign the value of ".” to
Dstart:

%ECTIONS
.text: {3}
.data: { Dstart = .; } /* Dstart = current SPC value */
bss : {}

This defines Dstart to be the ultimate linked address of the .data section.
The linker will relocate all references to Dstart.

Linker Description - Assigning Symbols at Link Time

"o

A special type of assignment assigns a value to the ”.” symbol. This adjusts
the location counter within an output section and creates a hole between two
input sections. Any value assigned to “.” to create a hole is relative to the
beginning of the section, not to the address actually represented by ”.”. As-

"o

signments to “.” and holes are described in Section 9.12.

9.11.3 Assignment Expressions

These rules apply to linker expressions:

(] Expressions can contain global symbols, constants, and the C language
operators listed in Table 9-2.

All numbers are treated as long (32-bit) integers.

Constants are identified in the same manner as they are by the assembler.
That is, numbers are recognized as decimals unless they have a suffix (H
or h for hexadecimal and Q or q for octal). C language prefixes are also
recognized (O for octal and Ox for hex). Hexadecimal constants must
begin with a digit. No binary constants are allowed.

(] Symbols within an expression have only the value of the symbol’s ad-
dress. No type checking is performed.

{ Linker expressions can be absolute or relocatable. If an expression
contains any relocatable symbols (and zero or more constants or abso-
lute symbols), it is relocatable. Otherwise, the expression is absolute.
If a symbol is assigned the value of a relocatable expression, the symbol
is relocatable; if assigned the value of an absolute expression, the symbol
is absolute.

The linker supports the C language operators listed in Table 9-2 in order of
precedence. Operators in the same group have the same precedence.

Besides the operators listed in Table 9-2, the linker also has an align operator
that allows a symbol to be aligned on an n-word boundary within an output
section (n is a power of 2). For example, the expression:

= align(16);

aligns the SPC within the current section on the next 16-word boundary.
Because the align operator is a function of the current SPC, it can only be used
in the same context as ".” - that is, within a SECTIONS directive.

9-31

Linker Description - Assigning Symbols at Link Time

Table 9-2. Operators in Assignment Expressions

Group 1 (Highest Precedence) Group 6
! Logical Not
~ Bitwise Not & Bitwise AND
- Negative
Group 2 Group 7
* Multiplication
/ Division | Bitwise OR
% Mod
Group 3 Group 8
n —
T | pdion && | Logical AND
Group 4 Group 9
>> Arithmetic right shift)
<< | Arithmetic left shift Il | Logical OR
Group 5 Group 10 (Lowest Precedence)
== Equal to ,
| = Not equal to = Assignment
> | Greater than = | A+=B - A=A+B
< | Less than - | A7B 2 A=AB
<= | Less than or equal to = | A¥=B - A=A*B
>= Greater than or equal to /= A/=B = A=A/B

9.11.4 Symbols Defined by the Linker

The linker automatically defines three symbols that a program can use at run
time to determine where a section is linked. These symbols are external, so
they appear in the link map. They can be accessed in any assembly language
module if they are declared with a .global directive.

9-32

Values are assigned to these symbols as follows:

.text

etext

.data

edata

.bss

end

cinit

is assigned the first address following the .text output section.
(It marks the beginning of executable code.)

is assigned the first address following the .text output section.
(It marks the end of executable code.)

is assigned the first address following the .data output section.
(1t marks the beginning of initialized data tables.)

is assigned the first address following the .data output section.
(It marks the end of initialized data tables.)

is assigned the first address of the .bss output section.
(It marks the beginning of uninitialized data.)

is assigned the first address following the .bss output section.
(It marks the end of uninitialized data.)

is assigned the first address of the .cinit section (when -c or -cr is
used).

Linker Description - Creating and Filling Holes

9.12 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections
that have nothing linked into them. These areas are called holes. In special
cases, uninitialized sections can also be treated as holes. This section de-
scribes how the linker handles such holes and how you can fill holes (and
uninitialized sections) with a value.

9.12.1 Initialized and Uninitialized Sections

There are two rules to remember about the contents of an output section. An
output section contains:

Rule 1: Raw data for the entire section or
Rule 2: No raw data.

A section that has'raw data is referred to as initialized. This means that the
object file contains the actual memory image contents of the section. When
the section is loaded, this image is loaded into memory at the section’s speci-
fied starting address. The .text and .data sections always have raw data if
anything was assembled into them. Named sections defined with the .sect or
.asect assembler directives also have raw data.

By default, the .bss section and .usect sections have no raw data (they are
uninitialized). They occupy space in the memory map, but have no actual
contents. Uninitialized sections typically reserve space in RAM for variables.
In the object file, an uninitialized section has a normal section header and may
have symbols defined in it; however, no memory image is stored in the section.

9.12.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when
you force the linker to leave extra space between input sections when building
an output section. When such a hole is created, the /inker must follow rule 1
and supply raw data for the hole.

Holes can only be created within output sections. There can also be space
between output sections, but such spaces are not holes. There is no way to
fill or initialize space between output sections.

To create a hole in an output section, you must use a special type of linker
assignment statement within an output section definition. The assignment
statement modifies the SPC (denoted by “.”) by either adding to it, assigning
a greater value to it, or aligning it to an address boundary. The operators, ex-
pressions, and syntax of assignment statements are described in Section 9.11
(page 9-30).

9-33

Linker Description - Creating and Filling Holes

9-34

The following example shows how holes can be created in output sections
using assignment statements:

?ECTIONS
outsect:
filel.obj(.text)
. += 100h; /* Create a hole with size 100h */
file2.obj(.text)
. = align(16); /* Create a hole to align the SPC */
file3.obj

3

The output section outsect is built as follows:

The .text section from filel.obj is linked in.
The linker creates a 256-word hole.
The .text section from £ile2.obj is linked in after the hole.

The linker creates another hole by aligning the SPC on a 16-word
boundary.

L] Finally, the .text section from £ile3.obj is linked in.

All values assigned to the ”.” symbol within a section refer to the relative ad-
dress within the section. The linker handles assignments to the “.” symbol as
if the section started at address O (even if you specify a binding address).
Consider the statement . = align(16) in the preceding example. This
statement effectively aligns file3.obj .text to start on a 16-word boundary
within outsect. If outsect is ultimately allocated to start on an address that

is not aligned, then £ile3 .text will not be aligned either.

Expressions that decrement “.” are illegal. For example, it is invalid to use the
-= operator in an assignment to ".”. The most common operators used in as-

"o

signments to “.” are += and align.

If an output section contains all input sections of a certain type (such as .text),
you can use the following statements to create a hole at the beginning or end
of the output section:

.text: { .+= 100h; } /* Hole at the beginning */
.data: {
*(.data)
+=100h; } /* Hole at the end */

Another way to create a hole in an output section is to combine an uninitial-
ized section with initialized sections to form a single output section. /n this
case, the linker treats the uninitialized section as a hole and supplies data for
it. An example of creating a hole in this way is:

SECTIONS
{
outsect:

filel.obj(.text)
filel.obj(.bss) /* This becomes a hole */

3

Because the .text section has raw data, all of outsect must also contain raw
data (rule 1). Therefore, the uninitialized .bss section becomes a hole.

Linker Description - Creating and Filling Holes

Note that uninitialized sections only become holes when they are combined
with initialized sections. [f multiple uninitialized sections are linked together
the resulting output section is also uninitialized.

9.12.3 Filling Holes

Whenever there is a hole in an initialized output section, the linker must supply
raw data to fill it. The linker fills holes with a 4-byte fill value that is replicated
through memory until it fills the hole. The linker determines the fill value as
follows:

1)

2)

3)

4)

If the hole is formed by combining an uninitialized section with an ini-
tialized section, you can specify a fill value for that specific initialized
section. Follow the section name with an = symbol and a 4-byte con-
stant:

SECTIONS

{
outsect:
{

filel.obj(.text)
file2.obj(.bss) = OFFh /* Fill this hole */

/% with O00O0OFFh */

s

}

You can also specify a fill value for all the holes in an output section by
supplying the fill value after the section definition. For example,

?ECTIONS

?utsect:
. += 10h; /* This creates a hole */
filel.obj(.text)
filel.obj(.bss) /* This creates another hole */
} = OFFOOh /* This fills both holes with */
3 /* O0000FFOOh */

If you do not specify an initialization value for a hole, the linker fills the
hole with the value specified with -f. For example, suppose the com-
mand file 1ink.cmd contains the following SECTIONS directive:

SECTIONS
{

.text: { .= 100; } /* Create a 100-word hole */

}

Now invoke the linker with the -f option:
1nk30 -f OFFFFFFFFh link.cmd
This fills the hole with OFFFFFFFFh.

If you do not invoke the linker with -f, the linker fills holes with Os.

Whenever a hole is created and filled in an initialized output section, the hole
is identified in the link map along with the value the linker uses to fill it.

9-356

Linker Description - Creating and Filling Holes

9.12.4 Explicit Initialization of Uninitialized Sections

9-36

An uninitialized section only becomes a hole when it is combined with an in-
itialized section. When uninitialized sections are combined with each other,
the resulting output section remains uninitialized and has no raw data in the
output file.

However, you can force an uninitialized section to be initialized simply by
specifying an explicit fill value for it in the SECTIONS directive. This causes
the entire section to have raw data (the fill value). For example,

SECTIONS
{
.bss: {} = 11223344h /* Fills .bss with 11223344h */

Note:

Because filling a section (even with Os) causes raw data to be generated
for the entire section in the output file, your outgut file will be very large
if you specify fill values for large sections or holes.

Linker Description - Partial (Incremental) Linking

9.13 Partial (Incremental) Linking

An output file that has been linked can be linked again with additional mod-
ules. This is known as partial linking or incremental linking. Partial linking
allows you to partition large applications, link each part separately, and then
link all the parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

Intermediate files must have relocation information. Use the -r option
when you link the file the first time.

Intermediate files must have symbolic information. By default, the linker
retains symbolic information in its output. Do not use the -s option if
you plan to relink a file, because -s strips symbolic information from the
output module.

Intermediate link steps should only be concerned with the formation of
output sections, and not with allocation. All allocation, binding, and
MEMORY directives should be performed in the final link.

The following example shows how you can use partial linking.

® Step 1: Link the file filel.com; use the -r option to retain relocation infor-
mation in the output file tempoutl.out.

1nk30 -r -o tempoutl filel.com

filel.com contains:
SECTIONS

(] Step 2: Link the file file2.com; use the -r option to retain relocation infor-
mation in the output file tempout2.out.

1nk30 -r -o tempout2 file2.com

file2.com contains:
SECTIONS

3

ss2:{

gl.obj
gZ.ob%

}gn:obj

[) Step 3: Link tempoutl.out and tempout?2.out:

Ink30 -m final.map -o final.out tempoutl.out tempout2.out

9-37

Linker Description - Linking C Code

9.14 Linking C Code

The TMS320C30 C compiler produces assembly language source code that
can be assembled and linked. For example, a C program consisting of mod-
ules progl, prog2, etc., can be assembled and then linked to produce an
executable fiie called prog.out:

1nk30 -c -o prog.out progl.obj prog2.obj ... rts.lib

The -c option tells the linker to use special conventions that are defined by the
C environment. The archive library rts.1lib contains C runtime support
functions.

For more information about C, including the runtime environment and runtime
support functions, see the TMS320C30 C Compiler Reference Guide.

9.14.1 Runtime Initialization

All C programs must be linked with an object module called boot.obj, which
contains code and data for initializing the runtime environment.

When the program begins running, this code is executed first and performs the
following actions:

® Sets up the system stack
(] Processes the runtime initialization table and autoinitializes global vari-
ables (in the ROM model)

(] Disables interrupts and calls —main

The runtime support object library, rts.1ib, contains boot.obj. You can
use the archiver to extract boot.obj from the library, and then link it in di- -
rectly, or you can simply include rts.1ib as an input file and the linker will
extract boot .obj when you use the -c or -cr option.

9.14.2 Object Libraries and Runtime Support

The TMS320C30 C Compiler Reference Guide describes additional runtime
support functions that are included in rts.lib. If your program uses any of
these functions, you must link rts.1lib with your object files.

You can also create your own object libraries and link them. The linker will
include and link only those modules in a library that resolve undefined refer-
ences.

9.14.3 Autoinitialization (ROM and RAM Models)

9-38

The C compiler produces tables of data that are used to autoinitialize global
variables. These are contained in a special section called .cinit. The initial-
ization tables can be used for autoinitialization in either of two ways.

[) ROM Model (-c option)

Variables are initialized at run time. The .cinit section is loaded into
memory along with all the other sections. The linker defines a special
symbol called cinit that points to the beginning of the tables in mem-

Linker Description - Linking C Code

ory. When the program begins running, the C boot routine copies data
from the tables into the specified variables in the .bss section. This al-
lows initialization data to be stored in ROM and then copied to RAM
each time the program is started.

Figure 9-10 illustrates the ROM autoinitialization model.

Object File Memory

Initialization
Tables
(possibly ROM)

Loader

Boot
Routine

Figure 9-10. ROM Model of Autoinitialization

) RAM Model (-cr option)

Variables are initialized at /oad time. This can enhance performance by
reducing boot time and can save memory used by the initialization ta-
bles. (Note that you must use a smart loader to take advantage of the
RAM model of autoinitialization.)

When you use -cr, the linker marks the .cinit section with a special at-
tribute. This attribute tells the linker not to load the .cinit section into
memory. The linker also sets the cinit symbol to -1; this informs the
C boot routine that initialization tables are not present in memory. Thus,
no runtime initialization is performed at boot time.

When the program is loaded, the loader must be able to:
- Detect the presence of the .cinit section in the object file.

- Detect the presence of the attribute that tells it not to copy the
.cinit section.

- Understand the format of the initialization tables (this is described
in the TMS320C30 C Compiler Reference Guide).

The loader then uses the initialization tables directly from the object file
to initialize variables in .bss.

Figure 9-11 (page 9-40) illustrates the RAM autoinitialization model.

9-39

Linker Description - Linking C Code

Object File Memory

Loader

Figure 9-11. RAM Model of Autoinitialization

9.14.4 The -c and -cr Linker Options

9-40

The following list outlines what happens when you invoke the linker with the
-c or -cr option.

The symbol _c—int00 is defined as the program entry point.
—c—int00 is the start of the C boot routine in boot.obj; referencing

—c—1int00 ensures that boot.obj will automatically be linked in from
the runtime support library rts. 1ib.

The .cinit output section is padded with a termination record so that the
boot routine (ROM model) or the loader (RAM model) knows when to
stop reading the initialization tables.

In the ROM model (-c option), the linker defines the symbol cinit as
the starting address of the .cinit section. The C boot routine uses this
symbol as the starting point for autoinitialization.

In the RAM model (-cr option):

- The linker sets the symbol cinit to -1. This indicates that the
initialization tables are not in memory, so no initialization is per-
formed at boot time.

- The STYP—COPY flag (010h) is set in the .cinit section header.
STYP—COPY is the special attribute that tells the loader to perform
autoinitialization directly and not to load the .cinit section into
memory. The linker does not allocate space in memory for the .cinit
section.

Linker Description - Example

9.15 Linker Example

This example links three object files named demo.obj, fft.obj and ta-
bles.obj and creates a program called demo.out. The symbol SETUP is the
program entry point.

Assume that target memory has the following configuration:

Address Range Contents
000000h to O0OFFFt 4K on-chip ROM
801000h to 8013FFh Internal RAM block BO
801400h to 8017FFh Internal RAM block B1

801800h to OFFFFFFh External RAM

The output sections are constructed from the following input sections:

® A set of interrupt vectors from section int—vecs in the file tables.obj
must be linked at address 0 in ROM.

[] Executable code, contained in the .text sections of demo.obj and
fft.obj, must also be linked into ROM.

e Two tables of coefficients, which are in the .data sections of the files

tables.obj and fft.obj must be linked into RAM block BO. The
remainder of block BO must be initialized to the value OFFCC1122h.

[The .bss section from ££t.o0bj, which contains variables, must be linked
into block B1 of data RAM. The unused part of this RAM must be ini-
tialized to OFFFFFFFFh.

® The .bss section from demo.obj, which contains buffers and variables,
must be linked into external RAM.

Figure 9-12 shows the linker command file for this example; Figure 9-13
shows the map file.

9-41

Linker Description - Example

EEE RS R SRS R RS SRR RS SRR RS E R R R R R SRR R R R LR RS RS

Vadddd Specify Linker Options dkkk
/**/

-e SETUP /* Define the entry point */
-o demo.out /* Name the output file */
-m demo.map /* Create a load map */

**/

i Specify the Input Files * ok kK
/**/

demo.obj
fft.obj
tables.obj

/**

Vil Specify the Memory Configuration *kkk
/**/

MEMORY

{
ROM: origin = 0000000h length = 01000h
RAM-BO: origin = 0801000h length = 0400h
RAM-B1l: origin = 0801400h length = 0400h
RAM origin = 0801800h length = O07FE800h

kkkkkhkkkhhkkhkhkhhkdkhhhkdhkhhhhhhhkhhhkhhdhkhhhhkhhhhhhhhhhhhhhhhhhhkdhkkdhrkk

i Specify the Output Sections *kkk
/**/

SECTIONS
{
.text: {} >ROM /* Link all .text sections into'ROM */
int—vecs Oh: {3} /* Link interrupts at O */
.data: /* Link the .data sections */
{
tables.obj(.data) /* .data input section */
fft.obj(.data) /* .data input section */
. = 400h; /* Create a hole to end of block */
} = OFFCC1122h > RAM-BO /* Fill and link into BO */
fftvars: /* Create a new fftvars section */
{
fft.obj(.bss)
} = OFFFFFFFFh > RAM-Bl /* Fill and link into Bl */
.bss: {1} >RAM /* Link all remaining .bss sections */

/**

Vil End of Command File ok kk
/**/

Figure 9-12. Linker Command File, demo.cmd

Invoke the linker with the following command:
1Ink30 demo.cmd

This creates the map file shown in Figure 9-13 and an output file called
demo.out that can be run on the TMS320C30.

9-42

Linker Description - Example

kkkkkhkkhkkhkkhkhkhhkhhrkhhhkhhkhhhhhhhhhhrhhhhrkhhrhhhrrdbhhdrdbdkrhorrhdhx

TMS320C30 COFF Linker, Version 1.00, 87.070
KhhkhkhhkhkhkhkARIhhhkhdhkhhhdhhhddhhddhhkhhhhhdhkhkhhhhdrhhddrhdhhkkddhhdrkhkd

OUTPUT FILE NAME: <demo.out>
ENTRY POINT SYMBOL: "SETUP" address: 00000040

MEMORY CONFIGURATION

name origin length attributes
ROM 00000000 000001000 RWIX
RAM-BO 00801000 000000400 RWIX
RAM-B1 00801400 000000400 RWIX
RAM 00801800 0007FE800 RWIX

SECTION ALLOCATION MAP

output attributes/
section page origin length input sections
int_vecs 0 00000000 00000040
00000000 00000040 demo.obj (int-vecs)
.text 0 00000040 000001BO
00000040 0000014E demo.obj (.text)
0000C18E 00000064 fft.obj (.text)
.data 0 00801000 00000400
008010000 000000A5 tables.obj (.data)
0080100A5 00000014 fft.obj (.data)
0080100B9 00000347 --HOLE-- [fill = ffccl22]
fftvars 0 00801400 0000001A
00801400 0000001A fft.obj (.bss) [fill = fEffffff)
.bss 0 00801800 0000009A UNINITIALIZED
00801800 0000009A demo.obj (.bss)

GLOBAL SYMBOLS

address name address name
00000040 SETUP 00000040 SETUP
00801400 edata 0000004A start
0080180A end 0000008A fft
000001F2 etext 00000120 sub
00801800 extvar 00000166 list
0000008A fft 00000170 plasm
00000166 list 0000017A p2asm
00000184 main 00000184 main
00000170 plasm 000001F2 etext
0000017A p2asm 00801400 edata
0000004A start 00801800 extvar
00000120 sub 0080189A end

[12 symbols]

Figure 9-13. Output Map File, demo.map

9-43

Linker Description

9-44

Section 10

Object Format Converter Description

Most EPROM programmers do not accept COFF object files as input. The
object format converter converts a COFF object file into one of three object
formats that most EPROM programmers accept as input:

{ Tektronix hex object format
(Intel hex object format

® Tl-tagged object format

The object format converter accepts one COFF object file as input. If you are
converting to Tl-tagged object format, the utility produces one output file. If
you are converting to Tektronix or Intel object format, the utility produces four
~output files (one output file for each set of bytes, from least significant to
most significant bytes).

This section contains the following topics:

Section
10.1 Object Format Converter Development Flow
10.2 Invoking the Object Format Converter
10.3 EXaMPIES ceeviireeiieeieeeeee e
10.4 Halt CONAItiONS ..oooeiiiiiiciieie e

10-1

Object Format Converter Description - Development Flow

10.1 Object Format Converter Development Flow

Figure 10-1 illustrates the object format converter's role in the assembly lan-
guage development process.

Assembler
Source

C Compiler

Archiver » Assembler

Assembler
Source

Macro
Library

> Linker - Archiver

Library of
Object
Files

1 COFF Object
File

Object
Format
Converter
Software
XDS
De\ée;,l;gment Emulator

Figure 10-1. Object Format Converter Development Flow

10-2

Object Format Converter Description - Invocation

10.2 Invoking the Object Format Converter

To invoke the object format converter, enter:

[rom30 [-option] [COFF input file]

rom30 is the command that invokes the object format converter; all parame-
ters are optional.

The filename is the name of the file that you want to convert. If you do not
specify an input filename, the object format converter prompts for one. If you
specify a filename without an extension, the utility assumes that the filename
has a default extension of .obj.

There are three options which can be entered anywhere on the line. The op-
tions identify the format of the output file:

-i specifies Intel hex object format for the output.
-t specifies Tl-tagged object format for the output.
-x specifies Tektronix hex object format for the output.

If you don’t supply an option, the object format converter produces Tektronix
hex format output files. The object format converter uses the input filename
(without it's extension) to name output files; it chooses the file extension
depending on the type of output you've requested:

(For T/-tagged format, the object format converter produces one output
file with an extension of .tag.

[J For Intel or Tektronix format, the object format converter produces four
files with the following extensions:

- .bO0 is the extension for the file that contains the least significant
bytes.

- .b1 is the extension for the file that contains the next-to-least
significant bytes.

- .b2 is the extension for the file that contains the next-to-most
significant bytes.

.b3 is the extension for the file that contains the most significant
bytes.

When the object format converter finishes converting the input file, it prints
the message Translation complete.

10-3

Object Format Converter Description - Examples/Halt Conditions

10.3 Examples

Here are some examples of using the object format converter.

Example 1:

You can invoke the object format converter with no options and no
filename:

rom30

The utility will print the following banner and prompt:

COFF Object Converter Version 5.01, 87.610
(c) Copyright 1987, Texas Instruments Inc.

Coff file [.objl:

If, for example, you respond to the prompt with a filename of f£ft, the
object format converter uses the file £ft.obj as an input file. It pro-
duces four Tektronix-format output files named £fft.b0, £ft.bl,
fft.b2,and fft.b3.

Example 2:
If you enter:
rom30 -i in

the utility uses in.ob3j as the input file. It creates four Intel-format files
named in.b0, in.bl, in.b2, and in.b3.

Example 3:
If you enter:
rom30 in.tmp -t

the object format converter uses in.tmp as the input file. It produces
a singie Tl-tagged output file named in.tag.

10.4 Halt Conditions

There are two situations in which the object format converter aborts exe-
cution:

10-4

1)

2)

If any of the specified files cannot be opened, the code conversion utility
prints the message Input COFF file cannot be opened and aborts.

If you supply the utility with the name of an invalid object file, the object
format converter prints the message Corrupt input file and aborts.

Appendix A

Common Object File Format

The TMS320C30 assembler and linker create object files that are in common
object file format (COFF). COFF is an implementation of an object file format
of the same name that was developed by AT&T for use on UNIX-based sys-
tems. This object file format has been chosen because it encourages modular
programming and provides more powerful and flexible methods for managing
code segments and target system memory.

One of the basic COFF concepts is sections. Section 3, Introduction to
Common Object File Format, discusses COFF sections in detail. If you un-
derstand section operation, you will be able to use the TMS320C30 assembly
language tools more efficiently.

This appendix contains technical details about COFF object file structure.
Most of this information pertains to the symbolic debugging information that
is produced by the TMS320C30 C compiler. The main purpose of this ap-
pendix is to provide supplementary information for those of you who are in-
terested in the internal format of object files.

Topics in this appendix include:

Section Page
AT File STIUCTUIE ..ottt ettt e et e et e enneenreaeees A-2
A2 TFIHE HEAAET .ottt e ettt ve et a e e A-4
A.3 Optional File HEaderccooiorioiieiieeeeeeet e A-5
PN A Y=Yt { o] ¢ N o (=TT (=1 S ORR A-6
A5 Relocation INfOrMationc.ccceeeieiiiiieee et A-8
A6 Line NUMDEI TabIe oot A-9
A7 Symbol Table ... A-11

Appendix A - COFF File Structure

A.1 File Structure

The elements of a COFF object file describe the file’s sections and symbolic
debugging information. These elements include:

(] A file header,

Optional header information,

A table of section headers,

Raw data for each section (except .bss),

Relocation information for each section (except .bss),
Line number entries for each section (except .bss),

A symbol table, and

° A string table.

The assembler and linker produce object files with the same COFF structure;
however, a program that is linked for the final time will not contain relocation
entries. Figure A-1 illustrates the ovetall object file structure.

File Header
Optional File Ha‘ader

> Section Headers

Raw Data
> (executable code
and initialized data)

” Relocation Information

Line Number
~ Entries

Symbol Table

String Table

Figure A-1. COFF File Structure

A-2

Appendix A - COFF File Structure

Figure A-2 shows a typical example of a COFF object file that contains the
three default sections, .text, .data, and .bss, and a named section (referred to
as <named>). By default, the .text, .data, and .bss sections, respectively, are
placed in the object file, followed by any named sections in the order in which
they were encountered. Although the .bss section has a section header, no-
tice that it has no raw data, no relocation information, and no line number
entries; named sections created with .usect do not have this type of informa-
tion, either. This is because the .bss and .usect directives simply reserve space
for uninitialized data; their sections contain no actual code.

File Header

Section
Headers

Raw
Data

Relocation
Information

Line Number
Entries

Symbol Table

String Table

Figure A-2. Sample COFF Object File

Appendix A - File Header

A.2 File Header

The file header contains 20 bytes of information that describe the general
format of an object file. Table A-1 shows the structure of the file header.

Table A-1. File Header Contents
B
Nur‘:\t:er Type Description
01 Unsigned short integer Magic number (093h), indicates that the
file can be executed in a TMS320C30 sys-
tem
2-3 Unsigned short integer Number of section headers
4-7 Long integer Time and date stamp, indicates when the
file was created
8-11 Long integer ‘ File pointer, contains the symbol table’s
starting address
12-15 Long integer Number of entries in the symbol table
16-17 Unsigned short integer Number of bytes in the optional header.
This field is either 0 or 28; if it is 0, then
there is no optional file header.
18-19 Unsigned short integer Flags (see Table A-2)

Table A-2 lists the flags that can appear in bytes 18 and 19 of the file header.
Any number and combination of these flags can be set at the same time (for
example, if bytes 18 and 19 are set to 0003h, then F-RELFLG and F—EXEC
are both set.)

Table A-2. File Header Flags (Bytes 18 and 19)

Mnemonic Flag Description

F—RELFLG | 0001h | Relocation information was stripped from
the file

F_EXEC 0002h | The file is executable/(Tt contains no unre-
solved external references)

F—LNNO 0004h | Line numbers wér“ej;sﬁjgp'ed from the file

F—LSYMS 0010h | Local symbols were stripped from the file

F—AR32WR | 0040h | The file has the byte ordering used by the
TMS320C30 support tools: (32 bits per
word, least significant byte first)

Appendix A - Optional File Header

A.3 Optional File Header

The linker creates the optional file header and uses it to perform relocation at
download time. Partially linked files do not contain optional file headers.

Table A-3 illustrates the optional file header format.

Table A-3. Optional File Header Contents

Nsx:t:er Type Description

0-1 Short integer Magic number (0108h)

2-3 Short integer Version stamp

4-7 Long integer Size (in words) of executable code
8-11 Long integer Size (in words) of initialized words
12-15 Long integer Size (in bits) of uninitialized data
16-19 Long integer Beginning address of executable code
24-27 Long integer Beginning address of initialized data

A-5

Appendix A - Section Headers

A.4 Section Headers

COFF object files contain a table of section headers that specify where each
section begins in the object file. Each section of the file has its own section

header.
Table A-4. Section Header Contents
mefer Type Description
0-7 Character Eight-character section name, padded with
nulls
8-11 Long integer Section’s physical address
12-15 Long integer Section’s virtual address
16-19 Long integer Section size in words
20-23 Long integer File pointer to raw data
24~-27 Long integer File pointer to relocation entries
28-31 Long integer File pointer to line number entries
32-33 Unsigned short integer Number of relocation entries
34-35 Unsigned short integer Number of line number entries
36-37 Unsigned short integer Flags (see Table A-5)
38 Character Reserved.
39 Character Memory page number.

Table A-5 lists the flags that can appear in bytes 36 and 37 of the section

header.
Table A-5. Section Header Flags (Bytes 36 and 37)
Mnemonic Flag Description
STYP—REG 0000h | Regular section (allocated, relocated,loaded)

STYP—DSECT 0001h | Dummy section (relocated, not allocated, not loaded)
STYP—_NOLOAD | 0002h | Noload section (allocated, relocated, not loaded)
STYP_GROUP 0004h | Grouped section (formed from several input sections)

STYP—PAD 0008h | Padding section (loaded, not allocated, not relocated)

STYP_COPY 0010h | Copy section (not allocated, relocated, loaded; relo-
cation and line number entries are processed normally)

STYP_TEXT 0020h | Section contains executable code

STYP—_DATA 0040h | Section contains initialized data

STYP—BSS 0080h | Section contains uninitialized data

STYP—ALIGN 0100h | Section is aligned on a cache boundary
Note: The term /oaded means that the raw data for this section appears in the object file

The flags listed in Table A-5 can be combined; for example, if the flags word
is set to 024h, then both STYP—_GROUP and STYP—TEXT are set.

Appendix A - Section Headers

Figure A-6 illustrates how the pointers in a section header would point to the
various elements in an object file that are associated with the .text section.

0-7 8-11 12-15 16-19 20-23 24-27 28-31 32-33 34-35 36-37 38 39

Lext
Sectior?)l(-leader Ltext [[] [o [o [4

Figure A-3. An Example of Section Header Pointers for the .text Section

As Figure A-2 (page A-3) shows, the .bss section and uninitialized sections
defined with .usect vary from this format. Although there is a section header
for each uninitialized section, these sections have no raw data, no relocation
information, no line number information, and occupy no actual space in the
object file. Therefore, the number of relocation entries, the number of line
number entries, and the file pointers in an uninitialized section header are zero.
Section headers for uninitialized sections simply tell the linker how much
space for variables it should reserve in the memory map.

A-7

Appendix A - Relocation Information

A.5 Relocation Information

A COFF object file has one relocation entry for each relocatable reference.
The assembler automatically generates relocation entries. The linker reads the
relocation entries as it reads each input section and performs relocation. The
relocation entries determine how references within an input section are
treated.

The relocation information entries use the 10-byte format shown in Table A-6.

Table A-6. Relocation Entry Contents

Byt

Nur‘r,ﬂ?er Type Description
0-3 Long integer Virtual address of the reference
4-5 Unsigned short integer Symbol table index (0~65535)
6-7 Unsigned short integer Reserved
8-9 Unsigned short integer Relocation type (see Table A-7)

Table A-7 lists the relocation types that can appear in bytes 8 and 9 of the
relocation entry.

Tabie A-7. Relocation Types (Bytes 8 and 9)

Mnemonic Flag Relocation Type
R—ABS 0000h No relocation
R—REL24 005h 24-bit direct reference
R—RELWORD 0010h 16-bit direct reference to symbol's
address
R—RELLONG 0011h | 32-bit direct reference to symbol's
address

R—PCRWORD 0013h 16 bits, PC relative
R_OCRLONG 0018h 1’s complement 32-bit direct
R—GSPPCR16 0019h | 16-bit relative (in words)
R—PARTLS16 0020h | Truncate to lower 16 bits
R—PARTMSS8 0021h Relocate bits 24 through 16

Appendix A - Line Number Table

A.6 Line Number Table

The object file contains a table of line number entries that are useful for sym-
bolic debugging. When the C compiler produces several lines of assembly
language code, it creates a line number entry that maps these lines back to the
original line of C source code that generated them. Each single line number
entry contains 6 bytes of information. Table A-8 shows the format of a line
number entry.

Table A-8. Line Number Entry Format

Byte
Nul¥1ber Type Description

0-3 Long integer This entry may have one of two values:

1) If it is the first entry in a block of line
number entries, it points to a symbol
entry in the symbol table

2) If it is not the first entry in a block, it
is the physical address of the line indi-
cated by bytes 4-5

4-5 Unsigned short integer This entry may have one of two values:

1) If this field is O, then this is the first line
of a function entry

2) If this field is not O, then this is the line
number of a line of C source code

Figure A-4 shows how line number entries are grouped into blocks.

Symbol Index 0
physical address line number
physical address line number
Symbol index 0
physical address line number
physical address line number

Figure A-4. Line Number Biocks

As Figure A-4 shows, each entry is divided into halves:

® For the first line of a function,

- Bytes 0-3 point to the name of a symbol or a function in the
symbol table.
- Bytes 4~5 contain a 0, which indicates the beginning of a block.

@ For the remaining lines in a function,

- Bytes 0-3 show the physical address (the number of words cre-
ated by a line of C source).

- Bytes 4-5 show the address of the original C source, relative to its
appearance in the C source program.

The line entry table can contain many of these blocks.

A-8

Appendix A - Line Number Table

Figure A-9 illustrates an example of line number entries for a function named
XYz. As shown, the function name is entered as a symbol in the symbol table.
The first portion on XYZ’s block of line number entries points to the function
name in the symbol table. Assume that the original function in the C source
contained three lines of code. The first line of code produces 4 words of as-
sembly language code, the second line produces 3 words, and the third line
produces 10 words. Figure A-9 shows what the line number entries would
look like for this example.

° 0__
.................. Line Number
0 1 > A
) > Entries
7 3
Tz Td
e NN
XYZ
L] > Symbol Table

Figure A-5. Line Number Entries Example

(Note that the symbol table entry for XYz has a field that points back to the
beginning of the line number block.)

Since line numbers are not often needed, the linker provides an option (-s)
that strips line number information from the object file. This provides a more
compact object module.

Appendix A - Symbol Table

A.7 Symbol Table

The order of symbols in the symbol table is very important; they appear in the
sequence shown in Figure A-3.

File Name 1

Function 1

Local symbols
for Function 1

Function 2

Local symbols
for Function 2

File Name 2
Function 1

Local symbols
for Function 1

Static variables

Defined global symbols
Undefined global symbols

Figure A-6. Symbol Table Contents

Static variables refer to symbols defined in C that have storage class static
outside any function. If you have several modules that use symbols with the
same name, making them static confines the scope of each symbol to the
module that defines it (this eliminates multiple-definition conflicts).

The entry for each symbol in the symbol table contains the symbol's:

Name (or a pointer into the string table)

Type

Value

Section it was defined in

Storage class

Basic type (integer, character, etc.)

Derived type (array, structure, etc.)

Dimensions

Line number of the source code that defined the symbol

Section names are also defined in the symbol table.

A-11

Appendix A - Symbol Table

All symbol entries, regardless of the symbol’s class and type, have the same
format in the symbol table. Each symbol table entry contains the 18 bytes of
information listed in Table A-9. Some symbols may not have all the charac-
teristics listed above; if a particular field is not set, it will be set to null.

Table A-9. Symbol Table Entry Contents

Byte
Nur¥1tber Type Description
0-7 Character This field contains one of the following:
1) An 8-character symbol name, padded
with nulls
2) A pointer into the string table if the
symbol name is longer than 8 charac-
ters
8-11 Long integer Symbol value; storage class dependent
12-13 Short integer Section number of the symbol
14-15 Unsigned short integer Basic and derived type specification
16 Character) Storage class of the symbol
17 Character Number of auxiliary entries (always O or 1)

A.7.1 Special Symbols

The symbo! table contains some special symbols that are generated by the
compiler, assembler, and linker. Each special symbol contains ordinary sym-
bol table information as well as an auxiliary entry. Table A-10 lists these
symbols.

Table A-10. Special Symbols in the Symbol Table

Symbol Description
file File name
text Address of .text section
.data Address of .data section
.bss Address of .bss section
.bb Address of the beginning of a block
.eb Address of the end of a block
.bf Address of the beginning of a function
ef Address of the end of a function
target Pointer to a structure or union that is returned by a function
.nfake Dummy tag name for a structure, union, or enumeration
.€0S End of a structure, union, or enumeration
etext Next available address after the end of the .text output section
edata Next available address after the end of the .data output section
end Next available address after the end of the .bss output section

Several of these symbols appear in pairs:

® .bb/.eb indicate the beginning and end of a block.
@ .bf/.ef indicate the beginning and end of a function.

9 .nfake/.eos name and define the limits of structures, unions, and enu-
merations that were not named. The .eos symbol is also paired with
named structures, unions, and enumerations.

Appendix A - Symbol Table

When a structure, union, or enumeration has no tag name, the compiler as-
signs it a name so that it can be entered into the symbol table. These names
are of the form .nfake, where n is an integer. The compiler begins numbering
these symbol names at 0.

A.7.1.1 Symbols and Blocks

In C, a block is a compound statement that begins and ends with braces and
contains symbol definitions. The symbol definitions for any particular block
are grouped together in the symbol table, and are delineated by the .bb/.eb
special symbols. Note that blocks can be nested in C, and their symbol table
entries can also be nested correspondingly. Figure A-7 shows how block
symbols are grouped in the symbol table.

Symbol Table
Block 1: .bb

Symbols for
block 1

.eb
Block 2: .bb

Symbols for
block 2

.eb

Figure A-7. Symbols for Blocks

A.7.1.2 Symbols and Functions

The symbol definitions for a function appear in the symbol tabie as a group,
delineated by .bf/.ef special symbols. The symbol table entry for the function
name precedes the .bf special symbol. Figure A-8 shows the format of symbol
table entries for a function.

Function Name
bf

Symbols for
the function

.ef

Figure A-8. Symbols for Functions

If a function returns a structure or union, then a symbol table entry for the
special symbol .target will appear between the entries for the function name
and the .bf special symbol.

A-13

Appendix A - Symbol Table

A.7.2 Symbol Names

The first 8 bytes of a symbol table entry (bytes 0-7) indicate a symbol’s name:

[] If the symbol name is 8 characters or less, then this field has type char-
acter. The name is padded with nulls (if necessary) and stored in bytes
0-7.

® If the symbol name is greater than 8 characters, then this field is treated
as two long integers. The entire symbol name is stored in the string ta-
ble. Bytes 0-3 contain 0, and bytes 4-7 are an offset into the string ta-
ble.

A.7.3 String Table

Symbol names that are longer than eight characters are stored in the string
table. The field in the symbol table entry that would normally contain the
symbol’s name instead contains a pointer to the symbol’s name in the string
table. Names are stored contiguously in the string table, delimited by a null
byte. The first four bytes of the string table contain the size of the string table
in bytes; thus, offsets into the string table are greater than or equal to four.

Figure A-5 shows an example of a string table that contains two symbol
names, Adaptive—Filter and Fourier—Transform. The index in the string table
is 4 for Adaptive—Filter and 20 for the Fourier—Transform.

40
A e [e |
1T 7 T v o
— e T
v [e | v ["o
'F ‘o’ v’ 4
i ‘e t =
T r ‘a’ n’
‘s’ f ‘o’ t’
'm | o | o | o

Figure A-9. Sample String Table

Appendix A - Symbol Table

A.7.4 Storage Classes

Byte 16 of the symbol table entry indicates the storage class of the symbol.
Storage classes refer to the method in which the C compiler accesses a sym-
bol. Table A-11 lists valid storage classes.

Table A-11. Symbol Storage Classes

Mnemonic Value Storage Class Mnemonic Value Storage Class

C_NULL 0 No storage class C_UNTAG 12 Union tag

C—_AUTO 1 Automatic variable C_TPDEF 13 Type definition

C—EXT 2 External symbol C_USTATIC 14 Uninitialized static

C_STAT 3 Static C_ENTAG 15 Enumeration tag

C—-REG 4 Register variable C_MOE 16 Member of an enumer-
ation

C—EXTDEF 5 External definition C—_REGPARM 17 Register parameter

C_LABEL 6 Label C_FIELD 18 Bit field

C—_ULABEL 7 Undefined label C—-BLOCK 100 | Beginning or end of a
block; used only for the
.bb and .eb special
symbols

C—-MOSs 8 Member of a structure [| C_FCN 101 Beginning or end of a
function; used only for
the .bf and .ef special
symbols

C—ARG 9 Function argument C—EOS 102 | End of structure; used
only for the .eos special
symbol

C_STRTAG 10 Structure tag C—FILE 103 | Filename; used only for
the .file special symbol

C_-MOU 11 Member of a union C—LINE 104 | Used only by utility
programs

Some special symbols are restricted to certain storage classes. Table A-12
lists these symbols and their storage classes.

Table A-12. Special Symbols and Their Storage Classes

Special Rest;i:itsed to
Symbol | g¢orage Class
file C_FILE
.bb C_BLOCK
.eb C_BLOCK
.bf C—_FCN
.ef C_FCN
.€0s C_EOS
text C_STAT
.data C_STAT
.bss C_STAT

Appendix A - Symbol Table

A.7.5 Symbol Values

Bytes 8-11 of a symbol table entry indicate a symbol’s value. A symbol’s va-
lue depends on the symbol’s storage class; Table A-13 summarizes the stor-

age classes and related values.

Table A-13. Symbol Values and Storage Classes

Storage Class | Value Description
C_AUTO Stack offset in bits
C_EXT Relocatable address
C_STAT Relocatable address
C—-REG Register number
C—-LABEL Relocatable address
C_MOS Offset in bits
C—ARG Stack offset ‘n bits
C_STRTAG 0
C-MOU Offset in bits
C_UNTAG 0
C_TPDEF 0
C—_ENTAG 0
C_-MOE Enumeration value
C—_REGPARM | Register number
C_FIELD Bit displacement
C—BLOCK Relocatable address
C_FCN Relocatable address
C—FILE 0

If a symbol’s storage class is C—FILE, then the symbol’s value is a pointer to
the next .file symbol. Thus, the .file symbols form a one-way linked list in the
symbol table. When there are no more .file symbols, the final .file symbol
points back to the first .file symbol in the symbol table.

The value of a relocatable symbol is its virtual address. When the linker relo-
cates a section, the value of a relocatable symbol changes accordingly.

Appendix A - Symbol Table

A.7.6 Section Number

Bytes 12-13 of a symbol table entry contain a number that indicates which
section the symbol was defined in. Table A-14 lists these numbers and the

sections they indicate.

Table A-14. Section Numbers

Mnemonic ﬁﬁi:lboe':. Description

N—DEBUG -2 Special symbolic debugging symbol

N—ABS -1 Absolute symbol

N—-UNDEF 0 Undefined external symbol

N—_SCNUM 1 .text section

N—SCNUM 2 .data section

N—SCNUM 3 .bss section

N_-SCNUM 4-65,5635 | Section number of a named section, in
the order in which the named sections
are encountered

Note that if there were no .text, .data, or .bss sections, the numbering of
named sections would begin with 1.

If a symbol has a section number of 0, -1, or -2, then it is not defined in a
section. A section number of -2 indicates a symbolic debugging symbol,
which includes structure, union, and enumeration tag names, type definitions,
and filenames. A section number of -1 indicates that the symbol has a value
but is not relocatable. A section number of O indicates a relocatable external
symbol that is not defined in the current file.

A.7.7 Type Entry

Bytes 14~15 of the symboi table entry define the symbol’s type. Each symbol

symbol has:

] One basic type

® One to six derived types

The format for this 16-bit

type entry is:

Derived | Derived | Derived | Derived

Size {in bits): 2 2

Derived | Derived Basic
Type Type Type Type Type Type T
6 5 4 3 2 1 ype
2 2 2 2 4

Appendix A - Symbol Table

Bits 0-3 of the type field indicate the basic type. Table A-15 lists valid basic
types.

Table A-15. Basic Types

Mnemonic | Value Type
T—NULL 0 Type not assigned
T—CHAR 2 Character

T—SHORT 3 Short integer

T—INT 4 Integer

T—LONG 5 Long integer
T—FLOAT 6 Floating point
T—DOUBLE 7 Double word
T—STRUCT 8 Structure

T—UNION 9 Union

T—ENUM 10 Enumeration

T—MOE 11 Member of an enumeration
T—UCHAR 12 Unsigned character
T—USHORT 13 Unsigned short integer
T—UINT 14 Unsigned integer
T—ULONG 15 Unsigned long integer

Bits 4-15 of the type field are arranged as six 2-bit fields which can indicate
1 to 6 derived types. Table A-16 lists the possible derived types.

Table A-16. Derived Types

Mnemonic | Value Type
DT—NON 0 No derived type
DT—PTR 1 Pointer
DT—FCN 2 Function
DT—ARY 3 Array

An example of a symbol with several derived types would be a symbol with a
type entry of 00000000110100115. This entry indicates that the symbol is a
pointer to an array of short integers.

A-18

Appendix A - Symbol Table

A.7.8 Auxiliary Entries

Each symbol table may have one or no auxiliary entry. An auxiliary symbol
table entry contains the same number of bytes as a symbol table entry (18),
but the format of an auxiliary entry depends on the symbol’s type and storage
class. Table A-17 summarizes these relationships.

Table A-17. Auxiliary Symbol Table Entries Format

Type Entry -
Storage - - Auxiliary
Name Class Derived Basic Entry Format
Type 1 Type

file C—_FILE DT—_NON T_NULL Filename (see Table A-18)
.text, .data, .bss C_STAT DT—NON T—NULL Section (see Table A-19)
tagname C_STRTAG | DT—_NON T—_NULL Tag name (see Table A-20)

C_UNTAG

C_ENTAG
.€0S C—_EOS DT_NON T—NULL End of structure (see Table A-21)
fcname C—EXT DT—FCN (See note 1) | Function (see Table A-22)

C_STAT
arrname (See note 2) | DT_ARY - (See note 1) | Array (see Table A-23)
.bb, .eb C—-BLOCK DT—NON T—NULL Beginning and end of a block

(see Table A-24 and Table A-25)
.bf, .ef C—FCN DT—NON T—NULL Beginning and end of a function
(see Table A-24 and Table A-25)

Name related to a | (See note 2) | DT—PTR T_STRUCT Name related to a structure, union,
structure, union DT—-ARR T—UNION or enumeration (see Table A-26)
or enumeration DT—NON T—_ENUM

Notes:

12) Any except T—-MOE

) C—AUTO, C—STAT, C-MOS, C-MOU, C—TPDEF

In Table A-17, tagname refers to any symbol name (including the special
symbol .nfake). fcname and arrname refer to any symbol name.

Any symbol that satisfies more than one condition in Table A-17 should have
a union format in its auxiliary entry. Any symbol that does not satisfy any of
these conditions should not have an auxiliary entry.

A.7.8.1 File Names

Each of the auxiliary table entries for a filename contains a 14-character file
name in bytes 0-13. Bytes 14-17 are not used.

Table A-18. Section Format for Auxiliary Table Entries

Nt?r‘g:er Type Description
0-13 Character Filename
14-17 - Not used

A-19

Appendix A - Symbol Table

A.7.8.2 Sections

The auxiliary table entries for sections have the format shown in Table A-18.
Table A-19. Section Format for Auxiliary Table Entries

NEx\t:er Type Description
0-3 Long integer Section length
4-6 Unsigned short integer Number of relocation entries
7-8 Unsigned short integer Number of line number entries
9-17 - Not used (zero filled)

A.7.8.3 Tag Names
Table A-20 illustrates the format of auxiliary table entries for tag names.
Table A-20. Tag Name Format for Auxiliary Table Entries

NE ryr’lt:er Type Description
0-5 - Not used (zero filled)
6-7 Unsigned short integer Size of structure, union, or enumeration
8-11 - Not used (zero filled)
12-15 Long integer Index of next entry beyond this structure,
union, or enumeration
16-17 - Not used (zero filled)

A.7.8.4 End of Structure

Table A-21 illustrates the tormat of auxiliary tabie entries for ends of struc-
tures.

Table A-21. End of Structure Format for Auxiliary Table Entries

Ngr‘g:er Type Description
0-3 Long integer Tag index
4-5 - Not used (zero filled)
6-7 Unsigned short integer Size of structure, union, or enumeration
8-17 - Not used (zero filled)

A-20

Appendix A - Symbol Table

A.7.8.5 Functions
Table A-22 illustrates the format of auxiliary table entries for functions.

Table A-22. Function Format for Auxiliary Table Entries

Nt?r»;\t:er Type Description
0-3 Long integer Tag index
4-7 Long integer Size of function (in bits)
8-11 Long integer File pointer to line number
12-15 Long integer Index of next entry beyond this function
16-17 - Not used (zero filled)

A.7.8.6 Arrays
Table A-23 illustrates the format of auxiliary table entries for arrays.
Table A-23. Array Fprmat for Auxiliary Table Entries

fo‘tfer Type Description
0-3 Long integer Tag index
4-5 Unsigned short integer Line number declaration
6-7 Unsigned short integer) Size of array
8-9 Unsigned short integer First dimension
10-11 Unsigned short integer) Second dimension
12-13 Unsigned short integer Third dimension
14-15 Unsigned short integer Fourth dimension
16-17 - Not used (zero filled)

A.7.8.7 End of Blocks and Functions

Table A-24 illustrates the format of auxiliary table entries for the ends of
blocks and functions.

Table A-24. End of Blocks and Functions Format for Auxiliary
Table Entries

Nsx\t:er Type Description
0-3 - Not used (zero filled)
4-5 Unsigned short integer C source line number
6-17 - Not used (zero filled)

A-21

Appendix A - Symbol Table

A.7.8.8 Beginning of Blocks and Functions

Table A-25 illustrates the format of auxiliary table entries for the beginnings

of blocks and functions.

Table A-25. Beginning of Blocks and Functions Format for

Auxiliary Table Entries

Byte
Number

Type

Description

0-3

Not used (zero filled)

4-5

Unsigned short integer

C source line number

6-11

Not used (zero filled)

12-15

Long integer

Index of next entry past this block

16-17

Not used (zero filled)

A.7.8.9 Names Related to Structures, Unions, and Enumerations

Table A-26 illustrates the format of auxiliary table entries for the names of
structures, unions, and enumerations.

Table A-26. Structure, Union, and Enumeration Names Format for

Auxiliary Table Entries

Byte
Number

Type

Description

0-3

Long integer

Tag index

4-5

Not used (zero filled)

6-7

Unsigned short integer

Size of the structure, union, or enumeration

8-17

Not used (zero filled)

16-17

Not used (zero filled)

A-22

Appendix B
Symbolic Debugging Directives

The TMS320C30 assembler supports several directives that the TMS320C30
C compiler uses for symbolic debugging:

The .sym directive defines a global variable, a local variable, or a func-
tion. Several parameters allow you to associate various debugging in-
formation with the symbol or function.

The .stag, .etag, and .utag directives define structures, enumerations,
and unions, respectively. The .member directive specifies a member
of a structure, enumeration, or union. The .eos directive ends a struc-
ture, enumeration, or union definition.

The .func and .endfunc directives specify the bounds of C blocks.

The .file directive defines a symbol in the symbol table that identifies
the current source file name.

The .line directive identifies the line number of a C source statement.

These symbolic debugging directives are not usually listed in the assembly
language file that the compiler creates. If you want them to be listed, invoke
the code generator with the -o option, as shown below:

cg30 -o <input file>

This appendix contains an alphabetical directory of the symbolic debugging
directives. Each directive contains an example of C source and the resulting
assembly language code.

.block/.endblock Define a Block

Syntax

Description

Example

B-2

.block beginning line number
.endblock ending line number
The .block and .endblock directives specify the beginning and end of a C

block. The line numbers are optional; they specify the location in the
source file where the block is defined.

Note that block definitions can be nested. The assembler will detect im-
proper block nesting.

Here is an example of C source that defines a block, and the resulting as-
sembly language code.

C source:
{ /* Beginning of a block */
int a,b;
a = b;
} /* End of a block */

Resulting assembly language code:

.block 0 4 32
. Sym =, Ll &, 8,
.sym _b,%,4,§,32
.line 7

LDI *+FDP(2) ,RO
STI RO, *+FPY(1)
.endblock 7

Supply a File Identifier file

Syntax file “filename”

Description The file directive allows a debugger to map locations in memory back to
lines in a C source file. Filename is the name of the file that contains the
orginal C source program. The first 14 characters of the filename are sig-
nificant.

You can also use the .file directive in assembly code to provide a name in
the file and improve program readability.

Example Here's an example of the .file directive. The file name named text.c con-
tained the C source that produced this directive.
.file "text.c"

B-3

func/.endfunc Define a Function

Syntax

Description

Example

B-4

.func beginning line number

.endfunc ending line number

The .func and .endfunc directives specify the beginning and end of a C
function. The line numbers are optional; they specify the location in the
source file where the function is defined.

Note that function definitions cannot be nested.

Here is an example of C source that defines a function, and the resulting
assembly language code.

C source:
power (x, n) /* Beginning of a function */
%nt X,n;

int i, p;

p=1;

for (1 = 1; 1 <= n; ++i)

p=p*x;)
return p; /* End of function */

Define a Function

.func/.endfunc

Resulting assembly language code:

0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049

000000
000000
000001
000002
000003

000004
000004
000005
000005
000006
000006
000007
000008
000009
000009
00000A
00000B
00000C
00000D
0O00O00E
000QO0F
000010
000011
000011
000011
000012
000012
000013
000014
000015

OF2B0O00O
080B0014
02740001
OF240000

08640001
15440301

08400301
04C0O0BO3
6A090008

08000004
08410B02
62000000!
08040000
08410301
02610001
15410301
60000006+

08000004

OE240000
18740001
OE2B000O
78880000

.sym —-power ,—power,36,2,0
.global _power

.func 2
IR EEEE RS SRR EREEEEE R RS SRS REREREEESEESE]
* FUNCTION DEF : _power

IE RS RS E SRS RS E RS SRR SRR RS R R EES
—power :

PUSH FP

LDI SP,FP

ADDI 1,SP

PUSH R4

.sym -x,-2,4,9,32

.sym -n,-3,4,9,32

.sym -i,1,4,1,32

.sym -p,4,4,4,32

.line 5

LDI 1,R4

.line 6

STI R4 ,*+FP (1)
L3:

ILDI *+FP(1),RO

CMPI *+FP(3) ,RO

BGT L2

.line 7

LDI R4,RO

LDI *-FP(2),R1

CALL I_MULT

LDI RO,R4

LDI *+FP(1),R1

ADDI 1,R1

STI R1,*+FP(1)

BR L3
L2:

.line 8

LDI R4,RO
EPIO_1:

POP R4

SUBI 1,8P

POP FP

RETS

.endfunc 11

B-5

dine

Create a Line Number Entry

Syntax

Description

Example

B-6

line Jine number/[,address]

The .line directive creates a line number entry in the object file. Line num-
ber entries are used in symbolic debugging to associate addresses in the
object code with the lines in the source code that generated them.

The .line directive has two operands:

[] Line number indicates the line of the C source that generated a por-
tion of code. Line numbers are relative to the beginning of the current
function. This is a required parameter.

® Address is an expression which is the address associated with the line
number. This is an optional parameter; if you don’t specify an ad-
dress, the assembler will use the current SPC value.

The .line directive is followed by the assembly language source statements
that are generated by the indicated line of C source. For example, assume
that the lines of C source below are line 4 and 5 in the original C source;
lines 5 and 6 produce the assembly language source statements that are
shown below.

C source:
for (i = 1; i <= n; ++1i)

p = p * X;
Resulting assembly language code:
0023 000004 .line 5
0024 000004 08640001 LDI 1,R4
0025 000005 .line 6
0026 000005 15440301 STI R4 ,*+FP (1)
0027 000006 L3:
0028 000006 08400301 LDI *+FP(1),RO
0029 000007 04C00BO3 CMPI *+FP(3),RO
0030 000008 6A(090008 BGT L2
0031 000009 .line 7
0032 000009 08000004 ILDI R4,RO
0033 00000A 08410B0O2 ILDI *~FP(2),R1
0034 00000B 62000000! CALL I_MULT
0035 00000C 08040000 LDI RO,R4
0036 00000D 08410301 LDI *+FP(1) R1
0037 OOOOOE 02610001 ADDI 1,R1
0038 OOOOOF 15410301 STI Rl,*+FP(1)
00392 000010 60000006+ BR L3

Define a Member .member

Syntax

Description

Example

.member name,value[,type,storage class,size tag,dims]

The .member directive defines a member of a structure, union, or enumer-
ation. It is only valid when it appears in a structure, union, or enumeration

definition.

° Name is the name of the member that is put in the symbol table. The
first 32 characters of the name are significant.

® Value is the value associated with the member. Any legal expression
(absolute or relocatable) is acceptable.

® Type is the C type of the member. Appendix A contains more infor-
mation about C types.

® Storage class is the C storage class of the member. Appendix A
contains more information about C storage classes.
Size is the number of bits of memory required to contain this member.
Tag is the name of the type (if any) or structure of which this member
is a type. This name must have been previously declared by a .stag,
.etag, or .utag directive.

(] Dims may be one to four expressions separated by commas. This al-

lows up to four dimensions to be specified for the member.

The order of parameters is significant. Name and value are required pa-
rameters. All other parameters may be omitted or empty (adjacent commas
indicate an empty entry). This allows you to skip a parameter and specify
a parameter that occurs later in the list. Operands that are omitted or empty
assume a null value.

Here is an example of a C structure definition and the corresponding as-
sembly language statements:

C source:

struct doc {

char title;
char group;
int job—number;

} doc—info}

Resulting assembly language code:

.stag doc,48

.member _title,0,2,8,8
.member —group,8,2,8,8
.member _job_number,16,4,8,32
.eos

B-7

.stag/.etag/.utag/.eos Define a Structure

Syntax .stag name/,size]
member definitions
.eos

.etag name/,size]
member definitions
.eos

.utag name/,size]
member definitions
.eos

Description The .stag directive begins a structure definition. The .etag directive begins
an enumeration definition. The .utag directive begins a union definition.
The .eos directive ends a structure, enumeration, or union definition.

[Name is the name of the structure, enumeration, or union. The first
32 characters of the name are significant. This is a required parame-
ter.

® Size is the number of bits the structure, enumeration, or union occu-
pies in memory. This is an optional parameter; if omitted, the size is
unspecified.

The .stag, .etag, or.utag directive should be followed by a number of
.member directives, which define members in the structure. The .member
directive is the only directive that can appear inside a structure, enumer-
ation, or union definition.

The assembler does not allow nested structures, enumerations, or unions.
The C compiler “unwinds” nested structures by defining them separately
and then referencing them from the structure they are referenced in.

Example 1 Here is an example of a structure definition.
C source:
?truct doc
char title;
char group;
int job_number ;
} doc—infoj;
Resulting assembly language code:
.stag —doc, 96
.member _title,0,2,8,32
.member _—group,32,2,8,32

.member _job_number,64,4,8,32
.eos

B-8

Define a Structure .stag/.etag/.utag/.eos

Example 2

Example 3

Here is an example of a union definition.

C source:

union u-tag {
int vall;
float val2;
char valc;
} valu;

Resulting assembly language code:

.utag —u-tag,96
.member _—vall,0,2,8,32
.member _val2,32,4,8,32
.member _—valc,64,4,8,32
.eos

Here is an example of an enumeration-definition.

C Source:

{
enum o-ty { reg-1l, reg-2, result } optypes;

Resulting assembly language code:

.etag —o-ty, 32

.member _reg-1,0,11,16,32
.member _—reg-2,1,11,16,32
.member —result,2,11,16,32
.eos

B-9

.sym Define a Symbol
Syntax .sym name,value/[,type, storage class,size,tag,dims]
Description The .sym directive specifies symbolic debug information about a global
variable, local variable, or a function.
(Name is the name of the variable that is put in the object symbol ta-
ble. The first 32 characters of the name are significant.
[] Value is the value associated with the variable. Any legal expression
(absolute or relocatable) is acceptable.
[} Type is the C type of the variable. Appendix A contains more infor-
mation about C types.
® Storage class is the C storage class of the variable. Appendix A con-
tains more information about C storage classes.
® Size is the number of words of memory required to contain this vari-
able.
® Tag is the name of the type (if any) or structure of which this variable
is a type. This name must have been previously declared by a .stag,
.etag, or .utag directive.
® Dims may be up to four expressions separated by commas. This al-
lows up to four dimensions to be specified for the variable.
The order of parameters is significant. Name and value are required pa-
rameters. All other parameters may be omitted or empty (adjacent commas
indicate an empty entry). This allows you to skip a parameter and specify
a parameter that occurs later in the list. Operands that are omitted or empty
assume a null value.
Example These lines of C source produce the .sym directives shown below:

C source:

struct s { int memberl, member2; 3} str;
int ext;

int array[5][10];

long *ptr;

int strcmp();

main(argl,arg2)

int argl;
char *arg2;

register rl;

Resulting assembly language code:

.sym —str,—-str,8,2,64,—s

.sym —ext,—ext,4,2,32

.sym —array,-—array,244,2,1600,,5,10
.sym —ptr,—ptr,21,2,32

.sym -main,-main,36,2,0

.sym —argl,—argl,-2,4,9,32

.sym -arg2,-—arg2,-3,18,9,32

.sym -rl,4,4,4,32

Appendix C

Assembler Error Messages

The assembiler issues several types of error messages:

() Fatal,

® Nonfatal, and

[] Macro errors.

When the assembler completes it second pass, it reports on any errors that it
encountered during the assembly. it also prints these errors in the listing file
(if one is created); an error is printed following the source line that incurred
it.

This section discusses the three types of assembler error messages; they are

listed in alphabetical order. Most errors are fatal errors; if an error is not fatal
or if it is a macro error, this is noted in the list.

absolute value required: A relocatable symbol was used where an absolute
symbol was expected.

address required: This instruction requires an address as an operand.

auxiliary register required for indirect: This instruction requires an
auxiliary register as an operand.

blank missing: A blank or blanks must separate each field of the source
statement.

cannot open library: A library name specified with the .mlib directive does
not exist or is already being used.

closing (’)’) missing: Mismatched parenthesis.
closing quote missing: All strings must be enclosed in quotes.

comma missing: The assembler expected a comma but did not find one.
This usually means that more operands were expected.

copy file open error: A file specified by a .copy directive does not exist or
is already being used.

divide by zero: An expression or well-defined expression contains invalid
division.
duplicate definition: The symbol appears as an operand of a REF state-

ment, as well as in the the label field of the source, or, the symboi appears
more than once in the label field of the source.

.eise needs corresponding .if: An .else directive was not preceded by a .if
directive.

SEND statement missing in macro (macro error message): Within the
macro library, an end of file was encountered before a SEND card,

C-1

Appendix C - Assembler Error Messages

expression out of bounds:

expression syntax error: Unbalanced parentheses or invalid operations on
relocatable symbols.

extended register required: This instruction requires an extended register
(RO-R7) as an operand.

filename missing: The specified filename cannot be found.

floating-point number not valid in expression: Floating-point numbers
cannot be used in expressions; you must use an integer instead.

$IF level exceeded (macro error message): The maximum nesting level of
$IF directives is 44.

illegal label: A label cannot be used for the second instruction of a parallel
instruction pair.

illegal structure, union, or enumeration tag
illegal structure definition

include/copy files not allowed in macro: You can’t use the .copy di-
rective within a macro.

incompatible addressing modes: An invalid combination of addressing
modes has been used in an instruction.

incorrect macro definition (macro error message): Within the macro li-
brary, a macro was not found or a macro name was not given for a macro call.

index register required for displacement: Use an index register for in-
direct addressing.

indirect address required: This instruction expects an indirect address as
an operand.

indirect displacement must be 0 or 1: The indirect placement for parallel
instructions or three-operand instructions must be 0 or 1.

indirect displacement or out of bounds: The displacement for this in-
struction must be in the range 0-255.

invalid branch displacement: The specified displacement is a absolute but
the SPC is relative, or the displacement is an external value, or the relative
displacement is too large.

invalid bit-reversed modification
invalid circular modification

invalid expression: This may indicate invalid use of a relocatable symbol in
arithmetic.

invalid floating-point constant:

invalid $IF structure (macro error message): The macro does not have
matching $IF, $ELSE, and SENDIF statements.

invalid $IF/$LOOP nesting (macro error message): An $IF used within a
$L00'|:D must end within the $LOOP; a $LOOP within an $IF must end within
the $IF.

Appendix C - Assembler Error Messages

invalid macro expansion (macro error message)

invalid macro library pathname (macro error message): The macro library
name that was specified with an .mlib directive is invalid.

invalid macro qualifier (macro error message): The only valid macro qua-
lifiers are S, V, L, A, SS, SV, SL, and SA.

invalid macro verb (macro error message)

invalid opcode: The command field of the source record has an entry that
is not a defined instruction, directive, or macro name.

invalid option: An option specified by the .option directive is invalid.

invalid parallel instruction combination: The instructions specified as
parallel instructions are not a valid pair.

invalid symbol: The symbol has invalid characters in it.
invalid symbol in macro expansion (macro error message)
invalid use of .asect

label required: The flagged directive must have a label.

long macro variable qualifier (macro error message): Macro variable
qualifiers may be only one or two characters long.

library not archive: A file specified with an .mlib directive is not an archive
file.

loop nesting level exceeded (macro error message)

macro line too long (macro error message): In a macro definition, macro
directive lines may be only 53 characters long. Model statements, when fully
expanded, may be only 55 characters long.

macro nesting level exceeded (macro error message)

missing first half of parallel instruction: The first instruction in a parallel
instruction pair is missing or invalid.

operand missing: An operand must be supplied.

operand must be register or indirect: Three-operand and parallel in-
structions require register or indirect operands.

overflow in floating-point constant: Floating-point value to large to be
represented.

pass1/pass2 operand conflict: A symbol in the symbol table did not have
the same value in pass 1 and pass 2.

positive value required

RO or R1 multiply destination required: The destination operand for an
MPY||ADD pair or an MPY||SUB pair must be RO or R1.

R2 or R3 ADD/SUB destination required: The destination operand for
parallel ADD or SUB instructions must be R2 or R3.

register required: This instruction requires a register as an operand.
relocatable field must be 32 bits

C-3

Appendix C - Assembler Error Messages

c-4

string required: You must supply a string that is enclosed in double quotes.
symbol required: The .global directive requires a symbol as an operand.
symbol used in both REF and DEF: A REF symbol is already defined.
syntax error:

syntax error in macro assignment (macro error message)

syntax error in macro expansion (macro error message)

too many macro variables (macro error message): The total number of
macro parameters, variables and labels in a single macro definition may not
exceed 128.

unbalanced symbol table entries: For .block and .func directives.

undefined symbol: An undefined symbol was used where a well-defined
expression is required.

underflow in floating-point constant: Floating-point value is too small
to represent.

unexpected .endif encountered: An .endif directive was not preceded by
an .if directive.

variable already defined (macro error message): A macro variable cannot
be redefined within a macro.

warning - illegal relative branch: A branch has been requested to a dif-
ferent section.

warning - immediate operand not absolute

warning - null string defined: An empty string (one whose length = 0)
is defined for string input, for directives that require a null string operand.

warning - register converted to immediate

warning - same destination registers: Parallel instructions must use
different destination registers.

warning - symbol truncated: The maximum length for a symbol is eight
characters. The assembler ignores the extra characters.

warning - trailing operand(s): The assembler found fewer or more oper-
ands than expected in the flagged instruction.

warning - value out of range

warning - value truncated: The expression given was to large to fit within
the instruction opcode or the required number of bits.

Appendix D

Linker Error Messages

The linker issues several types of error messages:

Syntax and commarnid errors
Allocation errors
1/0 errors

This section discusses the three types of errors; they are listed alphabetically
within each category. The symbol:”(...)" is used in these listings to represent
the name of an object that the linker is attempting to interact with when an
error occurs.

Syntax/Command Errors

These errors are caused by incorrect use of linker directives, misuse of
an input expression, invalid options, Check the syntax of all expressions,
check the input directives for accuracy. Review the various options you
are using and check for conflicts.

absolute symbol (...) being redefined: An absolute symbol may
not be redefined.

adding name (...) to multiple output sections: The input section
is mentioned twice in the SECTION directive.

ALIGN illegal in this context: Alignment of a symbol may only be
performed within a SECTIONS directive.

attempt to decrement ”.”

bad attribute value in MEMORY directive: (...): An attribute
must be R, W, X, or L.

bad flag value in SECTIONS directive, option (...)
bad fiill value: The fill value must be a 2-byte constant.

binding excludes alignment: The section will be bound at the spe-
cified address regardless of the alignment of that address.

both -r and -s flags are set; -s flag turned off: Since the -s op-
tion strips the relocation information and -r requests a relocatable object
file, these options are in conflict with each other.

-c requires fill value of 0 in .cinit: The value parameter has been
overridden.

-f flag does not specify a 2-byte number
cannot align a section within GROUP - (...) not aligned
cannot bind a section within a GROUP

Appendix D - Linker Error Messages

D-2

cannot specify an owner for sections within a GROUP: The
entire group is treated as one unit, so the group may be aligned or
bound to an address, but the sections making up the group may not be
handled individually.

cannot specify a page for a section within a GROUP

DSECT (...) can’t be given an owner: Since dummy sections do
not participate in memory allocation, it is meaningless for a dummy
section to be given an owner or an attribute.

DSECT (...) can’t be linked to an attribute

-e flag does not specify a legal symbol name (...)

entry point other than —c—int00 specified: For -c option only.
entry point symbol (...) undefined

errors in input - (...) not built

fill value on -f flag truncated to (...) bytes (warning)

ifile (comfile) nesting exceeded with file (...): Command file
nesting is allowed up to 16 levels.

illegal operator in expression

misuse of ”.” symbol in assignment instruction: The dot symbol
cannot be used in assignment statements that are outside SECTIONS
directives.

no input files

number (...) not a power of 2: For the ALIGN operator.

-o file name too large (>128 char), truncated to (string)
-o flag does specify a valid file name : string

option flag does not specify a number

option is invalid flag

section (...) not built: The most likely cause of this is a syntax error
in the SECTIONS directive.

semicolon required after expression
statement ignored: Caused by a syntax error in a expression.
symbol referencing errors - (...) not built

symbol (...) from file (...) being redefined: A defined symbol may
not be redefined in an assignment statement.

syntax error: scanned line = (...)

unexpected EOF(end of file): Syntax error in the linker command
file.

undefined symbol in expression

Appendix D - Linker Error Messages

[) Allocation Errors

These error messages appear during the allocation phase of linking.
They generally appear if a section or group does not fit at a certain ad-
dress or if the MEMORY and SECTION directives conflict in some way.
If you are using a linker command file, check that MEMORY and SEC-
TION directives allow enough room to ensure that no sections overlap
and that no sections are being placed in unconfigured memory.

binding address (...) for section (...) is outside all memory on
page (...)

binding address (...) for section (...) overlays previously allo-
cated section

binding address (...) incompatible with alignment for section
K

can’t allocate output section, (...) of size (...) on page (...)
can’t allocate section (...) with attribute (...) on page (...)
default allocation failed: (...) is too large

GROUP containing section (...) is too big

internal symbol (...) redefined in file (...): Ignored.
memory types (...) and (...) on page (...) overlap

no owner (...) for section (...) on page (...): Invalid or nonexistent
memory range.

output file (...) not executable Warning.
PC-relative displacement overflow at address (...) in file (...)

section (...) at address (...) overlays previously allocated sec-
tion (...) at address

section (...), bound at address (...), won’t fit into page (...) of
configured memory

section (...) enters unconfigured memory at address (...)
section (...) in file (...) is too big

undefined symbol (...) first referenced in file (...): Unless the
ir option is used, the linker requires that all referenced symbols are de-
ined.

® I1/0O Errors:

The following error messages indicate that the input file is corrupt, no-

nexistent, or unreadable or because the linker cannot write to the output

file. Make sure that the input file is in the correct directory and that the

I)i:e system is not out of space. If the input file is corrupt, try reassem-
ing it.

cannot complete output file (...), write error

cannot create output file (...):

D-3

Appendix D - Linker Error Messages

can’t open (...)

can’t read (...)

can’t seek (...)

could not create map file (...)

fail to copy (...)

fail to read (...)

fail to seek (...)

fail to skip (...)

fail to write (...)

file (...) has no relocation information

file (...) is of unknown type, magic number = (...)
illegal relocation type (...) found in section(s) of file (...)
internal error : aux table overflow

invalid archive size for file (...)

1/0 error on output file (...)

library (...) member has no relocation information

line number entry found for absolute symbol

memory allocation failure

no symbol map produced - not enough memory
relocation symbol not found: index (...)., section (...), file (...)
relocation entries out of order in section (...) of file (...)

section (...) not found: An input section specified in a SECTIONS
directive was not found in the input file.

sections .text, .data, or .bss not found: Optional header may be
useless.

seek to (...) failed

D-4

Appendix E
ASCII Character Set

Base Base Base Base

70 _16] " (70 16 ©" [0 16| " |70 16| Cher
0 | 00 NULL 32 | 29 SP 64 | 40 @ 96 | 60 ’
1 | 01 SOH 33 | 21 ! 65 | 41 A 97 | 61 a
2| 02 STX 34 | 22 ” 66 | 42 B 98 | 62 b
3 | o3 ETX 35 | 23 # 67 | 43 [99 | 63 c
4 | o4 EOT 36 | 24 $ 68 | 44 D 100 | 64 d
5 | 05 ENQ 37 | 25 % 69 | 45 E 101 | 65 e
6 | 06 ACK 38 | 26 & 70 | 46 F 102 | 66 f
7 | 07 BEL 39 | 27 ’ 71 | 47 G 103 | 67 g
8 | 08 BS 40 | 28 (72 | 48 H 104 | 68 h
9 | 09 HT 41 | 29) 73 | 49 1 105 | 69 i
10 | OA LF 42 | 2A * 74 | 4A J 106 | 6A i
11 | OB VT 43 | 2B + 75 | 4B K 107 | 6B k
12 | oC FF 44 | 2C . 76 | 4C L 108 | 6C i
13 | oD CR 45 | 2D - 77 | 4D M 109 | 6D m
14 | OE [o) 46 | 2E] 78 | 4E N 110 | 6E n
15 | OF S| 47 | 2F / 79 | 4F [¢) 111 | 6F o
16 | 10 DLE 48 | 30 0 80 | 50 P 112 70 p
17 | 11 DC1 49 | 31 1 81 | 51 [13| 71 q
18 | 12 DC2 50 | 32 2 82 | 52 R 14| 72 r
19 | 13 DC3 51 | 33 3 83 | 53 S 15| 73 s
20 | 14 DC4 52 | 34 4 | 84 | 54 T 116 | 74 t
21 | 15 NAK 53 | 35 5 85 | 55 U 17| 75 u
22 | 16 SYN 54 | 36 6 86 | 56 Vv 118 | 76 v
23 | 17 ETB 55 | 37 7 87 | 57 w 119 77 w
24 | 18 CAN 56 | 38 8 88 | 58 X 120 | 78 X
25 | 19 EM 57 | 39 9 89 | 59 Y 121 | 79 y
26 | 1A SUB 58 | 3A : { 90 | BA z 122 | 7A z
27 | 1B ESC 59 | 3B ; 91 | 5B [123 | 7B {
28 | 1C FS 60 | 3C < 92 | 5C \ 124 | 7C >
29 | 1D GS 61 | 3D = 93 | 5D] 125 7D 3
30 | 1E RS 62 | 3E > 94 | BE 3 126 | 7E ~
31 | 1F us 63 | 3F ? 95 | 5F — 1271 7F DEL

E-1

100

Appendix E - ASCIl Character Set

E-2

Appendix F

Glossary

absolute address: An address that is permanently assigned to a
TMS320C30 memory location.

absolute section: An initialized named section defined with the .asect di-
rective. All addresses in an absolute section are absolute.

alignment: A process in which the linker places an output section at an
address that falls on an n-bit boundary, where n is a power of 2. You can
specify alignment with the SECTIONS linker directive.

allocation: A process in which the linker determines the final memory ad-
dresses of output sections.

archive library: A collection of individual files that have been grouped into
a single file.

a_rch.iver: A software program that allows you to collect several individual
files into a single file called an archive library. The archiver also allows you
to delete, extract, or replace members of the archive library, as well as add new
members.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions, directives, and
macro directives. The assembler substitutes absolute operation codes for
symbolic operation codes, and absolute or relocatable addresses for symbolic
addresses.

assembly-time constant: A symbol that is assigned a constant value with
the .set directive.

assignment statement: A statement that assigns a value to a variable.

attribute component: Provides information about the origin and structure
of a macro variable or macro symbol.

autoinitialization: The process of initializing global C variables (contained
in the .cinit section) before beginning program execution.

auxiliary entry: A symbol may have an extra entry in the symbol table that
contains additional information about the symbol (whether the symbol is a
filename, a section name, a function name, etc.).

binding: A process in which you specify a distinct address for an output
section or a symbol.

block: A set of declarations and statements that are grouped together with
braces.

.bss: This is one of the default COFF sections. You can use the .bss direc-
tive to reserve a specified amount of space in the memory map that can later
be used for storing data. The .bss section is uninitialized.

Appendix F - Glossary

F-2

cache memory: A fast local memory onboard the TMS320C30. Blocks of
code that are executed repeatedly can be loaded into the cache; this reduces
the number of memory cycles and speeds program execution.

C compiler: A program that translates C source statements into
TMS320C30 assembly language source statements.

command file: A file that contains linker options and names input files for
the linker.

comment: A source statement (or portion of a source statement) that is
used to document or improve readability of a source file. Comment are not
compiled, assembled, or linked; they have no effect on the object file.

common object file format (COFF): An object file that promotes mod-
ular programming by supporting the concept of sections.

conditional processing: A method of processing one block of source
code or an alternate block of source code, based upon the evaluation of a
specified expression.

configured memory: Memory that the linker has specified for allocation.
constant: A numeric value that can be used as an operand.

cross-reference listing: An output file created by the assembler that lists
the symbols that were defined, what line they were defined on, which lines
referenced them, and their final values.

.data: This is one of the default COFF sections. The .data section is an ini-
tialized section that contains usually initialized data. You can use the .data
directive to assemble cody into the .data section.

digital signal processon: A microprocessor/microcomputer that performs
algorithmic or numerical computational procedures upon digitized signals it
has received and then sends the results to a host system or peripheral device.

digital signals: Digital representation of a continuous signal. Usually am-
plitude is represented at disctete time intervals with a digital value.

directive: Special-purpose commands that control the actions and func-
tions of a software tool (as opposed to assembly language instructions, which
control the actions of a device).

emulator: A hardware development system that emulates TMS320C30
operation.

entry point: The starting execution point in target memory.
enumeration:

executable module: An object file that has been linked and can be exe-
cuted in a TMS320C30 system.

expression: A constant, a symbol, or a series of constants and symbols se-
parated by arithmetic operators.

external symboi: A symbol that is used in the current program modulie but
defined in a different program module.

field: For the TMS320C30, a software-configurable data type whose length
can be programmed to be any value in the range of 1-32 bits.

Appendix F - Glossary

file header: A portion of a COFF obiject file that contains general informa-
tion about the object file (such as the number of section headers, the type of
system the object file can be downloaded to, the number of symbols in the
symbol table, and the symbol table’s starting address).

global: Describes a symbol that is either 1) defined in the current module
and accessed in another, or 2) accessed in the current module but defined in
another.

GROUP: An option of the SECTIONS directive that forces specified output
sections to be allocated contiguously (as a group).

high-level language debugging: The ability of a compiler to retain sym-
bolic and high-level language information (such as type and function defi-
nitions) so that a debugging tool can use this information.

hole: An area between the input sections that comprise an output section
which contains no actual code or data.

incremental linking: Linking files that have already been linked.

initialized section: A COFF section that contains executable code or ini-
tialized data. These sections can be built up with the .data, .text, .sect, or
.asect directives.

input section: A section from an object file that will be linked into an ex-
ecutable module.

label: A symbol which begins in column 1 of a source statement and cor-
responds to the address of that statement.

length component: A component of a macro variable or macro symbol
that contains the number of characters that make up the string.

line number entry: An entry in a COFF output module that maps lines of
assembly code back to the original C source file that created them.

linker: A software tool that combines object files to form an object module
that can be allocated into TMS320C30 system memory and executed by the
TMS320C30.

listing file: An output file created by the assembler that lists source state-
ments, their line numbers, and their effects on the SPC.

loader: A device that loads an executable module into TMS320C30 system
memory or to a debugging tool.

member: The elements or variables of a structure, union, or enumeration.
macro: A user-defined routine that can be used as an instruction.
macro call: The process of invoking a macro.

macro definition: A block of source statements that define the name and
the code that make up a macro.

macro expansion: The source statements that are substituted for the macro
call and subsequently assembled.

macro library: An archive library composed of macros. Each file in the li-
brary must contain one macro; it's name must be the same as the macro name
it defines, and it must have an extension of .asm.

F-3

Appendix F - Glossary

F-4

macro variable: A variable that is valid within a macro definition or during
a macro expansion.

magic number: An entry in the COFF file header that identifies an object
file as a module that can be executed by the TMS320C30.

map file: An output file created by the linker that shows the memory con-
figuration, section composition and allocation, and symbols and the addresses
at which they were defined.

memory map: A map of TMS320C30 target system memory space, which
is partitioned into functional blocks.

mnemonic: An instruction name that the assembler translates into machine
code.

model statement: Instructions or assembler directives in a macro defi-
nition that are assembled each time a macro is invoked

named section: A section that is defined with the .sect, .asect, or .usect
directive. The .sect and .asect directives define initialized named sections that
can be used like the .text and .data default sections. The .usect directive de-
fines uninitialized named sections that can be'used like the .bss default sec-
tion.

object file: A file that has been assembled or linked and contains ma-
chine-language object code.

object format converter: A program that converts COFF obiject files into
Intel-format or Tektronix-format object files.

object library: An archive library made up of individual object files.

operand: The arguments, or parameters, of an assembly language in-
struction, assembler directive, or macro directive.

optional header: A portion of . COFF object file that the linker uses to
perform relocation at downlioad tirne.)

options: Command parameters that allow you to request additional or spe-
cific functions when you invoke a software tool.

output module: A linked, executable object file that can be downloaded
and executed on a target system.

output section: A final, allocated section in a linked, executable module.

overlay pages: Multiple areas of physical memory that overlay each other
at the same address. The TMS320C30 system can map different pages into
the same address space in response to hardware select signals.

partiail linking: Linking a file that will be linked again.

RAM model: An autoinitialization model used by the linker when linking
C code. The linker uses this model when you invoke the linker with the -cr
option. The RAM model allows variables to be initialized at load time instead
of run time.

raw data: Executable code or initialized data in an output section.

relocation: A process in which the linker adjusts all the references to a
symbol when the symbol’s address changes.

Appendix F - Glossary

ROM model: An autoinitialization model used by the linker when linking
C code. The linker uses this model when you invoke the linker with the -c
option. In the ROM model, the linker loads the .cinit section of data tables
into memory, and variables are initialized at run time.

section: A relocatable block of code or data that will ultimately occupy
contiguous space in the TMS320C30 memory map.

section header: A portion of a COFF object file that contains information
about a section in the file. Each section has its own header; the header points
to the section’s starting address, contains the section’s size, etc.

section program counter: See SPC.
sign-extend: To fill the unused MSBs of a value with the value’s sign bit.

simulator: A software development system that simulates TMS320C30
operation.

source file: A file that contains C code or TMS320C30 assembly language
code that will compiled or assembled to form an object file.

SPC: Section Program Counter. An element of the assembler that keeps
track of the current location within a section; each section has its own SPC.

static: Refers to a variable whose scope is confined to a function or a pro-
gram. The values of static variables are not discarded when the function or
program is exited; their previous value is resumed when the function or pro-
gram is re-entered.

storage class: Any entry in the symbol table that indicates how a symbol
should be accessed.

string component: A copy of a string that is passed to a macro variable
by a macro parameter or assigned to a macro symbol with an $ASG directive.

string table: Symbol names that are longer than 8 characters cannot be
stored in the symbol table; instead, they are stored in the string table. The
name portion of the symbol’s entry points to the location of the string in the
string table.

structure: A collection of one or more variables grouped together under a
single name.

symbol: A string of alphanumeric characters that represents an address or
a value.

symbolic debugging: The ability of a software tool to retain symbolic in-
forrnation so that it can be used by a debugging tool such as a simulator or
an emulator.

symbol table: A portion of a COFF object file that contains information
about the symbols that are defined and used by the file.

tag: An optional “type” name that can be assigned to a structure, union, or
enumeration.

target memory: Physical memory in a TMS320C30-based system into
which executable object code will be loaded.

.text: This is one of the default COFF sections. The .text section is an ini-
tialized section that contains executable code. You can use the .text directive
to assemble code into the .text section.

F-5

Appendix F - Glossary

F-6

unconfigured memory: Memory that is not defined as part of the
TMS320C30 memory map and cannot be loaded with code or data.

uninitialized section: A COFF section that reserves space in the
TMS320C30 memory map but that has no actual contents. These sections
are built up with the .bss and .usect directives.

union: A variable which may hold (at different times) object of different
types and sizes.

unsigned: Refers to a value that is treated as a positive number, regardless
of its actual sign.

value component: A component of a macro variable or macro symbol that
specifies the value of the variable or symbol.

well-defined expression: An expression that contains only symbols or
assembly-time constants that have been defined before they appear in the
expression.

word: A 32-bit addressable location in target memory.

Index

A

a command (archiver) 8-3
-a option (linker) 9-4
absolute output module 9-4
absolute sections 3-6, 5-15
addressing modes 6-2
A—DIR (environment variable) 4-4,4-5
.align (assembler directive) 5-14, 5-9
alignment 9-20
allocation 9-20, 9-27
alternate directories 9-7

assembler 4-4-4-5

linker 9-7

archive libraries 4-4,5-36, 8-1-8-5, 9-7,

9-10, 9-13
archiver 1-3,8-1-8-5
examples 8-4
in the development flow 1-2, 8-2
invocation 8-3
options 8-3
arithmetic instructions 6-22
arithmetic operators 4-12, 9-32
array definitions A-21
ASCII character set E-1
.asect (assembler directive) 5-15, 3-3,
3-4, 3-5, 3-6, 5-4, 5-41
assembler 1-3,4-1-4-17
character strings 4-11
constants 4-8-4-10
cross-reference listings 4-17
directives 5-1-5-48
error messages C-1-C-4
expressions 4-12-4-14
in the development flow 1-2, 4-2
invocation 4-3
macros 7-1-7-9
output 4-15-4-17
overview 4-1
relocation 3-15
sections 3-3-3-9
source listings 4-15-4-16
source statement format 4-6, 4-7
symbols 3-17, 4-11
assembler directives 5-1, 5-48
conditional assembly directives 5-11
.else 5-32,5-11
.endif 5-32, 5-11
Jif 5-32, 5-11
miscellaneous directives 5-23

.end 5-23
sections directives 3-3-3-9, 5-4
.asect 5-1b, 3-3-3-9, 5-4
.bss 5-17,3-3-3-9,5-4
.data 5-22, 3-3-3-9, 5-
.label 5-15,5-4
.sect 5-41,3-3-3-9, 5-4,5-15
text 5-45,3-3-3-9,5-4
.usect 5-47,3-3-3-9,5-4
summary table 5-2
symbolic debugging directives B-1

.block/.endblock B-1, B-2
.etag/.eos B-1, B-8
file B-1,B-3
func/.endfunc B-1, B-4
Jdine B-1, B-6
.member B-1, B-7
.stag/.eos B-1, B-8
.sym B-1, B-10
.utag/.eos B-1, B-8
that align the SPC 5-9
.align 5-14,5-9
.even 5-24,5-9
field 5-9
that format the output listing 5-10
.length 5-34, 5-10
list 5-35,5-10
.mlist 5-38, 5-10
.mnolist 5-38, 5-10
.nolist 5-35,5-10
.option 5-39, 5-10
.page 5-40,5-10
title 5-46, 5-10
- .width 5-34,5-10
that initialize memory 5-6
.byte 5-19, 5- 6
field b5-25,
float 5-28,

:space 5-43,

.string 5-44, 5-

word 5-33, 5-¢
r

2
assembler output 4-15-4-17, 5-10

Index-1

assembly language development
flow 1-2
assembly-time constants 4-10, 5-42
assigning a value to a symbol 5-42
autoinitialization 9-38, 9-40
RAM model 9-6
ROM model 9-6
auxiliary entries A-19

B

binary integers 4-8

binding 9-20

.block (assembler directive) B-1, B-2
block definitions A-13, A-21, A-22, B-2
.bss (assembler directive) 5-17, 3-3, 5-4
.bss section 3-3,5-4,5-17, 9-33, A-3

holes 9-36
initialization 9-36
.byte (assembler directive) 5-19, 5-6

C

C compiler 1-6, 9-6, 9-38-9-40, A-1,
B-1-B-10

block definitions B-2
enumeration definitions B-8
file identification B-3
function definitions B-4
line number entries A-9, B-6
linking C code 9-6
member definitions B-7
special symbols A-12
storage classes A-15
structure definitions B-8
symbol table entries B-10
union definitions B-8

-c option (assembler) 4-3

-c option (linker) - 9-6, 9- 38 9-40

cache alignment 5-9, 5-1

C—DIR (environment varlable) 9-7

character constants 4-9

character strings 4-11

characters 4-11, E-1

COFF 1-1,3-1-3-17,9-1,10-1,

A-1-A-22

auxiliary entries A-19
file headers A-4
file structure A-2

Index-2

line number entries A-9, B-6
relocation information A-8
section headers A-6
sections 3-1-3-17
special symbols A-12
string table A-14
symbol table A-11
command files (linker) 9-3, 9-11
example 9-42
comments (in source code) 4-7,9-11
common object file format
See COFF
compiler 1-3
condition codes (for the instruction
set) 6-4
conditional blocks 5-11, 7-7
assembler directives 5-11, 5-32
macro directives 7-7
conditional expressions 4-13
configured memory 9-14, 9-27
constants” 4-8
assembly-time constants 4-10, 5-42
binary integers 4-8
characters 4-9
decimal integers 4-9
floating point 4-10, 5-28
hexadecimal integers 4-9
octal integers 4-8
.chlyz(assemb|er directive) 5-20, 4-4,

copy files 4-4

COPY section 9-29

-cr option (linker) 9-6, 9-38-9-40
cross-reference listings 4-17

D

d command (archiver) 8-3
.data (assembler directive) 5-22, 3-3,

3-4,5-4
.data section 3-3, 5-4, 9-33, A-3
.datasection 5-22
decimal integers 4-9
.def (assembler directive) 5-29,5-12
default fill value for holes 9-6
default sections 3-2, 5-22, 5-45
defining macros 7-4
development tools overview 1-2
directives

See assembler directives

DSECT section 9-29
dummy section 9-29

E

e option (archiver) 8-3
-e option (linker) 9-6
.else (assembler directive)
$ELSE (macro directive)
emulator 1-3
.end (assembler directive) 5-23
.endblock (assembler directive) B-1, B-2
.endfunc (assembler directive) B-1, B-4
.endif (assembler directive) 5-32, 5-11
$ENDIF (macro directive) 7-2,7-7
SENDLOOP (macro directive) 7-2,7-8
$ENDM (macro directive) 7-2
entry points for the linker 9-6
enumeration definitions B-8
enviroment variables 4-4

A—DIR (assembler) 4-4
environment variables 9-8

A—DIR (assembler) 4-5

C—CIR 9-7

C—DIR (linker) 9-7,9-8
.eos (assembler directive) B-1, B-8
EPROM programmers 1-3, 10-1
error messages

assembler C-1-C-4

linker D-1-D-4
.etag (assembler directive)
.even (assembler directive)
expressions 4-12, 9-30

conditional 4-13

that are well defined 4-13

that contain arithmetic

operators 4-12
that contain relocatable
symbols 4-13

underflow/underflow 4-13

external symbols 4-13,5-12,5-29, 5-42

5-32, 5-11
7-2,7-7

B-1, B-8
5-24,5-9

F

-f option (linker) 9-6

field (assembler directive) 5-25, 5-6
file (assembler directive) 5-12, B-1, B-3
file headers A-4

file identification B-3

float (assembler directive) 5-28, 5-6
floating point 4-10, 5-28

func (assembler directive) B-1, B-4

function definitions A-13, A-21, A-22,
B-4

G

.global (assembler directive) 5-29, 3-17,

global symbols 9-7
GROUP option (SECTIONS
directive) 9-22

H

-h option (linker) 9-7
hexadecimal integers 4-9
hi-byte file 10-3

holes 9-6, 9-33

how to use this manual 1-5

.hword (assembler directive) 5-31, 5-6

-i option (assembler)
-i option (linker) 9-7
-i option (object format converter) 10-3
.if (assembler directive) 5-32, 5-11
$IF (macro directive) 7-2,7-7
.include (assembler directive) 4-4
include files 4-4
incremental linking 9-37
initialized sections 3-2, 3-4, 5-15, 5-22,
5-41, 5-45, 9-33

installation instructions 2-3
instruction set 1-6, 6-1-6-24
instructions 2-1

PC-DOS 2-2

VAX/VMS 2-3
.int (assembler directive) 5-33, 5-6
Intel object format 10-1, 10-3
interlocked-operation instructions 6-23
invoking the ...

archiver 8-3

assembler 1-4,4-3

linker 1-4,9-3

object format converter 10-3

4-3,4-4

L

-1 option (assembler) 4-3
-l option (linker) 9-7

label (assembler directive) 5-15, 5-4
labels 4-6

length (assembler directive) 5-34,5-10
Jine (assembler directive) B-1, B-6

line number entries A-9, B-6

Index-3

linker 1-3,9-1-9-43
COFF 3-10-3-14, 91
command files 9-3, 9-11
command options summary 9-4
configured memory 9-14, 9-27
development flow 9-2
error messages D-1-D-4
example 9-41-9-43
expressions 9-30
in the development flow 1-2
invocation 9-3
linking C code 9-38-9-40
Ink30 command 9-3
loading a program 3-16
operators 9-32
relocation 3-15
sections 3-10-3-14
SECTIONS directive 9-16
symbols 3-17
unconfigured memory 9-14, 9-27
linker command files 9-3
linker command options 9-4-9-10
linking C code 9-6, 9-38-5-40
list (assembler directive) 5-35,5-10
Iistin% control 5-35, 5-38, 5-39, 5-40,
5-4
listing file 4-15-4-16, 5-10
listing page size 5-34
Ink30 command 9-3
-a option 9-4

-c option 9-6, 9-38-9-40
-cr option 9-6, 9-38-9-40
-e option 9-6
-f option 9-6
-h option 9-7

-m option 9-9
-0 option 9-10
options summary 9-4
-q option 9-10
-r option 9-4
-s option 9-10
-u option 9-10
load instructions 6-21
loading a program 3-16
lo-byte file 10-3
logical instructions 6-22
long (assembler directive) 5-33, 5-6
$LOOP (macro directive) 7-2,7-8

Index-4

M

-m option (linker) 9-9
MACLIB files 5-36,7-3
$MACRO (macro directive) 7-2,7-4
macro libraries 4-4, 5-36, 7-3, 8-1
macros 7-1,7-9
calls 7-1
conditional blocks 7-7
definitions 7-4
directives summary 7-2
MACLIB files 5-36, 7-
macro libraries 5-36, 7-3
.mlib directive 5-36, 7-3
parameters 7-6
redefining opcodes 7-5
repeatable blocks 7-8
substitution 7-1
unique labels 7-9
manual organization 1-5
map file 9-9
example 9-43
.member (assembler directive) B-1, B-7
member definitions B-7
MEMORY (linker directive) 3-10,
9-14-9-15
default model 9-14
overlay pages 9-23
. syntax 9-14
.mlib (assembler directive) 5-36, 4-4,
5-12,7-3
.mlist (assembler directive) 5-38, 5-10
mnemonics 4-1
.mnolist (assembler directive) 5-38, 5-10

N

named memory 9-21
named sections 3-5, 3-2, 3-6, 5-4, 9-33,
.asect 3-3, 3-5,5-15
.sect 3-3, 3-5, 5-41
.usect 3-3, 3-5, 5-47
naming an output module 9-10
.nolist (assembler directive) 5-35, 5-10
NOLOAD section 9-29

(0

-o option (linker) 9-10
object file format
See COFF
object format converter 1-3,10-1-10-4
examples 10-4
in the development flow 1-2,10-2
invocation 10-3
object libraries 8-1, 9-7, 9-13, 9-38
octal integers 4-8
operands 4-7
.option (assembler directive) 5-39, 5-10
optional file header A-5
output listing 4-15-4-16, 5-10
overflow (in expressions) 4-13
overlay pages 9-23-9-26

P

.page (assembler directive) 5-40,5-10
parallel instructions 6-18

partially linked files 9-37

PC-DOS software installation 2-2
predefined symbols 4-11
program-control instructions 6-23

Q

g option (archiver) 8-3
-q option (assembler) 4-3
-q option (linker) 9-10

R

r command (archiver) 8-3
-r option (linker) 9-4, 9-37
RAM model (C compiler) 9-6,
9-38-9-40
redefining opcodes 7-5
ref (assembler directive) 5-29, 5-12
related documentation 1-6
relinking 9-5, 9-10
affected by -s 9-10
relocatable output module 9-5
relocatable symbols 4-13
relocation 3-15, 4-10, 9-4, 9-5, A-8
_ repeatable blocks 7-8
ROM model (C compiler) 9-6,
9-38-9-40
runtime initialization 9-38
runtime support 9-38

S

s option (archiver) 8-3
-s option (assembler) 4-3
-s option (linker) 9-10
.sect (assembler directive) 5-41, 3-3,
3-4,3-5,5-4,5-15
section headers A-6
section specifications 9-17
sections 1-1,3-1-3-17, 5-15, 5-45,
5-47
default sections 3-2,5-17, 5-22,
5-45
named sections 3-2, 3-5, 5-15,
5-41,5-47
SECTIONS (linker directive) 3-10,
9-16-9-22
alignment 9-20
allocation 9-20, 9-27
binding 9-20
default allocation 9-27
GROUP option 9-22
named memory 9-21
overlay pages 9-24
section specifications 9-17
syntax 9-16
.set (assembler directive) 5-42,5-6
simulator 1-3
software development system 1-3
software installation 2-1-2-3
list of supported operating
systems 2-1
PC-DOS 2-2
VAX/VMS 2-3
source listings 4-15-4-16
source statement format 4-6
comment field 4-7
label field 4-6
mnemonic field 4-7
operand field 4-7
optional syntaxes 6-3
parallel instructions 6-18
.space (assembler directive) 5-43, 5-6
SPC 3-6,4-15,9-34
assembler symbol 4-7
linker symbol 9-33
special section types 9-29
special symbols in the symbol table A-12
.stag (assembler directive) B-1, B-8
static symbols 9-7
static variables A-11
storage classes A-15
store instructions 6-21
.string (assembler directive) 5-44,5-6
string table A-14
stripping line number entries 9-10
stripping symbolic information 9-10

Index-5

structure definitions A-20, B-8
style and symbol conventions 1-7
support tools 1-1, 1-2
.sym (assembler directive) B-1, B-10
symbol names A-14
symbol table 3-17, A-11
symbol table entries B-10
symbolic debugging 9-10, A-9, A-11,
B-1-B-10
assembler directives 5-1, B-1
block definitions B-2
enumeration definitions B-8
file identification B-3
function definitions B-4
line number entries B-6
member definitions B-7
-s assembler option 4-3
structure definitions B-8
symbol table entries B-10
union definitions B-8
symbols 3-17, 4-11
at link time 9-30
character strings 4-11
predefined 4-11
relocatable symbols in
expressions 4-13

T

t command (archiver) 8-3 ,
-t option (object format converter) 10-3
Tektronix object format 10-1, 10-3
.text (assembler directive) 5-45, 3-3,
3-4,5-4

.text section 3-3, 5-4, 5-45, 9-33, A-3
title (assembler directive) 5-46,5-10
TMS320C30 archiver

See archiver
TMS320C30 assembler

See assembler
TMS320C30 linker

See linker

Index-6

TMS320C30 object format converter
See object format converter

)

-u option (linker) 9-10
unconfigured memory 9-14, 9-27
underflow (in expressions) 4-13
uninitialized sections 3-2, 3-3, 5-17,
5-47, 9-33
holes 9-36
initialization 9-36
union definitions B-8
unique labels for macros 7-9
.usect (assembler directive) 5-47, 3-3,
3-5,5-4
.utag (assembler directive) B-1, B-8

\"/

v option (archiver) 8-3
VAX/VMS software installation 2-3

W

well-defined expressions 4-13
.width (assembler directive) 5-34, 5-10
.word (assembler directive) 5-33, 5-6

X

x command (archiver) 8-3

-x option (assembler) 4-3

-x option (object format converter) 10-3
XDS emulator 1-3

T1 Worldwide
Sales Offices

ALABAMA: Huntsville: 500 Wynn Drive, Suite 514,
Humsvillo, AL 358065, (205) 837-7530.

A: Phoenix: 8825 N. 23rd Ave., Phoeni:
AZ 8502! (602) 995-1007. TUCSON: 818 W. Miracle
Mile, Suite 43, Tucson, AZ 85705, (602) 292-2640.

CALIFORNIA: Irvine: 17891 Cartwright Dr., Irvine, CA
92714, (714) 660-1200; Roseville: 1 Sierra Gate
Plaza, Roseville, CA 95678, (916) 786-! 9208
San Diego: 4333 View Ridge Ave., Suite 100,
San Diego, CA 92123, (619) 278-9601;
Santa 3 Betsy Ross Dr., Santa Clara, CA
95054, (408) 930-9000 Tomrance: 690 Knox St.,
Torrance, CA 90502, (213) 217-7010;

Woodiand Hills: 21220 Erwin St., Woodland Hills,
CA 91367, (818) 704-7759.

COLORADO: Aurora; 1400 S. Potomac Ave.,
Suite 101, Aurora, CO 80012, (303) 368-8000.

9 Barne: Park
. Barnes Indunnal Park, Wallmg'ord,
CT 06492, (203) 269-0074.

FLORIDA: Altamonte Springs: 370 S. North Lake Bivd,
Anlmome Springs, FL 32701 (305) 260-2116;

t. Lauderdale: 2950 N
Ft Lauderdale, FL 33309 (305) 973 8502;
4803 390,

Tampa: George Rd., Suite .
Tampa, FL 33634, (813) 885-7411.

GEORGIA: Norcross: 5515 Spalding Drive, Norcross,
GA 30092 (404) 662-7900

ILLINOIS: Arlington Heights: 515 W. Algonquin,
Arlington Hemhts IL 60005, (3'2) 640-2925.

INDIANA: Ft
Ft. Wayne, lN 46815 l219) 424 5|74
Carmel: 5 Conqusswnal Dr., Carmel, IN 46032,
(317) 573-6400.

Cedar Rapids: 373 Collins Rd. NE, Suite 201
Ccd-r R.mds, 1A 52402, (319) 395-9550.

KANSAS: Overiend Park: 7300 Coll Bivd., Lighton
Plaza, Overland Park, KS 66210, (913) 451:4511.

MARYLAND: Columbis: 8815 Centre Park Dr.,
Columbia MD 21045, (301) 964-2003.

MASSACHUSETTS: Waltham: 950 Winter St.,
Waltham, MA 02154, (617) 835-3100.

MICHIGAN: Farmington Hills: 33737 W. 12 Mile Rd.,

Farmington Hllll. MI 48018 '(313) 5631569,
Orchard Vista Dr. S.E.

Grand Raplds, MI 49506 lelel 957-4200.

MINNESO' 1000 W. 78th St.,
Eden Prallla, MN 553“ (612) 828-9300.

MISSOUR: St. Louis: 11816 Borman Drive,
St. Louit, MO 63146, (314) 569-7600.

JERSEY: Iselin: 485E U.S. Route 1 South,
Pnrkwav Towers, Iselin, NJ 08830 (201) 750- 1050.

NEW MEXICO: Albuquerque: 2820-D Broadbent Pkwy
NE, Albuquerque, NM 87107, (505) 345-2555.

NEW YORK: East Syracuse: 6365 Collamer Dr.,
East Syrlcuu, NV 13057, (315) 463-9291;
Melville: 1 Whitman Rd P. O Box 2936,
Melville, NY ‘1747 (616) 454-

Pittsford: 2851 Clover St., Pmsford NV 14534,
{716} 385-8770,

W 5 South Rd., Poughkeepsie,
NY 12601, (914) 473-2900.

NORTH CAROLINA: Charlotte: 8 Woodlawn Green,
Woodlawn Rd., Ch.rlotta, NC 28210, (704)
527-0933; w Highwoods Blvd., Suite 100,
Raleigh, NC 27625, (919) 876-2725.

OHIO: : 23775 Commerce Park Rd.,
Beachwood, OH 44122, (216) 464- 6100
Beavercreek: 4200 Colonel Glenn Hi
Beavercreek, OH 45431, (513) 427 6200.

OREGON: Beaverton: 6700 SW 105th St., Suite 110,
Beaverton, OR 97005, (503) 643-6758.

PENNSYLVANIA: Biue Bell: 670 Sentry Pkwy,
Biue Bell, PA 19422, (215) 825-9500.

PUERTO RICO: Hato Rey: Mercantil Plaza Bldg.,
Suite 505, Hato Rey, PR 00918, (809) 753-8700.

TENNESSEE Johnson City: Erwin Hwy,
0. Drawer 1255, Johnson City, TN 37605
46'5) 461-2192.

S: Austin: 12501 Research Bivd., Auslm >
78759 (612) 250-7655; Richardson: 1001
Campbell Rd., Rlcham:on, TX 75081,
; Houston: 9100 Southwest Frwy.,
Suite 250 Houston TX 77074, (713) 778-6592;
San A Central Parkway South,
San An(omo TX 78232, (512) 496-1779.

UTAH: Murray: 5201 South Green St., Suite 200,
Murray, UT 84123, (801) 266-8972.

WASHINGTON: Redmond: 5010 148th NE, Bldg B,
Suite 107, Redmond, WA 98052, (206) 881-3080.

WISCONSIN: Brookfield: 450 N. Sunny Slope, Suite
150, Brookfield, Wi 63005, (414) 782-2899.

CANADA: Nepean: 301 Moodie Drive, Mallorn Center,

Nepean, Onti Canada, K2H9C4,

(613) 726- Richmond Hili: 280 Centre St. E.,
Richmond Hill L4C| 81, Onlarm Canada

(416) 884-9181; : Ville St. Laurent

Quebec, 9460 Tvans Cannda Hwy., St. Laurent,

Quebec, Canada H4S1R7, (514) 336-1860.

ARGENTINA: Texas Instruments Argentina Viamonte
1119, 1053 Capital Federal, Buenos Aires, Argentina,
541/748-3699

AUSTRALIA (& NEW ZEALAND): Texas Instruments
Australia Ltd.: 6-10 Talavera Rd., North Ryde
(Svdr\ev‘; 'IN.VE Sout?; Wales, Australia 2113,

Melbourne, Victor
171 Philip Highway, Elizabeth, South Australia 5112,
8 + 255-2066.

AUSTRIA: Texas Instruments Ges.m.b.H.:
Industriestrabe B/16, A-2345 Brunn/Gebirge,
2236-846210.

BELGIUM: Texas Instruments N.V. Belgium S.A.:

Avenue Jules Bondetlnn 11, 1140 Brussels, Belu-um.

(02) 242-3080.

BRAZIL: Texas Instruments Electronicos do Brasil
Ltda.: Rua Paes Leme, 524-7 Andar Pinheiros, 05424
Sao Paulo, Brazil, 0815-6166.

: Texas A/S, Mai
2730 Herlev, Denmark, 2 - 91 74 00.
FINLAND: Texas Instruments Finland OY:

Ahertajantie 3, P.O. Box 81, ESPOO, Finland, (90)
0-461-422.

FRANCE: Texas Instruments France: Paris Office, BP
67 8-10 Avenue Morane-Saulnier, 78141 Velizy-
Villacoublay cedex (1) 30 70 1003.

GERMANY (Fed. Germany): Texas
Instruments Dsmschland Gth Haggertystrasse 1,
8050 Freising, 8161 +80-4591; Kurfuerstendamm
5/196, 1 Berlin 15, 30 +882-7365; lll, Hagen

43/Klbbllslul”, .19, 4300 Essen, 201 24250;
Kirchhorsterstrasse 2, 3000 Hannover 61,

11 +648021; Mavblchstubo 11, 7302 Ostfildern
2-Nelingen, 711 +34030.

Texas
INSTRUMENTS

j 46E,

HONG KONG: Texas Instruments Hong Kong Ltd., 8th
Floor, World Shipping Ctr., 7 Canton Rd., Kowloon,
Hong Kong, (852) 3-7351223.

IRELAND: Texas Instruments (ireland) Limited:
7/2::;43’\:" Street, Stillorgan, County Dublin, Eire,
1781677,

ITALY: Texas I ia S.p.A. Divisione
Semiconduttori: Viale Eur 40, 20093 Cologne
Monzese (Milano), (02) 253001 Via Castello della
Magliana, 38, 00148 Roma, (08) 5222651,

Via Amendola, 17, 40100 Bologna, (051) 554004.

JAPAN: Tokyo Marketing/Sales (Headquarters):

Texas Instruments Japan Ltd., MS Shibaura Bidg., 9F,
Shibaura, Minato-| ku, Tokvo 108,

03 769 8700. Tex

Iwai Bldg. 5F, 30 Imabashi 3-chom igas|

Osaka 541, Japan, 08-294-1881; Daini Tovo" West

Bidg. 7F, 10- 27 Maeieki 4-chome, N u,

Nagoya 450, 052 583 8691; 9Dsnchl Seumo BOdg 6F,

20,

3-10 Oy

0762- 23 5471 Dmu:m Olympic Tachikawa Bldg 6F,
1-25-12 Akebono-cho, Tachikawa 180, Tok:
0425-27-6426; Matsumoto Showa Bldg 6F 2 17"
Fukashi 1-chome, Matsumoto 390, Nagano-ken,
0263-33-1060; Vokommn lehmuchl KN Blda 6F,
2-8-4 Kita-S: . Ni:
045-322-6741; Nlhon Seimei Kyoto Yasaka Bldg 5F,
843-2 Higashi shll)koh]ldoll, Nighinotoh-in Higashi-iru,
Shiokouji, Shimogyo-ku, Kyoto 600, 075-341-7713;
2597-1, Aza Harudsi, Oaza Yasaka, Kitsuki 873, Oita-
ken, 09786-3-3211; Miho Plant, 2350 Kihara Miho-
mura, Inashiki- gun 300- 04, Ibaragi-ken,

0298-85-254

KOREA: Texas Instruments Korea Ltd., 28th Fi., Trade
Tower, #159, Samsung-Dong, Kangnam-ku Seoul
Korea 2 +551-2810.

MEXICO: Taxls Instruments de Mexico S.A.: Alfonso
Reyes— 115, Col. Hipodromo Condesa, Mexico, D.F.,
Mexico 06120, 525/525-3860.

MIDDLE EAST: Texas Instruments: No. 13, 'Ist Floor
Mannai Bidg plomatic Area, P.0. Box 26335
Manama Bahrain, Arabian Gulf, 973 + 274681.

NETHERLANDS: Texas Instruments Holland B.V.,

; g, uidoost,
Holland 20 + 5602911.

NORWAY: Texas Instruments Norwav A/S: PBIOG
Refstad 0685, Osio 5, Norway, (2) 165090.

PEOPLES REPUBLIC OF CHINA: Texas Instruments
China Inc., Beijing Representative Office, 7-05 Citic
Bidg., 19 Jlanguomenwm Dajje, Beijing, China, (861)
5002255, Ext. 3750.

PHILIPPINES: Texas Instruments Asia Ltd.: 14th Floor,
Ba- Lepanto Bldg., Paseo de Roxas, Makati, Metro
Manila, Ph-l-ppmas. 817-60-31.

PORTUGAL: Texas Instruments Equipamento
Electronico (Portugal), Lda.: Rua Frederico Ulrich,
2650 Moreira Da Maia, 4470 Mala Portugal,
2-948-1003.

SINGAPORE (+ INDIA, INDONESIA, MALAYSIA,
THAILAND): Texas Instruments Singapore (PTE) Ltd.,
Asia Pacific Division. 101 Thompsan #23-0

United Square, Singapore 1130, 350- 8100.

SPAIN: Texas Instruments Espana, S.A.:
Lazaro Galdiano No. 6, Madrid 28036, 1/458 14 58.

Trade

Japan,
Instruments Japan Ltd.: Niuho

I: Texas Ir

Swedon, 8 - 752-5800.

SWITZERLAND: Texas instruments, Inc., Reidstrasse
6, CH-8953 Dietikon (Zuerich) Switzerland,
1-740 2220.

TAIWAN: Texas Instruments Supply Co., 9th Floor
Bank Tower, 205 Tun Hwa N. Rd., Taipei, Taiwan,
Republic of China, 2 + 713-9311.

UNITED KINGDOM: Texas Instruments Limited:
M;gtnr; Lane, Bedford, MK41 7PA, England, 0234
270111,

S-1 6&«93.

A-189

TI Sales Offices

ALABAMA: Huntsville (205) 837-7530.

ARIZONA: Phoenix (602) $95-1007;
Tucson (602) 292-2640.

CALIFORNIA: Irvine (714) 660-1200;

Roseville (916) 786-9208;
DI (619) 278-9601

Santa Clara (408) 980-9000;

Torrance (213) 217-7010;

Woodland Hills (818) 704-7759.

COLORADO: Aurora (303) 368-8000.

CONNECTICUT: Wallingford (203) 269-0074.

FLORIDA: Altamonte Spﬂngﬁ (305) 260-2116;
Ft. Lauderdale (305) 973-850:
Tampa (813) 885-7411.

GEORGIA: Norcross (404) 662-7900.
ILLINOIS: Arlington Heights (312) 640-2925.

INDIANA: Carmel (317) 573-6400;
Ft. Wayne (219) 424-5174.

IOWA: Cedar Rapids (319) 395-9550.
KANSAS: Overland Park (913) 451-4511.
MARYLAND: Columbia (301) 964-2003.
MASSACHUSETTS: Waltham (617) 895-9100.

MICHIGAN: Farmington Hills (313) 553-1569;
Grand Raplds (616) 957-4200.

MINNESOTA: Eden Pralrie (612) 828-9300.

MISSOURI: St. Louls (314) 569-7600.

NEW JERSEY: Iselin (201) 750-1050.

NEW MEXICO: Albuquerque (505) 344.2555.
NEW YORK: East Syracuse (315) 463-9291;

Moelville (516) 4
Pittsford (716) 385-6770;
Poughkeepsle (914) 473.2900.

NORTH CAROLINA: Charlotte (704) 527-0933;
Raleigh (919) 876-2725.

OHIO: Beachwood (216) 464-6100;
Beaver Creek (513) 427-6200.

OREGON: Beaverton (503) 643-6758.

PENNSYLVANIA: Blue Bell (215) 825-9500.

PUERTO RICO: Hato Rey (809) 753-8700.

TENNESSEE: Johnson City (615) 461-2192.
TEXAS: Austin (512) 250-7655;

Houston (713) 77!-6592.

Richardson (214) 680-5082;

San Antonlo (512) l96~1779

UTAH: Murray (801) 266-8972.

WASHINGTON: Redmond (206) 881-3080.

WISCONSIN: Brookfleld (414) 782-2899.

CANADA: Norln. Ontarlo (613) 72&1970

Richmond Hill, Ontarlo (416) 884-9181;
St. Laurent, Quebec (514) 336-1860

TI Regional
Technology Centers

CALIFORNIA: Irvine (714) 660-8105;
Santa Clara (408) 748-2220;

GEORGIA: Norcross (404) 662-7945.
ILLINOIS Arfington Heights (312) 640-2900.
MASSACHUSETTS: Waltham (617) 895-9196.
TEXAS: Richardson (214) 680-5066.
CANADA: Nepesan, Ontarlo (613) 726-1970.

TI Distributors

MARYLAND: Arrow/Kierulff (301) 995-6002;
Hall-Mark (301) 988-9800; Marshali (301) 235-9484;
Schweber (301) 840-5900; Zeus (301) 897-1118.

MASSACHUSETTS Arrow/Klerultf (508) 658-0900;
Hall-Mark (508) 667: shall (508) 658-0810;

TI AUTHORIZED DISTRIBUTORS
Arrow/Klerulff Electronics Group
Arrow (Canada)

Future Electronics (Canada)
GRS Electronics Co., Inc.
Hall-Mark Electronics

Marshall Industries

Newark Electronics

Schweber Electronics

Time Electronics

Wyle Laboratories

Zeus Components

—~OBSOLETE PRODUCT ONLY —
Rochester Electronics, Inc.
Newburyport, Massachusetts
(508) 462-9332

-0902; Mar:
7) 75-5100. Time (617) 532-6200;
Wyle (617) 273-7300, Zeus (617) 863-8800.
13) 462-2290;
Hall-Mark s:na 402-‘205 Marshall S:H 3) 525-5‘50.
Newark (313) Schweber 525-8100;
Grand Ruplds~ Anow/chrum (616) 2‘3—0012
MINNESOTA: Arrow/Klerulff (612) 8:

30-1800;
Hall-Mark (612) 941-2600; Marshall (812) 55&22‘1,
Schweber (012) 9‘1'5200

(314) 567-6888;
Hall-Mark (314) 291-5350, Marshall (314) 291.4650;
Schweber (314) 739-05.

NEW HAMPSHIRE: Arrow/KlemI" (603) 668-6968;
Schweber (603) 625-22!

NEW JERSEV' Arrow/Kierulff (201) 538-0900,
(609) 596-8000; GRS Eiectronics (609) 964-8560;
Mlll-erk 201) 575-4415, (201) 882-9773,

[(235-1900; Marshall (201) 882-0320,

(609) 234-9110; Schweber (201) 227-7880.

NEW MEXICO: Arrow/Kierulff (505) 243-4566.
NEW YORK: Lon |l|

ALABAMA: Arrow/Kierulft (205) 837-6955;
Hall-Mark (205) 837-8700; Marshall (205) 881-9235;
Schweber (205) 895-0480.

ARIZONA: Arrow/Klierulff (602) 437-0750;
Hall-Mark (602) 437-1200; Marshall (602) 496-0290;
Schweber (602) 431-0030; Wyle (602) 866-2888.

CALIFORNIA: Los Angeles/Orange County:
Arrow/Kierulff (818) 701-7500, (714) 838-5422;
Hall-Mark (818) 773-4500, (714) 669-4100;
Marahall (918) 407.0101, (sw) 459.5500,
14) 458-5; r (81

5; Schy weber 8) 880-9686;
714) 863- 0200 (213) 320-8090; Wyle (81‘) 880-9000,
714) 863-9953; Zeus (714) 921- 9000. 818) 889-3838;
cramento: Hall-Mark (916) 624-978

Sa
Marshall ?16) 6353-9700. Schweber (916) 364-0222;

s.n ch 0: Arrow/Klerum (619) 565-4800;
Hall-Mark (619) 268-1201; Marshall (619) 578-9600;
g::weber (619) 450-0454; Wyle (619) 565-09; 771;

{¢ '45-6600,
Hall-Mark (408) 4. arshall (408) 942-4600;
hweber (408) 432-7171 Wyls (408) 727-2500;
Zeus (408) 998-5121.

COLORADO: Arrow/Kierulff (303) 7¢
Hall-Mark (303) 790-1662; Marshall (303) 451-8383
Schweber (303) 799-0258; Wyle (303) 457-9953.

CONNETICUT: Arrow/Kierultf (203) 265-7741;
Hall-Mark (203) 271-2844; Marshall (203) 265-3822;
Schweber (203) 264-4700.

FLORIDA: Ft. Lauderdale:

Arrow/Klerultf (305) 429-8200; Hall-Mark (305) 971-9280;
Marshall (305) 977-4880; Schweber (305) 977-7511;
Orlando: Arrow/Kmum (407) 323-0252;

Hall-Mark (407) 830-5855; Mavshall (407) 767-8585;
Schwebev (407) 331-75565; Zeus (407) 365-3000;
Tampa: Hall-Mark (813) 530—4543

ershan (813) 576-1399; Schweber (813) 541-5100.

GEORGIA: Arrow/Kierulff (404) 449-8252;
Hall-Mark (404) 447-8000; Marshall (404) 923-5750;
Schweber (404) 449-9170.

ILLINOIS: Arrow/Kierulff (312) 250-0500;
Hall-Mark (312) 860-3800; Marshall (312) 490-0155;
Newark (312) 784-5100; Schweber (312) 364-3750.

Indian; (317) 243-9353;
Hall-Mark (317) 872-8875. Marshall (317) 297-0483;
Schweber (317) 843-1050.

IOWA: Arrow/Kierulff (319) 395-7230;
Schweber (319) 373-1417.
KANSAS: Kansas Clty: Arrow/Kierulff (913) 541-9542;

Hall-Mark (913) 888-4747; Marshall (913) 492-3121;
Schweber (913) 492-2922.

TexAas
INSTRUMENTS

(516) 231-° 009 Hall-Mark (516) 737-0600;
Marshall (5‘6) 273-2424; Schweber (516) 334-7474;
Zeus (914) 937-7400;
Rochester: Arrow/Kierulft '37162' 427-0300;
Hall-Mark (716) 425-3300; Marshall (716) 235-7620;
Schweber (716) 424-2222;
Syracuse: Marshall (607) 798-1611.

NORTH CAROLINA: Arrow/Kierulff (919) 876-3132,
;:1 9) 725-8711; Hall-Mark (919) 872-0712;
arshall (919) 878-9882; Schweber (919) '876-0000.

: Cleveland: Arrow/Kierulff (216) 248-3930;
Hnll-Mark (216) 349-4632; Marshall (216) 248-1788;
Schweber (216) 464-2! 70;

Col umbul' Hall-Mark (614) 888-3313;
Dayton: Arrow/Klerultf (51 2'435-5563
Marshall (513) 898-4480; Schweber (513) 439-1800.

OKLAHOMA: Arrow/Kierulff (318) 252-7537;
Schweber (318) 622-8003.

OREGON: Arrow/Kierulff (503) 645-6456;
Marshall (503) 644-5050; Wyle (503) 640-6000.

PENNSYLVANIA: Arrow/Kierulff (412) 856-7000,
giS) 928-1800; GRS Electronics (215) 922-7037;

arshall (412) 963-0441; Schweber (215) '441.0600,
(412) 963-6804.

Aunln Atrow/l(laml" (512) 835-4180;

rk (512) 258-8848; Marshail (512) 837-1991
Schw-ber (512) 339-0088; Wyc (512) 834-9957;
Dallas: Arrow/Kieruitt (214 04
Hall-Mark (214) 553-4300; Marshall (214) 233-5200;
Schweber (214) 661-5010, Wyle (214) 235-9953;
Zeus (214) 783-7010;
El Paso: Marshall 8915 593-0706;
Houston: Arrow/Kierulff (713) 530-4700;
Hall-Mark (713) 781-6100; Marshall (713} 895-9200;
Schweber (713) 784-3600; Wyle (713) 879-9953.

UTAH: Arrow/Kierulff (801) 973-6913;
Hall-Mark (801) 972-1008; Marshall (801) 485-1551;
Wyle (801) 974-9953.

WASHINGTON: Arrow/Kierultf (206) 575-4420;
Marshall (206) 486-5747; Wyle (206) 881-1150.

WISCONSIN: Arrow/Klerultf (414) 792-0150;
Hall-Mark (414) 797-7844; Marshall (414) 797-8400;
Schweber (414) 784-9020.

CANADA cnlg.ry Future (403) 235-5325;
@ (403) 438-2858;

omro 2 Arrow Canada (514) 735-5511
Future (514) 694-771
(613) 226-6903;

Ottaw. ow Can

Future (61 3) 82 313;

Quebec City: Arrow Canada (418) 871-7500;

Tonmto' Arrow Canada (416) 672-7769;

Fv(ure (416) 638-4771; Marshall (416) 674-2161
r: Arrow Canada (604) 291-2986;

Future (604) 294-1

Customer
Response Center

TOLL FREE: (800) 232-3200

OUTSIDE USA: (214) 995-6611
(8:00 a.m. — 5:00 p.m. CST)

A-189

*p

Texas
INSTRUMENTS

Printed in U.S.A., November 1988 SPRU035
1604911-9705

