
6-1Running ’C54x Code on ’C55x

Running ’C54x Code on ’C55x

In addition to accepting ’C55x source code, the ’C55x mnemonic assembler
(masm55) also accepts ’C54x mnemonic assembly. The ’C54x instruction set
contains 211 instructions; the ’C55x mnemonic instruction set is a superset of
the ’C54x instruction set. The table below contains statistics on how the ’C54x
instructions assemble with masm55:

original ’C54x instruction
assembles as:

% of total ’C54x
 instruction set

% of commonly-used
’C54x instructions

one ’C55x instruction 85 95–99

two ’C55x instructions 10 1–3

more than two ’C55x
instructions

5 0–2

The data in the second column characterizes the assembly of an imaginary
file containing an instance of every ’C54x instruction. However, the instruc-
tions that assemble as more than two instructions are not commonly used.
The data in the third column characterizes the assembly of a file containing
the most commonly used ’C54x instructions. Exact percentages depend on
the specific source file used.

Because of this compatibility, masm55 can assemble ’C54x code to generate
’C55x object code with bit-exact results. This assembler feature preserves
your ’C54x source code investment as you transition to the ’C55x.

This chapter does not explain how to take advantage of the new architecture
features of the ’C55x. For this type of information, see the TMS320C55x DSP
Programmer’s Guide.

Topic Page

6.1 ’C54x to ’C55x Development Flow 6-2.

6.2 Understanding the Listing File 6-4.

6.3 Handling ’C55x Reserved Names 6-6.

Chapter 6

’C54x to ’C55x Development Flow

 6-2

6.1 ’C54x to ’C55x Development Flow

To run a ’C54x application on the ’C55x, you must:

� Assemble each function with masm55. Your ’C54x application should al-
ready assemble without errors with the asm500 assembler.

� Initialize the stack pointers SP and SSP. See Section 6.1.1.

� Handle differences in memory placement. See Section 6.1.2.

To use ported ’C54x functions along with native ’C55x functions, see Section
7.2, Using Ported ’C54x Functions with Native ’C55x Functions, on page 7-5.

6.1.1 Initializing the Stack Pointers

When you execute ported ’C54x code from reset, the appropriate runtime
environment is already in place. However, it is still necessary to initialize the
stack pointers SP (primary stack) and SSP (secondary system stack). For
example:

stack_size .set 0x400
stack: .usect ”stack_section”, stack_size
sysstack: .usect ”stack_section”, stack_size

AMOV #(stack+stack_size), XSP
MOV #(sysstack+stack_size), SSP

The stacks grow from high addresses to low addresses, so the stack pointers
must be initialized to the highest address. The primary stack and the
secondary system stack must be within the same 64K word page of memory.

Code that initializes the SP can be ported. However, the assembler cannot di-
rectly recognize the code as an SP initialization, and will not warn you that the
SSP must also be initialized. Code that indirectly accesses the SP can also
be ported. But, as above, the assembler will not warn you that the SSP must
also be initialized.

6.1.2 Handling Differences in Memory Placement

This section describes the limitations on where you can place your code in
memory.

For ported ’C54x code, a page of memory must be defined as a range of 64K
(0x10000) bytes that begins on a 64K byte boundary. Edit your linker
command file accordingly.

All data must be placed on page 0.

’C54x to ’C55x Development Flow

6-3Running ’C54x Code on ’C55x

If your ’C54x code includes either of the following, all code must also be placed
on page 0:

� Indirect calls with CALA

� Modification of the repeat block address registers REA or RSA

If your ’C54x code includes either of the following, it can be placed on any
page, but it must fit within that page:

� Indirect branches with BACC

� Modification or use of the function return address on the stack in a non-
standard way (stack unwinding)

Otherwise, code can be placed anywhere in memory.

Understanding the Listing File

 6-4

6.2 Understanding the Listing File

The assembler’s listing file (created when invoking masm55 with the –l option)
now provides additional information on how ’C54x instructions are mapped for
the ’C55x.

Consider the following (contrived) ’C54x source file:

 .global name

 ADD *AR2, A
 STL A, *AR3

 RPT #10
 MVDK *AR4+, name

 subm .macro mem1, mem2, reg
 LD mem1, reg
 SUB mem2, reg
 .endm

 subm name, *AR6, B

 MOV T1, AC3 ; native ’C55x instruction

The listing file shown below has explanations inserted for clarification.

’C54x instructions with the same syntax in ’C55x (such as the ADD instruction
below) appear without any special notation:

1 .global name
2
3 000000 D641 ADD *AR2,A

000002 00

Note that A in the example above is accepted even though it maps to AC0 on
the ’C55x.

’C54x instructions with a different syntax in ’C55x but a single-line mapping
also appear without any special notation:

4 000003 E961 STL A, *AR3
000005 00

The STL instruction above could be written as:

MOV AC0, *AR3

Understanding the Listing File

6-5Running ’C54x Code on ’C55x

The code below shows a one-to-many instruction mapping that requires the
’C55x instructions to be in a different order than the original source. A one-to-
many mapping starts with a TRANS line that echoes the original source. The
multiple lines that correspond to the mapping will begin and end with the
original source line number (7, in this case).

7 ****** TRANS MVDK *AR4+, name
7 000006 EC31 AMAR *(#(name)), XCDP ; translation of

000008 7E00 ; MVDK *AR4+, name
00000a 0000!

5
6 00000c 4C0A RPT #10
7 00000e EF83 MOV *AR4+, coef(*CDP+) ; translation of

000010 05 ; MVDK *AR4+, name

To summarize, in the example above, the original ’C54x code:

RPT #10
MVDK *AR4+, name

was mapped to be:

AMAR *(#(name)),XCDP
RPT #10
MOV *AR4+, coef(*CDP+)

A macro definition is simply echoed:

8
9 subm .macro mem1, mem2, reg
10 LD mem1, reg
11 SUB mem2, reg
12 .endm

A macro invocation is marked with a MACRO line. Within the macro
expansion, you may see any of the cases described above.

13
14 ****** MACRO subm name, *AR6, B
14 000011 A100% LD name, B
14 000013 D7C1 SUB *AR6, B

000015 11

Native ’C55x instructions appear without any special notation. For more
information on using ported ’C54x code with native ’C55x code, see Section
7.2, Using Ported ’C54x Functions with Native ’C55x Functions, on page 7-5.

15
16 000016 2253 MOV T1, AC3 ; native ’C55x

Handling Reserved ’C55x Names

 6-6

6.3 Handling Reserved ’C55x Names

Note that new ’C55x mnemonics and registers are reserved words. Your ’C54x
code should not contain symbol names that are now used as ’C55x
mnemonics or registers. For example, you should not use “T3” as a symbol
name.

Your ’C54x code also should not contain symbol names that are reserved
words in the ’C55x algebraic syntax. For example, you should not have a label
named “return”.

The ’C55x mnemonic assembler issues an error message when it encounters
a symbol name conflict.

7-1Migrating a ’C54x System to a ’C55x System

Migrating a ’C54x System to a ’C55x System

After you’ve ported your ’C54x code as described in Chapter 6, you must
consider various system-level issues when moving your ’C54x code to ’C55x.
This chapter describes:

� how to handle differences related to interrupts

� how to use ported ’C54x functions with native ’C55x functions

� non-portable ’C54x coding practices

Topic Page

7.1 Handling Interrupts 7-2.

7.2 Using Ported ’C54x Functions with Native ’C55x Functions 7-5.

7.3 Non-portable ’C54x Coding Practices 7-17.

7.4 Additional ’C54x Issues 7-19.

Chapter 7

Handling Interrupts

 7-2

7.1 Handling Interrupts

This section describes issues related to interrupts.

7.1.1 Differences in the Interrupt Vector Table

The ’C54x interrupt table is composed of 32 vectors. Each vector contains 4
words of executable code. The ’C55x vector table is also composed of 32
vectors. The vectors in both tables are the same length, but on the ’C55x, the
length is counted as 8 bytes.

The order of the vectors in the interrupt vector table is documented in the data
sheet for the specific device in your system. Since the order of the vectors is
device-specific, any access to the IMR or IFR register needs to be updated
accordingly. Likewise, if you use the TRAP instruction, its operand may need
to be updated.

’C54x and ’C55x handle the contents of their vectors in different ways. To
handle these differences, you must modify the ’C54x vectors themselves.

In the ’C55x vector table, the first byte is ignored, and the next three bytes are
interpreted as the address of the interrupt service routine (ISR). Use the .ivec
assembler directive to initialize a ’C55x vector entry, as shown in the examples
below. For more information on the .ivec directive, see the description on page
4-63.

Simple Branch to ISR

If the ’C54x vector contains:

B isr

Change the corresponding ’C55x vector to:

.ivec isr

Delayed Branch to ISR

If the ’C54x vector contains:

BD isr
inst_1 ; two instruction words of code
inst_2

The easiest solution is to write the vector as:

.ivec isr

and move the instructions inst1 and inst2 to the beginning of the ISR. If the
conversion of inst1 is a single ’C55x instruction that is 4 bytes or less, it can
be placed in the vector. However, inst2 must be moved to the ISR.

Handling Interrupts

7-3Migrating a ’C54x System to a ’C55x System

Vector Contains the Entire ISR

If the ’C54x vector contains the entire 4-word ISR, as in the examples shown
below:

; example 1
inst1
inst2
inst3
RETF

; example 2
inst1
RETFD
inst2
inst3

; example 3
CALL routine1
RETE
nop

you have to create the 4-word ISR as a stand-alone routine. You must then
provide the address of that routine in the ’C55x vector table:

.ivec new_isr

7.1.2 Handling Interrupt Service Routines

An interrupt service routine needs to be changed only if, when ported to ’C55x,

� it includes ’C54x instructions that map to more than one ’C55x instruction,
and

� one of the ’C55x instructions requires the use of a ’C55x register or bit as
a temporary.

In this case, the new ’C55x register needs to be preserved by the routine.

The registers need to be preserved in the ISRs as long as any ported ’C54x
code remains in the application. When all code has been changed to native
’C55x code, it is no longer necessary to preserve the registers.

See Section 7.2.2, ’C55x Registers Used as Temporaries, on page 7-6 for
the list of ’C55x registers that can be used as temporaries in one-to-many
instruction mappings.

Handling Interrupts

 7-4

To ensure that an interrupt will work, you can preserve the entire list of
registers. Or, you can simply preserve the register(s) used:

1) Assemble the ISR using masm55 with the –l option to generate a listing
file.

2) Check the listing to see if it includes any one-to-many instruction map-
pings. These mappings are marked by a TRANS comment. For more
information, see Section 6.2, Understanding the Listing File, on page 6-4.

3) Determine if the one-to-many mappings actually use any of the
temporaries listed in Section 7.2.2. If so, the appropriate register or bit
must be pushed on the stack at the beginning of the ISR, and popped off
the stack at the end.

Note that you may refer to ’C55x register names within ’C54x instruction
mnemonics. For example:

LD *AR2,AC3

7.1.3 Other Issues Related to Interrupts

You should be aware of the interrupt issues described below:

� When the assembler encounters RETE, RETED, FRETE, FRETED,
RETF, or RETFD, a warning will be issued. With these instructions, the
assembler is processing an interrupt service routine or the interrupt vector
table itself and may not be able to port the instructions correctly.

� INTR has the same mnemonic syntax for both ’C54x and ’C55x.
Consequently, the assembler cannot distinguish when an instruction is
intended for a native ’C55x interrupt (which is acceptable) or for a ’C54x
interrupt (for which the interrupt number would be wrong).

� If your code writes values to IPTR, a nine-bit field in the PMST indicating
the location of the interrupt vector table, you will need to modify your code
to reflect the changes in the ’C55x system.

Using Ported ’C54x Functions with Native ’C55x Functions

7-5Migrating a ’C54x System to a ’C55x System

7.2 Using Ported ’C54x Functions with Native ’C55x Functions

When rewriting a ’C54x application to be completely ’C55x, consider working
on one function at a time, continually testing. If you encounter a problem, you
can easily find it in the changes recently made. Throughout this process, you
will be working with both ported ’C54x code and native ’C55x code. Keep the
following in mind:

� Avoid mixing ’C54x and ’C55x instructions within the same function.

� Transitions between ported ’C54x instructions and native ’C55x
instructions should occur only at function calls and returns.

� The C compiler provides an automatic solution when you are dealing with
C code calling assembly. However, see the example in Section 7.2.6 for
a detailed description of using a veneer function when calling a ported
’C54x assembly function from C code.

7.2.1 Runtime Environment for Ported ’C54x Code

A runtime environment is the set of presumptions and conventions that govern
the use of machine resources such as registers, status register bit settings,
and the stack. The runtime environment used by ported ’C54x code differs
from the environment used by native ’C55x code. When you execute ported
’C54x code from reset, the appropriate runtime environment is already in
place. However, when shifting from one kind of code to the other, it is important
to be aware of the status bit and register settings that make up a particular
environment.

The following CPU environment is expected upon entry to a ported ’C54x
function.

� 32-bit stack mode.

� The SP and SSP must be initialized to point into memory reserved for a
stack. See Section 6.1.1, Initializing the Stack Pointers, on page 6-2.

Using Ported ’C54x Functions with Native ’C55x Functions

 7-6

� The status bits must be set as follows:

Status bit Set to

C54CM 1

M40 0

ARMS 0

RDM 0

ST2[7:0] (circular addressing bits) 0

� The upper bits of addressing registers (DPH, CDPH, ARnH, SPH) must
be set to 0.

� The BSAxx registers must be set to 0.

7.2.2 ’C55x Registers Used as Temporaries

The following ’C55x registers may be used as temporaries in one-to-many
mappings generated by masm55:

� T0
� T1
� AC2
� CDP
� CSR
� ST0_55 (TC1 bit only)
� ST2_55

Interrupt routines using these registers must save and restore them. For more
information, see Section 7.1.2, Handling Interrupt Service Routines, on page
7-3.

Native ’C55x code that calls ported ’C54x code must account for the possibility
that ported code may overwrite these registers.

7.2.3 ’C54x to ’C55x Register Mapping

The following ’C54x registers map to ’C55x registers as shown below:

’C54x register ’C55x register

T T3

A AC0

B AC1

ARn ARn

IMRn IERn

ASM (status bit in ST1) T2

Using Ported ’C54x Functions with Native ’C55x Functions

7-7Migrating a ’C54x System to a ’C55x System

7.2.4 Status Bit Field Mapping

The ’C55x status bit fields map to ’C54x status bit fields as shown below.

(a) ST0

Bit(s) ’C55x field ’C54x field

15 ACOV2 none

14 ACOV3 none

13 TC1 none

12 TC2 TC

11 CARRY C

10 ACOV0 OVA

9 ACOV1 OVB

8–0 DP DP

(b) ST1

Bit(s) ’C55x field ’C54x field

15 BRAF BRAF

14 CPL CPL

13 XF XF

12 HM HM

11 INTM INTM

10 M40 none

9 SATD OVM

8 SXMD SXM

7 C16 C16

6 FRCT FRCT

5 C54CM none

4–0 ASM ASM

Using Ported ’C54x Functions with Native ’C55x Functions

 7-8

(c) ST2

Bit(s) ’C55x field ’C54x field

15 ARMS none

14–13 Reserved none

12 DBGM none

11 EALLOW none

10 RDM none

9 Reserved none

8 CDPLC none

7–0 ARnLC none

(d) ST3

Bit(s) ’C55x field ’C54x field

15–8 Reserved none

7 CBERR none

6 MPNMC MP/MC_

5 SATA none

4 AVIS AVIS

3 Reserved none

2 CLKOFF CLKOFF

1 SMUL SMUL

0 SST SST

Using Ported ’C54x Functions with Native ’C55x Functions

7-9Migrating a ’C54x System to a ’C55x System

7.2.5 Switching Between Runtime Environments

The runtime environment defined in Section 7.2.1 is not complete because it
only defines registers and status bits that are new with ’C55x. Registers and
status bits that are not new with ’C55x inherit their conventions from the
original ’C54x code. (As shown in Section 7.2.3, some registers have new
names.)

If the runtime environment for your native ’C55x code differs from the
environment defined for ported ’C54x code, you must ensure that, when
switching between environments, the proper adjustments are made for:

� preserving status bit field values
� preserving registers
� how arguments are passed
� how results are returned

Figure 7–1. Runtime Environments for Ported ’C54x Code and Native ’C55x Code

Original ’C54x code
 runtime environment

Environment rules from Section 7.2.1

Ported ’C54x Code Runtime Environment

Native ’C55x Code Runtime Environment

’C55x runtime environment as defined by
 you, or the ’C55x C compiler, etc.

Using Ported ’C54x Functions with Native ’C55x Functions

 7-10

7.2.6 Example of C Code Calling ’C54x Assembly

This example describes a technique for handling a call from compiled C code
to a ’C54x assembly routine. In this example, an additional function is inserted
between the native ’C55x code and the ported ’C54x code. This function,
referred to as a veneer function, provides code to transition between the two
runtime environments.

The compiler provides an automatic solution for the case of C code calling
assembly. This example assumes that an automatic solution does not exist.
Both the ’C54x and ’C55x C compiler runtime environments are well-defined,
which makes the techniques shown in this example more concrete and easier
to apply to your own situation.

Example 7–1. C Prototype of Called Function

short firlat(short *x, short *k, short *r, short *dbuffer,
 unsigned short nx, unsigned short nk);

Using Ported ’C54x Functions with Native ’C55x Functions

7-11Migrating a ’C54x System to a ’C55x System

Example 7–2. Assembly Function _firlat_veneer

.def _firlat_veneer

.ref _firlat

_firlat_veneer:

; Saving Registers –––––––––––––––––––––––––
PSH AR5
; PSH AR6 ; saved in ported C54x environment
; PSH AR7 ; ditto
PSH T2
PSH T3

; Passing Arguments ––––––––––––––––––––––––
PSH T1 ; push rightmost argument first
PSH T0 ; then the next rightmost
PSH AR3 ; and so on
PSH AR2
PSH AR1

MOV AR0, AC0 ; leftmost argument goes in AC0

; Change Status Bits –––––––––––––––––––––––
BSET C54CM
BCLR ARMS

; Call –––––––––––––––––––––––––––––––––––––
CALL _firlat

; Restore Status Bits ––––––––––––––––––––––
BCLR C54CM
BSET ARMS

; Capture Result –––––––––––––––––––––––––––
MOV AC0, T0

; Clear Arguments From the Stack –––––––––––
AADD #5, SP

; Restore Registers and Return –––––––––––––
POP T3
POP T2
; POP AR7
; POP AR6
POP AR5

RET

The veneer function is described below. It is separated into several parts to
allow for a description of each segment.

Using Ported ’C54x Functions with Native ’C55x Functions

 7-12

Example 7–2. Assembly Function _firlat_veneer (Continued)

(a) Saving registers

PSH AR5
; PSH AR6 ; saved in ported C54x environment
; PSH AR7 ; ditto
PSH T2
PSH T3

If the ’C55x runtime environment expects that certain registers will not be mod-
ified by a function call, these registers must be saved. In the case of the ’C55x
C compiler environment, registers XAR5–XAR7, T2, and T3 must be saved.
Because ’C54x code cannot modify the upper bits of the XARn registers, only
the lower bits need to be preserved. The instructions that push AR6 and AR7
are commented out because the runtime environment of the ’C54x ported
code (as defined by the ’C54x C compiler) presumably saves these registers.
A more conservative approach would be to save these registers anyway.

(b) Passing arguments

PSH T1 ; push right–most argument first
PSH T0 ; then the next argument
PSH AR3 ; and so on
PSH AR2
PSH AR1

MOV AR0, AC0 ; left–most argument goes in AC0

Arguments passed from native ’C55x code must be placed where the ported
’C54x code expects them. In this case, all arguments are passed in registers.
According to the calling conventions of the ’C55x C compiler, the arguments
to the firlat() function will be passed, and the result returned, in the registers
shown below.

T0 AR0 AR1 AR2 AR3
short firlat(short *x, short *k, short *r, short *dbuffer,

T0 T1
 unsigned short nx, unsigned short nk);

For more information on the C compiler’s calling conventions, see the Runtime
Environment chapter of the TMS320C55x Optimizing C Compiler User’s
Guide.

The ported ’C54x environment expects the first argument to be in A (AC0 on
’C55x) and the remaining arguments to be placed on the stack, in reverse
order of appearance in the argument list. The right-most argument (T1) is
pushed onto the stack first. The next argument (T0) is then pushed onto the

Using Ported ’C54x Functions with Native ’C55x Functions

7-13Migrating a ’C54x System to a ’C55x System

stack. The argument placement continues until the left-most argument (AR0)
is reached. This argument is copied to AC0.

Example 7–2. Assembly Function _firlat_veneer (Continued)

(c) Changing status bits

BSET C54CM
BCLR ARMS

It is necessary to change the status settings of the native ’C55x code to the
settings required by ported ’C54x code. These settings are shown in Section
7.2.1 on page 7-5. In this case, only the C54CM and ARMS bits need to be
changed.

(d) Function call

CALL _firlat

Now that registers have been saved and status bits set, the call to ported ’C54x
code can be made.

(e) Restoring status bits

BCLR C54CM
BSET ARMS

After the call, restore the status bits to the settings required by the native ’C55x
environment.

(f) Capturing results

MOV AC0, T0

The ported ’C54x environment returns the result in AC0, while the native ’C55x
environment expects the result to be returned in T0. Consequently, the result
must be copied from AC0 to T0.

(g) Clearing arguments from the stack

AADD #5, SP

At this point, you should decrease the stack by the number of words originally
needed to push the function’s passed arguments. In this case, the amount is
5 words. Because the stack grows from high addresses to low addresses,
addition is used to change the stack pointer from a low address to a higher one.

Using Ported ’C54x Functions with Native ’C55x Functions

 7-14

Example 7–2. Assembly Function _firlat_veneer (Continued)

(h) Restoring registers and returning

POP T3
POP T2
; POP AR7
; POP AR6
POP AR5

RET

Restore the registers saved at the beginning of the function, and return.

7.2.7 Example of ’C54x Assembly Calling C Code

This example contains a ’C54x assembly routine calling a compiled C routine.
Because the C routine is recompiled with the ’C55x C compiler, the assembly
routine must handle the differences between the ported ’C54x runtime
environment and the runtime environment used by the ’C55x compiler.

If you use a different runtime environment for your ’C55x code, your code
changes will differ slightly from those in this example. However, you must still
consider the issues addressed here.

Example 7–3. Prototype of Called C Function

int C_func(int *buffer, int length);
...

The assembly function performs some calculations not shown in this example
and calls the C function. The returned result is copied to the C global variable
named result . Further calculations, also not shown here, are then
performed.

Using Ported ’C54x Functions with Native ’C55x Functions

7-15Migrating a ’C54x System to a ’C55x System

Example 7–4. Original ’C54x Assembly Function

; Declare some data –––––––––––––––––

.data
buffer: .word 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
BUFLEN .set 11

.text

; Assembly routine starts –––––––––––––

callsc:
; original ’C54x code ...

; Call C function (original ’C54x code) –––––––––––––

ST #BUFLEN, *SP(0) ; pass 2nd arg on stack
CALLD #_C_func
LD #buffer, A ; pass 1st arg in A

; Effects of calling C:
; May modify A, B, AR0, AR2–AR5, T, BRC
; Will not modify AR1, AR6, AR7
; May modify ASM, BRAF, C, OVA, OVB, SXM, TC
; Will not modify other status bits
; Presume CMPT = 0, CPL = 1

STL A, *(_result) ; Result is in accumulator A

; original ’C54x code ...

RET

To use this assembly function on ’C55x, it is necessary to change the call to
the C function.

Using Ported ’C54x Functions with Native ’C55x Functions

 7-16

Example 7–5. Modified Assembly Function

; declare data as shown previously

; Assembly routine starts –––––––––––

callsc:
; ported ’C54x code ...

; Call C function (Change to ’C55x compiler environment)

AMOV #buffer,AR0 ; pass 1st ptr arg in AR0
MOV #BUFLEN,T0 ; pass 1st int arg in T0

 ; compiler code needs C54CM=0, ARMS=1
BCLR C54CM ; clear ’C54x compatibility mode
BSET ARMS ; set AR mode
CALL _C_func ; no delayed call instruction

; Effects of calling C:
; May modify AC0–AC3, XAR0–XAR4, T0–T1
; May modify RPTC,CSR,BRCx,BRS1,RSAx,REAx
; Will not modify XAR5–XAR7,T2–T3,RETA
; May modify ACOV[0–3],CARRY,TC1,TC2,SATD,FRCT,ASM,
; SATA,SMUL
; Will not modify other status bits

MOV T0, *(_result) ; Result is in T0

; could use *abs16(_result) if all globals are in the
; same 64K word page of data

; Change back to ported ’C54x environment ––––––––––

BSET C54CM ; reset ’C54x compatibility mode
BCLR ARMS ; disable AR mode

; ported ’C54x code ...

RET

The arguments are passed according the calling conventions described in the
Runtime Environment chapter of the TMS320C55x Optimizing C Compiler
User’s Guide. The status bits modified are the only ones that differ between
the ’C54x ported runtime environment and the native ’C55x environment (in
this case, as defined by the ’C55x C compiler).

The comments about the effects of calling C (the registers and status bits that
may or may not be modified) do not impact the code shown. But these effects
can impact the code around such a call.

For example, consider the XAR1 register. In the ’C54x compiler environment,
AR1 will not be modified by the call. In the ’C55x compiler environment, XAR1
may be modified. If code before the call to C_func loads a value into AR1, and
code after the call reads AR1 for that value, then the code, as written, will not
work on ’C55x. The best alternative is to use an XARn register that is saved
by C routines, such as XAR5.

Non-Portable ’C54x Coding Practices

7-17Migrating a ’C54x System to a ’C55x System

7.3 Non-Portable ’C54x Coding Practices

Some ’C54x coding practices cannot be ported to the ’C55x. The assembler
will warn you of certain detectable issues, but it cannot detect every issue. The
following coding practices are not portable:

� Any use of a constant as a memory address. For example:

B 42
ADD @42,A
SUB @symbol+10,b

� Memory initialized with constants that are later interpreted as code
addresses. For example:

table: .word 10, 20, 30
...
LD @table,A
CALA

� Using data as instructions. For example:

function:
.word 0xabcd ; opcode for ???
.word 0xdef0 ; opcode for ???

...
CALL function

� Out of order execution, also known as pipeline tricking.

� Code that creates or modifies code.

� Repeat blocks spanning more than one file.

� Branching/calling unlabeled locations. Or, modifying the return address to
return to unlabeled location. This includes instructions such as:

B $+10

� Using READA and WRITEA instructions to access instructions and not
data.

Non-Portable ’C54x Coding Practices

 7-18

� Using READA/WRITA with an accumulator whose upper bits are not zero.

The READA/WRITA instruction on ’C54x devices (other than ’C548 or
later) uses the lower 16 bits of the accumulator and ignores the upper 16
bits. ’C548 and later devices, however, use the lower 23 bits. The
assembler cannot easily know the device for which the code is targeted. It
assumes ’C548 or later. Consequently, code for ’C548 and later devices
will map with no problems. Code for devices other than these will not run.

Additional ’C54x Issues

7-19Migrating a ’C54x System to a ’C55x System

7.4 Additional ’C54x Issues

This section contains some additional system issues.

If your ’C54x code:

� uses a *SP(offset) operand in the MMR slot of MMR instructions like LDM

� copies blocks of code, usually from off-chip memory to on-chip memory

� uses memory-mapped access to peripherals

� uses repeat blocks larger than 32K after mapping to ’C55x

� uses the branch conditions BIO/NBIO

you may need to modify this code to use native ’C55x instructions.

You should also be aware of the following issues:

� The ’C5x-compatibility features of the ’C54x are not supported on ’C55x.

� RPT instructions, non-interruptible on ’C54x, can be interrupted on ’C55x.

� When an operation overflows into the guard bits, and then a left-shift
clears the guard bits, the ’C54x has the value of zero while the ’C55x has
a saturated value.

� The ’C54x and ’C55x mnemonic assembly languages differ significantly
in the representation of instruction parallelism.

The ’C55x implements two types of parallelism: implied parallelism within
a single instruction (using the :: operator), and user-defined parallelism
between two instructions (using the || operator). The ’C54x implements
only one type of parallelism, which is analogous to implied parallelism on
the ’C55x. However, ’C54x parallelism uses parallel bars (||) as its
operator. ’C55x parallelism is documented in the TMS320C55x DSP
Mnemonic Instruction Set Reference Guide.

Additional ’C54x Issues

 7-20

� When using indirect access with memory-mapped access instructions,
such as:

STM #0x1234, *AR2+

the ’C54x masks the upper 9 bits of the ARn register. This masking
effectively occurs both before and after the post-increment to AR2. For
example:

; AR2 = 0x127f
STM #0x1234, *AR2+ ; access location 0x7f
; AR2 = (0x7f + 1) & ~7f ==> 0

However, the ’C55x assembler maps this as:

AND #0x7f, AR2
MOV #0x1234, *AR2+ ; note no masking afterward

to account for the possibility of a memory-mapped address for AR2.

	Running ’C54x Code on ’C55x
	’C54x to ’C55x Development Flow
	Initializing the Stack Pointers
	Handling Differences in Memory Placement

	Understanding the Listing File
	Handling Reserved ’C55x Names

	Migrating a ’C54x System to a ’C55x System
	Handling Interrupts
	Differences in the Interrupt Vector Table
	Handling Interrupt Service Routines
	Other Issues Related to Interrupts

	Using Ported ’C54x Functions with Native ’C55x Functions
	Runtime Environment for Ported ’C54x Code
	’C55x Registers Used as Temporaries
	’C54x to ’C55x Register Mapping
	Status Bit Field Mapping
	Switching Between Runtime Environments
	Example of C Code Calling ’C54x Assembly
	Example of ’C54x Assembly Calling C Code

	Non-Portable ’C54x Coding Practices
	Additional ’C54x Issues

