
TMS320C55x
Assembly Language Tools

User’s Guide

Literature Number: SPRU280A
February 2000

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

The TMS320C55x Assembly Language Tools User’s Guide tells you how to
use these assembly language tools:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference lister
� Hex conversion utility

How to Use This Manual

The goal of this book is to help you learn how to use the Texas Instruments
assembly language tools specifically designed for the TMS320C55x DSPs.
This book is divided into four parts:

� Introductory information gives you an overview of the assembly
language development tools and also discusses common object file
format (COFF), which helps you to use the TMS320C55x tools more
efficiently. Read Chapter 2, Introduction to Common Object File Format,
before using the assembler and linker.

� Assembler description contains detailed information about using the
mnemonic and algebraic assemblers. This section explains how to invoke
the assemblers and discusses source statement format, valid constants
and expressions, assembler output, and assembler directives. It also
describes macro elements.

� Additional assembly language tools describes in detail each of the
tools provided with the assembler to help you create assembly language
source files. For example, Chapter 9 explains how to invoke the linker, how
the linker operates, and how to use linker directives. Chapter 12 explains
how to use the hex conversion utility.

Notational Conventions

iv

� Reference material provides supplementary information. This section
contains technical data about the internal format and structure of COFF
object files. It discusses symbolic debugging directives that the C compiler
uses. Finally, it includes hex conversion utility examples, assembler and
linker error messages, and a glossary.

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays appear in a
special typeface . Examples use a bold version of the special
typeface for emphasis; interactive displays use a bold version of the
special typeface to distinguish commands that you enter from items that
the system displays (such as prompts, command output, error messages,
etc.).

Here is a sample program listing:

2 0001 2f x .byte 47
3 0002 32 z .byte 50
4 0003 .text

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of command line syntax:

abs55 filename

abs55 is a command. The command invokes the absolute lister and has
one parameter, indicated by filename. When you invoke the absolute
lister, you supply the name of the file that the absolute lister uses as input.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. This is an example of a command
that has an optional parameter:

hex55 [–options] filename

The hex55 command has two parameters. The first parameter, –options,
is optional. Since options is plural, you may select several options. The
second parameter, filename, is required.

 Notational Conventions

v Read This First

� In assembler syntax statements, column 1 is reserved for the first
character of a label or symbol. If the label or symbol is optional , it is usually
not shown. If it is a required parameter, then it will be shown starting
against the left margin of the shaded box, as in the example below. No
instruction, command, directive, or parameter, other than a symbol or
label, should begin in column 1.

symbol .usect ” section name”, size in words [, blocking flag]
 [, alignment flag]

The symbol is required for the .usect directive and must begin in column 1.
The section name must be enclosed in quotes and the section size in
words must be separated from the section name by a comma. The
blocking flag and alignment flag are optional and, if used, must be
separated by commas.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

� Following are other symbols and abbreviations used throughout this
document.

Symbol Definition Symbol Definition

AR0–AR7 Auxiliary Registers
0 through 7

PC Program counter
register

B,b Suffix — binary integer Q,q Suffix — octal integer

H,h Suffix — hexadecimal
integer

SP Stack pointer register

LSB Least significant bit ST Status register

MSB Most significant bit

Note that .byte does not
begin in column 1.

Related Documentation From Texas Instruments

vi

Related Documentation From Texas Instruments

The following books describe the TMS320C55x devices and related support
tools.

TMS320C55x Optimizing C Compiler User’s Guide (literature number
SPRU281) describes the ’C55xx C compiler. This C compiler accepts
ANSI standard C source code and produces assembly language source
code for the TMS320C55x device.

TMS320C55x DSP CPU Reference Guide (SPRU371) describes the
architecture, registers, and operation of the CPU for these digital signal
processors (DSPs). This book also describes how to make individual
portions of the DSP inactive to save power.

TMS320C55x DSP Mnemonic Instruction Set Reference Guide
(SPRU374) describes the TMS320C55x digital signal processor
mnemonic instructions individually. This book also includes a summary
of the instruction set, a list of instruction opcodes, and a cross–reference
to the algebraic instruction set.

TMS320C55x DSP Algebraic Instruction Set Reference Guide (SPRU375)
describes the TMS320C55x digital signal processor algebraic
instructions individually. This book also includes a summary of the
instruction set, a list of instruction opcodes, and a cross–reference to the
mnemonic instruction set.

TMS320C55x DSP Programmer’s Guide (SPRU376) describes ways to
optimize C code and assembly code for the TMS320C55x DSPs. It also
explains how to write code that uses special features and instructions of
the DSP.

Code Composer User’s Guide (literature number SPRU296) explains how to
use the Code Composer development environment to build and debug
embedded real-time DSP applications.

Trademarks

HP-UX is a trademark of Hewlett-Packard Company.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

Windows and Windows NT are registered trademarks of Microsoft
Corporation.

Motorola-S is a trademark of Motorola, Inc.

Tektronix is a trademark of Tektronix, Inc.

 Contents

vii

Contents

1 Introduction 1-1.
Provides an overview of the software development tools.

1.1 Software Development Tools Overview 1-2.
1.2 Tools Descriptions 1-3.

2 Introduction to Common Object File Format 2-1.
Discusses the basic COFF concept of sections and how they can help you use the assembler
and linker more efficiently. Common object file format, or COFF, is the object file format used
by the tools.

2.1 Sections 2-2.
2.2 How the Assembler Handles Sections 2-4.

2.2.1 Uninitialized Sections 2-4.
2.2.2 Initialized Sections 2-6.
2.2.3 Named Sections 2-7.
2.2.4 Subsections 2-8.
2.2.5 Section Program Counters 2-8.
2.2.6 An Example That Uses Sections Directives 2-9.

2.3 How the Linker Handles Sections 2-12.
2.3.1 Default Memory Allocation 2-13.
2.3.2 Placing Sections in the Memory Map 2-14.

2.4 Relocation 2-15.
2.5 Runtime Relocation 2-17.
2.6 Loading a Program 2-18.
2.7 Symbols in a COFF File 2-19.

2.7.1 External Symbols 2-19.
2.7.2 The Symbol Table 2-20.

3 Assembler Description 3-1.
Explains how to invoke the assembler and discusses source statement format, valid constants
and expressions, and assembler output.

3.1 Assembler Overview 3-2.
3.2 Assembler Development Flow 3-3.
3.3 Invoking the Assembler 3-4.

Contents

viii

3.4 ’C55x Assembler Features 3-7.
3.4.1 Byte/Word Addressing 3-7.
3.4.2 Parallel Instruction Rules 3-10.
3.4.3 Variable-Length Instruction Size Resolution 3-10.
3.4.4 Memory Modes 3-11.

3.5 Naming Alternate Files and Directories for Assembler Input 3-14.
3.5.1 Using the –i Assembler Option 3-14.
3.5.2 Using Environment Variables (C55X_A_DIR and A_DIR) 3-15.

3.6 Source Statement Format 3-17.
3.6.1 Source Statement Syntax 3-17.
3.6.2 Label Field 3-18.
3.6.3 Mnemonic Field 3-18.
3.6.4 Operand Field 3-19.
3.6.5 Instruction Field 3-19.
3.6.6 Comment Field 3-20.

3.7 Constants 3-21.
3.7.1 Binary Integers 3-21.
3.7.2 Octal Integers 3-21.
3.7.3 Decimal Integers 3-22.
3.7.4 Hexadecimal Integers 3-22.
3.7.5 Character Constants 3-22.
3.7.6 Floating-Point Constants 3-23.

3.8 Character Strings 3-24.
3.9 Symbols 3-25.

3.9.1 Labels 3-25.
3.9.2 Symbolic Constants 3-25.
3.9.3 Defining Symbolic Constants (–d Option) 3-26.
3.9.4 Predefined Symbolic Constants 3-26.
3.9.5 Substitution Symbols 3-26.
3.9.6 Local Labels 3-28.

3.10 Expressions 3-31.
3.10.1 Operators 3-32.
3.10.2 Expression Overflow and Underflow 3-32.
3.10.3 Well-Defined Expressions 3-33.
3.10.4 Conditional Expressions 3-33.

3.11 Built-in Functions 3-34.
3.12 Source Listings 3-36.
3.13 Cross-Reference Listings 3-40.

4 Assembler Directives 4-1.
Describes the directives according to function, and presents the directives in alphabetical order.

4.1 Directives Summary 4-2.
4.2 Directives That Define Sections 4-8.
4.3 Directives That Initialize Constants 4-11.

 Contents

ix Contents

4.4 Directives That Align the Section Program Counter 4-16.
4.5 Directives That Format the Output Listing 4-18.
4.6 Directives That Reference Other Files 4-20.
4.7 Conditional Assembly Directives 4-21.
4.8 Assembly-Time Symbol Directives 4-22.
4.9 Miscellaneous Directives 4-24.
4.10 Directives Reference 4-26.

5 Macro Language 5-1.
Describes macro directives, substitution symbols used as macro parameters, and how to
create macros.

5.1 Using Macros 5-2.
5.2 Defining Macros 5-3.
5.3 Macro Parameters/Substitution Symbols 5-6.

5.3.1 Directives That Define Substitution Symbols 5-7.
5.3.2 Built-In Substitution Symbol Functions 5-8.
5.3.3 Recursive Substitution Symbols 5-10.
5.3.4 Forced Substitution 5-11.
5.3.5 Accessing Individual Characters of Subscripted Substitution Symbols 5-12.
5.3.6 Substitution Symbols as Local Variables in Macros 5-13.

5.4 Macro Libraries 5-14.
5.5 Using Conditional Assembly in Macros 5-15.
5.6 Using Labels in Macros 5-17.
5.7 Producing Messages in Macros 5-19.
5.8 Formatting the Output Listing 5-21.
5.9 Using Recursive and Nested Macros 5-22.
5.10 Macro Directives Summary 5-25.

6 Running ’C54x Code on ’C55x 6-1.
Describes how to assemble a ’C54x application for use on the ’C55x.

6.1 ’C54x to ’C55x Development Flow 6-2.
6.1.1 Initializing the Stack Pointers 6-2.
6.1.2 Handling Differences in Memory Placement 6-2.

6.2 Understanding the Listing File 6-4.
6.3 Handling Reserved ’C55x Names 6-6.

7 Migrating a ’C54x System to a ’C55x System 7-1.
Describes system considerations when porting ’C54x code to ’C55x.

7.1 Handling Interrupts 7-2.
7.1.1 Differences in the Interrupt Vector Table 7-2.
7.1.2 Handling Interrupt Service Routines 7-3.
7.1.3 Other Issues Related to Interrupts 7-4.

Contents

x

7.2 Using Ported ’C54x Functions with Native ’C55x Functions 7-5.
7.2.1 Runtime Environment for Ported ’C54x Code 7-5.
7.2.2 ’C55x Registers Used as Temporaries 7-6.
7.2.3 ’C54x to ’C55x Register Mapping 7-6.
7.2.4 Status Bit Field Mapping 7-7.
7.2.5 Switching Between Runtime Environments 7-9.
7.2.6 Example of C Code Calling ’C54x Assembly 7-10.
7.2.7 Example of ’C54x Assembly Calling C Code 7-14.

7.3 Non-Portable ’C54x Coding Practices 7-17.
7.4 Additional ’C54x Issues 7-19.

8 Archiver Description 8-1.
Contains instructions for invoking the archiver, creating new archive libraries, and modifying
existing libraries.

8.1 Archiver Overview 8-2.
8.2 Archiver Development Flow 8-3.
8.3 Invoking the Archiver 8-4.
8.4 Archiver Examples 8-6.

9 Linker Description 9-1.
Explains how to invoke the linker, provides details about linker operation, discusses linker
directives, and presents a detailed linking example.

9.1 Linker Overview 9-2.
9.2 Linker Development Flow 9-3.
9.3 Invoking the Linker 9-4.
9.4 Linker Options 9-6.

9.4.1 Relocation Capabilities (–a and –r Options) 9-8.
9.4.2 Disable Merge of Symbolic Debugging Information (–b Option) 9-10.
9.4.3 C Language Options (–c and –cr Options) 9-10.
9.4.4 Define an Entry Point (–e global_symbol Option) 9-11.
9.4.5 Set Default Fill Value (–f cc Option) 9-11.
9.4.6 Make a Symbol Global (–g global_symbol Option) 9-12.
9.4.7 Make All Global Symbols Static (–h Option) 9-12.
9.4.8 Define Heap Size (–heap constant Option) 9-12.
9.4.9 Alter the Library Search Algorithm (–l Option, –i Option, and

C55X_C_DIR/C_DIR Environment Variables) 9-13.
9.4.10 Ignore Alignment Flags (–k Option) 9-16.
9.4.11 Create a Map File (–m filename Option) 9-16.
9.4.12 Name an Output Module (–o filename Option) 9-17.
9.4.13 Specify a Quiet Run (–q Option) 9-17.
9.4.14 Strip Symbolic Information (–s Option) 9-17.
9.4.15 Define Stack Size (–stack constant Option) 9-18.
9.4.16 Define Secondary Stack Size (–sysstack constant Option) 9-18.
9.4.17 Introduce an Unresolved Symbol (–u symbol Option) 9-18.

 Contents

xi Contents

9.4.18 Display a Message for Output Section Information (–w Option) 9-19.
9.4.19 Exhaustively Read Libraries (–x Option) 9-20.

9.5 Byte/Word Addressing 9-21.
9.6 Linker Command Files 9-22.

9.6.1 Reserved Names in Linker Command Files 9-25.
9.6.2 Constants in Command Files 9-25.

9.7 Object Libraries 9-26.
9.8 The MEMORY Directive 9-28.

9.8.1 Default Memory Model 9-28.
9.8.2 MEMORY Directive Syntax 9-28.

9.9 The SECTIONS Directive 9-32.
9.9.1 Default Configuration 9-32.
9.9.2 SECTIONS Directive Syntax 9-32.
9.9.3 Allocation 9-35.

9.10 Specifying a Section’s Runtime Address 9-41.
9.10.1 Specifying Load and Run Addresses 9-41.
9.10.2 Uninitialized Sections 9-42.
9.10.3 Referring to the Load Address by Using the .label Directive 9-42.

9.11 Using UNION and GROUP Statements 9-45.
9.11.1 Overlaying Sections With the UNION Statement 9-45.
9.11.2 Grouping Output Sections Together 9-47.
9.11.3 Nesting UNIONs and GROUPs 9-48.
9.11.4 Checking the Consistency of Allocators 9-49.

9.12 Overlay Pages 9-50.
9.12.1 Using the MEMORY Directive to Define Overlay Pages 9-50.
9.12.2 Using Overlay Pages With the SECTIONS Directive 9-52.
9.12.3 Page Definition Syntax 9-53.

9.13 Default Allocation Algorithm 9-55.
9.13.1 Allocation Algorithm 9-55.
9.13.2 General Rules for Output Sections 9-56.

9.14 Special Section Types (DSECT, COPY, and NOLOAD) 9-58.
9.15 Assigning Symbols at Link Time 9-59.

9.15.1 Syntax of Assignment Statements 9-59.
9.15.2 Assigning the SPC to a Symbol 9-60.
9.15.3 Assignment Expressions 9-60.
9.15.4 Symbols Defined by the Linker 9-62.
9.15.5 Symbols Defined Only For C Support (–c or –cr Option) 9-62.

9.16 Creating and Filling Holes 9-63.
9.16.1 Initialized and Uninitialized Sections 9-63.
9.16.2 Creating Holes 9-63.
9.16.3 Filling Holes 9-65.
9.16.4 Explicit Initialization of Uninitialized Sections 9-66.

9.17 Partial (Incremental) Linking 9-67.

Contents

xii

9.18 Linking C Code 9-69.
9.18.1 Runtime Initialization 9-69.
9.18.2 Object Libraries and Runtime Support 9-69.
9.18.3 Setting the Size of the Stack and Heap Sections 9-70.
9.18.4 Autoinitialization (ROM and RAM Models) 9-70.
9.18.5 The –c and –cr Linker Options 9-72.

9.19 Linker Example 9-73.

10 Absolute Lister Description 10-1.
Explains how to invoke the absolute lister to obtain a listing of the absolute addresses of an
object file.

10.1 Producing an Absolute Listing 10-2.
10.2 Invoking the Absolute Lister 10-3.
10.3 Absolute Lister Example 10-5.

11 Cross-Reference Lister Description 11-1.
Explains how to invoke the cross-reference lister to obtain a listing of symbols, their definitions,
and their references in the linked source files.

11.1 Producing a Cross-Reference Listing 11-2.
11.2 Invoking the Cross-Reference Lister 11-3.
11.3 Cross-Reference Listing Example 11-4.

12 Hex Conversion Utility Description 12-1.
Explains how to invoke the hex utility to convert a COFF object file into one of several standard
hexadecimal formats suitable for loading into an EPROM programmer.

12.1 Hex Conversion Utility Development Flow 12-2.
12.2 Invoking the Hex Conversion Utility 12-3.
12.3 Command File 12-6.

12.3.1 Examples of Command Files 12-7.
12.4 Understanding Memory Widths 12-8.

12.4.1 Target Width 12-9.
12.4.2 Data Width 12-9.
12.4.3 Memory Width 12-9.
12.4.4 ROM Width 12-10.
12.4.5 A Memory Configuration Example 12-13.
12.4.6 Specifying Word Order for Output Words 12-13.

12.5 The ROMS Directive 12-15.
12.5.1 When to Use the ROMS Directive 12-17.
12.5.2 An Example of the ROMS Directive 12-18.
12.5.3 Creating a Map File of the ROMS Directive 12-20.

12.6 The SECTIONS Directive 12-21.
12.7 Output Filenames 12-23.

12.7.1 Assigning Output Filenames 12-23.

 Contents

xiii Contents

12.8 Image Mode and the –fill Option 12-25.
12.8.1 The –image Option 12-25.
12.8.2 Specifying a Fill Value 12-26.
12.8.3 Steps to Follow in Image Mode 12-26.

12.9 Building a Table for an On-Chip Boot Loader 12-27.
12.9.1 Description of the Boot Table 12-27.
12.9.2 The Boot Table Format 12-27.
12.9.3 How to Build the Boot Table 12-28.
12.9.4 Booting From a Device Peripheral 12-30.
12.9.5 Setting the Entry Point for the Boot Table 12-31.
12.9.6 Using the ’C55x Boot Loader 12-31.

12.10 Controlling the ROM Device Address 12-33.
12.10.1 Controlling the Starting Address 12-33.
12.10.2 Controlling the Address Increment Index 12-35.
12.10.3 The –byte Option 12-35.
12.10.4 Dealing With Address Holes 12-36.

12.11 Description of the Object Formats 12-37.
12.11.1 ASCII-Hex Object Format (–a Option) 12-38.
12.11.2 Intel MCS-86 Object Format (–i Option) 12-39.
12.11.3 Motorola Exorciser Object Format (–m1, –m2, –m3 Options) 12-40.
12.11.4 Texas Instruments SDSMAC Object Format (–t Option) 12-41.
12.11.5 Extended Tektronix Object Format (–x Option) 12-42.

12.12 Hex Conversion Utility Error Messages 12-43.

A Common Object File Format A-1.
Contains supplemental technical data about the internal format and structure of COFF object
files.

A.1 COFF File Structure A-2.
A.2 File Header Structure A-4.
A.3 Optional File Header Format A-5.
A.4 Section Header Structure A-6.
A.5 Structuring Relocation Information A-9.
A.6 Line-Number Table Structure A-11.
A.7 Symbol Table Structure and Content A-13.

A.7.1 Special Symbols A-15.
A.7.2 Symbol Name Format A-17.
A.7.3 String Table Structure A-17.
A.7.4 Storage Classes A-18.
A.7.5 Symbol Values A-19.
A.7.6 Section Number A-20.
A.7.7 Type Entry A-20.
A.7.8 Auxiliary Entries A-22.

Contents

xiv

B Symbolic Debugging Directives B-1.
Discusses symbolic debugging directives that the C compiler uses.

C Assembler Error Messages C-1.
Lists the error messages that the assembler and linker issue, and gives a description of the
condition(s) that caused each error.

D Linker Error Messages D-1.
Lists the error messages that the assembler and linker issue, and gives a description of the
condition(s) that caused each error.

E Glossary E-1.
Defines terms and acronyms used in this book.

 Figures

xv Contents

Figures

1–1 TMS320C55x Software Development Flow 1-2.
2–1 Partitioning Memory Into Logical Blocks 2-3.
2–2 Object Code Generated by the File in Example 2–1 2-11.
2–3 Combining Input Sections to Form an Executable Object Module 2-13.
3–1 Assembler Development Flow 3-3.
4–1 The .space and .bes Directives 4-12.
4–2 The .field Directive 4-13.
4–3 Initialization Directives 4-15.
4–4 The .align Directive 4-17.
4–5 Allocating .bss Blocks Within a Page 4-32.
4–6 The .field Directive 4-52.
4–7 The .usect Directive 4-105.
7–1 Runtime Environments for Ported ’C54x Code and Native ’C55x Code 7-9.
8–1 Archiver Development Flow 8-3.
9–1 Linker Development Flow 9-3.
9–2 Section Allocation Defined by Example 9–4 9-34.
9–3 Runtime Execution of Example 9–6 9-44.
9–4 Memory Allocation Shown in Example 9–7 and Example 9–8 9-46.
9–5 Overlay Pages Defined by Example 9–11 and Example 9–12 9-51.
9–6 RAM Model of Autoinitialization 9-71.
9–7 ROM Model of Autoinitialization 9-71.
10–1 Absolute Lister Development Flow 10-2.
10–2 module1.lst 10-9.
10–3 module2.lst 10-9.
11–1 Cross-Reference Lister Development Flow 11-2.
12–1 Hex Conversion Utility Development Flow 12-2.
12–2 Hex Conversion Utility Process Flow 12-8.
12–3 Data and Memory Widths 12-10.
12–4 Data, Memory, and ROM Widths 12-12.
12–5 ’C55x Memory Configuration Example 12-13.
12–6 Varying the Word Order 12-14.
12–7 The infile.out File From Example 12–1 Partitioned Into Four Output Files 12-19.
12–8 Sample Command File for Booting From a ’C55x EPROM 12-32.
12–9 Hex Command File for Avoiding a Hole at the Beginning of a Section 12-36.
12–10 ASCII-Hex Object Format 12-38.
12–11 Intel Hex Object Format 12-39.

Figures

xvi

12–12 Motorola-S Format 12-40.
12–13 TI-Tagged Object Format 12-41.
12–14 Extended Tektronix Object Format 12-42.
A–1 COFF File Structure A-2.
A–2 COFF Object File A-3.
A–3 Section Header Pointers for the .text Section A-8.
A–4 Line-Number Blocks A-11.
A–5 Line-Number Entries A-12.
A–6 Symbol Table Contents A-13.
A–7 Symbols for Blocks A-16.
A–8 Symbols for Functions A-16.
A–9 String Table A-17.

 Tables

xvii Contents

Tables

3–1 Operators Used in Expressions (Precedence) 3-32.
3–2 Assembler Built-In Math Functions 3-34.
3–3 Symbol Attributes 3-41.
4–1 Assembler Directives Summary 4-2.
4–2 Memory-Mapped Registers 4-76.
5–1 Functions and Return Values 5-9.
5–2 Creating Macros 5-25.
5–3 Manipulating Substitution Symbols 5-25.
5–4 Conditional Assembly 5-25.
5–5 Producing Assembly-Time Messages 5-26.
5–6 Formatting the Listing 5-26.
9–1 Operators Used in Expressions (Precedence) 9-61.
11–1 Symbol Attributes 11-6.
12–1 Hex Conversion Utility Options 12-4.
12–2 Boot-Loader Options 12-28.
12–3 Options for Specifying Hex Conversion Formats 12-37.
A–1 File Header Contents A-4.
A–2 File Header Flags (Bytes 18 and 19) A-4.
A–3 Optional File Header Contents A-5.
A–4 Section Header Contents A-6.
A–5 Section Header Flags A-7.
A–6 Relocation Entry Contents A-9.
A–7 Relocation Types (Bytes 8 and 9) A-10.
A–8 Line-Number Entry Format A-11.
A–9 Symbol Table Entry Contents A-14.
A–10 Special Symbols in the Symbol Table A-15.
A–11 Symbol Storage Classes A-18.
A–12 Special Symbols and Their Storage Classes A-19.
A–13 Symbol Values and Storage Classes A-19.
A–14 Section Numbers A-20.
A–15 Basic Types A-21.
A–16 Derived Types A-21.
A–17 Auxiliary Symbol Table Entries Format A-22.
A–18 Filename Format for Auxiliary Table Entries A-23.
A–19 Section Format for Auxiliary Table Entries A-23.
A–20 Tag Name Format for Auxiliary Table Entries A-23.

Tables

xviii

A–21 End-of-Structure Format for Auxiliary Table Entries A-24.
A–22 Function Format for Auxiliary Table Entries A-24.
A–23 Array Format for Auxiliary Table Entries A-25.
A–24 End-of-Blocks/Functions Format for Auxiliary Table Entries A-25.
A–25 Beginning-of-Blocks/Functions Format for Auxiliary Table Entries A-26.
A–26 Structure, Union, and Enumeration Names Format for Auxiliary Table Entries A-26.

 Examples

xix Contents

Examples

2–1 Using Sections Directives 2-10.
2–2 Code That Generates Relocation Entries 2-15.
3–1 ’C55x Data Example 3-9.
3–2 ’C55x Code Example 3-9.
3–3 $n Local Labels 3-28.
3–4 name? Local Labels 3-30.
3–5 Well-Defined Expressions 3-33.
3–6 Assembler Listing 3-38.
3–7 Sample Cross-Reference Listing 3-40.
4–1 Sections Directives 4-10.
5–1 Macro Definition, Call, and Expansion 5-4.
5–2 Calling a Macro With Varying Numbers of Arguments 5-7.
5–3 The .asg Directive 5-7.
5–4 The .eval Directive 5-8.
5–5 Using Built-In Substitution Symbol Functions 5-9.
5–6 Recursive Substitution 5-10.
5–7 Using the Forced Substitution Operator 5-11.
5–8 Using Subscripted Substitution Symbols to Redefine an Instruction 5-12.
5–9 Using Subscripted Substitution Symbols to Find Substrings 5-13.
5–10 The .loop/.break/.endloop Directives 5-16.
5–11 Nested Conditional Assembly Directives 5-16.
5–12 Built-In Substitution Symbol Functions Used in a Conditional Assembly

Code Block 5-16.
5–13 Unique Labels in a Macro 5-17.
5–14 Producing Messages in a Macro 5-20.
5–15 Using Nested Macros 5-22.
5–16 Using Recursive Macros 5-23.
7–1 C Prototype of Called Function 7-10.
7–2 Assembly Function _firlat_veneer 7-11.
7–3 Prototype of Called C Function 7-14.
7–4 Original ’C54x Assembly Function 7-15.
7–5 Modified Assembly Function 7-16.
9–1 Linker Command File 9-23.
9–2 Command File With Linker Directives 9-24.
9–3 The MEMORY Directive 9-29.
9–4 The SECTIONS Directive 9-34.

Examples

xx

9–5 The Most Common Method of Specifying Section Contents 9-38.
9–6 Copying a Section From ROM to RAM 9-43.
9–7 The UNION Statement 9-45.
9–8 Separate Load Addresses for UNION Sections 9-45.
9–9 Allocate Sections Together 9-47.
9–10 Nesting GROUP and UNION statements 9-48.
9–11 Memory Directive With Overlay Pages 9-50.
9–12 SECTIONS Directive Definition for Overlays in Figure 9–5 9-52.
9–13 Default Allocation for TMS320C55x Devices 9-55.
9–14 Linker Command File, demo.cmd 9-74.
9–15 Output Map File, demo.map 9-75.
12–1 A ROMS Directive Example 12-18.
12–2 Map File Output From Example 12–1 Showing Memory Ranges 12-20.

1-1Introduction

Introduction

The TMS320C55x DSPs are supported by the following assembly language
tools:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference utility
� Hex conversion utility

This chapter shows how these tools fit into the general software tools develop-
ment flow and gives a brief description of each tool. For convenience, it also
summarizes the C compiler and debugging tools. For detailed information on
the compiler and debugger and for complete descriptions of the TMS320C55x
devices, refer to the books listed in Related Documentation From Texas
Instruments on page vi.

The assembly language tools create and use object files in common object file
format (COFF) to facilitate modular programming. Object files contain
separate blocks (called sections) of code and data that you can load into ’C55x
memory spaces. You can program the ’C55x more efficiently if you have a
basic understanding of COFF. Chapter 2, Introduction to Common Object File
Format, discusses this object format in detail.

Topic Page

1.1 Software Development Tools Overview 1-2.

1.2 Tools Descriptions 1-3.

Chapter 1

Software Development Tools Overview

 1-2

1.1 Software Development Tools Overview

Figure 1–1 illustrates the ’C55x software development flow. The shaded
portion of the figure highlights the most common path of software
development; the other portions are optional.

Figure 1–1. TMS320C55x Software Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C
source

files

’C55x

Executable
COFF

file

C compiler

Library-build
utility

Cross-reference
listerAbsolute lister

Debugging
tools

Runtime-
support
library

Tools Descriptions

1-3Introduction

1.2 Tools Descriptions

The following list describes the tools that are shown in Figure 1–1:

� The C compiler translates C source code into ’C55x assembly language
source code. The compiler package includes the library-build utility , with
which you can build your own runtime libraries. The C compiler is not
shipped with the assembly language tools package.

� The assembler translates assembly language source files into machine
language COFF object files. The TMS320C55x tools include two
assemblers. The mnemonic assembler accepts ’C54x and ’C55x
mnemonic assembly source files. The algebraic assembler accepts ’C55x
algebraic assembly source files. Source files can contain instructions,
assembler directives, and macro directives. You can use assembler direc-
tives to control various aspects of the assembly process, such as the
source listing format, data alignment, and section content.

� The linker combines relocatable COFF object files (created by the
assembler) into a single executable COFF object module. As it creates the
executable module, it binds symbols to memory locations and resolves all
references to those symbols. It also accepts archiver library members and
output modules created by a previous linker run. Linker directives allow
you to combine object file sections, bind sections or symbols to addresses
or within memory ranges, and define or redefine global symbols.

� The archiver collects a group of files into a single archive file. For
example, you can collect several macros into a macro library. The
assembler searches the library and uses the members that are called as
macros by the source file. You can also use the archiver to collect a group
of object files into an object library. The linker includes in the library the
members that resolve external references during the link.

� The library-build utility builds your own customized, C, runtime-support
library. Standard runtime-support library functions are provided as source
code in rts.src and as object code in rts55.lib.

� The TMS320C55x DSP accepts COFF files as input, but most EPROM
programmers do not. The hex conversion utility converts a COFF object
file into TI-tagged, Intel, Motorola, or Tektronix object format. The
converted file can be downloaded to an EPROM programmer.

Tools Descriptions

 1-4

� The absolute lister accepts linked object files as input and creates .abs
files as output. You assemble .abs files to produce a listing that contains
absolute rather than relative addresses. Without the absolute lister,
producing such a listing would be tedious and require many manual opera-
tions.

� The cross-reference lister uses object files to produce a cross-reference
listing showing symbols, their definitions, and their references in the linked
source files.

The purpose of this development process is to produce a module that can be
executed in a ’C55x target system. You can use one of several debugging tools
to refine and correct your code. Available products include:

� An instruction-accurate software simulator
� An XDS emulator

2-1Introduction to Common Object File Format

Introduction to Common Object File Format

The assembler and linker create object files that can be executed by a
TMS320C55x device. The format for these object files is called common
object file format (COFF).

COFF makes modular programming easier, because it encourages you to
think in terms of blocks of code and data when you write an assembly language
program. These blocks are known as sections. Both the assembler and the
linker provide directives that allow you to create and manipulate sections.

This chapter provides an overview of COFF sections. For additional
information, see Appendix A, Common Object File Format, which explains the
COFF structure.

Topic Page

2.1 Sections 2-2.

2.2 How the Assembler Handles Sections 2-4.

2.3 How the Linker Handles Sections 2-12.

2.4 Relocation 2-15.

2.5 Runtime Relocation 2-17.

2.6 Loading a Program 2-18.

2.7 Symbols in a COFF File 2-19.

Chapter 2

Sections

 2-2

2.1 Sections

The smallest unit of an object file is called a section. A section is a block of code
or data that will ultimately occupy contiguous space in the memory map. Each
section of an object file is separate and distinct. COFF object files always con-
tain three default sections:

.text section contains executable code

.data section usually contains initialized data

.bss section usually reserves space for uninitialized variables

In addition, the assembler and linker allow you to create, name, and link
named sections that are used like the .data, .text, and .bss sections.

There are two basic types of sections:

initialized sections contain data or code. The .text and .data sections
are initialized; named sections created with the
.sect assembler directive are also initialized.

uninitialized sections reserve space for uninitialized data. The .bss sec-
tion is uninitialized; named sections created with
the .usect assembler directive are also uninitial-
ized.

Several assembler directives allow you to associate various portions of code
and data with the appropriate sections. The assembler builds these sections
during the assembly process, creating an object file organized as shown in
Figure 2–1.

One of the linker’s functions is to relocate sections into the target memory
map; this function is called allocation. Because most systems contain several
types of memory, using sections can help you use target memory more effi-
ciently. All sections are independently relocatable; you can place any section
into any allocated block of target memory. For example, you can define a sec-
tion that contains an initialization routine and then allocate the routine into a
portion of the memory map that contains ROM.

Sections

2-3Introduction to Common Object File Format

Figure 2–1 shows the relationship between sections in an object file and a
hypothetical target memory.

Figure 2–1. Partitioning Memory Into Logical Blocks

Object File

.bss

.data

.text

Target Memory

RAM

EEPROM

ROM

How the Assembler Handles Sections

 2-4

2.2 How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that
belong in a section. The assembler has several directives that support this
function:

� .bss
� .usect
� .text
� .data
� .sect

The .bss and .usect directives create uninitialized sections; the other
directives create initialized sections.

You can create subsections of any section to give you tighter control of the
memory map. Subsections are created using the .sect and .usect directives.
Subsections are identified with the base section name and a subsection name
separated by a colon. See subsection 2.2.4, Subsections, page 2-8, for more
information.

Note: Default Section Directive

If you don’t use any of the sections directives, the assembler assembles
everything into the .text section.

2.2.1 Uninitialized Sections

Uninitialized sections reserve space in processor memory; they are usually
allocated into RAM. These sections have no actual contents in the object file;
they simply reserve memory. A program can use this space at runtime for
creating and storing variables.

Uninitialized data areas are built by using the .bss and .usect assembler
directives.

� The .bss directive reserves space in the .bss section.

� The .usect directive reserves space in a specific, uninitialized named
section.

Each time you invoke the .bss directive, the assembler reserves more space
in the appropriate section. Each time you invoke the .usect directive, the
assembler reserves more space in the specified named section.

How the Assembler Handles Sections

2-5Introduction to Common Object File Format

The syntax for these directives is:

.bss symbol, size in words [, [blocking flag] [, alignment flag]]

symbol .usect ”section name ”, size in words [, [blocking flag] [, alignment flag]]

symbol points to the first word reserved by this invocation of the
.bss or .usect directive. The symbol corresponds to the
name of the variable that you’re reserving space for. It can
be referenced by any other section and can also be de-
clared as a global symbol (with the .global assembler direc-
tive).

size in words is an absolute expression.

� The .bss directive reserves size words in the .bss sec-
tion.

� The .usect directive reserves size words in section
name.

blocking flag is an optional parameter. If you specify a value other than
0 for this parameter, the assembler associates size words
contiguously; the allocated space will not cross a page
boundary, unless size is greater than a page, in which case
the object will start on a page boundary.

alignment flag is an optional parameter. If you specify a value other than
0 for this parameter, the section is aligned to a long word
boundary.

section name tells the assembler which named section to reserve space
in. For more information about named sections, see
subsection 2.2.3, Named Sections, on page 2-7.

The .text, .data, and .sect directives tell the assembler to stop assembling into
the current section and begin assembling into the indicated section. The .bss
and .usect directives, however, do not end the current section and begin a new
one; they simply escape temporarily from the current section. The .bss and
.usect directives can appear anywhere in an initialized section without
affecting its contents.

Uninitialized subsections can be created with the .usect directive. The assem-
bler treats uninitialized subsections in the same manner as uninitialized
sections. See subsection 2.2.4, Subsections, on page 2-8 for more informa-
tion on creating subsections.

How the Assembler Handles Sections

 2-6

2.2.2 Initialized Sections

Initialized sections contain executable code or initialized data. The contents
of these sections are stored in the object file and placed in processor memory
when the program is loaded. Each initialized section is independently relocat-
able and may reference symbols that are defined in other sections. The linker
automatically resolves these section-relative references.

Three directives tell the assembler to place code or data into a section. The
syntaxes for these directives are:

.text [value]

.data [value]

.sect ” section name” [, value]

When the assembler encounters one of these directives, it stops assembling
into the current section (acting as an implied end-current-section command).
It then assembles subsequent code into the designated section until it encoun-
ters another .text, .data, or .sect directive. The value, if present, specifies the
starting value of the section program counter. The starting value of the section
program counter can be specified only once; it must be done the first time the
directive for that section is encountered. By default, the SPC starts at 0.

Sections are built through an iterative process. For example, when the assem-
bler first encounters a .data directive, the .data section is empty. The state-
ments following this first .data directive are assembled into the .data section
(until the assembler encounters a .text or .sect directive). If the assembler
encounters subsequent .data directives, it adds the statements following
these .data directives to the statements already in the .data section. This
creates a single .data section that can be allocated contiguously into memory.

Initialized subsections can be created with the .sect directive. The assembler
treats initialized subsections in the same manner as initialized sections. See
subsection 2.2.4, Subsections, on page 2-8 for more information on creating
subsections.

How the Assembler Handles Sections

2-7Introduction to Common Object File Format

2.2.3 Named Sections

Named sections are sections that you create. You can use them like the de-
fault .text, .data, and .bss sections, but they are assembled separately.

For example, repeated use of the .text directive builds up a single .text section
in the object file. When linked, this .text section is allocated into memory as
a single unit. Suppose there is a portion of executable code (perhaps an initiali-
zation routine) that you don’t want allocated with .text. If you assemble this
segment of code into a named section, it is assembled separately from .text,
and you can allocate it into memory separately. You can also assemble initial-
ized data that is separate from the .data section, and you can reserve space
for uninitialized variables that is separate from the .bss section.

The following directives let you create named sections:

� The .usect directive creates sections that are used like the .bss section.
These sections reserve space in RAM for variables.

� The .sect directive creates sections, like the default .text and .data
sections, that can contain code or data. The .sect directive creates named
sections with relocatable addresses.

The syntax for these directives is shown below:

symbol .usect ”section name”, size in words [, [blocking flag] [, alignment flag]]

.sect ”section name”

The section name parameter is the name of the section. You can create up to
32 767 separate named sections. A section name can be up to 200 charac-
ters. For the .sect and .usect directives, a section name can refer to a subsec-
tion (see subsection 2.2.4, Subsections, for details).

Each time you invoke one of these directives with a new name, you create a
new named section. Each time you invoke one of these directives with a name
that was already used, the assembler assembles code or data (or reserves
space) into the section with that name. You cannot use the same names with
different directives. That is, you cannot create a section with the .usect direc-
tive and then try to use the same section with .sect.

How the Assembler Handles Sections

 2-8

2.2.4 Subsections

Subsections are smaller sections within larger sections. Like sections,
subsections can be manipulated by the linker. Subsections give you tighter
control of the memory map. You can create subsections by using the .sect or
.usect directive. The syntax for a subsection name is:

section name:subsection name

A subsection is identified by the base section name followed by a colon, then
the name of the subsection. A subsection can be allocated separately or
grouped with other sections using the same base name. For example, to
create a subsection called _func within the .text section, enter the following:

.sect ”.text:_func”

You can allocate _func separately or with other .text sections.

You can create two types of subsections:

� Initialized subsections are created using the .sect directive. See
subsection 2.2.2, Initialized Sections, on page 2-6.

� Uninitialized subsections are created using the .usect directive. See
subsection 2.2.1, Uninitialized Sections, on page 2-4.

Subsections are allocated in the same manner as sections. See Section 9.9,
The SECTIONS Directive, on page 9-32 for more information.

2.2.5 Section Program Counters

The assembler maintains a separate program counter for each section. These
program counters are known as section program counters, or SPCs.

An SPC represents the current address within a section of code or data.
Initially, the assembler sets each SPC to 0. As the assembler fills a section with
code or data, it increments the appropriate SPC. If you resume assembling
into a section, the assembler remembers the appropriate SPC’s previous val-
ue and continues incrementing the SPC at that point.

The assembler treats each section as if it began at address 0; the linker
relocates each section according to its final location in the memory map. For
more information, see Section 2.4, Relocation, on page 2-15.

How the Assembler Handles Sections

2-9Introduction to Common Object File Format

2.2.6 An Example That Uses Sections Directives

Example 2–1 shows how you can build COFF sections incrementally, using
the sections directives to swap back and forth between the different sections.
You can use sections directives to begin assembling into a section for the first
time, or to continue assembling into a section that already contains code. In
the latter case, the assembler simply appends the new code to the code that
is already in the section.

The format in Example 2–1 is a listing file. Example 2–1 shows how the SPCs
are modified during assembly. A line in a listing file has four fields:

Field 1 contains the source code line counter.

Field 2 contains the section program counter.

Field 3 contains the object code.

Field 4 contains the original source statement.

How the Assembler Handles Sections

 2-10

Example 2–1. Using Sections Directives

Field 2Field 1 Field 3 Field 4

2 **
3 ** Assemble an initialized table into .data. **
4 **
5 000000 .data
6 000000 0011 coeff .word 011h,022h,033h

000001 0022
000002 0033

7 **
8 ** Reserve space in .bss for a variable. **
9 **
10 000000 .bss buffer,10
11 **
12 ** Still in .data. **
13 **
14 000003 0123 ptr .word 0123h
15 **
16 ** Assemble code into the .text section. **
17 **
18 000000 .text
19 000000 A01E add: MOV 0Fh,AC0
20 000002 4210 aloop: SUB #1,AC0
21 000004 0450 BCC aloop,AC0>=#0

000006 FB
22 **
23 ** Another initialized table into .data. **
24 **
25 000004 .data
26 000004 00AA ivals .word 0AAh, 0BBh, 0CCh

000005 00BB
000006 00CC

27 **
28 ** Define another section for more variables. **
29 **
30 000000 var2 .usect ”newvars”, 1
31 000001 inbuf .usect ”newvars”, 7
32 **
33 ** Assemble more code into .text. **
34 **
35 000007 .text
36 000007 A114 mpy: MOV 0Ah,AC1
37 000009 5272 mloop: MOVH T3,AC2
38 00000b 1E0A MPYK #10,AC2,AC1

00000d 90
39 00000e 0471 BCC mloop,!overflow(AC1)

000010 F8
40 **
41 ** Define a named section for int. vectors. **
42 **
43 000000 .sect ”vectors”
44 000000 0011 .word 011h, 033h
45 000001 0033

How the Assembler Handles Sections

2-11Introduction to Common Object File Format

As Figure 2–2 shows, the file in Example 2–1 creates five sections:

.text contains 17 bytes of object code.

.data contains seven words of object code.

vectors is a named section created with the .sect directive; it contains
two words of initialized data.

.bss reserves 10 words in memory.

newvars is a named section created with the .usect directive; it reserves
eight words in memory.

The second column shows the object code that is assembled into these
sections; the first column shows the line numbers of the source statements
that generated the object code.

Figure 2–2. Object Code Generated by the File in Example 2–1

A01E
4210
0450
FB
A114
5272
1E0A
90
0471
F8

44
45

0011
0033

No data—
10 words
reserved

No data—
eight words
reserved

Line Numbers
19
20
21
21
36
37
38
38
39
39

 6
 6
 6
14
26
26
26

10

30
31

Object Code Section
.text

0011
0022
0033
0123
00aa
00bb
00cc

.data

vectors

.bss

newvars

How the Linker Handles Sections

 2-12

2.3 How the Linker Handles Sections

The linker has two main functions related to sections. First, the linker uses the
sections in COFF object files as building blocks; it combines input sections
(when more than one file is being linked) to create output sections in an execut-
able COFF output module. Second, the linker chooses memory addresses for
the output sections.

Two linker directives support these functions:

� The MEMORY directive allows you to define the memory map of a target
system. You can name portions of memory and specify their starting
addresses and their lengths.

� The SECTIONS directive tells the linker how to combine input sections
into output sections and where to place these output sections in memory.

Subsections allow you to manipulate sections with greater precision. You can
specify subsections with the linker’s SECTIONS directive. If you do not specify
a subsection explicitly, then the subsection is combined with the other sections
with the same base section name.

It is not always necessary to use linker directives. If you don’t use them, the
linker uses the target processor’s default allocation algorithm described in
Section 9.13, Default Allocation Algorithm, on page 9-55. When you do use
linker directives, you must specify them in a linker command file.

Refer to the following sections for more information about linker command files
and linker directives:

Section Number Section Name Page

9.6 Linker Command Files 9-22

9.8 The MEMORY Directive 9-28

9.9 The SECTIONS Directive 9-32

9.13 Default Allocation Algorithm 9-55

How the Linker Handles Sections

2-13Introduction to Common Object File Format

2.3.1 Default Memory Allocation

Figure 2–3 illustrates the process of linking two files.

Figure 2–3. Combining Input Sections to Form an Executable Object Module

FFT
(initialized

named section)

u_vars
(uninitialized

named section)

u_vars
(uninitialized

named section)

table_1
(initialized

named section)

table_1
(initialized

named section)

ÏÏÏÏÏ
ÏÏÏÏÏ

Program Memory file1.obj

unused

Data Memory

ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ

ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ

file 2
.text

 file 1
table_1

file 1
.data

file 2
.data

file2
FFT

unused

file2
.bss

 file1
U_vars

 file2
U_vars

file1
.bss

.text

.data

.bss

.text

.data

.bss

 file 2
table_1

file2.obj

unconfigured

unconfigured

file 1
.text

In Figure 2–3, file1.obj and file2.obj have been assembled to be used as linker
input. Each contains the .text, .data, and .bss default sections; in addition,
each contains named sections. The executable output module shows the
combined sections. The linker combines file1.text with file2.text to form one
.text section, then combines the .data sections, then the .bss sections, and
finally places the named sections at the end. The memory map shows how the
sections are put into memory; by default, the linker begins at address 080h and
places the sections one after the other as shown.

How the Linker Handles Sections

 2-14

2.3.2 Placing Sections in the Memory Map

Figure 2–3 illustrates the linker’s default methods for combining sections.
Sometimes you may not want to use the default setup. For example, you may
not want all of the .text sections to be combined into a single .text section. Or
you may want a named section placed where the .data section would normally
be allocated. Most memory maps contain various types of memory (RAM,
ROM, EPROM, etc.) in varying amounts; you may want to place a section in
a specific type of memory.

For further explanation of section placement within the memory map, see
Section 9.8, The MEMORY Directive, on page 9-28 and Section 9.9, The
SECTIONS Directive, on page 9-32.

Relocation

2-15Introduction to Common Object File Format

2.4 Relocation

The assembler treats each section as if it began at address 0. All relocatable
symbols (labels) are relative to address 0 in their sections. Of course, all
sections can’t actually begin at address 0 in memory, so the linker relocates
sections by:

� Allocating them into the memory map so that they begin at the appropriate
address

� Adjusting symbol values to correspond to the new section addresses

� Adjusting references to relocated symbols to reflect the adjusted symbol
values

The linker uses relocation entries to adjust references to symbol values. The
assembler creates a relocation entry each time a relocatable symbol is refer-
enced. The linker then uses these entries to patch the references after the
symbols are relocated. Example 2–2 contains a code segment for the ’C55x
that generates relocation entries.

Example 2–2. Code That Generates Relocation Entries

(a) Mnemonic example

 1 .ref X
 2 000000 .text
 3 000000 4A04 B Y
 4 000002 7600 MOV #X,AC0 ;Generates relocation entry

000004 0008!
 5 000006 9400 Y: reset

(b) Algebraic example

 1 .ref X
 2 000000 .text
 3 000000 4A04 goto #Y
 4 000002 7600 AC0 = #X ;Generates relocation entry

000004 0008!
 5 000006 9400 Y: reset

Relocation

 2-16

In Example 2–2, symbol X is relocatable since it is defined in another module.
Symbol Y is relative to the PC and relocation is not necessary. When the code
is assembled, X has a value of 0 (the assembler assumes all undefined exter-
nal symbols have values of 0). The assembler generates a relocation entry for
X. The reference to X is an external reference (indicated by the ! character in
the listing).

Each section in a COFF object file has a table of relocation entries. The table
contains one relocation entry for each relocatable reference in the section.
The linker usually removes relocation entries after it uses them. This prevents
the output file from being relocated again (if it is relinked or when it is loaded).
A file that contains no relocation entries is an absolute file (all its addresses
are absolute addresses). If you want the linker to retain relocation entries, in-
voke the linker with the –r option.

Runtime Relocation

2-17Introduction to Common Object File Format

2.5 Runtime Relocation

At times, you may want to load code into one area of memory and run it in
another. For example, you may have performance-critical code in a ROM-
based system. The code must be loaded into ROM, but it would run faster in
RAM.

The linker provides a simple way to handle this. Using the SECTIONS
directive, you can optionally direct the linker to allocate a section twice: first
to set its load address, and again to set its run address. Use the load keyword
for the load address and the run keyword for the run address.

The load address determines where a loader will place the raw data for the
section. Any references to the section (such as labels in it) refer to its run
address. The application must copy the section from its load address to its run
address; this does not happen automatically simply because you specify a
separate run address. For an example that illustrates how to move a block of
code at runtime, see Example 9–6 on page 9-43.

If you provide only one allocation (either load or run) for a section, the section
is allocated only once and will load and run at the same address. If you provide
both allocations, the section is actually allocated as if it were two different
sections of the same size.

Uninitialized sections (such as .bss) are not loaded, so the only significant
address is the run address. The linker allocates uninitialized sections only
once: if you specify both run and load addresses, the linker warns you and
ignores the load address.

For a complete description of runtime relocation, see Section 9.10, Specifying
a Section’s Runtime Address, on page 9-41.

Loading a Program

 2-18

2.6 Loading a Program

The linker produces executable COFF object modules. An executable object
file has the same COFF format as object files that are used as linker input; the
sections in an executable object file, however, are combined and relocated so
that they can be loaded directly into target memory.

Several methods can be used for loading a program, depending on the execu-
tion environment. Two common situations are described below.

� The TMS320C55x debugging tools, including the software simulator and
software development system, have built-in loaders. Each of these tools
contains a LOAD command that invokes a loader; the loader reads the
executable file and copies the program into target memory.

� You can use the hex conversion utility (hex55, which is shipped as part of
the assembly language package) to convert the executable COFF object
module into one of several object file formats. You can then use the con-
verted file with an EPROM programmer to burn the program into an
EPROM.

Symbols in a COFF File

2-19Introduction to Common Object File Format

2.7 Symbols in a COFF File

A COFF file contains a symbol table that stores information about symbols in
the program. The linker uses this table when it performs relocation. Debugging
tools can also use the symbol table to provide symbolic debugging.

2.7.1 External Symbols

External symbols are symbols that are defined in one module and referenced
in another module. You can use the .def, .ref , or .global directives to identify
symbols as external:

.def Defined in the current module and used in another module

.ref Referenced in the current module, but defined in another
module

.global May be either of the above

The following code segment illustrates these definitions.

 .def x ; DEF of x
 .ref y ; REF of y
x: ADD #86,AC0,AC0 ; Define x

 B y ; Reference y

The .def definition of x says that it is an external symbol defined in this module
and that other modules can reference x. The .ref definition of y says that it is
an undefined symbol that is defined in another module.

The assembler places both x and y in the object file’s symbol table. When the
file is linked with other object files, the entry for x defines unresolved
references to x from other files. The entry for y causes the linker to look
through the symbol tables of other files for y’s definition.

The linker must match all references with corresponding definitions. If the
linker cannot find a symbol’s definition, it prints an error message about the
unresolved reference. This type of error prevents the linker from creating an
executable object module.

Symbols in a COFF File

 2-20

2.7.2 The Symbol Table

The assembler always generates an entry in the symbol table when it encoun-
ters an external symbol (both definitions and references). The assembler also
creates special symbols that point to the beginning of each section; the linker
uses these symbols to resolve the address of and references symbols that are
defined in the section.

The assembler does not usually create symbol table entries for any symbols
other than those described above, because the linker does not use them. For
example, labels are not included in the symbol table unless they are declared
with .global. For symbolic debugging purposes, it is sometimes useful to have
entries in the symbol table for each symbol in a program. To accomplish this,
invoke the assembler with the –s option.

3-1Assembler Description

Assembler Description

The assembler translates assembly language source files into machine
language object files. These files are in common object file format (COFF),
which is discussed in Chapter 2, Introduction to Common Object File Format,
and Appendix A, Common Object File Format. Source files can contain the
following assembly language elements:

Assembler directives described in Chapter 4

Macro directives described in Chapter 5

Assembly language instructions described in the TMS320C55x
Instruction Set Reference Guides

Topic Page

3.1 Assembler Overview 3-2.

3.2 Assembler Development Flow 3-3.

3.3 Invoking the Assembler 3-4.

3.4 ’C55x Assembler Features 3-7.

3.5 Naming Alternate Files and Directories for Assembler Input 3-14.

3.6 Source Statement Format 3-17.

3.7 Constants 3-21.

3.8 Character Strings 3-24.

3.9 Symbols 3-25.

3.10 Expressions 3-31.

3.11 Built-In Functions 3-34.

3.12 Source Listings 3-36.

3.13 Cross-Reference Listing 3-40.

Chapter 3

Assembler Overview

 3-2

3.1 Assembler Overview

TMS320C55x has two assemblers:

� masm55 (the mnemonic assembler) accepts ’C54x mnemonic and ’C55x
mnemonic assembly source.

� asm55 (the algebraic assembler) accepts only ’C55x algebraic assembly
source.

Each assembler does the following:

� Processes the source statements in a text file to produce a relocatable
’C55x object file

� Produces a source listing (if requested) and provides you with control over
this listing

� Allows you to segment your code into sections and maintain an SPC
(section program counter) for each section of object code

� Defines and references global symbols and appends a cross-reference
listing to the source listing (if requested)

� Assembles conditional blocks

� Supports macros, allowing you to define macros inline or in a library

The masm55 assembler generates error and warning messages for ’C54x
instructions that are not supported. Some ’C54x instructions do not map
directly to a single ’C55x instruction. The masm55 assembler will translate
these instructions into an appropriate series of ’C55x instructions. The listing
file generated by the assembler (with the –l option) shows the translations that
have occurred.

Assembler Development Flow

3-3Assembler Description

3.2 Assembler Development Flow

Figure 3–1 illustrates the assembler’s role in the assembly language develop-
ment flow. The assembler accepts assembly language source files as input,
whether created by the assembler itself or by the C compiler.

Figure 3–1. Assembler Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C
source

files

’C55x

Executable
COFF

file

C compiler

Library-build
utility

Cross-reference
listerAbsolute lister

Debugging
tools

Runtime-
support
library

Invoking the Assembler

 3-4

3.3 Invoking the Assembler

To invoke the assembler, enter the following:

masm55 [input file [object file [listing file]]] [–options]

asm55 [input file [object file [listing file]]] [–options]

masm55
asm55

are the commands that invoke the assembler. masm55 invokes
the mnemonic assembler. asm55 invokes the algebraic
assembler.

input file names the assembly language source file. If you do not supply
an extension, the assembler uses the default extension .asm,
unless the –f assembler option is used. If you do not supply an
input filename, the assembler prompts you for one.

object file names the ’C55x object file that the assembler creates. If you do
not supply an extension, the assembler uses .obj as a default.
If you do not supply an object file, the assembler creates a file
that uses the input filename with the .obj extension.

listing file names the optional listing file that the assembler can create.

� If you do not supply a listing file, the assembler does not
create one unless you use the –l (lowercase L) option or the
–x option. In this case, the assembler uses the input file-
name with a .lst extension and places the listing file in the in-
put file directory.

� If you supply a listing file but do not supply an extension, the
assembler uses .lst as the default extension.

options identifies the assembler options that you want to use. Options
are not case-sensitive and can appear anywhere on the com-
mand line, following the assembler name. Precede each option
with a hyphen. Single-letter options without parameters can be
combined: for example, –lc is equivalent to –l –c. Options that
have parameters, such as –i, must be specified separately.

–@ –@filename appends the contents of filename to the
command line. You can use this option to avoid the
limitations on command line length imposed by the host
operating system.

–a creates an absolute listing. When you use –a, the
assembler does not produce an object file. The –a option
is used in conjunction with the absolute lister.

Invoking the Assembler

3-5Assembler Description

–c makes case insignificant in the assembly language files.
For example, –c will make the symbols ABC and abc
equivalent. If you do not use this option, case is signifi-
cant (default). Case significance is enforced primarily
with symbol names, not with mnemonics and register
names.

–d –dname [=value] sets the name symbol. This is equiva-
lent to inserting name .set value at the beginning of the
assembly file. If value is omitted, the symbol is set to 1.
For more information, see subsection 3.9.3, Defining
Symbolic Constants (–d Option), on page 3-26.

–f suppresses the assembler’s default behavior of adding
a .asm extension to a source file name that does not al-
ready include an extension.

–g enables assembler source debugging in the C source
debugger. Line information is output to the COFF file for
every line of source in the assembly language source
file. Note that you cannot use the –g option on assembly
code that already contains .line directives (i.e., code that
was generated by the C compiler run with –g).

–h
–help
–?

any of these options displays a listing of the available
assembler options.

–hc –hc filename tells the assembler to copy the specified
file for the assembly module. The file is inserted
before source file statements. The copied file appears
in the assembly listing files.

–hi –hi filename tells the assembler to include the speci-
fied file for the assembly module. The file is included
before source file statements. The included file does
not appear in the assembly listing files.

–i specifies a directory where the assembler can find files
named by the .copy, .include, or .mlib directives. The for-
mat of the –i option is –ipathname. For more information,
see subsection 3.5.1, –i Assembler Option, on page
3-14.

–l (lowercase L) produces a listing file.

–ma (ARMS mode) informs the assembler that the ARMS
status bit will be enabled during the execution of this
source file. By default, the assembler assumes that
the bit is disabled.

Invoking the Assembler

 3-6

–mb controls the severity of diagnostic messages printed
for bus conflicts between parallel instructions. By de-
fault, bus conflicts are reported as errors. When the
–mb option is used, bus conflicts will be reported as
warnings.

–mc (CPL mode) informs the assembler that the CPL sta-
tus bit will be enabled during the execution of this
source file. This causes the assembler to enforce the
use of SP-relative addressing syntax. By default, the
assembler assumes that the bit is disabled.

–ml (’C54x compatibility mode) informs the assembler that
the C54CM status bit will be enabled during the exe-
cution of this source file. By default, the assembler
assumes that the bit is disabled.

–mv causes the assembler to use the largest (P24) form of
certain variable-length instructions. By default, the
assembler tries to resolve all variable-length instruc-
tions to their smallest size.

–mw suppresses assembler warning messages. (Sup-
ported for asm55 only.)

–q (quiet) suppresses the banner and all progress
information.

–r –rnum suppresses the assembler remark identified by
num. A remark is an informational assembler message
that is less severe than a warning. If you do not specify
a value for num, all remarks will be suppressed.

–s puts all defined symbols in the object file’s symbol table.
The assembler usually puts only global symbols into the
symbol table. When you use –s, symbols defined as
labels or as assembly-time constants are also placed in
the table.

–u –uname undefines the predefined constant name,
which overrides any –d options for the specified
constant.

–x produces a cross-reference table and appends it to the
end of the listing file; also adds cross-reference informa-
tion to the object file for use by the cross-reference utility.
If you do not request a listing file, the assembler creates
one anyway.

’C55x Assembler Features

3-7Assembler Description

3.4 ’C55x Assembler Features

The sections that follow provide important information on features specific to
the ’C55x assembler:

� byte/word addressing (Section 3.4.1)

� parallel instruction rules (Section 3.4.2)

� variable-length instructions (Section 3.4.3)

� memory modes (Section 3.4.4)

3.4.1 Byte/Word Addressing

’C55x memory is byte-addressable for code and word-addressable for data.
The assembler and linker keep track of the addresses, relative offsets, and
sizes of the bits in units that are appropriate for the given section: words for
data sections, and bytes for code sections.

Note: Offsets in .struct and .union constructs

Offsets of fields defined in .struct or .union constructs are always counted
in words, regardless of the current section. The assembler assumes that a
.struct or .union is always used in a data context.

3.4.1.1 Definition of Code Sections

The assembler identifies a section as a code section if:

� the section is introduced with a .text directive, or

� the section has at least one instruction assembled into it.

If a section is not established with a .text, .data., or .sect directive, the
assembler assumes that it is a .text (code) section. Because the section type
determines the assembler’s offset and size computations, it is important to
clearly define your current working section as code or data before assembling
bits into the section.

’C55x Assembler Features

 3-8

3.4.1.2 Assembly Programs and Native Units

The assembler and the linker assume that your code is written using word
addresses and offsets in the context of data segments, and byte addresses
and offsets in the context of code segments:

� If an address is to be sent via a program address bus (e.g., an address
used as the target of a call or a branch), the processor expects a full 24-bit
address. A constant used in this context should be expressed in bytes. A
label defined in a code section can be handled correctly by the assembler
and linker. However, a label defined in a data section cannot be used in
this context.

� If an address is to be sent via a data address bus (e.g., an address denotes
a location in memory to be read or written), the processor expects a 23-bit
word address. A constant used in this context should be expressed in
words. A label defined in a data section can be handled correctly by the
assembler and linker. However, a label defined in a code section cannot
be used in this context.

� The PC-value column of the assembly listing file is counted in units that
are appropriate for the section being listed. For code sections, the PC is
counted in bytes; for data sections, it is counted in words.

For example:

1 000000 .text ; PC is counted in BYTES
2 000000 2298 MOV AR1,AR0
3 000002 4010 ADD #1,AC0
4
5 000000 .data ; PC is counted in WORDS
6 000000 0004 .word 4,5,6,7
 000001 0005 ; PC is 1 word
 000002 0006 ; PC is 2 words ...
 000003 0007
7 000004 0001 foo .word 1

� The data placement directives that operate on characters (.byte, .ubyte,
.char, .uchar, and .string) allocate one character per byte when in a code
section, and one character to a word when in a data section. However,
Texas Instruments highly recommends that you use these directives only
in data sections.

’C55x Assembler Features

3-9Assembler Description

� Directives that have a size parameter expressed in addressable units ex-
pect this parameter to be expressed in bytes for a code section, and in
words for a data section.

For example,

.align 2

aligns the PC to a 2-byte (16-bit) boundary in a code section, and to a
2-word (32-bit) boundary in a data section.

The code examples below display data and code for ’C55x.

Example 3–1. ’C55x Data Example

 .def Struct1, Struct2
 .bss Struct1, 8 ; allocate 8 WORDS for Struct1
 .bss Struct2, 6 ; allocate 6 WORDS for Struct2

 .text
 MOV *(#(Struct1 + 2)),T0 ; load 3rd WORD of Struct1
 MOV *(#1000h),T1 ; 0x1000 is an absolute WORD

 ; address (i.e., byte 0x2000)

Example 3–2. ’C55x Code Example

 .text
 .ref Func
 CALL #(Func + 3) ;jump to address “Func plus 3 BYTES”
 CALL #0x1000 ;0x1000 is an absolute BYTE address

3.4.1.3 Using Code as Data and Data as Code

The assembler does not support using a code address as if it were a data
address (e.g., attempting to read or write data to program space). Similarly,
the assembler does not support using a data address as if it were a code ad-
dress (e.g., executing a branch to a data label). This functionality cannot be
supported because of the difference in the size of the addressable units: a
code label address is a 24-bit byte address while a data label address is a
23-bit word address.

Consequently:

� You should not mix code and data within one section. All data (even
constant data) should be placed into a section separate from code.

� Applications that attempt to read and write bits into program sections will
not work.

’C55x Assembler Features

 3-10

3.4.2 Parallel Instruction Rules

The assembler performs semantic checking of parallel pairs of instructions in
accordance with the rules specified in the TMS320C55x Instruction Set
Reference Guides.

The assembler may swap two instructions in order to make parallelism legal.
For example, both sets of instructions below are legal and will be encoded into
identical object bits:

AC0 = AC1 || T0 = T1 ^ #0x3333
T0 = T1 ^ #0x3333 || AC0 = AC1

3.4.3 Variable-Length Instruction Size Resolution

By default, the assembler will attempt to resolve all stand-alone, variable-
length instructions to their smallest possible size. For instance, the assembler
will try to choose the smallest possible of the three available unconditional
branch-to-address instructions:

[d]goto L8
[d]goto L16
[d]goto P24

If the address used in a variable-length instruction is not known at assembly
time (for example, if it is a symbol defined in another file), the assembler will
choose the largest available form of the instruction. In the example shown
above, [d]goto P24 will be picked.

Size resolution is performed on the following instruction groups:

goto L7, L16, P24
if (cond) goto l4, L8, L16, or P24
call L16 or P24
if (cond) call L16 or P24

In some cases, you may want the assembler to keep the largest (P24) form
of certain instructions. The P24 versions of certain instructions execute in
fewer cycles than the smaller version of the same instructions. For example,
“goto P24” uses 4 bytes and 3 cycles, while “goto L6” uses 2 bytes but 4 cycles.

Use the –mv assembler option or the .vli_off directive to keep the following
instructions in their largest form:

[d]goto P24
[d]call P24

’C55x Assembler Features

3-11Assembler Description

The –mv assembler option suppresses the size resolution of the above
instructions within the entire file. The .vli_off and .vli_on directives can be used
to toggle this behavior for regions of an assembly file. In the case of a conflict
between the command line option and the directives, the directives take pre-
cedence.

All other variable-length instructions will continue to be resolved to their small-
est possible size by the assembler, despite the –mv option or .vli_off directive.

The scope of the .vli_off and .vli_on directives is static and not subject to the
control flow of the assembly program.

3.4.4 Memory Modes

The assembler supports three memory modes: ’C54x compatibility, CPL, and
ARMS. The assembler accepts or rejects its input based on the mode
specified; it may also produce different encodings for the same input based
on the mode.

The memory modes correspond to the value of the C54CM, CPL, and ARMS
status bits. The assembler cannot track the value of the status bits. You must
use assembler directives and/or command line options to inform the
assembler of the value of these bits. An instruction that modifies the value of
the C54CM, CPL, or ARMS status bit must be immediately followed by an
appropriate assembler directive. When the assembler is aware of changes to
these bit values, it can provide useful error and warning messages about
syntax and semantic violations of these modes.

3.4.4.1 ’C54x Compatibility Mode

’C54x compatibility mode is necessary when a source file has been translated
from ’C54x code. Until you modify your translated source code to be ’C55x-na-
tive code, use the –ml command line option when assembling the file, or use
the .c54cm_on and .c54cm_off directives to specify ’C54x compatibility mode
for regions of code. The .c54cm_on and .c54cm_off directives take no argu-
ments. In the case of a conflict between the command line option and the di-
rective, the directive takes precedence.

The scope of the .c54cm_on and .c54cm_off directives is static and not sub-
ject to the control flow of the assembly program. All assembly code between
the .c54cm_on and .c54cm_off directives is assembled in ’C54x compatibility
mode.

In ’C54x compatibility mode, AR0 is used instead of T0 (’C55x index register)
in memory operands. For example, *(AR5 + T0) is invalid in ’C54x compatibility
mode; *(AR5 + AR0) should be used.

’C55x Assembler Features

 3-12

3.4.4.2 CPL Mode

CPL mode affects direct addressing. The assembler cannot track the value of
the CPL status bit. Consequently, you must use the .cpl_on and .cpl_off direc-
tives to model the CPL value. Issue one of these directives immediately follow-
ing any instruction that changes the value in the CPL bit. The .cpl_on directive
models the CPL status bit set to 1; it is equivalent to using the –mc command
line option. The .cpl_off directive models the CPL status bit set to 0. The
.cpl_on and .cpl_off directives take no arguments. In the case of a conflict be-
tween the command line option and the directive, the directive takes prece-
dence.

The scope of the .cpl_on, .cpl_off directives is static and not subject to the
control flow of the assembly program. All of the assembly code between the
.cpl_on line and the .cpl_off line is assembled in CPL mode.

In CPL mode (.cpl_on), direct memory addressing is relative to the stack
pointer (SP). The dma syntax is *SP(dma), where dma can be a constant or
a linktime-known symbolic expression. The assembler encodes the value of
dma into the output bits.

By default (.cpl_off), direct memory addressing (dma) is relative to the data
page register (DP). The dma syntax is @dma, where dma can be a constant
or a linktime-known symbolic expression. The assembler computes the differ-
ence between dma and the value in the DP register and encodes this differ-
ence into the output bits.

The DP can be referenced in a file, but never defined in that file (it is set exter-
nally). Consequently, you must use the .dp directive to inform the assembler
of the DP value before it is used. Issue this directive immediately following any
instruction that changes the value in the DP register. The syntax of the direc-
tive is:

.dp dp_value ; dp_value can be a constant or a symbolic
; expression

If the .dp directive is not used in a file, the assembler assumes that the value
of the DP is 0. The scope of the .dp directive is static and not subject to the
control flow of the program. The value set by the directive is used until the next
.dp directive is encountered, or until the end of the source file is reached.

Note that dma access to the MMR page and to the I/O page is processed iden-
tically by the assembler whether CPL mode is specified or not. The access to
the MMR page is indicated by the mmap() qualifier in the syntax. The access
to the I/O page is indicated by the readport and writeport qualifiers. These dma
accesses are always encoded by the assembler as relative to the origin of 0.

’C55x Assembler Features

3-13Assembler Description

3.4.4.3 ARMS Mode

ARMS mode affects indirect addressing and is useful in the context of
controller code. The assembler cannot track the value of the ARMS status bit.
Consequently, you must use the .arms_on and .arms_off directives to model
the ARMS value. Issue one of these directives immediately following any in-
struction that changes the value in the ARMS bit. The .arms_on directive mod-
els the ARMS status bit set to 1; it is equivalent to using the –ma command
line option. The .arms_off directive models the ARMS status bit set to 0. The
.arms_on and .arms_off directives take no arguments.

In the case of a conflict between the command line option and the directive,
the directive takes precedence.

The scope of the .arms_on and .arms_off directives is static and not subject
to the control flow of the assembly program. All of the assembly code between
the .arms_on and the .arms_off directives is assembled in ARMS mode.

By default (.arms_off), indirect memory access modifiers targeted to the
assembly code are selected.

In ARMS mode (.arms_on), short offset modifiers for indirect memory access
are used. These modifiers are more efficient for code size optimization.

Naming Alternate Files and Directories for Assembler Input

 3-14

3.5 Naming Alternate Files and Directories for Assembler Input

The .copy, .include, and .mlib directives tell the assembler to use code from
external files. The .copy and .include directives tell the assembler to read
source statements from another file, and the .mlib directive names a library
that contains macro functions. Chapter 4, Assembler Directives, contains
examples of the .copy, .include, and .mlib directives. The syntax for these
directives is:

.copy ”filename”

.include ”filename”

.mlib ”filename”

The filename names a copy/include file that the assembler reads statements
from or a macro library that contains macro definitions. The filename may be
a complete pathname, a partial pathname, or a filename with no path informa-
tion. The assembler searches for the file in the following order:

1) The directory that contains the current source file. The current source file
is the file being assembled when the .copy, .include, or .mlib directive is
encountered.

2) Any directories named with the –i assembler option

3) Any directories set with the environment variables C55X_A_DIR and
A_DIR

You can augment the assembler’s directory search algorithm by using the –i
assembler option or the C55X_A_DIR and A_DIR environment variables.

3.5.1 Using the –i Assembler Option

The –i assembler option names an alternate directory that contains copy/
include files or macro libraries. The format of the –i option is as follows:

masm55 –i pathname source filename

Each –i option names one pathname. There is no limit to the number of paths
that you can specify. In assembly source, you can use the .copy, .include, or
.mlib directive without specifying path information. If the assembler doesn’t
find the file in the directory that contains the current source file, it searches the
paths designated by the –i options.

For example, assume that a file called source.asm is in the current directory;
source.asm contains the following directive statement:

.copy ”copy.asm”

Naming Alternate Files and Directories for Assembler Input

3-15Assembler Description

Assume that the file is stored in the following directory:

Windows c:\tools\files\copy.asm

UNIX /tools/files/copy.asm

Operating System Enter

Windows masm55 –ic:\tools\files source.asm

UNIX masm55 –i/tools/files source.asm

The assembler first searches for copy.asm in the current directory because
source.asm is in the current directory. Then the assembler searches in the
directory named with the –i option.

3.5.2 Using Environment Variables (C55X_A_DIR and A_DIR)

An environment variable is a system symbol that you define and assign a
string to. The assembler uses the environment variables C55X_A_DIR and
A_DIR to name alternate directories that contain copy/include files or macro
libraries.

The assembler looks for the C55X_A_DIR environment variable first and then
reads and processes it. If it does not find this variable, it reads the A_DIR envi-
ronment variable and processes it. If both variables are set, the settings of the
processor-specific variable are used. The processor-specific variable is useful
when you are using Texas Instruments tools for different processors at the
same time.

The command for assigning the environment variable is as follows:

Operating System Enter

Windows set A_DIR= pathname;another pathname ...

UNIX setenv A_DIR ” pathname;another pathname ...”

The pathnames are directories that contain copy/include files or macro
libraries. You can separate the pathnames with a semicolon or with blanks. In
assembly source, you can use the .copy, .include, or .mlib directive without
specifying path information. If the assembler doesn’t find the file in the direc-
tory that contains the current source file or in directories named by –i, it
searches the paths named by the environment variable.

For example, assume that a file called source.asm contains these statements:

.copy ”copy1.asm”

.copy ”copy2.asm”

Naming Alternate Files and Directories for Assembler Input

 3-16

Assume that the files are stored in the following directories:

Windows c:\tools\files\copy1.asm
 c:\dsys\copy2.asm

UNIX /tools/files/copy1.asm
 /dsys/copy2.asm

You could set up the search path with the commands shown in the following
table:

Operating System Enter

Windows set A_DIR=c:\dsys
masm55 –ic:\tools\files source.asm

UNIX setenv A_DIR ”/dsys”
masm55 –i/tools/files source.asm

The assembler first searches for copy1.asm and copy2.asm in the current
directory because source.asm is in the current directory. Then the assembler
searches in the directory named with the –i option and finds copy1.asm.
Finally, the assembler searches the directory named with A_DIR and finds
copy2.asm.

Note that the environment variable remains set until you reboot the system or
reset the variable by entering one of these commands:

Operating System Enter

Windows set A_DIR=

UNIX unsetenv A_DIR

Source Statement Format

3-17Assembler Description

3.6 Source Statement Format

TMS320C55x assembly language source programs consist of source state-
ments that can contain assembler directives, assembly language instructions,
macro directives, and comments. Source statement lines can be as long as
the source file format allows.

Example source statements are shown below.

(a) Mnemonic instructions

SYM1 .set 2 ; Symbol SYM1 = 2.
Begin: MOV #SYM1, AR1 ; Load AR1 with 2.

.data

.byte 016h ; Initialize word (016h)

(b) Algebraic instructions

SYM1 .set 2 ; Symbol SYM1 = 2.
Begin: AR1 = #SYM1 ; Load AR1 with 2.

.data

.byte 016h ; Initialize word (016h)

3.6.1 Source Statement Syntax

A source statement can contain four ordered fields. The general syntax for
source statements is as follows:

Mnemonic syntax:

[label] [:] mnemonic [operand list] [;comment]

Algebraic syntax:

[label] [:] instruction [;comment]

Follow these guidelines:

� All statements must begin with a label, a blank, an asterisk, or a semico-
lon.

� Labels are optional; if used, they must begin in column 1.

� One or more blanks must separate each field. Tab characters are
equivalent to blanks.

� Comments are optional. Comments that begin in column 1 can begin with
an asterisk or a semicolon (* or ;), but comments that begin in any other
column must begin with a semicolon.

Source Statement Format

 3-18

3.6.2 Label Field

Labels are optional for all assembly language instructions and for most (but
not all) assembler directives. When used, a label must begin in column 1 of
a source statement. A label can contain up to 32 alphanumeric characters
(A–Z, a–z, 0–9, _, and $). Labels are case sensitive, and the first character
cannot be a number. A label can be followed by a colon (:); the colon is not
treated as part of the label name. If you don’t use a label, the first character
position must contain a blank, a semicolon, or an asterisk.

When you use a label, its value is the current value of the section program
counter (the label points to the statement it’s associated with). If, for example,
you use the .word directive to initialize several words, a label would point to
the first word. In the following example, the label Start has the value 40h.

 5 000000 .data
 6 000000 00 ; Assume other code was assembled.
 7 ...
 8 ...
 9 000040 000A Start: .word 0Ah,3,7
 000041 0003
 000042 0007

A label on a line by itself is a valid statement. The label assigns the current
value of the section program counter to the label; this is equivalent to the fol-
lowing directive statement:

label .set $; $ provides the current value of the SPC.

When a label appears on a line by itself, it is assigned to the address of the
instruction on the next line (the SPC is not incremented):

3 000043 Here:
4 000043 0003 .word 3

3.6.3 Mnemonic Field

In mnemonic assembly, the mnemonic field follows the label field. The mne-
monic field must not start in column 1; if it does, it will be interpreted as a label.
The mnemonic field can contain one of the following opcodes:

� Machine-instruction mnemonic (such as ABS, MPYU, STH)
� Assembler directive (such as .data, .list, .set)
� Macro directive (such as .macro, .var, .mexit)
� Macro call

Source Statement Format

3-19Assembler Description

3.6.4 Operand Field

The operand field is a list of operands that follow the mnemonic field. An
operand can be a constant (see Section 3.7, Constants, on page 3-21), a
symbol (see Section 3.9, Symbols, on page 3-25), or a combination of con-
stants and symbols in an expression (see Section 3.10, Expressions, on page
3-31). You must separate operands with commas.

� Operand Prefixes for Instructions

The assembler allows you to specify that a constant, symbol, or expres-
sion should be used as an address, an immediate value, or an indirect
value. The following rules apply to the operands of instructions.

� # prefix — the operand is an immediate value . If you use the # sign
as a prefix, the assembler treats the operand as an immediate value.
This is true even when the operand is a register or an address; the
assembler treats the address as a value instead of using the contents
of the address. This is an example of an instruction that uses an oper-
and with the # prefix:

Label: ADD #123, AC0

The operand #123 is an immediate value. The assembler adds 123
(decimal) to the contents of the specified accumulator.

� * prefix — the operand is an indirect address. If you use the * sign
as a prefix, the assembler treats the operand as an indirect address;
that is, it uses the contents of the operand as an address. This is an
example of an instruction that uses an operand with the * prefix:

Label: MOV *AR4,AC0

The operand *AR4 specifies an indirect address. The assembler goes
to the address specified by the contents of register AR4 and then
moves the contents of that location to the specified accumulator.

� Immediate Value for Directives

The immediate value mode is primarily used with instructions. In some
cases, it can also be used with the operands of directives.

3.6.5 Instruction Field

In algebraic assembly, the instruction field is a combination of the mnemonic
and operand fields used in mnemonic syntax. You usually do not have a mne-
monic followed by operands. Rather, the operands are part of the overall state-
ment. The following items describe how to use the instruction field for algebra-
ic syntax:

Source Statement Format

 3-20

� Generally, operands are not separated by commas. Some algebraic
instructions consist of a mnemonic and operands. For algebraic state-
ments of this type, commas are used to separate operands. For example,
lms(Xmem, Ymem, ACx, ACy).

� Expressions that have more than one term that is used as a single oper-
and must be delimited with parentheses. This rule does not apply to state-
ments using a function call format, since they are already set off with
parentheses. For example, AC0 = AC1 & #(1 << sym) << 5. The
expression 1 << sym is used as a single operand and is therefore set off
with parentheses.

� All register names are reserved.

� For algebraic instructions that consist of a mnemonic and operands, the
mnemonic word is reserved.

3.6.6 Comment Field

A comment can begin in any column and extends to the end of the source line.
A comment can contain any ASCII character, including blanks. Comments are
printed in the assembly source listing, but they do not affect the assembly.

A source statement that contains only a comment is valid. If it begins in column
1, it can start with a semicolon (;) or asterisk (*). Comments that begin any-
where else on the line must begin with a semicolon. The asterisk identifies a
comment only if it appears in column 1.

Constants

3-21Assembler Description

3.7 Constants

The assembler supports six types of constants:

� Binary integer
� Octal integer
� Decimal integer
� Hexadecimal integer
� Character
� Assembly time
� Floating-point

The assembler maintains each constant internally as a 32-bit quantity.
Constants are not sign-extended. For example, the constant 0FFH is equal
to 00FF (base 16) or 255 (base 10); it does not equal –1.

In general, in ’C55x algebraic assembly source code, constants must begin
with a ’#’.

3.7.1 Binary Integers

A binary integer constant is a string of up to 16 binary digits (0s and 1s)
followed by the suffix B (or b). If fewer than 16 digits are specified, the
assembler right justifies the value and zero fills the unspecified bits. These are
examples of valid binary constants:

00000000B Constant equal to 010 or 016

0100000b Constant equal to 3210 or 2016

01b Constant equal to 110 or 116

11111000B Constant equal to 24810 or 0F816

3.7.2 Octal Integers

An octal integer constant is a string of up to 6 octal digits (0 through 7) prefixed
with a 0 (zero) or suffixed with Q or q. These are examples of valid octal
constants:

10Q Constant equal to 810 or 816

100000Q Constant equal to 32 76810 or 8 00016

226q Constant equal to 15010 or 9616

Or, you can use C notation for octal constants:

010 Constant equal to 810 or 816

0100000 Constant equal to 32 76810 or 8 00016

0226 Constant equal to 15010 or 9616

Constants

 3-22

3.7.3 Decimal Integers

A decimal integer constant is a string of decimal digits, ranging from –32 768
to 65 535. These are examples of valid decimal constants:

1000 Constant equal to 100010 or 3E816

–32768 Constant equal to –32 76810 or 8 00016

25 Constant equal to 2510 or 1916

3.7.4 Hexadecimal Integers

A hexadecimal integer constant is a string of up to four hexadecimal digits
followed by the suffix H (or h). Hexadecimal digits include the decimal values
0–9 and the letters A–F and a–f. A hexadecimal constant must begin with a
decimal value (0–9). If fewer than four hexadecimal digits are specified, the
assembler right-justifies the bits. These are examples of valid hexadecimal
constants:

78h Constant equal to 12010 or 007816

0FH Constant equal to 1510 or 000F16

37ACh Constant equal to 14 25210 or 37AC16

Or, you can use C notation for hexadecimal constants:

0x78 Constant equal to 12010 or 007816

0x0F Constant equal to 1510 or 000F16

0x37AC Constant equal to 14 25210 or 37AC16

3.7.5 Character Constants

A character constant is a string of one or two characters enclosed in single
quotes. The characters are represented internally as 8-bit ASCII characters.
Two consecutive single quotes are required to represent each single quote
that is part of a character constant. A character constant consisting only of two
single quotes is valid and is assigned the value 0. If only one character is speci-
fied, the assembler right-justifies the bits. These are examples of valid charac-
ter constants:

’a’ Represented internally as 6116

’C’ Represented internally as 4316

’’’D’ Represented internally as 2 74416

Constants

3-23Assembler Description

Note the difference between character constants and character strings
(Section 3.8, Character Strings, on page 3-24, discusses character strings).
A character constant represents a single integer value; a string is a list of char-
acters.

3.7.6 Floating-Point Constants

A floating-point constant is a string of decimal digits, followed by an optional
decimal point, fractional portion, and exponent portion. The syntax for a
floating-point number is:

[+| –] [nnn] . [nnn [E| e [+| –] nnn]]

Replace nnn with a string of decimal digits. You can precede nnn with a + or
a –. You must specify a decimal point. For example, 3.e5 is valid, but 3e5 is
not valid. The exponent indicates a power of 10. These are examples of valid
constants:

3.0
3.14
.3
–0.314e13
+314.59e–2

Character Strings

 3-24

3.8 Character Strings

A character string is a string of characters enclosed in double quotes. Double
quotes that are part of character strings are represented by two consecutive
double quotes. The maximum length of a string varies and is defined for each
directive that requires a character string. Characters are represented
internally as 8-bit ASCII characters.

These are examples of valid character strings:

”sample program” defines the 14-character string sample program.

”PLAN ””C””” defines the 8-character string PLAN ”C”.

Character strings are used for the following:

� Filenames, as in .copy ”filename”
� Section names, as in .sect ”section name”
� Data initialization directives, as in .byte ”charstring”
� Operands of .string directives

Character Strings

Symbols

3-25Assembler Description

3.9 Symbols

Symbols are used as labels, constants, and substitution symbols. A symbol
name is a string of up to 200 alphanumeric characters (A–Z, a–z, 0–9, $,
and _). The first character in a symbol cannot be a number, and symbols can-
not contain embedded blanks. The symbols you define are case sensitive; for
example, the assembler recognizes ABC, Abc, and abc as three unique
symbols. You can override case sensitivity with the –c assembler option. A
symbol is valid only during the assembly in which it is defined, unless you use
the .global directive to declare it as an external symbol.

3.9.1 Labels

Symbols used as labels become symbolic addresses associated with loca-
tions in the program. Labels used locally within a file must be unique. Assem-
bler directive names (without the ”.” prefix) are valid label names.

Labels can also be used as the operands of .global, .ref, .def, or .bss direc-
tives; for example:

.global label1

label2 nop
ADD @label1,AC1,AC1
B label2

Reserved words are not valid label names.

3.9.2 Symbolic Constants

Symbols can be set to constant values. By using constants, you can equate
meaningful names with constant values. The .set and .struct/.tag/.endstruct
directives enable you to set constants to symbolic names. Symbolic constants
cannot be redefined. The following example shows how these directives can
be used:

K .set 1024 ;constant definitions
maxbuf .set 2*K
value .set 0.
delta .set 1.

item .struct ;item structure definition
.int value ;constant offsets value = 0
.int delta ;constant offsets delta = 1

i_len .endstruct

array .tag item ;array declaration
.bss array, i_len*K

The assembler also has several predefined symbolic constants; these are
discussed in the next section.

Symbols

 3-26

3.9.3 Defining Symbolic Constants (–d Option)

The –d option equates a constant value with a symbol. The symbol can then
be used in place of a value in assembly source. The format of the –d option
is as follows:

masm55 –d name=[value]

The name is the name of the symbol you want to define. The value is the value
you want to assign to the symbol. If the value is omitted, the symbol is set to 1.

Within assembler source, you may test the symbol with the following direc-
tives:

Type of Test Directive Usage

Existence .if $isdefed(” name”)

Nonexistence .if $isdefed(” name”) = 0

Equal to value .if name = value

Not equal to value .if name != value

Note that the argument to the $isdefed built-in function must be enclosed in
quotes. The quotes cause the argument to be interpreted literally rather than
as a substitution symbol.

3.9.4 Predefined Symbolic Constants

The assembler has several predefined symbols, including the following:

� $, the dollar sign character, represents the current value of the section
program counter (SPC).

� Memory-mapped registers are set up as symbols by the assembler.

3.9.5 Substitution Symbols

Symbols can be assigned a string value (variable). This enables you to alias
character strings by equating them to symbolic names. Symbols that
represent character strings are called substitution symbols. When the
assembler encounters a substitution symbol, its string value is substituted for
the symbol name. Unlike symbolic constants, substitution symbols can be
redefined.

A string can be assigned to a substitution symbol anywhere within a program;
for example:

.asg ”errct”, AR2 ;register 2

.asg ”*+”, INC ;indirect auto-increment

.asg ”*–”, DEC ;indirect auto-decrement

Symbols

3-27Assembler Description

When you are using macros, substitution symbols are important because
macro parameters are actually substitution symbols that are assigned a macro
argument. The following code shows how substitution symbols are used in
macros:

add2 .macro ADDRA,ADDRB ;add2 macro definition

MOV ADDRA,AC0
ADD ADDRB,AC0,AC0
MOV AC0,ADDRB
.endm

; add2 invocation
add2 LOC1, LOC2

; the macro will be expanded as follows:
; MOV LOC1,AC0
; ADD LOC2,AC0,AC0
; MOV AC0,LOC2

For more information about macros, see Chapter 5, Macro Language.

Symbols

 3-28

3.9.6 Local Labels

Local labels are special labels whose scope and effect are temporary. A local
label can be defined in two ways:

� $n, where n is a decimal digit in the range of 0–9. For example, $4 and $1
are valid local labels.

� name?, where name is any legal symbol name as described above. The
assembler replaces the question mark with a period followed by a unique
number. When the source code is expanded, you will not see the unique
number in the listing file. Your label appears with the question mark as it
did in the macro definition. You cannot declare this label as global.

Normal labels must be unique (they can be declared only once), and they can
be used as constants in the operand field. Local labels, however, can be
undefined and defined again or automatically generated. Local labels cannot
be defined by directives.

A local label can be undefined, or reset, in one of four ways:

� By using the .newblock directive
� By changing sections (using a .sect, .text, or .data directive)
� By entering an include file (specifying the .include or .copy directive)
� By leaving an include file (reaching the end of an included file)

Example 3–3 demonstrates the $n form of local labels. This example assumes
that symbols ADDRA, ADDRB, ADDRC have been defined previously.

Example 3–3. $n Local Labels

(a) Code that uses a local label legally

Label1: MOV ADDRA,AC0 ; Load Address A to AC0.
SUB ADDRB,AC0,AC0 ; Subtract Address B.
BCC $1,AC0 < #0 ; If < 0, branch to $1
MOV ADDRB,AC0 ; otherwise, load ADDRB to AC0

 B $2 ; and branch to $2.
$1 MOV ADDRA,AC0 ; $1: load ADDRA to AC0.
$2 ADD ADDRC,AC0,AC0 ; $2: add ADDRC.

.newblock ; Undefine $1 so it can be used
; again.

BCC $1,AC0 < #0 ; If less than zero,
 ; branch to $1.

MOV AC0,ADDRC ; Store AC0 low in ADDRC.
$1 NOP

Symbols

3-29Assembler Description

(b) Code that uses a local label illegally

Label1: MOV ADDRA,AC0
SUB ADDRB,AC0,AC0
BCC $1,AC0 < #0
MOV ADDRB,AC0

 B $2
$1 MOV ADDRA,AC0
$2 ADD ADDRC,AC0,AC0

BCC $1,AC0 < #0
MOV AC0,ADDRC

$1 NOP ; Wrong: $1 is multiply defined.

Local labels are especially useful in macros. If a macro contains a normal label
and is called more than once, the assembler issues a multiple-definition error.
If you use a local label and .newblock within a macro, however, the local label
is used and reset each time the macro is expanded.

Up to ten local labels of the $n form can be in effect at one time. Local labels
of the form name? are not limited. After you undefine a local label, you can
define it and use it again. Local labels do not appear in the object code symbol
table.

The maximum label length is shortened to allow for the unique suffix. If the
macro is expanded fewer than 10 times, the maximum label length is 126 char-
acters. If the macro is expanded from 10 to 99 times, the maximum label length
is 125.

Example 3–4 demonstrates the name? form of a local label.

Symbols

 3-30

Example 3–4. name? Local Labels

; First definition of local label ’mylab’
nop

mylab? nop
B mylab?

; Include file has second definition of ’mylab’
.copy ”a.inc”

; Third definition of ’mylab’,reset upon exit from include

mylab? nop
B mylab?

; Fourth definition of ’mylab’ in macro, macros use
; different namespace to avoid conflicts

mymac .macro
mylab? nop

B mylab?
.endm

; Macro invocation

mymac

; Reference to third definition of ’mylab’, note that
; definition is not reset by macro invocation nor
; conflicts with same name defined in macro

B mylab?

; Changing section, allowing fifth definition of ’mylab’
.sect ”Secto_One”
nop
.data

mylab? .int 0
.text
nop
nop
B mylab?

;.newblock directive, allowing sixth definition of ’mylab’
.newblock
.data

mylab? .int 0
.text
nop
nop
B mylab?

Expressions

3-31Assembler Description

3.10 Expressions

An expression is an operand or a series of operands separated by arithmetic
operators. An operand is an assembly-time constant or a link-time relocatable
symbol. The range of valid expression values is –32 768 to 32 767. Three
main factors influence the order of expression evaluation:

Parentheses Expressions that are enclosed in parentheses are
always evaluated first.

8 / (4 / 2) = 4, but 8 / 4 / 2 = 1

You cannot substitute braces ({ }) or brackets ([])
for parentheses.

 Precedence groups The ’C55x assembler uses the same order of pre-
cedence as the C language does as summarized
in Table 3–1. This differs from the order of prece-
dence of other TMS320 assemblers. When paren-
theses do not determine the order of expression
evaluation, the highest precedence operation is
evaluated first.

8 + 4 / 2 = 10 (4 / 2 is evaluated first)

Left-to-right evaluation When parentheses and precedence groups do not
determine the order of expression evaluation, the
expressions are evaluated as happens in the C
language.

8 / 4*2 = 4 , but 8 / (4*2) = 1

Expressions

 3-32

3.10.1 Operators

Table 3–1 lists the operators that can be used in expressions.

Note: Relational Operators Cannot Be Applied to Relocatable Link-
Time Operands

Relocatable link-time operands do not support the relational operators:
<, <=, >, >=, !=, and =[=].

Table 3–1. Operators Used in Expressions (Precedence)

Symbols Operators Evaluation

+ – ~ Unary plus, minus, 1s complement Right to left

* / % Multiplication, division, modulo Left to right

+ – Addition, subtraction Left to right

<< >> Left shift, right shift Left to right

< <= > >= Less than, LT or equal, greater than,
GT or equal

Left to right

 !=, =[=] Not equal to, equal to Left to right

& Bitwise AND Left to right

^ Bitwise exclusive OR Left to right

| Bitwise OR Left to right

Note: Unary +, –, and * have higher precedence than the binary forms.

3.10.2 Expression Overflow and Underflow

The assembler checks for overflow and underflow conditions when arithmetic
operations are performed at assembly time. It issues a Value Truncated warn-
ing whenever an overflow or underflow occurs. The assembler does not check
for overflow or underflow in multiplication.

Expressions

3-33Assembler Description

3.10.3 Well-Defined Expressions

Some assembler directives require well-defined expressions as operands.
Well-defined expressions contain only symbols or assembly-time constants
that are defined before they are encountered in the expression. The evaluation
of a well-defined expression must be absolute.

Example 3–5. Well-Defined Expressions

.data
label1 .word 0

.word 1

.word 2
label2 .word 3

X .set 50h

goodsym1 .set 100h + X : Because value of X is defined before
; referenced, this is a valid well-defined
; expression

goodsym2 .set $; All references to previously defined local
goodsym3 .set label1 : labels, including the current SPC ($), are

; considered to be well-defined.

goodsym4 .set label2 – label1 ; Although label1 and label2 are not
; absolute symbols, because they are local
; labels defined in the same section, their
; difference can be computed by the assembler.
; The difference is absolute, so the
; expression is well-defined.

3.10.4 Conditional Expressions

The assembler supports relational operators that can be used in any
expression, except with relocatable link-time operands; they are especially
useful for conditional assembly. Relational operators include the following:

= Equal to = = Equal to

! = Not equal to
< Less than <= Less than or equal to
> Greater than > = Greater than or equal to

Conditional expressions evaluate to 1 if true and 0 if false; they can be used
only on operands of equivalent types, for example, absolute value compared
to absolute value, but not absolute value compared to relocatable value.

Built-in Functions

 3-34

3.11 Built-in Functions

The assembler supports built-in functions for conversions and various math
computations. Table 3–2 describes the built-in functions. Note that expr must
be a constant value. See Table 5–1 for a description of the assembler’s non-
mathematical built-in functions.

Table 3–2. Assembler Built-In Math Functions

Function Description

$acos (expr) returns the arc cosine of expr as a floating-point value

$asin (expr) returns the arc sine of expr as a floating-point value

$atan (expr) returns the arc tangent of expr as a floating-point value

$atan2 (expr) returns the arc tangent of expr as a floating-point value
(–pi to pi)

$ceil (expr) returns the smallest integer that is not less than the
expression

$cosh (expr) returns the hyperbolic cosine of expr as a floating-point
value

$cos (expr) returns the cosine of expr as a floating-point value

$cvf (expr) converts expr to floating-point value

$cvi (expr) converts expr to integer value

$exp (expr) returns the result of raising e to the expr power

$fabs (expr) returns absolute value of expr as a floating-point value

$floor (expr) returns the largest integer that is not greater than the
expression

$fmod (expr1, expr2) returns the remainder after dividing expr1 and expr2

$int (expr) returns 1 if expr has an integer result

$ldexp (expr1, expr2) returns the result of expr1 multiplied by 2 raised to the
expr2 power

$log10 (expr) returns the base 10 logarithm of expr

$log (expr) returns the natural logarithm of expr

$max (expr1, expr2) returns the maximum of 2 expressions

$min (expr1, expr2) returns the minimum of 2 expressions

Built-in Functions

3-35Assembler Description

Table 3–2. Assembler Built-In Math Functions (Continued)

Function Description

$pow (expr1, expr2) raises expr1 to the power expr 2

$round (expr) returns the result of expr rounded to the nearest integer

$sgn (expr) returns the sign of expr

$sin (expr) returns the sine of expr as a floating-point value

$sinh (expr) returns the hyperbolic sine of expr as a floating-point
value

$sqrt (expr) returns the square root of expr as a floating-point value

$tan (expr) returns the tangent of expr as a floating-point value

$tanh (expr) returns the hyperbolic tangent of expr as a floating-point
value

$trunc (expr) returns the result of expr rounded toward zero

Source Listings

 3-36

3.12 Source Listings

A source listing shows source statements and the object code they produce.
To obtain a listing file, invoke the assembler with the –l (lowercase L) option.

Two banner lines, a blank line, and a title line are at the top of each source list-
ing page. Any title supplied by a .title directive is printed on the title line; a page
number is printed to the right of the title. If you don’t use the .title directive, the
name of the source file is printed. The assembler inserts a blank line below the
title line.

Each line in the source file may produce a line in the listing file that shows a
source statement number, an SPC value, the object code assembled, and the
source statement. A source statement may produce more than one word of
object code. The assembler lists the SPC value and object code on a separate
line for each additional word. Each additional line is listed immediately
following the source statement line.

Field 1: Source Statement Number

Line Number

The source statement number is a decimal. The assembler numbers
source lines as it encounters them in the source file; some state-
ments increment the line counter but are not listed. (For example,
.title statements and statements following a .nolist are not listed.)
The difference between two consecutive source line numbers indi-
cates the number of intervening statements in the source file that are
not listed.

Include File Letter

The assembler may precede a line with a letter; the letter indicates
that the line is assembled from an included file.

Nesting Level Number

The assembler may precede a line with a number; the number indi-
cates the nesting level of macro expansions or loop blocks.

Field 2: Section Program Counter

This field contains the section program counter (SPC) value, which
is hexadecimal. All sections (.text, .data, .bss, and named sections)
maintain separate SPCs. Some directives do not affect the SPC and
leave this field blank.

Source Listings

3-37Assembler Description

Field 3: Object Code

This field contains the hexadecimal representation of the object
code. All machine instructions and directives use this field to list
object code. This field also indicates the relocation type by
appending one of the following characters to the end of the field:

! undefined external reference

’ .text relocatable

” .data relocatable

+ .sect relocatable

– .bss, .usect relocatable

% complex relocation expression

Field 4: Source Statement Field

This field contains the characters of the source statement as they
were scanned by the assembler. Spacing in this field is determined
by the spacing in the source statement.

Example 3–6 shows an assembler listing with each of the four fields identified.

Source Listings

 3-38

Example 3–6. Assembler Listing

(a) Mnemonic example

Field 1 Field 2 Field 3 Field 4

 1 .global RSET, INT0, INT1, INT2

 2 .global TINT, RINT, XINT, USER
 3 .global ISR0, ISR1, ISR2
 4 .global time, rcv, xmt, proc
 5
 6 initmac .macro
 7 ;* initialize macro
 8 BSET #9,ST1_55 ;disable overflow
 9 MOV #0,DP ;set dp
 10 MOV #55,AC0 ;set AC0
 11 BCLR #11,ST1_55 ;enable ints
 12 .endm
 13 ***
 14 * Reset and interrupt vectors *
 15 ***
 16 000000 .sect ”rset”
 17 000000 6A00 RSET: B init
 000002 0010+
 18 000004 6A00 INT0: B ISR0
 000006 0000!
 19 000008 6A00 INT1: B ISR1
 00000a 0000!
 20 00000c 6A00 INT2: B ISR2
 00000e 0000!
 21
 22 *
 23 000000 .sect ”ints”
 24 000000 6A00 TINT B time
 000002 0000!
 25 000004 6A00 RINT B rcv
 000006 0000!
 26 000008 6A00 XINT B xmt
 00000a 0000!
 27 00000c 6A00 USER B proc
 00000e 0000!
 28 ***
 29 * Initialize processor. *
 30 ***
 31 000010 init: initmac
 1 * initialize macro
 1 000010 4693 BSET #9,ST1_55

000012 7800 MOV #0,DP
000014 0000

 1 000016 7600 MOV #55,AC0
000018 3708

 1 00001a 46B2 BCLR #11,ST1_55

Source Listings

3-39Assembler Description

(b) Algebraic example

Field 1 Field 2 Field 3 Field 4

 1 .global RSET, INT0, INT1, INT2

 2 .global TINT, RINT, XINT, USER
 3 .global ISR0, ISR1, ISR2
 4 .global time, rcv, xmt, proc
 5
 6 initmac .macro
 7 ;* initialize macro
 8 bit(ST1, #ST1_SATD) = #1 ;disable oflow
 9 DP = #((01FFH & 0) << 7) ;set dp
 10 AC0 = #55 ;set AC0
 11 bit(ST1, #ST1_INTM) = #0 ;enable ints
 12 .endm
 13 ***
 14 * Reset and interrupt vectors *
 15 ***
 16 000000 .sect ”rset”
 17 000000 6A00 RSET: goto #(init)
 000002 0010+
 18 000004 6A00 INT0: goto #(ISR0)
 000006 0000!
 19 000008 6A00 INT1: goto #(ISR1)
 00000a 0000!
 20 00000c 6A00 INT2: goto #(ISR2)
 00000e 0000!
 21
 22 *
 23 000000 .sect ”ints”
 24 000000 6A00 TINT goto #(time)
 000002 0000!
 25 000004 6A00 RINT goto #(rcv)
 000006 0000!
 26 000008 6A00 XINT goto #(xmt)
 00000a 0000!
 27 00000c 6A00 USER goto #(proc)
 00000e 0000!
 28 ***
 29 * Initialize processor. *
 30 ***
 31 000010 init: initmac
 1 * initialize macro
 1 000010 4693 bit(ST1, #ST1_SATD) = #1
 1 000012 7800 DP = #((01FFH & 0) << 7)

000014 0000
 1 000016 7600 AC0 = #55

000018 3708
 1 00001a 46B2 bit(ST1, #ST1_INTM) = #0

Cross-Reference Listings

 3-40

3.13 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. To obtain a
cross-reference listing, invoke the assembler with the –x option or use the
.option directive. The assembler will append the cross-reference to the end of
the source listing.

Note that when the assembler generates a cross–reference listing for an
assembly file that contains .include directives, it keeps a record of the include
file and line number in which a symbol is defined/referenced. It does this by
assigning a letter reference (A, B, C, etc.) for each include file. The letters are
assigned in the order in which the .include directives are encountered in the
assembly source file.

Example 3–7. Sample Cross-Reference Listing

LABEL VALUE DEFN REF

INT0 000004+ 25 5
INT1 000008+ 27 5
INT2 00000c+ 29 5
ISR0 REF 9 25
ISR1 REF 9 27
ISR2 REF 9 29
RINT 000004+ 37 7
RSET 000000+ 23 5
TINT 000000+ 35 7
XINT 000008+ 39 7
init 000010+ 45 23

Label column contains each symbol that was defined or referenced
during the assembly.

Value column contains a hexadecimal number, which is the value
assigned to the symbol or a name that describes the symbol’s
attributes. A value may also be followed by a character that
describes the symbol’s attributes. Table 3–3 lists these char-
acters and names.

Definition (DEFN) column contains the statement number that defines
the symbol. This column is blank for undefined symbols.

Reference (REF) column lists the line numbers of statements that refer-
ence the symbol. A blank in this column indicates that the sym-
bol was never used.

Cross-Reference Listings

3-41Assembler Description

Table 3–3. Symbol Attributes

Character or Name Meaning

REF External reference (.global symbol)

UNDF Undefined

’ Symbol defined in a .text section

” Symbol defined in a .data section

+ Symbol defined in a .sect section

– Symbol defined in a .bss or .usect section

4-1Assembler Directives

Assembler Directives

Assembler directives supply data to the program and control the assembly
process. Assembler directives enable you to do the following:

� Assemble code and data into specified sections
� Reserve space in memory for uninitialized variables
� Control the appearance of listings
� Initialize memory
� Assemble conditional blocks
� Declare global variables
� Specify libraries from which the assembler can obtain macros
� Examine symbolic debugging information

This chapter is divided into two parts: the first part (Sections 4.1 through 4.9)
describes the directives according to function, and the second part
(Section 4.10) is an alphabetical reference.

Topic Page

4.1 Directives Summary 4-2.

4.2 Directives That Define Sections 4-8.

4.3 Directives That Initialize Constants 4-11.

4.4 Directives That Align the Section Program Counter 4-16.

4.5 Directives That Format the Output Listing 4-18.

4.6 Directives That Reference Other Files 4-20.

4.7 Conditional Assembly Directives 4-21.

4.8 Assembly-Time Symbol Directives 4-22.

4.9 Miscellaneous Directives 4-24.

4.10 Directives Reference 4-26.

Chapter 4

Directives Summary

 4-2

4.1 Directives Summary

This section summarizes the assembler directives.

Besides the assembler directives documented here, the TMS320C55x
software tools support the following directives:

� The assembler uses several directives for macros. The macro directives
are listed in this chapter, but they are described in detail in Chapter 5,
Macro Language.

� The absolute lister also uses directives. Absolute listing directives are not
entered by the user but are inserted into the source program by the
absolute lister. Chapter 10, Absolute Lister Description, discusses these
directives; they are not discussed in this chapter.

� The C compiler uses directives for symbolic debugging. Unlike other
directives, symbolic debugging directives are not used in most assembly
language programs. Appendix B, Symbolic Debugging Directives,
discusses these directives; they are not discussed in this chapter.

Note: Labels and Comments in Syntax

In most cases, a source statement that contains a directive may also contain
a label and a comment. Labels begin in the first column (they are the only
elements, except comments, that can appear in the first column), and com-
ments must be preceded by a semicolon or an asterisk if the comment is the
only statement on the line. To improve readability, labels and comments are
not shown as part of the directive syntax. For some directives, however, a
label is required and will be shown in the syntax.

Table 4–1. Assembler Directives Summary

(a) Directives that define sections

Mnemonic and Syntax Description Page

.bss symbol, size in words [, blocking]
 [, alignment]

Reserve size words in the .bss (uninitialized data)
section

4-31

.clink [” section name”] Enables conditional linking for the current or specified
section

4-36

.data Assemble into the .data (initialized data) section 4-41

.sect ” section name” Assemble into a named (initialized) section 4-85

.text Assemble into the .text (executable code) section 4-97

symbol .usect ” section name”, size in words
 [, blocking] [,alignment]

Reserve size words in a named (uninitialized) section 4-103

Directives Summary

4-3Assembler Directives

Table 4–1. Assembler Directives Summary (Continued)
(b) Directives that initialize constants (data and memory)

Mnemonic and Syntax Description Page

.bes size in bits Reserve size bits in the current section; note that a
label points to the last addressable word in the
reserved space

4-87

.byte value1 [, ... , valuen]

.char value1 [, ... , valuen]
Initialize one or more successive bytes or words in the
current section

4-34

.double value1 [, ... , valuen]

.ldouble value1 [, ... , valuen]
Initialize one or more 64-bit, IEEE double-precision,
floating-point constants

4-42

.field value [, size in bits] Initialize a variable-length field 4-50

.float value [, ... , valuen] Initialize one or more 32-bit, IEEE single-precision,
floating-point constants

4-53

.half value1 [, ... , valuen]

.short value1 [, ... , valuen]
Initialize one or more 16-bit integers 4-57

.int value1 [, ... , valuen] Initialize one or more 16-bit integers 4-61

.long value1 [, ... , valuen] Initialize one or more 32-bit integers 4-69

.pstring ” string1” [, ... ,”stringn”] Initialize one or more text strings (packed). 4-90

.space size in bits; Reserve size bits in the current section; note that a
label points to the beginning of the reserved space

4-87

.string ” string1” [, ... , ”stringn”] Initialize one or more text strings 4-90

.ubyte value1 [, ... , valuen]

.uchar value1 [, ... , valuen]
Initialize one or more successive bytes or words in the
current section

4-34

.uhalf value1 [, ... , valuen]

.ushort value1 [, ... , valuen]
Initialize one or more unsigned 16-bit integers 4-57

.uint value1 [, ... , valuen] Initialize one or more unsigned 16-bit integers 4-61

.ulong value1 [, ... , valuen] Initialize one or more unsigned 32-bit integers 4-69

.uword value1 [, ... , valuen] Initialize one or more unsigned16-bit integers. 4-61

.word value1 [, ... , valuen] Initialize one or more 16-bit integers. 4-61

.xfloat value1 [, ...,valuen] Initialize one or more 32-bit, IEEE single-precision,
floating-point constants, but do not align on long
word boundary.

4-53

.xlong value1 [, ...,valuen] Initialize one or more 32-bit integers, but do not
align on long word boundary.

4-69

Directives Summary

 4-4

Table 4–1. Assembler Directives Summary (Continued)

(c) Directives that align the section program counter (SPC)

Mnemonic and Syntax Description Page

.align [size] Align the SPC on a byte or word boundary specified
by the parameter; the parameter must be a power of
2, defaults to a 128 byte or 128 word boundary.

4-27

.even Equivalent to .align 2. 4-27

(d) Directives that format the output listing

Mnemonic and Syntax Description Page

.drlist Enable listing of all directive lines (default) 4-45

.drnolist Suppress listing of certain directive lines 4-45

.fclist Allow false conditional code block listing (default) 4-49

.fcnolist Suppress false conditional code block listing 4-49

.length page length Set the page length of the source listing 4-66

.list Restart the source listing 4-67

.mlist Allow macro listings and loop blocks (default) 4-75

.mnolist Suppress macro listings and loop blocks 4-75

.nolist Stop the source listing 4-67

.option {B | L | M | R | T | W | X} Select output listing options 4-81

.page Eject a page in the source listing 4-83

.sslist Allow expanded substitution symbol listing 4-88

.ssnolist Suppress expanded substitution symbol listing
(default)

4-88

.tab size Set tab size 4-96

.title ” string” Print a title in the listing page heading 4-99

.width page width Set the page width of the source listing 4-66

Directives Summary

4-5Assembler Directives

Table 4–1. Assembler Directives Summary (Continued)

(e) Directives that reference other files

Mnemonic and Syntax Description Page

.copy [”]filename[”] Include source statements from another file 4-37

.def symbol1 [, ... , symboln] Identify one or more symbols that are defined in the
current module and may be used in other modules

4-54

.global symbol1 [, ... , symboln] Identify one or more global (external) symbols 4-54

.include [”]filename[”] Include source statements from another file 4-37

.ref symbol1 [, ... , symboln] Identify one or more symbols that are used in the cur-
rent module but may be defined in another module

4-54

(f) Directives that define macros

Mnemonic and Syntax Description Page

.macro Identify the source statement as the first line of a
macro definition. You must place .macro in the opcode
field

4-72

.mlib [”]filename[”] Define macro library 4-73

.mexit Go to .endm. This directive is useful when error test-
ing confirms that macro expansion will fail.

5-3

.endm End .macro code block 4-48

.var Define a local macro substitution symbol 4-106

Directives Summary

 4-6

Table 4–1. Assembler Directives Summary (Continued)

(g) Directives that control conditional assembly

Mnemonic and Syntax Description Page

.break [well-defined expression] End .loop assembly if condition is true. The .break
construct is optional.

4-71

.else Assemble code block if the .if condition is false. The
.else construct is optional. This directive can be used
as the default case in a conditional block.

4-59

.elseif well-defined expression Assemble code block if the .if condition is false and the
.elseif condition is true. The .elseif construct is
optional.

4-59

.endif End .if code block 4-59

.endloop End .loop code block 4-71

.if well-defined expression Assemble code block if the condition is true 4-59

.loop [well-defined expression] Begin repeatable assembly of a code block. The well-
defined expression is a loop count.

4-71

(h) Directives that define symbols at assembly time

Mnemonic and Syntax Description Page

.asg [”]character string[”],
 substitution symbol

Assign a character string to a substitution symbol 4-29

.endstruct End structure definition 4-92

.endunion End union definition 4-100

.equ Equate a value with a symbol 4-86

.eval well-defined expression,
 substitution symbol

Perform arithmetic on numeric substitution
symbols

4-29

.label symbol Define a load-time relocatable label in a section 4-65

.set Equate a value with a symbol 4-86

.struct Begin structure definition 4-92

.tag Assign structure attributes to a label 4-92

.union Begin union definition 4-100

Directives Summary

4-7Assembler Directives

Table 4–1. Assembler Directives Summary (Continued)

(i) Miscellaneous directives

Mnemonic and Syntax Description Page

.arms_on, .arms_off Identify the beginning or end of a block of code to be
assembled in ARMS mode

4-28

.c54cm_on, .c54cm_off Identify the beginning or end of a block of ’C54x
compatibility mode code (code that has been trans-
lated from ’C54x code)

4-35

.cpl_on, .cpl_off Identify the beginning or end of a block of code to be
assembled in CPL mode

4-40

.dp DP_value Specifies the value of the DP register 4-44

.emsg string Send user-defined error messages to the output
device

4-46

.end End program 4-48

label: .ivec [address [, stack mode]] Initialize the entries in the interrupt vector table 4-63

.mmregs Enter memory-mapped registers into the symbol table 4-76

.mmsg string Send user-defined messages to the output device 4-46

.newblock Undefine local labels 4-79

.sblock [”]section name[”]
 [, ... , ”section name”]

Designates sections for blocking 4-84

.noremark num Suppress the assembler remark identified by num. 4-80

.vli_off Identify the beginning of a block of code in which the
assembler will use the largest form of certain variable-
length instructions.

4-107

.vli_on Resume the default behavior of resolving variable-
length instructions to their smallest form

4-107

.wmsg string Send user-defined warning messages to the output
device

4-46

Directives That Define Sections

 4-8

4.2 Directives That Define Sections

These directives associate portions of an assembly language program with
the appropriate sections:

� .bss reserves space in the .bss section for uninitialized variables. The
specified size parameter must be in words, since it is a data section.

� .clink sets the STYP_CLINK flag in the type field for the named section.
The .clink directive can be applied to initialized or uninitialized sections.
The STYP_CLINK flag enables conditional linking by telling the linker to
leave the section out of the final COFF output of the linker if there are no
references found to any symbol in the section.

� .data identifies portions of code in the .data section. The .data section
usually contains initialized data. On ’C55x, data sections are word-
addressable.

� .sect defines initialized named sections and associates subsequent code
or data with that section. A section defined with .sect can contain execut-
able code or data.

� .text identifies portions of code in the .text section. The .text section con-
tains executable code. On ’C55x, code sections are byte-addressable.

� .usect reserves space in an uninitialized named section. The .usect
directive is similar to the .bss directive, but it allows you to reserve space
separately from the .bss section. The specified size parameter must be in
words, since it is a data section.

Chapter 2, Introduction to Common Object File Format, discusses COFF
sections in detail.

Directives That Define Sections

4-9Assembler Directives

Example 4–1 shows how you can use sections directives to associate code
and data with the proper sections. This is an output listing; column 1 shows line
numbers, and column 2 shows the SPC values. (Each section has its own pro-
gram counter, or SPC.) When code is first placed in a section, its SPC equals
0. When you resume assembling into a section after other code is assembled,
the section’s SPC resumes counting as if there had been no intervening code.

The directives in Example 4–1 perform the following tasks:

.text contains basic adding and loading instructions

.data initializes words with the values 9, 10, 11, 12, 13, 14, 15,
and 16.

var_defs initializes words with the values 17 and 18.

.bss reserves 19 words.

.usect reserves 20 words.

The .bss and .usect directives do not end the current section or begin new
sections; they reserve the specified amount of space, and then the assembler
resumes assembling code or data into the current section.

Directives That Define Sections

 4-10

Example 4–1. Sections Directives

 1 **
 2 * Start assembling into the .text section *
 3 **
 4 000000 .text.
 5 000000 3CA0 MOV #10,AC0.
 6 000002 2201 MOV AC0,AC1 .
 7
 8 **
 9 * Start assembling into the .data section *
 10 **
 11 000000 .data
 12 000000 0009 .word 9, 10

000001 000A
 13 000002 000B .word 11, 12

000003 000C
 14
 15 **
 16 * Start assembling into a named, *
 17 * initialized section, var_defs *
 18 **
 19 000000 .sect ”var_defs”
 20 000000 0011 .word 17, 18

000001 0012
 21
 22 **
 23 * Resume assembling into the .data section *
 24 **
 25 000004 .data
 26 000004 000D .word 13, 14

000005 000E
 27 000000 .bss sym, 19 ; Reserve space in .bss
 28 000006 000F .word 15, 16 ; Still in .data

000007 0010
 29
 30 **
 31 * Resume assembling into the .text section *
 32 **
 33 000004 .text
 34 000004 2412 ADD AC1,AC2
 35 000000 usym .usect ”xy”, 20 ; Reserve space in xy
 36 000006 2220 MOV AC2,AC0 ; Still in .text

Directives That Initialize Constants

4-11Assembler Directives

4.3 Directives That Initialize Constants

This section describes several directives that assemble values for the current
section.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of these
directives in a section that includes ’C55x instructions will likely lead to the
generation of an invalid access to the data at execution. Consequently,
Texas Instruments highly recommends that these directives be issued only
within data sections.

� The .bes and .space directives reserve a specified number of bits in the
current section. The assembler fills these reserved bits with 0s.

You can reserve words by multiplying the desired number of words by 16.

� When you use a label with .space, it points to the first byte (in a code
section) or word (in a data section) that contains reserved bits.

� When you use a label with .bes, it points to the last byte (in a code
section) or word (in a data section) that contains reserved bits.

Figure 4–1 shows the .space and .bes directives. Assume the following
code has been assembled for this example:

 1
 2 ** .space and .bes directives
 3 000000 .data
 4 000000 0100 .word 100h, 200h
 000001 0200
 5 000002 Res_1: .space 17
 6 000004 000F .word 15
 7 000006 Res_2: .bes 20
 8 000007 00BA .word 0BAh
 9 ** reserve 3 words
10 000008 Res_3: .space 3*16
11 00000b 000A .word 10

Res_1 points to the first word in the space reserved by .space. Res_2
points to the last word in the space reserved by .bes.

Directives That Initialize Constants

 4-12

Figure 4–1. The .space and .bes Directives

17 bits
reserved

20 bits
reserved

Res_1 = 02h

Res_2 = 06h

� The .byte , .ubyte , .char , and .uchar directives place one or more 8-bit
values into consecutive words in the current data section. These directives
are similar to .word and .uword, except that the width of each value is
restricted to 8 bits.

� The .field directive places a single value into a specified number of bits
in the word (within data sections). With .field, you can pack multiple fields
into a single word; the assembler does not increment the SPC until a word
is filled. If a value can fit within a word, the assembler will guarantee that
it does not span a word address boundary.

Figure 4–2 shows how fields are packed into a word. For this example,
assume the following code has been assembled; notice that the SPC
doesn’t change for the first three fields (the fields are packed into the same
word):

 3 000000 .data
 4 000000 6000 .field 3, 3
 5 000000 6400 .field 8, 6
 6 000000 6440 .field 16, 5
 7 000001 0123 .field 01234h,20
 000002 4000
 8 000003 0000 .field 01234h,32
 000004 1234

Directives That Initialize Constants

4-13Assembler Directives

Figure 4–2. The .field Directive

0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0

0 1 1
15 14 13

15 12 11 10 9 8 7

6 5 4 3 2 0

0 1 1 0 0 1 0 0 0

15
6 bits

.field 8,6

.field 16,5

.field 3,3

5 bits

3 bits
0

0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1
15

.field 01234h,20

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15

.field 01234h,32

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0
15

� .float and .xfloat calculate the single-precision (32-bit) IEEE floating-
point representation of a single floating-point value and store it in two con-
secutive words in the current section. The most significant word is stored
first. The .float directive automatically aligns to the nearest long word
boundary, and .xfloat does not.

� .int, .uint , .half , .uhalf , .short , .ushort , .word , and .uword place one or
more 16-bit values into consecutive words in the current section.

� .double and .ldouble calculate the double-precision (64-bit) IEEE float-
ing-point representation of one or more floating-point values and store
them in four consecutive words in the current section. The .double direc-
tive automatically aligns to the long word boundary.

� .long , .ulong , and .xlong place 32-bit values into two consecutive words
in the current section. The most significant word is stored first. The .long
directive automatically aligns to a long word boundary, and the .xlong
directive does not.

Directives That Initialize Constants

 4-14

� .string and .pstring place 8-bit characters from one or more character
strings into the current section. The .string directive is similar to .byte. It
places 8-bit characters into consecutive words in the current data section.
The .pstring directive also has a width of 8 bits but packs one character
per byte. For .pstring, the last word in a string is padded with null charac-
ters (0) if necessary.

Note: These Directives in a .struct/.endstruct Sequence

The directives listed above do not initialize memory when they are part of a
.struct/.endstruct sequence; rather, they define a member’s size. For more
information about the .struct/.endstruct directives, see Section 4.8,
Assembly-Time Symbol Directives, on page 4-22.

Figure 4–3 compares the .byte, .int, .long, .xlong, .float, .xfloat, .word, and
.string directives. For this example, assume that the following code has been
assembled:

1 000000 .data
2 000000 00AA .byte 0AAh, 0BBh
 000001 00BB
3 000002 0CCC .word 0CCCh
4 000003 0EEE .xlong 0EEEEFFFh
 000004 EFFF
5 000006 EEEE .long 0EEEEFFFFh
 000007 FFFF
6 000008 DDDD .int 0DDDDh
7 000009 3FFF .xfloat 1.99999
 00000a FFAC
8 00000c 3FFF .float 1.99999
 00000d FFAC
9 00000e 0068 .string ”help”
 00000f 0065
 000010 006c
 000011 0070

Directives That Initialize Constants

4-15Assembler Directives

Figure 4–3. Initialization Directives
Word

0 C C C

D D D D

E E E E F F F F

0 0 6 8 0 0 6 5

Code

.byte OAAh, OBBh

.word OCCCh

.int DDDDh

.long EEEEFFFFh

.string ”help”

.float 1.99999

15 0 15 0

h e

3 F F F F F A C

0 E E E E F F F .xlong 0EEEEFFFh

.xfloat 1.999993 F F F F F A C

0 0 6 C 0 0 7 0
l p

10, 11

e, f

c, d

9, a

8

6, 7

3, 4

2

0, 1 0 0 A A 0 0 B B

Directives That Align the Section Program Counter

 4-16

4.4 Directives That Align the Section Program Counter

The .align directive aligns the SPC at a byte boundary in code sections or a
word boundary in data sections. If the SPC is already aligned at the selected
boundary, it is not incremented. Operands for the .align directive must equal
a power of 2 between 20 and 216.

The .align directive with no operands defaults to a 128-byte boundary in a code
section, and a 128-word (page) boundary in a data section.

The .even directive aligns the SPC so that it points to the next word (in code
sections) or long word (in data sections) boundary. It is equivalent to specifying
the .align directive with an operand of 2. Any unused bits in the current byte
or word are filled with 0s.

Figure 4–4 demonstrates the .align directive. Assume that the following code
has been assembled:

 1 000000 .data
 2 000000 4000 .field 2, 3
 3 000000 4160 .field 11, 8
 4 .align 2
 5 000002 0045 .string ”Errorcnt”
 000003 0072
 000004 0072
 000005 006f
 000006 0072
 000007 0063
 000008 006e
 000009 0074
 6 .align
 7 000080 0004 .word 4

Directives That Align the Section Program Counter

4-17Assembler Directives

Figure 4–4. The .align Directive

00h

80h

(a) Current
SPC

(b) New SPC =
80h after
assembling
a .align
directive

128
words

00h

02h(a) Current
SPC =
00h

(b) New SPC =
02h after
assembling
a .align 2
directive

2 words

(a) Result of .align 2

(b) Result of .align without an argument

Directives That Format the Output Listing

 4-18

4.5 Directives That Format the Output Listing

The following directives format the listing file:

� You can use the .drnolist directive to suppress the printing of the following
directives in the listing:

.asg .eval .length .mnolist .var

.break .fclist .mlist .sslist .width

.emsg .fcnolist .mmsg .ssnolist .wmsg

You can use the .drlist directive to turn on the listing of these directives
again.

� The listing file contains a listing of false conditional blocks that do not gen-
erate code. The .fclist and .fcnolist directives turn this listing on and off.
You can use the .fclist directive to list false conditional blocks exactly as
they appear in the source code. This is the default behavior of the
assembler. You can use the .fcnolist directive to list only the conditional
blocks that are actually assembled.

� The .length directive controls the page length of the listing file. You can
use this directive to adjust listings for various output devices.

� The .list and .nolist directives turn the output listing on and off. You can
use the .nolist directive to stop the assembler from printing selected
source statements in the listing file. Use the .list directive to turn the listing
on again.

� The listing file contains a listing of macro expansions and loop blocks. The
.mlist and .mnolist directives turn this listing on and off. You can use the
.mlist directive to print all macro expansions and loop blocks to the listing
(the default behavior of the assembler), and the .mnolist directive to
suppress this listing.

� The .option directive controls certain features in the listing file. This
directive has the following operands:

A turns on listing of all directives and data, and subsequent expan-
sions, macros, and blocks

B limits the listing of .byte directives to one line.

D turns off the listing of certain directives (same effect as .drnolist)

H limits the listing of .half and .short directives to one line.

L limits the listing of .long directives to one line.

M turns off macro expansions in the listing.

N turns off listing (performs .nolist)

Directives That Format the Output Listing

4-19Assembler Directives

O turns on listing (performs .list)

R resets the B, M, T, and W options.

T limits the listing of .string directives to one line.

W limits the listing of .word directives to one line.

X produces a symbol cross-reference listing. (You can also obtain
a cross-reference listing by invoking the assembler with the
–x option.)

� The .page directive causes a page eject in the output listing.

� The .sslist and .ssnolist directives allow and suppress substitution
symbol expansion listing. These directives are useful for debugging the
expansion of substitution symbols.

� The .tab directive defines tab size.

� The .title directive supplies a title that the assembler prints at the top of
each page.

� The .width directive controls the page width of the listing file. You can use
this directive to adjust listings for various output devices.

Directives That Reference Other Files

 4-20

4.6 Directives That Reference Other Files

These directives supply information for or about other files:

� The .copy and .include directives tell the assembler to begin reading
source statements from another file. When the assembler finishes reading
the source statements in the copy/include file, it resumes reading source
statements from the current file immediately following the point at which
the .copy or .include directive occurred. The statements read from a
copied file are printed in the listing file; the statements read from an
included file are not printed in the listing file.

� The .def directive identifies a symbol that is defined in the current module
and that can be used by another module. The assembler includes the
symbol in the symbol table.

� The .global directive declares a symbol external so that it is available to
other modules at link time. (For more information about global symbols,
see subsection 2.7.1, External Symbols, on page 2-19.) The .global
directive does double duty, acting as a .def for defined symbols and as a
.ref for undefined symbols. The linker resolves an undefined global symbol
only if it is used in the program.

� The .ref directive identifies a symbol that is used in the current module but
defined in another module. The assembler marks the symbol as an
undefined external symbol and enters it in the object symbol table so that
the linker can resolve its definition.

Conditional Assembly Directives

4-21Assembler Directives

4.7 Conditional Assembly Directives

Conditional assembly directives enable you to instruct the assembler to
assemble certain sections of code according to a true or false evaluation of an
expression. Two sets of directives allow you to assemble conditional blocks of
code:

� The .if /.elseif /.else/.endif directives tell the assembler to conditionally
assemble a block of code according to the evaluation of an expression.

.if expression marks the beginning of a conditional block and
assembles code if the .if condition is true.

.elseif expression marks a block of code to be assembled if the .if
condition is false and .elseif is true.

.else marks a block of code to be assembled if the .if
condition is false.

.endif marks the end of a conditional block and termi-
nates the block.

� The .loop/.break/.endloop directives tell the assembler to repeatedly
assemble a block of code according to the evaluation of an expression.

.loop expression marks the beginning a block of code that is
assembled repeatedly up to the number of times
indicated by the expression. The expression is the
loop count.

.break expression tells the assembler to continue to repeatedly
assemble when the .break expression is false, and
to go to the code immediately after .endloop when
the expression is true.

.endloop marks the end of a repeatable block.

The assembler supports several relational operators that are useful for
conditional expressions. For more information about relational operators, see
subsection 3.10.4, Conditional Expressions, on page 3-33.

Assembly-Time Symbol Directives

 4-22

4.8 Assembly-Time Symbol Directives

Assembly-time symbol directives equate meaningful symbol names to con-
stant values or strings.

� The .asg directive assigns a character string to a substitution symbol. The
value is stored in the substitution symbol table. When the assembler
encounters a substitution symbol, it replaces the symbol with its character
string value. Substitution symbols can be redefined.

.asg ”10, 20, 30, 40”, coefficients

.byte coefficients

� The .eval directive evaluates an expression, translates the results into a
character, and assigns the character string to a substitution symbol. This
directive is most useful for manipulating counters:

.asg 1 , x

.loop

.byte x*10h

.break x = 4

.eval x+1, x

.endloop

� The .label directive defines a special symbol that refers to the loadtime
address within the current section. This is useful when a section loads at
one address but runs at a different address. For example, you may want
to load a block of performance-critical code into slower off-chip memory
to save space, and move the code to high-speed on-chip memory to run.

� The .set and .equ directives set a value to a symbol. The symbol is stored
in the symbol table and cannot be refined. For example:

bval .set 0100h
.int bval, bval*2, bval+12
B bval

The .set and .equ directives produce no object code. The two directives
are identical and can be used interchangeably.

� The .struct /.endstruct directives set up C-like structure definitions, and
the .tag directive assigns the C-like structure characteristics to a label.

The .struct /.endstruct directives allow you to organize your information
into structures, so that similar elements can be grouped together. Element
offset calculation is then left up to the assembler. The .struct/.endstruct
directives do not allocate memory. They simply create a symbolic template
that can be used repeatedly.

Assembly-Time Symbol Directives

4-23Assembler Directives

The .tag directive associates structure characteristics with a label symbol.
This simplifies the symbolic representation and also provides the ability to
define structures that contain other structures. The .tag directive does not
allocate memory, and the structure tag (stag) must be defined before it is
used.

 .data
type .struct ; structure tag definition
X .int
Y .int
T_LEN .endstruct

COORD .tag type ; declare COORD (coordinate)
 .bss COORD, T_LEN ; actual memory allocation

 .text
 ADD @(COORD.Y),AC0,AC0

� The .union/.endunion directives create a symbolic template that can be
used repeatedly, providing a way to manipulate several different kinds of
data in the same storage area. The union sets up a C-like union definition.
While it does not allocate any memory, it allows alternate definitions of size
and type that may be temporarily stored in the same memory space.

The .tag directive associates union characteristics with a label symbol. A
union can be defined and given a tag, and later it can be declared as a
member of a structure by using the .tag directive. A union may also be de-
clared without a tag, in which case all of its members will be entered in the
symbol table, and each member must have a unique name. A union may
also be defined within a structure, in which case any reference to such a
union must be made via with the structure that encloses it. For example:

 .data
s2_tag .struct ;structure tag definition

.union ;union is first structure member

.struct ;structure is union member
h1 .half ;h1, h2, and w1
h2 .uhalf ;exist in the same memory

.endstruct
w1 .word ;word is another union member

.endunion
w2 .word ;second structure member
s2_len .endstruct

XYZ .tag s2_tag
.bss XYZ,s2_len ;declare instance of structure

.text.
ADD @(XYZ.h2),AC0,AC0

Miscellaneous Directives

 4-24

4.9 Miscellaneous Directives

These directives enable miscellaneous functions or features:

� The .dp directive specifies the value of the DP register. The assembler
cannot track the value of the DP register; however, it needs to know the
value of DP in order to assemble direct memory access operands. Conse-
quently, this directive should be placed immediately following any instruc-
tion that changes the DP register’s value. If the assembler is not given any
information on the value of the DP register, it assumes the value is 0 when
encoding direct memory operands.

� The .end directive terminates assembly. It should be the last source
statement of a program. This directive has the same effect as an
end-of-file.

� The .ivec directive is used to initialize the entries in the interrupt vector
table.

� The .mmregs directive defines symbolic names for the memory-mapped
register. Using .mmregs is the same as executing a .set for all
memory-mapped registers. See Table 4–2 on page 4-76 for a list of
memory-mapped registers.

� The .newblock directive resets local labels. Local labels are symbols of
the form $n or name?. They are defined when they appear in the label field.
Local labels are temporary labels that can be used as operands for jump
instructions. The .newblock directive limits the scope of local labels by
resetting them after they are used. For more information about local
labels, see subsection 3.9.6, Local Labels, on page 3-28.

� The .noremark directive begins a block of code in which the assembler
will suppress the specified assembler remark. A remark is an informational
assembler message that is less severe than a warning.

� The .sblock directive designates sections for blocking. Blocking is an
address alignment mechanism similar to page alignment, but weaker. In
a code section, blocked code is guaranteed not to cross a 128-byte bound-
ary if it is smaller than 128 bytes, or to start on a 128-byte boundary if it
is larger than 128 bytes. In a data section, blocked code is guaranteed not
to cross a 128-word (page) boundary if it is smaller than a page, or to start
on a page boundary if it is larger than a page. Note that this directive allows
specification of blocking for initialized sections only, not uninitialized
sections declared with .usect or the .bss section.

� The .vli_off directive begins a block of code in which the assembler will
use the largest (P24) forms of certain variable-length instructions. By de-

Miscellaneous Directives

4-25Assembler Directives

fault, the assembler tries to resolve variable-length instructions to their
smallest form. The .vli_on directive ends this block of code and resumes
the default behavior of the assembler.

These three directives enable you to define your own error and warning
messages:

� The .emsg directive sends error messages to the standard output device.
The .emsg directive generates errors in the same manner as the
assembler, incrementing the error count and preventing the assembler
from producing an object file.

� The .mmsg directive sends assembly-time messages to the standard
output device. The .mmsg directive functions in the same manner as the
.emsg and .wmsg directives but does not increment the error count or the
warning count. It does not affect the creation of the object file.

� The .wmsg directive sends warning messages to the standard output
device. The .wmsg directive functions in the same manner as the .emsg
directive but increments the warning count, rather than the error count. It
does not affect the creation of the object file.

The following directives relate to ’C55x memory modes:

� The .arms_on directive begins a block of code for which the assembler
will use indirect access modifiers targeted to code size optimization.
These modifiers are short offset modifiers. The .arms_off directive ends
the block of code.

� The .cpl_on directive begins a block of code in which direct memory ad-
dressing (DMA) is relative to the stack pointer. By default, DMA is relative
to the data page. The .cpl_off directive ends the block of code.

� The .c54cm_on directive signifies to the assembler that the following
block of code has been converted from ’C54x code. The .c54cm_off
directive ends the block of code.

Directives Reference

 4-26

4.10 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are
organized alphabetically, one directive per page. Related directives (such as
.if /.else/.endif), however, are presented together on one page.

Directive Page Directive Page

.align 4-27.

.arms_on/.arms_off 4-28.

.asg 4-29.

.bes 4-87.

.break 4-71.

.bss 4-31.

.byte/.ubyte 4-34.

.c54cm_on/.c54cm_off 4-35.

.char/.uchar 4-34.

.clink 4-36.

.copy 4-37.

.ldouble 4-42.

.length 4-66.

.list 4-67.

.long/.ulong 4-69.

.loop 4-71.

.macro 4-72.

.mlib 4-73.

.mmregs. 4-76.

.mmsg 4-46.

.mlist 4-75.

.mnolist 4-75.
.cpl_on/.cpl_off 4-40.
.data 4-41.
.def 4-54.
.double 4-42.
.dp 4-44.
.drlist 4-45.
.drnolist 4-45.
.else 4-59.

.newblock 4-79.

.noremark 4-80.

.nolist 4-67.

.option 4-81.

.page 4-83.

.pstring 4-90.

.ref 4-54.

.sblock 4-84.
.elseif 4-59.
.emsg 4-46.
.end 4-48.
.endif 4-59.
.endloop 4-71.
.endm 4-48.
.endstruct 4-92.
.endunion 4-100.

.sect 4-85.

.set 4-86.

.short/.ushort 4-57.

.space 4-87.

.sslist 4-88.

.ssnolist 4-88.

.string 4-90.

.struct 4-92.
.equ 4-86.
.eval 4-29.
.even 4-27.
.fclist 4-49.
.fcnolist 4-49.
.field 4-50.
.float 4-53.

.tab 4-96.

.tag 4-92.

.text 4-97.

.title 4-99.

.union 4-100.

.usect 4-103.

.vli_on/.vli_off 4-107.
.global 4-54.
.half/.uhalf 4-57.
.if 4-59.
.include 4-37.
.int/.uint. 4-61.
.ivec 4-63.

.width 4-66.

.wmsg 4-46.

.word/.uword 4-61.

.var 4-106.

.xfloat 4-53.

.xlong 4-69.
.label 4-65.

 Align SPC on a Boundary .align/.even

4-27 Assembler Directives

Syntax
.align [size]
.even

Description The .align directive aligns the section program counter (SPC) on the next
boundary, depending on the size parameter. The size may be any power of 2,
although only certain values are useful for alignment.

The size parameter should be in bytes for a code section, and in words for a
data section. If a size is not specified, the SPC is aligned on the next 128-byte
boundary for a code section, or the next 128-word (page) boundary for a data
section.

A hole is created by the .align directive if the SPC, at the point at which the
directive occurs, is not on the desired byte or word boundary. In a data section,
the assembler fills holes created by .align with null values (0). In a code
section, holes are filled with NOP instructions.

The .even directive aligns the SPC on a word (code section) or long word (data
section) boundary. This directive is equivalent to the .align directive with an op-
erand of 2.

Using the .align directive has two effects:

� The assembler aligns the SPC on a boundary within the current section.

� The assembler sets a flag that forces the linker to align the section so that
individual alignments remain intact when a section is loaded into memory.

Example This example shows several types of alignment, including .even, .align 4, and
a default .align.

 1 000000 .data
 2 000000 0004 .word 4
 3 .even
 4 000002 0045 .string ”Errorcnt”
 000003 0072
 000004 0072
 000005 006F
 000006 0072
 000007 0063
 000008 006E
 000009 0074
 5 .align
 6 000080 6000 .field 3,3
 7 000080 6A00 .field 5,4
 8 .align 2
 9 000082 6000 .field 3,3
 10 .align 8
 11 000088 5000 .field 5,4
 12 .align
 13 000100 0004 .word 4

.arms_on/.arms_off Select Indirect Addressing Mode

4-28

Syntax
.arms_on
.arms_off

Description The .arms_on and .arms_off directives model the ARMS status bit.

The assembler cannot track the value of the ARMS status bit. You must use
the assembler directives and/or command line options to communicate the
value of this mode bit to the assembler. An instruction that modifies the value
of the ARMS status bit must be immediately followed by the appropriate as-
sembler directive.

The .arms_on directive models the ARMS status bit set to 1; it is equivalent
to using the –ma command line option. The .arms_off directive models the
ARMS status bit set to 0. In the case of a conflict between the command line
option and the directive, the directive takes precedence.

By default (.arms_off), the assembler uses indirect memory access modifiers
targeted to the assembly code.

In ARMS mode (.arms_on), the assembler uses short offset modifiers for indi-
rect memory access. These modifiers are more efficient for code size
optimization.

The scope of the .arms_on and .arms_off directives is static and not subject
to the control flow of the assembly program. All assembly code between the
.arms_on line and the .arms_off line is assembled in ARMS mode.

 Assign Character Strings to Substitution Symbols .asg/.eval

4-29 Assembler Directives

Syntax
.asg [”]character string[”], substitution symbol
.eval well-defined expression, substitution symbol

Description The .asg directive assigns character strings to substitution symbols.
Substitution symbols are stored in the substitution symbol table. The .asg
directive can be used in many of the same ways as the .set directive, but while
.set assigns a constant value (which cannot be redefined) to a symbol, .asg
assigns a character string (which can be redefined) to a substitution symbol.

� The assembler assigns the character string to the substitution symbol.
The quotation marks are optional. If there are no quotation marks, the
assembler reads characters up to the first comma and removes leading
and trailing blanks. In either case, a character string is read and assigned
to the substitution symbol.

� The substitution symbol must be a valid symbol name. The substitution
symbol may be 32 characters long and must begin with a letter. Remaining
characters of the symbol can be a combination of alphanumeric
characters, the underscore (_), and the dollar sign ($).

The .eval directive performs arithmetic on substitution symbols, which are
stored in the substitution symbol table. This directive evaluates the expression
and assigns the string value of the result to the substitution symbol. The .eval
directive is especially useful as a counter in .loop/.endloop blocks.

� The well-defined expression is an alphanumeric expression consisting of
legal values that have been previously defined, so that the result is an ab-
solute.

� The substitution symbol must be a valid symbol name. The substitution
symbol may be 32 characters long and must begin with a letter. Remaining
characters of the symbol can be a combination of alphanumeric
characters, the underscore (_), and the dollar sign ($).

.asg/.eval Assign Character Strings to Substitution Symbols

4-30

Example This example shows how .asg and .eval can be used.

 1 .sslist;show expanded sub. symbols
 2 *
 3 * .asg/.eval example
 4 *
 5 .asg *+, INC
 6 .asg AR0, FP
 7
 8 000000 7b00 ADD #100,AC0
 000002 6400
 9 000004 b403 AMAR (*FP+)
AMAR (AR0+)
 10
 11
 12 000000 .data
 13 .asg 0, x
 14 .loop 5
 15 .eval x+1, x
 16 .word x
 17 .endloop
1 .eval x+1, x
.eval 0+1, x
1 000000 0001 .word x
.word 1
1 .eval x+1, x
.eval 1+1, x
1 000001 0002 .word x
.word 2
1 .eval x+1, x
.eval 2+1, x
1 000002 0003 .word x
.word 3
1 .eval x+1, x
.eval 3+1, x
1 000003 0004 .word x
.word 4
1 .eval x+1, x
.eval 4+1, x
1 000004 0005 .word x
.word 5

 Reserve Space in the .bss Section .bss

4-31 Assembler Directives

Syntax
.bss symbol, size in words [, [blocking flag] [, alignment flag]]

Description The .bss directive reserves space for variables in the .bss section. This
directive is typically used to allocate variables in RAM.

� The symbol is a required parameter. It defines a label that points to the first
location reserved by the directive. The symbol name corresponds to the
variable that you’re reserving space for.

� The size is a required parameter; it must be an absolute expression. The
assembler allocates size words in the .bss section. There is no default
size.

� The blocking flag is an optional parameter. If you specify a non-zero value
for this parameter, the assembler allocates size words contiguously. This
means that the allocated space will not cross a page boundary unless size
is greater than a page, in which case, the object will start on a page bound-
ary.

� The alignment flag is an optional parameter. This flag causes the
assembler to allocate size on long word boundaries.

Note: Specifying an Alignment Flag Only

To specify an alignment flag without a blocking flag, you can insert two
commas before the alignment flag, or you can specify 0 for the blocking flag.

The assembler follows two rules when it allocates space in the .bss section:

Rule 1 Whenever a hole is left in memory (as shown in Figure 4–5), the
.bss directive attempts to fill it. When a .bss directive is assembled,
the assembler searches its list of holes left by previous .bss
directives and tries to allocate the current block into one of the
holes. (This is the standard procedure whether the contiguous al-
location option has been specified or not.)

Rule 2 If the assembler does not find a hole large enough to contain the
requested space, it checks to see whether the blocking option is re-
quested.

� If you do not request blocking, the memory is allocated at the
current SPC.

� If you request blocking, the assembler checks to see whether
there is enough space between the current SPC and the page
boundary. If there is not enough space, the assembler creates
another hole and allocates the space at the beginning of the
next page.

.bss Reserve Space in the .bss Section

4-32

The blocking option allows you to reserve up to 128 words in the .bss section
and ensure that they fit on one page of memory. (Of course, you can reserve
more than 128 words at a time, but they cannot fit on a single page.) The follow-
ing example code reserves two blocks of space in the .bss section.

memptr: .bss A,64,1
memptr1: .bss B,70,1

Each block must be contained within the boundaries of a single page; after the
first block is allocated, however, the second block cannot fit on the current
page. As Figure 4–5 shows, the second block is allocated on the next page.

Figure 4–5. Allocating .bss Blocks Within a Page

Memory

Memory allocated by first .bss direc-
tive; 64 words left in the first page

Hole in memory left because second
.bss directive required more than 64
words

Memory allocated by second .bss di-
rective; 58 words left in the second
page

Unused memory

127

a

b

256

0

Page
boundary

Section directives for initialized sections (.text, .data, and .sect) end the cur-
rent section and begin assembling into another section. The .bss directive,
however, does not affect the current section. The assembler assembles the
.bss directive and then resumes assembling code into the current section. For
more information about COFF sections, see Chapter 2,
Introduction to Common Object File Format.

 Reserve Space in the .bss Section .bss

4-33 Assembler Directives

Example In this example, the .bss directive is used to allocate space for two variables,
TEMP and ARRAY. The symbol TEMP points to 4 words of uninitialized space
(at .bss SPC = 0). The symbol ARRAY points to 100 words of uninitialized
space (at .bss SPC = 04h); this space must be allocated contiguously within
a page. Note that symbols declared with the .bss directive can be referenced
in the same manner as other symbols and can also be declared external.

 1 ***
 2 ** Assemble into the .text section. **
 3 ***
 4 000000 .text
 5 000000 3C00 MOV #0,AC0
 6 ***
 7 ** Allocate 4 words in .bss for TEMP. **
 8 ***
 9 000000 Var_1: .bss TEMP, 4
 10
 11 ***
 12 ** Still in .text **
 13 ***
 14 000002 7B00 ADD #86,AC0,AC0
 000004 5600
 15 000006 5272 MOVH T3,AC2
 16 000008 1E73 MPYK #115,AC2,AC0
 00000a 80
 17
 18 ***
 19 ** Allocate 100 words in .bss for the **
 20 ** symbol named ARRAY; this part of **
 21 ** .bss must fit on a single page. **
 22 ***
 23 0000004 .bss ARRAY, 100, 1
 24
 25 ***
 26 ** Assemble more code into .text. **
 27 ***
 28 00000b C000– MOV AC0,Var_1
 29
 30 ***
 31 ** Declare external .bss symbols. **
 32 ***
 33 .global ARRAY, TEMP
 34 .end

.byte Initialize Bytes

4-34

Syntax
.byte value1 [, ... , valuen]
.ubyte value1 [, ... , valuen]
.char value1 [, ... , valuen]
.uchar value1 [, ... , valuen]

Description The .byte , .ubyte , .char , and .uchar directives place one or more 8-bit values
into consecutive words in the current data section.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of .byte,
.ubyte, .char, and .uchar directives in a section that includes ’C55x instruc-
tions will likely lead to the generation of an invalid access to the data at
execution. Consequently, Texas Instruments highly recommends that these
directives be issued only within data sections.

In data sections, each 8-bit value is placed in a word by itself; the 8 MSBs are
filled with 0s. A value can be:

� An expression that the assembler evaluates and treats as an 8-bit signed
or unsigned number

� A character string enclosed in double quotes. Each character in a string
represents a separate value.

Values are not packed or sign-extended. In word-addressable data sections,
each byte occupies the 8 least significant bits of a full 16-bit word. The assem-
bler truncates values greater than 8 bits. You can use up to 100 value parame-
ters.

If you use a label, it points to the location where the assembler places the first
byte.

Note that when you use these directives in a .struct/.endstruct sequence, they
define a member’s size; they do not initialize memory. For more information
about .struct/.endstruct, see Section 4.8, Assembly-Time Symbol Directives,
on page 4-22.

Example In this example, 8-bit values (10, –1, abc, and a) are placed into consecutive
words in memory. The label strx has the value 100h, which is the location of
the first initialized word.

 1 000000 .data
 2 000000 .space 100h * 16
 3 000100 000a STRX .byte 10, –1, ”abc”, ’a’
 000101 00ff
 000102 0061
 000103 0062
 000104 0063
 000105 0061

 Specify ’C54x Compatibility Mode .c54cm_on/.c54cm_off

4-35 Assembler Directives

Syntax
.c54cm_on
.c54cm_off

Description The .c54cm_on and .c54cm_off directives signify that a region of code has
been translated from ’C54x code. The .c54cm_on and .c54cm_off directives
model the C54CM status bit. The .c54cm_on directive models the C54CM sta-
tus bit set to 1; it is equivalent to using the –ml command line option. The
.c54cm_off directive models the C54CM status bit set to 0. In the case of a con-
flict between the command line option and the directive, the directive takes
precedence.

The scope of the .c54cm_on and .c54cm_off directives is static and not subject
to the control flow of the assembly program. All assembly code between the
.c54cm_on and .c54cm_off directives is assembled in ’C54x compatibility
mode.

In ’C54x compatibility mode, AR0 is used instead of T0 in memory operands.
For example, *(AR5 + T0) is invalid in ’C54x compatibility mode; *(AR5 + AR0)
should be used.

.clink Conditionally Leave Section Out of COFF Output

4-36

Syntax
.clink [”section name“]

Description The .clink directive sets up conditional linking for a section by setting the
STYP_CLINK flag in the type field for section name. The .clink directive can
be applied to initialized or uninitialized sections.

If .clink is used without a section name, it applies to the current initialized
section. If .clink is applied to an uninitialized section, the section name is
required. The section name is significant to 200 characters and must be en-
closed in double quotes. A section name can contain a subsection name in the
form of section name:subsection name.

The STYP_CLINK flag tells the linker to leave the section out of the final COFF
output of the linker if there are no references found to any symbol in the
section.

A section in which the entry point of a C program is defined cannot be marked
as a conditionally linked section.

Example In this example, the Vars and Counts sections are set for conditional linking.

1 000000 .sect ”Vars”
2 ; Vars section is conditionally linked
3 .clink
4
5 000000 001A X: .word 01Ah
6 000001 001A Y: .word 01Ah
7 000002 001A Z: .word 01Ah
8 000000 .sect ”Counts”
9 ; Counts section is conditionally linked
10 .clink
11
12 000000 001A Xcount: .word 01Ah
13 000001 001A Ycount: .word 01Ah
14 000002 001A Zcount: .word 01Ah
15 ; By default, .text is unconditionally linked
16 000000 .text
17 ; Reference to symbol X cause the Vars section
18 ; to be linked into the COFF output
19 000000 3C00 MOV #0,AC0
20 000002 C000+ MOV AC0,X

 Read Source File .copy/.include

4-37 Assembler Directives

Syntax
.copy [”]filename[”]
.include [”]filename[”]

Description The .copy and .include directives tell the assembler to read source state-
ments from a different file. The statements that are assembled from a copy file
are printed in the assembly listing. The statements that are assembled from
an included file are not printed in the assembly listing, regardless of the num-
ber of .list/.nolist directives assembled. The assembler:

1) Stops assembling statements in the current source file.

2) Assembles the statements in the copied/included file.

3) Resumes assembling statements in the main source file, starting with the
statement that follows the .copy or .include directive.

The filename is a required parameter that names a source file. It may be en-
closed in double quotes and must follow operating system conventions. You
can specify a full pathname (for example, c:\dsp\file1.asm). If you do not speci-
fy a full pathname, the assembler searches for the file in:

1) The directory that contains the current source file.
2) Any directories named with the –i assembler option.
3) Any directories specified by the environment variable A_DIR.

For more information about the –i option and A_DIR, see Section 3.5, Naming
Alternate Directories for Assembler Input, on page 3-14.

The .copy and .include directives can be nested within a file being copied or
included. The assembler limits nesting to 32 levels; the host operating system
may set additional restrictions. The assembler precedes the line numbers of
copied files with a letter code to identify the level of copying. An A indicates the
first copied file, B indicates a second copied file, etc.

.copy/.include Read Source File

4-38

Example 1 In this example, the .copy directive is used to read and assemble source state-
ments from other files; then the assembler resumes assembling into the cur-
rent file.

The original file, copy.asm, contains a .copy statement copying the file
byte.asm. When copy.asm assembles, the assembler copies byte.asm into its
place in the listing (note listing below). The copy file byte.asm contains a .copy
statement for a second file, word.asm.

When it encounters the .copy statement for word.asm, the assembler switches
to word.asm to continue copying and assembling. Then the assembler returns
to its place in byte.asm to continue copying and assembling. After completing
assembly of byte.asm, the assembler returns to copy.asm to assemble its re-
maining statement.

copy.asm
(source file)

byte.asm
(first copy file)

word.asm
(second copy file)

.data

.space 29

.copy ”byte.asm”

 **Back in original file
.pstring ”done”

** In byte.asm

.data

.byte 32,1+ ’A’

.copy ”word.asm”
** Back in byte.asm

.byte 67h + 3q

** In word.asm

.data

.word 0ABCDh, 56q

Listing file:

 1 000000 .data
 2 000000 .space 29
 3 .copy ”byte.asm”
 A 1 ** In byte.asm
 A 2 000001 .data
 A 3 000002 0020 .byte 32,1+ ’A’
 000003 0042
 A 4 .copy ”word.asm”
 B 1 * In word.asm
 B 2 000004 .data
 B 3 000004 ABCD .word 0ABCDh, 56q
 000005 002E
 A 5 ** Back in byte.asm
 A 5 000006 006A .byte 67h + 3q
 4
 5 ** Back in original file
 6 000007 646F .pstring ”done”
 000008 6E65

 Read Source File .copy/.include

4-39 Assembler Directives

Example 2 In this example, the .include directive is used to read and assemble source
statements from other files; then the assembler resumes assembling into the
current file. The mechanism is similar to the .copy directive, except that state-
ments are not printed in the listing file.

include.asm
(source file)

byte2.asm
(first include file)

word2.asm
(second include file)

.data

.space 29

.include ”byte2.asm”

 **Back in original file
.string ”done”

** In byte2.asm

.data

.byte 32,1+ ’A’

.include ”word2.asm”
** Back in byte2.asm

.byte 67h + 3q

** In word2.asm

.data

.word 0ABCDh, 56q

Listing file:

 1 000000 .data
 2 000000 .space 29
 3 .include ”byte2.asm”
 4
 5 ** Back in original file
 6 000007 0064 .string ”done”
 000008 006F
 000009 006E
 00000a 0065

.cpl_on/.cpl_off Select Direct Addressing Mode

4-40

Syntax
.cpl_on
.cpl_off

Description The .cpl_on and .cpl_off directives model the CPL status bit.

The assembler cannot track the value of the CPL status bit; you must use the
assembler directives and/or command line options to model this mode to the
assembler. An instruction that modifies the value of the CPL status bit must be
immediately followed by the appropriate assembler directive.

The .cpl_on directive models the CPL status bit set to 1; it is equivalent to using
the –mc command line option. The .cpl_off directive models the CPL status bit
set to 0. In the case of a conflict between the command line option and the di-
rective, the directive takes precedence.

The .cpl_on and .cpl_off directives take no arguments.

In CPL mode (.cpl_on), direct memory addressing is relative to the stack
pointer (SP). The dma syntax is *SP(dma), where dma can be a constant or
a linktime-known symbolic expression. The assembler encodes the value of
dma into the output bits.

By default (.cpl_off), direct memory addressing (dma) is relative to the data
memory local page pointer register (DP). The dma syntax is @dma, where
dma can be a constant or a linktime-known symbolic expression. The
assembler computes the difference between dma and the value in the DP
register and encodes this difference into the output bits.

The assembler cannot track the value of the DP register; however, it must
know the value of DP in order to assemble direct memory access operands.
Consequently, you must use the .dp directive to model the DP value. Issue this
directive immediately following any instruction that changes the value in the
DP register.

The scope of the .cpl_on and .cpl_off directives is static and not subject to the
control flow of the assembly program. All assembly code between the .cpl_on
line and the .cpl_off line is assembled in CPL mode.

 Assign Character Strings to Substitution Symbols .data

4-41 Assembler Directives

Syntax
.data

Description The .data directive tells the assembler to begin assembling source code into
the .data section; .data becomes the current section. The .data section is
normally used to contain tables of data or preinitialized variables.

On ’C55x, data is word-addressable.

The assembler assumes that .text is the default section. Therefore, at the
beginning of an assembly, the assembler assembles code into the .text section
unless you use a section control directive.

For more information about COFF sections, see Chapter 2,
Introduction to Common Object File Format.

Example In this example, code is assembled into the .data (word-addressable) and .text
(byte-addressable) sections.

 1 ***
 2 ** Reserve space in .data. **
 3 ***
 4 000000 .data
 5 000000 .space 0CCh
 6
 7 ***
 8 ** Assemble into .text. **
 9 ***
 10 000000 .text
 11 INDEX .set 0
 12 000000 3C00 MOV #INDEX,AC0
 13
 14 ***
 15 ** Assemble into .data. **
 16 ***
 17 00000c .data
 18 00000d ffff Table: .word –1 ; Assemble 16–bit
 19 ; constant into .data.
 20 00000e 00ff .byte 0FFh ; Assemble 8–bit
 21 ; constant into .data
 22 ***
 23 ** Assemble into .text. **
 24 ***
 25 000002 .text
 26 000002 D600 ADD Table,AC0,AC0
 000004 00”
 27
 28 ***
 29 ** Resume assembling into the .data **
 30 ** section at address 0Fh. **
 31 ***
 32 00000f .data

.double/.ldouble Initialize Double-Precision Floating-Point Value

4-42

Syntax
.double value [, ... , valuen]
.ldouble value [, ... , valuen]

Description The .double and .ldouble directives place the IEEE double-precision floating-
point representation of one or more floating-point values into the current sec-
tion. Each value must be a floating-point constant or a symbol that has been
equated to a floating-point constant. Each constant is converted to a floating-
point value in IEEE double-precision 64-bit format. Floating-point constants
are aligned on a word boundary.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of
.double and .ldouble directives in a section that includes ’C55x instructions
will likely lead to the generation of an invalid access to the data at execution.
Consequently, Texas Instruments highly recommends that these directives
be issued only within data sections.

The value consists of three fields:

Field Meaning

s A 1-bit sign field

e An 11-bit biased exponent

f A 52-bit mantissa

The value is stored most significant word first, least significant word second,
in the following format:

s e f
31 30 20 19 0

f
31 0

When you use .double or .ldouble in a .struct/.endstruct sequence, the
directives define a member’s size; they do not initialize memory. For more
information about .struct/ .endstruct, see Section 4.8, Assembly-Time Symbol
Directives, on page 4-22.

 Initialize Double-Precision Floating-Point Value .double/.ldouble

4-43 Assembler Directives

Example This example shows the .double and .ldouble directives.

 1 000000 .data
 2 000000 C520 .double –1.0e25
 000001 8B2A
 000002 2C28
 000003 0291
 2 000004 407C .ldouble 456.0
 000005 8000
 000006 0000
 000007 0000

.dp Specify DP Value

4-44

Syntax
.dp dp_value

Description The .dp directive specifies the value of the DP register. The dp_value can be
a constant or a symbolic expression.

By default, direct memory addressing (dma) is relative to the data memory
local page pointer register (DP). The dma syntax is @dma, where dma can be
a constant or a linktime-symbolic expression. The assembler computes the
difference between dma and the value in the DP register and encodes this dif-
ference into the output bits.

The assembler cannot track the value of the DP register; however, it must
know the value of DP in order to assemble direct memory access operands.
Consequently, you must use the .dp directive to model the DP value. Issue this
directive immediately following any instruction that changes the value in the
DP register. If the assembler is not informed of the value of the DP register, it
assumes that the value is 0.

 Controls Listing of Directives .drlist/.drnolist

4-45 Assembler Directives

Syntax
.drlist
.drnolist

Description Two directives enable you to control the printing of assembler directives to the
listing file:

The .drlist directive enables the printing of all directives to the listing file.

The .drnolist directive suppresses the printing of the following directives to the
listing file:

� .asg � .fcnolist � .ssnolist

� .break � .mlist � .var

� .emsg � .mmsg � .wmsg

� .eval � .mnolist

� .fclist � .sslist

By default, the assembler acts as if the .drlist directive had been specified.

Example This example shows how .drnolist inhibits the listing of the specified directives:

Source file:

 .asg 0, x
 .loop 2
 .eval x+1, x
 .endloop

 .drnolist

 .asg 1, x
 .loop 3
 .eval x+1, x
 .endloop

Listing file:

 1 .asg 0, x
 2 .loop 2
 3 .eval x+1, x
 4 .endloop
1 .eval 0+1, x
1 .eval 1+1, x
 5
 6 .drnolist
 7
 9 .loop 3
 10 .eval x+1, x
 11 .endloop

.emsg/.mmsg/.wmsg Define Messages

4-46

Syntax
.emsg string
.mmsg string
.wmsg string

Description These directives allow you to define your own error and warning messages.
The assembler tracks the number of errors and warnings it encounters and
prints these numbers on the last line of the listing file.

The .emsg directive sends error messages to the standard output device in
the same manner as the assembler, incrementing the error count and prevent-
ing the assembler from producing an object file.

The .mmsg directive sends assembly-time messages to the standard output
device in the same manner as the .emsg and .wmsg directives, but it does not
set the error or warning counts, and it does not prevent the assembler from
producing an object file.

The .wmsg directive sends warning messages to the standard output device
in the same manner as the .emsg directive, but it increments the warning count
rather than the error count, and it does not prevent the assembler from produc-
ing an object file.

Example In this example. the message ERROR –– MISSING PARAMETER is sent to
the standard output device.

Source file:

 .global PARAM
MSG_EX .macro parm1
 .if $symlen(parm1) = 0
 .emsg ”ERROR –– MISSING PARAMETER”
 .else
 ADD parm1,AC0,AC0
 .endif
 .endm

 MSG_EX PARAM

 MSG_EX

 Define Messages .emsg/.mmsg/.wmsg

4-47 Assembler Directives

Listing file:

 1 .global PARAM
 2 MSG_EX .macro parm1
 3 .if $symlen(parm1) = 0
 4 .emsg ”ERROR –– MISSING PARAMETER”
 5 .else
 6 ADD parm1,AC0,AC0
 7 .endif
 8 .endm
 9
 10 000000 MSG_EX PARAM
1 .if $symlen(parm1) = 0
1 .emsg ”ERROR –– MISSING PARAMETER”
1 .else
1 000000 D600 ADD PARAM,AC0,AC0
 000002 00!
1 .endif
 11
 12 000003 MSG_EX
1 .if $symlen(parm1) = 0
1 .emsg ”ERROR –– MISSING PARAMETER”
 “emsg.asm”, ERROR! at line 12: [***** USER ERROR ***** –]
 ERROR –– MISSING PARAMETER
1 .else
1 ADD parm1,AC0,AC0
1 .endif

 1 Error, No Warnings

In addition, the following messages are sent to standard output by the
assembler:

TMS32055xx COFF Assembler Version x.xx
Copyright (c) 2000 Texas Instruments Incorporated
 PASS 1
 PASS 2
“emsg.asm”, ERROR! at line 12: [***** USER ERROR ***** –] ERROR –– MISSING
 PARAMETER
 .emsg ”ERROR –– MISSING PARAMETER”

 1 Error, No Warnings

Errors in source – Assembler Aborted

.end End Assembly

4-48

Syntax
.end

Description The .end directive is optional and terminates assembly. It should be the last
source statement of a program. The assembler ignores any source statements
that follow a .end directive.

This directive has the same effect as an end-of-file character. You can use .end
when you’re debugging and would like to stop assembling at a specific point
in your code.

Example This example shows how the .end directive terminates assembly. If any source
statements follow the .end directive, the assembler ignores them.

Source File:

 .data
START: .space 300
TEMP .set 15
 .bss LOC1, 48h
 .data
 ABS AC0,AC0
 ADD #TEMP,AC0,AC0
 MOV AC0,LOC1
 .end
 .byte 4
 .word CCCh

Listing file:

 1 000000 .data
 2 000000 START: .space 300
 3 TEMP .set 15
 4 000000 .bss LOC1, 48h
 5 000000 .text
 5 000000 3200 ABS AC0,AC0
 6 000002 40F0 ADD #TEMP,AC0,AC0
 7 000004 C000– MOV AC0,LOC1
 8 .end

 Control the Listing of False Conditional Blocks .fclist/.fcnolist

4-49 Assembler Directives

Syntax
.fclist
.fcnolist

Description Two directives enable you to control the listing of false conditional blocks.

The .fclist directive allows the listing of false conditional blocks (conditional
blocks that do not produce code).

The .fcnolist directive suppresses the listing of false conditional blocks until
a .fclist directive is encountered. With .fcnolist, only code in conditional blocks
that are actually assembled appears in the listing. The .if, .elseif, .else, and
.endif directives do not appear.

By default, all conditional blocks are listed; the assembler acts as if the .fclist
directive had been used.

Example This example shows the assembly language and listing files for code with and
without the conditional blocks listed:

Source File:

AAA .set 1
BBB .set 0
 .fclist
 .if AAA
 ADD #1024,AC0,AC0
 .else
 ADD #(1024*10),AC0,AC0
 .endif

 .fcnolist
 .if AAA
 ADD #1024,AC0,AC0
 .else
 ADD #(1024*10),AC0,AC0
 .endif

Listing file:

 1 AAA .set 1
 2 BBB .set 0
 3 .fclist
 4 .if AAA
 5 000000 7B04 ADD #1024,AC0,AC0
 000002 0000
 6 .else
 7 ADD #(1024*10),AC0,AC0
 8 .endif
 9
 10 .fcnolist
 11
 13 000004 7B04 ADD #1024,AC0,AC0
 000006 0000

.field Initialize Field

4-50

Syntax
.field value [, size in bits]

Description The .field directive can initialize multiple-bit fields within a single word (in data
sections).

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of the
.field directive in a section that includes ’C55x instructions will likely lead to
the generation of an invalid access to the data at execution. Consequently,
Texas Instruments highly recommends that this directive be issued only with-
in data sections.

This directive has two operands:

� The value is a required parameter; it is an expression that is evaluated and
placed in the field. If the value is relocatable, size must be 16 or 24.

� The size is an optional parameter; it specifies a number from 1 to 32, which
is the number of bits in the field. If you do not specify a size, the assembler
assumes that the size is 16 bits. If you specify a size of 16 or more, the field
will start on a word boundary. If you specify a value that cannot fit into size
bits, the assembler truncates the value and issues an error message. For
example, .field 3,1 causes the assembler to truncate the value 3 to 1; the
assembler also prints the message:

***warning – value truncated.

Successive .field directives pack values into the specified number of bits start-
ing at the current word (in a data section). Fields are packed starting at the
most significant part of the word, moving toward the least significant part as
more fields are added. If the assembler encounters a field size that does not
fit into the current word, it writes out the word, increments the SPC, and begins
packing fields into the next word. You can use the .align directive with an oper-
and of 1 to force the next .field directive to begin packing into a new word.

If you use a label, it points to the word that contains the specified field.

When you use .field in a .struct/.endstruct sequence, .field defines a member’s
size; it does not initialize memory. For more information about .struct/
.endstruct, see Section 4.8, Assembly-Time Symbol Directives, on page 4-22.

 Initialize Field .field

4-51 Assembler Directives

Example This example shows how fields are packed into a word. Notice that the SPC
does not change until a word is filled and the next word is begun.

 1 000000 .data
 2 ************************************
 3 ** Initialize a 14–bit field. **
 4 ************************************
 5 000000 2AF0 .field 0ABCh, 14
 6
 7 ************************************
 8 ** Initialize a 5–bit field **
 9 ** in a new word. **
 10 ************************************
 11 000001 5000 L_F: .field 0Ah, 5
 12
 13 ***********************************
 14 ** Initialize a 4–bit field **
 15 ** in the same word. **
 16 ************************************
 17 000001 5600 x: .field 0Ch, 4
 18
 19 ************************************
 20 ** 16–bit relocatable field **
 21 ** in the next word. **
 22 ************************************
 23 000002 0001“ .field x
 24
 25 ************************************
 26 ** Initialize a 32–bit field. **
 27 ************************************
 28 000003 0000 .field 04321h, 32
 000004 4321

.field Initialize Field

4-52

Figure 4–6 shows how the directives in this example affect memory.

Figure 4–6. The .field Directive

0 0 1 0 1 0 1 0 1 1 1 1 0 0

0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0

0 1 0 1 0

0 1 0 1 0 1 1 0 0

0 0 0 0 10 0 0 00 0 00 0 0 0

14-bit field

5-bit field

4-bit field

15 0
Word Code

(a) 0

(b) 0

1

(c) 1

(d) 1

2

.field 0ABCh, 14

.field 00Ah, 5

.field 000Ch, 4

.field x

0 0 0 0 11 0 0 10 0 10 1 0 0

(e) 3

4

.field 04321,320 0 0 0 00 0 0 00 0 00 0 0 0

0 0 0 0 00 0 0 00 1 10 1 0 1

 Initialize Floating-Point Value .float/.xfloat

4-53 Assembler Directives

Syntax
.float value1 [, ... , valuen]
.xfloat value1 [, ... , valuen]

Description The .float and .xfloat directives place the floating-point representation of one
or more floating-point constants into the current data section. The value must
be a floating-point constant or a symbol that has been equated to a floating-
point constant. Each constant is converted to a floating-point value in IEEE
single-precision 32-bit format. Floating-point constants are aligned on the
long-word boundaries unless the .xfloat directive is used. The .xfloat directive
performs the same function as the .float directive but does not align the result
on the long word boundary.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of .float
and .xfloat directives in a section that includes ’C55x instructions will likely
lead to the generation of an invalid access to the data at execution. Conse-
quently, Texas Instruments highly recommends that these directives be is-
sued only within data sections.

The 32-bit value consists of three fields:

Field Meaning

s A 1-bit sign field

e An 8-bit biased exponent

f A 23-bit mantissa

The value is stored most significant word first, least significant word second,
in the following format:

s e f
31 30 23 22 0

When you use .float in a .struct/.endstruct sequence, .float defines a member’s
size; it does not initialize memory. For more information about .struct/
.endstruct, see Section 4.8, Assembly-Time Symbol Directives, on page 4-22.

Example This example shows the .float directive.

 1 000000 .data
 2 000000 E904 .float –1.0e25
 000001 5951
 3 000002 4040 .float 3
 000003 0000
 4 000004 42F6 .float 123
 000005 0000

.global/.def/.ref Identify Global Symbols

4-54

Syntax
.global symbol1 [, ... , symboln]
.def symbol1 [, ... , symboln]
.ref symbol1 [, ... , symboln]

Description The .global , .def , and .ref directives identify global symbols, which are
defined externally or can be referenced externally.

The .def directive identifies a symbol that is defined in the current module and
can be accessed by other files. The assembler places this symbol in the sym-
bol table.

The .ref directive identifies a symbol that is used in the current module but
defined in another module. The linker resolves this symbol’s definition at link
time.

The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol; that is,
it appears as a label or is defined by the .set, .bss, or .usect directive. As with
all symbols, if a global symbol is defined more than once, the linker issues a
multiple-definition error. .ref always creates a symbol table entry for a symbol,
whether the module uses the symbol or not; .global, however, creates an entry
only if the module actually uses the symbol.

A symbol may be declared global for two reasons:

� If the symbol is not defined in the current module (including macro, copy,
and include files), the .global or .ref directive tells the assembler that the
symbol is defined in an external module. This prevents the assembler from
issuing an unresolved reference error. At link time, the linker looks for the
symbol’s definition in other modules.

� If the symbol is defined in the current module, the .global or .def directive
declares that the symbol and its definition can be used externally by other
modules. These types of references are resolved at link time.

Example This example shows four files:

file1.lst and file3.lst are equivalent. Both files define the symbol Init and make
it available to other modules; both files use the external symbols x, y, and z.
file1.lst uses the .global directive to identify these global symbols; file3.lst uses
.ref and .def to identify the symbols.

file2.lst and file4.lst are equivalent. Both files define the symbols x, y, and z
and make them available to other modules; both files use the external symbol
Init. file2.lst uses the .global directive to identify these global symbols; file4.lst
uses .ref and .def to identify the symbols.

 Identify Global Symbols .global/.def/.ref

4-55 Assembler Directives

file1.lst:

 1 ; Global symbol defined in this file
 2 .global INIT
 3 ; Global symbols defined in file2.lst
 4 .global X, Y, Z
 5 000000 INIT:
 6 000000 7B00 ADD #86,AC0,AC0
 000002 5600
 7 000000 .data
 8 000000 0000! .word X
 9 ; .
 10 ; .
 11 ; .
 12 .end

file2.lst:

 1 ; Global symbols defined in this file
 2 .global X, Y, Z
 3 ; Global symbol defined in file1.lst
 4 .global INIT
 5 X: .set 1
 6 Y: .set 2
 7 Z: .set 3
 8 000000 .data
 9 000000 0000! .word INIT
 10 ; .
 11 ; .
 12 ; .
 13 .end

file3.lst:

 1 ; Global symbol defined in this file
 2 .def INIT
 3 ; Global symbols defined in file4.lst
 4 .ref X, Y, Z
 5 000000 INIT:
 6 000000 7B00 ADD #86,AC0,AC0
 000002 5600
 7 000000 .data
 8 000000 0000! .word X
 9 ; .
 10 ; .
 11 ; .
 12 .end

.global/.def/.ref Identify Global Symbols

4-56

file4.lst:

 1 ; Global symbols defined in this file
 2 .def X, Y, Z
 3 ; Global symbol defined in file3.lst
 4 .ref INIT
 5 X: .set 1
 6 Y: .set 2
 7 Z: .set 3
 8 000000 .data
 9 000000 0000! .word INIT
 10 ; .
 11 ; .
 12 ; .
 13 .end

 Initialize 16-bit Integer .half/.uhalf/.short/.ushort

4-57 Assembler Directives

Syntax
.half value1 [, ... , valuen]
.uhalf value1 [, ... , valuen]
.short value1 [, ... , valuen]
.ushort value1 [, ... , valuen]

Description The .half , .uhalf , .short , and .ushort directives place one or more values into
consecutive 16-bit fields in the current section. A value can be:

� An expression that the assembler evaluates and treats as an 16-bit signed
or unsigned number

� A character string enclosed in double quotes. Each character in a string
represents a separate value.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of .half,
.uhalf, .short, and .ushort directives in a section that includes ’C55x instruc-
tions will likely lead to the generation of an invalid access to the data at
execution. Consequently, Texas Instruments highly recommends that these
directives be issued only within data sections.

The values can be either absolute or relocatable expressions. If an expression
is relocatable, the assembler generates a relocation entry that refers to the
appropriate symbol; the linker can then correctly patch (relocate) the refer-
ence. This allows you to initialize memory with pointers to variables or labels.

The assembler truncates values greater than 16 bits. You can use as many
values as fit on a single line, but the total line length cannot exceed 200 charac-
ters. If you use a label, it points to the first initialized word.

When you use .half, .uhalf, .short, or .ushort in a .struct/.endstruct sequence,
they define a member’s size; they do not initialize memory. For more
information about .struct/.endstruct, see Section 4.8, Assembly-Time Symbol
Directives, on page 4-22.

.half/.uhalf/.short/.ushort Initialize 16-bit Integer

4-58

Example In this example, the .half directive is used to place 16-bit values (10, –1, abc,
and a) into memory; .short is used to place 16-bit values (8, –3, def, and b) into
memory. The label STRN has the value 106h, which is the location of the first
initialized word.

 1 000000 .data
 2 000000 .space 100h * 16
 3
 4 000100 000A .half 10, –1, ”abc”, ’a’
 000101 FFFF
 000102 0061
 000103 0062
 000104 0063
 000105 0061
 5 000106 0008 STRN .short 8, –3, ”def”, ’b’
 000107 FFFD
 000108 0064
 000109 0065
 00010a 0066
 00010b 0062

 Assign Character Strings to Substitution Symbols .if/.elseif/.else/.endif

4-59 Assembler Directives

Syntax
.if well-defined expression
.elseif well-defined expression
.else
.endif

Description The following directives provide conditional assembly:

The .if directive marks the beginning of a conditional block. The well-defined
expression is a required parameter.

� If the expression evaluates to true (nonzero), the assembler assembles
the code that follows the expression (up to a .elseif, .else, or .endif).

� If the expression evaluates to false (0), the assembler assembles code
that follows a .elseif (if present), .else (if present), or .endif (if no .elseif or
.else is present).

The .elseif directive identifies a block of code to be assembled when the .if
expression is false (0) and the .elseif expression is true (nonzero). When the
.elseif expression is false, the assembler continues to the next .elseif (if pres-
ent), .else (if present) or .endif (if no .elseif or .else is present). The .elseif di-
rective is optional in the conditional blocks, and more than one .elseif can be
used. If an expression is false and there is no .elseif statement, the assembler
continues with the code that follows a .else (if present) or a .endif.

The .else directive identifies a block of code that the assembler assembles
when the .if expression and all .elseif expressions are false (0). This directive
is optional in the conditional block; if an expression is false and there is no .else
statement, the assembler continues with the code that follows the .endif.

The .endif directive terminates a conditional block.

The .elseif and .else directives can be used in the same conditional assembly
block and the .elseif directive can be used more than once within a conditional
assembly block.

For information about relational operators, see subsection 3.10.4, Conditional
Expressions, on page 3-33.

.if/.elseif/.else/.endif Assemble Conditional Blocks

4-60

Example This example shows conditional assembly.

 1 SYM1 .set 1
 2 SYM2 .set 2
 3 SYM3 .set 3
 4 SYM4 .set 4
 5 000000 .data
 6 If_4: .if SYM4 = SYM2 * SYM2
 7 000000 0004 .byte SYM4 ; Equal values
 8 .else
 9 .byte SYM2 * SYM2 ; Unequal values
 10 .endif
 11
 12 If_5: .if SYM1 <= 10
 13 000001 000a .byte 10 ; Less than / equal
 14 .else
 15 .byte SYM1 ; Greater than
 16 .endif
 17
 18 If_6: .if SYM3 * SYM2 != SYM4 + SYM2
 19 .byte SYM3 * SYM2 ; Unequal value
 20 .else
 21 000002 0008 .byte SYM4 + SYM4 ; Equal values
 22 .endif
 23
 24 If_7: .if SYM1 = 2
 25 .byte SYM1
 26 .elseif SYM2 + SYM3 = 5
 27 000003 0005 .byte SYM2 + SYM3
 28 .endif

 Initialize 16-bit Integer .int/.uint/.word/.uword

4-61 Assembler Directives

Syntax
.int value1 [, ... , valuen]
.uint value1 [, ... , valuen]
.word value1 [, ... , valuen]
.uword value1 [, ... , valuen]

Description The .int , .uint , .word , and .uword directives are equivalent; they place one
or more values into consecutive 16-bit fields in the current section. A value can
be either:

� An expression that the assembler evaluates and treats as an 16-bit signed
or unsigned number

� A character string enclosed in double quotes. Each character in a string
represents a separate value.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of .int,
.uint, .word, and .uword directives in a section that includes ’C55x instruc-
tions will likely lead to the generation of an invalid access to the data at
execution. Consequently, Texas Instruments highly recommends that these
directives be issued only within data sections.

The values can be either absolute or relocatable expressions. If an expression
is relocatable, the assembler generates a relocation entry that refers to the
appropriate symbol; the linker can then correctly patch (relocate) the refer-
ence. This allows you to initialize memory with pointers to variables or labels.

You can use as many values as fit on a single line (200 characters). If you use
a label, it points to the first word that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define
a member’s size; they do not initialize memory. For more information about
.struct/.endstruct, see Section 4.8, Assembly-Time Symbol Directives, on
page 4-22.

.int/.uint/.word/.uword Initialize 16-bit Integer

4-62

Example 1 In this example, the .int directive is used to initialize words.

 1 000000 .data
 2 000000 .space 73h
 3 000000 .bss PAGE, 128
 4 000080 .bss SYMPTR, 3
 5 000000 .text
 6 000000 7600 INST: MOV #86,AC0

000002 5608
 7 000007 .data
 8 000008 000A .int 10, SYMPTR, –1, 35 + ’a’
 000009 0080–
 00000a FFFF
 00000b 0084

Example 2 In this example, the .word directive is used to initialize words. The symbol
WordX points to the first word that is reserved.

 1 000000 .data
 1 000000 0C80 WORDX: .word 3200, 1 + ’AB’, –0AFh, ’X’
 000001 4143
 000002 FF51
 000003 0058

 Initialize Interrupt Table Entries .ivec

4-63 Assembler Directives

Syntax
[label:] .ivec [address [, stack mode]]

Description The .ivec directive is used to initialize the entries in the interrupt vector table.

This directive has the following operands:

� The label, if specified, will be assigned the code (byte) address associated
with the directive, not the data (word) address as with other directives.

� The address specifies the address of the interrupt service routine. If an ad-
dress is not specified, 0 is used.

� You can specify a stack mode only for the reset vector, which must be the
first .ivec in the interrupt vector table. The stack mode can be identified as
follows:

C54X_STK This value specifies the 32-bit stack needed by con-
verted ’C54x code. This is the default if no value is
given for the stack mode.

USE_RETA This value specifies 16-bit plus register fast return
mode. This is used by the ’C55x compiler.

NO_RETA This value specifies 16-bit slow return mode.

More information on the stack modes can be found in the TMS320C55x DSP
CPU Reference Guide. You can write these symbolic names in either upper
or lower case.

The .ivec directive aligns the SPC on an 8-byte boundary, so that you are not
forced to place an instruction between two .ivec entries. Any space added for
this alignment is filled with NOP instructions.

In general, a section that contains other data defining directives (such as
.word) is characterized as a data section. A data section is word-addressable
and cannot contain code. A section containing the .ivec directive is character-
ized as a code section (byte-addressable), and can include other instructions.
Like an instruction, .ivec cannot be mixed with other data-defining directives.

The assembler issues a warning when it encounters a section that contains
an .ivec directive and an instruction larger than 4 bytes. This prevents you from
overfilling the last 4 bytes of an interrupt vector with an instruction that is too
big.

The assembler also issues a warning when it encounters more than one
instruction immediately after an .ivec. Only one instruction is executed before
branching to the ISR.

.ivec Initialize Interrupt Table Entries

4-64

A section containing an .ivec directive is marked as an interrupt vector section.
The linker can recognize such sections, and does not add a non-parallel NOP
at the end of it, as it does for normal code sections.

Example This example shows the use of the .ivec directive.

.sect ”vectors” ; start vectors section

.ref start,nmi_isr,isr2 ; symbols referenced
; from other files

.def rsv,no_isr ; symbols defined in this
; file

rsv: .ivec start,c54x_stk ; C54x compatibility
; stack mode

nmi .ivec nmi_isr ; standard usage
int2 .ivec isr2

PSH AR0 ; executed just before branch to
; isr2

int3 .ivec ; one way to skip a vector
int4 .ivec no_isr ; better way to skip a vector
; ... and so on. Fill out all 32 vectors.
int31 .ivec no_isr ; last vector

.text ; change to text section
no_isr B no_isr ; default ISR

Note the difference between int3 and int4. If the int3 vector is raised, the exam-
ple branches to 0, with unpredictable results. However, if the int4 vector is
raised, the example branches to the no_isr spin loop, which generates predict-
able results.

 Create a Relocatable Label .label

4-65 Assembler Directives

Syntax
.label symbol

Description The .label directive defines a special symbol that refers to the loadtime
address rather than the runtime address within the current section. Most sec-
tions created by the assembler have relocatable addresses. The assembler
assembles each section as if it started at 0, and the linker relocates it to the
address at which it loads and runs.

For some applications, it is desirable to have a section load at one address and
run at a different address. For example, you may wish to load a block of perfor-
mance-critical code into slower off-chip memory to save space, and then move
the code to high-speed on-chip memory to run it.

Such a section is assigned two addresses at link time: a load address and a
run address. All labels defined in the section are relocated to refer to the run-
time address so that references to the section (such as branches) are correct
when the code runs.

The .label directive creates a special label that refers to the loadtime address.
This function is useful primarily to designate where the section was loaded for
purposes of the code that relocates the section.

Example This example shows the use of a loadtime address label.

 .sect ”.EXAMP”
 .label EXAMP_LOAD ; load address of section.
START: ; run address of section.
 <code>
FINISH: ; run address of section end.
 .label EXAMP_END ; load address of section end.

For more information about assigning runtime and loadtime addresses in the
linker, see Section 9.10, Specifying a Section’s Runtime Address, on page
9-41.

.length/.width Set Listing Page Size

4-66

Syntax
.length page length
.width page width

Description The .length directive sets the page length of the output listing file. It affects the
current and following pages. You can reset the page length with another
.length directive.

� Default length: 60 lines
� Minimum length: 1 line
� Maximum length: 32 767 lines

The .width directive sets the page width of the output listing file. It affects the
next line assembled and the lines following; you can reset the page width with
another .width directive.

� Default width: 80 characters
� Minimum width: 80 characters
� Maximum width: 200 characters

The width refers to a full line in a listing file; the line counter value, SPC value,
and object code are counted as part of the width of a line. Comments and other
portions of a source statement that extend beyond the page width are trun-
cated in the listing.

The assembler does not list the .width and .length directives.

Example In this example, the page length and width are changed.

** Page length = 65 lines. **
** Page width = 85 characters. **

 .length 65
 .width 85

** Page length = 55 lines. **
** Page width = 100 characters. **

 .length 55
 .width 100

 Start/Stop Source Listing .list/.nolist

4-67 Assembler Directives

Syntax
.list
.nolist

Description Two directives enable you to control the printing of the source listing:

� The .list directive allows the printing of the source listing.

� The .nolist directive suppresses the source listing output until a .list
directive is encountered. The .nolist directive can be used to reduce
assembly time and the source listing size. It can be used in macro defini-
tions to suppress the listing of the macro expansion.

The assembler does not print the .list or .nolist directives or the source state-
ments that appear after a .nolist directive. However, it continues to increment
the line counter. You can nest the .list /.nolist directives; each .nolist needs a
matching .list to restore the listing.

By default, the source listing is printed to the listing file; the assembler acts as
if the .list directive had been specified. However, if you don’t request a listing
file when you invoke the assembler, the assembler ignores the .list directive.

Example This example shows how the .copy directive inserts source statements from
another file. The first time this directive is encountered, the assembler lists the
copied source lines in the listing file. The second time this directive is encoun-
tered, the assembler does not list the copied source lines, because a .nolist
directive was assembled. Note that the .nolist, the second .copy, and the .list
directives do not appear in the listing file. Note also that the line counter is
incremented, even when source statements are not listed.

.list/.nolist Start/Stop Source Listing

4-68

Source file:

.copy ”copy2.asm”
* Back in original file

NOP
.nolist
.copy ”copy2.asm”
.list

* Back in original file
.string ”Done”

Listing file:

 1 .copy ”copy2.asm”
 A 1 * In copy2.asm (copy file)
 A 2 000000 .data
 A 3 000000 0020 .word 32, 1 + ’A’
 4 000001 0042
 2 * Back in original file
 3 000000 .text
 4 000000 90 NOP
 9 * Back in original file
 10 000004 .data
 11 000004 0044 .string ”Done”
 000005 006F
 000006 006E
 000007 0065

 Initialize Long Word .long/.ulong/.xlong

4-69 Assembler Directives

Syntax
.long value1 [, ... , valuen]
.ulong value1 [, ... , valuen]
.xlong value1 [, ... , valuen]

Description The .long , .ulong , and .xlong directives place one or more 32-bit values into
consecutive words in the current section. The most significant word is stored
first. The .long and .ulong directives align the result on the long word boundary,
while the .xlong directive does not. A value can be:

� An expression that the assembler evaluates and treats as an 32-bit signed
or unsigned number

� A character string enclosed in double quotes. Each character in a string
represents a separate value.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of .long,
.ulong, and .xlong directives in a section that includes ’C55x instructions will
likely lead to the generation of an invalid access to the data at execution.
Consequently, Texas Instruments highly recommends that these directives
be issued only within data sections.

The value operand can be either an absolute or relocatable expression. If an
expression is relocatable, the assembler generates a relocation entry that re-
fers to the appropriate symbol; the linker can then correctly patch (relocate)
the reference. This allows you to initialize memory with pointers to variables
or with labels.

You can use up to 100 values, but they must fit on a single source statement
line. If you use a label, it points to the first word that is initialized.

When you use the directives in a .struct /.endstruct sequence, they define a
member’s size; they do not initialize memory. For more information about
.struct / .endstruct, see Section 4.8, Assembly-Time Symbol Directives, on
page 4-22.

.long/.ulong/.xlong Initialize Long Word

4-70

Example This example shows how the .long and .xlong directives initialize double
words.

 1 000000 .data
 2 000000 0000 DAT1: .long 0ABCDh, ’A’ + 100h, ’g’, ’o’
 000001 ABCD
 000002 0000
 000003 0141
 000004 0000
 000005 0067
 000006 0000
 000007 006F
 3 000008 0000 .xlong DAT1, 0AABBCCDDh
 000009 0000“
 00000a AABB
 00000b CCDD
 4 00000c DAT2:

 Assign Character Strings to Substitution Symbols .loop/.break/.endloop

4-71 Assembler Directives

Syntax
.loop [well-defined expression]
.break [well-defined expression]
.endloop

Description Three directives enable you to repeatedly assemble a block of code.

The .loop directive begins a repeatable block of code. The optional expression
evaluates to the loop count (the number of times to repeat the assembly of the
code contained in the loop). If there is no expression, the loop count defaults
to 1024, unless the assembler first encounters a .break directive with an ex-
pression that is true (nonzero) or omitted.

The .break directive is optional, along with its expression. When the expres-
sion is false (0), the loop continues. When the expression is true (nonzero),
or omitted, the assembler breaks the loop and assembles the code after the
.endloop directive.

The .endloop directive terminates a repeatable block of code; it executes
when the .break directive is true (nonzero) or when number of loops performed
equals the loop count given by .loop

Example This example illustrates how these directives can be used with the .eval
directive.

 1 000000 .data
 2 .eval 0,x
 3 LAB_1 .loop
 4 .word x*100
 5 .eval x+1, x
 6 .break x = 6
 7 .endloop
1 000000 0000 .word 0*100
1 .eval 0+1, x
1 .break 1 = 6
1 000001 0064 .word 1*100
1 .eval 1+1, x
1 .break 2 = 6
1 000002 00C8 .word 2*100
1 .eval 2+1, x
1 .break 3 = 6
1 000003 012C .word 3*100
1 .eval 3+1, x
1 .break 4 = 6
1 000004 0190 .word 4*100
1 .eval 4+1, x
1 .break 5 = 6
1 000005 01F4 .word 5*100
1 .eval 5+1, x
1 .break 6 = 6

.macro Define Macro

4-72

Syntax
macname .macro [parameter1] [, ... parametern]

model statements or macro directives
.endm

Description The .macro directive is used to define macros.

You can define a macro anywhere in your program, but you must define the
macro before you can use it. Macros can be defined at the beginning of a
source file, in an .include/.copy file, or in a macro library.

macname names the macro. You must place the name in the
source statement’s label field.

.macro identifies the source statement as the first line of a
macro definition. You must place .macro in the op-
code field.

[parameters] are optional substitution symbols that appear as
operands for the .macro directive.

model statements are instructions or assembler directives that are ex-
ecuted each time the macro is called.

macro directives are used to control macro expansion.

.endm terminates the macro definition.

Macros are explained in further detail in Chapter 5, “Macro Language”.

 Define Macro Library .mlib

4-73 Assembler Directives

Syntax
.mlib [”]filename[”]

Description The .mlib directive provides the assembler with the name of a macro library.
A macro library is a collection of files that contain macro definitions. These files
are bound into a single file (called a library or archive) by the archiver. Each
member of a macro library may contain one macro definition that corresponds
to the name of the file. Macro library members must be source files (not object
files).

The filename of a macro library member must be the same as the macro name,
and its extension must be .asm. The filename must follow host operating sys-
tem conventions; it may be enclosed in double quotes. You can specify a full
pathname (for example, c:\dsp\macs.lib). If you do not specify a full pathname,
the assembler searches for the file in:

1) The directory that contains the current source file
2) Any directories named with the –i assembler option
3) Any directories specified by the environment variable A_DIR

For more information about the –i option and the environment variable, see
Section 3.5, Naming Alternate Directories for Assembler Input, on page 3-14.

When the assembler encounters a .mlib directive, it opens the library and
creates a table of the library’s contents. The assembler enters the names of
the individual library members into the opcode table as library entries. This re-
defines any existing opcodes or macros that have the same name. If one of
these macros is called, the assembler extracts the entry from the library and
loads it into the macro table. The assembler expands the library entry in the
same way it expands other macros, but it does not place the source code into
the listing. Only macros that are actually called from the library are extracted,
and they are extracted only once.

.mlib Define Macro Library

4-74

Example This example creates a macro library that defines two macros, incr and decr.
The file incr.asm contains the definition of incr, and decr.asm contains the defi-
nition of decr.

incr.asm decr.asm

* Macro for incrementing
incr .macro
 ADD #1,AC0,AC0
 ADD #1,AC1,AC1
 ADD #1,AC2,AC2
 ADD #1,AC3,AC3
 .endm

* Macro for decrementing
decr .macro
 SUB #1,AC0,AC0
 SUB #1,AC1,AC1
 SUB #1,AC2,AC2
 SUB #1,AC3,AC3
 .endm

Use the archiver to create a macro library:

ar55 –a mac incr.asm decr.asm

Now you can use the .mlib directive to reference the macro library and define
the incr and decr macros:

 1 .mlib ”mac.lib”
 2 000000 incr ; Macro call
1 000000 4010 ADD #1,AC0,AC0
1 000002 4011 ADD #1,AC1,AC1
1 000004 4012 ADD #1,AC2,AC2
1 000006 4013 ADD #2,AC3,AC3
 3 000008 decr ; Macro call
1 000008 4210 SUB #1,AC0,AC0
1 00000a 4211 SUB #1,AC1,AC1
1 00000c 4212 SUB #1,AC2,AC2
1 00000e 4213 SUB #1,AC3,AC3

 Start/Stop Expansion Listing .mlist/.mnolist

4-75 Assembler Directives

Syntax
.mlist
.mnolist

Description Two directives enable you to control the listing of macro and repeatable block
expansions in the listing file:

� The .mlist directive allows macro and .loop/.endloop block expansions in
the listing file.

� The .mnolist directive suppresses macro and .loop/.endloop block
expansions in the listing file.

By default, the assembler behaves as if the .mlist directive had been specified.

Example This example defines a macro named STR_3. The second time the macro is
called, the macro expansion is not listed, because a .mnolist directive was
assembled. The third time the macro is called, the macro expansion is listed,
because a .mlist directive was assembled.

 1 STR_3 .macro P1, P2, P3
 2 .data
 3 .string ”:p1:”, ”:p2:”, ”:p3:”
 4 .endm
 5
 6 000000 STR_3 ”as”, ”I”, ”am”
1 000000 .data
1 000000 003A .string ”:p1:”, ”:p2:”, ”:p3:”
 000001 0070
 000002 0031
 000003 003A
 000004 003A
 000005 0070
 000006 0032
 000007 003A
 000008 003A
 000009 0070
 00000a 0033
 00000b 003A
 7 .mnolist
 8 00000c STR_3 ”as”, ”I”, ”am”
 9 .mlist
 10 000018 STR_3 ”as”, ”I”, ”am”
1 000018 .data
1 000018 003A .string ”:p1:”, ”:p2:”, ”:p3:”
 000019 0070
 00001a 0031
 00001b 003A
 00001c 003A
 00001d 0070
 00001e 0032
 00001f 003A
 000020 003A
 000021 0070
 000022 0033
 000023 003A

.mmregs Assign Memory–Mapped Register Names as Global Symbols

4-76

Syntax
.mmregs

Description The .mmregs directive defines global symbolic names for the ’C55x registers
and places them in the global symbol table. It is equivalent to executing AC0L
.set 8, AC0H .set 9, etc. The symbols are local and absolute. Using the
.mmregs directive makes it unnecessary to define these symbols.

Table 4–2. Memory-Mapped Registers

Name
Hexadecimal
Address Description

IER0 0000 Interrupt enable register

IFR0 0001 Interrupt flag register

ST0 0002 For native ’C55x code that accesses ST0

ST1 0003 For native ’C55x code that accesses ST1

ST3 0004 For native ’C55x code that accesses ST3

– 0005 Reserved

ST0 0006 For ’C54x code that accesses ST0

ST1 0007 For ’C54x code that accesses ST1

AC0L
AC0H
AC0G

0008
0009
000A

Accumulator AC0

AC1L
AC1H
AC1G

000B
000C
000D

Accumulator AC1

T3 000E Temporary register T3

TRN0 000F Transition register

AR0 0010 Auxiliary register

AR1 0011 Auxiliary register

AR2 0012 Auxiliary register

AR3 0013 Auxiliary register

AR4 0014 Auxiliary register

AR5 0015 Auxiliary register

AR6 0016 Auxiliary register

AR7 0017 Auxiliary register

 Assign Memory-Mapped Register Names as Global Symbols .mmregs

4-77 Assembler Directives

Table 4–2. Memory-Mapped Registers (Continued)

Name
Hexadecimal-
Address Description

SP 0018 Data stack pointer

BK03 0019 Circular buffer size register

BRC0 001A Block repeat counter register

RSA0L 001B Block repeat start address register

REA0L 001C Block repeat end address register

PMST 001D Processor mode status register PMST

XPC 001E Program counter extension register for ’C54x
code that accesses PMST

 – 001F Reserved

T0 0020 Temporary register

T1 0021 Temporary register

T2 0022 Temporary register

T3 0023 Temporary register

AC2L
AC2H
AC2G

0024
0025
0026

Accumulator register AC2

CDP 0027 Coefficient data pointer

AC3L
AC3H
AC3G

0028
0029
002A

Accumulator register AC3

DPH 002B High part of extended data page register

– 002C – 002D Reserved

DP 002E Data page register

PDP 002F Peripheral data page register

BK47 0030 Circular buffer size register

BKC 0031 Circular buffer size register

BSA01 0032 Circular buffer offset register

BSA23 0033 Circular buffer offset register

BSA45 0034 Circular buffer offset register

BSA67 0035 Circular buffer offset register

BSAC 0036 Circular buffer offset register

.mmregs Assign Memory-Mapped Register Names as Global Symbols

4-78

Table 4–2. Memory-Mapped Registers (Continued)

Name
Hexadecimal-
Address Description

 – 0037 Reserved

TRN1 0038 Transition register

BRC1 0039 Block repeat counter register

BRS1 003A Block repeat save register

CSR 003B Computed single repeat register

RSA0H
RSA0L

003C
003D

Repeat start address register RSA0

REA0H
REA0L

003E
003F

Repeat end address register REA0

RSA1H
RSA2L

0040
0041

Repeat start address register RSA1

REA1H
REA1L

0042
0043

Repeat end address register REA1

RPTC 0044 Single repeat counter register

IER1 0045 Interrupt mask register 1

IFR1 0046 Interrupt flag register 1

DBIER0 0047 Debug interrupt register 0

DBIER1 0048 Debug interrupt register 1

IVPD 0049 Interrupt vector pointer for DSP

IVPH 004A Interrupt vector pointer for HOST

ST2 004B Status register 2

SSP 004C System stack pointer

SP 004D Data stack pointer

SPH 004E High part of extended stack pointers

CDPH 004F High part of the extended CDP

 – 0050–005F Reserved

 Terminate Local Symbol Block .newblock

4-79 Assembler Directives

Syntax
.newblock

Description The .newblock directive undefines any local labels currently defined. Local
labels, by nature, are temporary; the .newblock directive resets them and
terminates their scope.

A local label is a label in the form $n, where n is a single decimal digit. A local
label, like other labels, points to an instruction word. Unlike other labels, local
labels cannot be used in expressions. Local labels are not included in the
symbol table.

After a local label has been defined and (perhaps) used, you should use the
.newblock directive to reset it. The .text, .data, and named sections also reset
local labels. Local labels that are defined within an include file are not valid out-
side of the local file.

Example This example shows how the local label $1 is declared, reset, and then
declared again.

 1 .ref ADDRA, ADDRB, ADDRC
 2 foo .set 76h
 3
 4 000000 A000! LABEL1: MOV ADDRA,AC0
 5 000002 7C00 SUB #foo,AC0

000004 7600
 6 000006 62200 BCC $1,AC0 < #0
 7 000008 A000! MOV ADDRB,AC0
 8 00000a 4A02 B $2
 9
10 00000c A000! $1 MOV ADDRA,AC0
11 000003 D600 $2 ADD ADDRC,AC0,AC0

000010 00!
12 .newblock ; Undefine $1 to reuse
13 000011 6120 BCC $1,AC0 < #0
14 000013 C000! MOV AC0,ADDRC
15 000015 20 $1 NOP

.noremark Suppress Remarks

4-80

Syntax
.noremark num

Description The .noremark directive suppresses the assembler remark identified by num.
A remark is an informational assembler message that is less severe than a
warning.

This directive is equivalent to using the –rnum command line option.

Example This example shows how to suppress the R5002 remark:

Original listing file:

 1 000000 20 RSBX CMPT
“file.asm”, REMARK at line 1: [R5002] Ignoring RSBX CMPT
instruction
 2
 3 000001 4804 RETF
“file.asm”, REMARK at line 3: [R5004] Translation of RETF
correct only for non–interrupt routine

Listing file with .noremark:

 1 .noremark 5002
 2 000000 20 RSBX CMPT
 3
 4 000001 4804 RETF
“file.asm”, REMARK at line 4: [R5004] Translation of RETF
correct only for non–interrupt routine

 Select Listing Options .option

4-81 Assembler Directives

Syntax
.option option list

Description The .option directive selects several options for the assembler output listing.
Option list is a list of options separated by vertical lines; each option selects
a listing feature. These are valid options:

B limits the listing of .byte directives to one line.

L limits the listing of .long directives to one line.

M turns off macro expansions in the listing.

R resets the B, M, T, and W options.

T limits the listing of .string directives to one line.

W limits the listing of .word directives to one line.

X produces a symbol cross-reference listing. (You can also obtain a
cross-reference listing by invoking the assembler with the –
x option.)

Options are not case sensitive.

.option Select Listing Options

4-82

Example This example shows how to limit the listings of the .byte, .word, .long, and
.string directives to one line each.

 1 **
 2 ** Limit the listing of .byte, .word, **
 3 ** .long, and .string directives **
 4 ** to 1 line each. **
 5 **
 6 .option B, W, L, T
 7 000000 .data
 8 000000 00BD .byte –’C’, 0B0h, 5
 9 000004 AABB .long 0AABBCCDDh, 536 + ’A’
 10 000008 15AA .word 5546, 78h
 11 00000a 0045 .string ”Extended Registers”
 12
 13 **
 14 ** Reset the listing options. **
 15 **
 16 .option R
 17 00001c FFBD .byte –’C’, 0B0h, 5
 00001d 00B0
 00001e 0005
 18 000020 AABB .long 0AABBCCDDh, 536 + ’A’
 000021 CCDD
 000022 0000
 000023 0259
 19 000024 15AA .word 5546, 78h
 000025 0078
 20 000026 0045 .string ”Extended Registers”
 000027 0078
 000028 0074
 000029 0065
 00002a 006E
 00002b 0064
 00002c 0065
 00002d 0064
 00002e 0020
 00002f 0052
 000030 0065
 000031 0067
 000032 0069
 000033 0073
 000034 0074
 000035 0065
 000036 0072
 000037 0073

 Eject Page in Listing .page

4-83 Assembler Directives

Syntax
.page

Description The .page directive produces a page eject in the listing file. The .page directive
is not printed in the source listing, but the assembler increments the line
counter when it encounters it. Using the .page directive to divide the source
listing into logical divisions improves program readability.

Example This example shows how the .page directive causes the assembler to begin
a new page of the source listing.

Source file:

 .title ”**** Page Directive Example ****”
; .
; .
; .
 .page

Listing file:

 TMS320C55x COFF Assembler Version x.xx
 Copyright (c) 2000 Texas Instruments Incorporated

 **** Page Directive Example **** PAGE 1

 2 ; .
 3 ; .
 4 ; .
 TMS320C55x COFF Assembler Version x.xx
 Copyright (c) 2000 Texas Instruments Incorporated

 **** Page Directive Example **** PAGE 2

.sblock Specify Blocking for an Initialized Section

4-84

Syntax
.sblock [”]section name[”] [, ”section name”, . . .]

Description The .sblock directive designates sections for blocking. Blocking is an address
alignment mechanism similar to page alignment, but weaker. A blocked code
section is guaranteed to not cross a 128-byte boundary if it is smaller than 128
bytes. It will start on a 128-byte boundary if it is larger than 128 bytes. A blocked
data section is guaranteed to not cross a 128-word (page) boundary if it is
smaller than a page. It will start on a page boundary if it is larger than a page.
This directive allows specification of blocking for initialized sections only, not
uninitialized sections declared with .usect or the .bss directives. The section
names may optionally be enclosed in quotes.

Example This example designates the .text and .data sections for blocking.

1 **
2 ** Specify blocking for the .text **
3 ** and .data sections. **
4 **

 5 .sblock .text, .data

 Assign Character Strings to Substitution Symbols .sect

4-85 Assembler Directives

Syntax
.sect ” section name”

Description The .sect directive defines a named section that can be used like the default
.text and .data sections. The .sect directive begins assembling source code
into the named section.

The section name identifies a section that the assembler assembles code into.
The name can be up to 200 characters and must be enclosed in double quotes.
A section name can contain a subsection name in the form section name:sub-
section name.

For more information about COFF sections, see Chapter 2,
Introduction to Common Object File Format.

Example This example defines a special-purpose section named Vars and assembles
code into it.

 1 **
 2 ** Begin assembling into .text section. **
 3 **
 4 000000 .text
 5 000000 7600 MOV #120,AC0 ; Assembled into .text
 000002 7808
 6 000004 7B00 ADD #54,AC0 ; Assembled into .text
 000006 3600
 7 **
 8 ** Begin assembling into Vars section. **
 9 **
 10 000000 .sect ”Vars”
 11 WORD_LEN .set 16
 12 DWORD_LEN .set WORD_LEN * 2
 13 BYTE_LEN .set WORD_LEN / 2
 14 000000 000E .byte 14
 15 **
 16 ** Resume assembling into .text section. **
 17 **
 18 000008 .text
 19 000008 7B00 ADD #66,AC0 ; Assembled into .text
 00000a 4200
 20 **
 21 ** Resume assembling into Vars section. **
 22 **
 23 000001 .sect ”Vars”
 24 000001 000D .field 13, WORD_LEN
 25 000002 0A00 .field 0Ah, BYTE_LEN
 26 000003 0000 .field 10q, DWORD_LEN
 000004 0008
 27

.set/.equ Define Assembly-Time Constant

4-86

Syntax
symbol .set value
symbol .equ value

Description The .set and .equ directives equate a value to a symbol. The symbol can then
be used in place of a value in assembly source. This allows you to equate
meaningful names with constants and other values.

� The symbol is a label that must appear in the label field.

� The value must be a well-defined expression; that is, all symbols in the
expression must be previously defined in the current source module.

Undefined external symbols and symbols that are defined later in the module
cannot be used in the expression. If the expression is relocatable, the symbol
to which it is assigned is also relocatable.

The value of the expression appears in the object field of the listing. This value
is not part of the actual object code and is not written to the output file.

Symbols defined with .set or .equ can be made externally visible with the .def
or .global directive. In this way, you can define global absolute constants.

Example This example shows how symbols can be assigned with .set and .equ.

 1 **
 2 ** Set symbol index to an integer expr. **
 3 ** and use it as an immediate operand. **
 4 **
 5 INDEX .equ 100/2 +3
 6 000000 7B00 ADD #INDEX,AC0,AC0
 000002 3500
 7
 8 **
 9 ** Set symbol SYMTAB to a relocatable expr. **
 10 ** and use it as a relocatable operand. **
 11 **
 12 000000 .data
 13 000000 000A LABEL .word 10
 14 SYMTAB .set LABEL + 1
 15
 16 **
 17 ** Set symbol NSYMS equal to the symbol **
 18 ** INDEX and use it as you would INDEX. **
 19 **
 20 NSYMS .set INDEX
 21 000001 0035 .word NSYMS

 Reserve Space .space/.bes

4-87 Assembler Directives

Syntax
.space size in bits
.bes size in bits

Description The .space and .bes directives reserve size number of bits in the current sec-
tion and fill them with 0s.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of .space
and .bes directives in a section that includes ’C55x instructions will likely lead
to the generation of an invalid access to the data at execution. Consequently,
Texas Instruments highly recommends that these directives be issued only
within data sections.

When you use a label with the .space directive, it points to the first word re-
served (in a data section). When you use a label with the .bes directive, it points
to the last word reserved (in a data section).

Example This example shows how memory is reserved with the .space and .bes
directives.

 1 ***
 2 ** Begin assembling into .data section. **
 3 ***
 4 000000 .data
 5 000000 0049 .string ”In .data”
 000001 006E
 000002 0020
 000003 002E
 000004 0064
 000005 0061
 000006 0074
 000007 0061
 6 ***
 7 ** Reserve 100 bits in the .data section; **
 8 ** RES_1 points to the first word that **
 9 ** contains reserved bits. **
 10 ***
 11 000008 RES_1: .space 100
 12 00000f 000F .word 15
 13 000010 0008” .word RES_1
 14
 15 ***
 16 ** Reserve 20 bits in the .data section; **
 17 ** RES_2 points to the last word that **
 18 ** contains reserved bits. **
 19 ***
 20 000012 RES_2: .bes 20
 21 000013 0036 .word 36h
 22 000014 0012” .word RES_2

.sslist/.ssnolist Control Listing of Substitution Symbols

4-88

Syntax
.sslist
.ssnolist

Description Two directives enable you to control substitution symbol expansion in the
listing file:

� The .sslist directive allows substitution symbol expansion in the listing file.
The expanded line appears below the actual source line.

� The .ssnolist directive suppresses substitution symbol expansion in the
listing file.

By default, all substitution symbol expansion in the listing file is inhibited. Lines
with the pound (#) character denote expanded substitution symbols.

Example This example shows code that, by default, suppresses the listing of substitu-
tion symbol expansion, and it shows the .sslist directive assembled, instructing
the assembler to list substitution symbol code expansion.

(a) Mnemonic example

 1 000000 .bss ADDRX, 1
 2 000001 .bss ADDRY, 1
 3 000002 .bss ADDRA, 1
 4 000003 .bss ADDRB, 1
 5 ADD2 .macro ADDRA, ADDRB
 6 MOV ADDRA,AC0
 7 ADD ADDRB,AC0,AC0
 8 MOV AC0,ADDRB
 9 .endm
10
11 000000C083 MOV AC0,*AR4+
12 000002 ADD2 ADDRX, ADDRY

1 000002A000– MOV ADDRX,AC0
1 000004D600 ADD ADDRY,AC0,AC0

00000600–
1 000007C000– MOV AC0,ADDRY

13
14 .sslist
15
16 000009C083 MOV AC0,*AR4+
17 00000bC003 MOV AC0,*AR0+
18
19 00000d ADD2 ADDRX, ADDRY

1 00000dA000– MOV ADDRA,AC0
MOV ADDRX,AC0
1 00000fD600 ADD ADDRB,AC0,AC0
ADD ADDRY,AC0,AC0

00001100–
1 000012C000– MOV AC0,ADDRB
MOV AC0,ADDRY

 Control Listing of Substitute Symbols .sslist/.ssnolist

4-89 Assembler Directives

(b) Algebraic example

 1 000000 .bss ADDRX, 1
 2 000001 .bss ADDRY, 1
 3 000002 .bss ADDRA, 1
 4 000003 .bss ADDRB, 1
 5 ADD2 .macro ADDRA, ADDRB
 6 AC0 = @(ADDRA)
 7 AC0 = AC0 + @(ADDRB)
 8 @(ADDRB) = AC0
 9 .endm
10
11 000000C083 *AR4+ = AC0
12 000002 ADD2 ADDRX, ADDRY

1 000002A000– AC0 = @(ADDRX)
1 000004D600 AC0 = AC0 + @(ADDRY)

00000600–
1 000007C000– @(ADDRY) = AC0

13
14 .sslist
15
16 000009C083 *AR4+ = AC0
17 00000bC003 *AR0+ = AC0
18
19 00000d ADD2 ADDRX, ADDRY

1 00000dA000– AC0 = @(ADDRA)
AC0 = @(ADDRX)
1 00000fD600 AC0 = AC0 + @(ADDRB)
AC0 = AC0 + @(ADDRY)

00001100–
1 000012C000– @(ADDRB) = AC0
@(ADDRY) = AC0

.string/.pstring Initialize Text

4-90

Syntax
.string ” string1 ” [, ... , ” stringn ”]
.pstring ” string1 ” [, ... , ” stringn ”]

Description The .string and .pstring directives place 8-bit characters from a character
string into the current section. The .string directive places 8-bit characters into
consecutive words in the current section. The .pstring also has a width of 8 bits
but packs one character per byte. Each string is either:

� An expression that the assembler evaluates and treats as an 8- or 16-bit
signed number, or

� A character string enclosed in double quotes. Each character in a string
represents a separate byte.

Note: Use These Directives in Data Sections

Because code and data sections are addressed differently, the use of .string
and .pstring directives in a section that includes ’C55x instructions will likely
lead to the generation of an invalid access to the data at execution. Conse-
quently, Texas Instruments highly recommends that these directives be
issued only within data sections.

With .pstring, values are packed into words starting with the most significant
byte of the word. Any unused space is padded with null bytes.

The assembler truncates any values that are greater than 8 bits. You may have
up to 100 operands, but they must fit on a single source statement line.

If you use a label, it points to the location of the first word (in a data section)
that is initialized.

Note that when you use .string in a .struct/.endstruct sequence, .string defines
a member’s size; it does not initialize memory. For more information about
.struct/.endstruct, see Section 4.8, Assembly-Time Symbol Directives, on
page 4-22.

 Initialize Text .string/.pstring

4-91 Assembler Directives

Example This example shows 8-bit values placed into words in the current section.

 1 000000 .data
 2 000000 0041 .string 41h, 42h, 43h, 44h
 000001 0042
 000002 0043
 000003 0044
 3 000004 0041 Str_Ptr: .string ”ABCD”
 000005 0042
 000006 0043
 000007 0044
 4 000008 4175 .pstring ”Austin”, ”Houston”
 000009 7374
 00000a 696E
 00000b 486F
 00000c 7573
 00000d 746F
 00000e 6E00
 5 00000f 0030 .string 36 + 12

.struct/.endstruct/.tag Declare Structure Type

4-92

Syntax
[stag] .struct [expr]
[mem0] element [expr0]
[mem1] element [expr1]
 . . .
 . . .
 . . .
[memn] .tag stag [, exprn]
 . . .
 . . .
 . . .
[memN] element [exprN]
[size] .endstruct

 label .tag stag

Description The .struct directive assigns symbolic offsets to the elements of a data
structure definition. This enables you to group similar data elements together
and then let the assembler calculate the element offset. This is similar to a C
structure or a Pascal record. A .struct definition may contain a .union definition,
and .structs and .unions may be nested. The .struct directive does not allocate
memory; it merely creates a symbolic template that can be used repeatedly.

The .endstruct directives terminates the structure definition.

The .tag directive gives structure characteristics to a label, simplifying the
symbolic representation and providing the ability to define structures that con-
tain other structures. The .tag directive does not allocate memory. The
structure tag (stag) of a .tag directive must have been previously defined.

stag is the structure’s tag. Its value is associated with the beginning
of the structure. If no stag is present, the assembler puts the
structure members in the global symbol table with the value of
their absolute offset from the top of the structure. Stag is optional
for .struct, but required for .tag.

expr is an optional expression indicating the beginning offset of the
structure. Structures default to start at 0.

 Declare Structure Type .struct/.endstruct/.tag

4-93 Assembler Directives

memn is an optional label for a member of the structure. This label is
absolute and equates to the present offset from the beginning of
the structure. A label for a structure member cannot be declared
global.

element is one of the following descriptors: .byte, .char, .double, field,
.float, .half, .int, .long, .short, .string, .ubyte, .uchar, .uhalt, .uint,
.ulong, .ushort, .uword, and .word. An element can also be a com-
plete declaration of a nested structure or union, or a structure or
union declared by its tag. Following a .struct directive, these
directives describe the element’s size. They do not allocate
memory.

exprn is an optional expression for the number of elements described.
This value defaults to 1. A .string element is considered to be one
word in size, and a .field element is one bit.

size is an optional label for the total size of the structure.

Note: Directives That Can Appear in a .struct /.endstruct Sequence

The only directives that can appear in a .struct/.endstruct sequence are ele-
ment descriptors, structure and union tags, conditional assembly directives,
and the .align directive, which aligns the member offsets on word bound-
aries. Empty structures are illegal.

These examples show various uses of the .struct, .tag, and .endstruct
directives.

.struct/.endstruct/.tag Declare Structure Types

4-94

Example 1

 1 000000 .data
 2 REAL_REC .struct ; stag
 3 0000 NOM .int ; member1 = 0
 4 0001 DEN .int ; member2 = 1
 5 0002 REAL_LEN .endstruct ; real_len = 2
 6 000000 .text
 7 000000 D600 ADD @(REAL + REAL_REC.DEN),AC0,AC0
 000002 00–
 8 ; access structure element
 9
 10 000000 .bss REAL, REAL_LEN ; allocate mem rec

Example 2

 11 .data
 12 CPLX_REC .struct
 13 0000 REALI .tag REAL_REC ; stag
 14 0002 IMAGI .tag REAL_REC ; member1 = 0
 15 0004 CPLX_LEN .endstruct ; cplx_len = 4
 16
 17 COMPLEX .tag CPLX_REC ; assign structure attrib
 18
 19 000002 .bss COMPLEX, CPLX_LEN
 20 000003 .text
 21 000003 D600 ADD @(COMPLEX.REALI),AC0,AC0 ; access structure
 000005 00–
 22 000006 C000– MOV AC0,@(COMPLEX.REALI)
 23
 24 000008 D600 ADD @(COMPLEX.IMAGI),AC1,AC1 ; allocate space
 00000a 11–

Example 3

 1 000000 .data
 2 .struct ; no stag puts mems into
 3 ; global symbol table
 4 0000 X .int ; create 3 dim templates
 5 0001 Y .int
 6 0002 Z .int
 7 0003 .endstruct

 Declare Structure Types .struct/.endstruct/.tag

4-95 Assembler Directives

Example 4

 1 000000 .data
 1 BIT_REC .struct ; stag
 2 0000 STREAM .string 64
 3 0040 BIT7 .field 7 ; bits1 = 64
 4 0040 BIT9 .field 9 ; bits2 = 64
 5 0041 BIT10 .field 10 ; bits3 = 65
 6 0042 X_INT .int ; x_int = 66
 7 0043 BIT_LEN .endstruct ; length = 67
 8
 9 BITS .tag BIT_REC
 10 000000 .text
 11 000000 D600 ADD @(BITS.BIT7),AC0,AC0 ; move into acc
 000002 00%
 12 000003 187F AND #127,AC0 ; mask off garbage bits
 000005 00
 13
 14 000000 .bss BITS, BIT_REC

.tab Define Tab Size

4-96

Syntax
.tab size

Description The .tab directive defines the tab size. Tabs encountered in the source input
are translated to size spaces in the listing. The default tab size is eight spaces.

Example Each of the following lines consists of a single tab character followed by an
NOP instruction.

Source file:

; default tab size
NOP
NOP
NOP

 .tab 4
NOP
NOP
NOP

 .tab 16
NOP
NOP
NOP

Listing file:

 1 ; default tab size
 2 000000 20 NOP
 3 000001 20 NOP
 4 000002 20 NOP
 5
 7 000003 20 NOP
 8 000004 20 NOP
 9 000005 20 NOP
 10
 12 000006 20 NOP
 13 000007 20 NOP
 14 000008 20 NOP

 Assemble Into .text Section .text

4-97 Assembler Directives

Syntax
.text

Description The .text directive tells the assembler to begin assembling into the .text sec-
tion. The assembler assumes that the .text section contains executable code.
The section program counter is set to 0 if nothing has yet been assembled into
the .text section. If code has already been assembled into the .text section, the
section program counter is restored to its previous value in the section.

Because the .text section is a code section, it is byte-addressable. Data
sections are word-addressable.

.text is the default section. Therefore, at the beginning of an assembly, the
assembler assembles code into the .text section unless you specify a different
sections directive (.data or .sect).

For more information about COFF sections, see Chapter 2,
Introduction to Common Object File Format.

.text Assemble Into .text Sections

4-98

Example This example assembles code into the .text and .data sections. The .data sec-
tion contains integer constants, and the .text section contains executable
code.
 1 ***
 2 ** Begin assembling into .data section.**
 3 ***
 4 000000 .data
 5 000000 0041 START: .string ”A”,”B”,”C”
 000001 0042
 000002 0043
 6 000003 0058 END: .string ”X”,”Y”,”Z”
 000004 0059
 000005 005a
 7 **
 8 ** Begin assembling into .text section. **
 9 **
10 000000 .text
11 000000 D600 ADD START,AC0,AC0
 000002 00”
12 000003 D600 ADD END,AC0,AC0
 000005 00“
13 ***
14 ** Resume assembling into .data section.**
15 ***
16 000006 .data
17 000006 000a .byte 0Ah, 0Bh
 000007 000b
18 000008 000c .byte 0Ch, 0Dh
 000009 000d
19 ***
20 ** Resume assembling into .text section.**
21 ***
22 000006 .text
23 000006 2201 MOV AC0,AC1

 Define Page Title .title

4-99 Assembler Directives

Syntax
.title ” string”

Description The .title directive supplies a title that is printed in the heading on each listing
page. The source statement itself is not printed, but the line counter is increm-
ented.

The string is a quote-enclosed title of up to 65 characters. If you supply more
than 65 characters, the assembler truncates the string and issues a warning.

The assembler prints the title on the page that follows the directive, and on sub-
sequent pages until another .title directive is processed. If you want a title on
the first page, the first source statement must contain a .title directive.

Example In this example, one title is printed on the first page and a different title on
succeeding pages.

Source file:

 .title ”**** Fast Fourier Transforms ****”
; .
; .
; .
 .title ”**** Floating–Point Routines ****”
 .page

Listing file:

 COFF Assembler Version x.xx
 Copyright (c) 2000 Texas Instruments Incorporated

 **** Fast Fourier Transforms **** PAGE 1

 2 ; .
 3 ; .
 4 ; .
 COFF Assembler Version x.xx
 Copyright (c) 2000 Texas Instruments Incorporated

 **** Floating–Point Routines **** PAGE 2

.union/.endunion/.tag Declare Union Type

4-100

Syntax
[utag] .union [expr]
[mem0] element [expr0]
[mem1] element [expr1]
 . . .
 . . .
 . . .
[memn] .tag utagn[, exprn]
 . . .
 . . .
 . . .
[memN] element [exprN]
[size] .endunion

 label .tag utag

Description The .union directive assigns symbolic offsets to the elements of alternate data
structure definitions to be allocated in the same memory space. This enables
you to define several alternate structures and then let the assembler calculate
the element offset. This is similar to a C union. The .union directive does not
allocate any memory; it merely creates a symbolic template that can be used
repeatedly.

A .struct definition may contain a .union definition, and .structs and .unions
may be nested.

The .endunion directive terminates the union definition.

The .tag directive gives structure or union characteristics to a label, simplifying
the symbolic representation and providing the ability to define structures or
unions that contain other structures or unions. The .tag directive does not allo-
cate memory. The structure or union tag of a .tag directive must have been pre-
viously defined.

 Declare Union Type .union/.endunion/.tag

4-101 Assembler Directives

utag is the union’s tag. Its value is associated with the beginning of the
union. If no utag is present, the assembler puts the union
members in the global symbol table with the value of their abso-
lute offset from the top of the union. In this case, each member
must have a unique name.

expr is an optional expression indicating the beginning offset of the
union. Unions default to start at 0.

memn is an optional label for a member of the union. This label is abso-
lute and equates to the present offset from the beginning of the
union. A label for a union member cannot be declared global.

element is one of the following descriptors: .byte, .char, .double, field,
.float, .half, .int, .long, .short, .string, .ubyte, .uchar, .uhalt, .uint,
.ulong, .ushort, .uword, and .word. An element can also be a com-
plete declaration of a nested structure or union, or a structure or
union declared by its tag. Following a .union directive, these
directives describe the element’s size. They do not allocate
memory.

exprn is an optional expression for the number of elements described.
This value defaults to 1. A .string element is considered to be one
word in size, and a .field element is one bit.

size is an optional label for the total size of the union.

Note: Directives That Can Appear in a .union/.endunion Sequence

The only directives that can appear in a .union/.endunion sequence are ele-
ment descriptors, structure and union tags, conditional assembly directives,
and the .align directive, which aligns the member offsets on word bound-
aries. Empty structures are illegal.

These examples show unions with and without tags.

.union/.endunion/.tag Declare Union Types

4-102

Example 1

 1 .global employid
 2 000000 .data
 3 xample .union ; utag
 4 0000 ival .word ; member1 = 0
 5 0000 fval .float ; member2 = 0
 6 0000 sval .string ; member3 = 0
 7 0002 real_len .endunion ; real_len = 4
 8
 9 000000 .bss employid, real_len ;allocate memory
 10
 11 employid .tag xample
 12 000000 .text
 13 000000 D600 ADD @(employid.fval),ADD,ADD ; access union element
 000002 00–

Example 2

 1 000000 .data
 2 .union ; utag
 3 0000 x .long ; member1 = long
 4 0000 y .float ; member2 = float
 5 0000 z .word ; member3 = word
 6 0002 size_u .endunion ; real_len = 4
 7

 Reserve Uninitialized Space .usect

4-103 Assembler Directives

Syntax
symbol .usect ” section name” , size in words [, [blocking flag] [, alignment flag]]

Description The .usect directive reserves space for variables in an uninitialized, named
section. This directive is similar to the .bss directive; both simply reserve space
for data and have no contents. However, .usect defines additional sections
that can be placed anywhere in memory, independently of the .bss section.

symbol points to the first location reserved by this invocation of the
.usect directive. The symbol corresponds to the name of
the variable for which you’re reserving space.

section name must be enclosed in double quotes. This parameter
names the uninitialized section. The name can be up to
200 characters. For COFF1 formatted files, only the first
8 characters are significant. A section name can contain
a subsection name in the form section name:subsection
name.

size in words is an expression that defines the number of words that are
reserved in section name.

blocking flag is an optional parameter. If specified and nonzero, the flag
means that this section will be blocked. Blocking is an ad-
dress mechanism similar to alignment, but weaker. It
means a section is guaranteed to not cross a page bound-
ary (128 words) if it is smaller than a page, and to start on
a page boundary if it is larger than a page. This blocking
applies to the section, not to the object declared with this
instance of the .usect directive.

alignment flag is an optional parameter. This flag causes the assembler
to allocate size on long word boundaries.

Note: Specifying an Alignment Flag Only

To specify an alignment flag without a blocking flag, you must insert two
commas before the alignment flag, as shown in the syntax.

Other sections directives (.text, .data, and .sect) end the current section and
tell the assembler to begin assembling into another section. The .usect and the
.bss directives, however, do not affect the current section. The assembler
assembles the .usect and the .bss directives and then resumes assembling
into the current section.

Variables that can be located contiguously in memory can be defined in the
same specified section; to do so, repeat the .usect directive with the same sec-
tion name.

.usect Reserve Uninitialized Space

4-104

For more information about COFF sections, see Chapter 2, Introduc-
tion to Common Object File Format.

Example This example uses the .usect directive to define two uninitialized, named sec-
tions, var1 and var2. The symbol ptr points to the first word reserved in the var1
section. The symbol array points to the first word in a block of 100 words
reserved in var1, and dflag points to the first word in a block of 50 words in var1.
The symbol vec points to the first word reserved in the var2 section.

Figure 4–7 on page 4-105 shows how this example reserves space in two unini-
tialized sections, var1 and var2.

 1 **
 2 ** Assemble into .text section. **
 3 **
 4 000000 .text
 5 000000 3C30 MOV #3,AC0
 6
 7 **
 8 ** Reserve 1 word in var1. **
 9 **
 10 000000 ptr .usect ”var1”, 1
 11
 12 **
 13 ** Reserve 100 words in var1. **
 14 **
 15 000001 array .usect ”var1”, 100
 16
 17 000002 7B00 ADD #55,AC0,AC0 ; Still in .text
 000004 3700
 18
 19 **
 20 ** Reserve 50 words in var1. **
 21 **
 22 000065 dflag .usect ”var1”, 50
 23
 24 000006 7B06 ADD #dflag,AC0,AC0 ; Still in .text
 000008 5000–
 25
 26 **
 27 ** Reserve 100 words in var2. **
 28 **
 29 000000 vec .usect ”var2”, 100
 30
 31 00000a 7B00 ADD #vec,AC0,AC0 ; Still in .text
 00000c 0000–
 32 **
 33 ** Declare an external .usect symbol. **
 34 **
 35 .global array

 Reserve Uninitialized Space .usect

4-105 Assembler Directives

Figure 4–7. The .usect Directive

1 word

100 words

50 words

ptr

array

dflag

151 words reserved in var1

section var1 section var2

100 words

100 words reserved in var2

.var Use Substitution Symbols as Local Variables

4-106

Syntax
.var sym1 [,sym2, ... , symn]

Description The .var directive allows you to use substitution symbols as local variables
within a macro. With this directive, you can define up to 32 local macro sub-
stitution symbols (including parameters) per macro.

The .var directive creates temporary substitution symbols with the initial value
of the null string. These symbols are not passed in as parameters, and they
are lost after expansion.

For more information on macros, see Chapter 5.

 Suppress Variable-Length Instruction Resolution .vli_off/.vli_on

4-107 Assembler Directives

Syntax
.vli_off
.vli_on

Description The .vli_off and .vli_on directives affect the way the assembler handles vari-
able-length instructions. The .vli_off directive is equivalent to using the –mv
command line option. In the case of a conflict between the command line op-
tion and the directive, the directive takes precedence.

By default (.vli_on), the assembler will attempt to resolve all stand-alone, vari-
able-length instructions to their smallest possible size.

Size resolution is performed on the following instruction groups:

[d]goto L6, L16, P24
if (cond) [d]call L16, P24
if (cond) goto l4
if (cond) [d]goto L8, L16, P24
[d]call L16, P24

In some cases, you may want the assembler to keep the largest (P24) form
of certain instructions. The P24 versions of certain variable-length instructions
execute in fewer cycles than the smaller version of the same instructions. Use
the .vli_off directive to keep the following instructions in their largest form:

goto P24
[d]goto P24
call P24
dcall P24

The .vli_off and .vli_on directives can be used to toggle this behavior for re-
gions of an assembly file. Note that all other variable-length instructions will
continue to be resolved to their smallest possible size by the assembler, de-
spite the use of the .vli_off directive.

The scope of the .vli_off and .vli_on directives is static and not subject to the
control flow of the assembly program.

5-1Macro Language

Macro Language

The assembler supports a macro language that enables you to create your
own instructions. This is especially useful when a program executes a
particular task several times. The macro language lets you:

� Define your own macros and redefine existing macros
� Simplify long or complicated assembly code
� Access macro libraries created with the archiver
� Define conditional and repeatable blocks within a macro
� Manipulate strings within a macro
� Control expansion listing

Topic Page

5.1 Using Macros 5-2.

5.2 Defining Macros 5-3.

5.3 Macro Parameters/Substitution Symbols 5-6.

5.4 Macro Libraries 5-14.

5.5 Using Conditional Assembly in Macros 5-15.

5.6 Using Labels in Macros 5-17.

5.7 Producing Messages in Macros 5-19.

5.8 Formatting the Output Listing 5-21.

5.9 Using Recursive and Nested Macros 5-22.

5.10 Macro Directives Summary 5-25.

Chapter 5

Using Macros

 5-2

5.1 Using Macros

Programs often contain routines that are executed several times. Instead of
repeating the source statements for a routine, you can define the routine as
a macro, then call the macro in the places where you would normally repeat
the routine. This simplifies and shortens your source program.

If you want to call a macro several times, but with different data each time, you
can assign parameters within a macro. This enables you to pass different
information to the macro each time you call it. The macro language supports
a special symbol called a substitution symbol, which is used for macro
parameters.

Using a macro is a three-step process.

Step 1: Define the macro. You must define macros before you can use them
in your program. There are two methods for defining macros:

� Macros can be defined at the beginning of a source file or in a
.copy/.include file. See Section 5.2, Defining Macros, for more
information.

� Macros can be defined in a macro library. A macro library is a col-
lection of files in archive format created by the archiver. Each
member of the archive file (macro library) contains one macro
definition corresponding to the member name. You can access
a macro library by using the .mlib directive. See Section 5.4,
Macro Libraries, on page 5-14 for more information.

Step 2: Call the macro. After defining a macro, you call it by using the macro
name as a mnemonic in the source program. This is referred to as
a macro call.

Step 3: Expand the macro. The assembler expands your macros when the
source program calls them. During expansion, the assembler
passes arguments by variable to the macro parameters, replaces
the macro call statement with the macro definition, and assembles
the source code. By default, the macro expansions are printed in the
listing file. You can turn off expansion listing by using the .mnolist
directive. See Section 5.8, Formatting the Output Listing, on page
5-21 for more information.

When the assembler encounters a macro definition, it places the macro name
in the opcode table. This redefines any previously defined macro, library entry,
directive, or instruction mnemonic that has the same name as the macro. This
allows you to expand the functions of directives and instructions, as well as to
add new instructions.

Defining Macros

5-3Macro Language

5.2 Defining Macros

You can define a macro anywhere in your program, but you must define the
macro before you can use it. Macros can be defined at the beginning of a
source file, in an .include/.copy file, or in a macro library. For more information
about macro libraries, see Section 5.4, Macro Libraries, on page 5-14.

Macro definitions can be nested, and they can call other macros, but all
elements of any macro must be defined in the same file. Nested macros are
discussed in Section 5.9, Using Recursive and Nested Macros, on page 5-22.

A macro definition is a series of source statements in the following format:

macname .macro [parameter1] [, ... , parametern]

model statements or macro directives

[.mexit]

.endm

macname names the macro. You must place the name in the
source statement’s label field. Only the first 32
characters of a macro name are significant. The
assembler places the macro name in the internal
opcode table, replacing any instruction or previous
macro definition with the same name.

.macro identifies the source statement as the first line of a
macro definition. You must place .macro in the
opcode field.

[parameters] are optional substitution symbols that appear as
operands for the .macro directive. Parameters are
discussed in Section 5.3, Macro Parameters/
Substitution Symbols, on page 5-6.

model statements are instructions or assembler directives that are
executed each time the macro is called.

macro directives are used to control macro expansion.

.mexit functions as a goto .endm statement. The .mexit
directive is useful when error testing confirms that
macro expansion will fail and completing the rest of
the macro is unnecessary.

.endm terminates the macro definition.

Defining Macros

 5-4

If you want to include comments with your macro definition but do not want
those comments to appear in the macro expansion, use an exclamation point
to precede your comments. If you do want your comments to appear in the
macro expansion, use an asterisk or semicolon. For more information about
macro comments, see Section 5.7, Producing Messages in Macros, on page
5-19.

Example 5–1 shows the definition, call, and expansion of a macro.

Example 5–1. Macro Definition, Call, and Expansion

(a) Mnemonic example

 1 *
 2
 3 * add3
 4 *
 5 * ADDRP = P1 + P2 + P3
 6
 7 add3 .macro P1, P2, P3, ADDRP
 8
 9 MOV P1,AC0
10 ADD P2,AC0,AC0
11 ADD P3,AC0,AC0
12 MOV AC0,ADDRP
13 .endm
14
15
16 .global abc, def, ghi, adr
17
18 000000 add3 abc, def, ghi, adr

 1
 1 000000 A000! MOV abc,AC0
 1 000002 D600 ADD def,AC0,AC0

000004 00!
 1 000005 D600 ADD ghi,AC0,AC0

000007 00!
 1 000008 C000! MOV AC0,adr

Defining Macros

5-5Macro Language

Example 5–1. Macro Definition, Call, and Expansion (Continued)

(b) Algebraic example

 1 *
 2
 3 * add3
 4 *
 5 * ADDRP = P1 + P2 + P3
 6
 7 add3 .macro P1, P2, P3, ADDRP
 8
 9 AC0 = @(P1)
10 AC0 = AC0 + @(P2)
11 AC0 = AC0 + @(P3)
12 @(ADDRP) = AC0
13 .endm
14
15
16 .global abc, def, ghi, adr
17
18 000000 add3 abc, def, ghi, adr

 1
 1 000000 A000! AC0 = @(abc)
 1 000002 D600 AC0 = AC0 + @(def)

000004 00!
 1 000005 D600 AC0 = AC0 + @(ghi)

000007 00!
 1 000008 C000! @(adr) = AC0

Macro Parameters/Substitution Symbols

 5-6

5.3 Macro Parameters/Substitution Symbols

If you want to call a macro several times with different data each time, you can
assign parameters within the macro. The macro language supports a special
symbol, called a substitution symbol, which is used for macro parameters.

Macro parameters are substitution symbols that represent a character string.
These symbols can also be used outside of macros to equate a character
string to a symbol name.

Valid substitution symbols can be up to 32 characters long and must begin with
a letter. The remainder of the symbol can be a combination of alphanumeric
characters, underscores, and dollar signs.

Substitution symbols used as macro parameters are local to the macro they
are defined in. You can define up to 32 local substitution symbols (including
substitution symbols defined with the .var directive) per macro. For more
information about the .var directive, see subsection 5.3.6, Substitution
Symbols as Local Variables in Macros, on page 5-13.

During macro expansion, the assembler passes arguments by variable to the
macro parameters. The character-string equivalent of each argument is
assigned to the corresponding parameter. Parameters without corresponding
arguments are set to the null string. If the number of arguments exceeds the
number of parameters, the last parameter is assigned the character-string
equivalent of all remaining arguments.

If you pass a list of arguments to one parameter, or if you pass a comma or
semicolon to a parameter, you must surround these terms with quotation
marks.

At assembly time, the assembler replaces the substitution symbol with its
corresponding character string, then translates the source code into object
code.

Example 5–2 shows the expansion of a macro with varying numbers of
arguments.

Macro Parameters/Substitution Symbols

5-7Macro Language

Example 5–2. Calling a Macro With Varying Numbers of Arguments

Macro definition

Parms .macro a,b,c
; a = :a:
; b = :b:
; c = :c:

.endm

Calling the macro:

Parms 100,label Parms 100,label,x,y
; a = 100 ; a = 100
; b = label ; b = label
; c = ” ” ; c = x,y

Parms 100, , x Parms ”100,200,300”,x,y
; a = 100 ; a = 100,200,300
; b = ” ” ; b = x
; c = x ; c = y

Parms ”””string”””,x,y
; a = ”string”
; b = x
; c = y

5.3.1 Directives That Define Substitution Symbols

You can manipulate substitution symbols with the .asg and .eval directives.

The .asg directive assigns a character string to a substitution symbol.

The syntax of the .asg directive is:

.asg [”]character string[”], substitution symbol

The quotation marks are optional. If there are no quotation marks, the
assembler reads characters up to the first comma and removes leading and
trailing blanks. In either case, a character string is read and assigned to the
substitution symbol.

Example 5–3 shows character strings being assigned to substitution symbols.

Macro Parameters/Substitution Symbols

 5-8

Example 5–3. The .asg Directive

.asg AR0,FP ; frame pointer

.asg *AR1+,Ind ; indirect addressing

.asg *AR1+0b,Rc_Prop ; reverse carry propagation

.asg ”””string”””,strng ; string

.asg ”a,b,c”,parms ; parameters

The .eval directive performs arithmetic on numeric substitution symbols.

The syntax of the .eval directive is

.eval well-defined expression, substitution symbol

The .eval directive evaluates the expression and assigns the string value of
the result to the substitution symbol. If the expression is not well defined, the
assembler generates an error and assigns the null string to the symbol.

Example 5–4 shows arithmetic being performed on substitution symbols.

Example 5–4. The .eval Directive

.asg 1,counter

.loop 100

.word counter

.eval counter + 1,counter

.endloop

In Example 5–4 the .asg directive could be replaced with the .eval directive
without changing the output. In simple cases like this, you can use .eval and
.asg interchangeably. However, you must use .eval if you want to calculate a
value from an expression. While .asg only assigns a character string to a
substitution symbol, the .eval directive evaluates an expression and assigns
the character string equivalent to a substitution symbol.

5.3.2 Built-In Substitution Symbol Functions

The following built-in substitution symbol functions enable you to make
decisions based on the string value of substitution symbols. These functions
always return a value, and they can be used in expressions. Built-in
substitution symbol functions are especially useful in conditional assembly
expressions. Parameters to these functions are substitution symbols or
character-string constants.

Macro Parameters/Substitution Symbols

5-9Macro Language

In the function definitions shown in Table 5–1, a and b are parameters that rep-
resent substitution symbols or character string constants. The term string re-
fers to the string value of the parameter. The symbol ch represents a character
constant.

Table 5–1. Functions and Return Values

Function Return Value

$symlen (a) length of string a

$symcmp (a,b) < 0 if a < b 0 if a = b > 0 if a > b

$firstch (a,ch) index of the first occurrence of character constant ch in string a

$lastch (a,ch) index of the last occurrence of character constant ch in string a

$isdefed (a) 1 if string a is defined in the symbol table
0 if string a is not defined in the symbol table

$ismember (a,b) top member of list b is assigned to string a
0 if b is a null string

$iscons (a) 1 if string a is a binary constant
2 if string a is an octal constant
3 if string a is a hexadecimal constant
4 if string a is a character constant
5 if string a is a decimal constant

$isname (a) 1 if string a is a valid symbol name
0 if string a is not a valid symbol name

$isreg (a)† 1 if string a is a valid predefined register name
0 if string a is not a valid predefined register name

$structsz (a) size of structure represented by structure tag a

$structacc (a) reference point of structure represented by structure tag a

† For more information about predefined register names, see Section 3.9, Symbols, on page
3-25.

Example 5–5 shows built-in substitution symbol functions.

Example 5–5. Using Built-In Substitution Symbol Functions

.asg label, ADDR ; ADDR = label

.if ($symcmp(ADDR,”label”) = 0); evaluates to true
SUB ADDR,AC0,AC0
.endif
.asg ”x,y,z” , list ; list = x,y,z
.if ($ismember(ADDR,list)) ; addr = x, list = y,z
SUB ADDR,AC0,AC0 ; sub x
.endif

Macro Parameters/Substitution Symbols

 5-10

5.3.3 Recursive Substitution Symbols

When the assembler encounters a substitution symbol, it attempts to
substitute the corresponding character string. If that string is also a substitution
symbol, the assembler performs substitution again. The assembler continues
doing this until it encounters a token that is not a substitution symbol or until
it encounters a substitution symbol that it has already encountered during this
evaluation.

In Example 5–6, the x is substituted for z; z is substituted for y; and y is
substituted for x. The assembler recognizes this as infinite recursion and
ceases substitution.

Example 5–6. Recursive Substitution

.asg ”x”,z ; declare z and assign z = ”x”

.asg ”z”,y ; declare y and assign y = ”z”

.asg ”y”,x ; declare x and assign x = ”y”
 ADD x,AC0,AC0 ; recursive expansion

Macro Parameters/Substitution Symbols

5-11Macro Language

5.3.4 Forced Substitution

In some cases, substitution symbols are not recognizable to the assembler.
The forced substitution operator, which is a set of colons, enables you to force
the substitution of a symbol’s character string. Simply enclose a symbol in
colons to force the substitution. Do not include any spaces between the colons
and the symbol.

The syntax for the forced substitution operator is

:symbol:

The assembler expands substitution symbols enclosed in colons before it
expands other substitution symbols.

You can use the forced substitution operator only inside macros, and you
cannot nest a forced substitution operator within another forced substitution
operator.

Example 5–7 shows how the forced substitution operator is used.

Example 5–7. Using the Forced Substitution Operator

force .macro x
.loop 8

AUX:x: .set x
.eval x+1,x
.endloop
.endm
force 0

The force macro would generate the following source code:

AUX0 .set 0
AUX1 .set 1

.

.

.
AUX7 .set 7

Macro Parameters/Substitution Symbols

 5-12

5.3.5 Accessing Individual Characters of Subscripted Substitution Symbols

In a macro, you can access the individual characters (substrings) of a substitu-
tion symbol with subscripted substitution symbols. You must use the forced
substitution operator for clarity.

You can access substrings in two ways:

� :symbol (well-defined expression):

This method of subscripting evaluates to a character string with one
character.

� :symbol (well-defined expression1, well-defined expression2):

In this method, expression1 represents the substring’s starting position,
and expression2 represents the substring’s length. You can specify
exactly where to begin subscripting and the exact length of the resulting
character string. The index of substring characters begins with 1, not 0.

Example 5–8 and Example 5–9 show built-in substitution symbol functions
used with subscripted substitution symbols.

In Example 5–8, subscripted substitution symbols redefine the add instruction
so that it handles short immediates.

Example 5–8. Using Subscripted Substitution Symbols to Redefine an Instruction

ADDX .macro ABC
.var TMP
.asg :ABC(1):,TMP
.if $symcmp(TMP,”#”) = 0
ADD ABC,AC0,AC0
.else
.emsg ”Bad Macro Parameter”
.endif
.endm

ADDX #100 ;macro call
ADDX *AR1 ;macro call

Macro Parameters/Substitution Symbols

5-13Macro Language

In Example 5–9, the subscripted substitution symbol is used to find a substring
strg1, beginning at position start in the string strg2. The position of the
substring strg1 is assigned to the substitution symbol pos.

Example 5–9. Using Subscripted Substitution Symbols to Find Substrings

substr .macro start,strg1,strg2,pos
.var LEN1,LEN2,I,TMP
.if $symlen(start) = 0
.eval 1,start
.endif
.eval 0,pos
.eval 1,i
.eval $symlen(strg1),LEN1
.eval $symlen(strg2),LEN2
.loop
.break i = (LEN2 – LEN1 + 1)
.asg ”:strg2(i,LEN1):”,TMP
.if $symcmp(strg1,TMP) = 0
.eval i,pos
.break
.else
.eval i + 1,i
.endif
.endloop
.endm

.asg 0,pos

.asg ”ar1 ar2 ar3 ar4”,regs
substr 1,”ar2”,regs,pos
.data
.word pos

5.3.6 Substitution Symbols as Local Variables in Macros
If you want to use substitution symbols as local variables within a macro, you
can use the .var directive to define up to 32 local macro substitution symbols
(including parameters) per macro. The .var directive creates temporary substi-
tution symbols with the initial value of the null string. These symbols are not
passed in as parameters, and they are lost after expansion.

.var sym1 [,sym2] ... [,symn]

The .var directive is used in Example 5–8 and Example 5–9.

Macro Libraries

 5-14

5.4 Macro Libraries

One way to define macros is by creating a macro library. A macro library is a
collection of files that contain macro definitions. You must use the archiver to
collect these files, or members, into a single file (called an archive). Each
member of a macro library contains one macro definition. The files in a macro
library must be unassembled source files. The macro name and the member
name must be the same, and the macro filename’s extension must be .asm.
For example:

Macro Name Filename in Macro Library

simple simple.asm

add3 add3.asm

 You can access the macro library by using the .mlib assembler directive (de-
scribed on page 4-73). The syntax is:

.mlib macro library filename

When the assembler encounters the .mlib directive, it opens the library and
creates a table of the library’s contents. The assembler enters the names of
the individual members within the library into the opcode tables as library
entries; this redefines any existing opcodes or macros that have the same
name. If one of these macros is called, the assembler extracts the entry from
the library and loads it into the macro table.

The assembler expands the library entry in the same way it expands other
macros. You can control the listing of library entry expansions with the .mlist
directive. For more information about the .mlist directive, see Section 5.8,
Formatting the Output Listing, on page 5-21. Only macros that are actually
called from the library are extracted, and they are extracted only once.

You can use the archiver to create a macro library by simply including the
desired files in an archive. A macro library is no different from any other
archive, except that the assembler expects the macro library to contain macro
definitions. The assembler expects only macro definitions in a macro library;
putting object code or miscellaneous source files into the library may produce
undesirable results.

Using Conditional Assembly in Macros

5-15Macro Language

5.5 Using Conditional Assembly in Macros

The conditional assembly directives are .if/.elseif/.else/.endif and .loop/
.break/.endloop . They can be nested within each other up to 32 levels deep.
The format of a conditional block is:

.if well-defined expression

[.elseif well-defined expression]

[.else well-defined expression]

.endif

The .elseif and .else directives are optional in conditional assembly. The
.elseif directive can be used more than once within a conditional assembly
code block. When .elseif and .else are omitted, and when the .if expression is
false (0), the assembler continues to the code following the .endif directive. For
more information on the .if/ .elseif/.else/.endif directives, see page 4-59.

The .loop/.break/.endloop directives enable you to assemble a code block
repeatedly. The format of a repeatable block is:

.loop [well-defined expression]

[.break [well-defined expression]]

.endloop

The .loop directive’s optional expression evaluates to the loop count (the
number of loops to be performed). If the expression is omitted, the loop count
defaults to 1024 unless the assembler encounters a .break directive with an
expression that is true (nonzero). For more information on the .loop/
.break/.endloop directives, see page 4-71.

The .break directive and its expression are optional. If the expression
evaluates to false, the loop continues. The assembler breaks the loop when
the .break expression evaluates to true or when the .break expression is
omitted. When the loop is broken, the assembler continues with the code after
the .endloop directive.

Example 5–10, Example 5–11, and Example 5–12 show the .loop/.break/
.endloop directives, properly nested conditional assembly directives, and
built-in substitution symbol functions used in a conditional assembly code
block.

Using Conditional Assembly in Macros

 5-16

Example 5–10. The .loop/.break/.endloop Directives

.asg 1,x

.loop

.break (x == 10) ; if x == 10, quit loop/break with
; expression

.eval x+1,x

.endloop

Example 5–11. Nested Conditional Assembly Directives

.asg 1,x

.loop

.if (x == 10) ; if x == 10 quit loop

.break ; force break

.endif

.eval x+1,x

.endloop

Example 5–12. Built-In Substitution Symbol Functions Used in a Conditional Assembly
Code Block

.ref OPZ

.fcnolist
*
*Double Add or Subtract
*
DB .macro ABC, ADDR, dst ; add or subtract double

.if $symcmp(ABC,”+”) == 0
ADD dbl(ADDR),dst ; add double

.elseif $symcmp(ABC,”–”) == 0
SUB dbl(ADDR),dst ; subtract double

.else

.emsg ”Incorrect Operator Parameter”

.endif

.endm

*Macro Call
DB –, @OPZ, AC0

For more information about conditional assembly directives, see Section 4.7,
Conditional Assembly Directives, on page 4-21.

Using Labels in Macros

5-17Macro Language

5.6 Using Labels in Macros

All labels in an assembly language program must be unique, including labels
in macros. If a macro is expanded more than once, its labels are defined more
than once. Defining labels more than once is illegal. The macro language
provides a method of defining labels in macros so that the labels are unique.
Follow the label with a question mark, and the assembler replaces the question
mark with a unique number. When the macro is expanded, you will not see the
unique number in the listing file. Your label appears with the question mark as
it did in the macro definition. You cannot declare this label as global.

The maximum label length is shortened to allow for the unique suffix. If the
macro is expanded fewer than 10 times, the maximum label length is 126
characters. If the macro is expanded from 10 to 99 times, the maximum label
length is 125. The label with its unique suffix is shown in the cross-listing file.

The syntax for a unique label is:

 label?

Example 5–13 shows unique label generation in a macro.

Example 5–13. Unique Labels in a Macro
(a) Mnemonic example

 1 ; define macro
 2 MLAB .macro AVAR, BVAR ; find minimum
 3
 4 MOV AVAR,AC0
 5 SUB #BVAR,AC0,AC0
 6 BCC M1?,AC0 < #0
 7 MOV #BVAR,AC0
 8 B M2?
 9 M1? MOV AVAR,AC0
10 M2?
11 .endm
12
13 ; call macro
14 000000 MLAB 50, 100

1
1 000000 A064 MOV 50,AC0
1 000002 7C00 SUB #100,AC0,AC0

000004 6400
1 000006 6320 BCC M1?,AC0 < #0
1 000008 7600 MOV #100,AC0

00000a 6408
1 00000c 4A02 B M2?
1 00000e A064 M1? MOV 50,AC0
1 000010 M2?

Using Labels in Macros

 5-18

Example 5–13. Unique Labels in a Macro (Continued)

(b) Algebraic example

 1 ; define macro
 2 MLAB .macro AVAR, BVAR ; find minimum
 3
 4 AC0 = @(AVAR)
 5 AC0 = AC0 – #(BVAR)
 6 if (AC0 < #0) goto #(M1?)
 7 AC0 = #(BVAR)
 8 goto #(M2?)
 9 M1? AC0 = @(AVAR)
10 M2?
11 .endm
12
13 ; call macro
14 000000 MLAB 50, 100

1
1 000000 A064 AC0 = @(50)
1 000002 7000 AC0 = AC0 – #(100)

000004 6400
1 000006 7B20 if (AC0 < #0) goto #(M1?)
1 000008 6B00 AC0 = #(100)

00000a 6480
1 00000c 0082 goto #(M2?)
1 00000e A064 M1? AC0 = @(50)
1 000010 M2?

Producing Messages in Macros

5-19Macro Language

5.7 Producing Messages in Macros

The macro language supports three directives that enable you to define your
own assembly-time error and warning messages. These directives are
especially useful when you want to create messages specific to your needs.
The last line of the listing file shows the error and warning counts. These
counts alert you to problems in your code and are especially useful during
debugging.

.emsg sends error messages to the listing file. The .emsg directive
generates errors in the same manner as the assembler,
incrementing the error count and preventing the assembler
from producing an object file.

.mmsg sends assembly-time messages to the listing file. The .mmsg
directive functions in the same manner as the .emsg directive
but does not set the error count or prevent the creation of an
object file.

.wmsg sends warning messages to the listing file. The .wmsg
directive functions in the same manner as the .emsg directive,
but it increments the warning count and does not prevent the
generation of an object file.

Macro comments are comments that appear in the definition of the macro but
do not show up in the expansion of the macro. An exclamation point in column
1 identifies a macro comment. If you want your comments to appear in the
macro expansion, precede your comment with an asterisk or semicolon.

Example 5–14 shows user messages in macros.

Producing Messages in Macros

 5-20

Example 5–14. Producing Messages in a Macro

 1 testparam .macro x,y
 2
 3 .if ($symlen(x) == 0)
 4 .emsg ”ERROR –– Missing Parameter”
 5 .mexit
 6 .elseif ($symlen(y) == 0)
 7 .emsg ”ERROR == Missing Parameter”
 8 .mexit
 9 .else
 10 MOV y,AC0
 11 MOV x,AC0
 12 ADD AC0,AC1
 13 .endif
 14 .endm
 15
 16 000000 testparam 1,2
1
1 .if ($symlen(x) == 0)
1 .emsg ”ERROR –– Missing Parameter”
1 .mexit
1 .elseif ($symlen(y) == 0)
1 .emsg ”ERROR == Missing Parameter”
1 .mexit
1 .else
1 000000 A004 MOV 2,AC0
1 000002 A102 MOV 1,AC1
1 000004 2401 ADD AC0,AC1
1 .endif
 17
 18 000006 testparam
1
1 .if ($symlen(x) == 0)
1 .emsg ”ERROR –– Missing Parameter”
 ***** USER ERROR ***** – : ERROR –– Missing Parameter
1 .mexit

 1 Error, No Warnings

Formatting the Output Listing

5-21Macro Language

5.8 Formatting the Output Listing
Macros, substitution symbols, and conditional assembly directives may hide
information. You may need to see this hidden information, so the macro
language supports an expanded listing capability.

By default, the assembler shows macro expansions and false conditional
blocks in the output list file. You may want to turn this listing off or on within your
listing file. Four sets of directives enable you to control the listing of this
information:

� Macro and Loop Expansion Listing

.mlist expands macros and .loop/.endloop blocks. The .mlist
directive prints all code encountered in those blocks.

.mnolist suppresses the listing of macro expansions and .loop/
.endloop blocks.

For macro and loop expansion listing, .mlist is the default.

� False Conditional Block Listing

.fclist causes the assembler to include in the listing file all
conditional blocks that do not generate code (false condi-
tional blocks). Conditional blocks appear in the listing exactly
as they appear in the source code.

.fcnolist suppresses the listing of false conditional blocks. Only the
code in conditional blocks that actually assemble appears in
the listing. The .if, .elseif, .else, and .endif directives do not
appear in the listing.

For false conditional block listing, .fclist is the default.

� Substitution Symbol Expansion Listing

.sslist expands substitution symbols in the listing. This is useful for
debugging the expansion of substitution symbols. The ex-
panded line appears below the actual source line.

.ssnolist turns off substitution symbol expansion in the listing.

For substitution symbol expansion listing, .ssnolist is the default.

� Directive Listing

.drlist causes the assembler to print to the listing file all directive
lines.

.drnolist suppresses the printing of the following directives in the list-
ing file: .asg, .eval, .var, .sslist, .mlist, .fclist, .ssnolist,
.mnolist, .fcnolist, .emsg, .wmsg, .mmsg, .length, .width, and
.break.

For directive listing, .drlist is the default.

Using Recursive and Nested Macros

 5-22

5.9 Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means
that you can call other macros in a macro definition. You can nest macros up
to 32 levels deep. When you use recursive macros, you call a macro from its
own definition (the macro calls itself).

When you create recursive or nested macros, you should pay close attention
to the arguments that you pass to macro parameters, because the assembler
uses dynamic scoping for parameters. This means that the called macro uses
the environment of the macro from which it was called.

Example 5–15 shows nested macros. Note that the y in the in_block macro
hides the y in the out_block macro. The x and z from the out_block macro,
however, are accessible to the in_block macro.

Example 5–15. Using Nested Macros

in_block .macro y,a
. ; visible parameters are y,a and
. ; x,z from the calling macro

.endm

out_block .macro x,y,z
. ; visible parameters are x,y,z
.

in_block x,y ; macro call with x and y as
 ; arguments

.

.
.endm
out_block ; macro call

Using Recursive and Nested Macros

5-23Macro Language

Example 5–16 shows recursive macros. The fact macro produces assembly
code necessary to calculate the factorial of n where n is an immediate value.
The result is placed in data memory address loc. The fact macro accomplishes
this by calling fact1, which calls itself recursively.

Example 5–16. Using Recursive Macros

(a) Mnemonic example

fact .macro N, loc ; n is an integer constant
; loc memory address = n!

.if N < 2 ; 0! = 1! = 1

MOV #1,loc
.else
MOV #N,loc ; n >= 2 so, store n at loc

; decrement n, and do the
.eval N – 1, N ; factorial of n – 1

 fact1 ; call fact1 with current
; environment

.endif

.endm

fact1 .macro

.if N > 1
MOV loc,T3 ; multiply present factorial
MOVH T3,AC2 ; by present position
MPYK #N,AC2,AC0
MOV AC0,loc ; save result
.eval N – 1, N ; decrement position
fact1 ; recursive call
.endif

.endm

Using Recursive and Nested Macros

 5-24

Example 5–16. Using Recursive Macros (Continued)

(b) Algebraic example

fact .macro N, loc ; n is an integer constant
; loc memory address = n!

.if N < 2 ; 0! = 1! = 1

loc = #1
.else
loc = #N ; n >= 2 so, store n at loc

; decrement n, and do the
.eval N – 1, N ; factorial of n – 1

 fact1 ; call fact1 with current
; environment

.endif

.endm

fact1 .macro

.if N > 1
T3 = loc ; multiply present factorial
HI(AC2) = T3 ; by present position
AC0 = AC2 * #(N)
loc = AC0 ; save result
.eval N – 1, N ; decrement position
fact1 ; recursive call
.endif

.endm

Macro Directives Summary

5-25Macro Language

5.10 Macro Directives Summary

Table 5–2. Creating Macros

Mnemonic and Syntax Description

macname .macro [parameter1]...[parametern] Define macro.

.mlib filename Identify library containing macro definitions.

.mexit Go to .endm.

.endm End macro definition.

Table 5–3. Manipulating Substitution Symbols

Mnemonic and Syntax Description

.asg [“]character string[“], substitution symbol Assign character string to substitution symbol.

.eval well-defined expression, substitution symbol Perform arithmetic on numeric substitution symbols.

.var substitution symbol1...[substitution symboln] Define local macro symbols.

Table 5–4. Conditional Assembly

Mnemonic and Syntax Description

.if well-defined expression Begin conditional assembly.

.elseif well-defined expression Optional conditional assembly block.

.else Optional conditional assembly block.

.endif End conditional assembly.

.loop [well-defined expression] Begin repeatable block assembly.

.break [well-defined expression] Optional repeatable block assembly.

.endloop End repeatable block assembly.

Macro Directives Summary

 5-26

Table 5–5. Producing Assembly-Time Messages

Mnemonic and Syntax Description

.emsg Send error message to standard output.

.wmsg Send warning message to standard output.

.mmsg Send warning or assembly-time message to standard
output.

Table 5–6. Formatting the Listing

Mnemonic and Syntax Description

.fclist Allow false conditional code block listing (default).

.fcnolist Inhibit false conditional code block listing.

.mlist Allow macro listings (default).

.mnolist Inhibit macro listings.

.sslist Allow expanded substitution symbol listing.

.ssnolist Inhibit expanded substitution symbol listing (default).

6-1Running ’C54x Code on ’C55x

Running ’C54x Code on ’C55x

In addition to accepting ’C55x source code, the ’C55x mnemonic assembler
(masm55) also accepts ’C54x mnemonic assembly. The ’C54x instruction set
contains 211 instructions; the ’C55x mnemonic instruction set is a superset of
the ’C54x instruction set. The table below contains statistics on how the ’C54x
instructions assemble with masm55:

original ’C54x instruction
assembles as:

% of total ’C54x
 instruction set

% of commonly-used
’C54x instructions

one ’C55x instruction 85 95–99

two ’C55x instructions 10 1–3

more than two ’C55x
instructions

5 0–2

The data in the second column characterizes the assembly of an imaginary
file containing an instance of every ’C54x instruction. However, the instruc-
tions that assemble as more than two instructions are not commonly used.
The data in the third column characterizes the assembly of a file containing
the most commonly used ’C54x instructions. Exact percentages depend on
the specific source file used.

Because of this compatibility, masm55 can assemble ’C54x code to generate
’C55x object code with bit-exact results. This assembler feature preserves
your ’C54x source code investment as you transition to the ’C55x.

This chapter does not explain how to take advantage of the new architecture
features of the ’C55x. For this type of information, see the TMS320C55x DSP
Programmer’s Guide.

Topic Page

6.1 ’C54x to ’C55x Development Flow 6-2.

6.2 Understanding the Listing File 6-4.

6.3 Handling Reserved ’C55x Names 6-6.

Chapter 6

’C54x to ’C55x Development Flow

 6-2

6.1 ’C54x to ’C55x Development Flow

To run a ’C54x application on the ’C55x, you must:

� Assemble each function with masm55. Your ’C54x application should al-
ready assemble without errors with the asm500 assembler.

� Initialize the stack pointers SP and SSP. See Section 6.1.1.

� Handle differences in memory placement. See Section 6.1.2.

To use ported ’C54x functions along with native ’C55x functions, see Section
7.2, Using Ported ’C54x Functions with Native ’C55x Functions, on page 7-5.

6.1.1 Initializing the Stack Pointers

When you execute ported ’C54x code from reset, the appropriate runtime
environment is already in place. However, it is still necessary to initialize the
stack pointers SP (primary stack) and SSP (secondary system stack). For
example:

stack_size .set 0x400
stack: .usect ”stack_section”, stack_size
sysstack: .usect ”stack_section”, stack_size

AMOV #(stack+stack_size), XSP
MOV #(sysstack+stack_size), SSP

The stacks grow from high addresses to low addresses, so the stack pointers
must be initialized to the highest address. The primary stack and the
secondary system stack must be within the same 64K word page of memory.

Code that initializes the SP can be ported. However, the assembler cannot di-
rectly recognize the code as an SP initialization, and will not warn you that the
SSP must also be initialized. Code that indirectly accesses the SP can also
be ported. But, as above, the assembler will not warn you that the SSP must
also be initialized.

6.1.2 Handling Differences in Memory Placement

This section describes the limitations on where you can place your code in
memory.

For ported ’C54x code, a page of memory must be defined as a range of 64K
(0x10000) bytes that begins on a 64K byte boundary. Edit your linker
command file accordingly.

All data must be placed on page 0.

’C54x to ’C55x Development Flow

6-3Running ’C54x Code on ’C55x

If your ’C54x code includes either of the following, all code must also be placed
on page 0:

� Indirect calls with CALA

� Modification of the repeat block address registers REA or RSA

If your ’C54x code includes either of the following, it can be placed on any
page, but it must fit within that page:

� Indirect branches with BACC

� Modification or use of the function return address on the stack in a non-
standard way (stack unwinding)

Otherwise, code can be placed anywhere in memory.

Understanding the Listing File

 6-4

6.2 Understanding the Listing File

The assembler’s listing file (created when invoking masm55 with the –l option)
now provides additional information on how ’C54x instructions are mapped for
the ’C55x.

Consider the following (contrived) ’C54x source file:

 .global name

 ADD *AR2, A
 STL A, *AR3

 RPT #10
 MVDK *AR4+, name

 subm .macro mem1, mem2, reg
 LD mem1, reg
 SUB mem2, reg
 .endm

 subm name, *AR6, B

 MOV T1, AC3 ; native ’C55x instruction

The listing file shown below has explanations inserted for clarification.

’C54x instructions with the same syntax in ’C55x (such as the ADD instruction
below) appear without any special notation:

1 .global name
2
3 000000 D641 ADD *AR2,A

000002 00

Note that A in the example above is accepted even though it maps to AC0 on
the ’C55x.

’C54x instructions with a different syntax in ’C55x but a single-line mapping
also appear without any special notation:

4 000003 E961 STL A, *AR3
000005 00

The STL instruction above could be written as:

MOV AC0, *AR3

Understanding the Listing File

6-5Running ’C54x Code on ’C55x

The code below shows a one-to-many instruction mapping that requires the
’C55x instructions to be in a different order than the original source. A one-to-
many mapping starts with a TRANS line that echoes the original source. The
multiple lines that correspond to the mapping will begin and end with the
original source line number (7, in this case).

7 ****** TRANS MVDK *AR4+, name
7 000006 EC31 AMAR *(#(name)), XCDP ; translation of

000008 7E00 ; MVDK *AR4+, name
00000a 0000!

5
6 00000c 4C0A RPT #10
7 00000e EF83 MOV *AR4+, coef(*CDP+) ; translation of

000010 05 ; MVDK *AR4+, name

To summarize, in the example above, the original ’C54x code:

RPT #10
MVDK *AR4+, name

was mapped to be:

AMAR *(#(name)),XCDP
RPT #10
MOV *AR4+, coef(*CDP+)

A macro definition is simply echoed:

8
9 subm .macro mem1, mem2, reg
10 LD mem1, reg
11 SUB mem2, reg
12 .endm

A macro invocation is marked with a MACRO line. Within the macro
expansion, you may see any of the cases described above.

13
14 ****** MACRO subm name, *AR6, B
14 000011 A100% LD name, B
14 000013 D7C1 SUB *AR6, B

000015 11

Native ’C55x instructions appear without any special notation. For more
information on using ported ’C54x code with native ’C55x code, see Section
7.2, Using Ported ’C54x Functions with Native ’C55x Functions, on page 7-5.

15
16 000016 2253 MOV T1, AC3 ; native ’C55x

Handling Reserved ’C55x Names

 6-6

6.3 Handling Reserved ’C55x Names

Note that new ’C55x mnemonics and registers are reserved words. Your ’C54x
code should not contain symbol names that are now used as ’C55x
mnemonics or registers. For example, you should not use “T3” as a symbol
name.

Your ’C54x code also should not contain symbol names that are reserved
words in the ’C55x algebraic syntax. For example, you should not have a label
named “return”.

The ’C55x mnemonic assembler issues an error message when it encounters
a symbol name conflict.

7-1Migrating a ’C54x System to a ’C55x System

Migrating a ’C54x System to a ’C55x System

After you’ve ported your ’C54x code as described in Chapter 6, you must
consider various system-level issues when moving your ’C54x code to ’C55x.
This chapter describes:

� how to handle differences related to interrupts

� how to use ported ’C54x functions with native ’C55x functions

� non-portable ’C54x coding practices

Topic Page

7.1 Handling Interrupts 7-2.

7.2 Using Ported ’C54x Functions with Native ’C55x Functions 7-5.

7.3 Non-portable ’C54x Coding Practices 7-17.

7.4 Additional ’C54x Issues 7-19.

Chapter 7

Handling Interrupts

 7-2

7.1 Handling Interrupts

This section describes issues related to interrupts.

7.1.1 Differences in the Interrupt Vector Table

The ’C54x interrupt table is composed of 32 vectors. Each vector contains 4
words of executable code. The ’C55x vector table is also composed of 32
vectors. The vectors in both tables are the same length, but on the ’C55x, the
length is counted as 8 bytes.

The order of the vectors in the interrupt vector table is documented in the data
sheet for the specific device in your system. Since the order of the vectors is
device-specific, any access to the IMR or IFR register needs to be updated
accordingly. Likewise, if you use the TRAP instruction, its operand may need
to be updated.

’C54x and ’C55x handle the contents of their vectors in different ways. To
handle these differences, you must modify the ’C54x vectors themselves.

In the ’C55x vector table, the first byte is ignored, and the next three bytes are
interpreted as the address of the interrupt service routine (ISR). Use the .ivec
assembler directive to initialize a ’C55x vector entry, as shown in the examples
below. For more information on the .ivec directive, see the description on page
4-63.

Simple Branch to ISR

If the ’C54x vector contains:

B isr

Change the corresponding ’C55x vector to:

.ivec isr

Delayed Branch to ISR

If the ’C54x vector contains:

BD isr
inst_1 ; two instruction words of code
inst_2

The easiest solution is to write the vector as:

.ivec isr

and move the instructions inst1 and inst2 to the beginning of the ISR. If the
conversion of inst1 is a single ’C55x instruction that is 4 bytes or less, it can
be placed in the vector. However, inst2 must be moved to the ISR.

Handling Interrupts

7-3Migrating a ’C54x System to a ’C55x System

Vector Contains the Entire ISR

If the ’C54x vector contains the entire 4-word ISR, as in the examples shown
below:

; example 1
inst1
inst2
inst3
RETF

; example 2
inst1
RETFD
inst2
inst3

; example 3
CALL routine1
RETE
nop

you have to create the 4-word ISR as a stand-alone routine. You must then
provide the address of that routine in the ’C55x vector table:

.ivec new_isr

7.1.2 Handling Interrupt Service Routines

An interrupt service routine needs to be changed only if, when ported to ’C55x,

� it includes ’C54x instructions that map to more than one ’C55x instruction,
and

� one of the ’C55x instructions requires the use of a ’C55x register or bit as
a temporary.

In this case, the new ’C55x register needs to be preserved by the routine.

The registers need to be preserved in the ISRs as long as any ported ’C54x
code remains in the application. When all code has been changed to native
’C55x code, it is no longer necessary to preserve the registers.

See Section 7.2.2, ’C55x Registers Used as Temporaries, on page 7-6 for
the list of ’C55x registers that can be used as temporaries in one-to-many
instruction mappings.

Handling Interrupts

 7-4

To ensure that an interrupt will work, you can preserve the entire list of
registers. Or, you can simply preserve the register(s) used:

1) Assemble the ISR using masm55 with the –l option to generate a listing
file.

2) Check the listing to see if it includes any one-to-many instruction map-
pings. These mappings are marked by a TRANS comment. For more
information, see Section 6.2, Understanding the Listing File, on page 6-4.

3) Determine if the one-to-many mappings actually use any of the
temporaries listed in Section 7.2.2. If so, the appropriate register or bit
must be pushed on the stack at the beginning of the ISR, and popped off
the stack at the end.

Note that you may refer to ’C55x register names within ’C54x instruction
mnemonics. For example:

LD *AR2,AC3

7.1.3 Other Issues Related to Interrupts

You should be aware of the interrupt issues described below:

� When the assembler encounters RETE, RETED, FRETE, FRETED,
RETF, or RETFD, a warning will be issued. With these instructions, the
assembler is processing an interrupt service routine or the interrupt vector
table itself and may not be able to port the instructions correctly.

� INTR has the same mnemonic syntax for both ’C54x and ’C55x.
Consequently, the assembler cannot distinguish when an instruction is
intended for a native ’C55x interrupt (which is acceptable) or for a ’C54x
interrupt (for which the interrupt number would be wrong).

� If your code writes values to IPTR, a nine-bit field in the PMST indicating
the location of the interrupt vector table, you will need to modify your code
to reflect the changes in the ’C55x system.

Using Ported ’C54x Functions with Native ’C55x Functions

7-5Migrating a ’C54x System to a ’C55x System

7.2 Using Ported ’C54x Functions with Native ’C55x Functions

When rewriting a ’C54x application to be completely ’C55x, consider working
on one function at a time, continually testing. If you encounter a problem, you
can easily find it in the changes recently made. Throughout this process, you
will be working with both ported ’C54x code and native ’C55x code. Keep the
following in mind:

� Avoid mixing ’C54x and ’C55x instructions within the same function.

� Transitions between ported ’C54x instructions and native ’C55x
instructions should occur only at function calls and returns.

� The C compiler provides an automatic solution when you are dealing with
C code calling assembly. However, see the example in Section 7.2.6 for
a detailed description of using a veneer function when calling a ported
’C54x assembly function from C code.

7.2.1 Runtime Environment for Ported ’C54x Code

A runtime environment is the set of presumptions and conventions that govern
the use of machine resources such as registers, status register bit settings,
and the stack. The runtime environment used by ported ’C54x code differs
from the environment used by native ’C55x code. When you execute ported
’C54x code from reset, the appropriate runtime environment is already in
place. However, when shifting from one kind of code to the other, it is important
to be aware of the status bit and register settings that make up a particular
environment.

The following CPU environment is expected upon entry to a ported ’C54x
function.

� 32-bit stack mode.

� The SP and SSP must be initialized to point into memory reserved for a
stack. See Section 6.1.1, Initializing the Stack Pointers, on page 6-2.

Using Ported ’C54x Functions with Native ’C55x Functions

 7-6

� The status bits must be set as follows:

Status bit Set to

C54CM 1

M40 0

ARMS 0

RDM 0

ST2[7:0] (circular addressing bits) 0

� The upper bits of addressing registers (DPH, CDPH, ARnH, SPH) must
be set to 0.

� The BSAxx registers must be set to 0.

7.2.2 ’C55x Registers Used as Temporaries

The following ’C55x registers may be used as temporaries in one-to-many
mappings generated by masm55:

� T0
� T1
� AC2
� CDP
� CSR
� ST0_55 (TC1 bit only)
� ST2_55

Interrupt routines using these registers must save and restore them. For more
information, see Section 7.1.2, Handling Interrupt Service Routines, on page
7-3.

Native ’C55x code that calls ported ’C54x code must account for the possibility
that ported code may overwrite these registers.

7.2.3 ’C54x to ’C55x Register Mapping

The following ’C54x registers map to ’C55x registers as shown below:

’C54x register ’C55x register

T T3

A AC0

B AC1

ARn ARn

IMRn IERn

ASM (status bit in ST1) T2

Using Ported ’C54x Functions with Native ’C55x Functions

7-7Migrating a ’C54x System to a ’C55x System

7.2.4 Status Bit Field Mapping

The ’C55x status bit fields map to ’C54x status bit fields as shown below.

(a) ST0

Bit(s) ’C55x field ’C54x field

15 ACOV2 none

14 ACOV3 none

13 TC1 none

12 TC2 TC

11 CARRY C

10 ACOV0 OVA

9 ACOV1 OVB

8–0 DP DP

(b) ST1

Bit(s) ’C55x field ’C54x field

15 BRAF BRAF

14 CPL CPL

13 XF XF

12 HM HM

11 INTM INTM

10 M40 none

9 SATD OVM

8 SXMD SXM

7 C16 C16

6 FRCT FRCT

5 C54CM none

4–0 ASM ASM

Using Ported ’C54x Functions with Native ’C55x Functions

 7-8

(c) ST2

Bit(s) ’C55x field ’C54x field

15 ARMS none

14–13 Reserved none

12 DBGM none

11 EALLOW none

10 RDM none

9 Reserved none

8 CDPLC none

7–0 ARnLC none

(d) ST3

Bit(s) ’C55x field ’C54x field

15–8 Reserved none

7 CBERR none

6 MPNMC MP/MC_

5 SATA none

4 AVIS AVIS

3 Reserved none

2 CLKOFF CLKOFF

1 SMUL SMUL

0 SST SST

Using Ported ’C54x Functions with Native ’C55x Functions

7-9Migrating a ’C54x System to a ’C55x System

7.2.5 Switching Between Runtime Environments

The runtime environment defined in Section 7.2.1 is not complete because it
only defines registers and status bits that are new with ’C55x. Registers and
status bits that are not new with ’C55x inherit their conventions from the
original ’C54x code. (As shown in Section 7.2.3, some registers have new
names.)

If the runtime environment for your native ’C55x code differs from the
environment defined for ported ’C54x code, you must ensure that, when
switching between environments, the proper adjustments are made for:

� preserving status bit field values
� preserving registers
� how arguments are passed
� how results are returned

Figure 7–1. Runtime Environments for Ported ’C54x Code and Native ’C55x Code

Original ’C54x code
 runtime environment

Environment rules from Section 7.2.1

Ported ’C54x Code Runtime Environment

Native ’C55x Code Runtime Environment

’C55x runtime environment as defined by
 you, or the ’C55x C compiler, etc.

Using Ported ’C54x Functions with Native ’C55x Functions

 7-10

7.2.6 Example of C Code Calling ’C54x Assembly

This example describes a technique for handling a call from compiled C code
to a ’C54x assembly routine. In this example, an additional function is inserted
between the native ’C55x code and the ported ’C54x code. This function,
referred to as a veneer function, provides code to transition between the two
runtime environments.

The compiler provides an automatic solution for the case of C code calling
assembly. This example assumes that an automatic solution does not exist.
Both the ’C54x and ’C55x C compiler runtime environments are well-defined,
which makes the techniques shown in this example more concrete and easier
to apply to your own situation.

Example 7–1. C Prototype of Called Function

short firlat(short *x, short *k, short *r, short *dbuffer,
 unsigned short nx, unsigned short nk);

Using Ported ’C54x Functions with Native ’C55x Functions

7-11Migrating a ’C54x System to a ’C55x System

Example 7–2. Assembly Function _firlat_veneer

.def _firlat_veneer

.ref _firlat

_firlat_veneer:

; Saving Registers –––––––––––––––––––––––––
PSH AR5
; PSH AR6 ; saved in ported C54x environment
; PSH AR7 ; ditto
PSH T2
PSH T3

; Passing Arguments ––––––––––––––––––––––––
PSH T1 ; push rightmost argument first
PSH T0 ; then the next rightmost
PSH AR3 ; and so on
PSH AR2
PSH AR1

MOV AR0, AC0 ; leftmost argument goes in AC0

; Change Status Bits –––––––––––––––––––––––
BSET C54CM
BCLR ARMS

; Call –––––––––––––––––––––––––––––––––––––
CALL _firlat

; Restore Status Bits ––––––––––––––––––––––
BCLR C54CM
BSET ARMS

; Capture Result –––––––––––––––––––––––––––
MOV AC0, T0

; Clear Arguments From the Stack –––––––––––
AADD #5, SP

; Restore Registers and Return –––––––––––––
POP T3
POP T2
; POP AR7
; POP AR6
POP AR5

RET

The veneer function is described below. It is separated into several parts to
allow for a description of each segment.

Using Ported ’C54x Functions with Native ’C55x Functions

 7-12

Example 7–2. Assembly Function _firlat_veneer (Continued)

(a) Saving registers

PSH AR5
; PSH AR6 ; saved in ported C54x environment
; PSH AR7 ; ditto
PSH T2
PSH T3

If the ’C55x runtime environment expects that certain registers will not be mod-
ified by a function call, these registers must be saved. In the case of the ’C55x
C compiler environment, registers XAR5–XAR7, T2, and T3 must be saved.
Because ’C54x code cannot modify the upper bits of the XARn registers, only
the lower bits need to be preserved. The instructions that push AR6 and AR7
are commented out because the runtime environment of the ’C54x ported
code (as defined by the ’C54x C compiler) presumably saves these registers.
A more conservative approach would be to save these registers anyway.

(b) Passing arguments

PSH T1 ; push right–most argument first
PSH T0 ; then the next argument
PSH AR3 ; and so on
PSH AR2
PSH AR1

MOV AR0, AC0 ; left–most argument goes in AC0

Arguments passed from native ’C55x code must be placed where the ported
’C54x code expects them. In this case, all arguments are passed in registers.
According to the calling conventions of the ’C55x C compiler, the arguments
to the firlat() function will be passed, and the result returned, in the registers
shown below.

T0 AR0 AR1 AR2 AR3
short firlat(short *x, short *k, short *r, short *dbuffer,

T0 T1
 unsigned short nx, unsigned short nk);

For more information on the C compiler’s calling conventions, see the Runtime
Environment chapter of the TMS320C55x Optimizing C Compiler User’s
Guide.

The ported ’C54x environment expects the first argument to be in A (AC0 on
’C55x) and the remaining arguments to be placed on the stack, in reverse
order of appearance in the argument list. The right-most argument (T1) is
pushed onto the stack first. The next argument (T0) is then pushed onto the

Using Ported ’C54x Functions with Native ’C55x Functions

7-13Migrating a ’C54x System to a ’C55x System

stack. The argument placement continues until the left-most argument (AR0)
is reached. This argument is copied to AC0.

Example 7–2. Assembly Function _firlat_veneer (Continued)

(c) Changing status bits

BSET C54CM
BCLR ARMS

It is necessary to change the status settings of the native ’C55x code to the
settings required by ported ’C54x code. These settings are shown in Section
7.2.1 on page 7-5. In this case, only the C54CM and ARMS bits need to be
changed.

(d) Function call

CALL _firlat

Now that registers have been saved and status bits set, the call to ported ’C54x
code can be made.

(e) Restoring status bits

BCLR C54CM
BSET ARMS

After the call, restore the status bits to the settings required by the native ’C55x
environment.

(f) Capturing results

MOV AC0, T0

The ported ’C54x environment returns the result in AC0, while the native ’C55x
environment expects the result to be returned in T0. Consequently, the result
must be copied from AC0 to T0.

(g) Clearing arguments from the stack

AADD #5, SP

At this point, you should decrease the stack by the number of words originally
needed to push the function’s passed arguments. In this case, the amount is
5 words. Because the stack grows from high addresses to low addresses,
addition is used to change the stack pointer from a low address to a higher one.

Using Ported ’C54x Functions with Native ’C55x Functions

 7-14

Example 7–2. Assembly Function _firlat_veneer (Continued)

(h) Restoring registers and returning

POP T3
POP T2
; POP AR7
; POP AR6
POP AR5

RET

Restore the registers saved at the beginning of the function, and return.

7.2.7 Example of ’C54x Assembly Calling C Code

This example contains a ’C54x assembly routine calling a compiled C routine.
Because the C routine is recompiled with the ’C55x C compiler, the assembly
routine must handle the differences between the ported ’C54x runtime
environment and the runtime environment used by the ’C55x compiler.

If you use a different runtime environment for your ’C55x code, your code
changes will differ slightly from those in this example. However, you must still
consider the issues addressed here.

Example 7–3. Prototype of Called C Function

int C_func(int *buffer, int length);
...

The assembly function performs some calculations not shown in this example
and calls the C function. The returned result is copied to the C global variable
named result . Further calculations, also not shown here, are then
performed.

Using Ported ’C54x Functions with Native ’C55x Functions

7-15Migrating a ’C54x System to a ’C55x System

Example 7–4. Original ’C54x Assembly Function

; Declare some data –––––––––––––––––

.data
buffer: .word 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
BUFLEN .set 11

.text

; Assembly routine starts –––––––––––––

callsc:
; original ’C54x code ...

; Call C function (original ’C54x code) –––––––––––––

ST #BUFLEN, *SP(0) ; pass 2nd arg on stack
CALLD #_C_func
LD #buffer, A ; pass 1st arg in A

; Effects of calling C:
; May modify A, B, AR0, AR2–AR5, T, BRC
; Will not modify AR1, AR6, AR7
; May modify ASM, BRAF, C, OVA, OVB, SXM, TC
; Will not modify other status bits
; Presume CMPT = 0, CPL = 1

STL A, *(_result) ; Result is in accumulator A

; original ’C54x code ...

RET

To use this assembly function on ’C55x, it is necessary to change the call to
the C function.

Using Ported ’C54x Functions with Native ’C55x Functions

 7-16

Example 7–5. Modified Assembly Function

; declare data as shown previously

; Assembly routine starts –––––––––––

callsc:
; ported ’C54x code ...

; Call C function (Change to ’C55x compiler environment)

AMOV #buffer,AR0 ; pass 1st ptr arg in AR0
MOV #BUFLEN,T0 ; pass 1st int arg in T0

 ; compiler code needs C54CM=0, ARMS=1
BCLR C54CM ; clear ’C54x compatibility mode
BSET ARMS ; set AR mode
CALL _C_func ; no delayed call instruction

; Effects of calling C:
; May modify AC0–AC3, XAR0–XAR4, T0–T1
; May modify RPTC,CSR,BRCx,BRS1,RSAx,REAx
; Will not modify XAR5–XAR7,T2–T3,RETA
; May modify ACOV[0–3],CARRY,TC1,TC2,SATD,FRCT,ASM,
; SATA,SMUL
; Will not modify other status bits

MOV T0, *(_result) ; Result is in T0

; could use *abs16(_result) if all globals are in the
; same 64K word page of data

; Change back to ported ’C54x environment ––––––––––

BSET C54CM ; reset ’C54x compatibility mode
BCLR ARMS ; disable AR mode

; ported ’C54x code ...

RET

The arguments are passed according the calling conventions described in the
Runtime Environment chapter of the TMS320C55x Optimizing C Compiler
User’s Guide. The status bits modified are the only ones that differ between
the ’C54x ported runtime environment and the native ’C55x environment (in
this case, as defined by the ’C55x C compiler).

The comments about the effects of calling C (the registers and status bits that
may or may not be modified) do not impact the code shown. But these effects
can impact the code around such a call.

For example, consider the XAR1 register. In the ’C54x compiler environment,
AR1 will not be modified by the call. In the ’C55x compiler environment, XAR1
may be modified. If code before the call to C_func loads a value into AR1, and
code after the call reads AR1 for that value, then the code, as written, will not
work on ’C55x. The best alternative is to use an XARn register that is saved
by C routines, such as XAR5.

Non-Portable ’C54x Coding Practices

7-17Migrating a ’C54x System to a ’C55x System

7.3 Non-Portable ’C54x Coding Practices

Some ’C54x coding practices cannot be ported to the ’C55x. The assembler
will warn you of certain detectable issues, but it cannot detect every issue. The
following coding practices are not portable:

� Any use of a constant as a memory address. For example:

B 42
ADD @42,A
SUB @symbol+10,b

� Memory initialized with constants that are later interpreted as code
addresses. For example:

table: .word 10, 20, 30
...
LD @table,A
CALA

� Using data as instructions. For example:

function:
.word 0xabcd ; opcode for ???
.word 0xdef0 ; opcode for ???

...
CALL function

� Out of order execution, also known as pipeline tricking.

� Code that creates or modifies code.

� Repeat blocks spanning more than one file.

� Branching/calling unlabeled locations. Or, modifying the return address to
return to unlabeled location. This includes instructions such as:

B $+10

� Using READA and WRITEA instructions to access instructions and not
data.

Non-Portable ’C54x Coding Practices

 7-18

� Using READA/WRITA with an accumulator whose upper bits are not zero.

The READA/WRITA instruction on ’C54x devices (other than ’C548 or
later) uses the lower 16 bits of the accumulator and ignores the upper 16
bits. ’C548 and later devices, however, use the lower 23 bits. The
assembler cannot easily know the device for which the code is targeted. It
assumes ’C548 or later. Consequently, code for ’C548 and later devices
will map with no problems. Code for devices other than these will not run.

Additional ’C54x Issues

7-19Migrating a ’C54x System to a ’C55x System

7.4 Additional ’C54x Issues

This section contains some additional system issues.

If your ’C54x code:

� uses a *SP(offset) operand in the MMR slot of MMR instructions like LDM

� copies blocks of code, usually from off-chip memory to on-chip memory

� uses memory-mapped access to peripherals

� uses repeat blocks larger than 32K after mapping to ’C55x

� uses the branch conditions BIO/NBIO

you may need to modify this code to use native ’C55x instructions.

You should also be aware of the following issues:

� The ’C5x-compatibility features of the ’C54x are not supported on ’C55x.

� RPT instructions, non-interruptible on ’C54x, can be interrupted on ’C55x.

� When an operation overflows into the guard bits, and then a left-shift
clears the guard bits, the ’C54x has the value of zero while the ’C55x has
a saturated value.

� The ’C54x and ’C55x mnemonic assembly languages differ significantly
in the representation of instruction parallelism.

The ’C55x implements two types of parallelism: implied parallelism within
a single instruction (using the :: operator), and user-defined parallelism
between two instructions (using the || operator). The ’C54x implements
only one type of parallelism, which is analogous to implied parallelism on
the ’C55x. However, ’C54x parallelism uses parallel bars (||) as its
operator. ’C55x parallelism is documented in the TMS320C55x DSP
Mnemonic Instruction Set Reference Guide.

Additional ’C54x Issues

 7-20

� When using indirect access with memory-mapped access instructions,
such as:

STM #0x1234, *AR2+

the ’C54x masks the upper 9 bits of the ARn register. This masking
effectively occurs both before and after the post-increment to AR2. For
example:

; AR2 = 0x127f
STM #0x1234, *AR2+ ; access location 0x7f
; AR2 = (0x7f + 1) & ~7f ==> 0

However, the ’C55x assembler maps this as:

AND #0x7f, AR2
MOV #0x1234, *AR2+ ; note no masking afterward

to account for the possibility of a memory-mapped address for AR2.

8-1Archiver Description

Archiver Description

The TMS320C55x archiver combines several individual files into a single
archive file. For example, you can collect several macros into a macro library.
The assembler will search the library and use the members that are called as
macros by the source file. You can also use the archiver to collect a group of
object files into an object library. The linker will include in the library the mem-
bers that resolve external references during the link.

Topic Page

8.1 Archiver Overview 8-2.

8.2 Archiver Development Flow 8-3.

8.3 Invoking the Archiver 8-4.

8.4 Archiver Examples 8-6.

Chapter 8

Archiver Overview

 8-2

8.1 Archiver Overview

The TMS320C55x archiver lets you combine several individual files into a
single file called an archive or a library. Each file within the archive is called a
member. Once you have created an archive, you can use the archiver to add,
delete, or extract members.

You can build libraries from any type of files. Both the assembler and the linker
accept archive libraries as input; the assembler can use libraries that contain
individual source files, and the linker can use libraries that contain individual
object files.

One of the most useful applications of the archiver is building libraries of object
modules. For example, you can write several arithmetic routines, assemble
them, and use the archiver to collect the object files into a single, logical group.
You can then specify the object library as linker input. The linker will search the
library and include members that resolve external references.

You can also use the archiver to build macro libraries. You can create several
source files, each of which contains a single macro, and use the archiver to
collect these macros into a single, functional group. The .mlib assembler
directive lets you specify the name of a macro library; during the assembly
process, the assembler will search the specified library for the macros that you
call. Chapter 5, Macro Language, discusses macros and macro libraries in
detail.

Archiver Development Flow

8-3Archiver Description

8.2 Archiver Development Flow

Figure 8–1 shows the archiver’s role in the assembly language development
process. Both the assembler and the linker accept libraries as input.

Figure 8–1. Archiver Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C
source

files

’C5000
processor

Executable
COFF

file

C compiler

Library-build
utility

Cross-reference
listerAbsolute lister

Debugging
tools

Runtime-
support
library

Invoking the Archiver

 8-4

8.3 Invoking the Archiver

To invoke the archiver, enter:

ar55 [–]command[option] libname [filename1 ... filenamen]

 ar55 is the command that invokes the archiver.

command tells the archiver how to manipulate the library members.
A command can be preceded by an optional hyphen. You
must use one of the following commands when you invoke
the archiver, but you can use only one command per
invocation. Valid archiver commands are:

a adds the specified files to the library. This command does
not replace an existing member that has the same name
as an added file; it simply appends new members to the
end of the archive.

d deletes the specified members from the library.

r replaces the specified members in the library. If you don’t
specify filenames, the archiver replaces the library mem-
bers with files of the same name in the current directory.
If the specified file is not found in the library, the archiver
adds it instead of replacing it.

t prints a table of contents of the library. If you specify file-
names, only those files are listed. If you don’t specify any
filenames, the archiver lists all the members in the speci-
fied library.

x extracts the specified files. If you don’t specify member
names, the archiver extracts all library members. When
the archiver extracts a member, it simply copies the mem-
ber into the current directory; it doesn’t remove it from the
library.

Invoking the Archiver

8-5Archiver Description

option tells the archiver how to function. Specify as many of the
following options as you want:

–q (quiet) suppresses the banner and status messages.

–s prints a list of the global symbols that are defined in the
library. (This option is valid only with the –a, –r, and –d
commands.)

–v (verbose) provides a file-by-file description of the creation
of a new library from an old library and its constituent
members.

libname names an archive library. If you don’t specify an extension
for libname, the archiver uses the default extension .lib.

filename names individual member files that are associated with
the library. You must specify a complete filename including
an extension, if applicable.

It is possible (but not desirable) for a library to contain
several members with the same name. If you attempt to
delete, replace, or extract a member, and the library
contains more than one member with the specified name,
then the archiver deletes, replaces, or extracts the first
member with that name.

Archiver Examples

 8-6

8.4 Archiver Examples

The following are some archiver examples:

� If you want to create a library called function.lib that contains the files
sine.obj, cos.obj, and flt.obj, enter:

ar55 –a function sine.obj cos.obj flt.obj
TMS320C55x Archiver Version x.xx
Copyright (c) 2000 Texas Instruments Incorporated

==> new archive ’function.lib’
==> building archive ’function.lib’

� You can print a table of contents of function.lib with the –t option:

ar55 –t function
TMS320C55x Archiver Version x.xx
Copyright (c) 2000 Texas Instruments Incorporated
 FILE NAME SIZE DATE
––––––––––––––––– ––––– –––––––––––––––––––––––

sine.obj 248 Mon Nov 19 01:25:44 2000
cos.obj 248 Mon Nov 19 01:25:44 2000
flt.obj 248 Mon Nov 19 01:25:44 2000

� If you want to add new members to the library, enter:

ar55 –as function atan.obj
TMS320C55x Archiver Version x.xx
Copyright (c) 2000 Texas Instruments Incorporated

==> symbol defined: ’ symbol_name ’
==> symbol defined: ’ symbol_name ’
==> building archive ’function.lib’

Because this example doesn’t specify an extension for the libname, the
archiver adds the files to the library called function.lib. If function.lib didn’t
exist, the archiver would create it. (The –s option tells the archiver to list the
global symbols that are defined in the library.)

� If you want to modify a library member, you can extract it, edit it, and re-
place it. In this example, assume there’s a library named macros.lib that
contains the members push.asm, pop.asm, and swap.asm.

ar55 –x macros push.asm

The archiver makes a copy of push.asm and places it in the current
directory, but it doesn’t remove push.asm from the library. Now you can
edit the extracted file. To replace the copy of push.asm in the library with
the edited copy, enter:

ar55 –r macros push.asm

9-1Linker Description

Linker Description

The TMS320C55x linker creates executable modules by combining COFF
object files. The concept of COFF sections is basic to linker operation.
Chapter 2, Introduction to Common Object File Format, discusses the COFF
format in detail.

Topic Page

9.1 Linker Overview 9-2.

9.2 Linker Development Flow 9-3.

9.3 Invoking the Linker 9-4.

9.4 Linker Options 9-6.

9.5 Byte/Word Addressing 9-21.

9.6 Linker Command Files 9-22.

9.7 Object Libraries 9-26.

9.8 The MEMORY Directive 9-28.

9.9 The SECTIONS Directive 9-32.

9.10 Specifying a Section’s Runtime Address 9-41.

9.11 Using UNION and GROUP Statements 9-45.

9.12 Overlay Pages 9-50.

9.13 Default Allocation Algorithm 9-55.

9.14 Special Section Types (DSECT, COPY, and NOLOAD) 9-58.

9.15 Assigning Symbols at Link Time 9-59.

9.16 Creating and Filling Holes 9-63.

9.17 Partial (Incremental) Linking 9-67.

9.18 Linking C Code 9-69.

9.19 Linker Example 9-73.

Chapter 9

Linker Overview

 9-2

9.1 Linker Overview

The TMS320C55x linker allows you to configure system memory by allocating
output sections efficiently into the memory map. As the linker combines object
files, it performs the following tasks:

� Allocates sections into the target system’s configured memory.
� Relocates symbols and sections to assign them to final addresses.
� Resolves undefined external references between input files.

The linker command language controls memory configuration, output section
definition, and address binding. The language supports expression assign-
ment and evaluation. You configure system memory by defining and creating
a memory model that you design. Two powerful directives, MEMORY and
SECTIONS, allow you to:

� Allocate sections into specific areas of memory.
� Combine object file sections.
� Define or redefine global symbols at link time.

Linker Development Flow

9-3Linker Description

9.2 Linker Development Flow

Figure 9–1 illustrates the linker’s role in the assembly language development
process. The linker accepts several types of files as input, including object
files, command files, libraries, and partially linked files. The linker creates an
executable COFF object module that can be downloaded to one of several
development tools or executed by a TMS320C55x device.

Figure 9–1. Linker Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C
source

files

’C55x

Executable
COFF

file

C compiler

Library-build
utility

Cross-reference
listerAbsolute lister

Debugging
tools

Runtime-
support
library

Invoking the Linker

 9-4

9.3 Invoking the Linker

The general syntax for invoking the linker is:

lnk55 [–options] filename1. ... filenamen

lnk55 is the command that invokes the linker.

options can appear anywhere on the command line or in a linker
command file. (Options are discussed in Section 9.4, Linker
Options, on page 9-6.)

filenames can be object files, linker command files, or archive libraries.
The default extension for all input files is .obj ; any other exten-
sion must be explicitly specified. The linker can determine
whether the input file is an object or ASCII file that contains
linker commands. The default output filename is a.out.

There are three methods for invoking the linker:

� Specify options and filenames on the command line. This example links
two files, file1.obj and file2.obj, and creates an output module named
link.out.

lnk55 file1.obj file2.obj –o link.out

� Enter the lnk55 command with no filenames and no options; the linker
prompts for them:

Command files :
Object files [.obj] :
Output file [a.out] :
Options :

� For command files, enter one or more command filenames.

� For object files, enter one or more object filenames. The default exten-
sion is .obj. Separate the filenames with spaces or commas; if the last
character is a comma, the linker prompts for an additional line of object
filenames.

� The output file is the name of the linker output module. This overrides
any –o options entered with any of the other prompts. If there are no
–o options and you do not answer this prompt, the linker creates an
object file with a default filename of a.out.

� The options prompt is for additional options, although you can also
enter them in a command file. Enter them with hyphens, just as you
would on the command line.

Invoking the Linker

9-5Linker Description

� Put filenames and options in a linker command file. For example, assume
that the file linker.cmd contains the following lines:

–o link.out
file1.obj
file2.obj

Now you can invoke the linker from the command line; specify the
command filename as an input file:

lnk55 linker.cmd

When you use a command file, you can also specify other options and files
on the command line. For example, you could enter:

lnk55 –m link.map linker.cmd file3.obj

The linker reads and processes a command file as soon as it encounters
the filename on the command line, so it links the files in this order: file1.obj,
file2.obj, and file3.obj. This example creates an output file called link.out
and a map file called link.map.

Linker Options

 9-6

9.4 Linker Options

Linker options control linking operations. They can be placed on the command
line or in a command file. Linker options must be preceded by a hyphen (–).
The order in which options are specified is unimportant, except for the –l
(lowercase L) and –i options. Options may be separated from arguments (if
they have them) by an optional space. The following summarize the linker
options:

–a Produce an absolute, executable module. This is the
default; if neither –a nor –r is specified, the linker acts
as if –a were specified.

–ar Produce a relocatable, executable object module.

–b Disable merge of symbolic debugging information.

–c Use linking conventions defined by the ROM autoin-
itialization model of the TMS320C55x C compiler.

–cr Use linking conventions defined by the RAM autoin-
itialization model of the TMS320C55x C compiler.

–e global_symbol Define a global_symbol that specifies the primary
entry point for the output module.

–f fill_value Set the default fill value for holes within output sec-
tions; fill_value is a 16-bit constant.

–g global_symbol Keep a global_symbol global (overrides –h).

–h Make all global symbols static.

–help
–?

Display a listing of all available linker command line
options.

–heap size Set heap size (for the dynamic memory allocation in
C) to size bytes and define a global symbol that speci-
fies the heap size. The default is 2000 bytes.

–i dir Alter the library-search algorithm to look in dir before
looking in the default location. This option must
appear before the –l option. The directory or filename
must follow operating system conventions.

–k Ignore alignment flags in input sections.

–l filename Name an archive library file as linker input; filename
is an archive library name. This option must appear af-
ter the –i option. The directory or filename must follow
operating system conventions.

Linker Options

9-7Linker Description

–m filename Produce a map or listing of the input and output sec-
tions, including holes, and place the listing in filename.

–o filename Name the executable output module. The default file-
name is a.out. The directory or filename must follow
operating system conventions.

–q Request a quiet run (suppress the banner).

–r Produce a relocatable output module.

–s Strip symbol table information and line number entries
from the output module.

–stack size Set the primary stack size to size bytes and define a
global symbol that specifies the stack size. The default
size is 1000 bytes.

–sysstack size Set the secondary C system stack size to size bytes
and define a global symbol that specifies the secon-
dary system stack size. The default size is 1000 bytes.

–u symbol Place an unresolved external symbol into the output
module’s symbol table.

–w Displays a message when an undefined output sec-
tion is created.

–x Force rereading of libraries. Resolves back refer-
ences.

Linker Options

 9-8

9.4.1 Relocation Capabilities (–a and –r Options)

The linker performs relocation, which is the process of adjusting all references
to a symbol when the symbol’s address changes. The linker supports two
options (–a and –r) that allow you to produce an absolute or a relocatable
output module. If neither –a nor –r is specified, the linker acts as if –a is speci-
fied by default.

� Producing an Absolute Output Module (–a Option)

When you use the –a option without the –r option, the linker produces an
absolute, executable output module. Absolute files contain no relocation
information. Executable files contain the following:

� Special symbols defined by the linker (subsection 9.15.4, Symbols
Defined by the Linker, on page 9-62 describes these symbols)

� An optional header that describes information such as the program
entry point

� No unresolved references

The following example links file1.obj and file2.obj and creates an absolute
output module called a.out:

lnk55 –a file1.obj file2.obj

Note: –a and –r Options

If you do not use the –a or the –r option, the linker acts as if you specified –a.

Linker Options

9-9Linker Description

� Producing a Relocatable Output Module (–r Option)

When you use the –r option without the –a option, the linker retains
relocation entries in the output module. If the output module will be
relocated (at load time) or relinked (by another linker execution), use –r to
retain the relocation entries.

The linker produces a file that is not executable when you use the –r option
without –a. A file that is not executable does not contain special linker
symbols or an optional header. The file may contain unresolved refer-
ences, but these references do not prevent creation of an output module.

The following example links file1.obj and file2.obj and creates a relocat-
able output module called a.out:

lnk55 –r file1.obj file2.obj

The output file a.out can be relinked with other object files or relocated at
load time. (Linking a file that will be relinked with other files is called partial
linking.) For more information, see Section 9.19, Linker Example, on page
9-73.

� Producing an Executable Relocatable Output Module (–ar)

If you invoke the linker with both the –a and –r options, the linker produces
an executable, relocatable object module. The output file contains the
special linker symbols, an optional header, and all resolved symbol
references; however, the relocation information is retained.

The following example links file1.obj and file2.obj and creates an
executable, relocatable output module called xr.out:

lnk55 –ar file1.obj file2.obj –o xr.out

You can string the options together (lnk55 –ar) or enter them separately
(lnk55 –a –r).

� Relocating or Relinking an Absolute Output Module

The linker issues a warning message (but continues executing) when it
encounters a file that contains no relocation or symbol table information.
Relinking an absolute file can be successful only if each input file contains
no information that needs to be relocated (that is, each file has no
unresolved references and is bound to the same virtual address that it was
bound to when the linker created it).

Linker Options

 9-10

9.4.2 Disable Merge of Symbolic Debugging Information (–b Option)

By default, the linker eliminates duplicate entries of symbolic debugging
information. Such duplicate information is commonly generated when a C
program is compiled for debugging. For example:

–[header.h]–
typedef struct
{
 <define some structure members>
} XYZ;

–[f1.c]–
#include ”header.h”
...

–[f2.c]–
#include ”header.h”
...

When these files are compiled for debugging, both f1.obj and f2.obj will have
symbolic debugging entries to describe type XYZ. For the final output file, only
one set of these entries is necessary. The linker eliminates the duplicate
entries automatically.

Use the –b option if you want the linker to keep such duplicate entries. Using
the –b option has the effect of the linker running faster and using less machine
memory.

9.4.3 C Language Options (–c and –cr Options)

The –c and –cr options cause the linker to use linking conventions that are
required by the C compiler.

� The –c option tells the linker to use the ROM autoinitialization model.
� The –cr option tells the linker to use the RAM autoinitialization model.

For more information about linking C code, see Section 9.18, Linking C Code,
on page 9-69 and subsection 9.18.5, The –c and –cr Linker Options, on page
9-72.

Linker Options

9-11Linker Description

9.4.4 Define an Entry Point (–e global_symbol Option)

The memory address at which a program begins executing is called the entry
point. When a loader loads a program into target memory, the program counter
must be initialized to the entry point; the PC then points to the beginning of the
program.

The linker can assign one of four possible values to the entry point. These
values are listed below in the order in which the linker tries to use them. If you
use one of the first three values, it must be an external symbol in the symbol
table.

� The value specified by the –e option. The syntax is:

–e global_symbol

Where global_symbol defines the entry point and must appear as an
external symbol in one of the input files.

� The value of symbol _c_int00 (if present). _c_int00 must be the entry point
if you are linking code produced by the C compiler.

� The value of symbol _main (if present).

� Zero (default value).

This example links file1.obj and file2.obj. The symbol begin is the entry point;
begin must be defined as external in file1 or file2.

lnk55 –e begin file1.obj file2.obj

9.4.5 Set Default Fill Value (–f cc Option)

The –f option fills the holes formed within output sections or initializes uninitial-
ized sections when they are combined with initialized sections. This allows you
to initialize memory areas during link time without reassembling a source file.
The argument cc is a 16-bit constant (up to four hexadecimal digits). If you do
not use –f, the linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCD.

lnk55 –f 0ABCDh file1.obj file2.obj

Linker Options

 9-12

9.4.6 Make a Symbol Global (–g global_symbol Option)

The –h option makes all global symbols static. If you have a symbol that you
want to remain global and you use the –h option, you can use the –g option
to declare that symbol to be global. The –g option overrides the effect of the
–h option for the symbol that you specify. The syntax for the –g option is:

–g global_symbol

9.4.7 Make All Global Symbols Static (–h Option)

The –h option makes all global symbols defined with the .global assembler
directive static. Static symbols are not visible to externally linked modules. By
making global symbols static, global symbols are essentially hidden. This
allows external symbols with the same name (in different files) to be treated
as unique.

The –h option effectively nullifies all .global assembler directives. All symbols
become local to the module in which they are defined, so no external
references are possible. For example, assume that b1.obj, b2.obj, and b3.obj
are related and reference a global variable GLOB. Also assume that d1.obj,
d2.obj, and d3.obj are related and reference a separate global variable GLOB.
By using the –h option and partial linking, you can link the related files without
conflict.

lnk55 –h –r b1.obj b2.obj b3.obj –o bpart.out
lnk55 –h –r d1.obj d2.obj d3.obj –o dpart.out

The –h option guarantees that bpart.out and dpart.out do not have global
symbols and therefore, that two distinct versions of GLOB exist. The –r option
is used to allow bpart.out and dpart.out to retain their relocation entries. These
two partially linked files can then be linked together safely with the following
command:

lnk55 bpart.out dpart.out –o system.out

9.4.8 Define Heap Size (–heap constant Option)

The C compiler uses an uninitialized section called .sysmem for the C runtime
memory pool used by malloc(). You can set the size of this memory pool at
link time by using the –heap option. Specify the size in bytes as a constant
immediately after the option:

lnk55 –heap 0x0400 /* defines a heap size */

The linker creates the .sysmem section only if there is a .sysmem section in
one of the input files.

Linker Options

9-13Linker Description

The linker also creates a global symbol __SYSMEM_SIZE and assigns it a
value equal to the size of the heap. The default size is 2000 bytes.

For more information about linking C code, see Section 9.18, Linking C Code,
on page 9-69.

9.4.9 Alter the Library Search Algorithm (–l Option, –i Option, and
C55X_C_DIR/C_DIR Environment Variables)

Usually, when you want to specify a library as linker input, you simply enter the
library name as you would any other input filename; the linker looks for the
library in the current directory. For example, suppose the current directory
contains the library object.lib. Assume that this library defines symbols that are
referenced in the file file1.obj. This is how you link the files:

lnk55 file1.obj object.lib

If you want to use a library that is not in the current directory, use the –l
(lowercase L) linker option. The syntax for this option is:

–l filename

The filename is the name of an archive library; the space between –l and the
filename is optional.

You can augment the linker’s directory search algorithm by using the –i linker
option or the C_DIR or C55X_C_DIR environment variables. The linker
searches for object libraries in the following order:

1) It searches directories named with the –i linker option.

2) It searches directories named with C_DIR and C55X_C_DIR.

3) If C_DIR and C55X_C_DIR are not set, it searches directories named with
the assembler’s environment variables, C55X_A_DIR and A_DIR.

4) It searches the current directory.

Linker Options

 9-14

9.4.9.1 Name an Alternate Library Directory (–i Option)

The –i option names an alternate directory that contains object libraries. The
syntax for this option is:

–i dir

The dir names a directory that contains object libraries; the space between –i
and the directory name is optional.

When the linker is searching for object libraries named with the –l option, it
searches through directories named with –i first. Each –i option specifies only
one directory, but you can use several –i options per invocation. When you use
the –i option to name an alternate directory, it must precede the –l option on
the command line or in a command file.

For example, assume that there are two archive libraries called r.lib and
lib2.lib. The table below shows the directories that r.lib and lib2.lib reside in,
how to set environment variable, and how to use both libraries during a link.
Select the row for your operating system:

Operating System Pathname Invocation Command

DOS \ld and \ld2 lnk55 f1.obj f2.obj –i\ld –i\ld2 –lr.lib –llib2.lib

UNIX /ld and /ld2 lnk55 f1.obj f2.obj –i/ld –i/ld2 –lr.lib –llib2.lib

Linker Options

9-15Linker Description

9.4.9.2 Name an Alternate Library Directory (C_DIR Environment Variable)

An environment variable is a system symbol that you define and assign a string
to. The linker uses environment variables named C_DIR and C55X_C_DIR to
name alternate directories that contain object libraries. The commands for
assigning the environment variable are:

Operating System Enter

DOS set C_DIR= pathname;another pathname ...

UNIX setenv C_DIR ” pathname;another pathname ...”

The pathnames are directories that contain object libraries. Use the –l option
on the command line or in a command file to tell the linker which libraries to
search for.

In the example below, assume that two archive libraries called r.lib and lib2.lib
reside in ld and ld2 directories. The table below shows the directories that r.lib
and lib2.lib reside in, how to set the environment variable, and how to use both
libraries during a link. Select the row for your operating system:

Operating System Pathname Invocation Command

DOS \ld and \ld2 set C_DIR=\ld;\ld2
lnk55 f1.obj f2.obj –l r.lib –l lib2.lib

UNIX /ld and /ld2 setenv C_DIR ”/ld ;/ld2”
lnk55 f1.obj f2.obj –l r.lib –l lib2.lib

Linker Options

 9-16

Note that the environment variable remains set until you reboot the system or
reset the variable by entering:

Operating System Enter

DOS set C_DIR=

UNIX unsetenv C_DIR

The assembler uses an environment variable named A_DIR to name alterna-
tive directories that contain copy/include files or macro libraries. If C_DIR is not
set, the linker will search for object libraries in the directories named with
A_DIR. Section 9.7, Object Libraries, on page 9-26 contains more information
about object libraries.

9.4.10 Ignore Alignment Flags (–k Option)

The –k option forces the linker to ignore any SECTIONS directive alignment
specifications. For more information on the SECTIONS directive, see Section
9.9, “The SECTIONS Directive”.

9.4.11 Create a Map File (–m filename Option)

The –m option creates a linker map listing and puts it in filename. The syntax
for the –m option is:

–m filename

Note that symbols in a data section are in words, and symbols in a code section
are in bytes.

The linker map describes:

� Memory configuration
� Input and output section allocation
� The addresses of external symbols after they have been relocated

The map file contains the name of the output module and the entry point; it may
also contain up to three tables:

� A table showing the new memory configuration if any non-default memory
is specified

� A table showing the linked addresses of each output section and the input
sections that make up the output sections

� A table showing each external symbol and its address. This table has two
columns: the left column contains the symbols sorted by name, and the
right column contains the symbols sorted by address

Linker Options

9-17Linker Description

This example links file1.obj and file2.obj and creates a map file called file.map:

lnk55 file1.obj file2.obj –m file.map

Example 9–15 on page 9-75 shows an example of a map file.

9.4.12 Name an Output Module (–o filename Option)

The linker creates an output module when no errors are encountered. If you
do not specify a filename for the output module, the linker gives it the default
name a.out. If you want to write the output module to a different file, use the
–o option. The syntax for the –o option is:

–o filename

The filename is the new output module name.

This example links file1.obj and file2.obj and creates an output module named
run.out:

lnk55 –o run.out file1.obj file2.obj

9.4.13 Specify a Quiet Run (–q Option)

The –q option suppresses the linker’s banner when –q is the first option on the
command line or in a command file. This option is useful for batch operation.

9.4.14 Strip Symbolic Information (–s Option)

The –s option creates a smaller output module by omitting symbol table
information and line number entries. The –s option is useful for production
applications when you must create the smallest possible output module.

This example links file1.obj and file2.obj and creates an output module,
stripped of line numbers and symbol table information, named nosym.out:

lnk55 –o nosym.out –s file1.obj file2.obj

Using the –s option limits later use of a symbolic debugger and may prevent
a file from being relinked.

Linker Options

 9-18

9.4.15 Define Stack Size (–stack constant Option)

The TMS320C55x C compiler uses an uninitialized section, .stack, to allocate
space for the runtime stack. You can set the size of the .stack section at link
time with the –stack option. Specify the size in bytes as a constant immediately
after the option:

lnk55 –stack 0x1000 /* defines a stack size */

If you specified a different stack size in an input section, the input section stack
size is ignored. Any symbols defined in the input section remain valid; only the
stack size will be different.

When the linker defines the .stack section, it also defines a global symbol,
__STACK_SIZE, and assigns it a value equal to the size of the section. The
default stack size is 1000 bytes.

9.4.16 Define Secondary Stack Size (–sysstack constant Option)

The TMS320C55x C compiler uses an uninitialized section, .sysstack, to allo-
cate space for the secondary runtime stack. You can set the size of the
.sysstack section at link time with the –sysstack option. Specify the size in
bytes as a constant immediately after the option:

lnk55 –sysstack 0x1000 /* defines secondary stack size */

When the linker defines the .sysstack section, it also defines a global symbol,
__SYSSTACK_SIZE, and assigns it a value equal to the size of the section.
The default secondary stack size is 1000 bytes.

9.4.17 Introduce an Unresolved Symbol (–u symbol Option)

The –u option introduces an unresolved symbol into the linker’s symbol table.
This forces the linker to search a library and include the member that defines
the symbol. The linker must encounter the –u option before it links in the
member that defines the symbol.

For example, suppose a library named rts.lib contains a member that defines
the symbol symtab; none of the object files being linked reference symtab.
However, suppose you plan to relink the output module, and you would like to
include the library member that defines symtab in this link. Using the –u option
as shown below forces the linker to search rts.lib for the member that defines
symtab and to link in the member.

lnk55 –u symtab file1.obj file2.obj rts.lib

If you do not use –u, this member is not included because there is no explicit
reference to it in file1.obj or file2.obj.

Linker Options

9-19Linker Description

9.4.18 Display a Message for Output Section Information (–w Option)

The –w option displays additional messages pertaining to the creation of
memory sections. Additional messages are displayed in the following
circumstances:

� In a linker command file, you can set up a SECTIONS directive that
describes how input sections are combined into output sections. However,
if the linker encounters one or more input sections that do not have a corre-
sponding output section defined in the SECTIONS directive, the linker
combines the input sections that have the same name into an output
section with that name. By default, the linker does not display a message
to tell you when this has occurred.

If this situation occurs and you use the –w option, the linker displays a
message when it creates a new output section.

� If you do not use the –heap, –stack, and –sysstack options, the linker
creates the .sysmem, .stack, and .sysstack (respectively) sections for you.
The .sysmem section has a default size of 2000 bytes; the .stack and
.sysstack sections have a default size of 1000 bytes. You might not have
enough memory available for one or all of these sections. In this case, the
linker issues an error message saying a section could not be allocated.

If you use the –w option, the linker displays another message with more
details, which includes the name of the directive to allocate the .sysmem or
.stack section yourself.

For more information about the SECTIONS directive, see Section 9.9, The
SECTIONS Directive, on page 9-32. For more information about the default
actions of the linker, see Section 9.13, Default Allocation Algorithm, on page
9-55.

Linker Options

 9-20

9.4.19 Exhaustively Read Libraries (–x Option)

The linker normally reads input files, including archive libraries, only once
when they are encountered on the command line or in the command file. When
an archive is read, any members that resolve references to undefined symbols
are included in the link. If an input file later references a symbol defined in a
previously read archive library, the reference will not be resolved.

With the –x option, you can force the linker to reread all libraries. The linker
rereads libraries until no more references can be resolved. Linking using the
–x option may be slower, so you should use it only as needed. For example,
if a.lib contains a reference to a symbol defined in b.lib, and b.lib contains a
reference to a symbol defined in a.lib, you can resolve the mutual
dependencies by listing one of the libraries twice, as in:

lnk55 –la.lib –lb.lib –la.lib

or you can force the linker to do it for you:

lnk55 –x –la.lib –lb.lib

Byte/Word Addressing

9-21Linker Description

9.5 Byte/Word Addressing

’C55x memory is byte-addressable for code and word-addressable for data.
The assembler and linker keep track of the addresses, relative offsets, and
sizes of the bits in units that are appropriate for the given section: words for
data sections, and bytes for code sections.

Note: Use Byte Addresses in Linker Command File

All addresses and sizes supplied in the linker command file should be byte
addresses, for both code and data sections.

In the case of program labels, the unchanged byte addresses will be encoded
in the executable output and during execution sent over the program address
bus. In the case of data labels, the byte addresses will be divided by 2 in the
linker (converting them to word addresses) prior to being encoded in the
executable output and sent over the data address bus.

The .map file output by the linker shows code addresses and sizes in bytes,
and data addresses and sizes in words.

Linker Command Files

 9-22

9.6 Linker Command Files

Linker command files allow you to put linking information in a file; this is useful
when you invoke the linker often with the same information. Linker command
files are also useful because they allow you to use the MEMORY and
SECTIONS directives to customize your application. You must use these
directives in a command file; you cannot use them on the command line.

Note: Use Byte Addresses in Linker Command File

All addresses and sizes supplied in the linker command file should be byte
addresses, for both code and data sections.

Linker command files are ASCII files that contain one or more of the following:

� Input filenames, which specify object files, archive libraries, or other
command files. (If a command file calls another command file as input, this
statement must be the last statement in the calling command file. The
linker does not return from called command files.)

� Linker options, which can be used in the command file in the same manner
that they are used on the command line

� The MEMORY and SECTIONS linker directives. The MEMORY directive
defines the target memory configuration. The SECTIONS directive
controls how sections are built and allocated.

� Assignment statements, which define and assign values to global symbols

To invoke the linker with a command file, enter the lnk55 command and follow
it with the name of the command file:

lnk55 command_filename

The linker processes input files in the order that it encounters them. If the linker
recognizes a file as an object file, it links it. Otherwise, it assumes that a file
is a command file and begins reading and processing commands from it.
Command filenames are case sensitive, regardless of the system used.

Linker Command Files

9-23Linker Description

Example 9–1 shows a sample linker command file called link.cmd.
(Subsection 2.3.2, Placing Sections in the Memory Map, on page 2-14 con-
tains another example of a linker command file.)

Example 9–1. Linker Command File

a.obj /* First input filename */

b.obj /* Second input filename */

–o prog.out /* Option to specify output file */

–m prog.map /* Option to specify map file */

The sample file in Example 9–1 contains only filenames and options. You can
place comments in a command file by delimiting them with /* and */. To invoke
the linker with this command file, enter:

lnk55 link.cmd

You can place other parameters on the command line when you use a
command file:

lnk55 –r link.cmd c.obj d.obj

The linker processes the command file as soon as it encounters it, so a.obj and
b.obj are linked into the output module before c.obj and d.obj.

You can specify multiple command files. If, for example, you have a file called
names.lst that contains filenames and another file called dir.cmd that contains
linker directives, you could enter:

lnk55 names.lst dir.cmd

One command file can call another command file; this type of nesting is limited
to 16 levels. If a command file calls another command file as input, this
statement must be the last statement in the calling command file.

Linker Command Files

 9-24

Blanks and blank lines are insignificant in a command file except as delimiters.
This also applies to the format of linker directives in a command file.
Example 9–2 shows a sample command file that contains linker directives.
(Linker directive formats are discussed in later sections.)

Example 9–2. Command File With Linker Directives

a.obj b.obj c.obj /* Input filenames */

–o prog.out –m prog.map /* Options */

MEMORY /* MEMORY directive */

{

 RAM: origin = 100h length = 0100h

 ROM: origin = 01000h length = 0100h

}

SECTIONS /* SECTIONS directive */

{

 .text: > ROM

 .data: > RAM

 .bss: > RAM

}

Linker Command Files

9-25Linker Description

9.6.1 Reserved Names in Linker Command Files

The following names are reserved as keywords for linker directives. Do not use
them as symbol or section names in a command file.

align GROUP origin
ALIGN l (lowercase L) ORIGIN
attr len page
ATTR length PAGE
block LENGTH range
BLOCK load run
COPY LOAD RUN
DSECT MEMORY SECTIONS
f NOLOAD spare
fill o type
FILL org TYPE
group UNION

9.6.2 Constants in Command Files

Constants can be specified with either of two syntax schemes: the scheme
used for specifying decimal, octal, or hexadecimal constants used in the
assembler (see Section 3.7, Constants, on page 3-21) or the scheme used for
integer constants in C syntax.

Examples:

Decimal Octal Hexadecimal

Assembler Format: 32 40q 20h

C Format: 32 040 0x20

Object Libraries

 9-26

9.7 Object Libraries

An object library is a partitioned archive file that contains complete object files
as members. Usually, a group of related modules are grouped together into
a library. When you specify an object library as linker input, the linker includes
any members of the library that define existing unresolved symbol references.
You can use the archiver to build and maintain libraries. Chapter 8, Archiver
Description, contains more information about the archiver.

Using object libraries can reduce link time and the size of the executable
module. Normally, if an object file that contains a function is specified at link
time, it is linked whether it is used or not; however, if that same function is
placed in an archive library, it is included only if it is referenced.

The order in which libraries are specified is important because the linker
includes only those members that resolve symbols that are undefined when
the library is searched. The same library can be specified as often as neces-
sary; it is searched each time it is included. Alternatively, the –x option can be
used. A library has a table that lists all external symbols defined in the library;
the linker searches through the table until it determines that it cannot use the
library to resolve any more references.

The following examples link several files and libraries. Assume that:

� Input files f1.obj and f2.obj both reference an external function named
clrscr

� Input file f1.obj references the symbol origin

� Input file f2.obj references the symbol fillclr

� Member 0 of library libc.lib contains a definition of origin

� Member 3 of library liba.lib contains a definition of fillclr

� Member 1 of both libraries defines clrscr

For example, if you enter the following, the references are resolved as shown:

lnk55 f1.obj liba.lib f2.obj libc.lib

� Member 1 of liba.lib satisfies both references to clrscr because the library
is searched and clrscr is defined before f2.obj references it.

� Member 0 of libc.lib satisfies the reference to origin.

� Member 3 of liba.lib satisfies the reference to fillclr.

Object Libraries

9-27Linker Description

If, however, you enter the following, all the references to clrscr are satisfied by
member 1 of libc.lib:

lnk55 f1.obj f2.obj libc.lib liba.lib

If none of the linked files reference symbols defined in a library, you can use
the –u option to force the linker to include a library member. The next example
creates an undefined symbol rout1 in the linker’s global symbol table:

lnk55 –u rout1 libc.lib

If any member of libc.lib define rout1, the linker includes those members.

It is not possible to control the allocation of individual library members;
members are allocated according to the SECTIONS directive default
allocation algorithm.

Subsection 9.4.9, Alter the Library Search Algorithm (–i dir Option/C_DIR), on
page 9-13, describes methods for specifying directories that contain object
libraries.

The MEMORY Directive

 9-28

9.8 The MEMORY Directive

The linker determines where output sections should be allocated in memory;
it must have a model of target memory to accomplish this task. The MEMORY
directive allows you to specify a model of target memory so that you can define
the types of memory your system contains and the address ranges they
occupy. The linker maintains the model as it allocates output sections and uses
it to determine which memory locations can be used for object code.

The memory configurations of TMS320C55x systems differ from application
to application. The MEMORY directive allows you to specify a variety of
configurations. After you use MEMORY to define a memory model, you can
use the SECTIONS directive to allocate output sections into defined memory.

Refer to Section 2.3, How the Linker Handles Sections, on page 2-12 for
details on how the linker handles sections. Refer to Section 2.4, Relocation,
on page 2-15 for information on the relocation of sections.

9.8.1 Default Memory Model

The assembler enables you to assemble code for the TMS320C55x device.
The assembler inserts a field in the output file’s header, identifying the device.
The linker reads this information from the object file’s header. If you do not use
the MEMORY directive, the linker uses a default memory model specific to the
named device. For more information about the default memory model, see
subsection 9.13.1, Allocation Algorithm, on page 9-55.

9.8.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically
present in the target system and can be used by a program. Each memory
range has a name, a starting address, and a length.

By default, the linker uses a single address space on PAGE 0. However, the
linker allows you to configure separate address spaces by using the MEMORY
directive’s PAGE option. The PAGE option causes the linker to treat the
specified pages as completely separate memory spaces. ’C55x supports as
many as 255 PAGES, but the number available to you depends on the
configuration you have chosen.

When you use the MEMORY directive, be sure to identify all the memory
ranges that are available for object code. Memory defined by the MEMORY
directive is configured memory; any memory that you do not explicitly account
for with the MEMORY directive is unconfigured memory. The linker does not
place any part of a program into unconfigured memory. You can represent non-
existent memory spaces by simply not including an address range in a
MEMORY directive statement.

The MEMORY Directive

9-29Linker Description

The MEMORY directive is specified in a command file by the word MEMORY
(uppercase), followed by a list of memory range specifications enclosed in
braces. The MEMORY directive in Example 9–3 defines a system that has 4K
bytes of ROM at byte address 1C00h, 32 bytes of RAM at byte address 60h,
and 4K bytes at byte address 80h.

Example 9–3. The MEMORY Directive

/**/
/* Sample command file with MEMORY directive */
/**/
file1.obj file2.obj /* Input files */
–o prog.out /* Options */

MEMORY
{
 ROM: origin = 1C00h, length = 1000h

 SCRATCH: origin = 60h, length = 20h
 ONCHIP: origin = 80h, length = 1000h
}

origins lengths

MEMORY
directive

names

The MEMORY Directive

 9-30

The general syntax for the MEMORY directive is:

MEMORY
{

[PAGE 0 :] name 1 [(attr)] : origin = constant , length = constant;
[PAGE n :] name n [(attr)] : origin = constant , length = constant;

}

PAGE (optional) identifies a memory space. If you do not specify a PAGE,
the linker uses memory on PAGE 0. Each PAGE represents a com-
pletely independent address space. Configured memory on PAGE
0 can overlap configured memory on PAGE 1.

name Names a memory range. A memory name may be one to eight
characters; valid characters include A–Z, a–z, $, ., and _. The
names have no special significance to the linker; they simply iden-
tify memory ranges. Memory range names are internal to the linker
and are not retained in the output file or in the symbol table.
Memory ranges on separate pages can have the same name; with-
in a page, however, all memory ranges must have unique names
and must not overlap.

attr Specifies one to four attributes associated with the named range.
Attributes are optional; when used, they must be enclosed in
parentheses. Attributes restrict the allocation of output sections
into certain memory ranges. If you do not use any attributes, you
can allocate any output section into any range with no restrictions.
Any memory for which no attributes are specified (including all
memory in the default model) has all four attributes. Valid attributes
include:

R specifies that the memory can be read
W specifies that the memory can be written to
X specifies that the memory can contain executable code
I specifies that the memory can be initialized

origin Specifies the starting address of a memory range; enter as origin,
org, or o. The value, specified in bytes, is a 24-bit constant and may
be decimal, octal, or hexadecimal.

The MEMORY Directive

9-31Linker Description

length Specifies the length of a memory range; enter as length, len, or l.
The value, specified in bytes, is a 24-bit constant and may be deci-
mal, octal, or hexadecimal.

fill Specifies a fill character for the memory range; enter as fill or f. Fills
are optional. The value is a 2-byte integer constant and may be
decimal, octal, or hexadecimal. The fill value will be used to fill
areas of the memory range that are not allocated to a section.

Note: Filling Memory Ranges

If you specify fill values for large memory ranges, your output file will be very
large because filling a memory range (even with 0s) causes raw data to be
generated for all unallocated blocks of memory in the range.

The following example specifies a memory range with the R and W attributes
and a fill constant of 0FFFFh:

MEMORY
{

RFILE (RW) : o = 02h, l = 0FEh, f = 0FFFFh
}

You normally use the MEMORY directive in conjunction with the SECTIONS
directive to control allocation of output sections. After you use the MEMORY
directive to specify the target system’s memory model, you can use the
SECTIONS directive to allocate output sections into specific named memory
ranges or into memory that has specific attributes. For example, you could
allocate the .text and .data sections into the area named ROM and allocate the
.bss section into the area named ONCHIP.

The SECTIONS Directive

 9-32

9.9 The SECTIONS Directive

The SECTIONS directive:

� Describes how input sections are combined into output sections

� Defines output sections in the executable program

� Specifies where output sections are placed in memory (in relation to each
other and to the entire memory space)

� Permits renaming of output sections

Refer to Section 2.3, How the Linker Handles Sections, on page 2-12 for
details on how the linker handles sections. Refer to Section 2.4, Relocation,
on page 2-15 for information on the relocation of sections. Refer to subsection
2.2.4, Subsections, on page 2-8 for information on defining subsections;
subsections allow you to manipulate sections with greater precision.

9.9.1 Default Configuration

If you do not specify a SECTIONS directive, the linker uses a default algorithm
for combining and allocating the sections. Section 9.13, Default Allocation
Algorithm, on page 9-55 describes this algorithm in detail.

9.9.2 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word
SECTIONS (uppercase), followed by a list of output section specifications
enclosed in braces.

The general syntax for the SECTIONS directive is:

SECTIONS
{

name : [property, property, property,...]
name : [property, property, property,...]
name : [property, property, property,...]

}

The SECTIONS Directive

9-33Linker Description

Each section specification, beginning with name, defines an output section.
(An output section is a section in the output file.) After the section name is a
list of properties that define the section’s contents and how the section is
allocated. The properties may be separated by optional commas. Possible
properties for a section are:

� Load allocation , which defines where in memory the section is to be
loaded
Syntax: load = allocation or

allocation or
 > allocation

� Run allocation , which defines where in memory the section is to be run
Syntax: run = allocation or

run > allocation

� Input sections , which define the input sections that constitute the output
section
Syntax: { input_sections }

� Section type , which defines flags for special section types
Syntax: type = COPY or

type = DSECT or
type = NOLOAD

For more information on section types, see Section 9.14, Special Section
Types (DSECT, COPY, and NOLOAD), on page 9-58.

� Fill value , which defines the value used to fill uninitialized holes
Syntax: fill = value or

name: ... { ... } = value
For more information on creating and filling holes, see Section 9.16,
Creating and Filling Holes, on page 9-63.

Example 9–4 shows a SECTIONS directive in a sample linker command file.
Figure 9–2 shows how these sections are allocated in memory.

The SECTIONS Directive

 9-34

Example 9–4. The SECTIONS Directive

/**/
/* Sample command file with SECTIONS directive */
/**/
file1.obj file2.obj /* Input files */
–o prog.out /* Options */

SECTIONS
{
 .text: load = ROM, run = 800h
 .const: load = ROM
 .bss: load = RAM
 .vectors: load = FF80h
 {
 t1.obj(.intvec1)
 t2.obj(.intvec2)
 endvec = .;
 }
 .data: align = 16
}

SECTIONS
directive

section
specifications

Figure 9–2 shows the five output sections defined by the sections directive in
Example 9–4: .vectors, .text, .const, .bss, and .data.

Figure 9–2. Section Allocation Defined by Example 9–4

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ROM

RAM

.vectors

.text

– bound at 0FF80h

– allocated in ROM

.const – allocated in ROM

.bss – allocated in RAM

.data – aligned on 16-byte
 boundary

00h

The .text section combines the .text sections from
file1.obj and file2.obj. The linker combines all sec-
tions named .text into this section. The application
must relocate the section to run at 0800h.

The .const section combines the .const sections
from file1.obj and file2.obj.

The .bss section combines the .bss sections from
file1.obj and file2.obj.

The .vectors section is composed of the .intvec1
section from t1.obj and the .intvec2 section from
t2.obj.

The .data section combines the .data sections from
file1.obj and file2.obj. The linker will place it any-
where there is space for it (in RAM in this illustration)
and align it to a 16-byte boundary.

FF80h

The SECTIONS Directive

9-35Linker Description

9.9.3 Allocation

The linker assigns each output section two locations in target memory: the
location where the section will be loaded and the location where it will be run.
Usually, these are the same, and you can think of each section as having only
a single address. In any case, the process of locating the output section in the
target’s memory and assigning its address(es) is called allocation. For more
information about using separate load and run allocation, see Section 9.10,
Specifying a Section’s Runtime Address, on page 9-41.

If you do not tell the linker how a section is to be allocated, it uses a default
algorithm to allocate the section. Generally, the linker puts sections wherever
they fit into configured memory. You can override this default allocation for a
section by defining it within a SECTIONS directive and providing instructions
on how to allocate it.

You control allocation by specifying one or more allocation parameters. Each
parameter consists of a keyword, an optional equal sign or greater-than sign,
and a value optionally enclosed in parentheses. If load and run allocation is
separate, all parameters following the keyword LOAD apply to load allocation,
and those following RUN apply to run allocation. Possible allocation
parameters are:

Binding allocates a section at a specific address.

.text: load = 0x1000

Memory allocates the section into a range defined in the MEMORY
directive with the specified name (like ROM) or attributes.

.text: load > ROM

Alignment uses the align keyword to specify that the section should
start on an address boundary.

.text: align = 0x80

To force the output section containing the assignment to also
be aligned, assign . (dot) with an align expression. For exam-
ple, the following will align bar.obj, and it will force outsect to
align on a 0x40 byte boundary:

SECTIONS
{

outsect: { bar.obj(.bss)
. = align(0x40);

}
}

The SECTIONS Directive

 9-36

Blocking uses the block keyword to specify that the section must fit
between two address boundaries: if the section is too big, it
will start on an address boundary.

.text: block(0x80)

Page specifies the memory page to be used (see Section 9.12,
Overlay Pages, on page 9-50).

.text: PAGE 0

For the load (usually the only) allocation, you may simply use a greater-than
sign and omit the load keyword:

.text: > ROM .text: {...} > ROM

.text: > 0x1000

If more than one parameter is used, you can string them together as follows:

.text: > ROM align 16 PAGE 2

Or, if you prefer, use parentheses for readability:

.text: load = (ROM align(16) page (2))

9.9.3.1 Binding

You can supply a specific starting address for an output section by following
the section name with an address:

.text: 0x1000

This example specifies that the .text section must begin at byte location 1000h.
The binding address must be a 24-bit constant.

Output sections can be bound anywhere in configured memory (assuming
there is enough space), but they cannot overlap. If there is not enough space
to bind a section to a specified address, the linker issues an error message.

Note: Binding and Alignment or Named Memory are Incompatible

You cannot bind a section to an address if you use alignment or named
memory. If you try to do so, the linker issues an error message.

The SECTIONS Directive

9-37Linker Description

9.9.3.2 Named memory

You can allocate a section into a memory range that is defined by the
MEMORY directive. This example names ranges and links sections into them:

MEMORY
{
 ROM (RIX) : origin = 0C00h, length = 1000h
 RAM (RWIX) : origin = 0080h, length = 1000h
}

SECTIONS
{
 .text : > ROM
 .data ALIGN(128) : > RAM
 .bss : > RAM

In this example, the linker places .text into the area called ROM. The .data and
.bss output sections are allocated into RAM. You can align a section within a
named memory range; the .data section is aligned on a 128-byte boundary
within the RAM range.

Similarly, you can link a section into an area of memory that has particular
attributes. To do this, specify a set of attributes (enclosed in parentheses)
instead of a memory name. Using the same MEMORY directive declaration,
you can specify:

SECTIONS
{
 .text: > (X) /* .text ––> executable memory */
 .data: > (RI) /* .data ––> read or init memory */
 .bss : > (RW) /* .bss ––> read or write memory */
}

In this example, the .text output section can be linked into either the ROM or
RAM area because both areas have the X attribute. The .data section can also
go into either ROM or RAM because both areas have the R and I attributes.
The .bss output section, however, must go into the RAM area because only
RAM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated,
although the linker uses lower memory addresses first and avoids fragmenta-
tion when possible. In the preceding examples, assuming that no conflicting
assignments exist, the .text section would start at address 0. If a section must
start on a specific address, use binding instead of named memory.

The SECTIONS Directive

 9-38

9.9.3.3 Alignment and blocking

You can tell the linker to place an output section at an address that falls on an
n-byte boundary, where n is a power of 2. For example:

.text: load = align(128)

allocates .text so that it falls on a 128-byte boundary.

Blocking is a weaker form of alignment that allocates a section anywhere
within a block of size n. If the section is larger than the block size, the section
will begin on that boundary. As with alignment, n must be a power of 2. For
example:

bss: load = block(0x80)

allocates .bss so that the section either is contained in a single 128-byte page
or begins on a page.

You can use alignment or blocking alone or in conjunction with a memory area,
but alignment and blocking cannot be used together.

9.9.3.4 Specifying input sections

An input section specification identifies the sections from input files that are
combined to form an output section. The size of an output section is the sum
of the sizes of the input sections that comprise it. The linker combines input
sections by concatenating them in the order in which they are specified, unless
alignment or blocking is specified for any of the input sections.

If alignment or blocking is specified for any input section, the input sections
within an output section are ordered as follows:

1) all aligned sections, from largest to smallest, followed by

2) all blocked sections, from largest to smallest, followed by

3) all other input sections from largest to smallest

Example 9–5 shows the most common type of section specification; note that
no input sections are listed.

Example 9–5. The Most Common Method of Specifying Section Contents

SECTIONS
{

.text:

.data:

.bss:
}

The SECTIONS Directive

9-39Linker Description

In Example 9–5 the linker takes all the .text sections from the input files and
combines them into the .text output section. The linker concatenates the .text
input sections in the order that it encounters them in the input files. The linker
performs similar operations with the .data and .bss sections. You can use this
type of specification for any output section.

You can explicitly specify the input sections that form an output section. Each
input section is identified by its filename and section name:

SECTIONS
{
 .text : /* Build .text output section */
 {
 f1.obj(.text) /* Link .text section from f1.obj */
 f2.obj(sec1) /* Link sec1 section from f2.obj */
 f3.obj /* Link ALL sections from f3.obj */
 f4.obj(.text,sec2) /* Link .text and sec2 from f4.obj */
 }
}

It is not necessary for input sections to have the same name as each other or
as the output section they become part of. If a file is listed with no sections, all
of its sections are included in the output section. If any additional input sections
have the same name as an output section, but are not explicitly specified by
the SECTIONS directive, they are automatically linked in at the end of the
output section. For example, if the linker found more .text sections in the
preceding example, and these .text sections were not specified anywhere in
the SECTIONS directive, the linker would concatenate these extra sections
after f4.obj(sec2).

The specifications in Example 9–5 are actually a shorthand method for the
following:

SECTIONS
{
 .text: { *(.text) }
 .data: { *(.data) }
 .bss: { *(.bss) }
}

The specification *(.text) means the unallocated .text sections from all the
input files. This format is useful when:

� You want the output section to contain all input sections that have a
specified name, but the output section name is different than the input
sections’ name.

� You want the linker to allocate the input sections before it processes addi-
tional input sections or commands within the braces.

The SECTIONS Directive

 9-40

The following example illustrates the two purposes above:

SECTIONS
{
 .text : {
 abc.obj(xqt)
 *(.text)
 }
 .data : {
 *(.data)
 fil.obj(table)
 }
}

In this example, the .text output section contains a named section xqt from file
abc.obj, which is followed by all the .text input sections. The .data section
contains all the .data input sections, followed by a named section table from
the file fil.obj. This method includes all the unallocated sections. For example,
if one of the .text input sections was already included in another output section
when the linker encountered *(.text), the linker could not include that first .text
input section in the second output section.

Specifying a Section’s Runtime Address

9-41Linker Description

9.10 Specifying a Section’s Runtime Address

At times, you may want to load code into one area of memory and run it in
another. For example, you may have performance-critical code in a ROM-
based system. The code must be loaded into ROM, but it would run faster in
RAM.

The linker provides a simple way to accomplish this. You can use the
SECTIONS directive to direct the linker to allocate a section twice: once to set
its load address and again to set its run address. For example:

.fir: load = ROM, run = RAM

Use the load keyword for the load address and the run keyword for the run
address.

Refer to Section 2.5, Runtime Relocation, on page 2-17 for an overview on
runtime relocation.

9.10.1 Specifying Load and Run Addresses

The load address determines where a loader will place the raw data for the
section. All references to the section (such as labels in it) refer to its run
address. The application must copy the section from its load address to its run
address; this does not happen automatically when you specify a separate run
address.

If you provide only one allocation (either load or run) for a section, the section
is allocated only once and will load and run at the same address. If you provide
both allocations, the section is allocated as if it were two sections of the same
size. This means that both allocations occupy space in the memory map and
cannot overlay each other or other sections. (The UNION directive provides
a way to overlay sections; see subsection 9.11.1, Overlaying Sections With the
UNION Statement, on page 9-45.)

If either the load or run address has additional parameters, such as alignment
or blocking, list them after the appropriate keyword. Everything related to
allocation after the keyword load affects the load address until the keyword run
is seen, after which, everything affects the run address. The load and run
allocations are completely independent, so any qualification of one (such as
alignment) has no effect on the other. You may also specify run first, then load.
Use parentheses to improve readability.

Specifying a Section’s Runtime Address

 9-42

The examples below specify load and run addresses:

.data: load = ROM, align = 32, run = RAM

(align applies only to load)

.data: load = (ROM align 32), run = RAM

(identical to previous example)

.data: run = RAM, align 32,
load = align 16

(align 32 in RAM for run; align 16 anywhere for load)

9.10.2 Uninitialized Sections

Uninitialized sections (such as .bss) are not loaded, so their only significant
address is the run address. The linker allocates uninitialized sections only
once: if you specify both run and load addresses, the linker warns you and
ignores the load address. Otherwise, if you specify only one address, the linker
treats it as a run address, regardless of whether you call it load or run. The
example below specifies load and run addresses for an uninitialized section:

.bss: load = 0x1000, run = RAM

A warning is issued, load is ignored, and space is allocated in RAM. All of the
following examples have the same effect. The .bss section is allocated in RAM.

.bss: load = RAM

.bss: run = RAM

.bss: > RAM

9.10.3 Referring to the Load Address by Using the .label Directive

Normally, any reference to a symbol in a section refers to its runtime address.
However, it may be necessary at runtime to refer to a load-time address.
Specifically, the code that copies a section from its load address to its run
address must have access to the load address. The .label directive defines a
special symbol that refers to the section’s load address. Thus, whereas normal
symbols are relocated with respect to the run address, .label symbols are
relocated with respect to the load address. For more information on the .label
directive, see page 4-65.

Example 9–6 shows the use of the .label directive.

Specifying a Section’s Runtime Address

9-43Linker Description

Example 9–6. Copying a Section From ROM to RAM

; define a section to be copied from ROM to RAM
 .sect ”.fir”
 .label fir_src ; load address of section
fir: ; run address of section
 <code here> ; code for the section

 .label fir_end ; load address of section end

; copy .fir section from ROM into RAM
 .text

 MOV #fir_src,AR1 ; get load address
 MOV BRC0,T1
 MOV T1,BRC1
 MOV #(fir_end – fir_src – 1),BRC0
 RPTB end
end MOV *AR1+,*CDP+
 MOV BRC1,T1
 MOV T1,BRC0

; jump to section, now in RAM
 CALL fir

Linker Command File

/**/
/* PARTIAL LINKER COMMAND FILE FOR FIR EXAMPLE */
/**/

MEMORY
{
 ONCHIP : origin = 000100h, length = 000700h
 PROG : origin = 000800h, length = 002400h
 DATA : origin = 002C00h, length = 00D200h
}

SECTIONS
{
 .text: load = PROG
 .fir: load = DATA, run ONCHIP
}

Specifying a Section’s Runtime Address

 9-44

Figure 9–3 illustrates the runtime execution of this example.

Figure 9–3. Runtime Execution of Example 9–6

ONCHIP

 fir (relocated
to run here)

PROG

.text

DATA

.fir
(loads here)

Program Memory

 800h

2C00h

FE00h

 100h

Using UNION and GROUP Statements

9-45Linker Description

9.11 Using UNION and GROUP Statements

Two SECTIONS statements allow you to conserve memory: GROUP and
UNION. Unioning sections causes the linker to allocate them to the same run
address. Grouping sections causes the linker to allocate them contiguously in
memory.

9.11.1 Overlaying Sections With the UNION Statement

For some applications, you may want to allocate more than one section to run
at the same address. For example, you may have several routines you want
in on-chip RAM at various stages of execution. Or you may want several data
objects that will not be active at the same time to share a block of memory. The
UNION statement within the SECTIONS directive provides a way to allocate
several sections at the same runtime address.

In Example 9–7, the .bss sections from file1.obj and file2.obj are allocated at
the same address in RAM. In the memory map, the union occupies as much
space as its largest component. The components of a union remain
independent sections; they are simply allocated together as a unit.

Example 9–7. The UNION Statement

SECTIONS
{
 .text: load = ROM
 UNION: run = RAM
 {
 .bss1: { file1.obj(.bss) }
 .bss2: { file2.obj(.bss) }
 }
 .bss3: run = RAM { globals.obj(.bss) }
 }

Allocation of a section as part of a union affects only its run address. Under no
circumstances can sections be overlaid for loading. If an initialized section is
a union member (an initialized section has raw data, such as .text), its load
allocation must be separately specified. For example:

Example 9–8. Separate Load Addresses for UNION Sections

 UNION: run = RAM
 {
 .text1: load = ROM, { file1.obj(.text) }
 .text2: load = ROM, { file2.obj(.text) }
 }

Using UNION and GROUP Statements

 9-46

Figure 9–4. Memory Allocation Shown in Example 9–7 and Example 9–8

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ROM

RAM

.text 2 (run)

.text 1 (load)

.text 1 (run)

.text 2 (load)

Copies at
 runtime

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ROM

RAM

.text

.bss2

.bss1

.bss3

Allocation for Example 9–7 Allocation for Example 9–8

Sections cannot
load as a union.

Sections can run
as a union. This is
runtime allocation
only.

Since the .text sections contain data, they cannot load as a union, although
they can be run as a union. Therefore, each requires its own load address. If
you fail to provide a load allocation for an initialized section within a union, the
linker issues a warning and allocates load space anywhere it fits in configured
memory.

Uninitialized sections are not loaded and do not require load addresses.

The UNION statement applies only to allocation of run addresses, so it is
redundant to specify a load address for the union itself. For purposes of
allocation, the union is treated as an uninitialized section: any one allocation
specified is considered a run address, and, if both are specified, the linker
issues a warning and ignores the load address.

The alignment and block attributes of a union are the maximum alignment and
block attributes of any of its members.

Using UNION and GROUP Statements

9-47Linker Description

Note: UNION and Overlay Page Are Not the Same

The UNION capability and the overlay page capability (see Section 9.12,
Overlay Pages, on page 9-50) may sound similar because they both deal
with overlays. They are, in fact, quite different. UNION allows multiple
sections to be overlaid within the same memory space. Overlay pages, on
the other hand, define multiple memory spaces. It is possible to use the page
facility to approximate the function of UNION, but this is cumbersome.

9.11.2 Grouping Output Sections Together

The SECTIONS directive has a GROUP option that forces several output
sections to be allocated contiguously. For example, assume that a section
named term_rec contains a termination record for a table in the .data section.
You can force the linker to allocate .data and term_rec together:

Example 9–9. Allocate Sections Together

SECTIONS
{
 .text /* Normal output section */
 .bss /* Normal output section */
 GROUP 1000h : /* Specify a group of sections */
 {
 .data /* First section in the group */
 term_rec /* Allocated immediately after .data */
 }
}

You can use binding, alignment, or named memory to allocate a GROUP in the
same manner as a single output section. In the preceding example, the
GROUP is bound to byte address 1000h. This means that .data is allocated
at byte 1000h, and term_rec follows it in memory.

The alignment and block attributes of a GROUP are the maximum alignment
and block attributes of any of its members.

An allocator for a GROUP is subject to the consistency checking rules listed
in Section 9.11.4.

Using UNION and GROUP Statements

 9-48

9.11.3 Nesting UNIONs and GROUPs

The linker allows arbitrary nesting of GROUP and UNION statements with the
SECTIONS directive. By nesting GROUP and UNION statements, you can
express hierarchical overlays and groupings of sections. Example 9–10
shows how two overlays of sections can be grouped together.

Example 9–10. Nesting GROUP and UNION statements

SECTIONS
{
 GROUP 1000h : run = RAM
 {
 UNION:
 {
 mysect1: load = ROM
 mysect2: load = ROM
 }
 UNION:
 {
 mysect3: load = ROM
 mysect4: load = ROM
 }
 }
}

Given the example linker control file above, the linker performs the following
allocations:

� The four sections (mysect1, mysect2, mysect3, mysect4) are assigned
unique, non-overlapping load addresses in the ROM memory region. This
assignment is determined by the particular load allocations given for each
section.

� Sections mysect1 and mysect2 are assigned the same run address in
RAM.

� Sections mysect3 and mysect4 are assigned the same run address in
RAM.

� The run addresses of mysect1/mysect2 and mysect3/mysect4 are allo-
cated contiguously, as directed by the GROUP statement (subject to align-
ment and blocking restrictions).

To refer to groups and unions, linker diagnostic messages use the notation:

GROUP_n
UNION_n

In this notation, n is a sequential number (beginning at 1) that represents the
lexical ordering of the group or union in the linker control file, without regard
to nesting. Groups and unions each have their own counter.

Using UNION and GROUP Statements

9-49Linker Description

9.11.4 Checking the Consistency of Allocators

The linker checks the consistency of load and run allocations specified for
unions, groups, and sections. The following rules are used:

� Run allocations are only allowed for top-level sections, groups, or unions
(sections, groups, or unions that are not nested under any other groups
or unions). The linker uses the run address of the top-level structure to
compute the run addresses of the components within groups and unions.

� As discussed in Section 9.11.1, the linker does not accept a load allocation
for UNIONs.

� As discussed in Section 9.11.1, the linker does not accept a load allocation
for uninitialized sections.

� In most cases, you must provide a load allocation for an initialized section.
However, the linker does not accept a load allocation for an initialized sec-
tion that is located within a group that already defines a load allocator.

� As a shortcut, you can specify a load allocation for an entire group, to de-
termine the load allocations for every initialized section or subgroup
nested within the group. However, a load allocation is accepted for an
entire group only if all of the following conditions are true:

� The group is initialized (i.e., it has at least one initialized member).

� The group is not nested inside another group that has a load allocator.

� The group does not contain a union containing initialized sections.

If the group contains a union with initialized sections, it is necessary to
specify the load allocation for each initialized section nested within the
group. Consider the following example:

SECTIONS
{
 GROUP: load = ROM, run = ROM
 {
 .text1:
 UNION:
 {
 .text2:
 .text3:
 }
 }
}

The load allocator given for the group does not uniquely specify the load
allocation for the elements within the union: .text2 and .text3. In this case,
the linker will issue a diagnostic message to request that these load alloca-
tions be specified explicitly.

Overlay Pages

 9-50

9.12 Overlay Pages

Some target systems use a memory configuration in which all or part of the
memory space is overlaid by shadow memory. This allows the system to map
different banks of physical memory into and out of a single address range in
response to hardware selection signals. In other words, multiple banks of
physical memory overlay each other at one address range. You may want the
linker to load various output sections into each of these banks or into banks
that are not mapped at load time.

The linker supports this feature by providing overlay pages. Each page
represents an address range that must be configured separately with the
MEMORY directive. You can then use the SECTIONS directive to specify the
sections to be mapped into various pages.

9.12.1 Using the MEMORY Directive to Define Overlay Pages

To the linker, each overlay page represents a completely separate memory
comprising the full 24-bit range of addressable locations. This allows you to
link two or more sections at the same (or overlapping) addresses if they are
on different pages.

Pages are numbered sequentially, beginning with 0. If you do not use the
PAGE option, the linker allocates all sections into PAGE 0.

For example, assume that your system can select between two banks of
physical memory for data memory space: address range A00h to FFFFh for
PAGE 1 and 0A00h to 2BFF for PAGE 2. Although only one bank can be
selected at a time, you can initialize each bank with different data. This is how
you use the MEMORY directive to obtain this configuration:

Example 9–11. Memory Directive With Overlay Pages

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

MEMORY
{
 PAGE 0 : ONCHIP : origin = 0800h, length = 0240h
 : PROG : origin = 02C00h, length = 0D200h
 PAGE 1 : OVR_MEM : origin = 0A00h, length = 02200h
 : DATA : origin = 02C00h, length = 0D400h
 PAGE 2 : OVR_MEM : origin = 0A00h, length = 02200h
}

Overlay Pages

9-51Linker Description

Example 9–11 defines three separate address spaces. PAGE 0 defines an
area of on-chip program memory and the rest of program memory space.
PAGE 1 defines the first overlay memory area and the rest of data memory
space. PAGE 2 defines another area of overlay memory for data space. Both
OVR_MEM ranges cover the same address range. This is possible because
each range is on a different page and therefore represents a different memory
space.

Figure 9–5 shows overlay pages defined by the MEMORY directive in
Example 9–11 and the SECTIONS directive in Example 9–12.

Figure 9–5. Overlay Pages Defined by Example 9–11 and Example 9–12

Run address
for f1, f2, f3,

f4

ONCHIP

PROG

.text

800h

FC00h

2C00h

Program Memory
Page 0

f1.obj (.text)
f2.obj (.text)

OVR_MEM

DATA

.bss

A00h

2C00h

f3.obj (.text)
f4.obj (.text)

OVR_MEM
A00h

2C00h

Data Memory
Page 1

Data Memory
Page 2

Overlay Pages

 9-52

9.12.2 Using Overlay Pages With the SECTIONS Directive

Assume that you are using the MEMORY directive as shown in Example 9–11.
Further assume that your code consists of, besides the usual sections, four
modules of code that you want to load in data memory space but that you
intend to run in the on-chip RAM in program memory space. Example 9–12
shows how to use the SECTIONS directive overlays accordingly.

Example 9–12. SECTIONS Directive Definition for Overlays in Figure 9–5

SECTIONS
{
 UNION : run = ONCHIP
 {
 S1 : load = OVR_MEM PAGE 1
 {
 s1_load = 0A00h;
 s1_start = .;
 f1.obj (.text)
 f2.obj (.text)
 s1_length = . – s1_start;
 }
 S2 : load = OVR_MEM PAGE 2
 {
 s2_load = 0A00h;
 s2_start = .;
 f3.obj (.text)
 f4.obj (.text)
 s2_length = . – s2_start;
 }
 }

 .text: load = PROG PAGE 0
 .data: load = PROG PAGE 0
 .bss : load = DATA PAGE 1
}\

The four modules of code are f1, f2, f3, and f4. The modules f1 and f2 are
combined into output section S1, and f3 and f4 are combined into output
section S2. The PAGE specifications for S1 and S2 tell the linker to link these
sections into the corresponding pages. As a result, they are both linked to load
address A00h, but in different memory spaces. When the program is loaded,
a loader can configure hardware so that each section is loaded into the
appropriate memory bank.

Output sections S1 and S2 are placed in a union that has a run address in
on-chip RAM. The application must move these sections at runtime before
executing them. You can use the symbols s1_load and s1_length to move
section S1, and s2_load and s2_length to move section S2. The special
symbol ”.” refers to the current run address, not the current load address.

Overlay Pages

9-53Linker Description

Within a page, you can bind output sections or use named memory areas in
the usual way. In Example 9–12, S1 could have been allocated:

S1 : load = 01200h, page = 1 { . . . }

This binds S1 at address 1200h in page 1. You can also use page as a qualifier
on the address. For example:

S1 : load = (01200h PAGE 1) { . . . }

If you do not specify any binding or named memory range for the section, the
linker allocates the section into the page wherever it can (just as it normally
does with a single memory space). For example, S2 could also be specified
as:

S2 : PAGE 2 { . . . }

Because OVR_MEM is the only memory on page 2, it is not necessary (but
acceptable) to specify = OVR_MEM for the section.

9.12.3 Page Definition Syntax

To specify overlay pages as illustrated in Example 9–11 and Example 9–12,
use the following syntax for the MEMORY directive:

MEMORY
{

[PAGE 0 :] name 1 [(attr)] : origin = constant , length = constant;
[PAGE n :] name n [(attr)] : origin = constant , length = constant;

}

Each page is introduced by the keyword PAGE and a page number, followed
by a colon and a list of memory ranges the page contains. Bold portions must
be entered as shown. Memory ranges are specified in the normal way. You can
define up to 255 overlay pages.

Because each page represents a completely independent address space,
memory ranges on different pages can have the same name. Configured
memory on any page can overlap configured memory on any other page.
Within a single page, however, all memory ranges must have unique names
and must not overlap.

Overlay Pages

 9-54

Memory ranges listed outside the scope of a PAGE specification default to
PAGE 0. Consider the following example:

MEMORY
{ ROM : org = 0h len = 1000h
 EPROM : org = 1000h len = 1000h
 RAM : org = 2000h len = 0E000h
 PAGE1: XROM : org = 0h len = 1000h
 XRAM : org = 2000h len = 0E000h
}

The memory ranges ROM, EPROM, and RAM are all on PAGE 0 (since no
page is specified). XROM and XRAM are on PAGE 1. Note that XROM on
PAGE 1 overlays ROM on PAGE 0, and XRAM on PAGE 1 overlays RAM on
PAGE 0.

In the output link map (obtained with the –m linker option), the listing of the
memory model is keyed by pages. This provides an easy method of verifying
that you specified the memory model correctly. Also, the listing of output
sections has a PAGE column that identifies the memory space into which each
section will be loaded.

Default Allocation Algorithm

9-55Linker Description

9.13 Default Allocation Algorithm

The MEMORY and SECTIONS directives provide flexible methods for
building, combining, and allocating sections. However, any memory locations
or sections that you choose not to specify must still be handled by the linker.
The linker uses default algorithms to build and allocate sections within the
specifications you supply. Subsections 9.13.1, Allocation Algorithm, and
9.13.2, General Rules for Output Sections, describe default allocation.

9.13.1 Allocation Algorithm

If you do not use the MEMORY and SECTIONS directives, the linker allocates
output sections as though the following definitions are specified.

Example 9–13. Default Allocation for TMS320C55x Devices

MEMORY
{

ROM (RIX) : origin = 0100h, length = 0FEFFh
VECTOR (RIX) : origin = 0FFFF00h, length = 0100h
RAM (RWIX) : origin = 010100h, length = 0FFFFh

}
SECTIONS
{

.text > ROM

.switch > ROM

.const > ROM

.cinit > ROM

.vectors > VECTOR

.data > RAM

.bss > RAM

.sysmem > RAM

.stack > RAM

.sysstack > RAM

.cio > RAM
}

If the input files contain initialized named sections, the linker allocates them
into program memory following the .data section. If the input files contain
uninitialized named sections, the linker allocates them into data memory fol-
lowing the .bss section. You can override this by specifying an explicit PAGE
in the SECTIONS directive.

If you use a SECTIONS directive, the linker performs no part of the default
allocation. Allocation is performed according to the rules specified by the
SECTIONS directive and the general algorithm described in subsection
9.13.2, General Rules for Output Sections.

Default Allocation Algorithm

 9-56

9.13.2 General Rules for Output Sections

An output section can be formed in one of two ways:

Rule 1 As the result of a SECTIONS directive definition.

Rule 2 By combining input sections with the same names into an out-
put section that is not defined in a SECTIONS directive.

If an output section is formed as a result of a SECTIONS directive (rule 1), this
definition completely determines the section’s contents. (See Section 9.9, The
SECTIONS Directive, on page 9-32 for examples of how to define an output
section’s content.)

An output section can also be formed when input sections are not specified by
a SECTIONS directive (rule 2). In this case, the linker combines all such input
sections that have the same name into an output section with that name. For
example, suppose the files f1.obj and f2.obj both contain named sections
called Vectors and that the SECTIONS directive does not define an output
section for them. The linker combines the two Vectors sections from the input
files into a single output section named Vectors, allocates it into memory, and
includes it in the output file.

After the linker determines the composition of all output sections, it must allo-
cate them into configured memory. The MEMORY directive specifies which
portions of memory are configured; if there is no MEMORY directive, the linker
uses the default configuration.

The linker’s allocation algorithm attempts to minimize memory fragmentation.
This allows memory to be used more efficiently and increases the probability
that your program will fit into memory. This is the algorithm:

1) Output sections for which you have supplied a specific binding address
are placed in memory at that address.

2) Output sections that are included in a specific, named memory range or
that have memory attribute restrictions are allocated. Each output section
is placed into the first available space within the named area, considering
alignment where necessary.

Default Allocation Algorithm

9-57Linker Description

3) Any remaining sections are allocated in the order in which they are
defined. Sections not defined in a SECTIONS directive are allocated in the
order in which they are encountered. Each output section is placed into the
first available memory space, considering alignment where necessary.

Note that the linker pads the end of the final .text section (the grouping of all
.text sections from object files in the application) with a non-parallel NOP.

Note: The PAGE Option

If you do not use the PAGE option to explicitly specify a memory space for
an output section, the linker allocates the section into PAGE 0. This occurs
even if PAGE 0 has no room and other pages do. To use a page other than
PAGE 0, you must specify the page with the SECTIONS directive.

Special Section Types (DSECT, COPY, and NOLOAD)

 9-58

9.14 Special Section Types (DSECT, COPY, and NOLOAD)

You can assign three special type designations to output sections: DSECT,
COPY, and NOLOAD. These types affect the way that the program is treated
when it is linked and loaded. You can assign a type to a section by placing the
type (enclosed in parentheses) after the section definition. For example:

SECTIONS
{
 sec1 2000h (DSECT) : {f1.obj}
 sec2 4000h (COPY) : {f2.obj}
 sec3 6000h (NOLOAD) : {f3.obj}
}

� The DSECT type creates a dummy section with the following qualities:

� It is not included in the output section memory allocation. It takes up no
memory and is not included in the memory map listing.

� It can overlay other output sections, other DSECTs, and unconfigured
memory.

� Global symbols defined in a dummy section are relocated normally.
They appear in the output module’s symbol table with the same value
they would have if the DSECT had actually been loaded. These sym-
bols can be referenced by other input sections.

� Undefined external symbols found in a DSECT cause specified
archive libraries to be searched.

� The section’s contents, relocation information, and line number
information are not placed in the output module.

In the preceding example, none of the sections from f1.obj are allocated,
but all of the symbols are relocated as though the sections were linked at
byte address 2000h. The other sections can refer to any of the global
symbols in sec1.

� A COPY section is similar to a DSECT section, except that its contents and
associated information are written to the output module. The .cinit section
that contains initialization tables for the TMS320C55x C compiler has this
attribute under the RAM model.

� A NOLOAD section differs from a normal output section in one respect: the
section’s contents, relocation information, and line number information
are not placed in the output module. The linker allocates space for it, and
it appears in the memory map listing.

Assigning Symbols at Link Time

9-59Linker Description

9.15 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols
and assign values to them at link time. You can use this feature to initialize a
variable or pointer to an allocation-dependent value.

9.15.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of assign-
ment statements in the C language:

symbol = expression; assigns the value of expression to symbol

symbol + = expression; adds the value of expression to symbol

symbol – = expression; subtracts the value of expression from symbol

symbol * = expression; multiplies symbol by expression

symbol / = expression; divides symbol by expression

The symbol should be defined externally. If it is not, the linker defines a new
symbol and enters it into the symbol table. The expression must follow the
rules defined in subsection 9.15.3, Assignment Expressions. Assignment
statements must terminate with a semicolon.

The linker processes assignment statements after it allocates all the output
sections. Therefore, if an expression contains a symbol, the address used for
that symbol reflects the symbol’s address in the executable output file.

For example, suppose a program reads data from one of two tables identified
by two external symbols, Table1 and Table2. The program uses the symbol
cur_tab as the address of the current table. cur_tab must point to either Table1
or Table2. You could accomplish this in the assembly code, but you would need
to reassemble the program to change tables. Instead, you can use a linker
assignment statement to assign cur_tab at link time:

prog.obj /* Input file */
cur_tab = Table1; /* Assign cur_tab to one of the tables */

Assigning Symbols at Link Time

 9-60

9.15.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the SPC
during allocation. The linker’s “.” symbol is analogous to the assembler’s $
symbol. The “.” symbol can be used only in assignment statements within a
SECTIONS directive because “.” is meaningful only during allocation, and
SECTIONS controls the allocation process. (See Section 9.9, The SECTIONS
Directive, on page 9-32.) Note that the “.” symbol cannot be used outside of
the braces that define a single output section.

The “.” symbol refers to the current run address, not the current load address,
of the section.

For example, suppose a program needs to know the address of the beginning
of the .data section. By using the .global directive, you can create an external
undefined variable called Dstart in the program. Then assign the value of “ . ”
to Dstart:

SECTIONS
{
 .text: {}
 .data: { Dstart = .; }
 .bss: {}
}

This defines Dstart to be the first linked address of the .data section. (Dstart
is assigned before .data is allocated.) The linker will relocate all references to
Dstart.

A special type of assignment assigns a value to the “.” symbol. This adjusts
the SPC within an output section and creates a hole between two input sec-
tions. Any value assigned to “.” to create a hole is relative to the beginning of
the section, not to the address actually represented by “.”. Assignments to “.”
and holes are described in Section 9.16, Creating and Filling Holes, on page
9-63.

9.15.3 Assignment Expressions

These rules apply to linker expressions:

� Expressions can contain global symbols, constants, and the C language
operators listed in Table 9–1.

� All numbers are treated as long (32-bit) integers.

� Constants are identified by the linker in the same way as by the assembler.
That is, numbers are recognized as decimal unless they have a suffix (H

Assigning Symbols at Link Time

9-61Linker Description

or h for hexadecimal and Q or q for octal). C language prefixes are also
recognized (0 for octal and 0x for hex). Hexadecimal constants must begin
with a digit. No binary constants are allowed.

� Symbols within an expression have only the value of the symbol’s
address. No type-checking is performed.

� Linker expressions can be absolute or relocatable. If an expression
contains any relocatable symbols (and zero or more constants or absolute
symbols), it is relocatable. Otherwise, the expression is absolute. If a
symbol is assigned the value of a relocatable expression, it is relocatable;
if it is assigned the value of an absolute expression, it is absolute.

The linker supports the C language operators listed in Table 9–1 in order of
precedence. Operators in the same group have the same precedence.
Besides the operators listed in Table 9–1, the linker also has an align operator
that allows a symbol to be aligned on an n-byte boundary within an output sec-
tion (n is a power of 2). For example, the expression

. = align(16);

aligns the SPC within the current section on the next 16-byte boundary.
Because the align operator is a function of the current SPC, it can be used only
in the same context as “.” —that is, within a SECTIONS directive.

Table 9–1. Operators Used in Expressions (Precedence)

Symbols Operators Evaluation

+ – ~ Unary plus, minus, 1s complement Right to left

* / % Multiplication, division, modulo Left to right

+ – Addition, subtraction Left to right

<< >> Left shift, right shift Left to right

< <= > >= Less than, LT or equal, greater than,
GT or equal

Left to right

 !=, =[=] Not equal to, equal to Left to right

& Bitwise AND Left to right

^ Bitwise exclusive OR Left to right

| Bitwise OR Left to right

Note: Unary +, –, and * have higher precedence than the binary forms.

Assigning Symbols at Link Time

 9-62

9.15.4 Symbols Defined by the Linker

The linker automatically defines several symbols that a program can use at
runtime to determine where a section is linked. These symbols are external,
so they appear in the link map. They can be accessed in any assembly
language module if they are declared with a .global directive. Values are
assigned to these symbols as follows:

.text is assigned the first address of the .text output section.
(It marks the beginning of executable code.)

etext is assigned the first address following the .text output section.
(It marks the end of executable code.)

.data is assigned the first address of the .data output section.
(It marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section.
 (It marks the end of initialized data tables.)

.bss is assigned the first address of the .bss output section.
(It marks the beginning of uninitialized data.)

end is assigned the first address following the .bss output section.
(It marks the end of uninitialized data.)

9.15.5 Symbols Defined Only For C Support (–c or –cr Option)

__STACK_SIZE is assigned the size of the .stack section.

__SYSSTACK_SIZE is assigned the size of the .sysstack section.

__SYSMEM_SIZE is assigned the size of the .sysmem section.

Creating and Filling Holes

9-63Linker Description

9.16 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections
that have nothing linked into them. These areas are called holes . In special
cases, uninitialized sections can also be treated as holes. The following text
describes how the linker handles such holes and how you can fill holes (and
uninitialized sections) with a value.

9.16.1 Initialized and Uninitialized Sections

An output section contains one of the following:

� Raw data for the entire section
� No raw data

A section that has raw data is referred to as initialized. This means that the
object file contains the actual memory image contents of the section. When the
section is loaded, this image is loaded into memory at the section’s specified
starting address. The .text and .data sections always have raw data if anything
was assembled into them. Named sections defined with the .sect assembler
directive also have raw data.

By default, the .bss section and sections defined with the .usect directive have
no raw data (they are uninitialized). They occupy space in the memory map
but have no actual contents. Uninitialized sections typically reserve space in
RAM for variables. In the object file, an uninitialized section has a normal sec-
tion header and may have symbols defined in it; however, no memory image
is stored in the section.

9.16.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when
you force the linker to leave extra space between input sections within an out-
put section. When such a hole is created, the linker must follow the first guide-
line above and supply raw data for the hole.

Holes can be created only within output sections. Space can exist between
output sections, but such space is not holes. There is no way to fill or initialize
the space between output sections with the SECTIONS directive.

To create a hole in an output section, you must use a special type of linker
assignment statement within an output section definition. The assignment
statement modifies the SPC (denoted by “.”) by adding to it, assigning a greater
value to it, or aligning it on an address boundary. The operators, expressions,
and syntaxes of assignment statements are described in Section 9.15,
Assigning Symbols at Link Time, on page 9-59.

Creating and Filling Holes

 9-64

The following example uses assignment statements to create holes in output
sections:

SECTIONS
{
 outsect:
 {
 file1.obj(.text)
 . += 100h; /* Create a hole with size 100h byte s */
 file2.obj(.text)
 . = align(16); /* Create a hole to align the SPC */
 file3.obj(.text)
 }
}

The output section outsect is built as follows:

� The .text section from file1.obj is linked in.

� The linker creates a 256-byte hole.

� The .text section from file2.obj is linked in after the hole.

� The linker creates another hole by aligning the SPC on a 16-byte
boundary.

� Finally, the .text section from file3.obj is linked in.

All values assigned to the “ . ” symbol within a section refer to the relative
address within the section. The linker handles assignments to the “ . ” symbol
as if the section started at address 0 (even if you have specified a binding
address). Consider the statement . = align(16) in the example. This statement
effectively aligns file3.obj .text to start on a 16-byte boundary within outsect.
If outsect is ultimately allocated to start on an address that is not aligned,
file3.obj .text will not be aligned either.

Note that the “.” symbol refers to the current run address, not the current load
address, of the section.

Expressions that decrement “.” are illegal. For example, it is invalid to use the
–= operator in an assignment to “.”. The most common operators used in
assignments to “.” are += and align.

If an output section contains all input sections of a certain type (such as .text),
you can use the following statements to create a hole at the beginning or end
of the output section:

.text: { .+= 100h; } /* Hole at the beginning */

.data: {
 *(.data)
 . += 100h; } /* Hole at the end */

Creating and Filling Holes

9-65Linker Description

Another way to create a hole in an output section is to combine an uninitialized
section with an initialized section to form a single output section. In this case,
the linker treats the uninitialized section as a hole and supplies data for it. The
following example illustrates this method:

SECTIONS
{

outsect:
{
file1.obj(.text)
file1.obj(.bss) /* This becomes a hole */
}

}

Because the .text section has raw data, all of outsect must also contain raw
data (rule 1). Therefore, the uninitialized .bss section becomes a hole.

Uninitialized sections become holes only when they are combined with
initialized sections. If several uninitialized sections are linked together, the
resulting output section is also uninitialized.

9.16.3 Filling Holes

When a hole exists in an initialized output section, the linker must supply raw
data to fill it. The linker fills holes with a 16-bit fill value that is replicated through
memory until it fills the hole. The linker determines the fill value as follows:

1) If the hole is formed by combining an uninitialized section with an initialized
section, you can specify a fill value for the uninitialized section. Follow the
section name with an = sign and a 16-bit constant:

SECTIONS
{
 outsect:
 {
 file1.obj(.text)
 file2.obj(.bss) = 00FFh /* Fill this hole */
 } /* with 0FFh */
}

2) You can also specify a fill value for all the holes in an output section by
supplying the fill value after the section definition:

SECTIONS
{
 outsect: fill = 0FF00h /* fills holes with 0FF00h */
 {
 . += 10h; /* This creates a hole */
 file1.obj(.text)
 file1.obj(.bss) /* This creates another hole*/
 }
}

Creating and Filling Holes

 9-66

3) If you do not specify an initialization value for a hole, the linker fills the hole
with the value specified by the –f option. For example, suppose the
command file link.cmd contains the following SECTIONS directive:

SECTIONS
{
 .text: { .= 100; } /* Create a 100-byte hole */
}

Now invoke the linker with the –f option:

lnk500 –f 0FFFFh link.cmd

This fills the hole with 0FFFFh.

4) If you do not invoke the linker with the –f option, the linker fills holes with 0s.

Whenever a hole is created and filled in an initialized output section, the hole
is identified in the link map along with the value the linker uses to fill it.

9.16.4 Explicit Initialization of Uninitialized Sections

An uninitialized section becomes a hole only when it is combined with an
initialized section. When uninitialized sections are combined with each other,
the resulting output section remains uninitialized.

However, you can force the linker to initialize an uninitialized section by
specifying an explicit fill value for it in the SECTIONS directive. This causes
the entire section to have raw data (the fill value). For example:

SECTIONS
{
 .bss: fill = 1234h /* Fills .bss with 1234h */
}

Note: Filling Sections

Because filling a section (even with 0s) causes raw data to be generated for
the entire section in the output file, your output file will be very large if you
specify fill values for large sections or holes.

Partial (Incremental) Linking

9-67Linker Description

9.17 Partial (Incremental) Linking

An output file that has been linked can be linked again with additional modules.
This is known as partial linking or incremental linking. Partial linking allows you
to partition large applications, link each part separately, and then link all the
parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

� Intermediate files must have relocation information. Use the –r option
when you link the file the first time.

� Intermediate files must have symbolic information. By default, the linker
retains symbolic information in its output. Do not use the –s option if you
plan to relink a file, because –s strips symbolic information from the output
module.

� Intermediate link steps should be concerned only with the formation of out-
put sections and not with allocation. All allocation, binding, and MEMORY
directives should be performed in the final link step.

� If the intermediate files have global symbols that have the same name as
global symbols in other files and you wish them to be treated as static
(visible only within the intermediate file), you must link the files with the –h
option (See subsection 9.4.7, Make All Global Symbols Static (–h and –g
global_symbol Options), on page 9-12.)

� If you are linking C code, don’t use –c or –cr until the final link step. Every
time you invoke the linker with the –c or –cr option the linker will attempt
to create an entry point.

The following example shows how you can use partial linking:

Step 1: Link the file file1.com; use the –r option to retain relocation
information in the output file tempout1.out.

lnk55 –r –o tempout1 file1.com

file1.com contains:

SECTIONS
{
 ss1: {
 f1.obj
 f2.obj
 .
 .
 .
 fn.obj
 }
}

Partial (Incremental) Linking

 9-68

Step 2: Link the file file2.com; use the –r option to retain relocation
information in the output file tempout2.out.

lnk55 –r –o tempout2 file2.com

file2.com contains:

SECTIONS
{

ss2: {
g1.obj
g2.obj
 .
 .
 .
gn.obj
}

}

Step 3: Link tempout1.out and tempout2.out:

lnk55 –m final.map –o final.out tempout1.out tempout2.out

Linking C Code

9-69Linker Description

9.18 Linking C Code

The TMS320C55x C compiler produces assembly language source code that
can be assembled and linked. For example, a C program consisting of
modules prog1, prog2, etc., can be assembled and then linked to produce an
executable file called prog.out:

lnk55 –c –o prog.out prog1.obj prog2.obj ... rts55.lib

To use the large memory model, you must specify the rts55x.lib runtime library.

The –c option tells the linker to use special conventions that are defined by the
C environment. The runtime library contains C runtime-support functions.

For more information about C, including the runtime environment and runtime-
support functions, see the TMS320C55x Optimizing C Compiler User’s Guide.

9.18.1 Runtime Initialization

All C programs must be linked with an object module called boot.obj. When a
program begins running, it executes boot.obj first. boot.obj contains code and
data for initializing the runtime environment. The module performs the follow-
ing tasks:

� Sets up the primary and secondary system stacks

� Processes the runtime initialization table and autoinitializes global
variables (in the ROM model)

� Disables interrupts and calls _main

The runtime-support object libraries, rts55.lib and rts55x.lib, contain boot.obj.
You can:

� Use the archiver to extract boot.obj from the library and then link the
module in directly.

� Include the appropriate runtime library as an input file (the linker automati-
cally extracts boot.obj when you use the –c or –cr option).

9.18.2 Object Libraries and Runtime Support

The TMS320C55x Optimizing C Compiler User’s Guide describes additional
runtime-support functions that are included in rts55.lib and rts55x.lib. If your
program uses any of these functions, you must link the appropriate runtime li-
brary with your object files.

You can also create your own object libraries and link them. The linker includes
and links only those library members that resolve undefined references.

Linking C Code

 9-70

9.18.3 Setting the Size of the Stack and Heap Sections

C uses uninitialized sections called .sysmem, .stack, and .sysstack for the
memory pool used by the malloc() functions and the runtime stacks, respec-
tively. You can set the size of these by using the –heap option, –stack option,
or –sysstack option and specifying the size of the section as a constant
immediately after the option. The default size for .sysmem is 2000 bytes. The
default size for .stack and .sysstack is 1000 bytes.

For more information, see subsection 9.4.8, Define Heap Size (–heap
constant Option), on page 9-12, subsection 9.4.15, Define Stack Size (–stack
constant Option), on page 9-18, or subsection 9.4.16, Define Secondary Stack
Size (–sysstack), on page 9-18.

9.18.4 Autoinitialization (ROM and RAM Models)

The C compiler produces tables of data for autoinitializing global variables.
These are in a named section called .cinit. The initialization tables can be used
in either of two ways:

� RAM Model (–cr option)

Variables are initialized at load time. This enhances performance by
reducing boot time and by saving memory used by the initialization tables.
You must use a smart loader (i.e., one capable of initializing variables) to
take advantage of the RAM model of autoinitialization.

When you use –cr, the linker marks the .cinit section with a special attri-
bute. This attribute tells the linker not to load the .cinit section into memory.
The linker also sets the cinit symbol to –1; this tells the C boot routine that
initialization tables are not present in memory. Thus, no runtime initializa-
tion is performed at boot time.

When the program is loaded, the loader must be able to:

� Detect the presence of the .cinit section in the object file

� Detect the presence of the attribute that tells it not to copy the .cinit
section

� Understand the format of the initialization tables. (This format is
described in the TMS320C55x Optimizing C Compiler User’s Guide.)

The loader then uses the initialization tables directly from the object file to
initialize variables in .bss.

Linking C Code

9-71Linker Description

Figure 9–6 illustrates the RAM autoinitialization model.

Figure 9–6. RAM Model of Autoinitialization

.cinit

Object File

.bss

Loader

Memory

� ROM Model (–c option)

Variables are initialized at runtime. The .cinit section is loaded into
memory along with all the other sections. The linker defines a special
symbol called cinit that points to the beginning of the tables in memory.
When the program begins running, the C boot routine copies data from the
tables into the specified variables in the .bss section. This allows initializa-
tion data to be stored in ROM and copied to RAM each time the program is
started.

Figure 9–7 illustrates the ROM autoinitialization model.

Figure 9–7. ROM Model of Autoinitialization

.cinit

Object File

.bss

Loader

Memory

Boot
routine

Initialization
tables

(possibly ROM)

Linking C Code

 9-72

9.18.5 The –c and –cr Linker Options

The following list outlines what happens when you invoke the linker with the
–c or –cr option.

� The symbol _c_int00 is defined as the program entry point. _c_int00 is the
start of the C boot routine in boot.obj; referencing _c_int00 ensures that
boot.obj is automatically linked in from the runtime-support library
rts55.lib.

� The .cinit output section is padded with a termination record to designate
to the boot routine (ROM model) or the loader (RAM model) when to stop
reading the initialization tables.

� In the ROM model (–c option), the linker defines the symbol cinit as the
starting address of the .cinit section. The C boot routine uses this symbol
as the starting point for autoinitialization.

� In the RAM model (–cr option):

� The linker sets the symbol cinit to –1. This indicates that the
initialization tables are not in memory, so no initialization is performed
at runtime.

� The STYP_COPY flag (0010h) is set in the .cinit section header.
STYP_COPY is the special attribute that tells the loader to perform
autoinitialization directly and not to load the .cinit section into memory.
The linker does not allocate space in memory for the .cinit section.

Linker Example

9-73Linker Description

9.19 Linker Example

This example links three object files named demo.obj, fft.obj, and tables.obj
and creates a program called demo.out. The symbol SETUP is the program
entry point.

Assume that target memory has the following configuration:

Byte Address Range Contents
 000100 to 007080 On-chip RAM_PG
 007081 to 008000 RAM block ONCHIP
 008001 to 00A000 Mapped external addresses EXT
 00C000 to 00FF80 On-chip ROM

The output sections are constructed from the following input sections:

� Executable code, contained in the .text sections of demo.obj, fft.obj, and
tables.obj must be linked into program ROM.

� Variables, contained in the var_defs section of demo.obj, must be linked
into data memory in block ONCHIP.

� Tables of coefficients in the .data sections of demo.obj, tables.obj and
fft.obj must be linked into RAM block ONCHIP in data memory. A hole is
created with a length of 100 bytes and a fill value of 07A1Ch. The remain-
der of block ONCHIP must be initialized to the value 07A1Ch.

� The .bss sections from demo.obj. tables.obj, and fft.obj, which contain
variables, must be linked into block RAM_PG of program RAM. The
unused part of this RAM must be initialized to 0FFFFh.

� The xy section from demo.obj, which contains buffers and variables, will
have the default linking into block ONCHIP of data RAM, since it was not
explicitly linked.

Example 9–14 shows the linker command file for this example. Example 9–15
shows the map file.

Linker Example

 9-74

Example 9–14. Linker Command File, demo.cmd

/***/
/*** Specify Linker Options ***/
/***/
–e coeff /* Define the program entry point */
–o demo.out /* Name the output file */
–m demo.map /* Create an output map */

/***/
/*** Specify the Input Files ***/
/***/

demo.obj
fft.obj
tables.obj

/***/
/*** Specify the Memory Configurations ***/
/***/

MEMORY
{
 RAM_PG: origin=00100h length=06F80h
 ONCHIP: origin=007081h length=0F7Fh
 EXT: origin=08001h length=01FFFh
 ROM: origin=0C000h length=03F80h
}

/**/
/*** Specify the Output Sections ***/
/**/

SECTIONS
{
 .text: load = ROM /* link .text into ROM */

 var_defs: load = ONCHIP /* defs in RAM */

 .data: fill = 07A1Ch, load=ONCHIP
 {
 tables.obj(.data) /* .data input */
 fft.obj(.data) /* .data input */
 . = 100h; /* create hole, fill with 07A1Ch */
 } /* and link with ONCHIP */

 .bss: load=RAM_PG,fill=0FFFFh
 /* Remaining .bss; fill and link */
}

/***/
/*** End of Command File ***/
/***/

Linker Example

9-75Linker Description

Invoke the linker with the following command:

lnk55 demo.cmd

This creates the map file shown in Example 9–15 and an output file called
demo.out that can be run on a TMS320C55x.

Example 9–15. Output Map File, demo.map

OUTPUT FILE NAME: <demo.out>
ENTRY POINT SYMBOL: 0

MEMORY CONFIGURATION
 name org(bytes) len(bytes) used(bytes) attributes fill
 –––––––– –––––––– ––––––––– ––––––––– –––––––––– ––––––––
 RAM_PG 00000100 000006f80 00000064 RWIX
 ONCHIP 00007081 000000f7f 00000104 RWIX
 EXT 00008000 000001fff 00000000 RWIX
 ROM 0000c000 000003f80 0000001f RWIX

SECTION ALLOCATION MAP
 output attributes/
section page org(bytes) org(words) len(bytes) len(words) input sections
–––––––– –––– –––––––––– –––––––––– –––––––––– –––––––––– ––––––––––––––––
.text 0 0000c000 0000001f

0000c000 0000000a tables.obj(.text)
0000c00a 00000008 fft.obj (.text)
0000c012 0000000c demo.obj (.text)
0000c01e 00000001 ––HOLE–– [fill = 2020]

var_defs 0 00003841 00000002
00003841 00000002 fft.obj (var_defs)

.data 0 00003843 00000080
00003843 00000001 tables.obj (.data)
00003844 00000004 fft.obj (.data)
00003848 0000007b ––HOLE–– [fill = 7a1c]
000038c3 00000000 demo.obj (.data)

.bss 0 00000080 00000002
00000080 00000002 demo.obj(.bss)[fill=ffff]
00000082 00000000 fft.obj (.bss)
00000082 00000000 tables.obj (.bss)

xy 0 00000082 00000030 UNINITIALIZED
00000082 00000030 demo.obj (xy)

GLOBAL SYMBOLS:
Sorted alphabetically by name Sorted by symbol address
abs. value/ abs. value/
byte addr word addr name byte addr word addr name
––––––––– ––––––––– ––––– –––––––– –––––––– ––––
 00000080 .bss 00000080 .bss
 00003843 .data 00000082 end
0000c000 .text 00003843 .data
0000c016 ARRAY 00003843 TEMP
 00003843 TEMP 000038c3 edata
0000c012 _x42 0000c012 _x42
 000038c3 edata 0000c000 .text
 00000082 end 0000c016 . ARRAY
0000c01f etext 0000c01f etext

10-1Absolute Lister Description

Absolute Lister Description

The absolute lister is a debugging tool that accepts linked object files as input
and creates .abs files as output. These .abs files can be assembled to produce
a listing that shows the absolute addresses of object code. Manually, this could
be a tedious process requiring many operations; however, the absolute lister
utility performs these operations automatically.

Topic Page

10.1 Producing an Absolute Listing 10-2.

10.2 Invoking the Absolute Lister 10-3.

10.3 Absolute Lister Example 10-5.

Chapter 10

Producing an Absolute Listing

 10-2

10.1 Producing an Absolute Listing

Figure 10–1 illustrates the steps required to produce an absolute listing.

Figure 10–1. Absolute Lister Development Flow

ÍÍ
ÍÍ

ÍÍ
ÍÍ

ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ

Assembler

Object
file

Linked object
file

Linker

First, assemble a source file.

Link the resulting object file.

Invoke the absolute lister; use the linked object
file as input. This creates a file with an .abs
extension.

Step 1:

Step 2:

Step 3:

ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ

Absolute

Assembler

lister

Absolute

.abs
file

Finally, assemble the .abs file; you must
invoke the assembler with the –a option. This
produces a listing file that contains absolute
addresses.

Step 4:

Assembler
source file

listing

Invoking the Absolute Lister

10-3Absolute Lister Description

10.2 Invoking the Absolute Lister

The syntax for invoking the absolute lister is:

abs55 [–options] input file

abs55 is the command that invokes the absolute lister.

options identifies the absolute lister options that you want to use.
Options are not case sensitive and can appear anywhere on the
command line following the command. Precede each option
with a hyphen (–). The absolute lister options are as follows:

–e enables you to change the default naming conventions
for filename extensions on assembly files, C source files,
and C header files. The three options are listed below.

� –ea [.]asmext for assembly files (default is .asm)
� –ec [.]cext for C source files (default is .c)
� –eh [.]hext for C header files (default is .h)

The “.” in the extensions and the space between the
option and the extension are optional.

–q (quiet) suppresses the banner and all progress infor-
mation.

input file names the linked object file. If you do not supply an extension,
the absolute lister assumes that the input file has the default
extension .out. If you do not supply an input filename when you
invoke the absolute lister, the absolute lister will prompt you for
one.

The absolute lister produces an output file for each file that was linked. These
files are named with the input filenames and an extension of .abs. Header files,
however, do not generate a corresponding .abs file.

Assemble these files with the –a assembler option as follows to create the
absolute listing:

masm55 –a filename .abs

The –e options affect both the interpretation of filenames on the command line
and the names of the output files. They should always precede any filename
on the command line.

Invoking the Absolute Lister

 10-4

The –e options are useful when the linked object file was created from C files
compiled with the debugging option (–g compiler option). When the debugging
option is set, the resulting linked object file contains the name of the source
files used to build it. In this case, the absolute lister will not generate a
corresponding .abs file for the C header files. Also, the .abs file corresponding
to a C source file will use the assembly file generated from the C source file
rather than the C source file itself.

For example, suppose the C source file hello.csr is compiled with debugging
set; this generates the assembly file hello.s. hello.csr also includes hello.hsr.
Assuming the executable file created is called hello.out, the following
command will generate the proper .abs file:

abs55 –ea s –ec csr –eh hsr hello.out

An .abs file will not be created for hello.hsr (the header file), and hello.abs will
include the assembly file hello.s, not the C source file hello.csr.

Absolute Lister Example

10-5Absolute Lister Description

10.3 Absolute Lister Example

This example uses three source files. module1.asm and module2.asm both
include the file globals.def.

module1.asm

 .bss array,100
 .bss dflag, 2
 .copy globals.def
 .text
 MOV #offset,AC0
 MOV dflag,AC0

module2.asm

 .bss offset, 2
 .copy globals.def
 .text
 MOV #offset,AC0
 MOV #array,AC0

globals.def

 .global dflag
 .global array
 .global offset

The following steps create absolute listings for the files module1.asm and
module2.asm:

Step 1: First, assemble module1.asm and module2.asm:

masm55 module1
masm55 module2

This creates two object files called module1.obj and module2.obj.

Absolute Lister Example

 10-6

Step 2: Next, link module1.obj and module2.obj. using the following linker
command file, called bttest.cmd:

/**/
/* File bttest.cmd –– COFF linker command file */
/* for linking TMS320C55x modules */
/*********************************** ************/
–o bttest.out /* Name the output file */
–m bttest.map /* Create an output map */

/**/
/* Specify the Input Files */
/**/
module1.obj
module2.obj

/**/
/* Specify the Memory Configurations */
/**/
MEMORY
{
 ROM: origin=2000h length=2000h
 RAM: origin=8000h length=8000h
}

/**/
/* Specify the Output Sections */
/**/
SECTIONS
{
 .data: >RAM
 .text: >ROM
 .bss: >RAM
}

Invoke the linker:

lnk55 bttest.cmd

This creates an executable object file called bttest.out; use this new
file as input for the absolute lister.

Absolute Lister Example

10-7Absolute Lister Description

Step 3: Now, invoke the absolute lister:

abs55 bttest.out

This creates two files called module1.abs and module2.abs:

module1.abs:

 .nolist
array .setsym 0004000h
dflag .setsym 0004064h
offset .setsym 0004066h
.data .setsym 0004000h
__data_ .setsym 0004000h
edata .setsym 0004000h
__edata_ .setsym 0004000h
.text .setsym 0002000h
__text_ .setsym 0002000h
etext .setsym 000200fh
__etext_ .setsym 000200fh
.bss .setsym 0004000h
__bss_ .setsym 0004000h
end .setsym 0004068h
__end_ .setsym 0004068h
 .setsect ”.text”,0002000h
 .setsect ”.data”,0004000h
 .setsect ”.bss”,0004000h
 .list
 .text
 .copy ”module1.asm”

module2.abs:

 .nolist
array .setsym 0004000h
dflag .setsym 0004064h
offset .setsym 0004066h
.data .setsym 0004000h
__data_ .setsym 0004000h
edata .setsym 0004000h
__edata_ .setsym 0004000h
.text .setsym 0002000h
__text_ .setsym 0002000h
etext .setsym 000200fh
__etext_ .setsym 000200fh
.bss .setsym 0004000h
__bss_ .setsym 0004000h
end .setsym 0004068h
__end_ .setsym 0004068h
 .setsect ”.text”,02006h
 .setsect ”.data”,04000h
 .setsect ”.bss”,04066h
 .list
 .text
 .copy ”module2.asm”

Absolute Lister Example

 10-8

These files contain the following information that the assembler
needs when you invoke it in step 4:

� They contain .setsym directives, which equate values to global
symbols. Both files contain global equates for the symbol dflag.
The symbol dflag was defined in the file globals.def, which was
included in module1.asm and module2.asm.

� They contain .setsect directives, which define the absolute
addresses for sections.

� They contain .copy directives, which tell the assembler which
assembly language source file to include.

The .setsym and .setsect directives are not useful in normal
assembly; they are useful only for creating absolute listings.

Step 4: Finally, assemble the .abs files created by the absolute lister
(remember that you must use the –a option when you invoke the
assembler):

masm55 –a module1.abs
masm55 –a module2.abs

This creates two listing files called module1.lst and module2.lst; no
object code is produced. These listing files are similar to normal
listing files; however, the addresses shown are absolute addresses.

The absolute listing files created are module1.lst (see Figure 10–2)
and module2.lst (see Figure 10–3).

Absolute Lister Example

10-9Absolute Lister Description

Figure 10–2. module1.lst

TMS320C55x COFF Assembler Version x.xx Wed Oct 16 12:00:05 2000
 Copyright (c) 2000 Texas Instruments Incorporated

module1.abs PAGE 1

 21 002000 .text
 22 .copy ”module1.asm”
 A 1 .copy globals.def
 B 1 .global dflag
 B 2 .global array
 B 3 .global offset
 A 2 002000 .text
 A 3 004000 .bss array, 100
 A 4 004064 .bss dflag, 2
 A 5 002000 6B40 MOV #offset,AC0
 002002 6680!
 A 6 002004 A000% MOV dflag,AC0

 No Errors, No Warnings

Figure 10–3. module2.lst

TMS320C55x COFF Assembler Version x.xx Wed Oct 16 12:00:17 2000
 Copyright (c) 2000 Texas Instruments Incorporated

module2.abs PAGE 1

 21 002006 .text
 22 .copy ”module2.asm”
 A 1 .copy globals.def
 B 1 .global dflag
 B 2 .global array
 B 3 .global offset
 A 2 004066 .bss offset, 2
 A 3 002006 6B40 MOV #offset,AC0
 002008 6680–
 A 4 00200a 6B40 MOV #array,AC0
 00200c 0080!

 No Errors, No Warnings

11-1Cross-Reference Lister Description

Cross-Reference Lister Description

The cross-reference lister is a debugging tool. This utility accepts linked object
files as input and produces a cross-reference listing as output. This listing
shows symbols, their definitions, and their references in the linked source files.

Topic Page

11.1 Producing a Cross-Reference Listing 11-2.

11.2 Invoking the Cross-Reference Lister 11-3.

11.3 Cross-Reference Listing Example 11-4.

Chapter 11

Producing a Cross-Reference Listing

 11-2

11.1 Producing a Cross-Reference Listing

Figure 11–1.Cross-Reference Lister Development Flow

ÍÍ
ÍÍ

ÍÍ
ÍÍ

ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ

Assembler

Cross-reference
lister

Object

Linked object
file

Cross-reference
listing

Linker

First, invoke the assembler with the –x option.
This option produces a cross-reference table
in the listing file and adds to the object file
cross-reference information. By default, the
assembler cross-references only global sym-
bols. If you use the –s option when invoking
the assembler, it will cross-reference local
variables as well.

Link the object file (.obj) to obtain an execut-
able object file (.out).

Invoke the cross-reference lister. The follow-
ing section provides the command syntax for
invoking the cross-reference lister utility.

Step 1:

Step 2:

Step 3:

file

Assembler
source file

Invoking the Cross-Reference Lister

11-3Cross-Reference Lister Description

11.2 Invoking the Cross-Reference Lister

To use the cross-reference utility, the file must be assembled with the correct
options and then linked into an executable file. Assemble the assembly lan-
guage files with the –x option. This option creates a cross-reference listing and
adds cross-reference information to the object file. By default, the assembler
cross-references only global symbols, but if assembler is invoked with the –s
option, local symbols are also added. Link the object files to obtain an execut-
able file.

To invoke the cross-reference lister, enter the following:

xref55 [–options] [input filename [output filename]]

xref55 is the command that invokes the cross-reference utility.

options identifies the cross-reference lister options you want to
use. Options are not case sensitive and can appear any-
where on the command line following the command. Pre-
cede each option with a hyphen (–). The cross-reference
lister options are as follows:

–l (lowercase L) specifies the number of lines per
page for the output file. The format of the –l option
is –lnum, where num is a decimal constant. For
example, –l30 sets the number of lines per page in
the output file to 30. The space between the option
and the decimal constant is optional. The default is
60 lines per page.

–q (quiet) suppresses the banner and all progress
information.

input filename is a linked object file. If you omit the input filename, the
utility prompts for a filename.

output filename is the name of the cross-reference listing file. If you omit
the output filename, the default filename will be the input
filename with an .xrf extension.

Cross-Reference Listing Example

 11-4

11.3 Cross-Reference Listing Example

==

Symbol: INIT

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
file1.asm EDEF ’000000 000080 3 1
file2.asm EREF 000000 000080 2 11
==

Symbol: X

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
file1.asm EREF 000000 000001 2 5
file2.asm EDEF 000001 000001 5 1
==

Symbol: Y

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
file2.asm EDEF –000000 000080 7 1

==

Symbol: Z

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
file2.asm EDEF 000003 000003 9 1

==

Cross-Reference Listing Example

11-5Cross-Reference Lister Description

The terms defined below appear in the preceding cross-reference listing:

Symbol Name Name of the symbol listed

Filename Name of the file where the symbol appears

RTYP The symbol’s reference type in this file. The possible refer-
ence types are:

STAT The symbol is defined in this file and is not
declared as global.

EDEF The symbol is defined in this file and is declared
as global.

EREF The symbol is not defined in this file but is refer-
enced as a global.

UNDF The symbol is not defined in this file and is not
declared as global.

AsmVal This hexadecimal number is the value assigned to the
symbol at assembly time. A value may also be preceded
by a character that describes the symbol’s attributes.
Table 11–1 lists these characters and names.

LnkVal This hexadecimal number is the value assigned to the
symbol after linking.

DefLn The statement number where the symbol is defined.

RefLn The line number where the symbol is referenced. If the line
number is followed by an asterisk(*), then that reference
may modify the contents of the object. If the line number
is followed by a letter (such as A, B, or C), the symbol is
referenced in a file specified by a .include directive in the
assembly source. “A” is assigned to the first file specified
by a .include directive; “B” is assigned to the second file,
etc. A blank in this column indicates that the symbol was
never used.

Cross-Reference Listing Example

 11-6

Table 11–1. Symbol Attributes

Character Meaning

’ Symbol defined in a .text section

” Symbol defined in a .data section

+ Symbol defined in a .sect section

– Symbol defined in a .bss or .usect section

= Symbol defined in a .reg section

12-1Hex Conversion Utility Description

Hex Conversion Utility Description

The TMS320C55x assembler and linker create object files that are in common
object file format (COFF). COFF is a binary object file format that encourages
modular programming and provides more powerful and flexible methods for
managing code segments and target system memory.

Most EPROM programmers do not accept COFF object files as input. The hex
conversion utility converts a COFF object file into one of several standard
ASCII hexadecimal formats, suitable for loading into an EPROM programmer.
The utility is also useful in other applications requiring hexadecimal conversion
of a COFF object file (for example, when using debuggers and loaders). This
utility also supports the on-chip boot loader built into the target device,
automating the code creation process for the ’C55x.

The hex conversion utility can produce these output file formats:

� ASCII-Hex, supporting 16-bit addresses
� Extended Tektronix (Tektronix)
� Intel MCS-86 (Intel)
� Motorola Exorciser (Motorola-S), supporting 16-bit, 24–bit, and 32–bit

addresses
� Texas Instruments SDSMAC (TI-Tagged), supporting 16-bit addresses

Topic Page

12.1 Hex Conversion Utility Development Flow 12-2.
12.2 Invoking the Hex Conversion Utility 12-3.
12.3 Command File 12-6.
12.4 Understanding Memory Widths 12-8.
12.5 The ROMS Directive 12-15.
12.6 The SECTIONS Directive 12-21.
12.7 Output Filenames 12-23.
12.8 Image Mode and the –fill Option 12-25.
12.9 Building a Table for an On-Chip Boot Loader 12-27.
12.10 Controlling the ROM Device Address 12-33.
12.11 Description of the Object Formats 12-37.
12.12 Hex Conversion Utility Error Messages 12-43.

Chapter 12

Hex Conversion Utility Development Flow

 12-2

12.1 Hex Conversion Utility Development Flow

Figure 12–1 highlights the role of the hex conversion utility in the assembly
language development process.

Figure 12–1. Hex Conversion Utility Development Flow

Assembler

Linker

Macro
library

Library of
object
files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C
source

files

’C5000

Executable
COFF

file

C compiler

Library-build
utility

Cross-reference
listerAbsolute lister

Debugging
tools

Runtime-
support
library

Invoking the Hex Conversion Utility

12-3Hex Conversion Utility Description

12.2 Invoking the Hex Conversion Utility

There are two basic methods for invoking the hex conversion utility:

� Specify the options and filenames on the command line. The following
example converts the file firmware.out into TI-Tagged format, producing
two output files, firm.lsb and firm.msb.

hex55 –t firmware –o firm.lsb –o firm.msb

� Specify the options and filenames in a command file. You can create
a batch file that stores command line options and filenames for invoking
the hex conversion utility. The following example invokes the utility using
a command file called hexutil.cmd:

hex55 hexutil.cmd

In addition to regular command line information, you can use the hex
conversion utility ROMS and SECTIONS directives in a command file.

To invoke the hex conversion utility, enter:

hex55 [–options] filename

hex55 is the command that invokes the hex conversion utility.

–options supplies additional information that controls the hex conversion
process. You can use options on the command line or in a com-
mand file.

� All options are preceded by a dash and are not case sensi-
tive.

� Several options have an additional parameter that must be
separated from the option by at least one space.

� Options with multicharacter names must be spelled exactly
as shown in this document; no abbreviations are allowed.

� Options are not affected by the order in which they are used.
The exception to this rule is the –q option, which must be
used before any other options.

filename names a COFF object file or a command file (for more informa-
tion on command files, see Section 12.3, Command Files, on
page 12-6).

Invoking the Hex Conversion Utility

 12-4

Table 12–1. Hex Conversion Utility Options

(a) General options

The general options control the overall operation of the hex conversion utility.

Option Description Page

–byte Number bytes sequentially 12-35

–map filename Generate a map file 12-20

–o filename Specify an output filename 12-23

–q Run quietly (when used, it must appear before
other options)

12-6

(b) Image options

The image options create a continuous image of a range of target memory.

Option Description Page

–fill value Fill holes with value 12-26

–image Specify image mode 12-25

–zero Reset the address origin to zero 12-34

(c) Memory options

The memory options configure the memory widths for your output files.

Option Description Page

–memwidth value Define the system memory word width (default 16
bits)

12-9

–order {LS | MS} Specify the memory word ordering 12-13

–romwidth value Specify the ROM device width (default depends on
format used)

12-10

Invoking the Hex Conversion Utility

12-5Hex Conversion Utility Description

Table 12–1. Hex Conversion Utility Options (Continued)

(d) Output formats

The output formats specify the format of the output file.

Option Description Page

–a Select ASCII-Hex 12-38

–i Select Intel 12-39

–m1 Select Motorola–S1 12-40

–m2 or –m Select Motorola–S2 (default) 12-40

–m3 Select Motorola–S3 12-40

–t Select TI-Tagged 12-41

–x Select Tektronix 12-42

(e) Boot-loader options for all ’C55x devices

The boot-loader options for all ’C55x devices control how the hex conversion
utility builds the boot table.

Option Description Page

–boot Convert all sections into bootable form (use instead
of a SECTIONS directive)

12-28

–bootorg PARALLEL Specify the source of the boot loader table as the
parallel port

12-28

–bootorg SERIAL Specify the source of the boot loader table as the
serial port

12-28

–bootorg value Specify the source address of the boot loader table 12-28

–bootpage value Specify the target page number of the boot loader
table

12-28

–e value Specify the entry point for the boot loader table 12-28

Command File

 12-6

12.3 Command File

A command file is useful if you plan to invoke the utility more than once with
the same input files and options. It is also useful if you want to use the ROMS
and SECTIONS hex conversion utility directives to customize the conversion
process.

Command files are ASCII files that contain one or more of the following:

� Options and filenames. These are specified in a command file in exactly
the same manner as on the command line.

� ROMS directive. The ROMS directive defines the physical memory con-
figuration of your system as a list of address-range parameters. (For more
information about the ROMS directive, see Section 12.5, The ROMS
Directive, on page 12-15.)

� SECTIONS directive. The SECTIONS directive specifies which sections
from the COFF object file should be selected. (For more information about
the SECTIONS directive, see Section 12.6, The SECTIONS Directive, on
page 12-21.)

You can also use this directive to identify specific sections that will be
initialized by an on-chip boot loader. (For more information on the on-chip
boot loader, see Section 12.9.3, Building a Table for an On-Chip Boot
Loader, on page 12-28.)

� Comments. You can add comments to your command file by using the /*
and */ delimiters. For example:

/* This is a comment */

To invoke the utility and use the options you defined in a command file, enter:

 hex55 command_filename

You can also specify other options and files on the command line. For exam-
ple, you could invoke the utility by using both a command file and command
line options:

 hex55 firmware.cmd –map firmware.mxp

The order in which these options and file names appear is not important. The
utility reads all input from the command line and all information from the
command file before starting the conversion process. However, if you are
using the –q option, it must appear as the first option on the command line or
in a command file.

The –q option suppresses the utility’s normal banner and progress informa-
tion.

Command File

12-7Hex Conversion Utility Description

12.3.1 Examples of Command Files

� Assume that a command file named firmware.cmd contains these lines:

firmware.out /* input file */
–t /* TI–Tagged */
–o firm.lsb /* output file */
–o firm.msb /* output file */

You can invoke the hex conversion utility by entering:

 hex55 firmware.cmd

� This example converts a file called appl.out into four hex files in Intel
format. Each output file is one byte wide and 16K bytes long. The .text
section is converted to boot loader format.

appl.out /* input file */
–i /* Intel format */
–map appl.mxp /* map file */

ROMS
{
 ROW1: origin=01000h len=04000h romwidth=8
 files={ appl.u0 appl.u1 }
 ROW2: origin 05000h len=04000h romwidth=8
 files={ app1.u2 appl.u3 }
}

SECTIONS
{ .text: BOOT
 .data, .cinit, .sect1, .vectors, .const:
}

Understanding Memory Widths

 12-8

12.4 Understanding Memory Widths

The hex conversion utility makes your memory architecture more flexible by
allowing you to specify memory and ROM widths. In order to use the hex
conversion utility, you must understand how the utility treats word widths. Four
widths are important in the conversion process: target width, data width,
memory width, and ROM width. The terms target word, data word, memory
word, and ROM word refer to a word of such a width.

Figure 12–2 illustrates the three separate and distinct phases of the hex
conversion utility’s process flow.

Figure 12–2. Hex Conversion Utility Process Flow

Raw data in COFF files is repre-
sented in target-width-sized
words. For ’C55x, this is 16 bits.
The target width is fixed and
cannot be changed.

Phase III

Phase II

Phase I

Output file(s)

(i.e. Intel, Tektronix, etc..).
according to the specified format

and are written to a file(s)
specified by the –romwidth option
broken up according to the size
The memwidth-sized words are

–memwidth option.
according to size specified by the

representation is divided into words
The data-width-sized internal

by the default data width (16 bits).
truncated to the size specified

The raw data in the COFF file is

COFF input file

Understanding Memory Widths

12-9Hex Conversion Utility Description

12.4.1 Target Width

Target width is the unit size (in bits) of raw data fields in the COFF file. This
corresponds to the size of an opcode on the target processor. The width is fixed
for each target and cannot be changed. The TMS320C55x targets have a
width of 16 bits.

12.4.2 Data Width

Data width is the logical width (in bits) of the data words stored in a particular
section of a COFF file. Usually, the logical data width is the same as the target
width. The data width is fixed at 16 bits for the TMS320C55x and cannot be
changed.

12.4.3 Memory Width

Memory width is the physical width (in bits) of the memory system. Usually, the
memory system is physically the same width as the target processor width: a
16-bit processor has a 16-bit memory architecture. However, some applica-
tions require target words to be broken up into multiple, consecutive, narrower
memory words. Moreover, with certain processors like the ’C55x, the memory
width can be narrower than the target width.

The hex conversion utility defaults memory width to the target width (in this
case, 16 bits).

You can change the memory width by:

� Using the –memwidth option. This changes the memory width value for
the entire file.

� Setting the memwidth parameter of the ROMS directive. This changes
the memory width value for the address range specified in the ROMS
directive and overrides the –memwidth option for that range. See Section
12.5, The ROMS Directive, on page 12-15.

For both methods, use a value that is a power of 2 greater than or equal to 8.

You should change the memory width default value of 16 only in exceptional
situations: for example, when you need to break single target words into
consecutive, narrower memory words. Situations in which memory words are
narrower than target words are most common when you use on-chip boot
loaders—several of which support booting from narrower memory. For exam-
ple, a 16-bit TMS320C55x can be booted from 8-bit memory or an 8-bit serial
port, with each 16-bit value occupying two memory locations (this would be
specified as –memwidth 8).

Understanding Memory Widths

 12-10

Figure 12–3 demonstrates how the memory width is related to the data width.

Figure 12–3. Data and Memory Widths

–memwidth 16 (default) –memwidth 8

AABB

AA

BB

1122

Data width = 16 (fixed)

Memory widths (variable)
data width = 16

Source file
.word 0AABBh
.word 01122h

11

22
. . .

. . .

0AABBh
01122h
. . .

Data after
phase I

of hex utility

Data after
phase II

of hex utility

. . .

12.4.4 ROM Width

ROM width specifies the physical width (in bits) of each ROM device and corre-
sponding output file (usually one byte or eight bits). The ROM width deter-
mines how the hex conversion utility partitions the data into output files. After
the target words are mapped to the memory words, the memory words are bro-
ken into one or more output files. The number of output files is determined by
the following formula, where memory width � ROM width:

number of files = memory width � ROM width

For example, for a memory width of 16, you could specify a ROM width of 16
and get a single output file containing 16-bit words. Or you can use a ROM
width value of 8 to get two files, each containing 8 bits of each word.

Understanding Memory Widths

12-11Hex Conversion Utility Description

The default ROM width that the hex conversion utility uses depends on the out-
put format:

� All hex formats except TI-Tagged are configured as lists of 8-bit bytes; the
default ROM width for these formats is 8 bits.

� TI-Tagged is a 16-bit format; the default ROM width for TI-Tagged is 16
bits.

Note: The TI-Tagged Format Is 16 Bits Wide

You cannot change the ROM width of the TI-Tagged format. The TI-Tagged
format supports a 16-bit ROM width only.

You can change ROM width (except for TI-Tagged) by:

� Using the –romwidth option. This changes the ROM width value for the
entire COFF file.

� Setting the romwidth parameter of the ROMS directive. This changes the
ROM width value for a specific ROM address range and overrides the
–romwidth option for that range. See Section 12.5, The ROMS Directive,
on page 12-15.

For both methods, use a value that is a power of 2 greater than or equal to 8.

If you select a ROM width that is wider than the natural size of the output format
(16 bits for TI-Tagged or 8 bits for all others), the utility simply writes multibyte
fields into the file.

Figure 12–4 illustrates how the target, memory, and ROM widths are related
to one another.

Understanding Memory Widths

 12-12

Figure 12–4. Data, Memory, and ROM Widths

0AABBh

Data width = 16 (fixed)

Source file
.word 0AABBCDDh
.word 01122344h

. . .

01122h
. . .

Data after
phase I

of hex utility

Data after
phase II

of hex utility

Data after
phase III

of hex utility

–memwidth 16 –memwidth 8

AABB

11

22

AA

BB

1122

Memory widths (variable)

Output files

–romwidth 16

–romwidth 8

–romwidth 8

–o file.wrd AABB1122

–o file.b0

–o file.b1 AA 11

BB 22

–o file.byt BBAA2211

. . .

. . .

. . .

. . .

. . .

. . .

Understanding Memory Widths

12-13Hex Conversion Utility Description

12.4.5 A Memory Configuration Example

Figure 12–5 shows a typical memory configuration example. This memory
system consists of two 128K � 8-bit ROM devices.

Figure 12–5. ’C55x Memory Configuration Example

Upper 8 bits (data)

Lower 8 bits (data)

System memory width 16 bits

ROM width
8 bits8 bits

ROM width

ROM1
128K x 8

ROM0
128K x 8

CPU

Source file
word AABBh

AABBh

AAh BBh

Data width = 16 bits

12.4.6 Specifying Word Order for Output Words

When memory words are narrower than target words (memory width < 16), tar-
get words are split into multiple consecutive memory words. There are two
ways to split a wide word into consecutive memory locations in the same hex
conversion utility output file:

� –order MS specifies big-endian ordering, in which the most significant
part of the wide word occupies the first of the consecutive locations

� –order LS specifies little-endian ordering, in which the the least signifi-
cant part of the wide word occupies the first of the consecutive locations

By default, the utility uses little-endian format because the ’C55x boot loaders
expect the data in this order. Unless you are using your own boot loader pro-
gram, avoid using –order MS.

Understanding Memory Widths

 12-14

Note: When the –order Option Applies

� This option applies only when you use a memory width with a value less
than 16. Otherwise, –order is ignored.

� This option does not affect the way memory words are split into output
files. Think of the files as a set: the set contains a least significant file and
a most significant file, but there is no ordering over the set. When you list
filenames for a set of files, you always list the least significant first, regard-
less of the –order option.

Figure 12–6 demonstrates how –order affects the conversion process. This
figure, and the previous figure, Figure 12–4, explain the condition of the data
in the hex conversion utility output files.

Figure 12–6. Varying the Word Order

Target width = 16 (fixed)

Memory widths (variable)

Source file
.word 0AABBh
.word 01122h

. . .

. . .

.

–memwidth 8
–order LS (default)

AA
BB

11
22

–memwidth 8
–order MS

BB
AA

22
11

0AABBh
01122h

The ROMS Directive

12-15Hex Conversion Utility Description

12.5 The ROMS Directive

The ROMS directive specifies the physical memory configuration of your
system as a list of address-range parameters.

Each address range produces one set of files containing the hex conversion
utility output data that corresponds to that address range. Each file can be
used to program one single ROM device.

The ROMS directive is similar to the MEMORY directive of the TMS320C55x
linker: both define the memory map of the target address space. Each line
entry in the ROMS directive defines a specific address range. The general
syntax is:

ROMS
{

[PAGE n:]
romname: [origin =value,] [length =value,] [romwidth =value,]

[memwidth =value,] [fill =value,]
[files ={filename1, filename2, ...}]

romname: [origin =value,] [length =value,] [romwidth =value,]
[memwidth =value,] [fill =value,]
[files ={filename1, filename2, ...}]

...
}

ROMS begins the directive definition.

PAGE identifies a memory space for targets that use program- and
data-address spaces. If your program has been linked nor-
mally, PAGE 0 specifies program memory and PAGE 1 speci-
fies data memory. Each memory range after the PAGE com-
mand belongs to that page until you specify another PAGE. If
you don’t include PAGE, all ranges belong to page 0.

romname identifies a memory range. The name of the memory range
may be one to eight characters in length. The name has no sig-
nificance to the program; it simply identifies the range. (Dupli-
cate memory range names are allowed.)

The ROMS Directive

 12-16

origin specifies the starting address of a memory range. It can be
entered as origin, org, or o. The associated value must be a
decimal, octal, or hexadecimal constant. If you omit the origin
value, the origin defaults to 0.

The following table summarizes the notation you can use to
specify a decimal, octal, or hexadecimal constant:

Constant Notation Example

Hexadecimal 0x prefix or h suffix 0x77 or 077h

Octal 0 prefix 077

Decimal No prefix or suffix 77

length specifies the length of a memory range as the physical length
of the ROM device. It can be entered as length, len, or l. The
value must be a decimal, octal, or hexadecimal constant. If you
omit the length value, it defaults to the length of the entire
address space.

romwidth specifies the physical ROM width of the range in bits (see
subsection 12.4.4, ROM Width, on page 12-10). Any value you
specify here overrides the –romwidth option. The value must
be a decimal, octal, or hexadecimal constant that is a power of
2 greater than or equal to 8.

memwidth specifies the memory width of the range in bits (see subsection
12.4.3, Memory Width, on page 12-9). Any value you specify
here overrides the –memwidth option. The value must be a
decimal, octal, or hexadecimal constant that is a power of 2
greater than or equal to 8. When using the memwidth
parameter, you must also specify the paddr parameter for each
section in the SECTIONS directive.

fill specifies a fill value to use for the range. In image mode, the hex
conversion utility uses this value to fill any holes between
sections in a range. The value must be a decimal, octal, or
hexadecimal constant with a width equal to the target width.
Any value you specify here overrides the –fill option. When
using fill, you must also use the –image command line option.
See subsection 12.8.2, Specifying a Fill Value, on page 12-26.

The ROMS Directive

12-17Hex Conversion Utility Description

files identifies the names of the output files that correspond to this
range. Enclose the list of names in curly braces and order them
from least significant to most significant output file.

The number of file names should equal the number of output
files that the range will generate. To calculate the number of
output files, refer to Section 12.4.4, ROM Width, on page
12-10. The utility warns you if you list too many or too few file-
names.

Unless you are using the –image option, all of the parameters defining a range
are optional; the commas and equals signs are also optional. A range with no
origin or length defines the entire address space. In image mode, an origin and
length are required for all ranges.

Ranges on the same page must not overlap and must be listed in order of
ascending address.

12.5.1 When to Use the ROMS Directive

If you don’t use a ROMS directive, the utility defines a single default range that
includes the entire program address space (PAGE 0). This is equivalent to a
ROMS directive with a single range without origin or length.

Use the ROMS directive when you want to:

� Program large amounts of data into fixed-size ROMs . When you spe-
cify memory ranges corresponding to the length of your ROMs, the utility
automatically breaks the output into blocks that fit into the ROMs.

� Restrict output to certain segments . You can also use the ROMS direc-
tive to restrict the conversion to a certain segment or segments of the tar-
get address space. The utility does not convert the data that falls outside
of the ranges defined by the ROMS directive. Sections can span range
boundaries; the utility splits them at the boundary into multiple ranges. If
a section falls completely outside any of the ranges you define, the utility
does not convert that section and issues no messages or warnings. In this
way, you can exclude sections without listing them by name with the
SECTIONS directive. However, if a section falls partially in a range and
partially in unconfigured memory, the utility issues a warning and converts
only the part within the range.

� Use image mode. When you use the –image option, you must use a
ROMS directive. Each range is filled completely so that each output file in
a range contains data for the whole range. Gaps before, between, or after
sections are filled with the fill value from the ROMS directive, with the value
specified with the –fill option, or with the default value of 0.

The ROMS Directive

 12-18

12.5.2 An Example of the ROMS Directive

The ROMS directive in Example 12–1 shows how 16K words of 16-bit memory
could be partitioned for four 8K � 8-bit EPROMs.

Example 12–1. A ROMS Directive Example

infile.out
–image
–memwidth 16

ROMS
{
 EPROM1: org = 04000h, len = 02000h, romwidth = 8
 files = { rom4000.b0, rom4000.b1 }

 EPROM2: org = 06000h, len = 02000h, romwidth = 8,
 fill = 0FFh,
 files = { rom6000.b0, rom6000.b1 }
}

In this example, EPROM1 defines the address range from 4000h through
5FFFh. The range contains the following sections:

This section Has this range

.text 4000h through 487Fh

.data 5B80H through 5FFFh

The rest of the range is filled with 0h (the default fill value). The data from this
range is converted into two output files:

� rom4000.b0 contains bits 0 through 7
� rom4000.b1 contains bits 8 through 15

EPROM2 defines the address range from 6000h through 7FFFh. The range
contains the following sections:

This section Has this range

.data 6000h through 633Fh

.table 6700h through 7C7Fh

The rest of the range is filled with 0FFh (from the specified fill value). The data
from this range is converted into two output files:

� rom6000.b0 contains bits 0 through 7
� rom6000.b1 contains bits 8 through 15

The ROMS Directive

12-19Hex Conversion Utility Description

Figure 12–7 shows how the ROMS directive partitions the infile.out file into
four output files.

Figure 12–7. The infile.out File From Example 12–1 Partitioned Into Four Output Files

ÉÉÉÉ
ÉÉÉÉ

rom4000.b0

rom6000.b0

rom4000.b1

rom6000.b1

04000h
(org)

06000h

.text

.data

.table

.text .text

.data .data

.table

.data

0FFh

infile.out

 memwidth = 16 bits

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

0h
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

0h

04000h

0487Fh

05B80h

0633Fh

06700h

07C7Fh

04880h

05B80h

06340h
06700h

07C80h
07FFFh

EPROM1

05FFFh

ÉÉÉÉ
ÉÉÉÉ

0FFh

Output Files:COFF File:

 width = 8 bits len =
2000h (8K)

ÉÉÉÉ
ÉÉÉÉ

.table

.data

0FFh

ÉÉÉÉ
ÉÉÉÉ

0FFh

EPROM2

The ROMS Directive

 12-20

12.5.3 Creating a Map File of the ROMS Directive

The map file (specified with the –map option) is advantageous when you use
the ROMS directive with multiple ranges. The map file shows each range, its
parameters, names of associated output files, and a list of contents (section
names and fill values) broken down by address. Following is a segment of the
map file resulting from the example in Example 12–1.

Example 12–2. Map File Output From Example 12–1 Showing Memory Ranges

–––
00004000..00005fff Page=0 Width=8 ”EPROM1”
–––

OUTPUT FILES: rom4000.b0 [b0..b7]
rom4000.b1 [b8..b15]

CONTENTS: 00004000..0000487f .text
00004880..00005b7f FILL = 00000000
00005b80..00005fff .data

–––
00006000..00007fff Page=0 Width=8 ”EPROM2”
–––

OUTPUT FILES: rom6000.b0 [b0..b7]
rom6000.b1 [b8..b15]

CONTENTS: 00006000..0000633f .data
00006340..000066ff FILL = 000000ff
00006700..00007c7f .table
00007c80..00007fff FILL = 000000ff

The SECTIONS Directive

12-21Hex Conversion Utility Description

12.6 The SECTIONS Directive

You can convert specific sections of the COFF file by name with the
SECTIONS directive. You can also specify those sections you want the utility
to configure for loading from an on-chip boot loader, and those sections that
you want to locate in ROM at a different address than the load address speci-
fied in the linker command file:

� If you use a SECTIONS directive, the utility converts only the sections that
you list in the directive and ignores all other sections in the COFF file.

� If you don’t use a SECTIONS directive, the utility converts all initialized
sections that fall within the configured memory. The TMS320C55x
compiler-generated initialized sections include: .text, .const, .cinit, and
.switch.

Uninitialized sections are never converted, whether or not you specify them
in a SECTIONS directive.

Note: Sections Generated by the C Compiler

The TMS320C55x C compiler automatically generates these sections:

� Initialized sections: .text, .const, .cinit, and .switch.

� Uninitialized sections: .bss, .stack, and .sysmem.

Use the SECTIONS directive in a command file. (For more information about
using a command file, see Section 12.3, Command Files, on page 12-6.) The
general syntax for the SECTIONS directive is:

SECTIONS
{

sname: [paddr =value]
sname: [paddr=boot]
sname: [= boot],
...

}

The SECTIONS Directive

 12-22

SECTIONS begins the directive definition.

sname identifies a section in the COFF input file. If you specify a sec-
tion that doesn’t exist, the utility issues a warning and ignores
the name.

paddr specifies the physical ROM address at which this section
should be located. This value overrides the section load
address given by the linker. (See Section 12.10, Controlling the
ROM Device Address, on page 12-33).This value must be a
decimal, octal, or hexadecimal constant. It can also be the word
boot (to indicate a boot table section for use with the on-chip
boot loader). If your file contains multiple sections, and if one
section uses a paddr parameter, then all sections must use a
paddr parameter.

= boot configures a section for loading by the on-chip boot loader. This
is equivalent to using paddr =boot . Boot sections have a physi-
cal address determined both by the target processor type and
by the various boot-loader-specific command line options.

The commas separating section names are optional. For more similarity with
the linker’s SECTIONS directive, you can use colons after the section names
(in place of the equal sign on the boot keyboard). For example, the following
statements are equivalent:

SECTIONS { .text: .data: boot }

SECTIONS { .text, .data = boot }

In the example below, the COFF file contains six initialized sections: .text,
.data, .const, .vectors, .coeff, and .tables. Suppose you want only .text and
.data to be converted. Use a SECTIONS directive to specify this:

SECTIONS { .text, .data }

To configure both of these sections for boot loading, add the boot keyword:

SECTIONS { .text = boot, .data = boot }

Note: Using the –boot Option and the SECTIONS Directive

When you use the SECTIONS directive with the on-chip boot loader, the
–boot option is ignored. You must explicitly specify any boot sections in the
SECTIONS directive. For more information about –boot and other command
line options associated with the on-chip boot loader, see Table 12–2, page
12-28.

Output Filenames

12-23Hex Conversion Utility Description

12.7 Output Filenames

When the hex conversion utility translates your COFF object file into a data
format, it partitions the data into one or more output files. When multiple files
are formed by splitting data into byte-wide or word-wide files, filenames are
always assigned in order from least to most significant. This is true, regardless
of target or COFF endian ordering, or of any –order option.

12.7.1 Assigning Output Filenames

The hex conversion utility follows this sequence when assigning output file-
names:

1) It looks for the ROMS directive. If a file is associated with a range in the
ROMS directive and you have included a list of files (files = {. . .}) on that
range, the utility takes the filename from the list.

For example, assume that the target data is 16-bit words being converted
to two files, each eight bits wide. To name the output files using the ROMS
directive, you could specify:

ROMS
{
 RANGE1: romwidth=8, files={ xyz.b0 xyz.b1 }
}

The utility creates the output files by writing the least significant bits (LSBs)
to xyz.b0 and the most significant bits (MSBs) to xyz.b1.

2) It looks for the –o options. You can specify names for the output files by
using the –o option. If no filenames are listed in the ROMS directive and
you use –o options, the utility takes the filename from the list of –o options.
The following line has the same effect as the example above using the
ROMS directive:

–o xyz.b0 –o xyz.b1

Note that if both the ROMS directive and –o options are used together, the
ROMS directive overrides the –o options.

Output Filenames

 12-24

3) It assigns a default filename. If you specify no filenames or fewer names
than output files, the utility assigns a default filename. A default filename
consists of the base name from the COFF input file plus a 2- to 3-character
extension. The extension has three parts:

a) A format character, based on the output format:

a for ASCII-Hex
i for Intel
t for TI-Tagged
m for Motorola-S
x for Tektronix

b) The range number in the ROMS directive. Ranges are numbered
starting with 0. If there is no ROMS directive, or only one range, the
utility omits this character.

c) The file number in the set of files for the range, starting with 0 for the
least significant file.

For example, assume coff.out is for a 16-bit target processor and you are
creating Intel format output. With no output filenames specified, the utility
produces two output files named coff.i0 and coff.i1.

If you include the following ROMS directive when you invoke the hex
conversion utility, you would have two output files:

ROMS
{

range1: o = 1000h l = 1000h
range2: o = 2000h l = 1000h

}

These Output Files Contain This Data

coff.i01 1000h through 1FFFh

coff.i11 2000h through 2FFFh

Image Mode and the –fill Option

12-25Hex Conversion Utility Description

12.8 Image Mode and the –fill Option

This section points out the advantages of operating in image mode and
describes how to produce output files with a precise, continuous image of a
target memory range.

12.8.1 The –image Option

With the –image option, the utility generates a memory image by completely
filling all of the mapped ranges specified in the ROMS directive.

A COFF file consists of blocks of memory (sections) with assigned memory
locations. Typically, all sections are not adjacent: there are gaps between sec-
tions in the address space for which there is no data. When such a file is con-
verted without the use of image mode, the hex conversion utility bridges these
gaps by using the address records in the output file to skip ahead to the start
of the next section. In other words, there may be discontinuities in the output
file addresses. Some EPROM programmers do not support address disconti-
nuities.

In image mode, there are no discontinuities. Each output file contains a contin-
uous stream of data that corresponds exactly to an address range in target
memory. Any gaps before, between, or after sections are filled with a fill value
that you supply.

An output file converted by using image mode still has address records
because many of the hexadecimal formats require an address on each line.
However, in image mode, these addresses will always be contiguous.

Note: Defining the Ranges of Target Memory

If you use image mode, you must also use a ROMS directive. In image mode,
each output file corresponds directly to a range of target memory. You must
define the ranges. If you don’t supply the ranges of target memory, the utility
tries to build a memory image of the entire target processor address space—
potentially a huge amount of output data. To prevent this situation, the utility
requires you to explicitly restrict the address space with the ROMS directive.

Image Mode and the –fill Option

 12-26

12.8.2 Specifying a Fill Value

The –fill option specifies a value for filling the holes between sections. The fill
value must be specified as an integer constant following the –fill option. The
width of the constant is assumed to be that of a word on the target processor.
For example, for the ’C55x, specifying –fill 0FFh results in a fill pattern of
00FFh. The constant value is not sign extended.

The hex conversion utility uses a default fill value of zero if you don’t specify
a value with the fill option. The –fill option is valid only when you use –image;
otherwise, it is ignored.

12.8.3 Steps to Follow in Image Mode

Step 1: Define the ranges of target memory with a ROMS directive. See
Section 12.5, The ROMS Directive, on page 12-15 for details.

Step 2: Invoke the hex conversion utility with the –image option. To number
the bytes sequentially, use the –byte option; to reset the address
origin to zero for each output file, use the –zero option. See
subsection 12.10.3, The –byte Option, on page 12-35 for details on
the –byte option, and page 12-34 for details on the –zero option. If
you don’t specify a fill value with the ROMS directive and you want
a value other than the default of zero, use the –fill option.

Building a Table for an On-Chip Boot Loader

12-27Hex Conversion Utility Description

12.9 Building a Table for an On-Chip Boot Loader

Some DSP devices, such as the ’C55x, have a built-in boot loader that initial-
izes memory with one or more blocks of code or data. The boot loader uses
a special table (a boot table) stored in memory (such as EPROM) or loaded
from a device peripheral (such as a serial or communications port) to initialize
the code or data. The hex conversion utility supports the boot loader by auto-
matically building the boot table.

12.9.1 Description of the Boot Table

The input for a boot loader is the boot table. The boot table contains records
that instruct the on-chip loader to copy blocks of data contained in the table to
specified destination addresses. Some boot tables also contain values for ini-
tializing various processor control registers. The boot table can be stored in
memory or read in through a device peripheral.

The hex conversion utility automatically builds the boot table for the boot
loader. Using the utility, you specify the COFF sections you want the boot
loader to initialize, the table location, and the values for any control registers.
The hex conversion utility identifies the target device type from the COFF file,
builds a complete image of the table according to the format required by that
device, and converts it into hexadecimal in the output files. Then, you can burn
the table into ROM or load it by other means.

The boot loader supports loading from memory that is narrower than the nor-
mal width of memory. For example, you can boot a 16-bit TMS320C55x from
a single 8-bit EPROM by using the –memwidth option to configure the width
of the boot table. The hex conversion utility automatically adjusts the table’s
format and length. See the boot loader example in the TMS320C55x DSP
CPU Reference Guide for an illustration of a boot table.

12.9.2 The Boot Table Format

The boot table format is simple. Typically, there is a header record containing
the width of the table and possibly some values for various control registers.
Each subsequent block has a header containing the size and destination
address of the block followed by data for the block. Multiple blocks can be
entered; a termination block follows the last block. Finally, the table can have
a footer containing more control register values. See the boot loader section
in the TMS320C55x DSP CPU Reference Guide for more information.

Building a Table for an On-Chip Boot Loader

 12-28

12.9.3 How to Build the Boot Table

Table 12–2 summarizes the hex conversion utility options available for the
boot loader.

Table 12–2. Boot-Loader Options

Option Description

–boot Convert all sections into bootable form (use instead of a
SECTIONS directive)

–bootorg PARALLEL Specify the source of the boot loader table as the parallel
port

–bootorg SERIAL Specify the source of the boot loader table as the serial port

–bootorg value Specify the source address of the boot loader table

–bootpage value Specify the target page number of the boot loader table

–e value Specify the entry point for the boot loader table

Building a Table for an On-Chip Boot Loader

12-29Hex Conversion Utility Description

12.9.3.1 Building the Boot Table

To build the boot table, follow these steps:

Step 1: Link the file . Each block of the boot table data corresponds to an
initialized section in the COFF file. Uninitialized sections are not con-
verted by the hex conversion utility (see Section 12.6, The
SECTIONS Directive, on page 12-21).

When you select a section for placement in a boot-loader table, the
hex conversion utility places the section’s load address in the des-
tination address field for the block in the boot table. The section
content is then treated as raw data for that block.

The hex conversion utility does not use the section run address.
When linking, you need not worry about the ROM address or the
construction of the boot table—the hex conversion utility handles
this.

Step 2: Identify the bootable sections . You can use the –boot option to tell
the hex conversion utility to configure all sections for boot loading.
Or, you can use a SECTIONS directive to select specific sections to
be configured (see Section 12.6, The SECTIONS Directive, on page
12-21). Note that if you use a SECTIONS directive, the –boot option
is ignored.

Step 3: Set the ROM address of the boot table . Use the –bootorg option
to set the source address of the complete table. For example, if you
are using the ’C55x and booting from memory location 8000h,
specify –bootorg 8000h. The address field in the the hex conversion
utility output file will then start at 8000h.

If you use –bootorg SERIAL or –bootorg PARALLEL, or if you do not
use the –bootorg option at all, the utility places the table at the origin
of the first memory range in a ROMS directive. If you do not use a
ROMS directive, the table will start at the first section load address.
There is also a –bootpage option for starting the table somewhere
other than page 0.

Step 4: Set boot-loader-specific options. Set such options as entry point
and memory control registers as needed.

Step 5: Describe your system memory configuration . See Section 12.4,
Understanding Memory Widths, on page 12-8 and Section 12.5,
The ROMS Directive, on page 12-15 for details.

Building a Table for an On-Chip Boot Loader

 12-30

12.9.3.2 Leaving Room for the Boot Table

The complete boot table is similar to a single section containing all of the
header records and data for the boot loader. The address of this “section” is
the boot table origin. As part of the normal conversion process, the hex
conversion utility converts the boot table to hexadecimal format and maps it
into the output files like any other section.

Be sure to leave room in your system memory for the boot table, especially
when you are using the ROMS directive. The boot table cannot overlap other
nonboot sections or unconfigured memory. Usually, this is not a problem; typi-
cally, a portion of memory in your system is reserved for the boot table. Simply
configure this memory as one or more ranges in the ROMS directive, and use
the –bootorg option to specify the starting address.

12.9.4 Booting From a Device Peripheral

You can choose to boot from a serial or parallel port by using the SERIAL or
PARALLEL keyword with the –bootorg option. Your selection of a keyword
depends on the target device and the channel you want to use. For example,
to boot a ’C55x from its serial port, specify –bootorg SERIAL on the command
line or in a command file. To boot a ’C55x from one of its parallel ports, specify
–bootorg PARALLEL.

Note: On-Chip Boot Loader Concerns

� Possible memory conflicts. When you boot from a device peripheral,
the boot table is not actually in memory; it is being received through the
device peripheral. However, as explained in Step 3 on page 12-29, a
memory address is assigned.

If the table conflicts with a nonboot section, put the boot table on a
different page. Use the ROMS directive to define a range on an unused
page and the –bootpage option to place the boot table on that page. The
boot table will then appear to be at location 0 on the dummy page.

� Why the System Might Require an EPROM Format for a Peripheral
Boot Loader Address. In a typical system, a parent processor boots a
child processor through that child’s peripheral. The boot loader table
itself may occupy space in the memory map of the parent processor. The
EPROM format and ROMS directive address correspond to those used
by the parent processor, not those that are used by the child.

Building a Table for an On-Chip Boot Loader

12-31Hex Conversion Utility Description

12.9.5 Setting the Entry Point for the Boot Table

After completing the boot load process, program execution starts at the ad-
dress of the first block loaded (the default entry point). By using the –e option
with the hex conversion utility, you can set the entry point to a different address.

For example, if you want your program to start running at address 0123h after
loading, specify –e 0123h on the command line or in a command file. You can
determine the –e address by looking at the map file that the linker generates.

Note: Valid Entry Points

The value must be a constant; the hex conversion utility cannot evaluate
symbolic expressions like c_int00 (default entry point assigned by the
TMS320C55x C compiler).

When you use the –e option, the utility builds a dummy block of length 1 and
data value 0 that loads at the specified address. Your blocks follow this dummy
block. Since the dummy block is loaded first, the dummy value of 0 is over-
written by the subsequent blocks. Then, the boot loader jumps to the –e option
address after the boot load is completed.

12.9.6 Using the ’C55x Boot Loader

This subsection explains and gives an example on using the hex conversion
utility with the boot loader for ’C55x devices. The ’C55x boot loader has several
different modes. You can select these modes by using the –bootorg and
–memwidth options:

Mode –bootorg Setting –memwidth Setting

8-bit parallel I/O –bootorg PARALLEL –memwidth 8

16-bit parallel I/O –bootorg PARALLEL –memwidth 16

8-bit serial RS232 –bootorg SERIAL –memwidth 8

16-bit serial RS232 –bootorg SERIAL –memwidth 16

8-bit parallel EPROM –bootorg 0x8000 –memwidth 8

16-bit parallel EPROM –bootorg 0x8000 –memwidth 16

You should set the –romwidth equal to the –memwidth unless you want to have
multiple output files.

The ’C55x can boot through either the serial or parallel interface with either 8-
or 16-bit data. The format is the same for any combination: the boot table
consists of a field containing the destination address, a field containing the
length, and a block containing the data.

Building a Table for an On-Chip Boot Loader

 12-32

You can boot only one section. If you are booting from an 8-bit channel, 16-bit
words are stored in the table with the MSBs first; the hex conversion utility
automatically builds the table in the correct format.

� To boot from a serial port, specify –bootorg SERIAL when invoking the
utility. Use either –memwidth 8 or –memwidth 16.

� To load from a parallel I/O port, invoke the utility by specifying –bootorg
PARALLEL. Use either –memwidth 8 or –memwidth 16.

� To boot from external memory (EPROM), specify the source address of
the boot memory by using the –bootorg option. Use either –memwidth 8
or –memwidth 16.

For example, the command file in Figure 12–8 allows you to boot the .text
section of abc.out from a byte-wide EPROM at location 0x8000.

Figure 12–8. Sample Command File for Booting From a ’C55x EPROM

abc.out /* input file */
–o abc.i /* output file */
–i /* Intel format */
–memwidth 8 /* 8-bit memory */
–romwidth 8 /* outfile is bytes, not words */
–bootorg 0x8000 /* external memory boot */

SECTIONS { .text: BOOT }

Controlling the ROM Device Address

12-33Hex Conversion Utility Description

12.10 Controlling the ROM Device Address

The hex conversion utility output address field corresponds to the ROM device
address. The EPROM programmer burns the data into the location specified
by the hex conversion utility output file address field. The hex conversion utility
offers some mechanisms to control the starting address in ROM of each sec-
tion and/or to control the address index used to increment the address field.
However, many EPROM programmers offer direct control of the location in
ROM in which the data is burned.

12.10.1 Controlling the Starting Address

Depending on whether or not you are using the boot loader, the hex conversion
utility output file controlling mechanisms are different.

Non-boot loader mode. The address field of the hex conversion utility output
file is controlled by the following mechanisms listed from low to high priority:

1) The linker command file . By default, the address field of the hex conver-
sion utility output file is a function of the load address (as given in the linker
command file) and the hex conversion utility parameter values. The rela-
tionship is summarized as follows:

out_file_addr† = load_addr � (data_width � mem_width)

out_file_addr is the address of the output file.

load_addr is the linker-assigned load address.

data_width is specified as 16 bits for the TMS320C55x devices.
See subsection 12.4.2, Data Width, on page 12-9.

mem_width is the memory width of the memory system. You can
specify the memory width by the –memwidth option
or by the memwidth parameter inside the ROMS
directive. See subsection 12.4.3, Memory Width, on
page 12-9.

† If paddr is not specified

The value of data width divided by memory width is a correction factor for
address generation. When data width is larger than memory width, the
correction factor expands the address space. For example, if the load
address is 0�1 and data width divided by memory width is 2, the output file
address field would be 0�2. The data is split into two consecutive loca-
tions the size of the memory width.

2) The paddr parameter of the SECTIONS directive. When the paddr
parameter is specified for a section, the hex conversion utility bypasses

Controlling the ROM Device Address

 12-34

the section load address and places the section in the address specified
by paddr. The relationship between the hex conversion utility output file
address field and the paddr parameter can be summarized as follows:

out_file_addr† = paddr_val + (load_addr – sect_beg_load_addr) � (data_width � mem_width)

out_file_addr is the address of the output file.

paddr_val is the value supplied with the paddr parameter
inside the SECTIONS directive.

sec_beg_load_addr is the section load address assigned by the
linker.

† If paddr is not specified

The value of data width divided by memory width is a correction factor for
address generation. The section beginning load address factor subtracted
from the load address is an offset from the beginning of the section.

3) The –zero option. When you use the –zero option, the utility resets the
address origin to 0 for each output file. Since each file starts at 0 and
counts upward, any address records represent offsets from the beginning
of the file (the address within the ROM) rather than actual target addresses
of the data.

You must use the –zero option in conjunction with the –image option to
force the starting address in each output file to be zero. If you specify the
–zero option without the –image option, the utility issues a warning and
ignores the –zero option.

Boot-Loader Mode. When the boot loader is used, the hex conversion utility
places the different COFF sections that are in the boot table into consecutive
memory locations. Each COFF section becomes a boot table block whose
destination address is equal to the linker-assigned section load address.

The address field of the the hex conversion utility output file is not related to
the section load addresses assigned by the linker. The address fields are sim-
ply offsets to the beginning of the table, multiplied by the correction factor (data
width divided by memory width).

The beginning of the boot table defaults to the linked load address of the first
bootable section in the COFF input file, unless you use one of the following
mechanisms, listed here from low to high priority. Higher priority mechanisms
override the values set by low priority options in an overlapping range.

1) The ROM origin specified in the ROMS directive. The hex conversion
utility places the boot table at the origin of the first memory range in a
ROMS directive.

Controlling the ROM Device Address

12-35Hex Conversion Utility Description

2) The –bootorg option. The hex conversion utility places the boot table at
the address specified by the –bootorg option if you select boot loading
from memory. Neither –bootorg PARALLEL nor –bootorg SERIAL affect
the address field.

12.10.2 Controlling the Address Increment Index

By default, the hex conversion utility increments the output file address field
according to the memory width value. If memory width equals 16, the address
increments on the basis of how many 16-bit words are present in each line of
the output file.

12.10.3 The –byte Option

Some EPROM programmers may require the output file address field to
contain a byte count rather than a word count. If you use the –byte option, the
output file address increments once for each byte. For example, if the starting
address is 0h, the first line contains eight words, and you use no –byte option,
the second line would start at address 8 (8h). If the starting address is 0h, the
first line contains eight words, and you use the –byte option, the second line
would start at address 16 (010h). The data in both examples are the same;
–byte affects only the calculation of the output file address field, not the actual
target processor address of the converted data.

The –byte option causes the address records in an output file to refer to byte
locations within the file, whether the target processor is byte-addressable or
not.

Controlling the ROM Device Address

 12-36

12.10.4 Dealing With Address Holes

When memory width is different from data width, the automatic multiplication
of the load address by the correction factor might create holes at the beginning
of a section or between sections.

For example, assume you want to load a COFF section (.sec1) at address
0x0100 of an 8-bit EPROM. If you specify the load address in the linker com-
mand file at location 0x0100, the hex conversion utility will multiply the address
by 2 (data width divided by memory width = 16/8 = 2), giving the output file a
starting address of 0x0200. Unless you control the starting address of the
EPROM with your EPROM programmer, you could create holes within the
EPROM. The programmer will burn the data starting at location 0x0200
instead of 0x0100. To solve this, you can:

� Use the paddr parameter of the SECTIONS directive. This forces a sec-
tion to start at the specified value. Figure 12–9 shows a command file that
can be used to avoid the hole at the beginning of .sec1.

Figure 12–9. Hex Command File for Avoiding a Hole at the Beginning of a Section

–i
a.out
–map a.map

ROMS
{
 ROM : org = 0x0100, length = 0x200, romwidth = 8,
 memwidth = 8
}

SECTIONS
 {

sec1: paddr = 0x100
}

Note: If your file contains multiple sections, and, if one section uses a paddr parameter,
then all sections must use the paddr parameter.

� Use the –bootorg option or use the ROMS origin parameter (for boot
loading only). As described on page 12-34, when you are boot loading,
the EPROM address of the entire boot-loader table can be controlled by
the –bootorg option or by the ROMS directive origin.

Description of the Object Formats

12-37Hex Conversion Utility Description

12.11 Description of the Object Formats

The hex conversion utility converts a COFF object file into one of five object
formats that most EPROM programmers accept as input: ASCII-Hex, Intel
MCS-86, Motorola-S, Extended Tektronix, or TI-Tagged.

Table 12–3 specifies the format options.

� If you use more than one of these options, the last one you list overrides
the others.

� The default format is Tektronix (–x option).

Table 12–3. Options for Specifying Hex Conversion Formats

Option Format
Address

Bits
Default
Width

–a ASCII-Hex 16 8

–i Intel 32 8

–m1 Motorola-S1 16 8

–m2 or –m Motorola-S2 24 8

–m3 Motorola-S3 32 8

–t TI-Tagged 16 16

–x Tektronix 32 8

Address bits determine how many bits of the address information the format
supports. Formats with 16-bit addresses support addresses up to 64K only.
The utility truncates target addresses to fit in the number of available bits.

The default width determines the default output width. You can change the
default width by using the –romwidth option or by using the romwidth param-
eter in the ROMS directive. You cannot change the default width of the TI-
Tagged format, which supports a 16-bit width only.

Description of the Object Formats

 12-38

12.11.1 ASCII-Hex Object Format (–a Option)

The ASCII-Hex object format supports 16-bit addresses. The format consists
of a byte stream with bytes separated by spaces. Figure 12–10 illustrates the
ASCII-Hex format.

Figure 12–10. ASCII-Hex Object Format

^B $AXXXX,
 XX XX XX XX XX XX XX XX XX XX. . .^C

Nonprintable
start code

Nonprintable
end codeAddress

Data byte

The file begins with an ASCII STX character (ctrl-B, 02h) and ends with an
ASCII ETX character (ctrl-C, 03h). Address records are indicated with
$AXXXX, in which XXXX is a 4-digit (16-bit) hexadecimal address. The
address records are present only in the following situations:

� When discontinuities occur
� When the byte stream does not begin at address 0

You can avoid all discontinuities and any address records by using the –image
and –zero options. The output created is a list of byte values.

Description of the Object Formats

12-39Hex Conversion Utility Description

12.11.2 Intel MCS-86 Object Format (–i Option)

The Intel object format supports 16-bit addresses and 32-bit extended
addresses. Intel format consists of a 9-character (4-field) prefix—which
defines the start of record, byte count, load address, and record type—the
data, and a 2-character checksum suffix.

The 9-character prefix represents three record types:

Record Type Description

00 Data record

01 End-of-file record

04 Extended linear address record

Record type 00, the data record, begins with a colon (:) and is followed by the
byte count, the address of the first data byte, the record type (00), and the
checksum. Note that the address is the least significant 16 bits of a 32-bit
address; this value is concatenated with the value from the most recent 04
(extended linear address) record to create a full 32-bit address. The checksum
is the 2s complement (in binary form) of the preceding bytes in the record,
including byte count, address, and data bytes.

Record type 01, the end-of-file record, also begins with a colon (:), followed
by the byte count, the address, the record type (01), and the checksum.

Record type 04, the extended linear address record, specifies the upper 16
address bits. It begins with a colon (:), followed by the byte count, a dummy
address of 0h, the record type (04), the most significant 16 bits of the address,
and the checksum. The subsequent address fields in the data records contain
the least significant bits of the address.

Figure 12–11 illustrates the Intel hexadecimal object format.

Figure 12–11. Intel Hex Object Format

:2000000000000100020003000400050006000700080009000A000B000C000D000E000F0068
:2000200010001100120013001400150016001700180019001A001B001C001D001E001F0048
:2000400000000100020003000400050006000700080009000A000B000C000D000E000F0028
:2000600010001100120013001400150016001700180019001A001B001C001D001E001F0008
:00000001FF

Start
character

Byte
count

Checksum

Data
records

Record
type

Address
Most significant 16 bits

Extended linear
address record

End-of-file
record

Description of the Object Formats

 12-40

12.11.3 Motorola Exorciser Object Format (–m1, –m2, –m3 Options)

The Motorola S1, S2, and S3 formats support 16-bit, 24–bit, and 32–bit
addresses, respectively. The formats consist of a start-of-file (header) record,
data records, and an end-of-file (termination) record. Each record is made up
of five fields: record type, byte count, address, data, and checksum. The
record types are:

Record Type Description

S0 Header record

S1 Code/data record for 16–bit addresses (S1 format)

S2 Code/data record for 24–bit addresses (S2 format)

S3 Code/data record for 32–bit addresses (S3 format)

S7 Termination record for 32–bit addresses (S3 format)

S8 Termination record for 24–bit addresses (S2 format)

S9 Termination record for 16–bit addresses (S1 format)

The byte count is the character pair count in the record, excluding the type and
byte count itself.

The checksum is the least significant byte of the 1s complement of the sum
of the values represented by the pairs of characters making up the byte count,
address, and the code/data fields.

Figure 12–12 illustrates the Motorola-S object format.

Figure 12–12. Motorola-S Format

S1130000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC
S1130010FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED
S1130020FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDC
S1130030FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCC
S1130040FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBC
S9030000FC

Byte
Count

Checksum

Data
Records

Address

Header
Record

Termination
Record

S00B00004441544120492F4FF3

Type

Description of the Object Formats

12-41Hex Conversion Utility Description

12.11.4 Texas Instruments SDSMAC Object Format (–t Option)

The TI-Tagged object format supports 16-bit addresses. It consists of a start-
of-file record, data records, and end-of-file record. Each of the data records is
made up of a series of small fields and is signified by a tag character. The sig-
nificant tag characters are:

Tag Character Description

K followed by the program identifier

7 followed by a checksum

8 followed by a dummy checksum (ignored)

9 followed by a 16-bit load address

B followed by a data word (four characters)

F identifies the end of a data record

* followed by a data byte (two characters)

Figure 12–13 illustrates the tag characters and fields in TI-Tagged object
format.

Figure 12–13. TI-Tagged Object Format

K000COFFTOTI90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EF3DF
BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EE37F
BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F245F
:

Tag charactersProgram
identifier

Load
address

Data
words Checksum

Data
records

End-of-file
record

Start-of-file
record

If any data fields appear before the first address, the first field is assigned
address 0000h. Address fields may be expressed for any data byte, but none
is required. The checksum field, which is preceded by the tag character 7, is
a 2s complement of the sum of the 8-bit ASCII values of characters, beginning
with the first tag character and ending with the checksum tag character (7 or
8). The end-of-file record is a colon (:).

Description of the Object Formats

 12-42

12.11.5 Extended Tektronix Object Format (–x Option)

The Tektronix object format supports 32-bit addresses and has two types of
records:

data record contains the header field, the load address, and the
object code.

termination record signifies the end of a module.

The header field in the data record contains the following information:

Item

Number of
ASCII

Characters Description

% 1 Data type is Tektronix format

Block length 2 Number of characters in the record, minus the %

Block type 1 6 = data record
8 = termination record

Checksum 2 A 2-digit hex sum modulo 256 of all values in the
record except the % and the checksum itself.

The load address in the data record specifies where the object code will be
located. The first digit specifies the address length; this is always 8. The
remaining characters of the data record contain the object code, two charac-
ters per byte.

Figure 12–14 illustrates the Tektronix object format.

Figure 12–14. Extended Tektronix Object Format

%15621810000000202020202020

Block length
15h = 21

Checksum: 21h = 1+5+6+8+1+0+0+0+0+0+0+0+
2+0+2+0+2+0+2+0+2+0+2+0

Load address: 10000000h

Header
character

Block type: 6
(data)

Object code: 6 bytes

Length of
load address

Hex Conversion Utility Error Messages

12-43Hex Conversion Utility Description

12.12 Hex Conversion Utility Error Messages

section mapped to reserved memory message

Description A section or a boot-loader table is mapped into a reserved
memory area listed in the processor memory map.

Action Correct the section or boot-loader address. Refer to the
TMS320C55x DSP CPU Reference Guide for valid memory
locations.

sections overlapping

Description Two or more COFF section load addresses overlap or a boot
table address overlaps another section.

Action This problem may be caused by an incorrect translation from
load address to hex output file address that is performed by the
hex conversion utility when memory width is less than data
width. See Section 12.4, Understanding Memory Widths, on
page 12-8 and Section 12.10, Controlling the ROM Device
Address, on page 12-33.

unconfigured memory error

Description This error could have one of two causes:

� The COFF file contains a section whose load address falls
outside the memory range defined in the ROMS directive.

� The boot-loader table address is not within the memory
range defined by the ROMS directive.

Action Correct the ROM range as defined by the ROMS directive to
cover the memory range as needed, or modify the section load
address or boot-loader table address. Remember that if the
ROMS directive is not used, the memory range defaults to the
entire processor address space. For this reason, removing the
ROMS directive could also be a workaround.

 Running Title—Attribute Reference

A-1 Chapter Title—Attribute Reference

Appendix A

Common Object File Format

The compiler, assembler, and linker create object files in common object file
format (COFF). COFF is an implementation of an object file format of the same
name that was developed by AT&T for use on UNIX-based systems. This for-
mat is used because it encourages modular programming and provides more
powerful and flexible methods for managing code segments and target system
memory.

Sections are a basic COFF concept. Chapter 2,
Introduction to Common Object File Format, discusses COFF sections in de-
tail. If you understand section operation, you will be able to use the assembly
language tools more efficiently.

This appendix contains technical details about COFF object file structure.
Much of this information pertains to the symbolic debugging information that
is produced by the C compiler. The purpose of this appendix is to provide sup-
plementary information about the internal format of COFF object files.

Topic Page

A.1 COFF File Structure A-2.

A.2 File Header Structure A-4.

A.3 Optional File Header Format A-5.

A.4 Section Header Structure A-6.

A.5 Structuring Relocation Information A-9.

A.6 Line-Number Table Structure A-11.

A.7 Symbol Table Structure and Content A-13.

Appendix A

COFF File Structure

A-2

A.1 COFF File Structure

The elements of a COFF object file describe the file’s sections and symbolic
debugging information. These elements are:

� A file header
� Optional header information
� A table of section headers
� Raw data for each initialized section
� Relocation information for each initialized section
� Line-number entries for each initialized section
� A symbol table
� A string table

The assembler and linker produce object files with the same COFF structure;
however, a program that is linked for the final time does not usually contain
relocation entries. Figure A–1 illustrates the overall object file structure.

Figure A–1. COFF File Structure

file header

optional file header

section 1 header

section n header

section 1
raw data

section n
raw data

section 1
relocation information

section n
relocation information

section 1
line numbers

section n
line numbers

symbol table

string table

section headers

raw data
(executable code
and initialized data)

relocation
information

line-number
entries

 COFF File Structure

A-3 Common Object File Format

Figure A–2 shows a typical example of a COFF object file that contains the
three default sections, .text, .data, and .bss, and a named section (referred to
as <named>). By default, the tools place sections into the object file in the
following order: .text, .data, initialized named sections, .bss, and uninitialized
named sections. Although uninitialized sections have section headers, notice
that they have no raw data, relocation information, or line-number entries. This
is because the .bss and .usect directives simply reserve space for uninitialized
data; uninitialized sections contain no actual code.

Figure A–2. COFF Object File

file header

.text
section header

.data
section header

.bss
section header

<named> section
section header

.text
raw data

.data
raw data

<named> section
raw data

.text
relocation information

.data
relocation information

<named> section
relocation information

.text
line numbers

.data
line numbers

<named> section
line numbers

symbol table

string table

section headers

raw data

relocation
information

line-number
entries

File Header Structure

A-4

A.2 File Header Structure

The file header contains 22 bytes of information that describe the general
format of an object file. Table A–1 shows the structure of the COFF file header.

Table A–1. File Header Contents

Byte
Number Type Description

0–1 Unsigned short integer Version ID; indicates version of COFF file
structure

2–3 Unsigned short integer Number of section headers

4–7 Long integer Time and date stamp; indicates when the file
was created

8–11 Long integer File pointer; contains the symbol table’s
starting address

12–15 Long integer Number of entries in the symbol table

16–17 Unsigned short integer Number of bytes in the optional header. This
field is either 0 or 28; if it is 0, then there is no
optional file header

18–19 Unsigned short integer Flags (see Table A–2)

20–21 Unsigned short integer Target ID; magic number indicates the file
can be executed in a TMS320C55x system

Table A–2 lists the flags that can appear in bytes 18 and 19 of the file header.
Any number and combination of these flags can be set at the same time (for
example, if bytes 18 and 19 are set to 0003h, F_RELFLG and F_EXEC are
both set.)

Table A–2. File Header Flags (Bytes 18 and 19)

Mnemonic Flag Description

F_RELFLG 0001h Relocation information was stripped from the file.

F_EXEC 0002h The file is relocatable (it contains no unresolved
external references).

F_LNNO 0004h Line numbers were stripped from the file.

F_LSYMS 0008h Local symbols were stripped from the file.

F_LITTLE 0100h The file has the byte ordering used by ’C55x
devices (16 bits per word, least significant byte
first)

F_SYMMERGE 1000h Duplicate symbols were removed.

 Optional File Header Format

A-5 Common Object File Format

A.3 Optional File Header Format

The linker creates the optional file header and uses it to perform relocation at
download time. Partially linked files do not contain optional file headers.
Table A–3 illustrates the optional file header format.

Table A–3. Optional File Header Contents

Byte
Number Type Description

0–1 Short integer Magic number (for SunOS or HP-UX it is
108h; for DOS it is 801h)

2–3 Short integer Version stamp

4–7 Long integer Size (in bytes) of executable code

8–11 Long integer Size (in bytes) of initialized .data sections

12–15 Long integer Size (in bytes) of uninitialized .bss sec-
tions

16–19 Long integer Entry point

20–23 Long integer Beginning address of executable code

24–27 Long integer Beginning address of initialized data

Section Header Structure

A-6

A.4 Section Header Structure

COFF object files contain a table of section headers that define where each
section begins in the object file. Each section has its own section header.
Table A–4 shows the section header contents for COFF files.

Table A–4. Section Header Contents

Byte Type Description

0–7 Character 8-character section name, padded with nulls

8–11 Long integer Section’s physical address

12–15 Long integer Section’s virtual address

16–19 Long integer Section size in bytes

20–23 Long integer File pointer to raw data

24–27 Long integer File pointer to relocation entries

28–31 Long integer File pointer to line-number entries

32–35 Unsigned long Number of relocation entries

36–39 Unsigned long Number of line-number entries

40–43 Unsigned long Flags (see Table A–5)

44–45 Short Reserved

46–47 Unsigned short Memory page number

Table A–5 lists the flags that can appear in the section header. The flags can
be combined. For example, if the flag’s byte is set to 024h, both
STYP_GROUP and STYP_TEXT are set.

 Section Header Structure

A-7 Common Object File Format

Table A–5. Section Header Flags

Mnemonic Flag Description

STYP_REG 0000h Regular section (allocated, relocated, loaded)

STYP_DSECT 0001h Dummy section (relocated, not allocated, not loaded)

STYP_NOLOAD 0002h Noload section (allocated, relocated, not loaded)

STYP_GROUP 0004h Grouped section (formed from several input sections)

STYP_PAD 0008h Padding section (loaded, not allocated, not relocated)

STYP_COPY 0010h Copy section (relocated, loaded, but not allocated; relo-
cation and line-number entries are processed normally)

STYP_TEXT 0020h Section that contains executable code

STYP_DATA 0040h Section that contains initialized data

STYP_BSS 0080h Section that contains uninitialized data

STYP_CLINK 4000h Section that is conditionally linked

Note: The term loaded means that the raw data for this section appears in the object file.

Section Header Structure

A-8

Figure A–3 illustrates how the pointers in a section header would point to the
elements in an object file that are associated with the .text section.

Figure A–3. Section Header Pointers for the .text Section

.text

.text
Section
Header

.text
raw data

.text
relocation information

.text
line-number entries

• • •
0–7 8–11 12–15 16–19 20–23 24–27 28–31 32–33 34–35 36–37 38 39

As Figure A–2 on page A-3 shows, uninitialized sections (created with the
.bss and .usect directives) vary from this format. Although uninitialized
sections have section headers, they have no raw data, relocation information,
or line-number information. They occupy no actual space in the object file.
Therefore, the number of relocation entries, the number of line-number en-
tries, and the file pointers are 0 for an uninitialized section. The header of an
uninitialized section simply tells the linker how much space for variables it
should reserve in the memory map.

 Structuring Relocation Information

A-9 Common Object File Format

A.5 Structuring Relocation Information

A COFF object file has one relocation entry for each relocatable reference.
The assembler automatically generates relocation entries. The linker reads
the relocation entries as it reads each input section and performs relocation.
The relocation entries determine how references within each input section are
treated.

COFF file relocation information entries use the 12-byte format shown in
Table A–6.

Table A–6. Relocation Entry Contents

Byte
Number Type Description

0–3 Long integer Virtual address of the reference

4–7 Unsigned long integer Symbol table index

8–9 Unsigned short integer Additional byte used for extended ad-
dress calculations

10–11 Unsigned short integer Relocation type (see Table A–7)

The virtual address is the symbol’s address in the current section before relo-
cation; it specifies where a relocation must occur. (This is the address of the
field in the object code that must be patched.)

Following is an example of code that generates a relocation entry:

2 .global X
3 000000 6A00 B X

000001 0000!

In this example, the virtual address of the relocatable field is 0001.

The symbol table index is the index of the referenced symbol. In the
preceding example, this field would contain the index of X in the symbol table.
The amount of the relocation is the difference between the symbol’s current
address in the section and its assembly-time address. The relocatable field
must be relocated by the same amount as the referenced symbol. In the
example, X has a value of 0 before relocation. Suppose X is relocated to
address 2000h. This is the relocation amount (2000h – 0 = 2000h), so the
relocation field at address 1 is patched by adding 2000h to it.

You can determine a symbol’s relocated address if you know which section it
is defined in. For example, if X is defined in .data and .data is relocated by
2000h, X is relocated by 2000h.

Structuring Relocation Information

A-10

If the symbol table index in a relocation entry is –1 (0FFFFh), this is called an
internal relocation. In this case, the relocation amount is simply the amount by
which the current section is being relocated.

The relocation type specifies the size of the field to be patched and describes
how to calculate the patched value. The type field depends on the addressing
mode that was used to generate the relocatable reference. In the preceding
example, the actual address of the referenced symbol (X) will be placed in a
16-bit field in the object code. This is a 16-bit direct relocation, so the relocation
type is R_RELWORD. Table A–7 lists the relocation types.

Table A–7. Relocation Types (Bytes 8 and 9)

Mnemonic Flag Relocation Type

R_ABS 0000h No relocation

R_RELBYTE 000Fh 8-bit direct reference to symbol’s address

R_REL13 002Ah 13-bit direct reference

R_RELWORD 0010h 16-bit direct reference to symbol’s address

R_PARTLS7 0028h 7 LSBs of an address

R_PARTMS9 0029h 9 MSBs of an address

 Line-Number Table Structure

A-11 Common Object File Format

A.6 Line-Number Table Structure

The object file contains a table of line-number entries that are useful for
symbolic debugging. When the C compiler produces several lines of assembly
language code, it creates a line-number entry that maps these lines back to
the original line of C source code that generated them. Each single line-
number entry contains 6 bytes of information. Table A–8 shows the format of
a line-number entry.

Table A–8. Line-Number Entry Format

Byte
Number Type Description

0–3 Long integer This entry may have one of two values:

1) If it is the first entry in a block of line-number entries,
it points to a symbol entry in the symbol table.

2) If it is not the first entry in a block, it is the physical ad-
dress of the line indicated by bytes 4–5.

4–5 Unsigned
short integer

This entry may have one of two values:

1) If this field is 0, this is the first line of a function entry.

2) If this field is not 0, this is the line number of a line in
C source code.

Figure A–4 shows how line-number entries are grouped into blocks.

Figure A–4. Line-Number Blocks

Symbol Index 1

physical address

physical address

Symbol Index n

physical address

physical address

0

line number

line number

0

line number

line number

As Figure A–4 shows, each entry is divided as follows:

� For the first line of a function, bytes 0–3 point to the name of a symbol or
a function in the symbol table, and bytes 4–5 contain a 0, which indicates
the beginning of a block.

Line-Number Table Structure

A-12

� For the remaining lines in a function, bytes 0–3 show the physical address
(the number of bytes created by a line of C source) and bytes 4–5 show
the address of the original C source, relative to its appearance in the C
source program.

The line-number entry table can contain many of these blocks.

Figure A–5 illustrates line-number entries for a function named XYZ. As
shown, the function name is entered as a symbol in the symbol table. The first
portion on XYZ’s block of line-number entries points to the function name in
the symbol table. Assume that the original function in the C source contained
three lines of code. The first line of code produces 4 words of assembly lan-
guage code, the second line produces 3 words, and the third line produces 10
words.

Figure A–5. Line-Number Entries

0

1

2

3

0

4

7

XYZ

•

•

line-number
entries

symbol table

(Note that the symbol table entry for XYZ has a field that points back to the
beginning of the line-number block.)

Because line numbers are not often needed, the linker provides an option (–s)
that strips line-number information from the object file; this provides a more
compact object module.

 Symbol Table Structure and Content

A-13 Common Object File Format

A.7 Symbol Table Structure and Content

The order of symbols in the symbol table is very important; they appear in the
sequence shown in Figure A–6.

Figure A–6. Symbol Table Contents

filename 1

function 1

local symbols
for function 1

function 2

local symbols for
function 2

filename 2

function 1

local symbols
for function 1

static variables

defined global symbols

undefined global symbols

Static variables refer to symbols defined in C that have storage class static out-
side any function. If you have several modules that use symbols with the same
name, making them static confines the scope of each symbol to the module
that defines it (this eliminates multiple-definition conflicts).

Symbol Table Structure and Content

A-14

The entry for each symbol in the symbol table contains the symbol’s:

� Name (or a pointer into the string table)
� Type
� Value
� Section it was defined in
� Storage class
� Basic type (integer, character, etc.)
� Derived type (array, structure, etc.)
� Dimensions
� Line number of the source code that defined the symbol

Section names are also defined in the symbol table.

All symbol entries, regardless of class and type, have the same format in the
symbol table. Each symbol table entry contains the 18 bytes of information
listed in Table A–9. Each symbol may also have an 18-byte auxiliary entry; the
special symbols listed in Table A–10 on page A-15 always have an auxiliary
entry. Some symbols may not have all the characteristics listed above; if a par-
ticular field is not set, it is set to null.

Table A–9. Symbol Table Entry Contents

Byte
Number Type Description

0–7 Character This field contains one of the following:

1) An 8-character symbol name, padded with nulls

2) A pointer into the string table if the symbol name
is longer than 8 characters

8–11 Long integer Symbol value; storage class dependent

12–13 Short integer Section number of the symbol

14–15 Unsigned short
integer

Basic and derived type specification

16 Character Storage class of the symbol

17 Character Number of auxiliary entries (always 0 or 1)

 Symbol Table Structure and Content

A-15 Common Object File Format

A.7.1 Special Symbols

The symbol table contains some special symbols that are generated by the
compiler, assembler, and linker. Each special symbol contains ordinary
symbol table information as well as an auxiliary entry. Table A–10 lists these
symbols.

Table A–10. Special Symbols in the Symbol Table

Symbol Description

.file File name

.text Address of the .text section

.data Address of the .data section

.bss Address of the .bss section

.bb Address of the beginning of a block

.eb Address of the end of a block

.bf Address of the beginning of a function

.ef Address of the end of a function

.target Pointer to a structure or union that is returned by a function

.nfake Dummy tag name for a structure, union, or enumeration

.eos End of a structure, union, or enumeration

etext Next available address after the end of the .text output section

edata Next available address after the end of the .data output section

end Next available address after the end of the .bss output section

Several of these symbols appear in pairs:

� .bb/.eb indicate the beginning and end of a block.

� .bf/.ef indicate the beginning and end of a function.

� nfake/.eos name and define the limits of structures, unions, and enumera-
tions that were not named. The .eos symbol is also paired with named
structures, unions, and enumerations.

When a structure, union, or enumeration has no tag name, the compiler
assigns it a name so that it can be entered into the symbol table. These names
are of the form nfake, where n is an integer. The compiler begins numbering
these symbol names at 0.

Symbol Table Structure and Content

A-16

A.7.1.1 Symbols and Blocks

In C, a block is a compound statement that begins and ends with braces. A
block always contains symbols. The symbol definitions for any particular block
are grouped together in the symbol table and are delineated by the .bb/.eb
special symbols. Blocks can be nested in C, and their symbol table entries can
be nested correspondingly. Figure A–7 shows how block symbols are grouped
in the symbol table.

Figure A–7. Symbols for Blocks

.bb

symbols for
block 1

.eb

.bb

symbols for
block 2

.eb

Symbol Table

Block 1:

Block 2:

A.7.1.2 Symbols and Functions

The symbol definitions for a function appear in the symbol table as a group,
delineated by .bf/.ef special symbols. The symbol table entry for the function
name precedes the .bf special symbol. Figure A–8 shows the format of symbol
table entries for a function.

Figure A–8. Symbols for Functions

function name

.bf

symbols for
the function

.ef

If a function returns a structure or union, a symbol table entry for the special
symbol .target will appear between the entries for the function name and the
.bf special symbol.

 Symbol Table Structure and Content

A-17 Common Object File Format

A.7.2 Symbol Name Format

The first eight bytes of a symbol table entry (bytes 0–7) indicate a symbol’s
name:

� If the symbol name is eight characters or less, this field has type character.
The name is padded with nulls (if necessary) and stored in bytes 0–7.

� If the symbol name is greater than 8 characters, this field is treated as two
long integers. The entire symbol name is stored in the string table. Bytes
0–3 contain 0, and bytes 4–7 are an offset into the string table.

A.7.3 String Table Structure

Symbol names that are longer than eight characters are stored in the string
table. The field in the symbol table entry that would normally contain the sym-
bol’s name contains, instead, a pointer to the symbol’s name in the string table.
Names are stored contiguously in the string table, delimited by a null byte. The
first four bytes of the string table contain the size of the string table in bytes;
thus, offsets into the string table are greater than or equal to four.

Figure A–9 is a string table that contains two symbol names, Adaptive-Filter
and Fourier-Transform. The index in the string table is 4 for Adaptive-Filter and
20 for Fourier-Transform.

Figure A–9. String Table

‘A’ ‘d’ ‘a’ ‘p’

‘t’ ‘i’ ‘v’ ‘e’

‘-’ ‘F’ ‘i’ ‘l’

‘t’ ‘e’ ‘r’ ‘\0’

‘F’ ‘o’ ‘u’ ‘r’

‘i’ ‘e’ ‘r’ ‘-’

‘T’ ‘r’ ‘a’ ‘n’

‘s’ ‘f’ ‘o’ ‘r’

‘m’ ‘\0’

38

Symbol Table Structure and Content

A-18

A.7.4 Storage Classes

Byte 16 of the symbol table entry indicates the storage class of the symbol.
Storage classes refer to the method in which the C compiler accesses a
symbol. Table A–11 lists valid storage classes.

Table A–11. Symbol Storage Classes

Mnemonic Value Storage Class Mnemonic Value Storage Class

C_NULL 0 No storage class C_UNTAG 12 Union tag

C_AUTO 1 Automatic variable C_TPDEF 13 Type definition

C_EXT 2 External symbol C_USTATIC 14 Uninitialized static

C_STAT 3 Static C_ENTAG 15 Enumeration tag

C_REG 4 Register variable C_MOE 16 Member of an enumeration

C_EXTREF 5 External definition C_REGPARM 17 Register parameter

C_LABEL 6 Label C_FIELD 18 Bit field

C_ULABEL 7 Undefined label C_BLOCK 100 Beginning or end of a block;
used only for the .bb and .eb
special symbols

C_MOS 8 Member of a structure C_FCN 101 Beginning or end of a func-
tion; used only for the .bf and
.ef special symbols

C_ARG 9 Function argument C_EOS 102 End of structure; used only
for the .eos special symbol

C_STRTAG 10 Structure tag C_FILE 103 Filename; used only for the
.file special symbol

C_MOU 11 Member of a union C_LINE 104 Used only by utility programs

Some special symbols are restricted to certain storage classes. Table A–12
lists these symbols and their storage classes.

 Symbol Table Structure and Content

A-19 Common Object File Format

Table A–12. Special Symbols and Their Storage Classes

Special
Symbol

Restricted to This
Storage Class

Special
Symbol

Restricted to This
Storage Class

.file C_FILE .eos C_EOS

.bb C_BLOCK .text C_STAT

.eb C_BLOCK .data C_STAT

.bf C_FCN .bss C_STAT

.ef C_FCN

A.7.5 Symbol Values

Bytes 8–11 of a symbol table entry indicate a symbol’s value. A symbol’s value
depends on the symbol’s storage class; Table A–13 summarizes the storage
classes and related values.

Table A–13. Symbol Values and Storage Classes

Storage Class Value Description Storage Class Value Description

C_AUTO Stack offset in bits C_UNTAG 0

C_EXT Relocatable address C_TPDEF 0

C_STAT Relocatable address C_ENTAG 0

C_REG Register number C_MOE Enumeration value

C_LABEL Relocatable address C_REGPARM Register number

C_MOS Offset in bits C_FIELD Bit displacement

C_ARG Stack offset in bits C_BLOCK Relocatable address

C_STRTAG 0 C_FCN Relocatable address

C_MOU Offset in bits C_FILE 0

If a symbol’s storage class is C_FILE, the symbol’s value is a pointer to the next
.file symbol. Thus, the .file symbols form a one-way linked list in the symbol
table. When there are no more .file symbols, the final .file symbol points back
to the first .file symbol in the symbol table.

The value of a relocatable symbol is its virtual address. When the linker
relocates a section, the value of a relocatable symbol changes accordingly.

Symbol Table Structure and Content

A-20

A.7.6 Section Number

Bytes 12–13 of a symbol table entry contain a number that indicates which
section the symbol was defined in. Table A–14 lists these numbers and the
sections they indicate.

Table A–14. Section Numbers

Mnemonic
Section
Number Description

N_DEBUG –2 Special symbolic debugging symbol

N_ABS –1 Absolute symbol

N_UNDEF 0 Undefined external symbol

N_SCNUM 1 .text section (typical)

N_SCNUM 2 .data section (typical)

N_SCNUM 3 .bss section (typical)

N_SCNUM 4–32,767 Section number of a named section, in the order in
which the named sections are encountered

If there were no .text, .data, or .bss sections, the numbering of named sections
would begin with 1.

If a symbol has a section number of 0, –1, or –2, it is not defined in a section.
A section number of –2 indicates a symbolic debugging symbol, which
includes structure, union, and enumeration tag names; type definitions; and
the filename. A section number of –1 indicates that the symbol has a value but
is not relocatable. A section number of 0 indicates a relocatable external
symbol that is not defined in the current file.

A.7.7 Type Entry

Bytes 14–15 of the symbol table entry define the symbol’s type. Each symbol
has one basic type and one to six derived types.

Following is the format for this 16-bit type entry:

Derived
Type

6

Derived
Type

5

Derived
Type

4

Derived
Type

3

Derived
Type

2

Derived
Type

1

Basic
Type

2 2 2 2 2 2 4
Size
(in bits):

Bits 0–3 of the type field indicate the basic type. Table A–15 lists valid basic
types.

 Symbol Table Structure and Content

A-21 Common Object File Format

Table A–15. Basic Types

Mnemonic Value Type

T_NULL 0 Type not assigned

T_CHAR 2 Character

T_SHORT 3 Short integer

T_INT 4 Integer

T_LONG 5 Long integer

T_FLOAT 6 Floating point

T_DOUBLE 7 Double word

T_STRUCT 8 Structure

T_UNION 9 Union

T_ENUM 10 Enumeration

T_MOE 11 Member of an enumeration

T_UCHAR 12 Unsigned character

T_USHORT 13 Unsigned short integer

Bits 4–15 of the type field are arranged as six 2-bit fields that can indicate one
to six derived types. Table A–16 lists the possible derived types.

Table A–16. Derived Types

Mnemonic Value Type

DT_NON 0 No derived type

DT_PTR 1 Pointer

DT_FCN 2 Function

DT_ARY 3 Array

An example of a symbol with several derived types would be a symbol with a
type entry of 00000000110100112. This entry indicates that the symbol is an
array of pointers to short integers.

Symbol Table Structure and Content

A-22

A.7.8 Auxiliary Entries

Each symbol table entry may have one or no auxiliary entry. An auxiliary sym-
bol table entry contains the same number of bytes as a symbol table entry (18),
but the format of an auxiliary entry depends on the symbol’s type and storage
class. Table A–17 summarizes these relationships.

Table A–17. Auxiliary Symbol Table Entries Format

Type Entry

Name
Storage
Class

Derived
Type 1

Basic
Type Auxiliary Entry Format

.file C_FILE DT_NON T_NULL Filename (see Table A–18)

.text, .data, .bss C_STAT DT_NON T_NULL Section (see Table A–19)

tagname C_STRTAG
C_UNTAG
C_ENTAG

DT_NON T_NULL Tag name (see Table A–20)

.eos C_EOS DT_NON T_NULL End of structure (see Table A–21)

fcname C_EXT
C_STAT

DT_FCN (See note 1) Function (see Table A–22)

arrname (See note 2) DT_ARY (See note 1) Array (see Table A–23)

.bb, .eb C_BLOCK DT_NON T_VOID Beginning and end of a block (see
Table A–24 and Table A–25)

.bf, .ef C_FCN DT_NON T_VOID Beginning and end of a function (see
Table A–24 and Table A–25)

Name related to a
structure, union, or
enumeration

(See note 2) DT_PTR
DT_ARR
DT_NON

T_STRUCT
T_UNION
T_ENUM

Name related to a structure, union, or
enumeration (see Table A–26)

Notes: 1) Any type except T_MOE
2) C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF

In Table A–17, tagname refers to any symbol name (including the special
symbol nfake). Fcname and arrname refer to any symbol name.

A symbol that satisfies more than one condition in Table A–17 should have a
union format in its auxiliary entry. A symbol that satisfies none of these condi-
tions should not have an auxiliary entry.

 Symbol Table Structure and Content

A-23 Common Object File Format

A.7.8.1 Filenames

Each of the auxiliary table entries for a filename contains a 14-character file-
name in bytes 0–13. Bytes 14–17 are unused.

Table A–18. Filename Format for Auxiliary Table Entries

Byte
 Number Type Description

0–13 Character File name

14–17 — Unused

A.7.8.2 Sections

Table A–19 illustrates the format of auxiliary table entries.

Table A–19. Section Format for Auxiliary Table Entries

Byte
 Number Type Description

0–3 Long integer Section length

4–6 Unsigned short integer Number of relocation entries

7–8 Unsigned short integer Number of line-number entries

9–17 — Not used (zero filled)

A.7.8.3 Tag Names

Table A–20 illustrates the format of auxiliary table entries for tag names.

Table A–20. Tag Name Format for Auxiliary Table Entries

Byte
 Number Type Description

0–5 — Unused (zero filled)

6–7 Unsigned short integer Size of structure, union, or enumeration

8–11 — Unused (zero filled)

12–15 Long integer Index of next entry beyond this function

16–17 — Unused (zero filled)

Symbol Table Structure and Content

A-24

A.7.8.4 End of Structure

Table A–21 illustrates the format of auxiliary table entries for ends of
structures.

Table A–21. End-of-Structure Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 Long integer Tag index

4–5 — Unused (zero filled)

6–7 Unsigned short integer Size of structure, union, or enumeration

8–17 — Unused (zero filled)

A.7.8.5 Functions

Table A–22 illustrates the format of auxiliary table entries for functions.

Table A–22. Function Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 Long integer Tag index

4–7 Long integer Size of function (in bits)

8–11 Long integer File pointer to line number

12–15 Long integer Index of next entry beyond this function

16–17 — Unused (zero filled)

 Symbol Table Structure and Content

A-25 Common Object File Format

A.7.8.6 Arrays

Table A–23 illustrates the format of auxiliary table entries for arrays.

Table A–23. Array Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 Long integer Tag index

4–5 Unsigned short integer line-number declaration

6–7 Unsigned short integer Size of array

8–9 Unsigned short integer First dimension

10–11 Unsigned short integer Second dimension

12–13 Unsigned short integer Third dimension

14–15 Unsigned short integer Fourth dimension

16–17 — Unused (zero filled)

A.7.8.7 End of Blocks and Functions

Table A–24 illustrates the format of auxiliary table entries for the ends of blocks
and functions.

Table A–24. End-of-Blocks/Functions Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 — Unused (zero filled)

4–5 Unsigned short integer C source line number

6–17 — Unused (zero filled)

Symbol Table Structure and Content

A-26

A.7.8.8 Beginning of Blocks and Functions

Table A–25 illustrates the format of auxiliary table entries for the beginnings
of blocks and functions.

Table A–25. Beginning-of-Blocks/Functions Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 — Unused (zero filled)

4–5 Unsigned short integer C source line number

6–11 — Unused (zero filled)

12–15 Long integer Index of next entry past this block

16–17 — Unused (zero filled)

A.7.8.9 Names Related to Structures, Unions, and Enumerations

Table A–26 illustrates the format of auxiliary table entries for the names of
structures, unions, and enumerations.

Table A–26. Structure, Union, and Enumeration Names Format for Auxiliary Table Entries

Byte
Number Type Description

0–3 Long integer Tag index

4–5 — Unused (zero filled)

6–7 Unsigned short integer Size of the structure, union, or enu-
meration

8–17 — Unused (zero filled)

16–17 — Unused (zero filled)

 Running Title—Attribute Reference

B-1 Chapter Title—Attribute Reference

Appendix A

Symbolic Debugging Directives

The TMS320C55x assembler supports several directives that the
TMS320C55x C compiler uses for symbolic debugging:

� The .sym directive defines a global variable, a local variable, or a function.
Several parameters allow you to associate various debugging information
with the symbol or function.

� The .stag , .etag , and .utag directives define structures, enumerations,
and unions, respectively. The .member directive specifies a member of a
structure, enumeration, or union. The .eos directive ends a structure, enu-
meration, or union definition.

� The .func and .endfunc directives specify the beginning and ending lines
of a C function.

� The .block and .endblock directives specify the bounds of C blocks.

� The .file directive defines a symbol in the symbol table that identifies the
current source file name.

� The .line directive identifies the line number of a C source statement.

These symbolic debugging directives are not usually listed in the assembly
language file that the compiler creates. If you want them to be listed, invoke
the compiler shell with the –g option, as shown below:

cl55 –g input file

This appendix contains an alphabetical directory of the symbolic debugging
directives. With the exception of the .file directive, each directive contains an
example of C source and the resulting assembly language code.

Appendix B

.block/.endblock Define a Block

B-2

Syntax
.block beginning line number
.endblock ending line number

Description The .block and .endblock directives specify the beginning and end of a C
block. The line numbers are optional; they specify the location in the source
file where the block is defined.

Block definitions can be nested. The assembler will detect improper block
nesting.

Example Following is an example of C source that defines a block, and the resulting
assembly language code.

C source:

.

.

.
{ /* Beginning of a block */

int a,b;
a = b;

} /* End of a block */
.
.
.

Resulting assembly language code:

.block 7

.sym _a,2,4,1,16

.sym _b,3,4,1,16

.line 9
 AR1 = *SP(#3)
 *SP(#2) = AR1

.endblock 9

 Supply a File Identifier .file

B-3 Symbolic Debugging Directives

Syntax
.file ” filename”

Description The .file directive allows a debugger to map locations in memory back to lines
in a C source file. The filename is the name of the file that contains the original
C source program. The first 14 characters of the filename are significant.

You can also use the .file directive in assembly code to provide a name in the
file and improve program readability.

Example In the following example, the filename text.c contained the C source that pro-
duced this directive.

.file ”text.c”

.func/.endfunc Define a Function

B-4

Syntax
.func beginning line number
.endfunc ending line number

Description The .func and .endfunc directives specify the beginning and end of a C func-
tion. The line numbers are optional; they specify the location in the source file
where the function is defined. Function definitions cannot be nested.

Example Following is an example of C source that defines a function, and the resulting
assembly language code:

C source:

power(x, n) /* Beginning of a function */
int x,n;
{

int i, p;
p = 1;
for (i = 1; i <= n; ++i)

p = p * x;
return p; /* End of function */

}

 Define a Function .func/.endfunc

B-5 Symbolic Debugging Directives

Resulting assembly language code:
 .func 1
 ;***
 ;* FUNCTION NAME: _power *
 ;***
 _power:
 SP = SP – #5
 .sym _x,12,4,17,16
 .sym _n,13,4,17,16
 .sym _x,0,4,1,16
 .sym _n,1,4,1,16
 .sym _i,2,4,1,16
 .sym _p,3,4,1,16
 .line 3
 *SP(#1) = T1
 *SP(#0) = T0
 .line 5
 *SP(#3) = #1

 .line 6
 *SP(#2) = #1

 AR1 = T1
 AR2 = *SP(#2)
 TC1 = (AR2 > AR1)

 if (TC1) goto L2
 ; branch occurs
 L1:
 .line 7
 T1 = *SP(#0)
 AC0 = T1 * *SP(#3)
 *SP(#3) = AC0
 *SP(#2) = *SP(#2) + #1
 AR2 = *SP(#1)

AR1 = *SP(#2)
TC1 = (AR1 <= AR2)

 if (TC1) goto L1
 ; branch occurs
 L2:
 .line 8
 T0 = *SP(#3)
 .line 9
 SP = SP + #5
 return ; return occurs
 .endfunc 9,000000000h,5

.line Create a Line Number Entry

B-6

Syntax
.line line number [, address]

Description The .line directive creates a line number entry in the object file. Line number
entries are used in symbolic debugging to associate addresses in the object
code with the lines in the source code that generated them.

The .line directive has two operands:

� The line number indicates the line of the C source that generated a portion
of code. Line numbers are relative to the beginning of the current function.
This is a required parameter.

� The address is an expression that is the address associated with the line
number. This is an optional parameter; if you don’t specify an address, the
assembler will use the current SPC value.

Example The .line directive is followed by the assembly language source statements
that are generated by the indicated line of C source. For example, assume that
the lines of C source below are line 4 and 5 in the original C source; line 5
produces the assembly language source statements that are shown below.

C source:

for (i = 1; i <= n; ++i)
 p = p * x;

Resulting assembly language code:

 .line 7
 T1 = *SP(#0)
 AC0 = T1 * *SP(#3)
 *SP(#3) = AC0
 *SP(#2) = *SP(#2) + #1
 AR2 = *SP(#1)

AR1 = *SP(#2)
TC1 = (AR1 <= AR2)

 if (TC1) goto L1
 ; branch occurs
 L2:
 .line 8
 T0 = *SP(#3)
 .line 9
 SP = SP + #5
 return ; return occurs

 Define a Member .member

B-7 Symbolic Debugging Directives

Syntax
.member name, value [, type, storage class, size, tag, dims]

Description The .member directive defines a member of a structure, union, or enumera-
tion. It is valid only when it appears in a structure, union, or enumeration defini-
tion.

� Name is the name of the member that is put in the symbol table. The first
32 characters of the name are significant.

� Value is the value associated with the member. Any legal expression
(absolute or relocatable) is acceptable.

� Type is the C type of the member. Appendix A, Common Object File
Format, contains more information about C types.

� Storage class is the C storage class of the member. Appendix A, Common
Object File Format, contains more information about C storage classes.

� Size is the number of bits of memory required to contain this member.

� Tag is the name of the type (if any) or structure of which this member is a
type. This name must have been previously declared by a .stag, .etag, or
.utag directive.

� Dims may be one to four expressions separated by commas. This allows
up to four dimensions to be specified for the member.

The order of parameters is significant. The name and value are required
parameters. All other parameters may be omitted or empty. (Adjacent commas
indicate an empty entry.) This allows you to skip a parameter and specify a
parameter that occurs later in the list. Operands that are omitted or empty
assume a null value.

Example Following is an example of a C structure definition and the corresponding as-
sembly language statements:

C source:

struct doc {
char title;
char group;
int job_number;

} doc_info;

Resulting assembly language code:

 .stag _doc,48
 .member _title ,0,2,8,16
 .member _group ,16,2,8,16
 .member _job_number ,32,4,8,16
 .eos

.stag/.etag/.utag/.eos Define a Structure

B-8

Syntax
.stag name [, size]

member definitions
.eos
.etag name [, size]

member definitions
.eos
.utag name [, size]

member definitions
.eos

Description The .stag directive begins a structure definition. The .etag directive begins an
enumeration definition. The .utag directive begins a union definition. The .eos
directive ends a structure, enumeration, or union definition.

� Name is the name of the structure, enumeration, or union. The first 32
characters of the name are significant. This is a required parameter.

� Size is the number of bits the structure, enumeration, or union occupies
in memory. This is an optional parameter; if omitted, the size is unspeci-
fied.

The .stag, .etag, or .utag directive should be followed by a number of .member
directives, which define members in the structure. The .member directive is
the only directive that can appear inside a structure, enumeration, or union
definition.

The assembler does not allow nested structures, enumerations, or unions.
The C compiler unwinds nested structures by defining them separately and
then referencing them from the structure they are referenced in.

Example 1 Following is an example of a structure definition.

C source:

struct doc
{

char title;
char group;
int job_number;

} doc_info;

Resulting assembly language code:

.stag _doc,48

.member _title,0,2,8,16

.member _group,16,2,8,16

.member _job_number,32,4,8,16

.eos

 Define a Structure .stag/.etag/.utag/.eos

B-9 Symbolic Debugging Directives

Example 2 Following is an example of a union definition.

C source:

union u_tag {
 int val1;
 float val2;
 char valc;
} valu;

Resulting assembly language code:

 .utag _u_tag,32
 .member _val1,0,4,11,16
 .member _val2,0,6,11,32
 .member _valc,0,2,11,16
 .eos

Example 3 Following is an example of an enumeration definition.

C Source:

{
 enum o_ty { reg_1, reg_2, result } optypes;
}

Resulting assembly language code:

 .etag _o_ty,16
 .member _reg_1,0,4,16,16
 .member _reg_2,1,4,16,16
 .member _result,2,4,16,16
 .eos

.sym Define a Symbol

B-10

Syntax
.sym name, value [, type, storage class, size, tag, dims]

Description The .sym directive specifies symbolic debug information about a global vari-
able, local variable, or a function.

� Name is the name of the variable that is put in the object symbol table. The
first 32 characters of the name are significant.

� Value is the value associated with the variable. Any legal expression
(absolute or relocatable) is acceptable.

� Type is the C type of the variable. Appendix A, Common Object File
Format, contains more information about C types.

� Storage class is the C storage class of the variable. Appendix A, Common
Object File Format, contains more information about C storage classes.

� Size is the number of bits of memory required to contain this variable.

� Tag is the name of the type (if any) or structure of which this variable is a
type. This name must have been previously declared by a .stag, .etag, or
.utag directive.

� Dims may be up to four expressions separated by commas. This allows
up to four dimensions to be specified for the variable.

The order of parameters is significant. The name and value are required
parameters. All other parameters may be omitted or empty (adjacent commas
indicate an empty entry). This allows you to skip a parameter and specify a
parameter that occurs later in the list. Operands that are omitted or empty
assume a null value.

Example These lines of C source produce the .sym directives shown below:

C source:

struct s { int member1, member2; } str;
int ext;
int array[5][10];
long *ptr;
int strcmp();

main(arg1,arg2)
int arg1;
char *arg2;

{
register r1;

}

 Define a Symbol .sym

B-11 Symbolic Debugging Directives

Resulting assembly language code:

.global _array

.bss _array,50,0,0

.sym _array,_array,244,2,800,,5,10

.global _ptr

.bss _ptr,1,0,0

.sym _ptr,_ptr,21,2,16

.global _str

.bss _str,2,0,0

.sym _str,_str,8,2,32,_s

.global _ext

.bss _ext,1,0,0

.sym _ext,_ext,4,2,16

C-1

Appendix A

Assembler Error Messages

When the assembler completes its second pass, it reports any errors that it
encountered during the assembly. It also prints these errors in the listing file
(if one is created). An error is printed following the source line that incurred it.
You should attempt to correct the first error that occurs in your code first. A
single error condition can cause a cascade of spurious errors.

If you have received an assembler error message, use this appendix to find
possible solutions to the problem you encountered. First, locate the error
message class number. The class numbers are listed in alphabetical order.
Then, locate the error message that you encountered within that class. Each
class number has an alphabetical list of error messages that are associated
with it. Each class has a Description of the problem and an Action that
suggests possible remedies.

E0000

Cannot find beginning of repeat block
Comma required to separate arguments
Comma required to separate parameters
Commas must separate directive elements
Left parenthesis expected
Missing comma
Missing left parenthesis
Missing right parenthesis
Missing right quote of string constant
No matching right parenthesis
Open repeat block at EOF
Repeat block too deeply nested
Right parenthesis expected
Syntax Error
Unrecognized character type
Description These are errors about general syntax. The required syntax is

not present.

Action Correct the source per the error message text.

Appendix C

Assembler Error Messages

C-2

E0002

Invalid mnemonic specification

Description This error relates to invalid mnemonics. The instruction,
macro, or directive specified was not recognized.

Action Check the directive or instruction used.

E0003

AR0 cannot be used as an index register in LEAD3 mode
Absolute address used; PC-relative expected
Cluttered character operand encountered
Cluttered string constant operand encountered
Cluttered identifier operand encountered
Cluttered register operand encountered
Concurrent Dreg update is illegal here
Conditionals cannot begin in the first column
Constant out of range
dma offset too big
DR0 cannot be used as an index reigster in LEAD mode
Dst register must be the same as ...
Expected a reg ...
Expected an accumulator ...
Expected reg as ...
Expected same ...
Expected shift ...
Expected Smem << 16
Expected Xmem ...
Expression evaluation failed
Four-bit unsigned literal expected
HWA instruction value exceeds the allowed n bits
Illegal xxx operand ...
Illegal absolute address specified for Smem
Illegal qualifier used on RHS
Illegal register ...
Illegal shift operand

 Assembler Error Messages

C-3 Assembler Error Messages

Immediate value not ...
Invalid binary constant specified
Invalid condition
Invalid constant specification
Invalid decimal constant specified
Invalid float constant specified
Invalid hex constant specified
Invalid index register in the coefficient operand
Invalid octal constant specified
Make sure that the label name is not a reserved keyword
Make sure that the literals are prefixed by ’#’
Memory address mode must belong to dual subset
More than 16 switch labels
Only labels and comments may begin in the first column
Register in multiply term should be an accumulator
Section is not defined
Symbol usage not supported here
This address mode is invalid in xxx mode
This Smem mode is not allowed here
Undefined symbolic constant
Unexpected parallel instruction delimiters
Unknown xxx term

Description These are errors about invalid operands. The instruction,
parameter, or other operand specified was not recognized.

Action Correct the source per the error message text.

Assembler Error Messages

C-4

E0004
Absolute, well-defined integer value expected
Identifier expected
Identifier operand expected
Illegal character argument specified
Illegal operand
Illegal structure reference
Invalid data size for relocation
Invalid identifier, sym , specified
Invalid macro parameter specified
Invalid operand, ”char”
No parameters available for macro arguments
Single character operand expected
String constant or substitution symbol expected
String operand expected
Structure/Union tag symbol expected
Substitution symbol operand expected

Description These errors are about illegal operands. The instruction,
parameter or other operand specified was not legal for this
syntax.

Action Correct the source per the error message text.

E0005

Missing field value operand
Missing operand(s)
Operand missing
Tag identification operand required
Tag symbol identifier required
Description These are errors about missing operands; a required oper-

and is not supplied.

Action Correct the source so that all required operands are declared.

E0006

.break must occur within a loop
Conditional assembly mismatch

 Assembler Error Messages

C-5 Assembler Error Messages

Matching .endloop missing
No matching .if specified
No matching .endif specified
No matching .endloop specified
No matching .if specified
No matching .loop specified
Open block(s) inside macro
Unmatched .endloop directive
Unmatched .if directive

Description These are errors about unmatched conditional assembly
directives. A directive was encountered that requires a
matching directive but the assembler could not find the
matching directive.

Action Correct the source per the error message text.

E0007

Conditional nesting is too deep
Loop count out of range

Description These are errors about conditional assembly loops. Condi-
tional block nesting cannot exceed 32 levels.

Action Correct the .macro/.endmacro, .if/.elseif/.else/.endif or .loop/
.break/.endloop source.

E0008

Bad use of .access directive
Matching .struct directive is not present
Matching .union directive is not present

Description These are errors about unmatched structure definition direc-
tives. In a .struct/.endstruct sequence, a directive was
encountered that requires a matching directive but the
assembler could not find the matching directive.

Action Check the source for mismatched structure definition direc-
tives and correct.

Assembler Error Messages

C-6

E0009

Cannot apply bitwise NOT to floats
Illegal struct/union reference dot operator
Missing structure/union member or tag
Section ”name” is not an initialized section
Structure or union tag symbol expected
Structure or union tag symbol not found
Description These are errors about an illegally used operator. The opera-

tor specified was not legal for the given operands.

Action Correct the source per the error message text so that all
required operands are declared.

E0100

Label missing
Label required
.setsym requires a label
Description These are errors about required labels. The given directive

requires a label, but none is specified.

Action Correct the source by specifying the required label.

E0101

Cannot find the end of the repeat statement
Label(s) for SWITCH statement must be defined within current
section
Standalone labels not permitted in structure/union defs
Description These are errors about invalid labels. The given directive

does not permit a label, but one is specified.

Description Remove the invalid label.

E0102

Local label number defined differently in each pass
Local label number is multiply defined

 Assembler Error Messages

C-7 Assembler Error Messages

Local label number is not defined in this section
Local labels can’t be used with directives

Description These are errors about the illegal use of local labels.

Action Correct the source per the error message text. Use .newblock
to reuse local labels.

E0200

Bad term in expression
Binary operator can’t be applied
Cannot resolve symbol in expression
Difference between segment symbols not permitted
Expression evaluation failed
Illegal divide by zero
Illegal remainder by zero
Integer divide by zero
Integer remainder by zero
Loop size too big for LOCALREPEAT
Offset out of range
Operation cannot be performed on given operands
Unable to compose expression
Unary operator can’t be applied
Value of expression has changed due to jump expansion
Well-defined expression required

Description These are errors about general expressions. An illegal oper-
and combination was used, or an arithmetic type is required
but not present.

Action Correct the source per the error message text.

E0201

Absolute operands required for FP operations!
Floating–point divide by zero
Floating–point overflow
Floating–point underflow
Floating–point expression required

Assembler Error Messages

C-8

Illegal floating–point expression
Invalid floating–point operation

Description These are errors about floating-point expressions. A float-
ing-point expression was used where an integer expression is
required, an integer expression was used where a float-
ing-point expression is required, or a floating-point value is
invalid.

Action Correct the source per the error message text.

E0300

Cannot equate an external symbol to an external
Cannot redefine this section name
Cannot tag an undefined symbol
Empty structure or union definition
Illegal structure or union tag
Missing closing ’}’ for repeat block
Redefinition of ”sym” attempted
Structure tag can’t be global
Symbol can’t be defined in terms of itself
Symbol expected
Symbol expected in label field
Symbol, sym , has already been defined
Symbol, sym , is not defined in this source file
Symbol, sym , is operand to both .ref and .def
Structure/union member, sym , not found
The following symbols are undefined:
Union member previously defined
Union tag can’t be global

Description These are errors about general symbols. An attempt was
made to redefine a symbol or to define a symbol illegally.

Action Correct the source per the error message text.

 Assembler Error Messages

C-9 Assembler Error Messages

E0301

Cannot redefine local substitution symbol
Substitution stack overflow
Substitution symbol not found

Description These are errors about general substitution symbols. An
attempt was made to redefine a symbol or to define a symbol
illegally.

Action Correct the source per the error message text. Make sure that
the operand of a substitution symbol is defined either as a
macro parameter or with a .asg or .eval directive.

E0400

Symbol table entry is not balanced

Description A symbolic debugging directive does not have a complement-
ing directive (i.e., a .block without an .endblock).

Action Check the source for mismatched conditional assembly
directives.

E0500

Macro argument string is too long
Missing macro name
Too many variables declared in macro

Description These are errors about general macros. A macro definition
was probably corrupted.

Action Correct the source per the error message text.

E0501

Macro definition not terminated with .endm
Matching .endm missing

Assembler Error Messages

C-10

Matching .macro missing
.mexit directive outside macro definition
No active macro definition

Description These are errors about macro definition directives. A macro
directive does not have a complementing directive (that is, a
.macro without a .endm).

Action Correct the source per the error message text.

E0600

Bad archive entry for macro name
Bad archive name
Can’t read a line from archive entry
library name macro library not found
library name is not in archive format

Description These are errors about macro library accessing. A problem
was encountered reading from or writing to a macro library
archive file. It is likely that the creation of the archive file was
not done properly.

Action Make sure that the macro libraries are unassembled assem-
bler source files. Also make sure that the macro name and
member name are the same, and the extension of the file is
.asm.

E0700

Can’t use –g on assembly code with .line directives
Illegal structure/union member
No structure/union currently open
.sym not allowed inside structure/union

Description These are errors about the illegal use of symbolic debugging
directives; a symbolic debugging directive is not used in an
appropriate place.

Action Correct the source per the error message text.

 Assembler Error Messages

C-11 Assembler Error Messages

E0800

Access to MMR bank not supported for this instruction/operand
combination
Illegal target of a conditional execute instruction
Instructions not permitted in structure/union definitions
Instruction qualifier used as a stand-alone instruction
Parallel operator without instruction
Parallelism checks:

addressing modifier does not allow parallelism
combined number of A-unit loads is too high
combined number of D-unit loads is too high
combined size is too large
conflicting COEFFICIENT operands
DAGEN tag combination does not allow parallelism
illegal instruction specified with far()
illegal instruction specified with local()
indirect memory or coef operand expected
invalid parallel pair (cannot use soft-dual encoding)
invalid use of readport() qualifier
invalid use of writeport() qualifier
mmap() expects direct memory operand
neither instruction has parallel-enable E bit
neither instruction is a monodipatch instruction
NOP is disallowed as the first instruction in a parallel pair
same operator used by both instructions
same bus resource used by both instructions
Smem address mode illegal for soft-dual encoding
this instruction cannot be used in a parallel pair
two qualifier instructions in parallel

Repeat block too deeply nested
This instruction is illegal inside a repeat single loop
This instruction is illegal inside a conditional repeat single loop
This instruction is illegal as target of a conditional execute
This instruction is illegal inside a localrepeat block

Description These are errors about parallel or branch instructions. These
errors are normally target-specific.

Action Correct the source per the error message text.

Assembler Error Messages

C-12

E0801

Too many parallel instructions

Description This error is caused by having too many instructions in
parallel.

Action Check the source for parallel instruction problems and correct
per the error message text.

E0900

Cannot change version after 1st instruction
Cannot change parsing mode after 1st instruction
Can’t include a file inside a loop or macro
Illegal structure member
Illegal structure definition contents
Illegal union member
Illegal union definition contents
Invalid load-time label
Invalid structure/union contents
.setsect only valid if absolute listing produced (use –a option)
.setsym only valid if absolute listing produced (use –a option)
.var allowed only within macro definitions

Description These are errors about illegally used directives. Specific
directives were encountered where they are not permitted
because they will cause a corruption of the object file. Many
directives are not permitted inside of structure or union defini-
tions.

Action Correct the source per the error message text.

E1000

Include/Copy file not found or opened

Description The specified filename cannot be found.

Action Check spelling, pathname, environment variables, etc.

 Assembler Error Messages

C-13 Assembler Error Messages

E1300

Copy limit has been reached
Exceeded limit for macro arguments
Macro nesting limit exceeded

Description These errors are about general assembler limits that have
been exceeded. The nesting of .copy/.include files in limited
to 10 levels. Macro arguments are limited to 32 parameter.
Macro nesting is limited to 32 levels.

Action Check the source to determine how limits have been
exceeded.

E9999

Pass conflict

Description This is an internal assembler error. If it occurs repeatedly, the
assembler may be corrupt or confused.

Action Assemble a smaller file. If a smaller file does not assemble,
reinstall the assembler.

Pipeline conflict detected

Description This error reports a pipeline conflict.

Action Check the source to determine what caused the problem and
correct the source.

Assembler Error Messages

C-14

W0000

Choosing to parse the instruction as MPOLY (instead of MAC)
Invalid page number specified – ignored
Macro parameter conflict
No operands expected. Operands ignored
Short 3-bit offset mode not available; using 16-bit offset
Trailing operand does not exist
Trailing operands ignored
Unrecognized operand, ignored
Value does not fit into the 1..7 range; encoding as register indirect
Value does not fit into the 1..7 range; using 16-bit offset

Description These are warnings about operands. The assembler encoun-
tered operands that it did not expect.

Action Check the source to determine what caused the problem and
whether you need to correct the source.

W0001

Field value truncated to value
Field width truncated to size in bits
Maximum alignment is to 32K boundary – alignment ignored
Offset expression – value out of range
Power of 2 required, next larger power of 2 assumed
Section Name is limited to 8 characters
Specified value out of 8-bit range
String is too long – will be truncated
Value truncated
Value truncated to x-bit width

Description These are warnings about truncated values. The expression
given was too large to fit within the instruction opcode or the
required number of bits.

Action Check the source to make sure the result will be acceptable,
or change the source if an error has occurred.

 Assembler Error Messages

C-15 Assembler Error Messages

W0002

Address expression will wrap-around
Expression will overflow, value truncated

Description These are warnings about arithmetic expressions. The
assembler has done a calculation that will produce the
indicated result, which may or may not be acceptable.

Action Verify the result will be acceptable, or change the source if an
error has occurred.

W0003

Incorrect size for the type
.sym for function name required before .func

Description This is a warning about problems with symbolic debugging
directives. A .sym directive defining the function does not
appear before the .func directive.

Action Correct the source.

W0004

.access only allowed in top-most structure definition
Access point has already been defined
Open block(s) at EOF

Description These are warnings about problems with structure defini-
tions.

Action Correct the source per the error message text.

W0005

Conflicting modifications of CDP by two memory operands
Conflicting modifications of AR by two memory operands

Assembler Error Messages

C-16

Parallelism checks:
conflicting COEFFICIENT operands
conflicting modifications of CDP
conflicting modifications of an AR
same bus resource used by both instructions
same register used as destination of both instructions

Same register used as multiple destinations of the instruction

Description These are warnings about problems with parallel instructions.

Action Correct the source per the error message text.

W9999

A branch to an empty label just inside the loop-closing brace is a
branch out of the loop
Large model not available, ignored
Open branch delay slot at end of section
Overriding previous definition
Power of 2 required, next larger power of 2 assumed
Section name absolute address set to 0
Unknown model parameter
Value truncated to 8-bit size

Description These are general warnings.

Action Correct the source per the warning message text.

D-1

Appendix A

Linker Error Messages

This appendix lists the the linker error messages in alphabetical order accord-
ing to the error message. In these listings, the symbol (...) represents the name
of an object that the linker is attempting to interact with when an error occurs.

A

absolute symbol (...) being redefined

Description An absolute symbol cannot be redefined.

Action Check the syntax of all expressions, and check the input di-
rectives for accuracy.

adding name (...) to multiple output sections

Description The input section is mentioned twice in the SECTIONS direc-
tive.

ALIGN illegal in this context

Description Alignment of a symbol is performed outside of a SECTIONS
directive.

alignment for (...) must be a power of 2

Description Section alignment was not a power of 2.

Action Make sure that in hexadecimal, all powers of 2 consist of the
integers 1, 2, 4, or 8 followed by a series of zero or more 0s.

Appendix D

Linker Error Messages

D-2

alignment for (...) redefined
Description More than one alignment is supplied for a section.

attempt to decrement DOT
Description A statement such as .–= value is supplied; this is illegal.

Assignments to dot can be used only to create holes.

B

bad fill value
Description The fill value must be a 16-bit constant.

binding address (...) for section (...) is outside all memory on page
(...)
Description Not every section falls within memory configured with the

MEMORY directive.

Action If you are using a linker command file, check that MEMORY
and SECTIONS directives allow enough room to ensure that
no sections are being placed in unconfigured memory.

binding address (...) for section (...) overlays (...) at (...)
Description Two sections overlap and cannot be allocated.

Action If you are using a linker command file, check that MEMORY
and SECTIONS directives allow enough room to ensure that
no sections are being placed in unconfigured memory.

binding address for (...) redefined
Description More than one binding value is supplied for a section.

binding address (...) incompatible with alignment for section (...)
Description The section has an alignment requirement from an .align

directive or previous link. The binding address violates this
requirement.

blocking for (...) must be a power of 2
Description Section blocking is not a power of 2

Action Make sure that in hexadecimal, all powers of 2 consist of the
integers 1, 2, 4, or 8 followed by a series of zero or more 0s.

 Linker Error Messages

D-3 Linker Error Messages

blocking for (...) redefined

Description More than one blocking value is supplied for a section.

C

–c requires fill value of 0 in .cinit (... overridden)

Description The .cinit tables must be terminated with 0, therefore, the fill
value of the .cinit section must be 0.

cannot complete output file (...), write error

Description This usually means that the file system is out of space.

cannot create output file (...)

Description This usually indicates an illegal filename.

Action Check spelling, pathname, environment variables, etc. The
filename must conform to operating system conventions.

cannot resize (...), section has initialized definition in (...)

Description An initialized input section named .stack or .heap exists, pre-
venting the linker from resizing the section.

cannot specify a page for a section within a GROUP

Description A section was specified to a specific page within a group. The
entire group is treated as one unit, so the group may be speci-
fied to a page of memory, but the sections making up the
group cannot be handled individually.

cannot specify both binding and memory area for (...)

Description Both binding and memory were specified. The two are mutu-
ally exclusive.

Action If you wish the code to be placed at a specific address, use
binding only.

Linker Error Messages

D-4

can’t align a section within GROUP – (...) not aligned

Description A section in a group was specified for individual alignment.
The entire group is treated as one unit, so the group may be
aligned or bound to an address, but the sections making up
the group cannot be handled individually.

can’t align within UNION – section (...) not aligned

Description A section in a union was specified for individual alignment.
The entire union is treated as one unit, so the union may be
aligned or bound to an address, but the sections making up
the union cannot be handled individually.

can’t allocate (...), size ... (page ...)

Description A section can’t be allocated, because no existing configured
memory area is large enough to hold it.

Action If you are using a linker command file, check that the
MEMORY and SECTIONS directives allow enough room to
ensure that no sections are being placed in unconfigured
memory.

can’t create map file (...)

Description Usually indicates an illegal filename.

Action Check spelling, pathname, environment variables, etc. The
filename must conform to operating system conventions.

can’t find input file filename

Description The file, filename, is not in your PATH, is misspelled, etc.

Action Check spelling, pathname, environment variables, etc. The
filename must conform to operating system conventions.

can’t open (...)

Description The specified file does not exist.

Action Check spelling, pathname, environment variables, etc. The
filename must conform to operating system conventions.

 Linker Error Messages

D-5 Linker Error Messages

can’t open filename

Description The specified file does not exist.

Action Check spelling, pathname, environment variables, etc. The
filename must conform to operating system conventions.

can’t read (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

can’t seek (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

can’t write (...)

Description Disk may be full or protected.

Action Check disk volume and protection.

command file nesting exceeded with file (...)

Description Command file nesting is allowed up to 16 levels.

Linker Error Messages

D-6

E

–e flag does not specify a legal symbol name (...)

Description The –e option is not supplied with a valid symbol name as an
operand.

entry point other than _c_int00 specified

Description For –c or –cr option only. A program entry point other than the
value of _c_int00 was supplied. The runtime conventions of
the compiler assume that _c_int00 is the one and only entry
point.

entry point symbol (...) undefined

Description The symbol used with the –e option is not defined.

errors in input – (...) not built

Description Previous errors prevent the creation of an output file.

F

fail to copy (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

fail to read (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

fail to seek (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

 Linker Error Messages

D-7 Linker Error Messages

fail to skip (...)

Description The file may be corrupt.

Action If the input file is corrupt, try reassembling it.

fail to write (...)

Description The disk may be full or protected.

Action Check disk volume and protection.

file (...) has no relocation information

Description You have attempted to relink a file that was not linked with –r.

file (...) is of unknown type, magic number = (...)

Description The binary input file is not a COFF file.

fill value for (...) redefined

Description More than one fill value is supplied for an output section. Indi-
vidual holes can be filled with different values with the section
definition.

I

–i path too long (...)

Description The maximum number of characters in an –i path is 256.

illegal input character

Description There is a control character or other unrecognized character
in the command file.

illegal memory attributes for (...)

Description The attributes are not some combination of R, W, I, and X.

Linker Error Messages

D-8

illegal operator in expression

Description Review legal expression operators.

illegal option within SECTIONS

Description The –l (lowercase L) option is the only option allowed within a
SECTIONS directive.

illegal relocation type (...) found in section(s) of file (...)

Description The binary file is corrupt.

internal error (...)

Description This linker has an internal error.

invalid archive size for file (...)

Description The archive file is corrupt.

invalid path specified with –i flag

Description The operand of the –i option (flag) is not a valid file or path-
name.

invalid value for –f flag

Description The value for –f option (flag) is not a 2-byte constant.

invalid value for –heap flag

Description The value for –heap option (flag) is not a 2-byte constant.

invalid value for –stack flag

Description The value for –stack option (flag) is not a 2-byte constant.

invalid value for –v flag

Description The value for –v option (flag) is not a constant.

I/O error on output file (...)

Description The disk may be full or protected.

Action Check disk volume and protection.

 Linker Error Messages

D-9 Linker Error Messages

L

length redefined for memory area (...)
Description A memory area in a MEMORY directive has more than one

length.

library (...) member (...) has no relocation information
Description The library member has no relocation information. It is

possible for a library member to not have relocation informa-
tion; this means that it cannot satisfy unresolved references in
other files when linking.

line number entry found for absolute symbol
Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

load address for uninitialized section (...) ignored
Description A load address is supplied for an uninitialized section. Unini-

tialized sections have no load addresses—only run address-
es.

load address for UNION ignored
Description UNION refers only to the section’s run address.

load allocation required for initialized UNION member (...)
Description A load address is supplied for an initialized section in a union.

UNIONs refer to runtime allocation only. You must specify the
load address for all sections within a union separately.

M

–m flag does not specify a valid filename
Description You did not specify a valid filename for the file you are writing

the output map file to.

making aux entry filename for symbol n out of sequence
Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

Linker Error Messages

D-10

memory area for (...) redefined

Description More than one named memory allocation is supplied for an
output section.

memory page for (...) redefined

Description More than one page allocation is supplied for a section.

memory attributes redefined for (...)

Description More than one set of memory attributes is supplied for an out-
put section.

memory types (...) and (...) on page (...) overlap

Description Memory ranges on the same page overlap.

Action If you are using a linker command file, check that MEMORY
and SECTIONS directives allow enough room to ensure that
no sections are being placed in unconfigured memory.

missing filename on –l; use –l <filename>

Description No filename operand is supplied for the –l (lowercase L)
option.

misuse of DOT symbol in assignment instruction

Description The ”.” symbol is used in an assignment statement that is out-
side the SECTIONS directive.

N

no allocation allowed for uninitialized UNION member

Description A load address was supplied for an uninitialized section in a
union. An uninitialized section in a union gets its run address
from the UNION statement and has no load address, so no
load allocation is valid for the member.

 Linker Error Messages

D-11 Linker Error Messages

no allocation allowed with a GROUP–allocation for section (...)
ignored

Description A section in a group was specified for individual allocation.
The entire group is treated as one unit, so the group may be
aligned or bound to an address, but the sections making up
the group cannot be handled individually.

no input files

Description No COFF files were supplied. The linker cannot operate with-
out at least one input COFF file.

no load address specified for (...); using run address

Description No load address is supplied for an initialized section. If an ini-
tialized section has a run address only, the section is allo-
cated to run and load at the same address.

no run allocation allowed for union member (...)

Description A UNION defines the run address for all of its members; there-
fore, individual run allocations are illegal.

no string table in file filename

Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

no symbol map produced – not enough memory

Description Available memory is insufficient to produce the symbol list.
This is a nonfatal condition that prevents the generation of the
symbol list in the map file.

Linker Error Messages

D-12

O

–o flag does not specify a valid file name : string
Description The filename must follow the operating system file naming

conventions.

origin missing for memory area (...)
Description An origin is not specified with the MEMORY directive. An

origin specifies the starting address of a memory range.

out of memory, aborting
Description Your system does not have enough memory to perform all

required tasks.

Action Try breaking the assembly language files into multiple smaller
files and do partial linking. See Section 9.17, Partial (Incre-
mental) Linking, on page 9-67.

output file has no .bss section
Description This is a warning. The .bss section is usually present in a

COFF file. There is no requirement for it to be present.

output file has no .data section
Description This is a warning. The .data section is usually present in a

COFF file. There is no requirement for it to be present.

output file has no .text section
Description This is a warning. The .text section is usually present in a

COFF file. There is no requirement for it to be present.

output file (...) not executable
Description The output file created may have unresolved symbols or other

problems stemming from other errors. This condition is not fa-
tal.

overwriting aux entry filename of symbol n
Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

 Linker Error Messages

D-13 Linker Error Messages

P

PC-relative displacement overflow at address (...) in file (...)
Description The relocation of a PC-relative jump resulted in a jump dis-

placement too large to encode in the instruction.

R

–r incompatible with –s (–s ignored)
Description Both the –r option and the –s option were used. Since the –s

option strips the relocation information and –r requests a relo-
catable object file, these options are in conflict with each oth-
er.

relocation entries out of order in section (...) of file (...)
Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

relocation symbol not found: index (...), section (...), file (...)
Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

S

section (...) at (...) overlays at address (...)
Description Two sections overlap and cannot be allocated.

Action If you are using a linker command file, check that MEMORY
and SECTIONS directives allow enough room to ensure that
no sections overlap.

section (...) enters unconfigured memory at address (...)
Description A section can’t be allocated because no existing configured

memory area is large enough to hold it.

Action If you are using a linker command file, check that MEMORY
and SECTIONS directives allow enough room to ensure that
no sections are being placed in unconfigured memory.

Linker Error Messages

D-14

section (...) not built
Description Most likely there is a syntax error in the SECTIONS directive.

section (...) not found
Description An input section specified in a SECTIONS directive was not

found in the input file.

section (...) won’t fit into configured memory
Description A section can’t be allocated, because no configured memory

area exists that is large enough to hold it.

Action If you are using a linker command file, check that the
MEMORY and SECTIONS directives allow enough room to
ensure that no sections are being placed in unconfigured
memory.

seek to (...) failed
Description The input file may be corrupt.

Action If the input file is corrupt, try reassembling it.

semicolon required after assignment
Description There is a syntax error in the command file.

statement ignored
Description There is a syntax error in an expression.

symbol referencing errors — (...) not built
Description Symbol references could not be resolved. Therefore, an

object module could not be built.

symbol (...) from file (...) being redefined
Description A defined symbol is redefined in an assignment statement.

T

too few symbol names in string table for archive n
Description The archive file may be corrupt.

Action If the input file is corrupt, try recreating the archive.

 Linker Error Messages

D-15 Linker Error Messages

too many arguments – use a command file

Description You used more than ten arguments on a command line or in
response to prompts.

too many –i options, 7 allowed

Action More than seven –i options were used. Additional search di-
rectories can be specified with a C_DIR or A_DIR environ-
ment variable.

type flags for (...) redefined

Description More than one section type is supplied for a section. Note that
type COPY has all of the attributes of type DSECT, so DSECT
need not be specified separately.

type flags not allowed for GROUP or UNION

Description A type is specified for a section in a group or union. Special
section types apply to individual sections only.

U

–u does not specify a legal symbol name

Description The –u option did not specify a legal symbol name that exists
in one of the files that you are linking.

unexpected EOF(end of file)

Description There is a syntax error in the linker command file.

undefined symbol (...) first referenced in file (...)

Description Either a referenced symbol is not defined, or the –r option was
not used. Unless the –r option is used, the linker requires that
all referenced symbols be defined. This condition prevents
the creation of an executable output file.

Action Link using the –r option or define the symbol.

Linker Error Messages

D-16

undefined symbol in expression

Description An assignment statement contains an undefined symbol.

unrecognized option (...)

Action Check the list of valid options.

Z

zero or missing length for memory area (...)

Description A memory range defined with the MEMORY directive did not
have a nonzero length.

 Running Title—Attribute Reference

E-1 Chapter Title—Attribute Reference

Appendix A

Glossary

A
absolute address: An address that is permanently assigned to a

TMS320C55x memory location.

absolute lister: A debugging tool that accepts linked files as input and
creates .abs files as output. These .abs files can be assembled to pro-
duce a listing that shows the absolute addresses of object code. Without
the tool, an absolute listing can be prepared with the use of many manual
operations.

algebraic: An instruction that the assembler translates into machine code.

alignment: A process in which the linker places an output section at an
address that falls on an n-bit boundary, where n is a power of 2. You can
specify alignment with the SECTIONS linker directive.

allocation: A process in which the linker calculates the final memory
addresses of output sections.

archive library: A collection of individual files that have been grouped into
a single file.

archiver: A software program that allows you to collect several individual
files into a single file called an archive library. The archiver also allows
you to delete, extract, or replace members of the archive library, as well
as to add new members.

ASCII: American Standard Code for Information Exchange. A standard
computer code for representing and exchanging alphanumeric informa-
tion.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions, direc-
tives, and macro directives. The assembler substitutes absolute opera-
tion codes for symbolic operation codes, and absolute or relocatable
addresses for symbolic addresses.

assembly-time constant: A symbol that is assigned a constant value with
the .set directive.

Appendix E

Glossary

E-2

assignment statement: A statement that assigns a value to a variable.

autoinitialization: The process of initializing global C variables (contained
in the .cinit section) before beginning program execution.

auxiliary entry: The extra entry that a symbol may have in the symbol table
and that contains additional information about the symbol (whether it is
a filename, a section name, a function name, etc.).

B
binding: A process in which you specify a distinct address for an output sec-

tion or a symbol.

block: A set of declarations and statements that are grouped together with
braces.

.bss: One of the default COFF sections. You can use the .bss directive to
reserve a specified amount of space in the memory map that can later
be used for storing data. The .bss section is uninitialized.

C
C compiler: A program that translates C source statements into assembly

language source statements.

COFF: Common object file format. A binary object file format that promotes
modular programming by supporting the concept of sections.

command file: A file that contains options, filenames, directives, or com-
ments for the linker or hex conversion utility.

comment: A source statement (or portion of a source statement) that is
used to document or improve readability of a source file. Comments are
not compiled, assembled, or linked; they have no effect on the object file.

common object file format: See COFF.

conditional processing: A method of processing one block of source code
or an alternate block of source code, according to the evaluation of a
specified expression.

configured memory: Memory that the linker has specified for allocation.

constant: A numeric value that can be used as an operand.

cross-reference listing: An output file created by the assembler that lists
the symbols that were defined, what line they were defined on, which
lines referenced them, and their final values.

 Glossary

E-3 Glossary

D
.data: One of the default COFF sections. The .data section is an initialized

section that contains initialized data. You can use the .data directive to
assemble code into the .data section.

directives: Special-purpose commands that control the actions and
functions of a software tool (as opposed to assembly language instruc-
tions, which control the actions of a device).

E

emulator: A hardware development system that emulates TMS320C55x
operation.

entry point: The starting execution point in target memory.

executable module: An object file that has been linked and can be
executed in a TMS320C55x system.

expression: A constant, a symbol, or a series of constants and symbols
separated by arithmetic operators.

external symbol: A symbol that is used in the current program module but
is defined in a different program module.

F

field: For the TMS320C55x, a software-configurable data type whose length
can be programmed to be any value in the range of 1–16 bits.

file header: A portion of a COFF object file that contains general information
about the object file (such as the number of section headers, the type of
system the object file can be downloaded to, the number of symbols in
the symbol table, and the symbol table’s starting address).

G

global: A kind of symbol that is either 1) defined in the current module and
accessed in another, or 2) accessed in the current module but defined
in another.

GROUP: An option of the SECTIONS directive that forces specified output
sections to be allocated contiguously (as a group).

Glossary

E-4

H

hex conversion utility: A program that accepts COFF files and converts
them into one of several standard ASCII hexadecimal formats suitable
for loading into an EPROM programmer.

high-level language debugging: The ability of a compiler to retain sym-
bolic and high-level language information (such as type and function
definitions) so that a debugging tool can use this information.

hole: An area between the input sections that compose an output section
that contains no actual code or data.

I

incremental linking: Linking files that will be linked in several passes. Often
this means a very large file that will have sections linked and then will
have the sections linked together.

initialized section: A COFF section that contains executable code or initial-
ized data. An initialized section can be built up with the .data, .text, or
.sect directive.

input section: A section from an object file that will be linked into an
executable module.

L

label: A symbol that begins in column 1 of a source statement and corre-
sponds to the address of that statement.

line-number entry: An entry in a COFF output module that maps lines of
assembly code back to the original C source file that created them.

linker: A software tool that combines object files to form an object module
that can be allocated into TMS320C55x system memory and executed
by the device.

listing file: An output file, created by the assembler, that lists source state-
ments, their line numbers, and their effects on the SPC.

loader: A device that loads an executable module into TMS320C55x system
memory.

 Glossary

E-5 Glossary

M
macro: A user-defined routine that can be used as an instruction.

macro call: The process of invoking a macro.

macro definition: A block of source statements that define the name and
the code that make up a macro.

macro expansion: The source statements that are substituted for the
macro call and are subsequently assembled.

macro library: An archive library composed of macros. Each file in the
library must contain one macro; its name must be the same as the macro
name it defines, and it must have an extension of .asm.

magic number: A COFF file header entry that identifies an object file as a
module that can be executed by the TMS320C55x.

map file: An output file, created by the linker, that shows the memory
configuration, section composition, and section allocation, as well as
symbols and the addresses at which they were defined.

member: The elements or variables of a structure, union, archive, or enu-
meration.

memory map: A map of target system memory space, which is partitioned
into functional blocks.

mnemonic: An instruction name that the assembler translates into machine
code.

model statement: Instructions or assembler directives in a macro definition
that are assembled each time a macro is invoked.

N
named section: An initialized section that is defined with a .sect directive.

O
object file: A file that has been assembled or linked and contains machine-

language object code.

object format converter: A program that converts COFF object files into
Intel format or Tektronix format object files.

Glossary

E-6

object library: An archive library made up of individual object files.

operands: The arguments, or parameters, of an assembly language
instruction, assembler directive, or macro directive.

optional header: A portion of a COFF object file that the linker uses to
perform relocation at download time.

options: Command parameters that allow you to request additional or
specific functions when you invoke a software tool.

output module: A linked, executable object file that can be downloaded and
executed on a target system.

output section: A final, allocated section in a linked, executable module.

overlay page: A section of physical memory that is mapped into the same
address range as another section of memory. A hardware switch deter-
mines which range is active.

P

partial linking: The linking of a file that will be linked again.

Q

quiet run: Suppresses the normal banner and the progress information.

R

RAM model: An autoinitialization model used by the linker when linking C
code. The linker uses this model when you invoke the linker with the –cr
option. The RAM model allows variables to be initialized at load time
instead of runtime.

raw data: Executable code or initialized data in an output section.

relocation: A process in which the linker adjusts all the references to a sym-
bol when the symbol’s address changes.

ROM model: An autoinitialization model used by the linker when linking C
code. The linker uses this model when you invoke the linker with the –c
option. In the ROM model, the linker loads the .cinit section of data tables
into memory, and variables are initialized at runtime.

 Glossary

E-7 Glossary

ROM width: The width (in bits) of each output file, or, more specifically, the
width of a single data value in the file. The ROM width determines how
the utility partitions the data into output files. After the target words are
mapped to memory words, the memory words are broken into one or
more output files. The number of output files is determined by the ROM
width.

run address: The address where a section runs.

S
section: A relocatable block of code or data that will ultimately occupy con-

tiguous space in the TMS320C55x memory map.

section header: A portion of a COFF object file that contains information
about a section in the file. Each section has its own header; the header
points to the section’s starting address, contains the section’s size, etc.

section program counter: See SPC.

sign extend: To fill the unused MSBs of a value with the value’s sign bit.

simulator: A software development system that simulates TMS320C55x
operation.

source file: A file that contains C code or assembly language code that will
be compiled or assembled to form an object file.

SPC (Section Program counter): An element of the assembler that keeps
track of the current location within a section; each section has its own
SPC.

static: A kind of variable whose scope is confined to a function or a program.
The values of static variables are not discarded when the function or pro-
gram is exited; their previous value is resumed when the function or pro-
gram is re-entered.

storage class: Any entry in the symbol table that indicates how to access
a symbol.

string table: A table that stores symbol names that are longer than 8 charac-
ters (symbol names of 8 characters or longer cannot be stored in the
symbol table; instead, they are stored in the string table). The name por-
tion of the symbol’s entry points to the location of the string in the string
table.

structure: A collection of one or more variables grouped together under a
single name.

Glossary

E-8

subsection: A smaller section within a section offering tighter control of the
memory map. See also section.

symbol: A string of alphanumeric characters that represents an address or
a value.

symbolic debugging: The ability of a software tool to retain symbolic infor-
mation so that it can be used by a debugging tool such as a simulator or
an emulator.

symbol table: A portion of a COFF object file that contains information
about the symbols that are defined and used by the file.

T
tag: An optional type name that can be assigned to a structure, union, or

enumeration.

target memory: Physical memory in a TMS320C55x system into which exe-
cutable object code is loaded.

.text: One of the default COFF sections. The .text section is an initialized
section that contains executable code. You can use the .text directive to
assemble code into the .text section.

U
unconfigured memory: Memory that is not defined as part of the memory

map and cannot be loaded with code or data.

uninitialized section: A COFF section that reserves space in the memory
map but that has no actual contents. These sections are built up with the
.bss and .usect directives.

UNION: An option of the SECTIONS directive that causes the linker to allo-
cate the same address to multiple sections.

union: A variable that may hold objects of different types and sizes.

unsigned: A kind of value that is treated as a positive number, regardless
of its actual sign.

W
well-defined expression: An expression that contains only symbols or

assembly-time constants that have been defined before they appear in
the expression.

word: A 16-bit addressable location in target memory.

Index

Index-1

Index

–?
assembler option 3-5
linker option 9-6

; in assembly language source 3-20
operand prefix 3-19
$ symbol for SPC 3-26
–@, assembler option 3-4
–r assembler option 4-80
* in assembly language source 3-20
* operand prefix 3-19

A
–a

archiver command 8-4
assembler option 3-4
hex conversion utility option 12-38
linker option 9-8

A_DIR environment variable 3-15, 9-13, 9-16
abs55 command. See absolute lister, invoking
absolute address, defined E-1
absolute lister

creating the absolute listing file 3-4, 10-2
defined E-1
described 1-4
development flow 10-2
example 10-5 to 10-10
invoking 10-3
options 10-3

absolute listing
–a assembler option 3-4
producing 10-2

absolute output module
producing 9-8
relocatable 9-9

addressing, byte vs. word 3-7, 9-21
algebraic, defined E-1

.align directive 4-16, 4-27
alignment 4-16 to 4-17, 4-27

defined E-1
linker 9-38

allocation 4-31
alignment 4-27, 9-38
binding 9-36 to 9-76
blocking 9-38
default algorithm 9-55 to 9-57
defined E-1
described 2-2
GROUP 9-47
memory default 2-13, 9-37
sections 9-35 to 9-40
UNION 9-45

alternate directories
linker 9-14
naming with –i option 3-14
naming with A_DIR 3-15
naming with directives 3-14 to 3-16

–ar linker option 9-9
ar55 command 8-4
archive library

alternate directory 9-13
back referencing 9-20
defined E-1
exhaustively reading 9-20
macros 4-73
object 9-26 to 9-27
types of files 8-2

archiver 1-3
commands 8-4
defined E-1
examples 8-6
in the development flow 8-3
invoking 8-4
options 8-5
overview 8-2

arithmetic operators 3-32

Index

Index-2

ARMS mode 3-13
.arms_off directive 3-13, 4-25, 4-28
.arms_on directive 3-13, 4-25, 4-28
array definitions A-25
ASCII, defined E-1
ASCII-Hex object format 12-38
.asg directive 4-22, 4-29

listing control 4-18, 4-45
use in macros 5-7

asm55 command 3-4
assembler

built-in functions 3-34, 5-8
character strings 3-24
constants 3-21 to 3-23
cross-reference listings 3-6, 3-40
defined E-1
described 1-3
error messages C-1 to C-18
expressions 3-31, 3-32, 3-33
handling COFF sections 2-4 to 2-11
in the development flow 3-3
invoking 3-4
macros 5-1 to 5-26
options 3-4

additional usage information 3-14, 3-26,
3-36, 3-40

output listing
directive listing 4-18 to 4-19, 4-45 to 4-108
example 3-38

overview 3-2
relocation

at runtime 2-17
described 2-15 to 2-16
during linking 9-8

sections directives 2-4 to 2-11
source listings 3-36 to 3-39, 6-4 to 6-5
suppressing remarks 3-6
symbols 3-25, 3-26

assembler directives 4-1 to 4-26
absolute lister

.setsect 10-8

.setsym 10-8
aligning the section program counter

(SPC) 4-16 to 4-17
.align 4-16, 4-27
.even 4-16, 4-27

default directive 2-4

assembler directives (continued)
defining assembly-time symbols 4-22 to 4-23

.asg 4-22, 4-29

.endstruct 4-22, 4-92

.endunion 4-23, 4-100

.equ 4-22, 4-86

.eval 4-22, 4-29

.label 4-22, 4-65

.set 4-22, 4-86

.struct 4-22, 4-92

.tag 4-22, 4-23, 4-92, 4-100

.union 4-23, 4-100
defining sections 4-8 to 4-10

.bss 2-4, 4-8 to 4-10, 4-31

.clink 4-8, 4-36

.data 2-4, 4-8 to 4-10, 4-41

.sect 2-4, 4-8, 4-85

.text 2-4, 4-8 to 4-10, 4-97 to 4-108

.usect 2-4, 4-8 to 4-10, 4-103
enabling conditional assembly 4-21

.break 4-21, 4-71

.else 4-21, 4-59

.elseif 4-21, 4-59

.endif 4-21, 4-59

.endloop 4-21, 4-71

.if 4-21, 4-59

.loop 4-21, 4-71
example 2-9 to 2-11
formatting the output listing 4-18 to 4-19

.drlist 4-18, 4-45

.drnolist 4-18, 4-45

.fclist 4-18, 4-49

.fcnolist 4-18, 4-49

.length 4-18, 4-66

.list 4-18, 4-67

.mlist 4-18, 4-75

.mnolist 4-18, 4-75

.nolist 4-18, 4-67

.option 4-18, 4-81

.page 4-19, 4-83

.sslist 4-19, 4-88

.ssnolist 4-19, 4-88

.tab 4-19, 4-96

.title 4-19, 4-99

.width 4-19, 4-66

Index

Index-3

assembler directives (continued)
initializing constants 4-11 to 4-15

.bes 4-11, 4-87

.byte 4-12, 4-34

.char 4-12, 4-34

.double 4-13, 4-42

.field 4-12, 4-50

.float 4-13, 4-53

.half 4-13, 4-57

.int 4-13, 4-61

.ldouble 4-13, 4-42

.long 4-13, 4-69

.pstring 4-14, 4-90

.short 4-13, 4-57

.space 4-11, 4-87

.string 4-14, 4-90

.ubyte 4-12, 4-34

.uchar 4-12, 4-34

.uhalf 4-13, 4-57

.uint 4-13, 4-61

.ulong 4-13, 4-69

.ushort 4-13, 4-57

.uword 4-13, 4-61

.word 4-13, 4-61

.xfloat 4-13, 4-53

.xlong 4-13, 4-69
miscellaneous 4-24 to 4-25

.arms_off 4-25, 4-28

.arms_on 4-25, 4-28

.c54cm_off 4-25, 4-35

.c54cm_on 4-25, 4-35

.cpl_off 4-25, 4-40

.cpl_on 4-25, 4-40

.dp 4-24, 4-44

.emsg 4-25, 4-46

.end 4-24, 4-48

.ivec 4-24, 4-63

.mmregs 4-24, 4-76

.mmsg 4-25, 4-46

.newblock 4-24, 4-79

.noremark 4-80

.sblock 4-24, 4-84

.vli_off 4-24, 4-107

.vli_on 4-24, 4-107

.wmsg 4-25, 4-46

assembler directives (continued)
referencing other files 4-20

.copy 4-20, 4-37

.def 4-20, 4-54

.global 4-20, 4-54

.include 4-20, 4-37

.ref 4-20, 4-54
summary table 4-2 to 4-7

assembly-time constants 4-86
defined E-1

assignment statement
defined E-2
expressions 9-60 to 9-61

attr MEMORY specification 9-30
attributes 3-41, 9-30
autoinitialization

defined E-2
described 9-70 to 9-71
specifying type 9-10

auxiliary entry
defined E-2
described A-22 to A-26

B
–b linker option 9-10
.bes directive 4-11, 4-87
big-endian ordering 12-13
binary integer constants 3-21
binding

defined E-2
named memory 9-36
sections 9-36

block
auxiliary table entry A-25, A-26
defined E-2
described A-16
reference B-3

.block symbolic debugging directive B-3
blocking 4-31, 9-38
boot loader. See on-chip boot loader
boot table. See on-chip boot loader, boot table
boot.obj 9-69, 9-72
–bootorg hex conversion utility option 12-30
.break directive 4-21, 4-71

listing control 4-18, 4-45
use in macros 5-15

Index

Index-4

.bss directive 4-8, 4-31
initializing stack pointers 6-2
in sections 2-4
differences in interrrupt vector table 7-2
linker definition 9-62

.bss section 4-8, 4-31, A-3
defined E-2
holes 9-65
initializing 9-65

built-in functions 3-34, 5-8
–byte, hex conversion utility option 12-35
byte addressing 3-7, 9-21
.byte directive 4-12, 4-34

limiting listing with .option directive 4-18, 4-81

C
C

memory pool 9-12, 9-70
system stack 9-18, 9-70

–c
assembler option 3-5
linker option 9-10, 9-62

C code, linking 9-69 to 9-72
C compiler

block definitions B-3
COFF technical details A-1
defined E-2
enumeration definitions B-9
file identification B-4
function definitions B-5
line-number entries B-7
line-number information A-11 to A-12
linking 9-10, 9-69 to 9-72
member definitions B-8
special symbols A-15 to A-16
storage classes A-18
structure definitions B-9
symbol table entries B-11
union definitions B-9

C_DIR environment variable 9-13 to 9-16
_c_int00 9-11, 9-72
.c54cm_off directive 3-11, 4-25, 4-35
.c54cm_on directive 3-11, 4-25, 4-35
’C54x code on ’C55x

’C55x temporary registers 7-6
code example 7-10, 7-14
development flow 6-2

’C54x code on ’C55x (continued)
listing file description 6-4
memory placement differences 6-2
mixing ported ’C54x code with ’C55x 7-5
modifying interrupt service routines 7-3
non-portable ’C54x coding practices 7-17 to

7-20
register mapping 7-6
reserved ’C55x names 6-6
RETE instructions 7-4
RPT differences 7-19
running on ’C55x 6-1 to 6-6
runtime environment 7-5
status bit field mapping 7-7
switching runtime environments 7-9
unsupported ’C54x hardware features 7-19

’C54x compatibility mode 3-11

C55X_A_DIR environment variable 3-15, 9-13

C55X_C_DIR environment variable 9-13 to 9-16

.char directive 4-12, 4-34

character
constant 3-22
string 3-24

.cinit
section 9-70 to 9-71
tables 9-70

cinit symbol 9-70 to 9-71

.clink directive 4-8, 4-36

COFF
auxiliary entries A-22 to A-26
conversion to hexadecimal format 12-1 to 12-44

See also hex conversion utility
default allocation 9-55
defined E-2
file structure A-2 to A-3
headers

file A-4
optional A-5
section A-6 to A-8

in the development flow 9-3, 12-2
initialized sections 2-6
line number entries B-7
linker 9-1
loading a program 2-18
object file example A-3
relocation 2-15 to 2-16, A-9 to A-10
runtime relocation 2-17

Index

Index-5

COFF (continued)
sections

allocation 2-2
assembler 2-4 to 2-11
described 2-2 to 2-3
linker 2-12 to 2-14
named 2-7, 9-63
special types 9-58
uninitialized 2-4 to 2-5

storage classes A-18
string table A-17
symbol table

structure and content A-13 to A-26
symbol values A-19

symbolic debugging A-11 to A-12
symbols 2-19 to 2-20, A-15 to A-16
technical details A-1 to A-26
type entry A-20
uninitialized sections 2-4 to 2-5

command file
defined E-2
hex conversion utility 12-6 to 12-7
linker

byte addresses in 9-21
constants in 9-25
described 9-22 to 9-25
examples 9-73 to 9-76
invoking 9-4
reserved words 9-25

comments
defined E-2
extending past page width 4-66
field 3-20
in a linker command file 9-23
in assembly language source code 3-20
in macros 5-19

common object file format. See COFF

conditional blocks 5-15
assembly directives 4-21
listing of false conditional blocks 4-49

conditional processing
assembly directives

in macros 5-15 to 5-16
maximum nesting levels 5-15

defined E-2
expressions 3-33

configured memory
defined E-2
described 9-56

.const 9-34
constant

assembly-time 4-86
binary integers 3-21
character 3-22
decimal integers 3-22
defined E-2
described 3-21
floating-point 4-53
hexadecimal integers 3-22
in command files 9-25
octal integers 3-21
symbolic 3-25, 3-26

.copy directive 3-14, 4-20, 4-37
copy file

.copy directive 3-14, 4-37
–hc assembler option 3-5
–i option 3-5, 3-14

COPY section 9-58
CPL mode 3-12
.cpl_off directive 3-12, 4-25, 4-40
.cpl_on directive 3-12, 4-25, 4-40
–cr linker option 9-10, 9-62
cross-reference lister

creating the cross-reference listing 11-2
example 11-4
in the development flow 11-2
invoking 11-3
options 11-3
symbol attributes 11-6

cross-reference listing
assembler option 3-6
defined E-2
described 3-40
producing with the .option directive 4-19, 4-81
producing with the cross-reference lister 11-1 to

11-6

D
–d

archiver command 8-4
assembler option 3-5, 3-26

.data directive 4-8, 4-41
data memory 9-28
.data section 2-4, 4-8, 4-41, A-3

defined E-3
symbols 9-62

decimal integer constants 3-22

Index

Index-6

.def directive 4-20, 4-54
identifying external symbols 2-19

default
allocation 9-55
fill value for holes 9-11
memory allocation 2-13
MEMORY configuration 9-55
MEMORY model 9-28
section. See COFF, sections
SECTIONS configuration 9-32, 9-55

development
flow 1-2, 8-3, 9-3
tools 1-2

directives
See also assembler directives
defined E-3
linker

MEMORY 2-12, 9-28 to 9-31
SECTIONS 2-12, 9-32 to 9-40

symbolic debugging B-3 to B-13

directory search algorithm
assembler 3-14
linker 9-13

.double directive 4-13, 4-42

.dp directive 4-24, 4-44

.drlist directive 4-18, 4-45
use in macros 5-21

.drnolist directive 4-18, 4-45
same effect with .option directive 4-18
use in macros 5-21

DSECT section 9-58

dummy section 9-58

E

–e
absolute lister option 10-3
hex conversion utility option 12-31
linker option 9-11

.edata linker symbol 9-62

.else directive 4-21, 4-59
use in macros 5-15

.elseif directive 4-21, 4-59
use in macros 5-15

.emsg directive 4-25, 4-46, 5-19
listing control 4-18, 4-45

emulator, defined E-3

.end, linker symbol 9-62

.end directive 4-24, 4-48

.endblock symbolic debugging directive B-3

.endfunc symbolic debugging directive B-5

.endif directive 4-21, 4-59
use in macros 5-15

.endloop directive 4-21, 4-71
use in macros 5-15

.endm directive 5-3

.endstruct directive 4-22, 4-92

.endunion directive 4-23, 4-100

entry point
defined E-3
value assigned 9-11, 9-72

enumeration definitions B-9

environment variables
A_DIR 3-15, 9-13
C_DIR 9-13, 9-15
C55X_A_DIR 3-15, 9-13
C55X_C_DIR 9-13

.eos symbolic debugging directive B-9

.equ directive 4-22, 4-86

error messages
displayed by assembler C-1 to C-18
displayed by linker D-1 to D-16
generating 4-25, 4-46
hex conversion utility 12-43
producing in macros 5-19

.etag symbolic debugging directive B-9

.etext linker symbol 9-62

.eval directive 4-22, 4-29
listing control 4-18, 4-45
use in macros 5-8

evaluation of expressions 3-31

.even directive 4-16, 4-27

executable module, defined E-3

executable output 9-8, 9-9

Index

Index-7

expression
arithmetic operators in 3-32
conditional 3-33
conditional operators in 3-33
defined E-3
described 3-31
linker 9-60 to 9-61
overflow 3-32
precedence of operators 3-31
underflow 3-32
well-defined 3-33

external symbols 2-19
defined E-3

F
–f linker option 9-11
.fclist directive 4-18, 4-49

listing control 4-18, 4-45
use in macros 5-21

.fcnolist directive 4-18, 4-49
listing control 4-18, 4-45
use in macros 5-21

field, defined E-3

.field directive 4-12, 4-50
file

copy 3-5
identification B-4
include 3-5

file header
defined E-3
structure A-4

.file symbolic debugging directive B-4
filenames

as character strings 3-24
copy/include files 3-14
extensions, changing defaults 10-3
list file 3-4
macros, in macro libraries 5-14
object code 3-4

files ROMS specification 12-17
fill

MEMORY specification 9-31
ROMS specification 12-16
value

default 9-11
explicit initialization 9-66
setting 9-11

–fill hex conversion utility option 12-26
fill value. See holes
.float directive 4-13, 4-53
floating-point constants 4-53
.func symbolic debugging directive B-5
function definitions A-16, A-25, A-26, B-5
functions, built-in 3-34, 5-9

G
–g

assembler option 3-5
linker option 9-12

global
defined E-3
symbols 9-12

.global directive 4-20, 4-54
identifying external symbols 2-19

GROUP
defined E-3
linker directive 9-47

H
–h

assembler option 3-5
linker option 9-12

.half directive 4-13, 4-57
limiting listing with .option directive 4-18

–hc assembler option 3-5
–heap linker option

.sysmem section 9-70
described 9-12

–help
assembler option 3-5
linker option 9-6

hex conversion utility
command file 12-6 to 12-7
controlling the ROM device address 12-33 to

12-36
data width 12-9
defined E-4
described 1-3
development flow 12-2
error messages 12-43
image mode 12-25 to 12-26
invoking 12-3 to 12-5
memory width 12-9 to 12-10

Index

Index-8

hex conversion utility (continued)
object formats 12-37 to 12-42
on-chip boot loader 12-27 to 12-32
options 12-4 to 12-5
ordering memory words 12-13 to 12-14
output filenames 12-23
ROM width 12-10 to 12-12
ROMS directive 12-15 to 12-20
SECTIONS directive 12-21 to 12-22
target width 12-9

hex55 command 12-3

hexadecimal integer constants 3-22

–hi assembler option 3-5

high-level language debugging, defined E-4

hole
creating 9-63 to 9-65
default fill value 9-11
defined E-4
fill value, linker SECTIONS directive 9-33
filling 9-65 to 9-66
in output sections 9-63 to 9-66
in uninitialized sections 9-66

I
–i

assembler option 3-5, 3-14
hex conversion utility option 12-39
linker option 9-14

I MEMORY attribute 9-30

.if directive 4-21, 4-59
use in macros 5-15

–image hex conversion utility option 12-25

.include directive 3-14, 4-20, 4-37

include files 3-5, 3-14, 4-37

incremental linking
defined E-4
described 9-67 to 9-68

initialized section
defined E-4
described 9-63

initialized sections 2-6
.data 2-6, 4-41
.sect 2-6
.text 2-6, 4-97
.sect 4-85

input
linker 9-3, 9-26 to 9-27
section

defined E-4
described 9-38 to 9-40

.int directive 4-13, 4-61
Intel object format 12-39
interrupt service routines, modifying for ’C55x 7-3
interrupt vector table, differences between ’C54x

and ’C55x 7-2
.ivec directive 4-24, 4-63

K
–k linker option 9-16
keywords

allocation parameters 9-35
load 2-17, 9-35, 9-41
run 2-17, 9-35, 9-41 to 9-43

L
–l

assembler option 3-5, 3-36
cross-reference lister option 11-3
linker option 9-13

label
case sensitivity 3-5
cross-reference list 3-40
defined E-4
field 3-18
in assembly language source 3-18
local 3-28, 4-79
symbols used as 3-25
syntax 3-18
using with .byte directive 4-34

.label directive 4-22, 4-65

.ldouble directive 4-13, 4-42
length

MEMORY specification 9-31
ROMS specification 12-16

.length directive 4-18, 4-66
listing control 4-18

library search algorithm 9-13
library-build utility, described 1-3
.line symbolic debugging directive B-7
line-number, table structure A-11 to A-12

Index

Index-9

line-number entry
defined E-4
directive B-7

linker
assigning symbols 9-59
assignment expressions 9-59, 9-60 to 9-61
C code 9-10, 9-69 to 9-72
COFF 9-1
command files 9-4, 9-22 to 9-25, 9-73
configured memory 9-56
defined E-4
described 1-3
error messages D-1 to D-16
examples 9-73 to 9-76
GROUP statement 9-45, 9-47
handling COFF sections 2-12 to 2-14
in the development flow 9-3
input 9-3, 9-22 to 9-25
invoking 9-4 to 9-5
keywords 9-25, 9-41 to 9-43, 9-53
loading a program 2-18
MEMORY directive 2-12, 9-28 to 9-31
object libraries 9-26 to 9-27
operators 9-61
options

described 9-8 to 9-20
summary table 9-6 to 9-7

output 9-3, 9-17, 9-73
overlay pages 9-50
overview 9-2
partial linking 9-67 to 9-68
section runtime address 9-41
sections

in memory map 2-14
output 9-56
special 9-58

SECTIONS directive 2-12, 9-32 to 9-40
symbols 2-19 to 2-20, 9-59, 9-62
unconfigured memory 9-58
UNION statement 9-45 to 9-47

linker command file, editing for ported ’C54x
code 6-2

.list directive 4-18, 4-67
same effect with .option directive 4-19

lister
absolute 10-1 to 10-10
cross-reference 11-1 to 11-6

listing
cross-reference listing 4-19, 4-81
enabling 4-67
file 4-18 to 4-19, 4-45

creating with the –l option 3-5
defined E-4
format 3-36 to 3-39

list options 4-81
macro listing 4-73, 4-75
page eject 4-83
page length 4-66
page width 4-66
substitution symbols 4-88
suppressing 4-67
tab size 4-96
title 4-99

little-endian ordering 12-13
lnk55 command 9-4
load address of a section

described 9-41
referring to with a label 9-42 to 9-44

load linker keyword 2-17, 9-41 to 9-43
loader, defined E-4
loading a program 2-18
local labels 3-28
logical operators 3-32
.long directive 4-13, 4-69

limiting listing with .option directive 4-18, 4-81
.loop directive 4-21, 4-71

use in macros 5-15

M
–m linker option 9-16
–m1, hex conversion utility option 12-40
–m2, hex conversion utility option 12-40
–m3, hex conversion utility option 12-40
–ma assembler option 3-5, 3-13, 4-28
macro

comments 5-19
conditional assembly 5-15 to 5-16
defined E-5
defining 5-3
described 5-2
directives summary 5-25
disabling macro expansion listing 4-18, 4-81
formatting the output listing 5-21
labels 5-17 to 5-18

Index

Index-10

macro (continued)
libraries 5-14, 8-2
.mlib assembler directive 3-14
.mlist assembler directive 4-75
nested 5-22 to 5-24
parameters 5-6 to 5-13
producing messages 5-19
recursive 5-22 to 5-24
substitution symbols 5-6 to 5-13
using a macro 5-2

macro call, defined E-5

macro definition, defined E-5

.macro directive 4-72, 5-3
summary table 5-25

macro expansion, defined E-5

macro library, defined E-5

magic number, defined E-5

_main 9-11

malloc() 9-12, 9-70

map file
creating 9-16
defined E-5
example 9-75

masm55 command 3-4

math functions 3-34

–mb assembler option 3-6

–mc assembler option 3-6, 3-12, 4-40

member, defined E-5

.member symbolic debugging directive B-8

memory
allocation

default 2-13
described 9-55 to 9-57

map
defined E-5
described 2-14

model 9-28
named 9-37
pool, C language 9-12, 9-70
unconfigured 9-28
widths

described 12-9 to 12-10
ordering memory words 12-13 to 12-14
ROM width 12-10 to 12-12, 12-16
target width 12-9

word ordering 12-13 to 12-14

MEMORY linker directive
default model 9-28, 9-55
described 2-12, 9-28 to 9-31
overlay pages 9-50 to 9-54
PAGE option 9-28 to 9-30, 9-57
syntax 9-28 to 9-31

memory modes
ARMS mode 3-13
’C54x compatibility mode 3-11
CPL mode 3-12

messages
assembler C-1 to C-18
linker D-1 to D-16

.mexit directive 5-3
migrating a ’C54x system to ’C55x 7-1 to 7-20
–ml assembler option 3-6, 4-35
.mlib directive 4-73, 5-14

use in macros 3-14
.mlist directive 4-18, 4-75

listing control 4-18, 4-45
use in macros 5-21

.mmregs directive 4-24, 4-76

.mmsg directive 4-25, 4-46, 5-19
listing control 4-18, 4-45

mnemonic
defined E-5
field 3-18

.mnolist directive 4-18, 4-75
listing control 4-18, 4-45
use in macros 5-21

Motorola-S object format 12-40
–mv assembler option 3-6, 3-10, 4-107
–mw assembler option 3-6

N
name MEMORY specification 9-30
named sections 2-7

COFF format A-3
defined E-5
.sect directive 2-7, 4-85
.usect directive 2-7, 4-103

nested macros 5-22
.newblock directive 4-24, 4-79
.nolist directive 4-18, 4-67

same effect with .option directive 4-18
NOLOAD section 9-58
.noremark directive 4-80

Index

Index-11

O

–o linker option 9-17

object
code source listing 3-37
formats

address bits 12-37
ASCII-Hex 12-38
Intel 12-39
Motorola-S 12-40
output width 12-37
Tektronix 12-42
TI-Tagged 12-41

library
altering search algorithm 9-13
defined E-6
described 9-26 to 9-27
runtime support 9-69
using the archiver to build 8-2

object file, defined E-5

object format converter, defined E-5

octal integer constants 3-21

on-chip boot loader
boot table 12-27 to 12-32
booting from device peripheral 12-30
booting from EPROM 12-32
booting from the parallel port 12-32
booting from the serial port 12-32
controlling ROM device address 12-34 to 12-36
description 12-27, 12-31 to 12-33
modes 12-31
options

–e 12-31
summary 12-28

setting the entry point 12-31
using the boot loader 12-31 to 12-33

operands
defined E-6
field 3-19
immediate addressing 3-19
label 3-25
local label 3-28
prefixes 3-19
source statement format 3-19

operator precedence order 3-32

.option directive 4-18, 4-81

optional header
defined E-6
format A-5

options
absolute lister 10-3
archiver 8-5
assembler 3-4
cross-reference lister 11-3
defined E-6
hex conversion utility 12-4 to 12-5
linker 9-6 to 9-20

–order hex conversion utility option 12-14
ordering memory words 12-13 to 12-14
origin

MEMORY specification 9-30
ROMS specification 12-16

output
executable 9-8 to 9-9
hex conversion utility 12-23
linker 9-3, 9-17, 9-73
module

defined E-6
name 9-17

section
allocation 9-35 to 9-40
defined E-6
displaying a message 9-19
rules 9-56

output listing 4-18 to 4-19
See also listing

overflow in an expression 3-32
overlay page

defined E-6
described 9-50 to 9-54
using the SECTIONS directive 9-52 to 9-53

overlaying sections 9-45 to 9-47

P
paddr SECTIONS specification 12-22
page

eject 4-83
length 4-66
title 4-99
width 4-66

.page directive 4-19, 4-83
PAGE option MEMORY directive 9-28 to 9-30,

9-53 to 9-55, 9-57
PAGE ROMS specification 12-15

Index

Index-12

pages
overlay 9-50 to 9-54
PAGE syntax 9-53 to 9-55

parallel instructions
differences 7-19
rules 3-10

parentheses in expressions 3-31
partial linking

defined E-6
described 9-67 to 9-68

path. See alternate directories; environment
variables

precedence groups 3-31
predefined names, –d assembler option 3-5

prefixes for operands 3-19
program counters. See SPC
program memory 9-28

.pstring directive 4-14, 4-90

Q
–q

absolute lister option 10-3
archiver option 8-5
assembler option 3-6
cross-reference lister option 11-3
linker option 9-17

quiet run 3-6
defined E-6
linker 9-17

R
–r

archiver command 8-4
assembler option 3-6
linker option 9-9, 9-67 to 9-68

R MEMORY attribute 9-30

RAM model
autoinitialization 9-70
defined E-6

raw data, defined E-6

READA instruction 7-18
recursive macros 5-22

.ref directive 4-20, 4-54
identifying external symbols 2-19

register symbols 3-26
registers

’C54x to ’C55x mapping 7-6
’C55x temporaries 7-6

relational operators 3-33
relocatable, output module 9-9
relocation

at runtime 2-17
capabilities 9-8 to 9-9
defined E-6
sections 2-15 to 2-16
structuring information A-9 to A-10

reserved words
linker 9-25
in ’C55x 6-6

resetting local labels 4-79
RETE instructions 7-4
ROM

device address 12-33 to 12-36
model

autoinitialization 9-71
defined E-6

width
defined E-7
described 12-10 to 12-12

romname ROMS specification 12-15
ROMS hex conversion utility directive 12-15 to

12-20
romwidth ROMS specification 12-16
RPT differences 7-19
rts.lib 9-69, 9-72
run address

defined E-7
of a section 9-41 to 9-43

run linker keyword 2-17, 9-41 to 9-43
runtime environment

for ported ’C54x code 7-5
switching between ’C54x and ’C55x 7-9

runtime initialization and support 9-69

S
–s

archiver option 8-5
assembler option 3-6
linker option 9-17, 9-67 to 9-68

.sblock directive 4-24, 4-84

.sect directive 2-4, 4-8, 4-85

Index

Index-13

.sect section 4-8, 4-85
section header

defined E-7
described A-6 to A-8

section number A-20
section program counter, defined E-7
SECTIONS

hex conversion utility directive 12-21 to 12-22
linker directive

alignment 9-38
allocation 9-35 to 9-40
binding 9-36
blocking 9-38
default allocation 9-55 to 9-57
default model 9-30
described 2-12, 9-32 to 9-40
fill value 9-33
GROUP 9-47
input sections 9-33, 9-38 to 9-40
.label directive 9-42 to 9-44
load allocation 9-33
memory 9-37 to 9-76
overlay pages 9-50 to 9-54
reserved words 9-25
run allocation 9-33
section specifications 9-33
section type 9-33
specifying 2-17, 9-41 to 9-44
syntax 9-32
uninitialized sections 9-42
UNION 9-45 to 9-49
use with MEMORY directive 9-28

sections
allocation 9-55 to 9-57
COFF 2-2 to 2-3
creating your own 2-7
defined E-7
in the linker SECTIONS directive 9-33
initialized 2-6
named 2-2, 2-7
overlaying with UNION directive 9-45 to 9-47
program counters. See SPC
relocation 2-15 to 2-16, 2-17
special types 9-58
specifications 9-33
specifying a runtime address 9-41 to 9-44
specifying linker input sections 9-38 to 9-40
uninitialized 2-4 to 2-5

initializing 9-66
specifying a run address 9-42

.set directive 4-22, 4-86

.setsect directive 10-8

.setsym directive 10-8

.short directive 4-13, 4-57
sign extend, defined E-7
simulator, defined E-7
sname SECTIONS specification 12-22
source file

defined E-7
listings 3-36 to 3-39, 6-4 to 6-5

source statement
field 3-37
format 3-18 to 3-20
number in source listing 3-36
syntax 3-17

.space directive 4-11, 4-87
SPC

aligning
by creating a hole 9-63
to word boundaries 4-16 to 4-17, 4-27

assembler symbol 3-18
assembler’s effect on 2-9 to 2-11
assigning a label to 3-18
defined E-7
described 2-8
linker symbol 9-60, 9-63
maximum number of 2-8
predefined symbol for 3-26
value

associated with labels 3-18
shown in source listings 3-36

special section types 9-58
special symbols A-15 to A-16
.sslist directive 4-19, 4-88

listing control 4-18, 4-45
use in macros 5-21

.ssnolist directive 4-19, 4-88
listing control 4-18, 4-45
use in macros 5-21

.stack 9-18, 9-19, 9-70
–stack linker option 9-18, 9-70
stack pointers, initializing for ported ’C54x code 6-2
__STACK_SIZE 9-18, 9-62
.stag, symbolic debugging directive B-9
static

defined E-7
symbols 9-12
variables A-13

Index

Index-14

status bits, ’C54x to ’C55x mapping 7-7

storage class
defined E-7
described A-18

.string directive 4-14, 4-90
limiting listing with .option directive 4-19, 4-81

string functions 5-9

string table
defined E-7
described A-17

stripping
line number entries 9-17
symbolic information 9-17

.struct directive 4-22, 4-92

structure
.tag 4-22, 4-92
defined E-7
definitions A-24, B-9

subsections
defined E-8
initialized 2-6
overview 2-8
uninitialized 2-5

substitution symbols
arithmetic operations on 4-22, 5-8
as local variables in macros 5-13
assigning character strings to 3-26, 4-22
built-in functions 5-8
described 3-26
directives that define 5-7 to 5-8
expansion listing 4-19, 4-88
forcing substitution 5-11
in macros 5-6 to 5-13
maximum number per macro 5-6
passing commas and semicolons 5-6
recursive substitution 5-10
subscripted substitution 5-12 to 5-13
.var macro directive 5-13

.sym symbolic debugging directive B-11

symbol
defined E-8
definitions A-16
names A-17

symbol table
creating entries 2-20
defined E-8
described 2-20
entry from .sym directive B-11
index A-9
placing unresolved symbols in 9-18
special symbols used in A-15 to A-16
stripping entries 9-17
structure and content A-13 to A-26
values A-19

symbolic constants 3-26

symbolic debugging
–b linker option 9-10
defined E-8
disable merge for linker 9-10
enumeration definitions B-9
file identification B-4
function definitions B-5
line-number entries B-7
member definitions B-8
producing error messages in macros 5-19
–s assembler option 3-6
stripping symbolic information 9-17
structure definitions B-9
symbols B-11
table structure and content A-13 to A-26
union definitions B-9

symbols
assembler-defined 3-5
assigning values to 4-22, 4-23, 4-86, 4-92,

4-100
at link time 9-59 to 9-62

attributes 3-41
case 3-5
character strings 3-24
cross-reference lister 11-6
cross-reference listing 3-40
defined

by the assembler 2-19 to 2-20
by the linker 9-62
only for C support 9-62

described 2-19 to 2-20, 3-25
external 2-19, 4-54
global 9-12
number of statements that reference 3-40
predefined 3-26
reserved words 9-25
setting to a constant value 3-25
statement number that defines 3-40

Index

Index-15

symbols (continued)
substitution 3-26
unresolved 9-18
used as labels 3-25
value assigned 3-40

syntax
assignment statements 9-59
source statement 3-17

.sysmem section 9-12
__SYSMEM_SIZE 9-12, 9-62
.sysstack 9-18
–sysstack linker option 9-18
__SYSSTACK_SIZE 9-18, 9-62
system stack 9-18, 9-70

system stack, secondary 9-18

T
–t

archiver command 8-4
hex conversion utility option 12-41

.tab directive 4-19, 4-96

tag, defined E-8
.tag directive 4-22, 4-23, 4-92, 4-100
target memory, defined E-8
target width 12-9
Tektronix object format 12-42
.text directive 2-4, 4-8

linker definition 9-62
.text section 4-8, 4-97, A-3

defined E-8
TI-Tagged object format 12-41
.title directive 4-19, 4-99
type entry A-20

U
–u

assembler option 3-6
linker option 9-18

.ubyte directive 4-12, 4-34

.uchar directive 4-12, 4-34

.uhalf directive 4-13, 4-57

.uint directive 4-13, 4-61

.ulong directive 4-13, 4-69

unconfigured memory
defined E-8
described 9-28
DSECT type 9-58

underflow in an expression 3-32

uninitialized sections 2-4 to 2-5
.bss 2-5, 4-31
.usect 2-5
defined E-8
described 9-63
initialization of 9-66
specifying a run address 9-42
.usect 4-103

UNION
defined E-8
linker directive 9-45 to 9-49

union
.tag 4-23, 4-100
defined E-8
symbolic debugging directives B-9

.union directive 4-23, 4-100

unsigned, defined E-8

.usect directive 2-4, 4-8, 4-103

.usect section 4-8

.ushort directive 4-13, 4-57

.utag symbolic debugging directive B-9

.uword directive 4-13, 4-61

V
–v archiver option 8-5

.var directive 4-106, 5-13
listing control 4-18, 4-45

variable length instructions 3-10

variables, local, substitution symbols used as 5-13

.vectors 9-34

.vli_off directive 3-10, 4-24, 4-107

.vli_on directive 3-10, 4-24, 4-107

W
W MEMORY attribute 9-30

–w linker option 9-19

Index

Index-16

well-defined expression
defined E-8
described 3-33

.width directive 4-19, 4-66
listing control 4-18

widths. See memory widths
.wmsg directive 4-25, 4-46, 5-19

listing control 4-18, 4-45
word, defined E-8
word addressing 3-7, 9-21
word alignment 4-27
.word directive 4-13

limiting listing with .option directive 4-19, 4-81
WRITA instruction 7-18

X

–x
archiver command 8-4
assembler option 3-6, 3-40
hex conversion utility option 12-42
linker option 9-20

X MEMORY attribute 9-30

.xfloat directive 4-13, 4-53

.xlong directive 4-13, 4-69

xref55 command 11-3

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Examples
	Introduction
	Software Development Tools Overview
	Tools Descriptions

	Introduction to Common Object File Format
	Sections
	How the Assembler Handles Sections
	Uninitialized Sections
	Initialized Sections
	Named Sections
	Subsections
	Section Program Counters
	An Example That Uses Sections Directives

	How the Linker Handles Sections
	Default Memory Allocation
	Placing Sections in the Memory Map

	Relocation
	Runtime Relocation
	Loading a Program
	Symbols in a COFF File
	External Symbols
	The Symbol Table

	Assembler Description
	Assembler Overview
	Assembler Development Flow
	Invoking the Assembler
	'C55x Assembler Features
	Byte/Word Addressing
	Definition of Code Sections
	Assembly Programs and Native Units
	Using Code as Data and Data as Code

	Parallel Instruction Rules
	Variable-Length Instruction Size Resolution
	Memory Modes
	'C54x Compatibility Mode
	CPL Mode
	ARMS Mode

	Naming Alternate Files and Directories for Assembler Input
	Using the -i Assembler Option
	Using Environment Variables (C55X_A_DIR and A_DIR)

	Source Statement Format
	Source Statement Syntax
	Label Field
	Mnemonic Field
	Operand Field
	Instruction Field
	Comment Field

	Constants
	Binary Integers
	Octal Integers
	Decimal Integers
	Hexadecimal Integers
	Character Constants
	Floating-Point Constants

	Character Strings
	Symbols
	Labels
	Symbolic Constants
	Defining Symbolic Constants (–d Option)
	Predefined Symbolic Constants
	Substitution Symbols
	Local Labels

	Expressions
	Operators
	Expression Overflow and Underflow
	Well-Defined Expressions
	Conditional Expressions

	Built-in Functions
	Source Listings
	Cross-Reference Listings

	Assembler Directives
	Directives Summary
	Directives That Define Sections
	Directives That Initialize Constants
	Directives That Align the Section Program Counter
	Directives That Format the Output Listing
	Directives That Reference Other Files
	Conditional Assembly Directives
	Assembly-Time Symbol Directives
	Miscellaneous Directives
	Directives Reference
	.align/.even
	.arms_on/.arms_off
	.asg/.eval
	.bss
	.byte
	.c54cm_on/.c54cm_off
	.clink
	.copy/.include
	.cpl_on/.cpl_off
	.data
	.double/.ldouble
	.dp
	.drlist/.drnolist
	.emsg/.mmsg/.wmsg
	.end
	.fclist/.fcnolist
	.field
	.float/.xfloat
	.global/.def/.ref
	.half/.uhalf/.short/.ushort
	.if/.elseif/.else/.endif
	.int/.uint/.word/.uword
	.ivec
	.label
	.length/.width
	.list/.nolist
	.long/.ulong/.xlong
	.loop/.break/.endloop
	.macro
	.mlib
	.mlist/.mnolist
	.mmregs
	.newblock
	.noremark
	.option
	.page
	.sblock
	.sect
	.set/.equ
	.space/.bes
	.sslist/.ssnolist
	.string/.pstring
	.struct/.endstruct/.tag
	.tab
	.text
	.title
	.union/.endunion/.tag
	.usect
	.var
	.vli_off/.vli_on

	Macro Language
	Using Macros
	Defining Macros
	Macro Parameters/Substitution Symbols
	Directives That Define Substitution Symbols
	Built-In Substitution Symbol Functions
	Recursive Substitution Symbols
	Forced Substitution
	Accessing Individual Characters of Subscripted Substitution Symbols
	Substitution Symbols as Local Variables in Macros

	Macro Libraries
	Using Conditional Assembly in Macros
	Using Labels in Macros
	Producing Messages in Macros
	Formatting the Output Listing
	Using Recursive and Nested Macros
	Macro Directives Summary

	Running C54xCodeon’C55x
	'C54x to ’C55x Development Flow
	Initializing the Stack Pointers
	Handling Differences in Memory Placement

	Understanding the Listing File
	Handling Reserved ’C55x Names

	Migratinga 'C54xSystemtoa 'C55xSystem
	Handling Interrupts
	Differences in the Interrupt Vector Table
	Handling Interrupt Service Routines
	Other Issues Related to Interrupts

	Using Ported ’C54x Functions with Native ’C55x Functions
	Runtime Environment for Ported ’C54x Code
	'C55x Registers Used as Temporaries
	'C54x to ’C55x Register Mapping
	Status Bit Field Mapping
	Switching Between Runtime Environments
	Example of C Code Calling ’C54x Assembly
	Example of ’C54x Assembly Calling C Code

	Non-Portable ’C54x Coding Practices
	Additional ’C54x Issues

	Archiver Description
	Archiver Overview
	Archiver Development Flow
	Invoking the Archiver
	Archiver Examples

	Linker Description
	Linker Overview
	Linker Development Flow
	Invoking the Linker
	Linker Options
	Relocation Capabilities (-a and -r Options)
	Disable Merge of Symbolic Debugging Information (–b Option)
	C Language Options (–c and –cr Options)
	Define an Entry Point (–e global_symbol Option)
	Set Default Fill Value (–f cc Option)
	Make a Symbol Global (–g global_symbol Option)
	Make All Global Symbols Static (–h Option)
	Define Heap Size (–heap constant Option)
	Alter the Library Search Algorithm (–l Option, –i Option, and C55X_C_DIR/C_DIR Environment Variables)
	Name an Alternate Library Directory (–i Option)
	Name an Alternate Library Directory (C_DIR Environment Variable)

	Ignore Alignment Flags (–k Option)
	Create a Map File (–m filename Option)
	Name an Output Module (–o filename Option)
	Specify a Quiet Run (–q Option)
	Strip Symbolic Information (–s Option)
	Define Stack Size (–stack constant Option)
	Define Secondary Stack Size (–sysstack constant Option)
	Introduce an Unresolved Symbol (–u symbol Option)
	Display a Message for Output Section Information (–w Option)
	Exhaustively Read Libraries (–x Option)

	Byte/Word Addressing
	Linker Command Files
	Reserved Names in Linker Command Files
	Constants in Command Files

	Object Libraries
	The MEMORY Directive
	Default Memory Model
	MEMORY Directive Syntax

	The SECTIONS Directive
	Default Configuration
	SECTIONS Directive Syntax
	Allocation
	Binding
	Named memory
	Alignment and blocking
	Specifying input sections

	Specifying a Section's Runtime Address
	Specifying Load and Run Addresses
	Uninitialized Sections
	Referring to the Load Address by Using the .label Directive

	Using UNION and GROUP Statements
	Overlaying Sections With the UNION Statement
	Grouping Output Sections Together
	Nesting UNIONs and GROUPs
	Checking the Consistency of Allocators

	Overlay Pages
	Using the MEMORY Directive to Define Overlay Pages
	Using Overlay Pages With the SECTIONS Directive
	Page Definition Syntax

	Default Allocation Algorithm
	Allocation Algorithm
	General Rules for Output Sections

	Special Section Types (DSECT, COPY, and NOLOAD)
	Assigning Symbols at Link Time
	Syntax of Assignment Statements
	Assigning the SPC to a Symbol
	Assignment Expressions
	Symbols Defined by the Linker
	Symbols Defined Only For C Support (–c or –cr Option)

	Creating and Filling Holes
	Initialized and Uninitialized Sections
	Creating Holes
	Filling Holes
	Explicit Initialization of Uninitialized Sections

	Partial (Incremental) Linking
	Linking C Code
	Runtime Initialization
	Object Libraries and Runtime Support
	Setting the Size of the Stack and Heap Sections
	Autoinitialization (ROM and RAM Models)
	The –c and –cr Linker Options

	Linker Example

	Absolute Lister Description
	Producing an Absolute Listing
	Invoking the Absolute Lister
	Absolute Lister Example

	Cross-Reference Lister Description
	Producing a Cross-Reference Listing
	Invoking the Cross-Reference Lister
	Cross-Reference Listing Example

	HexConversionUtilityDescription
	Hex Conversion Utility Development Flow
	Invoking the Hex Conversion Utility
	Command File
	Examples of Command Files

	Understanding Memory Widths
	Target Width
	Data Width
	Memory Width
	ROM Width
	A Memory Configuration Example
	Specifying Word Order for Output Words

	The ROMS Directive
	When to Use the ROMS Directive
	An Example of the ROMS Directive
	Creating a Map File of the ROMS Directive

	The SECTIONS Directive
	Output Filenames
	Assigning Output Filenames

	Image Mode and the –fill Option
	The –image Option
	Specifying a Fill Value
	Steps to Follow in Image Mode

	Building a Table for an On-Chip Boot Loader
	Description of the Boot Table
	The Boot Table Format
	How to Build the Boot Table
	Building the Boot Table
	Leaving Room for the Boot Table

	Booting From a Device Peripheral
	Setting the Entry Point for the Boot Table
	Using the ’C55x Boot Loader

	Controlling the ROM Device Address
	Controlling the Starting Address
	Controlling the Address Increment Index
	The –byte Option
	Dealing With Address Holes

	Description of the Object Formats
	ASCII-Hex Object Format (–a Option)
	Intel MCS-86 Object Format (–i Option)
	Motorola Exorciser Object Format (–m1, –m2, –m3 Options)
	Texas Instruments SDSMAC Object Format (–t Option)
	Extended Tektronix Object Format (–x Option)

	Hex Conversion Utility Error Messages

	Common Object File Format
	COFF File Structure
	File Header Structure
	Optional File Header Format
	Section Header Structure
	Structuring Relocation Information
	Line-Number Table Structure
	Symbol Table Structure and Content
	Special Symbols
	Symbols and Blocks
	Symbols and Functions

	Symbol Name Format
	String Table Structure
	Storage Classes
	Symbol Values
	Section Number
	Type Entry
	Auxiliary Entries
	Filenames
	Sections
	Tag Names
	End of Structure
	Functions
	Arrays
	End of Blocks and Functions
	Beginning of Blocks and Functions
	Names Related to Structures, Unions, and Enumerations

	Symbolic Debugging Directives
	.block/.endblock
	.file
	.func/.endfunc
	.line
	.member
	.stag/.etag/.utag/.eos
	.sym

	AssemblerError Messages
	LinkerError Messages
	Glossary
	Index

