
j

~ 1

r l
I TMS34010
~ I S £ ~ i Oltware
i Development
~ I Board
0. 1
~ I

: User's Guide

..,
TEXAS

INSTRUMENTS

SPVU002A

TMS34010 Software
Developtnent Board

User's Guide

~
TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes in the devices or the
device specifications identified in this publication without notice. TI advises
its customers to obtain the latest version of device specifications to verify,
before placing orders, that the information being relied upon by the customer
is current.

In the absence of written agreement to the contrary, TI assumes no liability for
TI applications assistance, customer's product design, or infringement of pat­
ents or copyrights of third parties by or arising from use of semiconduct9r
devices described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, or other
intellectual property right of TI covering or relating to any combination, ma­
chine, or process in which such semiconductor devices might be or are used.

WARNING

This equipment is intended for use in a laboratory test environment only. It
generates, uses, and can radiate radio frequency energy and has not been
tested for compliance with the limits for computing devices persuant to Sub­
part J of Part 15 of FCC rules, which are designed to provide reasonable pro­
tection against radio frequency interference. Operation of this equipment in
other environments may cause interference with radio communications. In
which case the user at this own expense will be required to take whatever
measures may be required to correct the interference.

Copyright © 1987, Texas Instruments Incorporated

Section

Introduction
SOB Features

Contents

1
1.1
1.2
1.3
1.4
1.5

Functional Overview

2
2.1
2.2
2.3
2.4
2.5

Overview of TMS3401 0 and Development Tools
Manual Organization
Applicable Documents

Installation
Items as Shipped
Typical System Configuration
Jumper Settings
Creating File CONFIG.SYS (IBM PC)
Installation Summary

3 Tutorial
3.1 Elements of Bit-Mapped Graphics
3.1.1 The Graphics Display
3.1.2 Screen Format and Memory Addressing
3.1.3 Storage of Bit-Mapped Images
3.1.4 Steps in Bit Mapping
3.2 Calling the Tutorial Program
3.2.1 Batch Call with Debugger
3.2.2 Call Tutorial From Debugger
3.3 The Tutorial Program
3.3.1 Tutorial Program Flow
3.3.2 Resuming Run Mode
3.3.3 Clearing the Screen .
3.4 Pixel Transfer (PIXT) PC = >FFCO 0740
3.5 Draw and Advance (DRAV) PC = >FFCO 07BO
3.6 Fill Array Instructions (FILL XY, FILL L) PC = >FFCO OS20
3.6.1 Fill Array, XY Addressing
3.6.2 Fill Array, Linear Addressing
3.7 Pixel Block Transfers PC = >FFCO OBEO
3.B Transparency and Pixel Processing PC = > FFCO OAEO
3.S.1 Transparency Processing
3.B.2 Pixel Processing
3.9 Window Demonstration PC = > FFCO OB20 .. .
3.10 Text Spacing Demonstrations PC = >FFCO OBBO
3.10.1 Block Spacing
3.10.2 Proportional Spacing
3.10.3 Kerned Spacing ...

Page

1-1
1-2
1-3
1-5
1-7
1-S

2-1
2-2
2-2
2-4
2-S
2-S

3-1
3-3
3-3
3-3
3-6
3-6
3-11
3-11
3-11
3-12
3-12
3-13
3-13
3-14
3-17
3-21
3-21
3-23
3-26
3-29
3-29
3-29
3-31
3-33
3-33
3-33
3-33

iii

4 SOB Commands
4.1 Key Features
4.2 SDB Hardware and System Requirements
4.3 System Description
4.3.1 The SDB Machine State Display
4.4 SDB Operation
4.4.1 Invoking SDB from Disk
4.4.2 Invoking the SDB Using a File Option
4.4.3 Initial Display
4.4.4 SDB Command Line
4.4.5 Error Reporting
4.4.6 Single-Line Assembler
4.4.7 Using the HELP Function
4.4.8 Host Interface
4.4.9 Loading and Running Code
4.4.10 Saving Machine Status
4.5 Comparison of Displays for DB, DM, and DW (D) Commands
4.6 SDB Commands

5
5.1
5.1.1
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.3.3
5.4
5.5
5.6
5.7
5.8

SOB Hardware Operation
Host Port

Definition of Host Port Registers
Local Memory Map

Enabling Shadow RAM
Video Memory Organization

Color Palette
Color Palette Frame Load Mode
Color Palette Line Load Mode
Color Palette Code

Serial Port
Video Connector (Port J4)
Interrupts, To Host
Expansion Bus
Power Consumption

6 Theory of Operation
6.1 PC Bus to TMS3401 0 (GSP) Interface
6.2 TMS34010 to Memory Interface
6.2.1 Accessing Local DRAM Memory
6.2.2 Accessing PROM and Enabling Shadow RAM
6.2.3 Accessing the USART
6.3 TMS34010 to Frame Buffer Interface
6.4 Frame Buffer to Video Output Interface
6.5 CRT Timing Generation
6.6 Software
6.6.1 Program Bootup Sequence
6.6.2 SDB340 Communications Protocol
6.6.3 SDB340 Execution Control
6.6.4 Sharing of the Stack
6.6.5 TMS34010 Interrupt Map

A
B

iv

COM 2651 Programmable Communication Interface
List of Materials for TMOS3411804420 Board (SOB)

4-1
4-2
4-3
4-4
4-6
4-9
4-9
4-10
4-10
4-10
4-15
4-16
4-16
4-16
4-17
4-19
4-20
4-22

5-1
5-2
5-3
5-7
5-8
5-10
5-11
5-12
5-12
5-13
5-16
5-17
5-19
5-20
5-21

6-1
6-2
6-9
6-13
6-15
6-15
6-17
6-18
6-20
6-21
6-21
6-22
6-23
6-24
6-24

A-1
B-1

C
D
E

Diagnostics for Software Development Board
Glossary
Hands-On Tutorial

C-1
D-1
E-1

v

Illustrations

Figure

Typical Software Development Board System
SDB Module Block Diagram
Software Development Flow
Cabling Between PC and Display Monitor
Jumper Locations and Configurations
Alignment of Alternate PAL in U3
Register Locations in Reserved Memory
Screen Display After Debug Software Installed
SDB Memory Map ,
Pixel Addressing Using XY Coordinates

Page

1-3
1-4
1-6
2-3
2-4
2-9
2-11
2-12
3-4
3-5

1 -1 .
1-2.
1-3.
2-1.
2-2.
2-3.
2-4.
2-5.
3-1.
3-2.
3-3. Linear and XY Addressing Example for SDB Tutorial Display (Upper Left) and

3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.
3-13.
3-14.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.
6-1.
6-2.
6-3.
6-4.

vi

Complete Screen
Pixel Placement in Memory Words
Pseudo Code to Convert Linear to XY Addressing
PIXT Display
DRAV Screen Display .. .
DRAV Display .. .
Register Display for Fill Screen, XY Addressing
FILL Display
Register Display for Fill Screen, Linear Addressing
Using Two Command Buffers to Blank Demonstration Area
Register Display for PIXBL T B,XY
Window Display .. .
SDB Debugger Screen Display
SDB Help Utility Menu
SDB Memory Map .. .
Comparison of Memory Displays for DB, DM, DW Commands
Display Existing Breakpoints Monitor Display Format
Modify Breakpoints Menu
Display Memory Monitor Display Format
Display Memory Monitor Display Format
Display Word Monitor Display Format
SDB Help Utility Menu
Display Existing Traces Monitor Display Format
Register HSTADRx, Pointer Address to TMS34010 Local Memory
Register HSTDATA Host/TMS34010 Local Memory Data Transfer
Register HSTCTL, TMS3401 0 Control
Board Memory Map
Shadow RAM and PROM in Upper Memory
Example Code to Enable Shadow RAM
Pixel Memory Location and Screen Address
Color-Palette Internal Register Format
Loading Frame Buffer in Frame-Load Mode
Loading Frame Buffer in Line-Load Mode
IBM/TI PC Interrupt Selection at Jumper W2
Data/Address Bus to TMS34010 Interface
Memory Map for Four Host Port Registers
Equations for IBM PC and AT Host Port Decode PAL
Equations for TI PC Host Port Decode PAL

3-5
3-9
3-10
3-15
3-17
3-18
3-21
3-22
3-23
3-25
3-26
3-31
4-5
4-16
4-17
4-20
4-30
4-32
4-45
4-46
4-48
4-54
4-101
5-3
5-4
5-4
5-6
5-7
5-9
5-10
5-11
5-12
5-13
5-19
6-3
6-6
6-7
6-8

6-5.
6-6.
6-7.
6-8.
6-9.
6-10.
6-11.
6-12.
6-13.
6-14.
6-15.
C-1.
E-1.
E-2.
E-3.

TMS34010 Memory Cycle Timing
LAD15-LADO States To Drive Memory Array
LAD7-LADO Multiplexing Latch Circuitry
Equation for PAL U11 .. .
Local DRAM Access Timing
PROM Address Space and Shadow RAM
Frame Buffer Selection Logic
Frame Buffer Output Timing
SOB Memory Map .. .
HSTCTLL I/O Register
TMS34010 Interrupt Map
Screen Display with No Errors
Using Command Buffers 5 & 6 to Blank Entire Screen
DRAV Screen Display .. .
Register Display for Fill Screen, XY Addressing

Tables

Table

6-10
6-11
6-12
6-13
6-14
6-15
6-18
6-19
6-22
6-23
6-25
C-3
E-6
E-13
E-18

Page

2-1. SOB Jumpers, General .. 2-5
2-2. Jumper Settings, Analog Interface .. 2-6
2-3. Jumper Settings, Digital Interface 2-7
3-1. Numerical Values for Colors .. 3-7
3-2. Order and Location of Demonstrations in Tutorial Program 3-12
4-1. SOB Abbreviations and Symbol Definitions 4-22
4-2. SOB Command Summary .. 4-23
4-3. I/O Register Offsets ... 4-58
4-4. Pixel Processing Bit Descriptions .. 4-74
5-1. Signals Controlling Host Port Interface 5-2
5-2. Pinout for EIA Port .. 5-16
5-3. COM 2651 USART Internal Registers 5-16
5-4. Analog-Monitor Jumper Settings for Connector J4 5-17
5-5. Digital-Monitor Jumper Settings for J4 .. 5-18
5-6. SOB Pinouts at P3 .. 5-20
5-7. Power Requirements 5-21
6-1. Signal Inputs to Select Host Functions 6-5
6-2. USART Register Addresses _ . .. 6-16
E-1. Numerical Values for Colors .. E-2
E-2. Order and Location of Demonstrations in Tutorial Program E-4
E-3. PIXT Demo Suggested Command Buffer Values E-7
E-4. DRAV Demo Suggested Command Buffer Values _........ E-12
E-5. FILL-Demo Command Buffer Suggested Values . _ E-17

vii

1. Introduction

The Software Development Board (SOB) is a high-performance graphics card
that facilitates understanding TI graphics products. These include:

• TMS34010 Graphics System Processor

• TMS34070 Video Palette

• TMS4161 Multiport Video RAM

Accompanying this manual and board is a floppy disk containing demon­
stration, debugging, and diagnostic programs. Installation of the board and
the demo software is covered in Section 2 and Section 3.

Notes:

1. It is presumed that persons using the SOB are schooled in the assembly
language of the TMS3401 0 Graphics System Processor. The only way
the tutorial program supplied with this board can be an effective
learning tool is for the user to understand the instruction set. This set
is explained in the Assembler Kit and in the TMS3401 0 User's Guide
(SPVU001).

2. This introduction section covers general information applicable to the
SOB. If you wish to proceed directly to SOB installation and demon­
stration, see Section 2 and Section 3, and cover this introductory in­
formation later.

1-1

Introduction

1.1 SOB Features

1-2

• Board and demo software factory configured to support a 640 by 480
pixel (horizontal by vertical) resolution (similar to IBM Professional
Graphics Display).

• IBM PC card format.

• Maximum resolution of 1024 by 512 pixels with 4 bits per pixel. Display
resolution can be altered by changing crystal oscillator and reprogram­
ming timing control registers.

• 256K-byte frame buffer holds display (1024 x 512 x 4 bits per pixel).

• 512K bytes onboard program RAM.

• Program RAM and frame buffer accessed by host from TMS34010's
memory-mapped host port.

• Software single step and breakpoint are two of the more than 60 soft­
ware development commands.

• Debugger software on floppy disk includes software breakpoints, single
step, and run-with-count while machine status is displayed on host
monitor.

• Reverse assembler and single-line assembler.

• Demonstration and tutorial software on floppy disk.

• Real-time software environment.

• Direct interface to most digital and analog RGB raster-scan monitors.

• TMS34010 32-bit CMOS Graphics System Processor (TMS34010).

• TMS34070 16-of-4096 Color Palette.

• Onboard USART.

Introduction

1.2 Functional Overview

Figure 1-1 is a typical system consisting of:

• IBM- or TI-compatible PC,

• Graphics monitor with interconnecting cable,

• SDB (Software Development Board) correctly jumpered and installed in
PC,

• Applicable software on disk drive.

D
PC WIllI "M3401O
8OFTWARE·OE\IELOPMENT

===ALLED

•
COMPATIBLE
GRAPHICS
DISPLAY
(PARA. 2.2)

Figure 1-1. Typical Software Development Board System

The graphics SDB is a single card designed around the IBM PC I/O Expansion
Bus. The board is a software development tool for programmers writing ap­
plication software for the TMS34010 Graphics System Processor
(TMS3401 0). This module also demonstrates the simplicity of hardware de­
sign using the TMS3401 0 to develop a high-performance bit-mapped graph­
ics display.

The board comes with interactive debug software on floppy disks. Its features
include software breakpoints, software single step, and run with count. At the
same time, current machine status is displayed on the top half of the host
monitor.

Figure 1-2 is a block diagram of the SDB. The board contains 512K bytes of
program RAM for the TMS34010 to execute drawing functions, application
programs, and displays. Both program RAM and the frame buffer are accessi­
ble to the host by the TMS3401 O's memory-mapped host port.

1-3

Introduction

1-4

Figure 1-2. SOB Module Block Diagram

The frame buffer consists of eight TMS4161 EV4 SIP (single inline package)
memory modules organized into four color planes. This allows 16 colors per
frame from the digital monitor. The TMS34070 color palette incorporates a
12-bit color lookup table to give the programmer a choice of 16 colors in a
frame from a 4096-color palette. Furthermore, the palette incorporates a
unique line load feature to allow the color lookup table to be reloaded on every
line; meaning 16 of 4096 colors displayed per line.

Introduction

1.3 Overview of TMS34010 and Development Tools

The TMS34010 Graphics System Processor is a 32-bit microprocessor opti­
mized for graphics systems. It is a member of the TMS340 family of computer
graphics products from Texas Instruments.

The TMS34010 is supported by hardware and software development tools,
including a C compiler, a full-speed emulator, a software simulator, and an
IBM/TI-PC development board. The software development tools that are in­
cluded with the TMS3401 0 Assembly Language package include:

• Assembler

• Archiver

• Linker

• Code Conversion Utility

• Simulator1

These tools can be installed on the following systems:

• pes:
- TI-PC with MS-DOS
- IBM-PC with PC-DOS

• VAX:
- VMS (revision 3.7 and later)
- DEC Ultrix
- Unix System V

The TMS3401 0 assembly language tools create and use object files that are
in Common Object File Format, or COFF. COFF object format facilitates mo­
dular programming. Object files contain separate blocks (called sections) of
code and data that can be loaded into different TMS3401 0 memory spaces.

Figure 1 -3 shows the TMS3401 0 assembly language development flow. The
center section of the illustration highlights the most common path; the other
portions are optional.

• The assembler translates assembly language source files into machine
language object files. Source files can contain instructions (discussed
in the TMS34010 Usels Guide), assembler directives, and macro direc­
tives. Assembler directives control aspects of the assembly process such
as data alignment, placement of source code into sections, and source
listings.

The simulator is available in a PC version only.

1-5

Introduction

1-6

MaGro
Source
Flea

Figure 1-3. Software Development Flow

• The archiver allows collecting a group of files into a single archive li­
brary (e.g., several macros collected into a macro library). The assembler
searches through the library and uses the members called "macros" by
the source file. Archivers can also be used to collect object files into an
object library. The linker will include the members in the library to re­
solve external references during the link.

• The linker combines object files into a single executable object module,
resolving relocation values and external references. As input, the linker

Introduction

accepts relocatable COFF object files (created by the assembler) as well
as archived library members and output modules created by a previous
linker run. Linker directives also bind sections or symbols to specific
addresses or to within specific portions of TMS34010 memory, and
define or redefine global symbols.

• The main purpose of this development process is to produce a module
that can be executed on the Software Development Board. Other de­
bugging tools available are the Simulator and the XDS/22 Emulator:

The Simulator is a debugging tool that simulates TMS34010
functions in a configurable graphics environment. The simulator
allows you to design, implement, and evaluate both graphics and
nongraphics software systems. The simulator command set dis­
plays and maintains graphics and machine status information and
controls execution of the software system under development. The
simulator can execute linked COFF object modules produced by
the C compiler, assembler, and linker.

The XDS/22 Emulator is a realtime, in-circuit emulator.

• Most EPROM programming devices do not accept COFF object files as
input. The code conversion utility converts a COFF object file into
Intel hex or Tektronix hex object format that can be downloaded to an
EPROM programmer.

1.4 Manual Organization

Starting with Section 2, this manual is organized as follows:

Section

2

3

4

5

6

A

B

C

o

Description

Installation of the board including jumper settings and initial­
ization

Walkthrough demonstrating some graphics instructions and
debugging commands

Debugging Command Set in alphabetical order

Operation. Includes memory mapping, shadow RAM, Color
Palette modes, external interface, interrupts, expansion, specifi­
cations

Theory of Operation. Includes interfacing between major func­
tional areas and general data flow and functionality of each area

Data Sheet for SMC Programmable Communication Interface
(PCI) COM-2651

Parts List

Diagnostics. How to check the SDB should a malfunction be
evident. Includes troubleshooting steps.

Glossary.

1-7

Introduction

E Hands-On Tutorial. Repeats the first instructions demonstrated
in the Tutorial Section (Section 3) but suggests experiments
that help explain chip and board functions.

1.5 Applicable Documents

1-8

• User's Guides

TMS34010 User's Guide (SPVU001)
TMS34010 Software Development Board Schematics (SPVU003)
TMS34010 Assembler Tools User's Guide (SPDU076)
TMS34070 Color Palette User's Guide (SPPU016)

• Data Sheets

TMS34010 Graphics System Processor Data Sheet (SPPS011)
TMS4161 Video RAM Data Sheet (SMVS003)
TMS34070-66 Color Palette Data Sheet (SPPS016)
TM4161 EV4 64K x 4 SIP Data Sheet (SMMS614B)
TM4161 EP5 64K x 5 SIP Data Sheet (SMMS615B)

• Technical Papers

Dual Port Memory with High-Speed Serial Access (technical paper
reprint, SMVY001)
Video Memory Technology & Applications (technical paper reprint,
SMVY002)

• Application Reports

Topological Structure of the TMS4161 Application Report
(SMVA003)
High Performance Memory Access with the TMS4161 Application
Report (SMVA005)

• Product Bulletins

TMS340 Product Bulletin (SPVT001)

TMS34010 Product Bulletin (SPVT002)

2. Installation

This section describes how to configure the board:

Page

• Cabling 2-2

• Set Jumpers 2-4

• Load Software 2-8

• Installation Checkoff 2-8

• Screen Display at Startup 2-12

2-1

Installation

2.1 Items as Shipped

The following items are part of the SOB package:

• Software Development Board (SOB) for TMS3401 0 Graphics Processor

• Four floppy diskettes (SOB USER INTERFACE)

USER INTERFACE, IBM PC (SDB340 Debugger)

USER INTERFACE, TI PC (SDB340 Debugger)

USER INTERFACE, DEMO & DIAGONOTICS Software

USER INTERFACE, LOADER & LIBRARY

• Envelope containing an alternate decode PAL chip for insertion on TI
PC systems. Changeout is in socket U3 (shown in Figure 2-3 on page
2-9).

• Software Development Board User's Guide (this book)

• TMS34010 Data Sheet and errata sheet

• Warranty card

• Factory repair authorization and policy

If any item is missing, report this to your distributor.

2.2 Typical System Configuration

2-2

The SOB comes configured to be installed as shown in Figure 2-1. Install the
board in a PC. The interactive debug display will be on the PC screen.
Graphics are shown on an adjacent monitor attached to the DB9 connector
on the top (upper) back edge of the SOB. Cabling is with the standard
DB9-pin connectors with the monitor. Graphics displays for which the SOB
is factory configured include:

• IBM Professional Graphics display

• Princeton Graphics SR-12P

• NEC Multi-Sync monitor (JC-1401 P3A)

If your system is an IBM PC with one of the above display monitors, check
Table 2-1, Table 2-3, and Table 2-2 for correct factory settings (settings for
IBM systems are shown in bold·face type). Then go to Section 2.5 and
complete the installation. Otherwise, make the settings as indicated in Table
2-1 through Table 2-2 before installing the board and running the software.

SOB power requirements are listed in Table 5-7 on page 5-21

Installation

GlW'HC8
MONTOR

•

Figure 2-1. Cabling Between PC and Display Monitor

2-3

Installation

2.3 Jumper Settings

Figure 2-2 and Table 2-1 through Table 2-2 identify jumpers, setting de­
scriptions, and factory settings.

Note that jumper W2 has to be set for a TI PC (set for I BM as shipped) as
shown in Table 2-1.

Set jumper W7 according to connector pin 6 from the graphics monitor used:

W7,1-2
W7,2-3

Intensity on pin J4-6
Ground on pin J4-6

O~O[§!JO I U33 I
O~O~ O~"

O~DI ~:.:. LwJ~~1
01 U39 10§]==~~~O~
DG6J W2 D~ DC§]
D~""D~~

1-7
8-14
15-21

J3

~r=illilli:llil~~r=:l
~~~~~~~~ 11

15 

7 21 

~f++--. 

W9 

Figure 2-2. Jumper locations and Configurations 

2-4 



Installation 

Table 2-1. SOB Jumpers, General 

JUMP- POSI-
FEATURE ENABLED ER TION 

Host Chip Select (HCS on TMS3401 0) grounded W1 2 to 3 
Host Chip Select (HCS on TMS3401 0) to bus decode logic at P1 W1 1 to 2t 

Host Interrupt to PC Interrupt Level 3 (IBM PC) W2 3 to 2t 
EMUACKL to PC Interrupt Level 3 (IBM PC) W2 3 to 4 

Host Interrupt to PC Interrupt Level 2 (TI PC) W2 1 to 2 
EMUACKL to PC Interrupt Level 2 (TI PC) W2 4 to 5 

Palette In Line Mode W3 2 to 3t 
Palette In Frame Mode W3 1 to 2 

tAs shipped. 

2-5 



Installation 

Table 2-2. Jumper Settings. Analog Interface 

JUMP- POSI-
F~ATURE ENABLEP ER TiON 

Analog Interface Enabled W9 8 to 15t 
9 to 1St 

10 to 17t 
11 to 18t 
12 to 19t 
13 to 20t 
14t021t 

Negative Vertical Sync on pin J4-5 (connector J4) W4 1 to 2 
W5 1 to 2 

Positive Vertical Sync on pin J4-5 (connector J4) W4 1 to 2 
W5 2 to 3 

Negative Horizontal Sync on pin J4-4 (connector J4) WS 1 to 2 
W8 1 to 2 

Positive Horizontal Sync on pin J4-4 (connector J4) WS ~ to 3 
W8 1 to 2 

Negative Composite Sync on pin J4-4 (connector J4) WS 2 to 3t 
W8 2 to 3t 

Positive Composite Sync on pin J4-4 (connector J4) WS 1 to 2 
W8 2 to 3 

Logic Low on pin J4-5 (connector J4, VIDOUT5) W4 2 to 3t 
W5 1 to 2 

Logic high on pin J4-5 (connector J4, VIDOUT5) W4 1 to 2 
W5 2 to 3t 

tAs shipped. 

2-6 



Installation 

Table 2-3. Jumper Settings. Digital Interface 

JUMP- POSI-
FEATURE ENABLED ER TION 

Digital Interface Enabled W9 1 to 8 
2 to 9 

3 to 10 
4 to 11 
5 to 12 
6 to 13 
7 to 14 

Negative Vertical Sync on pin J4-9 (connector J4) W4 1 to 2 
W5 1 to 2 

Positive Vertical Sync on pin J4-9 (connector J4) W4 1 to 2 
W5 2 to 3 

Negative Horizontal Sync on pin J4-8 (connector J4) W6 1 to 2 
W8 1 to 2 

Positive Horizontal Sync on pin J4-8 (connector J4) W6 2 to 3 
W8 1 to 2 

Negative Composite Sync on pin J4-8 (connector J4) W6 2 to 3 
W8 2 to 3 

Positive Composite Sync on pin J4-8 (connector J4) W6 1 to 2 
W8 2 to 3 

Ground on pin J4-2 (connector J4) W7 2 to 3 

Intensity on pin J4-2 (connector J4) W7 1 to 2 

2-7 



Installation 

2.4 Creating File CONFIG.SYS (IBM PC) 

For the Debugger to operate properly on an IBM PC, a CONFIG.SYS file must 
be resident in the root directory. Use an editor to construct file CONFIG.SYS 
in the main root directory with the following contents: 

BUFFERS = 20 
FILES = 20 
DEVICE = C:/MSDOS/ANSI.SYS (not for TlPC) 

In this example, C:/MSDOS/ANSI.SYS is the entire path name to the system's 
ANSI.SYS file. If ANSI.SYS is in another directory, use that pathname instead 
of C:/MSDOS/ANSI.SYS. 

2.5 Installation Summary 

2-8 

The following is an installation checkoff list: 

1) Ll 

3) Ll 

(Not for TIPC) Verify your system is configured so that device 
driver ANSI.SYS can be installed at system start (by CON­
FIG.SYS). 

Make a copy of the diskettes supplied. Keep the master disks in 
a safe place for backup purposes. 

Make certain the host computer: 

Ll Has at least 512K bytes RAM, required 
for software support packages, and 

[_] The following addresses are reserved 
(see memory maps in Figure 2-4): 

- For IBM PC: >C7000 to >C7FFF 
- For TI PC: >E7000 to >E7FFF 

The SOB comes ready for use with an IBM PC. If you have a 
TI PC, first change out the PAL in socket U3 (shown in Figure 
2-3) with the PAL marked "TlA0100CC" shipped in its own 
envelope with the SOB. Figure 2-3 shows chip alignment. 



Installation 

Note: 

O~D~OI U33 I 

O~D~ O~'" 

O[§JOI ~_I ~OO I 
01 U39 lo[§].o~~~o 
olJihl'l'"a~ DC§] 
O[~]ftQL§:] ~ 

~-----,_\ " 

r1t... _____ '_'_'_'....11 

Figure 2-3. Alignment of Alternate PAL in U3 

Verify that jumper W2 is set for the PC type (IBM or TI) as 
shown in Table 2-1. 

Sockets U35 and U36 are reserved for future use and are shipped un­
populated. 

6) LJ 

7) [_J 

8) LJ 

Install board in a PC vacant slot 

Connect cable between display monitor and the SOB top port 
(J4, top port at end of board) 

Boot the MS-DOS system on the host computer. The MS-DOS 
version must be 2.11 or later, or PC-DOS version must be 2.1 
or later. Note that the CONFIG.SYS file must install the device 
driver ANSI.SYS at boot time (not applicable for TlPe). 

Insert the Debugger diskette into the host A drive (diskette 
correctly marked for corresponding host -- "IBM PC" or "TI 
PC"). Then at the keyboard, enter: 

2-9 



Installation 

2-10 

A:<CR> 
SDB340<CR> 

or 

A:<CR> 
SDB340T<CR> 

(drive-A designator) 
(call Debugger program, IBM) 

(drive-A designator) 
(call Debugger program, TI) 

When the Debugger screen comes up (shown in Figure 2-5), 
call and execute the Demonstration program from the screen 
command line. Enter: 

L TUTOR_E<CR> 

RUN<CR> 

(load Demonstration program) 

(execute program) 

Note that if the default disk drive il) not the floppy drive, the 
drive designator must precede the file name (e.g., 
A: TUTOR_E) . 

If the SOB and display monitor are correctly installed, the Tutorial program 
will begin display on the display monitor. The program runs as described in 
Section 3. 

Notes: 

1. Several steps can be eliminated in the Tutorial program setup by en­
tering an " -f" suffix (note that a space precedes the' -f') when calling 
the Debugger. This will load the Debugger and call the Tutorial pro­
gram with one command. For example, with the proper drive desig­
nated on an IBM PC: 

SDB340 -f<CR> (call Debugger & Tutorial) 

2. To avoid having to maintain a copy of SDB340.GSP and the SOB Help 
files in each directory in which you are developing software, it is 
suggested that you create directory \GSPTOOLS and install within it 
the SOB files (e.g., SDB340.GSP and help files such as GSPE­
SAVE.HLP). Then equate the GSPTOOLS pathname with GSPDIR 
using the DOS command SET. For example, for files copied onto the 
C disk and within GSPTOOLS: 

SET GSPDIR=C:\GSPTOOLS 

NOTE: Use all upper case and no spaces. 

If you wish, execute the Demonstration program which runs four minutes. 
First remove the Debugger diskette and insert the DEMO & DIAGNOSTIC 
diskette. Then enter: 

L MAINDEM<CR> (load Demonstration program) 



Installation 

RUN<CR> (execute Demonstration program) 

The Demonstration program repeats continuously. While running, you can 
check several of the Debugger commands such as those demonstrated in 
Section 3. A full description of the commands is provided in Section 4. 

~7~r-----------~ >E7000r-------.., 

HSTDATA HSmATA 

~7CFF >E7CFF 
>C7DOO >E7DOO 

HSTCTL HSTCTL 

>C7DFF >E7DFF 
>C7EOO >E7EOO 

HSTADRL HSTADRL 

>C7EFF >E7EFF 
~7FOO >E7FOO 

HSTADRH HSTADRH 

>C7FFF >E7FFF 
e) FOR IBM-PC b) FOR n-pc 

Figure 2-4. Register Locations in R$served Memory 

2-11 



Installation 

GSP Register and 
Reg F i I e A 
A0 00000000 
A1 00000000 
A2 00000000 
A3 00000000 
A4 00000000 
A5 00000000 
Ab 00000000 
A7 00000000 

<men i tor'" atus) 
st 00000010 NCZV=0000 
pc FFC00000 0550 MNEMONIC 

lb/32 PS= 0 PM=0 00 
0/ 0 w=off pp= S~D 
B8 00000000 colorO 
Bq 00000000 colorl 

Bl0 00000000 temp_x 
Bll 00000000 temp y 
B12 00000000 tempoa 
B13 00000000 tempst 
B14 00000000 tempct 

SP 
Cnt= 4 

COMMAND 
error messages 

L--____ Stack Po inter 
Control I/O Reg i ster 

'---------Next Instruction 
'--------- Opcode of Next Instruct ion 

Last Instruction Command Coun t ______________________ --l 
'-f---f--------- Program Co un ter 

B Registers 

B0 SADDR 
Bl SPTCH 
B2 DADDR 
B3 DPTCH 
B4 OFFSET 
B5 WSTART 

No. 

Source Address 
Source Pitch 
Destination Address 
Destination Pitch 
Linear Bit Offset 
Window Start Address 

status and I/O Control Registers 

N Neg. 
~ ~:~:;y 
V Overflow 

SR 
SR 
SR 
SR 

Window End Address 
Delta Y/Delta X 

Bb WEND 
B7 DYDX 
B8 COLOR0 
BCl COLORl 
B10-14 
B15 SP 

Source Background Color 
Source Foreground Color 
PixBlt Temporary Regs 
Stack Pointer 

1 Interrupt Enable 
T Tr an sparen cy 

C ~!=~tt ~~:;~rg~::~tion 
H PixBlt Horiz. Direction 

SR 
I/O 
SR 
I/O 
I/O 

Figure 2-5. Screen Display After Debug Software Installed 

/ 

2-12 



3. Tutorial 

On each Debugger diskette (one each for IBM and TI PCs) resides a Tutorial 
program in TMS 34010 object form: 

TUTOR-E.OUT 

When executed, this program displays several graphics functions on the dis­
play monitor, accenting these by stopping at pre-set software breakpoints. At 
such points, machine instructions can be inspected on the Debugger panel. 
Functions include: 

• Draw horizontal, vertical, and diagonal lines, 

• Perform windowing, 

• Write out characters in several fonts and sizes, etc., 

• Demonstrate other aspects of pixel processing. 

This section gives a general discussion of the addressing scheme and data 
used to specify pixels (Picture ELements - - the smallest controllable element 
on a screen). It also describes the disk resident Tutorial program and its exe­
cution. Also shown is how to assemble and link the three modules of the 
program to obtain your own source and object, demonstrating one method of 
constructing a graphics program. 

Note: 

Appendix E is a repeat of the first instructions demonstrated in this sec­
tion. The difference is that you are encouraged to make changes to the 
machine state (e.g., registers, etc.) in order to discover the results of such 
changes. 

Covered in this section: 

• 

• 

Elemental Explanation of Bit-Mapped Graphics: 

Graphics display 
Screen format, memory addressing 
Storing bit-mapped images 
Steps in bit mapping 

Calling Tutorial Program 

3-3 

3-3 
3-3 
3-6 
3-6 

3-11 

3-1 



Tutorial 

3-2 

• Instruction Type Demonstrations: 

Pixel transfer (PIXT) 
Draw and advance (DRAV) 
Array fill demonstrations (FILLXY, FILL L) 
Pixel block transfers (PIXBLT): 

- Transparency processing 
- Pixel processing . 

• Window Demonstration 

• Text Spacing Demonstrations: 

Block spacing 
Proportional spacing 
Kerned spacing 

3-14 
3-17 
3-22 
3-26 
3-29 
3-29 

3-31 

3-33 
3-33 
3-33 



Tutorial - Elements of Bit-Mapped Graphics 

3.1 Elements of Bit-Mapped Graphics 

Note: 

This section provides a tutorial approach to comprehending bit-mapped 
graphics -- including screen format and addressing, pixel addressing and 
color designation, and the role of several of the B registers. Further in­
formation is available in the TMS3401 0 User's Guide. If you are fully fa­
miliar with these subjects and wish to start executing the Tutorial program, 
go to Section 3.2 on page 3-11. 

3.1.1 The Graphics Display 

The Tutorial program assumes a 640 by 480 display with a 4-bit-per-pixel, 
16-color display. Although the program only displays in a 256 x 128 block in 
the upper corner of the screen, the display pitch is assumed to be 1024 pixels. 
This conforms to the memory configuration of the SOB used in conjunction 
with one of the monitors specified in Figure 2-5 on page 2-12. 

3.1.2 Screen Format and Memory Addressing 

The Tutorial program uses a display area of 256 x 128 (>100 x >80) pixels, 
appearing in the upper left corner of the display monitor. When the Tutorial 
is initialized, the borders of the demonstration area are drawn for viewer ref­
erence. 

While the display area' used by the program is 256 (>100) pixels wide, the 
program assumes a full screen width of 1024 (>400) pixels. With a pixel size 
of four-bits-per-pixel, this requires 4096 (>1000) bits per horizontal line. This 
is Destination Pitch, stored in register 83. With a vertical dimension of 
512 lines (only 480 are used), total display memory on the SOB is: 

512 lines x 1024 pixels/line x 4 bits/pixel = 2,096,152 bits/screen 
= 256K bytes/screen 

To store this screen in memory, a 256K byte (128K word) memory segment 
is needed. Thus, the lower 2 M bits from >0000 0000 to >001 F FFFF are 
reserved as the Frame Buffer (screen memory). This memory configuration 
is shown in Figure 3-1 'on page 3-4. 

3-3 



Tutorial - Elements of Bit-Mapped Graphics 

3-4 

MEMORY SPACE 
(Word Addr.) 

>00000000 
thru 

001 F FFFO 

>00200000 
thru 

>BFFF FFFO 

>COOO 0000 
thru 

>COOO ()1 FO 

>FFCO 0000 
thru 

>FFFD FFFO 

>FFFE 0000 
thru 

>FFFF FFFO 

OCCUPANTS 

DISPLAY 
RAM 

Reservedt 

IOREGS 

USER CODE 

RESERVED FOR 
DEBUGGER 

tFor a more detailed description of this area, 
see Figure 5-4 on page 5-6 

Figure 3-1. SOB Memory Map 

A key feature of the TMS3401 0 is XV addressing, which is conveni ent 
when manipulating information stored in screen memory. The XV mode uses 
a 32-bit address divided into two parts: 

• 16 most-significant bits are the Y (vertical) coordinate 

• 16 least-significant bits are the X (horizontal) coordinate 

Anyone of the general-purpose A or B registers can be used to contain this 
address. This addressing is represented in Figure 3-2. 



Tutorial - Elements of Bit-Mapped Graphics 

~--32 ~ 

j---~~----~-+x 

v 

Figure 3-2. Pixel Addressing Using XV Coordinates 

PALETTE OFFSCREEN 
DATA DISPLAYABLE PIXELS MEMORY 

XOOO-XOFF X1OO-XAFF XBOO-XFFF 
~ ____________ A' ________ ~~ 

'X:( 007F 
LIN 0007 ~~--

027F 
cw=c 

027F 
'X:( 01DF 
LIN 0010 ~~ ___ ~~l!E __ FAFC 

'X:( ADDRESS = I Y X 

14-18 MSb-tft-'te LSb-tI 

Figure 3-3. Linear and XV Addressing Example for SOB Tutorial 
Display (Upper Left) and Complete Screen 

Figure 3-3 depicts both linear and XV addressing of an SOB screen display. 
The upper-left corner is the origin of the screen display. The upper leftmost 
pixel has an XV address of >0000 0000, meaning X =0, V = O. The linear 
address of this pixel is the value in Register B4, the Offset Register. If 
the screen portion of memory starts at >0000 0000, this will be the value 
loaded into the Offset Register. Note: the SOB is shipped in line-load mode 
and software loads a default of >100 into the Offset Register. 

Segments of the tutorial program's screen XV address may range: 

• X segment: >0000 to >OOFF, incrementing from left to right 

• V segment: >0000 to >007F, incrementing downwards from the top 

3-5 



Tutorial- Elements of Bit-Mapped Graphics 

Each horizontal line is >1000 bits across (>400 pixels at 4 bits per pixel). For 
the top line of the display: 

• Linear addresses >0000 0000 to >0000 OOFF contain palette data for 
the line. 

• Linear addresses >0000 0100 through >0000 OAFF contain displayed 
pixel data for the line (the Tutorial program uses only >0000 0100 to 
>000004FF). 

• Linear addresses >0000 OBOO to >0000 OFFF contain non-displayed 
offscreen pixel data on the line. 

• (For the second line, linear addresses >0000 1000 to >0000 10FF 
contain palette data for the second line, etc.) 

For linear addressing, Registers SPTCH and DPTCH (B1 and B3) must be set 
to the width, in bits, of the destination array. For XY addressing, I/O Registers 
CONVSP and CONVDP (offsets >130 and >140) must be set using the fol­
lowing code (width must be a power of 2; e.g., 4096 below): 

MOVI 
LMO 
MOVE 

4D96,AD iwidth of lK x 4 bits-per-pixel 
AD,Al 
Al,@CONVSP i(use @CONVDP for destination) 

3.1.3 Storage of Bit-Mapped Images 

The Tutorial's display on the monitor is stored as data in off-screen memory. 
These patterns are stored as a binary data array with one bit representing one 
pixel. These are brought to the screen using the Pixel Array Operation With 
Expansion instruction (e.g., PIXBLT B,XY). This operation expands the array, 
equating each zero bit of the source to the pixel value stored in Register 
COLORO (88), and each one bit to the value in Register COLOR1 (89). 
The amount of memory needed to store an expanded array is equal to the 
product of the unexpanded array memory size and the pixel size. 

3.1.4 Steps in Bit Mapping 

3-6 

To create a graphics pattern (e.g., a font), start with drawing the image on a 
grid having a width equal to an integer number of data words (16-bits each). 
Grid height can be any number of rows required by the image. 

Next, decide if the image is to be a single foreground color with a single 
background color. If so, the most efficient method would be to store the im­
age data in compressed binary format and produce the graphics using the pixel 
array operation with EXPAND. If this is the case, the following procedure can 
be used to digitize the data into DATA statements. 

Step 1, Color. 
Since the TMS3401 0 supports power-of-two pixel widths, the program's pixel 
size is four bits per pixel, allowing the representation of sixteen colors. The 
following list (Table 3-1) shows the colors and their corresponding pixel va­
lues -- values which are initialized by the Tutorial program at program outset. 



Tutorial - Elements of Bit-Mapped Graphics 

Table 3-1. Numerical Values for Colors 

PIXEL VALUE 

(BINARY) 1 (DECIMAL) COLOR 

0000 0 Black 
0001 1 Dark Blue 
0010 2 Red 
0011 3 Magenta (dark red) 

0100 4 Green 
0101 5 Cyan (light blue) 
0110 6 Yellow 
0111 7 White 
1xxx 8-15 Various grey scale 

Step 2, Digitize Pixels. 
Convert the pixel patterns into assembly-language 16-bit data statements in 
the following format: 

l6-Pixel Pattern: 
(X = ON, . = OFF) 

X .. X .X.X X ... X.X. 

data value: 1010 1001 = >51A9 

Convert each 16-pixel string in the same way, continuing until the total image 
has been digitized. The resulting hexadecimal .WORD statements are included 
in the assembly language program in the following example: 

.WORD >958A,>AAAA,>CCOO,>FF11, •.. 

These would be converted to pixel image patterns (binary 0 = COLORO Reg­
ister colors, binary 1 = COLOR1 Register colors): 

>51A9,>5555,>0033,>88FF, ... 

The following is an example of the data manipulation that takes place during 
the execution of instruction PIXBL T B,L (pixel array operation with expand 
from binary to linear). 

3-7 



Tutorial - Elements of Bit-Mapped Graphics 

3-8 

(1) Register setup: 

SADDR (BO) 0002 4000 
SPTCH (B1) 0000 0020 
DADDR (B2) 0000 5300 
DPTCH (B3) 0000 0400 

OFFSET (B4) 0000 0000 
DYDX (B7) 0001 0020 

COLORO (B8) 0000 0000 
COLOR1 (B9) 2222 2222 

(2) Pixel Data. The following 16-bit data words are found starting at the 
source (linear) address: 

LINEAR 
ADDRESS 

>24000 
>24010 

DATA 
(HEX) 

>330F 
>88AA 

DATA 
(BINARY) 

0011 0011 0000 1111 
1000 1000 1010 1010 

This is expanded in being written to the destination address with the PIXBL T 
instruction (COLOR1 color code = 2 = red, COLORO code = 0 = black). 

DESTINATION 
ADDRESS 

>5300 
>5310 
>5320 
>5330 

>5340 
>5350 
>5360 
>5370 

VALUE (HEX) 

>2222 
>0000 
>0022 
>0022 

>2020 
>2020 
>2000 
>2000 

Another way to view this is to see the patterns of linear addresses and their 
expansion to destination addresses side-by-side. 

ADDRESS VALUE 

(binary) 

Source: >24000 0011 0011 0000 1111 
>24010 1000 1000 1010 1010 

(hexadecimal) 

Destination: >5330-5300 0022 0022 0000 2222 
>5370-5340 2000 2000 2020 2020 

(3) Screen Image. This results in a screen image of (G = green, . = black): 

SCREEN IMAGE: GGGG ..•• GG •• GG •.• G.G.G.G ... G ... G 
t --16 pixels-- t --16 pixels-- t 

Compare the pixel patterns, shown in two 16-pixel groups above, with the 
color patterns in the linear address and the XV address. 



Tutorial - Elements of Bit-Mapped Graphics 

(4) Linear-to-XV Conversion. An example of converting linear address to XV 
address is shown below. When converting from linear to XV screen address­
ing, the order of significance of each pixel unit within each memory word ap­
pears to be reversed. For example: 

PIXEL PIXEL 
LINEAR ADDR. DATA XV ADDR. VALUE NO. 

>0000 0000 >5678 >0000 0000 >8 0 
>0000 0001 >7 1 
>0000 0002 >6 2 
>0000 0003 >5 3 

>0000 0010 >9ABC >0000 0004 >C 4 
>0000 0005 >B 5 
>0000 0006 >A 6 
>0000 0007 >9 7 

Note that the least significant pixel in a word is displayed on the screen in 
front of the next significant pixel. For example, the first displayed 4-bit pixel 
of a 16-bit word is in the least significant four bits of the word (on right side 
as shown below in Figure 3-4): 

WORD 1 Pixel 4 Pixel 3 Pixel 2 Pixel 1 

WORD 2 PixelS Pixel 7 Pixel 6 Pixel 5 

WORD x Pixel4x I Pixel 4x-1 I Pixel 4X-21 Pixel 4x-3 I 
Figure 3-4. Pixel Placement in Memory Words 

The pseudo code in Figure 3-5 can convert linear to XV addressing: 

3-9 



Tutorial - Elements of Bit-Mapped Graphics 

3-10 

convtoxy (linear_data) 
{ 
log_val = (NOT (CONVSP» AND OxlF~ 
y_part = ( (linear_data - OFFSET) » log_val)~ 

/* generate mask for x */ 
X-mask = (11 « log_val) - ll~ 

x-part = «linear_data - OFFSET) AND (X-mask-l» RIGHT 
SHIFT log2_pixsize~ 

} 

long convtolin (yxdata) 
{ 

} 

log_val = (NOT (CONVSP» AND Ox1F; 

log_val = (OFFSET + 
«yxdata.y_part LEFT SHIFT log_val) OR 
(yxdata.x-part LEFT SHIFT log2_pixsize» )~ 

Figure 3-5. Pseudo Code to Convert Linear to XV Addressing 



Tutorial - Calling the Tutorial Program 

3.2 Calling the Tutorial Program 

The program can be called up (1) in a batch along with the Debugger or (2) 
with a Debugger command. In either case, the Debugger software must 
be either (1) on the current disk drive in the current directory (2) or in one 
of the directories in the search path (see MS-DOS PATH command). In ad­
dition, the file SDB340.GSP must either be on the current disk drive in the 
current directory or in the drive/directory combination as specified by GSPDIR 
in the MS-DOS command processor's environment. (See MS-DOS SET 
command and Section 2.5.) 

3.2.1 Batch Call with Debugger 

An " -f" parameter (space precedes the '-f') must be added to the Debugger 
call. When used, the files SDB340 (SDB340T for TI systems) and GSPIN­
PUT.OOO must be on the current drive in the current directory. 

For an IBM-type PC: 

SDB340 -f<CR> 

The same operation for a TI PC: 

SDB340T -f<CR> 

The Debugger will be called and, in turn, execute the Tutorial software. If the 
" -f" was left off, only the debugger would be called. 

3.2.2 Call Tutorial From Debugger 

If you are in the Debugger program, call the Tutorial with the Load command. 
To call the Debugger: 

For an IBM-type PC: 

SDB340<CR> 

The same operation for a TI PC: 

SDB340T<CR> 

The TUTOR_E.OUT program must be on the current disk drive in the current 
directory and the Debugger display is on the screen as shown in Figure 2-5. 
Load the Tutorial with the following command: 

Command[l] L TUTOR-E<CR> 

3-11 



Tutorial - The Tutorial Program 

3.3 The Tutorial Program 

After loading the Tutorial (in Section 3.2), execute it with: 

Command [1] RU<CR> 

The Tutorial will execute until the first software breakpoint is encountered. 
This initial run is required for proper program execution -- it sets up the 
TMS34010 registers to specify the format of screen memory. The borders of 
the simulated screen (on the graphics monitor) are drawn for reference. All 
graphics will be drawn inside this box. 

3.3.1 Tutorial Program Flow 

3-12 

After the screen borders are drawn on the graphics monitor, you can choose 
program flow. The choice is: 

• a standard run of the Tutorial Program, or 
• a specific demonstration. 

A standard run comprises the following specific demonstrations in the order 
shown in Table 3-2 (descriptions are on the pages shown). 

Table 3-2. Order and location of Demonstrations in Tutorial 
Program 

Order PC Value Demonstration Page 

1 >FFCO 0740 Pixel Transfer 3-14 
2 >FFCO 07BO Draw and Advance 3-17 
3 >FFCO 0820 Fills 3-22 
4 >FFCO 08EO Pixel Block Transfer 3-26 
5 >FFCO OAEO Transparency & Pixel Processing 3-29 
6 >FFCO OB20 Windowing 3-31 
7 >FFCO OB80 Text Spacing 3-33 

Run Standard Program. 
The Tutorial Program can be executed for a standard run by entering the fol­
lowing command: 

Command [2] RU<CR> 

The program will be executed in the order shown in Table 3-2. Once a soft­
ware halt is reached, you can step through the program by pressing the <CR> 
key at each halt. 

Select Specific Demonstration. 
You can select anyone of the seven routines listed in Table 3-2. To avoid 
visual confusion, select a specific program only when the simulated graphics 
screen appears blank except for the screen borders. 

To choose the routine, enter: 



Tutorial - The Tutorial Program 

(1) Command [2] PC FFCOOxxx<CR> 

followed by: 

(2) Command[2] RU<CR> 

where "FFCOOxxx" is a program counter value listed in Table 3-2. 

When each individual demonstration is completed, the example is cleared and 
only the screen border remains showing. At this time, you can select and ex­
ecute another demonstration with the above two steps, or you can execute the 
next sequential demonstration by another RUn command as in step (2). 

The following paragraphs describe the instructions demonstrated in the rou­
tines listed in Table 3-2. 

3.3.2 Resuming Run Mode 

While stopped in a particular demonstration, you can use commands to check 
aspects of execution (e.g., the DR command to switch between the A-8 Re­
gisters and the 110 Registers). To resume executing the tutorial sequence, 
merely reissue the RUn command: 

Command [2] RU<CR> 

3.3.3 Clearing the Screen 

If the tutorial programs are not executed in the order presented (e.g., such as 
in Table 3-2), the demonstration area will sometimes not fully erase. Figure 
3-12 on page 3-25 in the FILL XV demonstration shows an easy way to clear 
the demonstration area of the screen, and additional values to be used to blank 
the entire screen. 

3-13 



Tutorial - Pixel Transfer (PIXT) 

3.4 Pixel Transfer (PIXT) PC = >FFCO 0740 

3-14 

Syntax: PIXT <source>, <destination> 

Operation: A pixel value specified by the source operand is written to the lo­
cation indicated by the destination operand. The instruction 
formats supported by the TMS3401 0 are: 

PIXT Rs,*Rd Register to indirect linear 

PIXT Rs,*Rd.xy Register to indirect xy 

PIXT *Rs,Rd Indirect linear to register 

PIXT *Rs,*Rd Indirect linear to indirect linear 

PIXT *Rs.xy,Rd Indirect xy to register 

PIXT *Rs.xy,*Rd.xy Indirect xy to indirect xy 

When the destination is an indirect address of either type (linear 
or XV), a pixel processing option may be selected via the Con­
trol Register to perform an operation on the source pixel value 
before it is transferred. If the transparency bit is set in the Con­
trol Register and the source pixel value is zero, the destination 
pixel value will not be modified. The size of the pixel must be 
set in the PSIZE I/O Register and plane masking is in effect as 
specified in the PMASK I/O Register. If either the source or 
destination are indirect xy mode, the appropriate conversion 
factor I/O Register must be loaded. 

Demonstration Start: The PIXT demonstration begins at PC = >FFCO 0740 

(1) Enter: RU<CR> to begin the PIXT demonstration. 

The mnemonic 'PIXT' is drawn in the upper left corner and the registers are 
set up for five demonstrations of the PIXT instruction. The first example of this 
instruction is a register-to-register indirect XV move: PIXT A2, * A1.xy. 

The value of the pixel to be moved is >6 (indicating color yellow as listed in 
Table 3-1 on page 3-7). It is contained in the four least significant bits (LSbs) 
of Register A2. This value is written to the XV address contained in Register 
A1 (>00400080), replacing the value which is stored there. Since the desti­
nation is in the XV mode, it is necessary to set the CONVDP I/O Register 
(conversion register, destination pitch) to the appropriate value (>0013 for 
the demonstration screen size) for conversion to the correct address. This 
setup writes one pixel colored yellow (>6 as in Table 3-1 on 3-7) to the 
center of the demonstration screen. 

(2) Enter: RU<CR> to execute instruction PIXT A2,*A1.xy. 



Tutorial - Pixel Transfer (PIXT) 

PIXT 

• • • 

Figure 3-6. PIXT Display 

The pixel appears in the center of the demonstration area, and the registers are 
unchanged. 

The instruction PIXT • A 1.xy,A3 employs an XV address stored in Register 
A1 to point to a pixel value in memory (on the screen) as the source. The 
CONVSP I{O Register (conversion factor, destination pitch) must be loaded 
with the appropriate value to convert the XV source address (a program task). 
The pixel value is then copied into the LSbs of the destination register, A3, 
with all MSbs set to zero. 

(3) Enter: RU<CR> to execute instruction PIXT *A1.xy,A3. 

The value of the yellow pixel (>6) drawn in the first example is copied into 
Register A3, replacing >FFFF FFFF with >0000 0006. No other register 
values change. 

The third example of PIXT demonstrates a move from a register to a linear 
address. Since the move does not use the XV addressing mode, it is not nec­
essary to set either the CONVSP or CONVDP I{O Registers. 

(4) Enter: RU<CR> to execute instruction PIXT A3,*A4. 

The pixel value stored in Register A3 is moved to the linear address stored in 
A4 (>40200). A yellow pixel is drawn to the left of the first pixel. 

The fourth PIXT example demonstrates transferring pixels from one XY screen 
location to another. With both source and destination being XY indirect, both 
CONVSP and CONVDP must be set up appropriately. 

3-15 



Tutorial - Pixel Transfer (PIXT) 

3-16 

(5) Enter: RU<CR> to execute instruction PIXT * A1.xy,· A3.xy. 

The pixel value at the XV address in A1 (>0040 0080) is copied to the lo­
cation at the XV address in A5 (>0040 OOCO). The center yellow pixel is co­
pied to the right. 

This completes the demonstration of the PIXT pixel transfer instruction. 



Tutorial - Draw and Advance (DRAV) 

3.5 Draw and Advance (DRAV) PC = > FFCO 0780 

GSP Register 
Reg File A 

AO ............ .. 
A1 00010000 
A2 001E0040 
A3 .......... .. 
A4 ............ .. 
A5 ............ .. 
A6 .............. .. 
A7 ............ 

Syntax: DRAV < Rs(source) >, < Rd(destination) > 

Operation: A pixel of COLOR1 Register color is written to the XY location 
stored in Rd. Immediately afterwards, the value in Rd is incre­
mented by the value in Rs. NOTE: Rs and Rd must both 
be in the same register file (either A or B). 

(1) Enter: RU<CR> This writes the mnemonic DRAV inside the 
demonstration box, and the appropriate operand registers are set 
up for the draw and advance. The display appears as follows 
( ........ = don't care): 

and Machine Status--SDB Debugger fs 16/32 PS~ 0 PM~ 0000 
Reg File B fe 0/ 0 w~off pp~ S -> D 

A8 .......... .. BO .............. .. saddr B8 ............... co1orO 
A9 .............. .. B1 .............. sptch B9 66666666 co1or1 

A10 .............. .. B2 ............... daddr B10 .. ............. temp x 
All .. .............. B3 00001000 dptch Bll ............... temp y 
A12 ............ .. B4 00000100 offset B12 .............. tempda 
A13 .......... .. B5 ................ wstart B13 .. ............ tempst 
A14 ............ .. B6 .............. wend B14 .. .............. tempct 

SP FFC2DEEO B7 .. .............. dydx 
Software Halt encountered (Trap 29) . <Cache status> Cnt~ 284 
st 00000010 
pc FFC02140 

NCZV~OOOO ITPVH~00010 SP~FFC2DEEO Ctl~OOOO 
F622 DRAV A1,A2 ;RETS 

Figure 3-7. DRAV Screen Display 

As shown in the display: 

• The instruction DRAV A1,A2 now appears in the current instruction 
field of the machine state display. 

• Register A2 contains the destination address in XY mode (>001 E 0040: 
Y=001 E, X=0040) which is the location to which the pixel will be 
moved. 

• Register 89 is loaded with the >66666666, specifying the color yellow 
(see table on page 3-6). 

When the instruction is executed, a yellow pixel is drawn 64 (>0040) pixels 
to the right and 30 (>001 E) pixels below the origin of the demonstration 
screen (upper left corner). Then the address value in Register A2 is incre­
mented by the value of Register A1 (>0001 0000: Y=1, X=O). To demon­
strate th is: 

(2) Enter: RU<CR> The DRAV instruction is executed and a soft­
ware trap follows immediately. One yellow pixel is drawn in the 
display block. 

3-17 



Tutorial - Draw and Advance (DRAV) 

DRAV 

Lnr Addr 

xxxxxxxx 
xxxxxxxx 
FFC02l60 
FFC02180 
FFC02l90 
FFC02lAO 
FFC02lBO 

3-18 

••••••••••••••••••••••• 

Figure 3-8. DRAV Display 

Notice that a pixel has been drawn, and Register A2 is incremented (by 
>10000). By placing this instruction inside a loop, a line of pixels can be 
drawn with an X address constant and a Y address repeatedly incremented by 
one. To see such a loop: 

(3) 

code 

xxxx 
xxxx 
09CO 
F622 
3C40 
09lD 
09CO 

Enter: U<CR> to reverse-assemble the program (shown on the 
left of the screen); as follows: 

Rev Assembly Comment (not assembled) 

UNKNOWN 
UNKNOWN 
MOVI >OO4B,AO Load loop count register 
DRAV Al,A2 Draw and advance one pixel 
DSJS AO,@FFC02lBO Dec Reg, jmp to DRAV if ¢ 0 
TRAP 29 Halt after loop 
MOVI >42,AO 

The reverse-assembled portion contains a loop. 

• The yeillow-colored line identifies the instruction just executed ("UN­
KNOWN" in the example). 

• The cyan (light blue) color identifes the instruction before the one just 
executed -- also "UNKNOWN" in the example. 

• Green identifies the next instruction to be executed. It loads Register 
AO with the loop count of >4B (75). 

• The next three instructions make a loop to draw a vertical line. (The 
TRAP 29 is a software breakpoint.) 



Tutorial - Draw and Advance (DRAV) 

• AO is decremented. If not zero, a jump to DRAV occurs to complete the 
loop and execute another draw/advance. 

This loop will execute 75 times before the jump is discontinued -- each time 
drawing another pixel on the screen while incrementing the address in A2 one 
time in the Y direction. The final result is a vertical line 76 pixels in length. 

(4) 

(5) 

Enter: <Q> to quit the reverse assembly. 

Enter: <55> (single step command) and watch as the yellow 
line is slowly draw with each entry of this command. This also 
allows you to see how the loop counter in Register AO is decre­
mented and how the Y axis value (16 M5bs) in Register A2 is 
incremented by adding A1 to it. 

Enter: RU<CR> to complete the loop and finish the yellow line 
(6s in Register COLOR1 = yellow) on the screen. 

After being incremented by one 75 times, the value in destination Register A2 
is now >006A 0040. Note that loop counter AO has been decremented to 
zero. 

Two more examples show some of the flexibility of this instruction. The first 
employs a bidirectional increment to create a diagonal line. 

(6) Enter: RU<CR> to set up the operand registers for a diagonal 
draw and advance. 

The destination register is loaded with the same initial value as in the first ex­
ample -- steps (1) to (5) above. The incrementing register (A1) contains 
>0001 0002 (Y=1, X=2). and the loop count in AO has been set to >42 (66). 
The COLOR1 Register is now >2222 2222, specifying red. 

(7) Enter: U<CR> to display the reverse-assembled program. 

The loop set up is similar to the first program (step (3» with the destination 
address being incremented in both the X and Y directions. 

Enter: Q to quit the reverse assembly. (8) 

(9) Enter: RU<CR> to draw a diagonal line from the same starting 
point as in the first example. 

Note the destination address is incremented by >42 in the Y direction and by 
>84 in the X direction. The final A2 value is >0060 00C4. 

The final demonstration produces a dotted green horizontal line. 

(10) Enter: RU<CR> to set up the register operands. 

An identical loop to that above is used in this example. 

- Destination Register A2 is the same as used previously. 
- Increment value of >0000 0006 is in A1. 
- COLOR1 Register contains >44444444 (green). 

3-19 



Tutorial- Draw and Advance (DRAV) 

3-20 

After every pixel is drawn, the X address is incremented by 6, leaving five blank 
pixels between each green pixel. 

(11) Enter: RU<CR> to execute the loop and draw the line. 

These are simple examples of the 'draw and advance' employing constant in­
crements. More elaborate schemes of altering the increment can be used to 
implement various graphical algorithms for figure drawing. 



Tutorial - Fill Array Instructions (FILL XV, FILL L) 

3.6 Fill Array Instructions (Fill XV, Fill l) PC = > FFCO 0820 

These instructions perform a pixel processing operation on a memory array 
using the value in COLOR1 Register as the source pixel value. The destination 
is defined in either XV or linear addressing mode, depending on which in­
struction is used. 

3.6.1 Fill Array, XV Addressing 

GSP Register 
Reg File A 

Syntax: FILL XV 

Operation: A pixel processing operation is performed between the pixel value 
stored in the COLOR1 Register and an XV array of memory. 

• The XV address in Register DADDR (82) contains the 
location of the array's least-significant corner (screen up­
per left). 

• Registers DPTCH, OFFSET, and CONVDP (I/O) must 
contain values appropriate to the screen-memory format. 

• Register DVDX value of >OOOA OOAO specifies dimen­
sions of the destination array with the 16 MSbs indicating 
height and the 16 LSbs indicating width (both in pixels) 

• The CONTROL I/O Register specifies the pixel processing 
option. 

(1) Enter: RU<CR> to write the mnemonic FILL 
XV onto the screen and set up the appropriate 
operand registers to fill a rectangle on the screen. 

The screen appears as follows (Figure 3-9): 

and Machine Status--SDB Debugger 
Reg File B 

fs 16/32 PS= 4 PM= 
fe 0/ 0 w=off pp= S 

AO ........ A8 ....... . BO ....... . saddr B8 ....... . 

0000 
-> D 
colorO 
color1 
temp x 
temp y 
tempda 
tempst 
tempct 

A100000000 A9 ....... . 
A200000000 A10 ....... . 
A3 ........ All ....... . 
A4 ........ A12 ....... . 
A5 ........ A13 ....... . 
A6 ........ A14 ....... . 
A7 ........ SP FFC2DEEO 
Halt on breakpoint. See below. 
st 00000010 NCZV=OOOO ITPVH=OOOOO 
pc FFC02630 OFEO FILL XY 

B1 ....... . 
B2 00180040 
B3 00001000 
B4 00000100 
B5 ....... . 
B6 ....... . 
B7 OOOAOOAO 

sptch B9 22222222 
daddr B10 ....... . 
dptch B11 ....... . 
offset B12 ....... . 
wstart B13 ....... . 
wend B14 ....... . 
dydx 
<Cache status> Cnt= 

SP=FFC2DEEO Ctl=OOOO 
;RETS 

484 

Figure 3-9. Register Display for Fill Screen, XV Addressing 

The instruction FILL XV appears in the instruction field of the 
display, and the necessary registers are loaded to draw a red 
rectangle to the screen. 

3-21 



Tutorial - Fill Array Instructions (FILL XV, FILL L) 

FILL 

3-22 

Figure 3-10. FILL Display 

• Register DADDR (82) is loaded to place the upper-left 
corner of the rectangle at the location >18 pixels below 
and >40 pixels to the right of screen origin. 

• Register DYDX (87) specifies rectangle height of >OOOA 
(10) pixels and width of >OOAO (160) pixels. 

• Register COLOR1 (89) specifies red (>22222222). 

• Registers DPTCH (83) and CONVDP (I/O Register 
display with DR command) are loaded with values ap­
propriate for the screen used. 

(2) Enter: RU<CR> to draw a red rectangle onto the 
screen. 

Note that the destination address register has become cor­
rupted. 



Tutorial - Fill Array Instructions (FILL XV, FILL L) 

3.6.2 Fill Array, Linear Addressing 

GSP Register 
Reg File A 

Syntax: FILL L 

Operation: The FILL L instruction is identical to the FILL XV except that: 

• Register DADDR specifies a linear address to locate the 
least significant corner of the array. 

• Registers OFFSET and CONVDP (I/O) do not have to be 
loaded since linear addressing mode is used. 

(1) Enter: RU<CR> to write the mnemonic FILL L 
onto the screen and set up the appropriate oper­
and registers to fill a rectangle on the screen. 

The display appears as follows (Figure 3-11): 

and Machine Status--SDB Debugger fs 16/32 PS= 4 PM= 
Reg File B fe 0/ 0 w=off pp= S 

AO 00000020 AB ....... . BO ........ saddr BB ....... . 

0000 
-> D 
colorO 
color1 
temp x 
temp y 
tempda 
tempst 
tempct 

A1 ........ A9 ....... . 
A2 ........ A10 ....... . 
A3 ........ All ....... . 
A4 ........ A12 ....... . 
AS ........ A13 ....... . 
A6 ........ A14 ....... . 
A7 ........ SP FFC2DEEO 

Halt on breakpoint. See below. 
st 00000010 NCZV=OOOO ITPVH=00010 
pc FFC02790 OFCO FILL L 

B1 ........ sptch B911111111 
B2 0001B200 daddr B10 00000000 
B3 00001000 dptch B11 ....... . 
B4 ........ offset B12 ....... . 
B5 ........ wstart B13 00000000 
B6 ........ wend B14 ....... . 
B7 00460014 dydx 

<Cache status> Cnt= 
SP=FFC2DEEO Ctl=A200 

;CALLR FFC072FO 

676 

Figure 3-11. Register Display for Fill Screen, Linear Addressing 

The instruction FILL L appears in the instruction field of the 
display along with register values necessary to draw a blue 
rectangle. 

• Register COLOR1 (B9) specifies all dark blue 
(>11111111 ). 

• Register DADDR (B2) contains the linear address equal 
to the XY address used in the FILL XV demonstration. 

• Register DYDX (B7) specifes the heighth as >46 pixels 
and width as > 14 pixels. 

• Pixel processing option chosen is the Boolean OR opera­
tion. 

3-23 



Tutorial - Fill Array Instructions (FILL XV, FILL L) 

3-24 

Source 
(binary) 

The following takes place: 

Destination 
(binary) 

Resulting 
Destination 

Value 
(binary) 

0001 (blue) 
0001 (blue) 

ORed 
ORed 

0010 (red) 
0000 (black) 

0011 (magenta) 
0001 (dark blue) 

(2) Enter: RU<CR> to draw a blue rectangle on the 
screen with the area overlapping the red triangle 
changing to magenta. 

Note that the destination address register has been corrupted. 

Figure 3-12 demonstrates how the FILL XY demonstration 
can be used to blank the demonstration area on the screen. 

This concludes the fill array demonstration. 



Tutorial - Pixel Block Transfers 

Note that this example uses the FILL XV demonstration in the Tutorial program, 
thus the program must be present (TUTOR_E loaded). 

Enter into two Command Buffers (for example purposes, 5 and 6 are 
used here): 

Command [5] ! PC FFC00820 i RU<CR> Go to FILL XV Demonstration 

Command [5] 6<CR> Go to buffer 6 

Command [6] !B2 20002iB7 7COOFCiB9 OiSS<CR> 

Reg B2 = Demo Area~I 
Upper Left XV Addr. 

Reg B7 = Demo Area 
Lower Right XV Address 

Reg B9 = 0 = Black----J 

Single Step to Execute 

The following is a summary of the execution sequence: 

STEP 

( 1) Command [x] 5<CR> 

(2 ) Command [5] PC FFCOO820iRU 

(3) Command [5] <CR> 

(4) Command [5] 6<CR> 

Enter 1 st Buffer 

1 st Buffer Displayed 

Execute 1 st Buffer 

Enter 2d Buffer 

(5) Command [6] B2 20002iB7 7COOFCiB9 o i SS 2d Buffer Displayed 

(6) Command [6] <CR> Execute 2d Buffer 

This key sequence -- 5 <CR> <CR> 6 <CR> <CR> 
executes a series of instructions to cause a blanking of the screen. Note 
that other command registers can be substituted for 5 and 6. 

To blank the entire screen, change the B2 and B7 values to: 
B2 0 (Screen upper left) 
B7 1 CA024A (Screen lower right) 

Figure 3-12. Using Two Command Buffers to Blank Demonstration Area 

3-25 



Tutorial - Pixel Block Transfers 

3.7 Pixel Block Transfers PC = >FFCO OBEO 

GSP Register 
Reg File A 

AO 0000001A 
Al ............ 
A2 ......... .. 
A3 ........... 
A4 ............. 
A5 .. ......... 
A6 ........ .. 
A7 ......... 

Syntax: PIXBLT 
PIXBLT 
PIXBLT 
PIXBLT 
PIXBLT 
PIXBLT 

B,XY 
B,L 
L,L 
XY,L 
L,XY 
XY,XY 

Expand linear to XY 
Expand linear to linear 
Linear to linear 
XY to linear 
Linear to XY 
XY to XY 

Operation: The PIXBL T instructions take an array from a location defined by 
the SADDR (Source ADDRess) Register and use it to operate 
on an array whose location is defined by the DADDR (Desti­
nation ADDRess) Register. This operation is defined by the 
value of the Pixel Processing bits in the Control Register. The 
PIXBl T B,· (* = destination address mode) instructions 
expand each bit in the source array by the values in the color 
registers to the defined pixel size. If the bit is a 1 (one) in the 
source array, it is expanded using the value in the COLOR1 
Register. Otherwise, the value in the COLORO applies. The 
pixel processing operation is performed on the expanded source 
array and the destination array. 

(1) Enter: RU<CR> to write the mnemonic PIXBl T B,XV to the 
screen and set up the appropriate operand registers. 

The screen appears as follows (Figure 3-13): 

and Machine Status--SDB Debugger fs 16/32 PS= 4 PM= 0000 
Reg File B fe 0/ o w=off pp= S -> D 

A8 ............. BO FFCOC6EO saddr B8 .. .......... colorO 
A9 .. ......... Bl 00000020 sptch B9 44444444 colorl 

AI0 .......... B2 00340040 daddr BI0 00000000 temp x 
All .......... .. B3 00001000 dptch Bll . ........ temp y 
A12 ........ .. B4 00000100 offset B12 .. ......... tempda 
A13 .......... B5 .. ............ wstart B13 00000000 tempst 
A14 ........ ... B6 ............. wend B14 .. ....... tempct 

SP FFC2DEEO B7 00170020 dydx 
Software Halt encountered; execution ended. Cache disabled Cnt= 692 
st 00000010 
pc FFC02B30 

3-26 

NCZV=OOOO ITPVH=00010 SP=FFC2DEEO Ctl=OOOO 
OFAO PIXBLT B,XY ;RETS 

Figure 3-13. Register Display for PIXBlT B.XV 

The instruction PIXBl T B.XV appears in the instruction field and registers 
are shown loaded with necessary values. 

• Register SADDR (BO) contains the linear address of the unexpanded 
font 'w' whose bit size is in Register DYDX (B7). 

• Register SPTCH (B1) contains >20: the width in bits of the source ar­
ray. 

• Register DADDR (B2) contains the destination XY value: address >34 
pixels below and >40 pixels to the right of the screen origin. 



Tutorial - Pixel Block Transfers 

• I/O Register CONVOP is set to the value appropriate for the 4096-bit 
(>1000-bit) screen width (use DR command to display I/O Registers). 

• COLOR1 Register specifies all green (>44444444). 

(2) Enter: RU<CR> to draw a green 'W' on the screen. Note that 
the destination and source registers have been corrupted. 

The next instruction to be demonstrated is PIXBL T B.L 

(3) Enter: RU<CR> to set the registers to the proper values to 
demonstrate PIXBLT B,L. 

The only difference between PIXBL T B,L and PIXBL T B.XY is that 

• The destination address is in linear terms instead of XV. For this exam­
ple, the destination address is >FFCO OFOO and the source address is 
>FFCO C570, which is the font 'A'. 

• The COLOR1 value is >2222 2222, the color red. 
• Register OPTCH (83) contains >1000 (4096), the width in bits of the 

screen or destination. 

Now display the memory by doing the following: 

(4) Enter: F FFCOOFOO FFCOE800 FFFF <CR> to fill this me­
mory area with >Fs to later illustrate when the font 'A' is ex­
panded and moved to this location. 

Enter OM FFCOOFOO<CR> to check for all Fs. 

Enter: <CR> again to display further memory beginning at 
>FFCO E380. Enter <Q> to quit the memory display. 

(5) Enter: RU<CR> to expand font 'A' by the COLOR1 value 
>2222 2222 (red) and replace the destination array starting at 
>FFCO OFOO. To verify this, display the memory once more: 

(6) Enter: OM FFCOOFOO<CR> to verify that Os and 2s have re­
placed the > Fs previously seen in memory. These are the values 
associated with Registers COLOR1 and COLORO. Two 'As' 
made by the pixel value of 2s can be vaguely recognized in this 
memory display. 

(7) Enter: <CR> to display the rest of the stored image. Enter <Q> 
to exit the memory display. 

The next instruction demonstration is PIXBL T L,XY. To set up: 

(8) Enter: RU<CR> to set up the registers to their proper values in 
order to demonstrate PIXBL T L,XY. The proper mnemonic is 
written to the screen. 

When this instruction is executed: 

• The expanded 'A' font at >FFCO OFOO is moved to the XV address value 
stored in Register OAOOR. 

3-27 



Tutorial - Pixel Block Transfers 

3-28 

• Register SPTCH is set equal to the pitch of the expanded 'A' font in 
memory. 

• I/O Register CONVDP is set to the appropriate value associated with 
screen pitch. 

(9) Enter: RU<CR>. The expanded 'A' font from >FFCO DFOO 
replaces the destination array located on the screen >34 lines 
down and >58 pixels to the right of the screen origin. 

(10) Enter: RU<CR> to load the registers for the next instruction, 
PIXBL T XV,XV 

The PIXBLT XV,XV is demonstrated by copying the letters 'WA' from their 
location on the screen to a location >34 pixels below and >AO pixels to the 
right of the screen origin. This destination address, the source address, and 
implied operands have already been loaded. I/O Registers CONVSP and 
CONVDP have been set with appropriate conversion factors. 

(11) Enter: RU<CR> to copy the letters 'WA' to the new screen 
location. 

The next instruction demonstration will move the letters 'WA' into memory. 

(12) Enter: RU<CR> to write the mnemonic PIXBLT XV,L to the 
screen and load the registers with appropriate values for the de­
monstration. 

PIXBLT XV,L copies the array with XY address >34 0040 to destination 
address >FFCO DFOO. The expanded green 'W' and red 'A' are stored at ad­
dress> FFCO DFOO. Therefore, only 4s, 2s, and Os will be seen if memory is 
displayed (step (6». 

(13) Enter: RU<CR> to move the green 'W' and red 'A' into me­
mory. To check this move: 

(14) Enter: DM FFCODFOO<CR>. This displays memory filled with 
4s (green), 2s (red), and Os (black). 

The last instruction to be demonstrated is PIXBLT L,L used to copy the 'WA' 
located at >FFCO DFOO to the screen at linear address >151 CC. 

(15) Enter: RU<CR> The mnemonic PIXBLT L,L is written on the 
screen and the registers are loaded with appropriate values for 
the demonstration. 

(16) Enter: RU<CR> to copy the letters 'WA' (at >FFCO DFOO) 
to the screen. 

This concludes the PIXel BLock Transfer instruction demonstration. Press 
<CR> to clear the screen. 



Tutorial - Transparency and Pixel Processing 

3.8 Transparency and Pixel Processing PC = > FFCO OAEO 

The TMS34010 is capable of performing two powerful operations in con­
junction with raster-ops, array fills, and pixel moves: 

• Transparency processing 
• Pixel processing 

3.S.1 Transparency Processing 

Transparency is an option enabled by setting the appropriate Control Register 
bit. When in effect. the destination pixel is not modified if the source pixel is 
o (zero). This allows overlaying an image "on top" of a second image without 
destroying the features of the underlying image. This is shown in the two de­
monstrations that follow. 

(1) Enter: RU<CR> to set up the transparency/pixel processing 
demonstration. A blue box is drawn with a yellow 'x' on top of 
it and both repeated five times. The transparency off occurs in 
the first box (as labeled). 

(2) Enter: RU<CR> to perform a PIXel BLock Transfer with ex-
pand, but with transparency off. 

The array containing the 'A' is moved inside the first box replacing every pixel 
previously stored in that location. The array 0 (zero) bits are expanded to black 
pixels (0 value) and the 1 (one) bits expanded to red (4). 

(3) Enter: RU<CR> to set up the second example, with trans­
parencyon. 

(4) Enter: RU<CR> to perform the PIXel BLock Transfer with ex-
pand and with transparency on. 

The transfer with expand is the same as the first (in steps (1) and (2»; how­
ever, the source pixels of 0 (zero) value do not replace the destination. The 'A' 
appears to be written on top of the 'X'. 

3.S.2 Pixel Processing 

Control Register bits 10 through 14 specify the current pixel processing op­
tion. When a pixel is moved, the chosen logical or arithmetic function is per­
formed on the source and destination pixels, with the result replacing the 
previous destination value. The flexibility of these options can achieve many 
useful results. The following transparency examples demonstrate other op­
tions. 

(1) Enter: RU<CR> to set up the first example. 

This demonstrates the MAX function. The values of each source and corre­
sponding destination pixel are compared, and the greater of the two is written 
to the destination. The pixel processing option in effect is shown in the screen 
upper right corner. 

3-29 



Tutorial - Transparency and Pixel Processing 

3-30 

(2) Enter: RU<CR> to execute PIXBLT B,XV with transparency 
on and the MAX option. 

The PIXBL T B,XV is performed similar to that for the transparency demon­
stration (Section 3.8.1) with the following results: 

- Since the value for red (2) is greater than dark blue (1), the portion of 
the 'A' overlying the blue background replaces the destination. 

- Since the value of yellow (6) is greater than red, the yellow 'X' is not 
replaced. 

The next demonstration uses MIN (opposite of MAX). 

(3) Enter: RU<CR> to set the second pixel processing example. 

(4) Enter: RU<CR> to execute PIXBLT B,XV with transparency 
on using the MIN option. 

Notice that the result of the MIN option is exactly the opposite of MAX. If 
transparency is disabled, the black background of the 'A' replaces any previous 
information,O (zero) being the minimum value obtainable. 

The next example demonstrates the arithmetic SUBS function (subtract with 
saturation). 

(5) Enter: RU<CR> to set up the third pixel processing example. 

(6) Enter: RU<CR> to execute the SUBS operation of the 'A' 
with the fifth block: 

DESTINATION 

1 (dk blue) 
6 (yellow) 

minus 
minus 

SOURCE 

2 (blue) 
2 (blue) 

The next Boolean demonstration is EXCLUSIVE-OR. 

VALUE 

o (black, saturated) 
4 (green) 

(7) Enter: RU<CR> to set up the next example. 

(8) Enter: RU<CR> to XOR the 'A' with the fifth block. 

The resulting operation is: 

SOURCE 

0010 (red) 
0010 (red) 

XORed 
XORed 

DESTINATION 

0001 (dk blue) 
0110 (yellow) 

Enter: RU<CR> to clear the demonstration. 

RESULTING 
DESTINATION 

VALUE 

0011 (magenta) 
0100 (green) 



Tutorial - Window Demonstration 

¥lINDO¥lINd-

ku T 1\1 D 0 JU T 1\1 a 

Figure 3-14. Window Display 

3.9 Window Demonstration PC = >FFCO 0820 

The windowing option can be used to limit the active region of screen memory 
that can be modified; thus, it protects the remaining portion of screen memory 
from corruption. This pixel processing option has three modes available -­
determined by the W bits (8 and 9) in the Control I/O Register: 

WBIT 
VALUE 

(BINARY) WINDOWING OPTION 

00 Pixel writes allowed; no interrupts generated 
01 Pixel writes inhibited; interrupts on pixel writes inside window 
10 Pixel writes inside window allowed; interrupts on pixel writes 

outside window 
11 Pixel writes outside window inhibited; no interrupts 

When the windowing option is enabled, the WSTART and WEND Registers 
(B5 and B6) contain XV address values defining corners of the window: 

• WSTART Register (window start) defines the window's upper left cor­
ner, and 

• WEN D Register (window end) defines the window's lower right corner. 

(1) Enter: RU<CR> to draw two yellow borders about the per­
imeters of the windows. This better illuminates the areas to be 
used in comparing the two windowing options of clipping (W 
= 3) and no windowing (W = 0). 

3-31 



Tutorial - Window Demonstration 

3-32 

The windowing option is off (W = 0) at the beginning of the demonstration. 

(2) Enter: RU<CR>. 'WINDOWING' is drawn so that it crosses 
over the yellow border. Because the windowing option is set 
w="off", no clipping nor interrupting occurs, and the WSTART 
and WEND registers are not set since windowing is not used. 

(3) Enter: RU<CR>. The windowing option is set to clipping at 
the border (w="on"). Registers WSTART and WEND are loaded 
with XV addresses >400058 and >4C 00A9. 

The values loaded into WSTART and WEND define a window 13 pixels high 
and 82 pixels wide. The lower yellow box on the screen is the perimeter of 
this window. Since the windowing option is set to clipping, nothing will be 
drawn outside this area. 

(4) Enter: RU<CR>. 'WINDOWING' will again be drawn on the 
screen, but this time portions of the letters outside the defined 
window will be clipped. 

If the windowing option is set to interrupt (W = 2) and a pixel operation's 
destination is found to cross the window boundary, the operation is not exe­
cuted and program control is defined by an interrupt routine. (A windowing 
interrupt is not used in this tutorial.) 

The TMS3401 0 provides a CPW RS,RD instruction which is useful in using 
a window. This instruction compares a point to the defined window and re­
turns a code identifying the point's position relative to the window. This is 
useful for point-plotting algorithms used with a defined window. 

This concludes the window demonstration 

Enter: RU<CR> to clear the screen. 



Tutorial - Text Spacing Demonstrations 

3.10 Text Spacing Demonstrations PC = > FFCO OB80 

It is important to handle text in graphics systems in various ways, including 
the spacing of text such as: 

- block (Section 3.10.1) 

- proportional (Section 3.10.2), and 

- kerned (Section 3.10.3). 

3.10.1 Block Spacing 

This type of spacing displays on the screen a whole block of data in which the 
font had been defined. This usually takes up much more room than needed 
for the letters to be written; thus, skinnier letters appear isolated and the larger 
letters more crowded. 

Enter: RU<CR>. The word 'AWAIT' is drawn using block 
spacing. Each letter is drawn with full 32-pixel blocks adjacent. 

3.10.2 Proportional Spacing 

This type of spacing puts only the defined character on the screen allowing 
only a specified amount of space between the two closest points of adjacent 
letters. This is done by defining the background color (COLORO) as zero and 
using the transparency operation when transferring the font to the screen. 
When the move operation is over, only the defined character (COLOR1) ap­
pears on the screen. Tic marks on each letter define the actual width of the 
letter. For this example, a spacing of three pixels is used between each letter. 

Enter: RU<CR> to draw the word 'AWAIT' using proportional 
spacing. The letters are spaced with three blank pixels between 
the closest active pixels. 

3.10.3 Kerned Spacing 

When two adjacent letters can overlap their defined widest regions without 
touching. these letters are said to kern. For example, the two letters WA can 
reside side-by-side with the upper right edge of the 'W' over the lower left 
edge of the 'A'. This allows for more text in a given space. 

Enter: RU<OO> = to draw the word 'AWAIT' using kerning. 
The words are spaced with overlapping active areas. 

This concludes the text spacing demonstration. A <CR> returns program 
execution back to the beginning of the demonstration. 

3-33 



Tutorial - Text Spacing Demonstration$ 

3-34 



4. SOB Commands 

Topics in this section include: 

Page 

• Key Features 4-2 

• SDB Hardware & System Requirements 4-3 

• System Description 4-4 

• SDB Operation 4-9 

• SDB Commands 4-22 

4-1 



SOB Commands - Key Features 

4.1 Key Features 

4-2 

Key Features: 

• Complete control over machine state 

• Efficient system memory use for TMS3401 0 program and screen memory 

• Screen-oriented machine status display 

• Versatile command entry with error reporting. file input and multiple 
command buffers 

• Breakpoint and trace features 



SOS Commands - Hardware and System Requirements 

4.2 SOS Hardware and System Requirements 

The SOB is available on 8088-, 8086- and compatible derivatives (running 
MS-DOS 2.11 and higher). 

MS- DOS systems directly supported include: 

• The IBM PC, PC/XT, and PC/AT and IBM PC compatible machines with 
512K bytes of memory and CGA emulation. 

• The Texas Instruments Professional Computer with 3-plane color 
graphics support and 512K bytes of memory. 

The system requirements for operating SOB for program debug are outlined 
below. 

• A Host Operating and Display system as described above. This includes 
a graphics monitor to check desired output. 

• An editor for manipulating TMS3401 0 assembly language and C source 
files. 

• The TMS3401 0 Macroassembler, Linker and, optionally, the TMS3401 0 
C compiler for the creation of input object files. 

In addition, the user requires a working knowledge of the TMS34010 in­
struction set and familiarity with the memory addressing scheme. 

4-3 



System Description 

4.3 System Description 

The SOB monitor display presents the status and effects of these components. 

4-4 



System Description 

Pixel Processing 0rtion (sou.rce./D;.:eus~tj'~n~a~t~i~O~n~)~~~~==\\ Plane Mas. (pmaskpl~~lR~~:ter) 

Wi~1~ldn~i~~tion 
Fie I d Extens ion Bits .~~-=====::::, 

Status and i/O Control Registers --__ ~-r----~ 

GSP Register and 
Reg F i leA 
A0 00000000 
AI 00000000 
A2 00000000 
A3 00000000 
A4 00000000 
A5 00000000 
Ab 00000000 
A7 00000000 

colorl 
temp x 
temp-y 
tempaa 
temps t 
tempct 

<men i tor atus> Cnt= 4 
st 00000010 NCZV=0000 
pc FFC00000 0550 MNEMONIC 

COMMAND 
error messages 

'------ Stack Po inter 
Control I/O Register 

L-~======-o;;~~ Next Instruct ion Opc:ode of Next Instruction 
Last [nstructioo~n-===================-1 Command Count -

Lf-~---------Program Counter 

B Registers 

B0 SADDR 
BI SPTCH 
B2 DADDR 
B3 DPTCH 
B4 OFFSET 
B5 WSTART 

No. 

Source Address 
Source Pitch 
Destination Address 
Destination Pitch 
Linear Bit Offset 
Window Start Address 

Status and I/O Control Registers 

N Neg. 
~ i:~~y 
V Overflow 

SR 
SR 
SR 
SR 

Window End Address 
Delta Y/Delta X 

Bb I..JEND 
B7 DYDX 
B8 COLOR0 
B"l COLORI 
B10-14 
B15 SP 

Source Background Color 
Source Foreground Color 
PixBlt Temporary Regs 
Stack Pointer 

I Interrupt Enable 
T Transparency 
P PixBlt Interrupted 
V PixBlt Vert. Direction 
H PixBlt Horiz. Direction 

SR 
I/O 
SR 
I/O 
I/O 

NOTE: Registers are shown as all zeros for display purposes only. 

Figure 4-1. SOB Debugger Screen Display 

4-5 



System Description 

4.3.1 The SOB Machine State Display 

4-6 

Figure 4-1 shows a typical SOB machine-state display. The SOB is screen 
oriented; the machine state is displayed as commands are executed. Com­
mands are always entered on the command line, except for commands exe­
cuted from menus called up from the screen. Commands are displayed in 
uppercase; even if entered in lowercase (Le., without pressing the SHIFT key). 
Figure 4-1 illustrates the default machine state display with the command line. 

The following are provided in the Debugger screen display of Figure 4-1: 

1) CPU State: 

• Field sizes (FSO and FS1) - decimal values 
• Field extension bits (FEO and FE1) - decimal values 

• Pixel size - decimal values 

• Plane mask 
• Windowing option 
• Pixel processing option 

2) Internal registers (A and B files), Stack Pointer, and optional names 

3) Monitor status messages 

4) Status Register 

5) Control and status elements 

6) Stack Pointer 

7) Control register 

8) Program Counter and data at that location 

9) Next instruction 

10) Previous instruction 

11) "Scratch" display area - 10 lines 

12) Command line 

13) Current buffer number 

14) Last command entered 

The cursor in the following descriptions is represented by an underscore (-). 
The cursor for the default machine state display is shown in Figure 4-1 im­
mediately following the Command [ 1] prompt at the bottom of the screen. 
Except for menu-driven commands, information is only entered from the 
command line in the space following the command prompt. The cursor is 
generally represented by a full, shaded, upright slow-blinking rectangle. 



System Description 

4.3.1.1 Machine State Display 

Beginning on screen line 3 below the headings (display is shown in Figure 
4-1), are displayed the TMS34010's 30 general-purpose registers, AO-A14 
and 80-814. Also displayed is the Stack Pointer (accesssible as 5P or reg­
ister A15 or B15). 

The current state of the of the TMS3401 0 CPU is displayed in the upper right 
hand corner. This includes the field sizes (F50 and F51) for fields 0 and 1, 
respectively, followed by their respective field extension bits (FEO and FE1). 
All four of these values are extractions from the Status Register and are in 
decimal. 

The field size and field extension used by the current instruction are high­
lighted in green. If the current instruction does not use either the field size or 
field extension, then both values will be in yellow. 

To the immediate right of the field size is the pixel size, designated P5. This 
is the current value of the PSIZE I/O register, and is the pixel size used by the 
graphics instructions. The third value on this display line is the value of the 
plane mask register, designated PM. 

Just below the PS value is the currently selected windowing option, desig­
nated W. The windowing option value is contained within the I/O CONTROL 
register. Any windowing option selected other than off is highlighted in cyan 
(light blue). 

To the right of the windowing option is the currently selected pixel-processing 
option, desgnated PP. The pixel-processing option value is given by bits 
within the I/O CONTROL register. Any pixel-processing option other than 
source to destination (5-+0) is highlighted in cyan. 

The line immediately below the A and B registers starts with the full Status 
Register contents, along with several portions of the status register displayed 
individually, the Stack Pointer register, and the CONTROL I/O register. To the 
right of the Status Register contents are selected bits within the Status and 
I/O CONTROL Registers, designated as NCZV and ITPVH. The names of the 
bits and their source registers are: 

N 
C 
Z 
V 

I 
T 
P 
V 
H 

Negative 
Carry 
Zero 
Overflow 

Interrupt Enable 
Transparency 
PixBlt Interrupted 
PixBlt Vertical Direction 
PixBlt Horizontal Direction 

Status Register 
Status Register 
Status Register 
Status Register 

Status Register 
I/O CONTROL Register 
Status Register 
I/O CONTROL Register 
I/O CONTROL Register 

The last line of the machine state display gives values of: 

• Program Counter (PC), 

• value of the word pointed to by the Program Counter, 

4-7 



System Description 

• reverse assembly (source statement mnemonic) of that word. 

• reverse assembly of the last instruction executed. 

If the last instruction is the same as the current instruction. it is in green; oth­
erwise. in cyan (light blue). If the source line is not known. it is marked 
"UNKNOWN." 

Any listed information is given in the 10 blank lines between the reverse as­
sembly line and the command line. This is the scratch display area. 

4.3.1.2 Monitor Status Line 

4-8 

Monitor status messages are presented below the A and B registers. Monitor 
status messages describe what particular function the SOB is performing. In 
the event that the SOB is halted (due to a breakpoint or an error condition). 
the monitor status line describes this condition while specific error messages 
are listed to the information display line and below. Monitor status messages 
are described individually in their pertinent sections. 



SOB Commands - SOB Software Operation 

4.4 SOB Operation 

This section guides you through a typical SOB session to give a feel for the 
type of operation and debug that is possible with the SOB. 

Notes: 

1. Through MS-DOS, you can specify a directory in which to find the 
SDB340.GSP and the Help files. This avoids having to keep multiple 
files of SDB340.GSP throughout the directory structure. Do this with 
the DOS SET command to specify the directory: 

SET GSPDIR=<PATHNAME> 

In this command, adhere to the following: (1) use only one space in 
the command -- this is the space after SET, and (2) use only upper­
case letters. 

For example purposes, have both SDB340.GSP and the help files in 
\GSPTOOLS. Thus the following could be used: 

SET GSPDIR=\GSPTOOLS 

If this command is either placed in the AUTOEXEC.BAT file or typed 
as a command, the Debugger will look in the directory GSPTOOLS for 
SDB340.GSP and the Help files. 

2. The files GSPINPUT.OOO, SDEFIl.xxx, SMSFIl.xxx, and SMIFIl.xxx 
must always be in the default directory in order to be used by the 
SDB340. (Commands such as SDE, SM!. SMS, and SWITCH use 
these files.) 

Install the appropriate Debugger diskette into your system (diskette marked 
IBM DEBUGGER or TI DEBUGGER) before calling it up under MS-DOS with 
one of the following commands. 

4.4.1 Invoking SOB from Disk 

The SOB is invoked under MS-DOS by typing one of these commands: 

SDB340 <CR> 

SDB340T <CR> 

(IBM PC, etc.) 

(TI PC, etc.) 

You can then load your object code into the SOB using the 

~ <file name> {<offset>} <CR> 

command giving the object-code file name and the desired program memory 
start location. 

4-9 



SOB Commands - SOB Software Operation 

4.4.2 Invoking the SOB Using a File Option 

For the IBM PC, the SOB is invoked from the MS-DOS command using the 
following syntax: 

SDB340 [-f] [load-file [offset]] <CR> 

For the TI PC, enter the following command: 

SDB340T [-f] [load-file [offset]] <CR> 

The one option, -f, initiates the SOB to obtain input from the command input 
file GSPINPUT.OOO -- see the SWITCH command. Incorrect options are ig­
nored. 

4.4.3 Initial Oisplay 

The SOB initiates by displaying its banner. It then turns on the graphics card, 
loads any files specified, performs a reset, and then displays the current ma­
chine state. 

The initial machine state display with no file loaded and with memory initial­
ized to zero appears as shown in Figure 4-1. 

4.4.4 SOB Command Line 

Since SOB is a both command-driven and screen-oriented, it is controlled by 
a set of general commands and those tailored to the TMS3401 o. These pro­
vide control over both the device being simulated and the simulated graphics 
environment. Command examples: 

SP (to access Stack Pointer) 

PBX (to access the PixBlt executing bit PBX) 

Note that these command names "suggest themselves" and may be inferred 
from the TMS34010 descriptions. In most cases, you can change the value 
of an item in the screen display by merely typing its screen name followed by 
desired value on the command line. 

4.4.4.1 Command Entry 

4-10 

All user-entered commands are initially entered on the command line at the 
lower lefthand corner of the screen. Commands may be entered in upper or 
lower case, in any combination (however, lower case are translated to upper 
case). The command line contains the prompt: 

Command [0] 

with the bracketed number 1 being the currently active command buffer (see 
command buffers in Section 4.4.4.4). The prompt and cursor generally appear 
as follows: 

Command [0] - (- marks the cursor position) 



SOB Commands - SOB Software Operation 

The command line retains the most-recent command entered into the com­
mand buffer. It may be written over or edited to enter a new command. The 
line immediately beneath it shows the most recently stored command and 
cannot be edited. 

The SDB allows editing of the command line with some simple editing keys 
(BS = BACKSPACE, CTRL = Control key, etc.): 

<left arrow> or <BS> or 
<CTRL-S> or <CTRL-H> 

<right arrow> or <CTRL-D> 
<TAB> or <CTRL-F> 
<SHIFT-TAB> or <CTRL-A> 
<DELete> or <CTRL-G> 
<INSert> or <CTRL-V> 

Back up one character 
Forward one character 
Forward one word 
Backup one word 
Delete character 
Start inserting characters 

Once the command line is edited to your satisfaction, the command can be 
processed by the SDB by typing either a <CR>, or a <UNEFEED> or 
<CTRL-J>: 

• <CR> truncates the command, executing only that to the left of the 
cursor, 

• <UNEFEED> or a <CTRL-J> executes the entire command line. 

There are ten command buffers (0 to 9), each capable of containing a com­
mand or a command sequence. Changing buffers is discussed in Section 
4.4.4.4. 

A command may be continually executed by pressing <CR> with the cursor 
in the leftmost position on the command line. 

Multiple commands can be entered on one command line by separating them 
with semicolons. 

4.4.4.2 Command Parameters, Numeric Prefixes 

Format for numeric parameters in commands can be either in decimal or hex­
adecimal (hex). Numeric prefixes for these: 

Prefix 
% 
> 

decimal value. For example: %124 = > 7C. 
hexadecimal value. For example >1000 = %4096. 

If you are unsure of th.e default number base used by a command, use either 
of the above prefixes (either will be recognized). 

Numeric parameter format defaults to the format used most often. For exam­
ple: 

• address parameters default to hex, 
• register numbers default to decimal, 
• register contents default to hex. 

All values are considered positive unless prefixed with a minus sign. 

4-11 



SO.B Commands - SOB Software Operation 

In the examples below, the A command used to modify the contents of the A 
file registers. The syntax is: 

A <register number> <register value> 

All of the following commands will result in the contents of register A12 being 
>FFFF FFFF. 

Note: 

Command [1] A 12 FFFFFFFF 
Command[l] A %12 FFFFFFFF 
Command [1] A >c FFFFFFFF 
Command [1] A 12 -1 
Command [1] A 12 -%1 
Command [1] ~ >C ->1 

All memory references are given in terms of bit addresses; therefore, 
word-aligned addresses should have a last ASCII character of 0 (zero). 
The last four bits of memory addresses given from the command line are 
forced to zero. 

Sixteen-bit hexadecimal values are represented with up to 4 ASCII characters 
(including leading zeros) while 32-bit hexadecimal values are represented 
with up to 8 ASCII characters (including leading zeros). 

4.4.4.3 Register Value in Commands 

4-12 

Register contents can be used as values in SOB commands. Use the format: 

R<register designator> (32-bit value) 

where the register designator is one of the following: 

• any A or B register, 
• Stack Pointer (SP), 
• Program Counter (PC), or 
• Status Register (ST). 

Also, a portion of the register contents can be designated. Either the left (16 
Y bits) or the right (16 X bits) can be designated. 

Use the format: 

RY<register designator> 
or 

RX<register designator> 

EXAMPLES: 

1) Command [0] A14 R8P <CR> 

(left 16 bits) 

(right 16 bits) 

puts the contents of the Stack Pointer (S P) into register A 14. 

2) Command [0] SP RPC <CR> 



SOB Commands - SOB Software Operation 

puts the contents of the Program Counter (PC) into the Stack Pointer. 

3) Command [0] MM RSP FFFF <CR> 

uses the Modify Memory command to change the contents of the single-word 
pointed to by the Stack Pointer (RSP) to the value >FFFF. This example uses 
the "R" prefix to designate one of the on-chip registers. 

4) Command [0] A14 -RA14 <CR> 

puts the negative of the contents of A14 into register A14. 

5) Command [0] MM RSP RAl <CR> 

uses the Modify Memory command to change the two words pointed to by 
the Stack Pointer (RSP) to the value in A1. 

6) Command [ 0] MM RB2 RYAl <CR> 

uses the Modify Memory command to change the single word pointed to by 
Register B2 to the value in the left-most 16 bits of Register A1. 

4.4.4.4 Command Buffers 

The SDB maintains ten command buffers (0 to 9) for the user to handily store 
commands. Thus a command or command string can be accessed quickly -­
without having to be rekeyed each time. Each buffer has a storage capacity 
of 64 characters. 

The command buffer is chosen by first entering its number (0 to 9). shown 
inside the square brackets after the Command prompt (e.g., 0 for Command 
Buffer zero below):: 

Command [0] 

The (default or present) command buffer can be changed by typing one of the 
following: 

0,1,2,3,4,5,6,7,8,9,+,down arrow,-,up arrow 

One of these must be the first entry of the command line. The exited buffer 
remains unchanged. These entries, followed by <CR>, cause the following: 

Entry 
o to 9 

+ or down-arrow 
- or up-arrow 

Brings up buffer of the number entered. 
Brings up next (higher numbered) buffer. 
Brings up previous buffer. 

Buffer 9 will roll over to 0 in a forward-moving change, and buffer 0 will be­
come 9 in the reverse direction. 

Multiple command buffers allow storage of specific commands that can be 
executed with less key strokes. For example, set up buffers with specific 
set/change breakpoint commands, or a single RUn command, or a RUn to 
breakpoint command followed by a display memory command. Figure 3-12 

4-13 



SOB Commands - SOB Software Operation 

4-14 

on 3-25 shows the entry of commands in two buffers that will blank the entire 
screen. 

Command buffers may be chained together to provide lengthy command se­
quences. To do this, give the next buffer number to be executed as the last 
entry on the command line. 

EXAMPLE 

Command [0] SSi DM 0 200i 1 

The above command executes a single step, displays memory from address 0 
to address 200, and then goes to command buffer 1 to begin execution. A 
buffer may even reference itself, providing a simple looping mechanism. 

EXAMPLE COMMENT 

Command [0] A 13 340990BC Buffer 0 
A 13 340990BC 

Command [0] ~ <CR>40990BC Enter "5" 
A 13 340990BC 

Command [5] HELP Buffer 5 
HELP 

In this case, buffer 0 still contains the command A 13 340990BC which 
may be re-executed by returning to buffer O. 

The +, -, up-arrow, and down-arrow keys move through the buffers in a rel­
ative order. See example below: 

EXAMPLE COMMENT 

Command [0] A 13 340990BC Buffer 0 
A 13 340990BC 

Command [0] ± <CR> 13 340990BC Enter "+" 

Command [1] HELP Buffer 1 
HELP 

Command [1] - <CR>ELP Enter "-" 

Command [0] A 13 340990BC Bufffer 0 
A 13 340990BC 

In other words, buffer 0 retains command A 13 340990BC which may be 
re-executed by returning to buffer O. 



SOB Commands - SOB Software Operation 

4.4.4.5 Storing a String of Commands in the Buffer 

A string of commands may be stored in a buffer without being executed by 
preceding the string with an exclamation mark (!): 

Command [1] ! Al3 45 i A14 6000 i run <CR> 
A9 801AC 

4.4.4.6 Command Error Messages 

An error in command or parameter entry causes a monitor error message to 
appear on the Monitor Message Line beneath the command line as follows: 

Command[l] && 4@<CR> 
A 9 34010 

Command[l] && 4@ 
Command not recognized; re-enter 

Command[l] && 4@ 
&& 4@ 

Multiple command error messages are queued (i.e., stored up). The next 
message can be displayed by typing < ESC>. 

Note that an < ESC> is needed to clear the error and return to the command 
line. The command in error is not removed from the buffer so that it may be 
reviewed. The last message can be reviewed using the LM command. 

4.4.5 Error Reporting 

Errors are reported back to the user in a number of ways. 

• Command-entry errors and monitor-initiated memory-access errors are 
reported on the line immediately beneath the command line. These error 
messages are generally self explanatory and describe how to to correct 
the entry. See Command Error Messages, Section 4.4.4.6. 

• Instruction execution errors are displayed in red in the scratch-display 
area. Execution error messages remain displayed on the screen. They can 
be reviewed later using the LE command. 

An <ESC> clears error messages. The CLS command clears the entire scratch 
display area (between .all the registers at the top and the Command line at the 
bottom). 

4-15 



SOB Commands - SOB Software Operation 

4.4.6 Single-Line Assembler 

With the MM (Modify Memory) command, the SOB accepts and assembles 
single statements of TMS3401 0 assembler code, and places the resulting ob­
ject value into memory. This assembler accepts only absolute numeric values. 

4.4,7 Using the HELP Function 

Type HELP or H to enter the Help Utility. The utility displays a menu of 
choices for each of various classes of instructions. Invoking any of these calls 
up a file of reference information about the commands. 

Note: 

The file Help utilities must either be on the current disk drive in the current 
directory or in the drive/directory combination as specified by GSPDIR in 
the MS- DOS command processor's environment. (See SET command in 
"MS-DOS Operating System" handbook and Section 2.5.) 

The Help files consist of a command character and a brief summary of each 
command as shown in Figure 4-2. 

TMS34010 Debugger HELP Function 

B Breakpoint/trace commands P Program execution commands 
Register/status display/modify 
System specific commands 
Debugger overview 

E Environment save/restore commands R 
G *Graphics customization commands S 
I *Interrupt/host interface commands 0 
M -- Memory manipulation commands Q Quit help function 

Choice: 

*NOTE: The G and I choices are not used with the SOB. 

Figure 4-2. SOB Help Utility Menu 

4.4.8 Host Interface 

4-16 

The host interface of the SOB board is used by the Debugger exclusively for 
status communications and I/O functions. Thus the host interface may not be 
independently accessed while the Debugger is running. 



SOB Commands - SOB Software Operation 

4.4.9 Loading and Running Code 

Object code is loaded into the SOB using the 

L <file name> [offset] 

command giving the object-code file name and the relocation offset to be 
added to the addresses in the object file. 

An example entry of the load object code command is given below. 

Command[l] b CODA.OUT 10200 

This command causes the file CODA.OUT to be opened and its contents read, 
interpreted and loaded into the simulated TMS34010 with an offset of 
>00010200. Note that this value offsets any addresses given in the object 
module. The chart in Figure 4-3 describes protected (allocated) areas of me­
mory. Beware of offsetting non-relocatable files. 

MEMORY SPACE 

>00000000 
thru 

001 F FFFO 

>00200000 
thru 

>BFFF FFFO 

>COOO 0000 
thru 

>COOO 01 FO 

>FFCO 0000 
thru 

>FFFD FFFO 

>FFFE 0000 
thru 

>FFFF FFFO 

OCCUPANTS 

DISPLAY 
RAM 

Reservedt 

IOREGS 

USER CODE 

RESERVED FOR 
DEBUGGER 

tFor a more detailed description of this area, 
see Figure 5-4 on page 5-6. 

Figure 4-3. SOB Memory Map 

Note that no checks can be made as to whether screen/program boundaries 
are violated. Screen and program spaces may be written to and executed out 
of at will; therefore, be careful how you treat memory. Do not write into the 
area reserved for the Debugger. 

4-17 



SOB Commands - SOB Software Operation 

4-18 

TRAP vectors should be specified at Assembly/Link time. This will enable 
RESET and any TRAPS to operate correctly. 

Note: 

Do not modify vectors for Traps 8. 25. 26. 27. 28. or 29. Any changes 
to these traps will cause a system failure. 



SOB Commands - SOB Software Operation 

4.4.10 Saving Machine Status 

You can save the current machine state either locally or to a file via a wide 
range of SOB commands. Local machine state is managed via the following 
commands: 

SID 
SR 
SMI val1 val2 {num} 

SMS {num} 

RIO 
RR 
RMI {num {offset}} 

RMS {num} 

VMI {num {offset}} 

Save 110 registers 
Save registers 
Save memory image from val1 to val2 

in file SMIFIL.num 
Save machine status to 

file SMSFIL.num 
Restore 110 registers locally 
Restore registers locally 
Restore memory image from 

SMIFIL.num, optional address offset 
Restore machine status 

from SMSFIL.num 
Compare memory image with 

SMIFIL.num, optional address offset 

4-19 



Comparison of Displays for DB, OM, and OW CD} Commands 

4.5 Comparison of Displays for DB, OM, and OW (D) Commands 

A choice of output formats is provided by three display-memory commands: 

DB 

OM 

DW/D 

Display memory in byte format 

Display memory 

Display memory in word format 

A complete description of these is in the command section; each with a me­
mory-display example. As shown below in &#differ, each command differs in 
its display. Note that the example memory used in the figure contains hex va­
lues 41 through 4A, the ASCII code for alpha characters A through J (also 
shown on the display right). 

r- DISPLAY POR DK COlI!WUl 
Addrll.bl •• 10 _"",_ry In a.eendlng bit ordar- 1.10 ASCII Charaetar. 
eeeH2" .... ____ 4A4'1 4847 41045 4~1.:l- 4241, ABCDEF"GHloJ ..... 

T T \ r~j ,-.; -BIHARY 'BA' 

/ \ .20P 208 20T 200. } BIT 
2TP-2TO 28P-2aO 25P-250 20F~200 ADDRBSSBS 

(b) ~6PLAY MEMORY COMMAND 

r- DISPLAY FOR DIr COJIIWID 

Addra.. ~sw "",_ry In Nard. In ascandlng ordar ~W 
eeeH2H _.4241,,4443 41045 4847 4A4'1 .... .... .... 

~;;;ey ,;;ee~- BlHARY 'BA' ~ T T 
.20F 208 20T 209 /'" / 

20P!200 25F-250 2SP-2ao 2TP-2TO 
(0) DWID-DISPLAY WORD COMMAND 

ASCI I Charactar. 
ABCDEF"GH I oJ ••••• 

} BIT 
ADDRBSSES 

Figure 4-4. Comparison of Memory Displays for DB. OM, OW Commands 

4-20 

Similarities of DB, OM, and DW/D displays: 

• A hexadecimal eight-digit (32-bit word) address is on the left 
• Memory values are in the center 
• Recognizable ASCII characters are on the right (note that each example 

line in the figure is filled with ASCII values for letters A to J for reference 
purposes) 



Comparison of Displays for DB, OM, and OW (D) Commands 

Differences in displays are mainly with the data: 

• DB command displays in eight-bit values: 

Least significant byte (LSB) on the left, 
MSB on the right. 
Least significant address bit is the rightmost bit (least significant 
bit or LSb) of the first byte displayed (on the left). 

• DM command displays in 16-bit words: 

LSB on the right, 
MSB on the left, 
Least significant address bit is the rightmost bit in a line. 

• DW or D command displays in 16-bit words: 

LSW (least significant 16-bit word) on the left, 
MSW on the left, 
Least significant address bit is the rightmost bit of the LSW. 

The descriptions depicted in Figure 4-4 allow you to decide the byte/word 
display that best suits your needs. 

Note: 

The memory displays can be cleared with the CLS (clear "scratch" area) 
command. 

4-21 



SOB Commands - SOB Commands 

4.6 SOB Commands 

4-22 

The SOB commands can be divided into nine functional categories: 

• Program Execution Commands 

• Register, Machine-State Commands 

• Register Field Manipulation Commands 

• Status Register Field Manipulation Commands 

• Memory Manipulation/Display Commands 

• Cache Manipulation Commands 

• Breakpoint and Trace Commands 

• Debug Environment Control Commands 

• Miscellaneous and Special Commands 

Table 4-2 lists all the SOB commands, including syntaxes and operation de­
scriptions, according to functional groups. Following Table 4-2, the SOB 
commands are described in alphabetical order. Table 4-1 describes the ab­
breviations and symbol definitions used in Table 4-2 and in the individual 
command descriptions. 

Table 4-1. SOB Abbreviations and Symbol Definitions 

SYMBOL DEFINITION 

<> Angle brackets enclose a word or phrase that varies from execution to 
execution, and must be typed out. For example, <offset> indicates 
than an offset must be entered. The brackets themselves are not en-
tered. 

[ ] Square brackets indicate one or more optional entries. The brackets 
themselves are not entered. 

{} Braces contain a list of items, of which one must be chosen. 

() Parentheses, when used within braces, contain an entire item in the list; 
they are used to show the logical grouping of a lengthy item. 

<CR> Press the carriage return. Note that some operating systems may require 
the ENTER key to be pressed instead. 

<SP> Press the SPACE key (bar). 

Abbreviations Command and option abbreviations are indicated by mixed use of up-
percase and lowercase letters. For example, RUn means the run com-
mand can be entered as RUN or abbreviated RU. 

Double- 32-bit value 
Word Value 

MSB Most significant byte 

LSB Least significant byte 

MSb Most significant bit 

LSb Least significant bit 



SDB Commands - SDB Commands 

Table 4-2. SOB Command Summary 

PROGRAM EXECUTION COMMANDS 

COMMAND AND SYNTAX OPERATION DESCRIPTION 

CNT [command count] Display command count 

REset Reset TMS3401 ° 
RUn [<instruction count>] Run for specified no. of instructions 

SS[F][U] [<instruction count>] Single step for specified number of in-
structions. with or without Fast update 
and/or Unassembly options 

REGISTER COMMANDS 

COMMAND AND SYNTAX OPERATION DESCRIPTION 

A Display A and B File registers 

A{O, .. ,14} [<double-word value>] Display/modify an A File register 

B Display A and B File registers 

B{O, .. ,15} [<double-word value>] Display/modify a B File register 

CLA Clear A File registers 

CLB Clear B File registers 

CLIO Clear I/O registers 

CLR Clear both A and B File registers 

CTL [<value>] Display/modify I/O CONTROL register 

DR Toggle A/B & I/O registers 

10 Display I/O registers 

10{O, .. ,1 FO} [<value>] Modify specified I/O register 

NR<register> <name> Give register a name 

PC [<double-word value>] Display/modify Program Counter 

PM [<word value>] Modify PMASK register 

RIO Restore temporary copy of I/O registers 

RR Restore temporary copy of registers 

SIO Save temporary copy of I/O registers 

SP [<double-word value>] Display/modify Stack Pointer 

SR Save temporary copy of registers 

ST [{ ({N, C, Z, V} {a, 1}) , Display/modify the status register 
<double-word value>}] or specified status bit 

4-23 



SOB Commands - SOB Commands 

Table 4-2. SOB Command Summary (Continued) 

REGISTER FIELD MANIPULATION COMMANDS 
COMMAND AND SYNTAX OPERATION DESCRIPTION 

CD [{a, 1}] Modify cache disable bit 

IE [{a, 1}] Modify interrupt enable bit 

PB{H,V} [{a, 1}] Toggle PBH or PBV bit 

PP [<pixel processing option>] Set specified pixel processing option 

PS [<pixel size>] Set PSIZE register 

T [{a, 1}] Toggle transparency bit 

W [{a, 1, 2, 3}] Set or display specified windowing option 

STATUS REGISTER FIELD MANIPULATION COMMANDS 

COMMAND AND SYNTAX OPERATION DESCRIPTION 
FE{O,1} {a, 1} Modify specified field extension bit 

FS{O,1} <field size> Modify specified field size 

ITPVH [<5-bit value>] Display/modify ITPVH bits 

NCZV [<4-bit value>] Display/modify NCZV bits 

PBX [{a, 1}] Toggle PBX bit 

ST [{ ({N, C, Z, V} {a, 1}) , Display/modify the status 
<double-word value>}] register or specified status bit 

MEMORY MANIPULATION/DISPLAY COMMANDS 

COMMAND AND SYNTAX OPERATION DESCRIPTION 
CIF Close input file 

CTF Close trace file 

DB <start addr> [<end addr>] Display bytes 

DM <start addr> [<end addr>] Display memory 

D [W] <start addr> [<end addr>] Display word of memory 

F <start addr> <end addr> <word value> Fill memory with word value 

FW <start adr> <end adr> <wrd val> Find or display memory word 

MM <adr> [<word>,<assm st>] Display or modify memory, word align 

MMF <addr> <field value> <field size> Modify memory field, no word align 

RMI [<file no. ext> [<offset>]] Restore memory image 

SMI <s addr> <e addr> [<file no. ext>] Save memory image 

U [<start addr> [<end addr>]] Unassemble specified range 

V <value> Evaluate data 

VMI [<file no. ext> [<offset>]] Compare memory & disk images 

CACHE MANIPULATION COMMAND 

COMMAND AND SYNTAX OPERATION DESCRIPTION 
CF [{a, 1}] Display/modify cache flush bit 

4-24 



SOB Commands - SOB Commands 

Table 4-2. SOS Command Summary (Continued) 

BREAKPOINT AND TRACE COMMANDS 

COMMAND AND SYNTAX OPERATION DESCRIPTION 

CTF Close trace file 

BP Display existing breakpoints 

BP{O •..• 19.X} {Clear. OF. ON. Togi. Quit} Modify existing breakpoints 

BPAI {<address>} Set breakpoint on address 

TR Display existing traces 

TR{O •..• 19.X} [{Clear. OFf. ON. Toggle. Quit}] Modify existing traces 

TRAI <address> Set trace on address 

DEBUG ENVIRONMENT CONTROL COMMANDS 

COMMAND AND SYNTAX OPERATION DESCRIPTION 

CNT [command count] Display command count 

RDE[file number extension] Restore debug environment 

SDE[file number extension] Save debug environment 

MISCELLANEOUS AND SPECIAL COMMANDS 

COMMAND AND SYNTAX OPERATION DESCRIPTION 

CLS Clear screen scratch area 

CTF Close trace file 

HELP Summary of commands 

ID Display SDB version number 

L <filename> [<offset>] Load COFF file 

LE Display last error messages 

LH Display last halt messages 

LM Display last monitor messages 

Q [*] [C] [S] Quit SDB session 

RMS[ <file no. extension>] Restore machine state 

SF <filename> Show system file contents 

SMS[<file no. extension>] Save machine state 

SWitch Switch command input to a file 

SY<command string> Execute system function 

U [<start addr> [<end addr>]] Unassemble specified range 

4-25 



A Display A & B File Registers A 

Syntax A 

Description The A command displays the A and B file registers. If the A and B file re­
gisters are already displayed, then the A command clears and rewrites the 
display. This works the same as the B command. 

Example Display the A and B file registers in the machine state display. 

4-26 

Command[l] a <CR> 

The registers are displayed (with values) as shown in Figure 4-1 ("SDB 
Debugger Screen Display") on page 4-5. 



A# Modify/Display an A File Register A# 

Syntax A{O •..• 14} [<double-word value>] 

Description The A# command (the # sign represents A-register number 0-14) allows 
you to modify or display the contents of the 15 A-file registers. This allows 
viewing the contents of an A-file register when the text display is off. Re­
gister number default is decimal. (To set or inspect the Stack Pointer. see 
the SP command. To change a register in the B file. see the B# command.) 

Example 1 

Example 2 

If the 32-bit <double-word value> is specified. it replaces the value of the 
specified A file register. The default type for <double-word value> is hex­
adecimal. 

Modify the contents of register A3: 

Command[l] A3 FFFFFFFE <CR> 

File register A3 now contains the value >FFFF FFFE. Note that you same 
could obtain the same result using the decimal type override, %-2. 

Display the contents of register A3: 

Command[l] A3 <CR> 

Command [1] A3 = FFFFFFFE 

(entry) 

(response) 

Now the contents of A file register A3 are visible in the command buffer. 
Note that this form of the command destroys any monitor commands that 
follow in the same buffer. 

4-27 



B Display A & B File Registers B 

Syntax B 

Description The B command causes the default register display to be the A and B file 
registers. If the A and B file registers are currently displayed, then the B 
command clears and rewrites the display. The B command works the same 
as the A command. 

Example Display the A and B file registers in the machine state display: 

4-28 

Command [1] !! <CR> 

The registers are displayed (with values) similar to Figure 4-1 ("SOB De­
bugger Screen Display") on 4-5. 



B# Modify/Display a B File Register B# 

Syntax B{O •..• 14} [<double-word value>] 

Description The B# command (the # sign represents a B-register number 0-14) allows 
you to modify or display the contents of any of the 15 B-file registers. This 
allows you to view the contents of a B-file register when the text display 
is off. Default for the register number is decimal. (To set or inspect the 
Stack Pointer, see the SP command.) 

Example 1 

Example 2 

If the 32-bit <double-word value> is specified, then it replaces the value 
of the specified B file register. The default type for <double-word value> 
is hexadecimal. 

Modify the contents of register B13: 

Command [1] B13 FFFFFFFF <CR> 

8 file register 813 now contains the value >FFFF FFFF. Note that you 
could obtain the same result using the decimal type override, %-1. 

Display the contents of register B13: 

Command [1] Bl3 <CR> (entry) 

Command [1] B l3 = FFFFFFFF ( response) 

The contents of B file register B13 are now visible in the command buffer. 
Note that this form of the command destroys any monitor commands that 
follow in the same buffer. 

Note: 

The TMS3401 0 uses the reserved B file registers for temporary storage 
of intermediate parameters of the PIXBL T and FILL instructions. When 
the TMS3401 0 executes one of these instructions, it will not preserve 
values that you have stored in these registers. Be careful that these in­
structions do not destroy data that you have stored in the reserved B 
fi I e reg isters. 

4-29 



BP Display Existing Breakpoints BP 

Syntax 

Description 

BP 

The BP command displays all existing breakpoints along with their 
active/inactive state. Figure 4-5 illustrates a typical display showing 
breakpoints 0, 1, and 2 (shown below the 'pc' display). 

GSP Register and Machine Status--SDB Debugger fs 16/32 PS= 0 PM=OOOO 

4-30 

Reg File A 
AO 00000000 
A1 00000000 
A2 00000000 
A3 00000000 
A4 00000000 
A5 00000000 
A6 00000000 
A7 00000000 

Normal Stop Mode 

A8 
A9 

A10 
All 
A12 
A13 
A14 

SP 

00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

st 00000010 NCZV=OOOO ITPVH=OOOOO 
pc 00000000 0000 MNEMONIC OP; 
o adr:FFDFE111 on IAQs 
1 adr:FCC10222 on IAQs 
2 adr:FC5A1CC2 on IAQs 

Command[l] BP_ 
BP 

Reg File B fe 0/ 0 w=off pp= S -> D 
BO 00000000 saddr B8 00000000 colorO 
B1 00000000 sptch B9 00000000 color1 
B2 00000000 daddr B10 00000000 temp_x 
B3 00000000 dptch B11 00000000 temp_y 
B4 00000000 offset B12 00000000 tempda 
B5 00000000 wstart B13 00000000 tempst 
B6 00000000 wend B14 00000000 tempct 
B7 00000000 dydx 

<Cache status> Cnt= 
SP=OOOOOOOO Ctl=OOOO 

MNEMONIC OP 

4 

Figure 4-5. Display Existing Breakpoints Monitor Display Format 

Each breakpoint is assigned a reference number (0 to 19). A combined 
maximum of 20 breakpoints and traces can be defined at one time. The 
reference numbers shown here are those used in conjunction with the BP# 
command to manipulate the state of each breakpoint on the list. 



BP# Modify Existing Breakpoints BP# 

Syntax BP{O, .. ,19,X} [{Clear, OFf, ON, Toggle, Quit}] 

Description The BP# command allows you to modify the status of individual break­
points. The # symbol is a breakpoint reference number from 0-19 (register 
number as shown by BP command) or the letter X. A combination of up 
to 20 breakpoints and traces may be defined. If X is specified, then all ex­
isting breakpoints are affected. The breakpoint reference number is dis­
played when the breakpoint is defined, and does not change thoughout the 
life of the specific breakpoint. 

Example 1 

Example 2 

The breakpoint options include: 

Clear Destroys the breakpoint. 

OFf Deactivates the breakpoint temporarily (but doesn't destroy 
it) . 

ON Reactivates a breakpoint that has been turned off. 

Toggle Activates a deactivated breakpoint, or deactivates an acti­
vated breakpoint. An asterisk (*) next to the number in a 
breakpoint list indicates deactivated. 

Quit Terminates the command without changing any break­
points. 

Only the significant letters of each option are processed, as indicated by the 
uppercase letters in the list (e.g., CLEAR and C are treated the same). 

If you do not enter the option as part of the command, the SOB will display 
the breakpoint and a list of options to select. 

Toggle breakpoint 3: 

Command [1] BP3 TOGGLE<CR> 

or 

Command[l] BP3 T<CR> (shortened version) 

Enter a breakpoint command without an option: 

Command[l] BP3 <CR> 

The SOB will display the breakpoint as follows (Figure 4-6): 

4-31 



BP# Modify Existing Breakpoints BP# 

Normal Stop Mode <Cache status> Cnt= 
SP=OOOOOOOO Ctl=OOOO 

INVALID OP 

4 
st 00000010 NCZV=OOOO ITPVH=OOOOO 
pc 00000000 0000 INVALID OP1 

T Toggle breakpoint 
ON Breakpoint on 
OFF Breakpoint off 
C Clear breakpoint 
Q Quit menu 

Command[l] BP3 
Enter action:_ 

Figure 4-6. Modify Breakpoints Menu 

Now you can enter T to toggle the breakpoint (or enter any of the other four 
options). A T toggles the state of breakpoint number 3 to off. Note that 
breakpoint 3 remains in memory and may be reactivated by the same com­
mand sequence or by specifying the ON option. Alternatively, it may be 
deleted with the CLEAR option and then overwritten by the BPAI com­
mand. You can verify the modification with the BP command. 

Example 3 Clear all breakpoints: 

Command [1] BPX CLEAR 

4-32 



BPAI Set Breakpoint on Instruction Address BPAI 

Syntax BPAI <address> 

Description The BPAI command allows you to set breakpoints, causing execution to 
stop when a specific address is accessed during instruction acquisition. 

Example 

The <address> is hexadecimal by default. A combination of up to 20 
breakpoints or traces may be set. 

Break execution when SDB attempts to fetch an instruction from location 
>120F F310. 

Command[lj BPAr 120FF310<CR) 

4-33 



CD Modify Cache Disable Bit CD 

Syntax CD [{O, 1}) 

Description This command allows you to set, reset, or toggle the contents of the CD 
(cache disable) bit in the I/O Memory Control register (bit 15 or the MSb 
on the left -- see register figure below). If a 0 or 1 value is not specified, 
then the CD bit is toggled; otherwise, the CD bit is set to the value. Notice 
command execution by checking the MSb of the "Ctl=xxxx" field in the 
SOB status display. 

Example Set the CD bit, disabling the cache: 

4-34 

Command [1] CD 1:. <CR> 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
I CD I ppop 

CD = instruction cache disable 
PPOP = pixel proc. operation sel. 
PBV = PixBlt vertical direction 
PBH = PixBlt horiz. direction 

T I RR I RM I reserved 

W = window violation 
T = pixel transparency enable 
RR = DRAM refresh rate 
RM = DRAM refresh mode 

I/O Memory Control Register 



CF Cache Flush/Modify Cache Flush Bit CF 

Syntax CF [{O, 1}) 

Description The CF command allows you to set or reset the I/O HSTCTLH-Register's 
CF bit (cache flush, bit 14 - - see register figure below) to a 0 or 1 : 

Example 

CFBIT 

o Cache reads are enabled depending upon value of the cache 
disable (CD) bit. 

1 All current data in the cache is invalidated, and accesses to 
the cache is inhibited until the CF bit is set to O. The cache 
fragment present flags are also cleared. 

If 0 or 1 is not specified, then the SOB flushes the cache by setting all of 
the present flags to "not present" and zeroes out the cache contents. The 
CF bit will not be affected. 

Clear the CF bit in the HSTCTLH Register, enabling cache access: 

Command [1] CF Q (CR> 

(You can monitor bit change by first issuing the 10 command to display the 
HSTCTLH I/O Register. Observe bit 14.) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
I HLT I CF I LBL IINcwllNCRI Res INMIMI NMII Reserved 

H L T = Halt processing 
CF = Cache flush 
LBL = Lower byte last 

INCR = Increment on read 
INCW = Increment on write 
NMIM = NMI mode bit 
NMI = Nonmaskable interrupt 

I/O HSTCTLH Register (Host Interface Control, High Byte) 

4-35 



CIF Close Input File CIF 

Syntax elF 

Description The CIF command closes the opened input file GSPINPUT.OOO. Then ex­
ecution can be restarted with a SWITCH command. 

Example 

4-36 

Note: If the CIF command is executed within a command batch stream 
(e.g., by using the SWITCH command), the input file will be closed and 
execution automatically begins at the beginnning of the input batch file 
(Le., loops continuously in batch stream). 

Close the input file: 

Command[l] ClF <CR> 



CLA Clear A File Registers CLA 

Syntax CLA 

Description The CLA command clears (zeroes) all the A file registers except the Stack 
Pointer (SP 0 clears Stack Pointer). 

Example Clear registers AQ-A14 (SP is not changed). 

Command[l] CLA <CR> 

4-37 



CLB Clear B File Registers CLB 

Syntax CLB 

Description The CLB command clears (zeroes) all the B file registers except the Stack 
Pointer (SP 0 clears Stack Pointer). 

Example Clear registers Bo-B14 (SP is not changed). 

Command[l] CLB <CR> 

4-38 



CLIO Clear 1/0 Registers CLIO 

Syntax CLIO 

Description The CLIO command clears (zeroes) the on-chip I/O Registers except for 
those registers with offset values from >OOCO to >0100 and >01 CO to 
>01 FO (registers and their offsets are listed in Table 4-3 on page 4-58). 

Example Clear only the on-chip I/O Registers. (To view this modification, first issue 
the 10 command to display the 10 Registers.) 

Command [1] CLIO <CR> 

4-39 



CLR Clear Both the A and B File Registers CLR 

Syntax CLR 

Description The CLR command clears: 

• The A file registers, 
• The 8 file registers, and 
• The Stack Pointer. 

Example Clear registers Ao-A 14, 80-814, and SP: 

Command[l] CLR <CR> 

4-40 



CLS Clear Scratch Area of Display CLS 

Syntax CLS 

Description The CLS command clears any messages below the standard register display 
and above the Command line ("scratch" display area). 

Example Clear "scratch" area: 

Command [1] CLS <CR> 

4-41 



CNT . Display/Modify Command Count CNT 

Syntax CNT 

Description The CNT command displays and modifies the value of the command count 
-- a count of commands executed since being set to zerO. This value is also 
displayed after "Cnt = " in the middle right side of the screen display. De­
cimal is the default value. 

Example 1 Set the command count to 100 (decimal): 

Command[l] CNT 100(CR> 

Example 2 Display the command count: 

Command[l] CNT(CR> 
Command[l] CNT - 100 

4-42 



CTF Close Trace File CTF 

Syntax CTF 

Description The CTF command closes the opened trace file GSPTRACE.OOO. This al­
lows inspecting the file with a Show File (SF) command without exiting 
the SDB. 

Example Close the trace file: 

Command[l] CTF <CR> 

4-43 



CTL Display/Modify CONTROL I/O Register CTL 

Syntax CTL [<value>] 

Description The CTl command allows you to modify the contents of the CONTROL 
(I/O MEMORY CONTROL) register by specifying a 16-bit replacement 
value, <value>. The default type for <value> is hexadecimal. 

Example 1 

Example 2 

4-44 

CTl also allows you to display the contents of the CONTROL register from 
the command line by executing the command without a value. This is 
useful for viewing the contents of the CONTROL register while the text 
display is off. 

Modify the contents of the CONTROL register: 

Command[l] CTL 1046 <CR> 

Display the contents of the CONTROL register: 

Command [1] CTL<CR> 

Command[l] CTL = 1046 

The contents of the CONTROL register are now visible in the command 
buffer. 

Note: 

Using the CTl command as shown in Example 2 will destroy any 
other commands that follow in the same buffer. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
I CD I PPOP 

CD = inst. cache disable 
PPOP = pixel proc. operation select 
PBV = PixBlt vertical direction 
PBH = PixBlt horiz. direction 

T I RR I RM I reserved 

W = window violation 
T = pixel transparency enable 
RR = DRAM refresh rate 
RM = DRAM refresh mode 

I/O Memory Control Register 



DB Display Bytes DB 

Syntax 

Description 

DB <start address> [<stop address>] 

The DB command displays blocks of TMS34010 memory. The start and 
stop addresses are expressed in 32-bit hexadecimal mode by using the as­
sociated convention (see the beginning of this section). 

Example Display a block of memory from address >0200 to >0550: 

Command[l] DB 00200 550 

Although the address specified is a bit address, any bit address portion 
supplied is ignored, and the data is specified in bytes starting on word 
boundaries. The resulting display is shown in Figure 4-7 in the default 
display mode. The memory display can be cleared with the CLS command. 

GSP Register and Machine Status fs 16/32 PS= 0 PM=OOOO 
Reg File A Reg File B fe 0/ 0 w=off pp= S -> D 

AO 00000000 A8 00000000 BO 00000000 saddr B8 00000000 colorO 
Al 00000000 A9 00000000 Bl 00000000 sptch B9 00000000 colorl 
A2 00000000 A10 00000000 B2 00000000 daddr B10 00000000 temp_x 
A3 00000000 All 00000000 B3 00000000 dptch Bll 00000000 temp_y 
A4 00000000 A12 00000000 B4 00000000 offset B12 00000000 tempda 
AS 00000000 A13 00000000 B5 00000000 wstart B13 00000000 tempst 
A6 00000000 A14 00000000 B6 00000000 wend B14 00000000 tempct 
A7 00000000 SP 00000000 B7 00000000 dydx SP 

Normal Stop Mode <Cache status> Cnt= 4 
st 00000010 NCZV=OOOO ITPVH=OOOOO SP=OOOOOOOO Ctl=OOOO 
pc 00000000 0000 MNEMONIC OP ;MNEMONIC OP 

Address LSB Mem in bytes in ascending ordr MSB ASCII Characters 
00000200 0000 0000 0000 0000 0000 0000 0000 0000 ............... . 
00000280 0000 0000 0000 0000 0000 0000 0000 0000 ............... . 
00000300 0000 0000 0000 0000 0000 0000 0000 0000 ............... . 
00000380 0000 0000 0000 0000 0000 0000 0000 0000 ............... . 
00000400 0000 0000 0000 0000 0000 0000 0000 0000 ............... . 
00000480 4142 4344 4546 4748 494A 0000 0000 0000 ABCDEFGHIJ ..... . 
00000500 0000 0000 0000 0000 0000 0000 0000 0000 ............... . 

Command[l] ~ 200 500<CR> Hit <CR> to continue or "q" to quit: 

Figure 4-7. Display Memory Monitor Display Format 

If more than nine lines of display are requested, the display halts; a carriage 
return continues the display. If a carriage return is entered (in lieu of a 0 
key entry), the display memory portion of the display is cleared, and the 
new set of information is routed to the top of the scratch-display area. 
(Note: Enter "0" only if the "Hit <CR> to continue or "q" to quit:" mes­
sage is displayed in the bottom of the above example. Do not confuse with 
o command.) 

Note that the start address must be less than the stop address, or the SOB 
issues an error message. 

Note: 

The DB, OM, and OW (D) commands display memory in unique ways. 
Section 4.5 and Figure 4-4 on 4-20 describe the differences. 

4-45 



OM Display Memory OM 

Syntax DM <start address> [<stop address>] 

Description The DM command displays blocks of TMS34010 memory. The start and 
stop addresses are expressed in 32-bit hexadecimal. 

Example Display a block of memory from address >0200 to address >0550. 

Command[l] dIn 00200 550 <CR). 

Although the address specified is a bit address, any bit address portion 
supplied is ignored, and the data is specified in words. The .resulting dis­
play is shown in Figure 4-8 in the default display mode. The memory dis­
play can be cleared with the CLS command. 

GSP Register and Machine Status fs 16/32 PS= 0 PM=OOOO 

4-46 

Reg File A Reg File B fe 0/ 0 w=off pp= S -> D 
AO 00000000 A8 00000000 BO 00000000 saddr B8 00000000 co1orO 
A1 00000000 A9 00000000 B1 00000000 sptch B9 00000000 co1or1 
A2 00000000 A10 00000000 B2 00000000 daddr B10 00000000 temp_x 
A3 00000000 All 00000000 B3 00000000 dptch B11 00000000 temp_y 
A4 00000000 A12 00000000 B4 00000000 offset B12 00000000 tempda 
A5 00000000 A13 00000000 B5 00000000 wstart B13 00000000 tempst 
A6 00000000 A14 00000000 B6 00000000 wend B14 00000000 tempct 
A7 00000000 SP 00000000 B7 00000000 dydx SP 

Normal Stop Mode <Cache status> Cnt= 4 
st 00000010 NCZV=OOOO ITPVH=OOOOO SP=OOOOOOOO Ct1=0000 
pc 00000000 0000 MNEMONIC OP ;MNEMONIC OP 

Addr(lsb) msb <==In ascending bit order== 1sb ASCII Characters 
00000200 0000 0000 0000 0000 0000 0000 0000 0000 ............... . 
00000280 0000 0000 0000 0000 0000 0000 0000 0000 ............... . 
00000300 0000 0000 0000 0000 0000 0000 0000 0000 ............... . 
00000380 0000 0000 0000 0000 0000 0000 0000 0000 .............•.. 
00000400 0000 0000 0000 0000 0000 0000 0000 0000 ............... . 
00000480 0000 0000 0000 4A49 4847 4645 4443 4241 ABCDEFGHIJ ..... . 
00000500 0000 0000 0000 0000 0000 0000 0000 0000 ............... . 

Command [1) DM 200 550<CR> 
Hit <CR> to continue or "q" to quit: 

Figure 4-8. Display Memory Monitor Display Format 

If more than nine lines of display are requested, the display is halted waiting 
for a carriage return entry to continue display. If a carriage return is entered 
(in lieu of a 0 key entry), the display memory portion of the display is 
cleared, and the new set of information is routed to the top of the scratch­
display area. (Note: Enter "0" only if the "Hit <CR> ... "q" to quit:" 
message is below command line as in above display. Do not confuse with 
o command.) 

Note that the start address must be less than the stop address for the DM 
command to operate, or the SDB issues an error message. 

Note: 

The DB, DM, and DW (D) commands display memory in unique ways. 
Section 4.5 and Figure 4-4 on page 4-20 describe the differences. 



DR Display File Registers CA, B, 1/0) DR 

Syntax DR 

Description The DR command toggles the display between the I/O registers and the A 
and B file registers (even if the 10 command has not been executed). 
(Successive <LINE FEED>, CTRL-J, or <CR> entries execute the com­
plete entry at the command line, thus toggling the display.) 

Example Display the A and B file registers in the machine state display: 

Command [1] DR <CR> 

4-47 



DW. D Display Words of Memory DW. D 

Syntax D[W] <start address> [<stop address>] 

Description This command displays blocks of TMS3401 0 memory. The start and stop 
addresses are expressed in 32-bit hexadecimal. 

Example Display a block of memory from address >0200 to >0500: 

Command [1] ~ 00200 550 <CR>. 

or 

Command[l] DW 00200 550 <CR>. 

Although the addresses are specified as bit addresses, any bit address por­
tion supplied is ignored, and the data is specified in words. The resulting 
display is shown in Figure 4-9 in the default display mode. The memory 
display can be cleared with the CLS command. 

GSP Register and Machine Status fs 16/32 PS= 0 PM=OOOO 

4-48 

Reg File A Reg File B me 0/ 0 w=off pp= S ~> D 
AO 00000000 A8 00000000 BO 00000000 saddr B8 00000000 colorO 
A1 00000000 A9 00000000 B1 00000000 sptch B9 00000000 color1 
A2 00000000 A10 00000000 B2 00000000 daddr B10 00000000 temp_x 
A3 00000000 All 00000000 B3 00000000 dptch B11 00000000 temp_y 
A4 00000000 A12 00000000 B4 00000000 offset B12 00000000 tempda 
AS 00000000 A13 00000000 B5 00000000 wstart B13 00000000 tempst 
A6 00000000 A14 00000000 B6 00000000 wend B14 00000000 tempct 
A7 00000000 SP 00000000 B7 00000000 dydx SP 

Normal Stop Mode <Cache status> Cnt= 4 
st 00000010 NCZV=OOOO ITPVH=OOOOO SP=OOOOOOOO Ctl=OOOO 
pc 00000000 0000 MNEMONIC OP lMNEMONIC OP 

Address LSW Mem in words in ascending order MSW ASCII Characters 
00000200 0000 0000 0000 0000 0000 0000 0000 0000 ............... . 
00000280 0000 0000 0000 0000 0000 0000 0000 0000 ..........•..... 
00000300 0000 0000 0000 0000 0000 0000 0000 0000 ...............• 
00000380 0000 0000 0000 0000 0000 0000 0000 0000 ............... . 
00000400 0000 0000 0000 0000 0000 0000 0000 0000 ............... . 
00000480 4241 4443 4645 4847 4A49 0000 0000 0000 ABCDEFGHIJ ..... . 
00000500 0000 0000 0000 0000 0000 0000 0000 0000 ..............•. 

Command[l] DW 200 550 <CR> 
Hit <CR> to continue or "q" to quit: 

Figure 4-9. Display Word Monitor Display Format 

If more than nine lines of display are requested, the display halts, and waits 
for you to enter Ii carriage return to continue the display. If a carriage return 
is entered (in lieu of a 0 key entry), a new set of information is routed to 
the top of the scratch-display area (after first clearing the memory portion 
of the display). (Note: Enter "0" only if the "Hit <CR> ... "q" to quit:" 
message is below command line as in above display. Do not confuse with 
o command.) 

Note that the start address must be less than the stop address, or the com­
mand line returns with no action. 



OW. 0 Display Words of Memory ow. 0 

Note: 

The DB, DM, and DW (D) commands display memory in unique ways. 
Section 4.5 and Figure 4-4 on page 4-20 describe the differences. 

4-49 



F Fill Memory with Word F 

Syntax F <start address> <end address> <word value> 

Description The F command fills a block of memory from <start address> to <end ad­
dress> with <word value>. 

Example 

4-50 

• The start address must be less than the stop address. 

• The default type for both is hexadecimal. 

• The fill value will be treated as a 16-bit value. 

• The bit address of both the start and stop addresses are truncated to 
form a word address (right four bits set to zero). 

• The F command may be used to fill screen memory, program memory, 
or both, as the SOB does not distinguish between the two. 

Fill memory from >200 to >350, inclusive, with >OOAA: 

Command[l] F 200 350 AA <CR> 
- ~200 350 ~ 

You can now check for >AA's in the filled area with the command: 

Command[l] DM 200 350<CR> 
-DM 200 350 



FE Modify Field Extension (FE) Bits FE 

Syntax FE {FE bit designator} <SPace> {bit value} 

Description The FE command sets the FEO or FE1 bits in the Status Register. The first 
parameter identifes which bit (0 or 1). It is separated from the second pa­
rameter with a space «SP». The second parameter is the desired bit va­
lue: 

Example 1 

Example 2 

Bit Value 

o for zero extend, or 

1 for sign extend. 

These can be observed in the "fe %n field above the B Register display. 

Set the FEO to 1, enabling sign extension: 

Command [ 1] FE Q .1 <CR> 

Modify the contents of the FE1 bit to enable zero extension: 

Command[l] FEI Q <CR> 

N = Negative 
C = Carry 
Z = Zero 
V = Overflow 
PBX = PixBlt executing 

IE = Interrupt Enable 
FE1 = Field extend 1 
FS1 = Field size 1 
FEO = Field extend 0 
FSO = Field size 0 

Status Register 

4-51 



FS Modify Field Size (FS) FS 

Syntax FS {FS bit designator} <field size> 

Description The FSO and FS1 commands allow you to modify the value of the corre­
sponding 5-bit field in the Status Register. A <field size> value (decimal 
by default) of decimal 1 to 32 can be specified. The current field size can 
be seen in the "fs aa/bb" field above the display's B Registers. 

Example 1 Change the field size of FSO to 15: 

Command [1] FSO 15 <CR> 

Example 2 Change the field size of FS1 to 30: 

Command[l] FSI 30 <CR> 

N = Negative IE = Interrupt Enable 
C = Carry FE1 = Field extend 1 
Z = Zero FS1 = Field size 1 
V = Overflow FEO = Field extend 0 
PBX = PixBlt executing FSO = Field size 0 

Status Register 

4-52 



FW Find Word FW 

Syntax FW <start address> <end address> <word value> 

Description The FW command locates a specific 16-bit <word value> within a defined 
two-address boundary. It prints out the value in hexadecimal/decimal for­
mat along with the address where found. If no printout occurs, <word va­
lue> was not found. 

Example 

Both <addresses> are 32-bits, in hexadecimal by default. If <address> is 
not word alighed, it is forced to word alignment by its four lower bits being 
set to zero. 

The <word value> parameter is 16-bit, hexadecimal by default. 

Use the command to find the value> FO: 

Command[l] FW FOOO F800 FO<CR> 
OOFO/240found at OOOOF6AO Hit <CR> to continue or "q" to quit: 

4-53 



HELP Enter Help Utility HELP 

Syntax 

Description 

Help 

The HELP command displays a menu of help files. 

Example Display the help menu: 

B 
E 
G 
I 
M 

Command [1] HELP 

The SDB displays a menu that describes the utility and lists help files for the 
various classes of commands. 

When you select a help file, the SDB displays the file in the same manner 
as the SF (Show File) command. If the file is not there, then the SDB will 
inform you. 

TMS34010 Debugger HELP Function 

Breakpoint/trace commands P 
Environment save/restore commands R 
*Graphics customization commands S 
*Interrupt/host interface commands 0 
Memory manipulation commands Q 

Program execution commands 
Register/status di~ay/modify 
System specific commands 
Debugger overview 
Quit help function 

*NOTE: The G and I choices are not used with the SOB. 

Figure 4-10. SOB Help Utility Menu 

4-54 



10 Identify SOB Version Number 10 

Syntax ID 

Description The ID command prints the version number of the SDB below the com­
mand line. 

Example Display the SDB version number: 

Command[1] ID 
Version 1.20021986 

4-55 



IE Modify Interrupt Enable Bit IE 

Syntax IE [{O, 1}] 

Description The IE command allows you to set, reset, or toggle (set 1 to 0, vice versa) 
the contents of the IE (interrupt enable) bit in the status register. This level 
is shown in the"l" bit of the ITPVH field in the center of the display. 

Example 

4-56 

If a 0 or 1 value is not specified, the IE bit is toggled; otherwise, the bit is 
set to the value specified. 

Set the IE bit: 

Command[l] IE 1 <CR> 

The IE bit is set to 1, disabling interrupts. 

N = Negative 
C = Carry 
Z = Zero 
V = Overflow 
PBX = PixBlt executing 

IE = Interrupt Enable 
FE1 = Field extend 1 
FS1 = Field size 1 
FEO = Field extend 0 
FSO = Field size 0 

Status Register 



10 Display 1/0 Registers 10 

Syntax 10 

Description The 10 command displays the I/O Registers in the top half of the machine 
state display. Table 4-3 on page 4-58 lists I/O Registers and their offsets. 

Example Display the I/O registers: 

Comrnand[l] 10 <CR> 

4-57 



10# Modify 1/0 Register 10# 

Syntax 10{O, .. ,1FO} [<value>] 

Description The 10# command allows you to inspect or change the contents of any of 
the memory-mapped I/O Registers. Registers are specified by the register's 
offset <value> (hexadecimal is default). 

4-58 

Simply specify the offset <value> from the I/O Register base address 
(>COOO 0000) to the desired register. (These registers are listed on the next 
page in Table 4-3.) Inspect the contents of a particular I/O register by 
specifying the offset {O to 1 FO} without a replacement value. 

Note: 

Do not change the contents of the five I/O Registers at offsets from 
>OOCO to >0100. Doing so can cause the system to fail. 

Table 4-3. I/O Register Offsets 

Offsett Register Description Offsett Register Description 

000 HESYNC Horizontal end 100 HSTCTLH Host control high 
sync 

010 HEBLNK Horizontal end 110 INTENB Interrupt enable 
blank 

020 HSBLNK Horizontal start 120 INTPEND Interrupt pending 
blank 

030 HTOTAL Horizontal end 130 CONVSP Source pitch 
total 

040 VESYNC Vertical end sync 140 CONVDP Destination pitch 

050 VEBLNK Vertical end blank 150 PSIZE Pixel size 

060 VSBLNK Vertical start blank 160 PMASK Plane mask 

070 VTOTAL Vertical total 170 - Reserved 

080 DPYCTL Display control 180 - Reserved 

090 DPYSTRT Display start 190 - Reserved 

OAO DPYINT Display interrupt 1AO - Reserved 

OBO CONTROL Control 1 BO DPYTAP Display tap 
address 

OCO HSTDATA Host data 1CO HCOUNT Horizontal count 

000 HSTADRL Host address low 1 DO VCOUNT Vertical count 

OEO HSTADRH Host address high 1 EO DPYADR Display address 

OFO HSTCTRL Host control low 1 FO REFCNT DRAM refresh 
count 

t The offset is added to the base address of >COOO 0000. 



10# 

Example 1 

Example 2 

Modify 1/0 Register 10# 

Set to >F046 the contents of the I/O register located at address >COOO 
0070 (VTOTAL Register): 

Cornmand[l] 10 70 F046 <CR>. 

The I/O VTOTAL register at >COOO 0070 now contains > F046. 

Inspect the contents of the same register: 

Cornmand[l] 10 70<CR> 

Cornmand[l] 10 70 = F046 (command response) 

4-59 



ITPVH Display/Modify ITPVH Bits ITPVH 

Syntax ITPVH [<5-bit value>] 

Description The ITPVH command displays the values in bits ITPVH of the Status Reg­
ister and I/O Control Register (defined in list below). To set one or more 
of the bits, an entire 5-bit value must be entered (only zeroes and ones ac­
cepted). Entering the command without any bit values causes the present 
contents to be displayed. 

Example 1 

Example 2 

4-60 

Meaning of each bit (ST = Status Register, CR = 1/0 Control Register): 

I = Interrupt Enable (ST bit 21) 
T = Pixel Transparency Enable (CR bit 5) 
P = PixBlt Executing/Interrupt (ST bit 25) 
V = PixBlt Vertical Dir. Control (CR bit 9) 
H = PixBlt Horizontal Dir. Control (CR bit 8) 

Reset the value of all ITPVH bits: 

Command [1] ITPVH OOOOO<CR> 

List values of all ITPVH bits: 

Command[l] ITPVH<CR> 
Command [1] ITPVH - 00000 

N = Negative 
C = Carry 
Z = Zero 
V = Overflow 
PBX = PixBlt executing 

IE = Interrupt Enable 
FE1 = Field extend 1 
FS1 = Field size 1 
FEO = Field extend 0 
FSO = Field size 0 

Status Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
I CD I PPop I PBV I PBH I W T I RR I RM I reserved 

CD = inst. cache disable 
PPOP = pixel proc. operation sel. 
PBV = PixBlt vertical direction 
PBH = PixBlt horiz. direction 

W = window violation 
T = pixel transparency enable 
RR = DRAM refresh rate 
RM = DRAM refresh mode 

I/O Memory Control Register 



L Load COFF File L 

Syntax L <filename> [<offset>] 

Description The L command downloads a COFF module produced by GSPA or the 
linker into the SDB local memory so that it can be executed. The COFF 
module may be optionally relocated at load time. Note that the SDB cache 
is flushed on a successful download so that old code in cache will not be 
executed. 

Example 1 

Example 2 

The <filename> is the COFF module that will be downloaded. It may be 
specified without an extension; .OUT is the default extension for modules 
produced by the linker, and .OBJ is the default extension for modules pro­
duced by GSPA. If no extension is specified for <filename>, the SDB first 
attempts to load <filename>. If this file isn't found, the SDB attempts to 
load <filename>.OUT. Unlinked <filename>.OBJ code may be down­
loaded, but a warning will be issued and unresolved references will not be 
resolved. 

If the optional <offset> is specified, then the SDB will attempt to relocate 
the COFF module when downloading by adding <offset> to all relocation 
entries in the COFF module. The <offset> is treated as a signed 32 bit 
quantity. If you attempt to download an absolute (non-relocatable) COFF 
module, the SDB issues a warning and ignores the offset. If the offset is 
not specified, then all relocation entries are loaded relative to zero. 

Download COFF module CODE.OUT with offsets of a (first example) and 
>100 ODOO (second example): 

Command[l] ~ CODE <CR>. 

Command[l] ~ CODE.OUT 1000DOO <CR>. 

The second example above causes the file CODE.OUT to be opened and its 
contents to be read, interpreted, and downloaded into the SDB memory 
with an offset of >100 ODOO. 

The following is an example of loading a COFF file from drive C by speci­
fying the drive and directory \LASER\OUT: 

Command[l] ~ C:\LASER\OUT\CODE <CR>. 

4-61 



LE Display Last Errors LE 

Syntax LE 

Description The LE command lets you view the most recent set of error messages after 
they have been removed from the screen. Error messages appear in red in 
the scratch display area of the SOB display. 

Example Display previous error messages: 

Command [1] LE <CR> 

4-62 



LH Display Last Halts LH 

Syntax lH 

Description The LH command allows you to view the most recent set of halt messages 
after they have been removed from the screen. Halt messages are generated 
by encountering breakpoints. They appear in cyan (light blue) in the 
scratch display area of the SOB display. 

Example Display previous halt messages: 

Command[l] LH <CR> 

4-63 



LM Display Last Monitor Messages LM 

Syntax LM 

Description The LM command allows you to view the most recent set of monitor error 
messages after they have been removed from the screen. Monitor error 
messages appear in yellow in the monitor message display area beneath the 
command entry line. 

Example Display previous monitor messages: 

Command[l] l!M <CR> 

4-64 



MM Modify (or Evaluate) Memory -- Word Align MM 

Syntax 

Description 

Example 1 

Address: 

@OOOOOFFO: 
Data: 

M M <address> [<single or dbl word value> <assembler stmt>] 

The MM command displays and modifies memory. 

The <address> parameter is: 

• a 32-bit bit address, hexadecimal by default. 
• if not word aligned, then <address> is forced to be word aligned by 

having its lower four bits set to zero. 

The area at <address> can be filled with one of the optional values: 

• a 16-bit <word value>, hexadecimal by default, 
• a 32-bit <double-word value>, hexadecimal by default, or 
• a line of TMS3401 0 <assembler code>. 

The default for values specified in <assembler stmt> is hexadecimal except 
for the TRAP, SETF, and K instructions. 

If the optional parameters <word value> or <assembler stmt> are not 
specified, then the command displays: 

• <address> in hexadecimal, decimal, and as an XY and linear address, 
• contents at <address> in hexadecimal, decimal, and as disassembled 

source, 
• <address> in hexadecimal and decimal. 
• NOTE that this form of the command overwrites any trailing com­

mands remaining on the command line; these remaining commands 
will not be executed. 

Use the command to report on a memory location: 

Command[l] MM FF8 <CR> 

This produces the following display, assuming that memory location > FFO 
contains >2980, CONVSP is >15, CONVDP is >16, PSIZE = 4, and OFF­
SET = 0: 

in Hex 
00000FF8 

2980 
OFF8 

Decimal 
4088 

10624 
4088 

Y,X: 
Linear: 

ASM: 

To check the contents of <address>: 

source 
0003,00FE 

00003FEO 
SRA 20,AO 

Command[l] MM FF8 <CR> 

Command[l] MM FF8 = 2980 
MM FF8 = 2980 

destination 
·0007,007E 

00003FEO 

(enter) 

(response) 

This form of the command overwrites any trailing commands on the com­
mand line; trailing commands will not be executed. You can use this com­
mand to find equivalent linear addresses from XY addresses, although the 
V command is also provided for this purpose. 

4-65 



MM 

Example 2 

4-66 

Modify (or Evaluate) Memory -- Word Align MM 

Use the MM command to modify a memory location: 

Command[l] MM FF8 FEC4<CR> 
Command[l] MM FF8 1FEC4<CR> 
Command [1] MM FF8 MOVE AQ,B9<CR> 

(word value) 
(double-word value) 
(assembler code) 

Each of these examples changes the value of the word or words starting at 
address > FF8 to the type of value on the right. Note that <word value> 
or <double-word value> is specified indirectly by the number of hexadeci­
mal digits required to hold the result: 

• FEC4 is a word value 
• 1 FEC4 is a double-word value. 

A hexadecimal value can be forced to double-word value by including 
leading zeros. The value OFEC4 is a double-word value. Values specified 
with a decimal format override will take up as much space as required to 
hold the hexadecimal equivalent, but leading zeros are not taken into ac­
count. For negative numbers, the space is calculated for the positive 
equivalent. Thus, -1 is a word value. 

Specifying a line of assembler code will modify as many words as it takes 
for the opcode and its operands to be placed in memory. This can be as 
many as five words. All values in the assembler code specification must be 
numeric as opposed to symbolic. For address-relative instructions, the va­
lue is specified as the address. The line assembler will calculate the relative 
offset for you. Except for the requirement that values cannot be symbolic, 
the syntax of assembly code for the line assembler is the same as described 
in the assembly language section. 



MMF Modify Memory Field -- No Word Align. MMF 

Syntax MMF <address> <field value> <field size> 

Description The MMF command modifies memory -- but not necessarily on word-a­
ligned boundaries -- using a specified field size. 

Example 

• The <address> is specified by either a 32-bit bit address or an XY 
address. The default format of <address> is hexadecimal. 

• The <field value> is a field of one to 32 bits. Default format is hexa-
decimal. 

• The <field size> is a decimal value (default) from 1 to 32 bits. 

Modify a memory field: 

Command[l] MMF FF8 F 4 <CR> 
Command[l] MMF FF8 %lOO7<CR> (decimal format) 
Command [ 1] MMF FF8 1 1 <CR~ 

Each of these examples changes the value of the field starting at address 
> FF8 to the value following > FF8. If the <field value> is larger than can 
be contained in <field size>, then the low order bits up to the field size will 
be inserted. That is, the LSbs (bits) of the value will be placed into the field 
in memory. 

4-67 



NCZV Display/Modify ST NCZV Bits NCZV 

Syntax ITPVH [<5-bit value>] 

Description The NCZV command displays the values in bits ITPVH of the Status Reg­
ister (defined in list below). To set one or more of the bits, an entire 4-bit 
value must be entered (only zeroes and ones accepted). Entering the 
command without any bit values causes the present contents to be dis­
played. 

Example 1 

Example 2 

4-68 

The instruction executed dictates meaning of each bit CST = Status Regis­
ter): 

N = Negative (ST bit 31 ) 
C = Carry (ST bit 30) 
Z = Zero (ST bit 29) 
V = Overflow (ST bit 28) 

Of the ST NCZV bits, set Negative bit to one, all others zero: 

Command [1] NCZV 1000<CR> 

List values of all NCZV bits: 

Command[l] NCZV<CR> 
Command[l] NCZV - 1000 

N = Negative 
C = Carry 
Z = Zero 
V = Overflow 
PBX = PixBlt executing 

IE = Interrupt Enable 
FE1 = Field extend 1 
FS1 = Field size 1 
FEO = Field extend 0 
FSO = Field size 0 

Status Register 



NR Name Register NR 

Syntax NR <register> <name> 

Description The NR command allows you to assign a name to the following: 

Example 1 

Example 2 

• Register AO to A14 

• Register BO to B14 

• Stack Pointer 

Parameter <register> is one of the registers listed above, and <name> is a 
substitute name of one to six characters. When assigned, <name> is used 
in the machine state display and in reverse assemblies. It will appear next 
to the register in the screen display. It cannot work with the register-value 
exchange designation (Section 4.4.4.3 on page 4-12). 

To delete the name, enter the command with the register, but no name. 

Designate Register AO as SUM: 

Command [1] NR AD SUM <CR> 

Thereafter, SUM can be substituted for AD. Also, in reverse assemblies, 
SUM will be used instead of AO (e.g., MOVE A4 ,AD will appear as MOVE 
A4, SUM) .. 

To delete SUM as the name for AO: 

Command [1] NR AO<CR> 

The name is also erased from the screen. 

4-69 



PBH,PBV Set/Toggle PBH or PBV Bits PBH,PBV 

Syntax PB{H. V} [bit setting] 

Description These commands let you set the PBH or PBV bits in the I/O Control Reg­
ister (address >COOO OOBO). (Table 4-3 on page 4-58 is a complete list of 
I/O Registers and their offset values.) 

Example 

4-70 

• PixBit horizontal: PBH command 
• PixBit vertical: PBV command. 

[Bit setting] specifies the action on the bit: 

o 
1 

Set to zero the specified horizontal or vertical bit 

Set to one the specified horizontal or vertical bit 

No entry If neither a 1 or zero is entered. the specified bit is 
toggled. 

Note that the value of both bits is readily available in the status-display 
center as the H and V bits in the ITPVH field. 

Set the PBV bit: 

Command [1] PBV 1 <CR> 

The PBV bit is set to 1, one, causing the PixBlt instructions to decrement 
in the Y direction. If you then enter: 

Command[l] PBV <CR> 

The PBV bit is toggled back to a 0, causing the PixBlt instructions to in­
crement in the Y direction. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
I CD I PPOP 

CD = inst. cache disable 
PPOP = pixel proc. operation select 
PBV = Pix Bit vertical direction 
PBH = Pix Bit horiz. direction 

T I RR I RM I reserved 

W = window violation 
T = pixel transparency enable 
RR = DRAM refresh rate 
RM = DRAM refresh mode 

I/O Memory Control Register 



PBX Set/Toggle PBX Bit in Status Register PBX 

Syntax PBX {O. 1} 

Description The PBX command allows you to set, reset, or toggle the contents of the 
PBX (PixBlt in progress) bit in the Status Register. If a 0 or 1 value is not 
specified then the PBX bit is toggled; otherwise, the PBX bit is set to the 
value specified. 

Example 

The result of the {O. 1} operand: 

o 
1 

sets PBX bit to zero, 

sets PBX bit to one. 

No entry If neither a 1 or 0 is entered, the PBX bit is toggled. 

Note that the value of this bit is displayed in the center of the status display 
as the P bit in the ITPVH field. 

Set the PBX bit: 

Cornmand[l] PBX ~ <CR> 

The PBX bit is set to 1. causing a RETI instruction to resume execution of 
a PixBlt instruction. Of course, if a PixBlt instruction was not in progress, 
then unpredictable results will occur. If you then enter: 

Cornmand[l] PBX <CR> 

The PBX bit is toggled back to 0, causing an interrupted PixBlt instruction 
not to be resumed upon an RETI instruction. 

N = Negative 
C = Carry 
Z = Zero 
V = Overflow 
PBX;; Pix Bit executing 

IE = Interrupt Enable 
FE1 = Field extend 1 
FS1 = Field size 1 
FEO = Field extend 0 
FSO = Field size 0 

Status Register 

4-71 



PC Modify Program Counter PC 

Syntax PC [<double-word value>] 

Description The PC command allows you to display and modify the contents of the 
Program Counter. 

Example 1 

Example 2 

4-72 

If no parameter follows PC, then the current PC value will be displayed. 
(The PC value is also part of the SDS display, seen on the center left of the 
screen.) NOTE that this form of the command destroys commands that 
follow in the same command buffer. 

If the optional 32-bit replacement <double-word value> is specified, then 
the value of the PC is changed to <double-word value>. The default type 
for <double-word value> is hexadecimal. 

Note that the PC always contains a word aligned value (Le., the lower 4 
bits are zero). If <double-word value> is not word aligned, then it is forced 
to word align by truncating its lower 4 bits to zero before being loaded into 
the PC. 

Modify the contents of the PC: 

Command[l] PC 4302 <CR> 

The PC now contains the value >00004300. Note the truncation of the 
lower 4 bits of the value. 

Display the contents of the PC from the command line by using the com­
mand without specifying a value: 

Command[l] PC <CR> 

Command [1] PC = 00004300 

This is useful for viewing the contents of the PC while the text display is 
off. Note that this form of the command destroys any monitor com­
mands that follow in the same buffer. 



PM Modify PMASK Register PM 

Syntax PM [<word value>] 

Description The PM command allows you to modify or display the contents of the PM 
(PMASK) I/O register. 

Example 1 

Example 2 

• If the optional 16-bit replacement <word value> is not specified, the 
register contents are displayed. NOTE that this form of the command 
destroys any remaining commands in the command file. 

• If <word value> is given, then the PM register is changed to <word 
value>. The default type for <word value> is hexadecimal. 

PMASK Register contents are displayed in the "PM = xxxx" field in the 
upper right of the status display. Other I/O Registers and their addresses 
are listed in Table 4-3 on page 4-58. 

Modify the contents of the PM register: 

Command[lj PM FFFE <CR> 

The PM register now contains the value >FFFE. This value allows only the 
LSb of each word written during graphics instructions to be affected. 

Display the contents of the PM register from the command line: 

Command[lj PM <CR> 

Command[l] PM = FFFE 

This is useful for viewing the contents of the PM register while the text 
display is off. Note that this form (no <word value> entered) of the com­
mand destroys any monitor commands that follow in the same buffer. 

4-73 



PP Set Pixel Processing Option PP 

Syntax PP [< PP option value>] 

Description The PP command allows you to modify or display the value of the five 
PPOP (Pixel Processing Operation Select) bits in the MEMORY CONTROL 
I/O Register. These bits are defined in Table 4-4. The register is shown on 
the following page. 

• If no parameter follows PP, then the pixel-processing bits values are 
displayed in decimal. 

• If the optional <PP option value> is specified, then the value of the 
PPOP bits is changed to <PP option value>. The default for <PP 
option value> is decimal. The number can be from 0 to 21 as listed 
in Table 4-4. 

The contents of these bits are displayed in the "pp=" field of the status 
display. (The CONTROL and other I/O Registers are listed in Table 4-3 on 
page 4-58.) 

Table 4-4. Pixel Processing Bit Descriptions 

PP BITS 
(DECIMAL) OPERATION DESCRIPTION 

0 5 ---> D Replace destination with source 
1 5AND D ---> D AND source with destination 
2 5 AND IT ---> D AND source with NOT-destination 
3 All-Os ---> D Replace destination with zeroes 
4 5 OR IT ---> D OR source with NOT-destination 

5 8 XNOR D ---> D XNOR source with destination 
6 IT ---> D Negate destination 
7 5 NOR D ---> D NOR source with destination 
8 5 OR D ---> D OR source with destination 
9 o ---> 0 Destination to destination 

10 5 XOR 0 ---> 0 XOR source with destination 
11 5 AND D ---> D AND NOT-source with destination 
12 AII-1s ---> 0 Replace destination with ones 
13 5 OR D ---> D OR NOT-source with destination 
14 8 NAND D ---> 0 NAND source with destination 

15 5 ---> 0 Replace destination with NOT-source 
16 D + 5 ---> 0 Add source to destination 
17 ADD 8(D,5) ---> 0 Add 8 to D with saturation 
18 0-5--->0 8ubtract source from destination 
19 5UB 5(0,5) ---> 0 5ubtract 5 from 0 with saturation 

20 MAX(0,5) ---> 0 Maximum of source and destination 
21 MIN(0,5) ---> D Minimum of source and destination 

Example 1 Modify the contents of the PPOP bits: 

Command[l] PP 14 <CR> 

The PP bits now contain binary 01110 (decimal 14). 

4-74 



PP 

Example 2 

Set Pixel Processing Option 

Display the contents of the PPOP bits from the command line: 

Command[l] PP <CR> 

Command[l] PP = 14 

PP 

This is useful for viewing the contents of the PPOP bits while the text dis­
play is off. Note that this form of the command destroys any monitor 
commands that follow in the same buffer. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
I CD I PPOP I PBV I PBH I W T I RR I RM I reserved 

CD = inst. cache disable 
PPOP = pixel processing 

operation select 
PBV = PixBlt vertical direction 
PBH = PixBlt horizontal direction 

W = window violation 
T = pixel transparency enable 
RR = DRAM refresh rate 
RM = DRAM refresh mode 

I/O Memory Control Register 

4-75 



Set PSIZE Register PS 

Syntax PS [<pixel size>] 

Description The PS command allows you to modify or display the contents of the PSIZE 
(Pixel Size) 1/0 register. 

Example 1 

Example 2 

4-76 

• If no <pixel size> is given after PS, the contents of the PSIZE Register 
are displayed. Note that this form of the command destroys any 
monitor commands that follow in the same buffer. 

• If the optional replacement <pixel size> value is specified, then the 
value of the PS register is changed to <pixel size>. The default type 
for <pixel size> is a decimal of 1, 2, 4, 8, or 16. 

Other 1/0 Registers are listed in Table 4-3 on page 4-58. 

Modify the contents of the PS register: 

Command [1] PS.a <CR> 

The PS register now contains the value 8. This causes the SOB to process 
pixels at a size of 8 bits per pixel. Note that the only valid pixel sizes are 
1, 2, 4, 8, and 16. Any other value will result in an error. 

Display the contents of the PS register from the command line: 

Command [1] PS <CR> 

Command [1] PS = 8 

This is useful for viewing the contents of the PS register while the text 
display is off. Note that this form of the command destroys any monitor 
commands that follow in the same buffer. 



Q Quit SOB Q 

Syntax Q[*][C][S] 

Description The Q command terminates the SOB session. 

Example 

When you execute the Q command, the SOB will ask you if you are sure 
that you want to terminate the session. If you answer yes, then all files that 
the SOB has opened are closed and the SOB terminates execution. You can 
also enter an option with the command: 

Option 

* (asterisk) 

C 

S 

You are not asked for verification before termi­
nation. This is useful if the SOB is being run as part 
of a batch stream and you do not wish to have any 
user input. (See also the -f option in Section 4.4.2 
on page 4-9 which invokes the SOB using a com­
mand input file.) 

(Clear) The SOB clears the PC screen on exit. 

(Save) The SOB executes the equivalent of the 
save machine state command with no parameters 
(i.e., the machine state is saved to the file 
SMSFILE.OOO). (See also SMS command.) 

All three of the options may be specified, singly or in combination. 

Terminate the SOB session, clear screen of text and graphics: 

Command[l] QC<CR> 

4-77 



RDE Restore Debug Environment RDE 

Syntax RDE [<file number extension>] 

Description The RDE command is used in conjunction with the SDE (Save Debug En­
vironment) command to restore a previously saved debugging environment 
context. The RDE command restores the saved debugging environment 
from a file in the default directory. This includes: 

Example 1 

Example 2 

4-78 

• the traces, 
• the breakpoints, 
• the register names, and 
• the command buffers. 

If the optional <file number extension> is not specified, then the file is 
called SDEFIL.OOO. If <file number extension> is present, it is converted 
to the ASCII of its decimal representation with zero fill on the left so that a 
three-character file extension is formed. This limits <file number exten­
sion> to 0 to 999, inclusive. This three-character extension is used to form 
the file name SDEFIL.aaa, where aaa is the three character file extension. 
The default type for <file number extension> is decimal. 

To restore a specific debugging environment via the RDE command, you 
must specify the same <file number extension> that it was saved with. See 
the SDE command for saving the debugging environment. 

The graphics environment saved via the SDE command includes: the 
traces, the breakpoints, and register names. 

Restore the debugging environment from data stored in the file SDE­
FIL.042: 

Command[l] RDE 42 <CR> 

Restore the debugging environment from data stored in the default file 
SDEFIL.OOO: 

Command [1] RDE <CR> 



RESET Reset GSP RESET 

Syntax REset 

Description The RESET command downloads the SOB340.GSP code to re-establish 
communication with the SOB. 

Example 

File SOB340x.GSP must be available as described in the Notes to Section 
4.4 on page 4-9. 

Cornmand[l] RE <CR> 

or 

Cornmand[l] RESET <CR> 

4-79 



RIO Restore Temporary Copy of 1/0 Registers RIO 

Syntax RIO 

Description The RIO command restores the contents of the 110 registers from a copy 
that is kept in SOB340 local memory (as opposed to on disk). The copy 
of the 110 registers should have previously been saved via the SID (Save 
110 Registers) command. If the registers were not previously been saved, 
RIO will set them to zero. 

Example Restore the local copy of the 110 register: 

Command [1] RIO <CR> 

4-80 



RMI 

Syntax 

Description 

Example 1 

Example 2 

Example 3 

Restore Memory Image RMI 

RMI [<file number extension> [<offset>]] 

The R M I command is used to restore the range of memory that had been 
saved in a disk file with the SMI (Save Memory Image) command. 

The data and the memory addresses will be the same as the area stored with 
the SMI command. The beginning and ending addresses of the memory 
image were stored in the file (along with memory data) and so are not 
needed on the command line. 

• The <file number extension> is used to form the filename SMI­
FIL.aaa, where aaa is the three-character file extension. The default 
type for <file number extension> is decimal, and is limited to 0 to 
999, inclusive. It must be the same <file number extension> under 
which it was filed. 

• If the optional <file number extension> is not specified, then the file 
is called SMIFIL.OOO. 

• The memory image can optionally be offset from its previous location 
in memory by specifying <offset>. Note: if <offset> is to be specified, 
you must also specify the <file number extension>. The <offset> is 
hexadecimal by default and is treated as a signed 32-bit value. 

To restore a specific memory image via the RMI command, you must specify 
the same <file number extension> under which it was saved. S08340 tells 
you if the file does not exist. If the S08340 reaches a premature end-of-file 
condition on the SMIFIL or if the S08340 encounters a memory write error, 
the data restored thus far from the file to memory will remain in memory. 
You will be informed of the incomplete memory restoration in both cases. 
See the SMI command for saving the memory image. 

Restore the memory image data stored in the file SMIFIL.100: 

Cornrnand[l] RMI 100 <CR> 

Restore the memory image data stored in the file SMIFIL.047, offsetting the 
data in memory by a value of >0401 bits: 

Cornrnand[l] RMI 47 0401 <CR> 

Restore the memory image data stored in the default file SMIFIL.OOO: 

Cornrnand[l] RMI <CR> 

You could also use the default file with an offset, as shown below (>780 
is the offset): 

Cornrnand[l] RMI Q 780 <CR> 

4-81 



RMS Restore Machine State RMS 

Syntax RMS [<file number extension>] 

Description The RMS command restores the machine state of SDB340 from a disk file 
in the default directory. This machine state is that stored by the SMS (Save 
Machine State) command. 

Example 1 

Example 2 

4-82 

• To restore a specific machine state via the RMS command, the <file 
number extension> must be the same as the one underwhich it was 
saved. You will be told if the restoration file does not exist. 

• The <file number extension> is used to form the filename 
SMSFIL.aaa, where aaa is the three-character file extension. The de­
fault type for <file number extension> is decimal, and is limited to 0 
to 999, inclusive. 

• If the optional <file number extension> is not specified, then the re­
storation file is called SMSFIL.OOO. 

Machine state elements restored are: 

• the A, B, and I/O register files, 
• Status Register 
• Program Counter, and 
• the trap vectors. 

See the SMS command for saving the machine state. 

Restore the machine state data in the file SMSFIL.100: 

Command[l] RMS 100 <CR> 

Restore the machine state data stored in the default file SMSFIL.OOO: 

Command[l] RMS <CR> 



RR Restore Temporary Copy of Registers RR 

Syntax RR 

Description The RR command restores the contents of the A and 8 file registers from a 
copy that is kept in SD8340 local memory (as opposed to on disk). 

Example 

• The copy of the registers should have previously been saved via the 
SR (Save Registers) command. 

• If the registers have not previously been saved then they will be set 
to zero. 

Restore the local copy of the A and 8 file registers: 

Command[l] RR <CR> 

4-83 



RUN,RU Run for a number of Instructions RUN,RU 

Syntax RUn [<instruction count>] 

Description The RUN commands executes instructions either continuously or until an 
optionally specifiable instruction count has been reached. The screen dis­
play is not updated until execution stops. You can enter the command as 
RUN or abbreviate it as RU. 

Example 1 

Example 2 

4-84 

If the optional <instruction count> is specified, then the SOB will execute 
an <instruction-count> number of instructions and then return to com­
mand level. The default type for the <instruction count> is decimal. If the 
<instruction count> is not specified, then the SOB will execute instructions 
until one of these halt conditions exits: 

• you halt execution with a keystroke, 
• an error is encountered, 
• a breakpoint is encountered, or 
• a TRAP 29 is executed. 

Note: 

While the TMS3401 0 is running, pressing ESC will allow it to continue 
that way while control is given to the keyboard. Thus changes can be 
made to memory, including the I/O Registers, without halting the 
TMS3401 O. Access can be made to such items as the plane mask, 
cache enable, and pixel processing. Internal elements of the 
TMS34010 cannot be changed (such as the PC, ST, or the A or B file 
registers) . 

To halt the TMS34010, re-enter the RUn command and hit any key 
other than ESC. You can also use this to exit the SOB while leaving the 
TMS34010 running. 

Execute the RUN command with an instruction count of 100: 

Command [1] RUN 100 <CR> 

or 

Command[l] RU 100 <CR> 

Execution will halt after 100 instructions if none of the halt conditions 
mentioned above have occurred. 

Execute the RUN command without an instruction count: 

Command[l] RUN <CR> 

or 

Command[l] RU <CR> 

Execution will halt only if one of the halt conditions mentioned above has 
occurred. Also see BP (Execute with BreakPoint). 



SDE Save Debug Environment SDE 

Syntax SDE [<file number extension>] 

Description The SDE command is used to preserve the context of a debugging envi­
ronment. The environment saved includes: 

Example 1 

Example 2 

• the traces, 
• the breakpoints, 
• the register names, and 
• the command buffers. 

The RDE (Restore Debug Environment) command can be used to restore 
this environment. 

• The <file number extension> is used to form the filename SDE­
FIL.aaa, where aaa is the three-character file extension. The default 
type for <file number extension> is decimal, and is limited to 0 to 
999, inclusive. 

• If the optional <file number extension> is not specified, then the file 
is called SDEFIL.OOO. 

To restore a specific debug environment via the RDE command, you must 
specify the same <file number extension> with which it was saved. See 
the RDE command for restoring procedures. 

Save the debugging environment in the file SDEFIL.043: 

Command [1] SDE 43 <CR> 

Save the debugging environment in the default file SDEFIL.OOO: 

Command [1] SDE <CR> 

4-85 



SF Show File Utility SF 

Syntax SF <filename> 

Description The SF command displays the contents of the file called <filename>. This 
allows you access to system files without corrupting or losing the current 
simulation. The screen is cleared before and after viewing the file. 

Example Display the contents of the file EXAMPLE.LST: 

4-86 

Command[l] SF EXAMPLE.LST <CR> 

Note that the file will be displayed in 23-line blocks, then pause. 

• The RETURN key brings up successive 23 line pages of the file. 
• The Q key entry halts the display at any time. 

This command is useful for displaying assembly listings and linker map files 
during a debugging session. 



510 Save Temporary Copy of 1/0 Registers 510 

Syntax SIO 

Description The SID command saves the contents of all of the 110 registers to a copy 
kept in the SOB local memory (as opposed to on disk). Note that this is 
temporary memory and is cleared between invocations of the SOB. The 110 
registers are restored from this copy via the RIO (Restore I/O registers) 
command. 

Example Save a local copy of the I/O registers: 

Command[l] SIO <CR> 

4-87 



SMI Save Memory Image SMI 

Syntax SMI <start address> <end address> [<file number extension>] 

Description The SMI command is used to save a range of memory to disk. The RMI 
(Restore Memory Image) command returns the block to memory. The SMI 
command can be used to preserve a specified memory context for debug; 
it may also be used to store screen data. 

Example 1 

Example 2 

4-88 

The SMI command saves the region of TMS34010 memory from <start 
address> to <end address>, inclusive, in binary format in a file on disk in 
the default directory. The default format for both addresses is hexadecimal. 

Note: 

The addresses specified for the SMI command are inclusive bit ad­
dresses and are treated as such. Thus, if you specify the starting and 
ending addresses as being the same address, then the result will be the 
save of a single bit of memory. Examples: 

• If you wish to save all of the words of memory from 0 up to and 
including the word starting at >400, then the start and end ad­
dresses should be >0 and >40F. 

• If you specified >400 as the ending address, then only the first 
bit of the word at >400 would be saved. 

If <file number extension> is present, it is used to form the file name SMI­
FIL.aaa, where aaa is the one-to-three-character file extension. This limits 
<file number extension> to 0 to 999, inclusive. The default type for <file 
number extension> is decimal. 

If the optional <file number extension> is not specified, then the save file 
is called SMIFIL.OOO. 

If the save file cannot be created or there is an error while writing to the file 
(Le. running out of disk space), the saving of memory to the file will termi­
nate and the file will be closed. If you attempt to restore the memory image 
in the file, then whatever was stored in the file up to the error will be re­
stored. The RMI command will then detect a premature end of file on the 
restoration file and signal an error. 

To restore a specific memory image via the RMI command, you must specify 
the same <file number extension> under which it was saved. See the RMI 
command for restoring the memory image. 

Save the memory image data from address >1AO to >200F in the file 
SMIFIL.792. The data is stored in non-compressed, binary-image format. 

Command[l] SMI lAO 200F 792 <CR> 

Save a single bit of memory at >1A1 in the file SMIFIL.003. 

Command[l] SMI lAl lAl.l <CR> 



SMI 

Example 3 

Save Memory Image SMI 

Save the memory image data from address >440C to >4601 in default file 
SMIFIL.OOO 

Command [1] 8MI 440C 4601 <CR> 

4-89 



SMS Save Machine State SMS 

Syntax SMS [<file number extension>] 

Description The SMS command is used in conjunction with the RMS (Restore Machine 
State) command to save a machine state of the SOB to a file in the default 
directory. If the optional <file number extension> is not specified, then the 
save file is called SMSFIl.OOO. 

Example 1 

Example 2 

4-90 

If <file number extension> is present, then it is converted to the ASCII of 
its decimal representation with zero fill on the left so that a three character 
file extension is formed. (This limits <file number extension> to 0 to 999, 
inclusive.) This three-character extension is used to form the file name 
SMSFIl.aaa, where aaa is the three character file extension. The default 
type for <file number extension> is decimal. 

To restore a specific machine state via the RMS command, you must specify 
the same <file number extension> under which it was saved. See the RMS 
command for restoring the machine state. 

The machine state elements stored are: 

• the A, B, and I/O Register files, 

• Status Register, 

• Program Counter, and 

• the trap vectors. 

Save the machine state data in the file SMSFIl.1 00: 

Command[l] SMS 100 <CR> 

Save the machine state data in the default file SMSFIl.OOO: 

Command[l] SMS (CR> 



SP Modify/Display Stack Pointer SP 

Syntax SP [<double-word value>] 

Description The SP command modifies or displays the contents of the SP Stack Pointer 
register. If the optional 32-bit replacement value <double-word value> is 
specified, the contents of the SP register are changed to <double-word 
value>. NOTE that if the <double-word value> parameter is not specified, 
this form of the command will destroy any other commands that would 
be remaining in a command buffer. 

Example 1 

Example 2 

The default type for <double-word value> is hexadecimal. (To modify or 
display the A and B file register, see the A# and B# commands.) 

Modify the contents of the SP register: 

Command[l] SP 4000 <CR> 

The SP register now contains >00004000. 

Display the SP contents from the command line: 

Command[l]SP <CR> 

Command[l] SP = 00004000 

The contents of the SP register are now visible in the command buffer. This 
is useful for viewing the contents of the SP register while the text display 
is off. Note that this form of the command destroys any monitor commands 
that follow in the same buffer. 

4-91 



SR Save Temporary Copy of Registers SR 

Syntax SR 

Description The SR command saves the contents of the A and B file registers in a copy 
that is kept in the SOB local memory (as opposed to disk). The A and B 
file registers are restored from this copy via the RR (Restore Registers) 
command. Note that only one copy of the registers may be saved at a time. 
A re-invocation of the SR command will overwrite the registers saved with 
the previous SR command. 

Example Save a copy of the A and B registers: 

Command [1] SR <CR> 

4-92 



SS,SSF,SSFU,SSU Single Step by Count SS,SSF,SSFU,SSU 

Syntax SS[F,FU,U] [instruction count] 

Description The SS command allows you to single step through a program for an [in­
struction count] number of instructions, with or without Fast update 
and/or Unassembly. 

Example 1 

Example 2 

Example 3 

If none of the optional parameters, including F and U, are specified, then 
the SOB executes only one assembly language instruction and updates the 
SOB status display. If the optional [instruction count] is specified, then the 
SOB will execute [instruction count] instructions with a complete SOB 
status display update after each instruction execution. 

The F and U options allow you to specify whether you want a Fast update 
- used when stepping for a number of instructions - and whether you want 
an Unassembly after each instruction: 

F The F option inhibits the update of the SOB status display after 
each instruction except the last. This is functionally equivalent 
to the RUN command with an [instruction count], but executes 
slightly slower. Its value lies in using it with the U option, pro­
viding a faster single step with unassembly. 

U The U option causes the SOB to supply a 5-line reverse assem­
bly after each instruction. The reverse assembly includes the in­
formation about the two previous program counter locations, the 
current program counter location and the two following se­
quential locations. These are displayed similarly to the display 
for a U command. 

Single step for 1 instruction: 

Command[l] SS <CR> 

Single step for 10 instructions: 

Command[l] SS 10 <CR> 

Use the F and U options: 

Command [1] SSF <CR> 
Command[l] SSFU 100 <CR> 
Command[l] SSU 10 <CR> 

Note that the F, U, and instruction count options may be used independ­
ently or in conjunction with one another. 

See also BP (BreakPoint) and RUN (RUN until halted) commands. 

4-93 



ST,STN,STC,STZ,STV Status Register ST,STN,STC,STZ,STV 

Syntax ST [{ ({N, C, v, Z} {O, 1}) , <double-word value>}] 

Description The ST command allows you to display or modify the contents of the Sta­
tus Register by specifying either a 32-bit replacement value or a status bit 
name and a bit replacement value. The default type for <double-word va­
lue> is hexadecimal. 

Example 1 

4-94 

Entering ST without a value will display the Status Register contents. This 
is useful for viewing the contents of the Status Register while the text dis­
play is off. 

You can also selectively set or reset the contents of the four arithmetic sta­
tus bits with these commands: 

Command 

STN 

STC 

STZ 

STV 

Alters Status Register bit 

N (negative) 

C (carry) 

Z (zero) 

V (overflow) 

Note that the values of these bits are readily available by referencing the 
NCZV section of the SOB status display. 

N = Negative 
C = Carry 
Z = Zero 
V = Overflow 
PBX = PixBlt executing 

IE = Interrupt Enable 
FE1 = Field extend 1 
FS1 = Field size 1 
FEO = Field extend 0 
FSO = Field size 0 

Status Register 

Modify the contents of the Status Register using <double-word value>: 

Command [1] ST F0000046 <CR> 



ST,STN,STC,STZ,STV Status Register ST,STN,STC,STZ,STV 

Example 2 

Example 3 

Turn on the Z bit of the Status Register: 

Command [1] ST ~ 1 <CR> 

Note that the space after ST is optional when spcifying a particular status 
bit; it is allowed for clarity. 

To turn off the Z bit, enter: 

Command [1] STZ Q <CR> 

Display the contents of the Status Register: 

Command[l]ST <CR> 

Command [1] ST = F0000046 

The contents of the Status Register are now visible in the command buffer. 
Note that this form of the command destroys any monitor commands that 
follow in the same buffer. 

4-95 



SWITCH Switch Command Input Context SWITCH 

Syntax SWitch 

Description The SWITCH command modifies the command entry source from the key­
board to the file GSPINPUT.OOO. Commands are accepted as they occur 
in the file until a SWITCH command is encountered in the file or an EOF is 
encountered. At this point, control returns to the keyboard. 

Example 

4-96 

Notes: 

1. A inadvertent keystroke input cannot halt a batch stream's exe­
cution. This allows you to leave an executing system unattended. 

2. If the SWITCH command is interrupted before completing the com­
mand string (e.g., an unexecutable command is encountered) and 
terminates with an error message, the string can be continued at the 
command after the one in error by issuing another SWITCH com­
mand. However, if you instead want to begin with the first com­
mand in the file, first issue the CIF (Close Input File) command. 

When the SWITCH command is encountered in the file, the SOS returns to 
accepting input from the keyboard. If you key in another SWITCH com­
mand, then the SOS continues accepting input from the file, continuing at 
where it had left off in reading the file. However, if an EOF is encountered 
or a CIF command executed (see above note), then the input file is closed. 
Another SWITCH command will then begin reading again from the top of 
the file. You can also cause the SOS to automatically begin reading from 
the input file by specifying the -f option when the SOS is invoked. This 
option is covered in Section 4.4.2 on page 4-9. 

Switch the command input source: 

Command[l] SWITCH 

The following is a sample input file. 
PC FFCOOOOO 
ssu 13 
bpai FFCOOOOO 
switch 

Note that the file contents are automatically converted to uppercase. 



SY Execute System Function SY 

Syntax SY <string> 

Description The SY command executes MS-DOS system functions from the SOB. Ed­
its, assemblies, links, file copies, etc., may be executed via this command 
while in an SOB session. 

Example Command[l] SY COPY \GSP_ASM\HELLO.OBJ HELL02.0BJ 

or 

Command[l] SY GSPASM \GSP_ASM\HELLO.ASM; 

or 

Command[l] SY EDIT \GSP_ASM\HELLO.ASM 

or 

Command [1] SY CD \GSP_ASM 

or 

Command [1] SY DIR B: 

The SOB status display is cleared and the MS-DOS command is executed. 
After the command has terminated, the SOB waits for a carriage return be­
fore clearing the screen and rebuilding the SOB status display. Normal 
system control characters will affect the execution in the same manner as if 
the command had been invoked from the operating system. 

4-97 



T Toggle Transparency Bit T 

Syntax T [{O, 1}] 

Description The T command sets, resets, or toggles the contents of the T (Transpar­
ency) bit in the I/O Co.ntrol register. Note that this is the T bit in the ITPVH 
section of the SOB status display. 

Example 

4-98 

1 A one entry sets the T bit. 

o A zero entry resets the T bit. 

No entry If neither a 0 nor a 1 is specified, the T bit is toggled. 

Set the T bit: 

Command [1) I 1 <CR> 

The T bit is set to 1, enabling transparency. 

If you then enter: 

Command[l) I <CR> 

the T bit is toggled back to 0, disabling transparency. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
I CD I PPOP I PBV I PBH I W T I RR I RM I reserved 

CD = inst. cache disable W = window violation 
PPOP = pixel proc. operation sel. T = pixel transparency enable 
PBV = PixBlt vertical direction RR = DRAM refresh rate 
PBH = PixBlt horiz. direction RM = DRAM refresh mode 

I/O Memory Control Register 



TR Display Existing Traces TR 

Syntax TR 

Description The TR command displays all existing traces, along with their 
active/inactive state. 

Note that each trace is assigned a reference number, and that a combined 
maximum of 20 traces and breakpoints can be defined at one time. The 
reference numbers specified here are the ones used in conjunction with the 
TR# command (next page) to manipulate the state of each trace on the list. 
Traces are defined and modified using the TR# and TRAI commands that 
immediately follow. 

4-99 



TR# Modify Existing Traces TR# 

Syntax TR{0, .. 19,X} [{Clear, OFf, ON, Toggle, Quit}] 

Description The TR# command modifies the status of individual traces, specified via the 
trace reference number (#). This parameter is specified by: 

Example 1 

4-100 

0-19 A decimal integer between 0 and 19 is the trace reference 
number unique for each trace (allowing a combination of up 
to 20 traces and breakpoints to be defined). 

X If the trace number is the letter "X", then all existing traces 
are affected. 

The trace reference number is displayed upon definition of the trace and can 
be viewed with the TR command. The trace reference number does not 
change thoughout the life of the specific trace. 

The following options can follow the TR# fields: 

Option 

Clear 

OFf 

ON 

Toggle 

Quit 

Description 

The option CLEAR destroys the trace. 

The OFf option deactivates the trace temporarily but does not 
destroy it. 

The ON option is used to reactivate deactivated traces. 

The TOGGLE option activates deactivated traces and deacti­
vates active traces. 

The Quit option terminates the command without any 
changes being made. 

Note that only the significant letters of each option are processed. This al­
lows you to specify a shorthand version of the option. For example, the 
options CLEAR and C will be treated the same. If you do not enter the 
option, a menu will be displayed to allow you to select the desired option. 

Toggle trace 3: 

Command[l] TR3 TOG 

or 

Command[l] TR3 <CR> 

The second entry causes the SDB to display the trace and the menu shown 
in Figure 4-11. 



TR# Modify Existing Traces 

Normal Stop Mode <Cache status> Cnt= 
st 00000010 NCZV=OOOO ITPVH=OOOOO 
pc 00000000 0000 MNEMONIC OP; 

SP=OOOOOOOO Ctl=OOOO 
MNEMONIC OP 

3 TRAI FFFFIOOO - FFFFI005 

T Toggle trace 
ON Trace on 
OFF Trace off 
C Clear trace 
Q Quit menu 

Command[l] TR3 
Enter action:_ 

Figure 4-11. Display Existing Traces Monitor Display Format 

TR# 

4 

At this point, you can enter T to toggle to off the state of trace number 3 
(now on). Note that trace 3 remains in memory and may be reactivated by 
the same command sequence or by specifying the ON option. Alternatively, 
it may be deleted with the CLEAR option and then overwritten by using the 
TRAI command that follows. The modification of the trace is verified by the 
display of the traces the same as it appears after a TR command. 

Example 2 CLear all traces: 

Command[l] TRX CLEAR 

4-101 



TRAI Set Trace on Address TRAI 

Syntax TRAI <address> 

Description The TRAI command writes traces to a trace file called GSPTRACE.OOO 
when a specific address is accessed during instruction acquisition. This file 
can be closed (for possible viewing with the SF or SY commands) with the 
CTF (Close Trace File) command. 

The <address> parameter is in hexadecimal. 

Example Set trace on location >120F F310: 

Command [1] TRAI 120FF310 

4-102 



U Unassemble (Reverse Assemble) U 

Syntax U [<start address> <end address>] 

Description This command unassembles (reverse assembles) blocks of memory de­
pendent upon whether: 

Example 1 

Example 2 

• no address is given, 
• start address only is given, or 
• start and stop addresses are given. 

In each case, up to nine instructions can be displayed. If more are needed 
to complete the command, entering a RETURN displays the next block of 
instructions. 

These options are described in the following examples. 

No address given. 

Command[l] .Q <CR> 

If you are single stepping, the result would be a display of the reverse 
assemblies of: 

• the last two Program Counter locations (last two instructions exe­
cuted): 

- the previously executed instruction in 
yellow, 

- the instruction before that (above) in cyan 
(light blue), 

• the current Program Counter location (next instruction) in green, and 

• the next two consecutive instructions following the current PC. 

If you are in the run mode, the last two Program Counter values would 
be unknown. 

Unassemble indefinitely from a starting location 880: 

Command[l] .Q 880 <CR> 

Enter the <start address> in hexadecimal format. Continue displaying 
succeeding locations by entering carriage RETURNs. Terminate the display 
by entering a Q. 

4-103 



U 

Example 3 

4-104 

Unassemble (Reverse Assemble) 

Unassemble a range from 880 to 1020: 

Command [1] II 860 8BO <CR> 

The resultant display appears as follows: 

Lnr Addr Opcode 
pc 00000860 09CO 
pc 00000880 F622 
pc 00000890 3C40 
pc 000008AO 091D 
pc 000008BO 09CO 

Command [0] U 860 8BO 

Revassemb1y 
MOVI >004B,AO 
DRAV A1,A2 
DSJS AO,@880 
TRAP 29 
MOVI >42,AO 

U 860 8BO 

U 

Specify the start and stop addresses in hexadecimal format. After the in­
struction at <start address> is displayed, you can continue displaying suc­
ceeding locations up until the <end address> by entering carriage 
RETURNs. Terminate the display by entering a Q. 



v Evaluate Data v 

Syntax V <value> 

Description The V command displays various forms of <value>. The default format for 
<value> is hexadecimal. The size of <value> can be up to 32 bits. 

Example 

• The first two lines display <value> as an address in both V.X and li­
near format. 

• The third line displays the contents of the memory word at address 
<value> as both data and an unassembled source statement. Note 
that the lower four bits of <value> are ignored since it is treated as a 
word address. 

• The fourth line displays <value> as data in both hexadecimal and 
decimal form. 

Use the command to evaluate> FF8. 

Cornrnand[3] y FF8<CR> 

This produces the following display, assuming that memory location > FFO 
contains >2980, CONVSP is >15, CONVDP is >16, PSIZE = 4, and OFF­
SET = 0: 

in Hex Decimal 
Address: 00000FF8 4088 V,X: 

source 
0003,00FE 
00003FEO 

destination 
0007,007E 
00003FEO Linear: 

@OOOOOFFO: 2980 10624 ASM: SRA 20,AO 
Data: OFF8 4088 

Command[O] V FF8 
V FF8 

4-105 



VMI Verify Memory Image VMI 

Syntax VMI [<file number extension> [<offset>]] 

Description The VMI command compares the data in a disk file to the data starting at a 
memory address (plus an optional offset value). The memory address is that 
stored in the disk file with the data during an SMI command. Thus, no 
memory-address bounds are needed. If the comparison is successful (a 
"match"), the following message is displayed: 

Example 1 

Example 2 

Example 3 

4-106 

Memory verification succeeded 

If a comparison is unsuccessful, the following is displayed: 1) address of 
mismatch, 2) memory value, and 3) file value. 

By using the optional <offset>, the values in the disk file can be compared 
starting at any memory location. The <offset> will be added to the start 
address stored with the original SMI command to generate the start of me­
mory used in the verification. 

• The <file number extension> is used to form the filename SMI­
FIL.aaa, where aaa is the three-character file extension. The default 
type for <file number extension> is decimal, and is limited to 0 to 
999, inclusive. It must be the same <file number extension> under 
which it was saved. 

• If the optional <file number extension> is not specified, then the file 
is called SMIFIL.OOO. 

• The memory image can optionally be offset from its previous location 
in memory by specifying <offset>. Note: if <offset> is to be specified, 
you must also specify the <file number extension>. The <offset> is 
hexadecimal by default and is treated as a signed 32-bit value. 

To compare a specific memory image, you must specify the same <file 
number extension> under which it was saved. SOB340 tells you if the file 
does not exist. See the SMI command for saving the memory image. 

Compare the memory image data stored in the file SMIFIL.1 00: 

Command[l] VMI 100 <CR> 

Compare the memory image data stored in the file SMIFIL.047, offsetting 
the data in memory by a value of >COOO bits: 

Command [1] VMI 47 COOO <CR> 

Compare the memory image data stored in the default file SMIFIL.OOO: 

Command[l] VMI <CR> 

You could also use the default file with an offset, as shown below (>FFE 
is the offset): 

Command[l] VMI Q FFE <CR> 



VMI 

Example 4 

Verify Memory Image 

The following causes a mismatch: 
Command[l] E Q 200 Q <CR> 

Command[l] SMI Q 1FF <CR> 

Command [1] VMI <CR> 
Memory verification succeeded 

Command [1] MM 10 FF <CR> 

Command [1] VMI <CR> 
00000010: OOFF/OOOO 

VMI 

(zero fill) 

(save image) 

(compare the two) 
(comparison OK) 

(place FF in 10) 

(recompare the two) 
(comparison failed) 

4-107 



W Set Windowing Option W 

Syntax W [<window option>] 

Description The W command modifies the contents of the 2-bit W (windowing) field 
of the CONTROL I/O Register by specifying a value from 0 to 3. Corre­
sponding values for <window option> are: 

Example 1 

Example 2 

4-108 

o No windowing; writes to any pixel allowed; no interrupts. 

1 Pick function; pixel writes inhibited; interrupt upon write at­
tempt within current window. 

2 Pixel writes to window not inhibited; interrupt upon write 
attempt outside current window. 

3 Inhibit pixel write attempt outside window; no interrupts. 

Note that the current value of this register field is shown in the "w=" field 
in the upper-right corner of the status display. 

W FIELD 
IN REGISTER 

00 
01 
10 
11 

"w=" FIELD 
IN DISPLAY 

off 
pik 
int 
on 

Set for W = 2 (pixel writes to window): 

Command [ 1] !! ~ <CR> 

Display the contents of the W field from the command line: 

Command [1] !! <CR> 

Command [1] W = 00000002 (response) 

15 14 13 12 11 10 9 8 7 6 543 2 0 
I CD I PPDP I PBV I PBH I W T I RR I RM I reserved 

CD = inst. cache disable 
PPOP = pixel proc. operation select 
PBV = PixBlt vertical direction 
PBH = PixBlt horiz. direction 

W = window violation 
T = pixel transparency enable 
RR = DRAM refresh rate 
RM = DRAM refresh mode 

I/O Memory Control Register 



5. SOB Hardware Operation 

This section covers the following: 
Page 

• Host Port Memory Map 5-2 
- Host port registers 

• Local Memory Map 5-7 
- Shadow RAM 
- Video memory 

• Color Palette 5-11 

• Serial Port 5-16 

• Video Connector (Port J4) 5-17 

• Interrupts 5-19 

• Expansion Bus 5-20 

• Power 5-21 

5-1 



Hardware Operation - Host Port 

5.1 Host Port 

5-2 

The TMS3401 0 has a 16-bit wide host port which allows communication with 
the local memory and internal control registers. The host port interfaces to four 
internal programmable 16-bit registers: 

• HSTADRL 

• HSTADRH 

• HSTDATA 

• HSTCTL. 

These four registers are further defined in Section 5.1.1. They are addressed 
by the following lines: 

• Host Function Select lines HFSO and HFS1 

• Read strobe HREAD 

• Write strobe HWRITE 

• Chip select HCS 

Through this interface, commands, status information, and data are transferred 
between the TMS34010 and the host processor. Table 5-1 lists the signal 
logics and resulting operations. 

Table 5-1. Signals Controlling Host Port Interface 

HCS I HFSO I HFS1 I HREAD I HWRITE OPERATION 

1 x x x x No operation 

0 0 0 0 1 HSTADRL read 
0 0 0 1 0 HSTADRL write 

0 0 1 1 0 HSTADRH read 
0 0 1 1 0 HSTADRH write 

0 1 0 0 1 HSTDATA read 
0 1 0 1 0 HSTDAT A write 

0 1 1 0 1 HSTCTL read 
0 1 1 1 0 HSTCTL write 

x = don't care 



Hardware Operation - Host Port 

5.1.1 Definition of Host Port Registers 

5.1.1.1 Registers HSTADRL and HSTADRH (Local Memory Pointer) 

These registers comprise the 32-bit address pointer to the TMS3401 O's local 
memory space. 

HSTADRL contains the pointer's 16 least-significant bits (LSbs) mapped into 
two consecutive bytes since the PC has an 8-bit data bus. The four LSbs of 
the address are always forced to zero since these bits are only used internally 
to the TMS34010. HSTADRH contains the pointers 16 MSbs. Figure 5-1 
shows these bits. 

HIGH BYTE LOW BYTE 
(>C7F01, IBM; >E7E01, 111 (>c7FOO, IBM; >E7FOO. 11) 
~ ____ ~A ____ ~u~ ____ ~A ____ ~ 

(a) HSTADRH (POINTER MOST SIGNIFICANT WORD) 

HIGH BYTE LOW BYTE 
(>c7E01, IBM; >E7E01, 111 (>C7EOO, at; ~EOO, 111 
~ __ ~A~ __ ~ •• ~ ____ ~A ____ ~ 

D D D D D D D D D D D D D D D D 
7854821078548210 

A A A A A A A A A A A A A A A A 
1 1 1 1 1 1 8 8 7 8 5 4 L L L L 
5 4 8 2 1 0 W W W W 

A A A A 
y y y y 
8 8 8 6 

0 o 0 0 

(b) HSTADRL !POINTER LEAST 81GNF1CANT WORD) 

Figure 5-1. Register HSTADRx, Pointer Address to TMS34010 Local 
Memory 

5-3 



Hardware Operation - Host Port 

5.1.1.2 Register HSTDATA, Host/TMS34010 Data Transfer 

This register contains data to be transferred between (to and from) the 
TMS34010 local memory bus and the host. Figure 5-2 shows this register. 

HIGH BYTE LOW IMC 
(>C7001, a.t; >£7001, TO (>C7000. IBM; >£7000. TO 
~ ____ -JA~ ______ ~v~ ______ JA~ ______ ~ 

Figure 5-2. Register HSTOATA, Host/TMS34010 Local Memory Oata Transfer 

5.1.1.3 Register HSTCTL, TMS34010 Control Register 

5-4 

This register controls various functions of the TMS3401 0 as shown in Figure 
5-3. The HSTCTL Register is the concatenation of the two host interface 
control registers in the TMS3401 0 I/O Register file. 

I4GH BYTE LOW BYTE 
(>C7OO1, a.t; >E7D01, TO (>c7DOO, a.t; >E7DOO, TO 
~ ____ -JA~ ______ ~v~ ______ JA~ ____ ~ 

00000 0 0 0 DOD DOD 0 0 
785 4 a 2 1 0 785 4 a 2 1 0 

H C L I I R N N I M M M I M M M 
A F B N N 8 M M N 8 8 8 N 8 8 8 
L L C C V I I T G G G T G G G 
T R W 0 M 0 0 0 0 I I I I 

0 U U U U N N N N 
0 T T T T 
E 

Figure 5-3. Register HSTCTL, TMS34010 Control 

A description of the HSTCTL bits: 

HSTCTL BIT, 
HIGH BYTE 

07: HALT 

06:CF 

05: LBL 

When a one, the TMS3401 0 suspends instruction ex­
ecution after completion of the instruction in progress. 

Cache Flush. When a one, the cache is disabled. 

Lower Byte Last. Allows you to specify whether indi­
rect access begins when the upper or the lower byte 
of the register is accessed by the host processor. LBL 
accommodates 8-bit host processors. 

o When a zero, a local bus cycle is initi­
ated if the host writes to the upper byte 
of HSTADRH or reads from/writes to 
the upper byte of HSTDATA. 



Hardware Operation - Host Port 

04: INCR 

03: INCW 

01: NMIMOOE 

00: NMI 

HSTCTL BIT, 
LOW BYTE 

07: INTOUT 

06-04: MSGOUT 

03: INTIN 

02-00: MSGIN 

1 When a one, a local bus cycle is initi­
ated if the host writes to the lower byte 
of HSADRL or reads from/writes to the 
lower byte of HSTDATA. 

When set to one, the address pointer is incremented 
prior to a local-memory read cycle. 

When set to one, the address pointer is incremented 
after to a local-memory write cycle. 

When NMI bit (below) is a one, this bit determines 
whether or not to save the Program Counter and Sta­
tus Register when an NMI occurs: 

- NMIMODE a 0 = save machine state on 
stack before NMI occurs, 

- NMIMODE a 1 = don't save machine state 
if N M I occurs. 

When set to one by host, a non-maskable interrupt 
(NMI) is sent to the TMS34010. This bit is automat­
ically cleared to zero after the interrupt is taken. 

Interrupt Out, TMS3401 0 to Host. Allows TMS3401 0 
to interrupt the host processor. When I NTOUT is a 
one, TMS3401 0 pin HINT is driven active low. When 
INTOUT is a zero, pin HINT driven high. (TMS34010 
interrupts the host by setting I NTOUT to one; host 
clears interrupt by setting I NTOUT back to zero.) The 
following will have no effect: 

- attempt to write a zero to this bit by the 
TMS34010, 

or 
- attempt to write a one to this bit by the host. 

The 3-bit buffer of D6, D5, and D4 allows the 
TMS34010 to send messages to the host. The host 
can only read this buffer, but the TMS3401 0 can read 
and write to it. 

Interrupt TMS3401 0 by Host. When the host writes a 
one to this bit, it generates an interrupt request to the 
TMS34010. The TMS3401 0 can clear the request by 
writing a zero to the bit. The value of this bit is shown 
in the read-only HIP (host interrupt pending) bit of 
the INTPEND I/O Register (address >COOO 0120). 
Writing to the HIP bit has no effect on the INTI N or 
HIP bit. 

The 4-bit buffer allows the host to send messages to 
the TMS34010. The host can read or write to this 
buffer, but the TMS3401 0 can only read it. 

5-5 



Hardware Operation - Host Port 

5-6 

The INTPEND Register HI bit holds a read-only representation of the INTIN 
bit. 

>0000 0000 

>OOOF FFFF 
>00100000 

>001F FFFF 
>0020 0000 

>0200 0000 

>02FF FFFF 
>0300 0000 

>08FF FFFF 
>0400 0000 

>0400 OOOF 
>0400 0010 

>QBFF FFFF 
>COOO 0000 

>COOO 01EF 
>COOO 01FO 

>FFEF FFFF 
>FFCO 0000 

>FFCF FFFF 
>FFEO 0000 

>FFFF FFFF 

UPPER BAN< OF \/RAM 

LOWER BAN< OF \/RAM 

NOT USED 

U8ART 

NOT USED 

8HADOW-RAM ON BIT 

NOT USED 

INTBUW... REGI8TER8 

NOT USED 

SCRATCH-PAD RAM 

ROM OR SHADOW RAM 

NOTE: EIECAU8E SOME LEA8T~ MEMORY-A00RE88 BITS ARE NOT DECODED ON 
ADDRE88 liliES, MEMORY /IREA8 APPEAR LARGER THAN ACTUAl.. ON-CHIP MEMORY. 

Figure 5-4. Board Memory Map 



Hardware Operation - Local Memory Map 

5.2 Local Memory Map 

Figure 5-4 is a memory map of the SDB. Included on the board are: 

• 512K bytes of onboard scratch-pad DRAM on four TM4256EC4 SIPs 
(single inline packages), 

• 256K bytes of onboard Video RAM (VRAM) for the display buffer on 
eight TM4161 EV4 SI Ps. 

• 1024 bytes of optional memory in two TBP28S42 bipolar PROMs. This 
is in the upper part of scratch pad memory - - in the TMS3401 O's reset 
and interrupt vector memory area. 

• A USART mapped in the TMS3401 O's local memory space. 

The two optional TBP28S42 PROMs provide space for ROM boot code if 
necessary (see Section 5.2.1). The upper portion of the DRAM actually sha­
dows these ROMs (i.e, the DRAM can be enabled so that it takes over the 
memory area occupied by the ROM). Once the DRAM is enabled, it remains 
so until a powerup reset. At that time, the DRAM is disabled and the ROM 
re-enabled. 

The address of the TMS3401 0 is decoded by a PAL (programmable array logic 
device). The PAL does not decode all the upper address bits; thus, there are 
many duplicate images of the memory devices in the memory map. Figure 5-4 
contains the location of the mapped devices not including their images. For 
more information, see Section 6. 

>FFFO 0000 ,.-------, 

>FFFE 0000 
>FFFF FFFF 

NOT USED 

>FFFO 0000 

>FFFF FFFF 

NO'TE: BECAUSE THE SEVEN lEA8T -8IGNFlCANT AOORE88 BITS Of' 11£ PROM 
AOORE88 ARE NOT DECODED, 11£ PROM AAEA SHOWN WI..I.. APPEAR A8 
A 11( ON-CHIP MEMORY AREA DUPLICATED 128 (21) TIME8. 

Figure 5-5. Shadow RAM and PROM in Upper Memory 

5-7 



Hardware Operation - Local Memory Map 

5.2.1 Enabling Shadow RAM 

5-8 

The SOB has sockets (U35 and U36) for two TBP28S42 bipolar PROMs 
which reside in the upper part of the TMS3401 0 memory. When populated, 
these ROMs are mapped in the TMS3401 O's reset and interrupt vectors and 
can be used for bootloading. Shadow RAM is mapped behind these PROMs 
as shown in Figure 5-5. Enabling/disabling procedures: 

• PROM is enabled at powerup reset. 

• Shadow RAM is enabled by writing >0001 to location >04000000 in 
the local memory space. 

• Shadow RAM can be enabled from the host port by: 

1} loading the HSTORL Register with >0000, and 
2} loading the HSTAORH Register with >0400, then 
3} writing >0001 to the HSTOATA. 

• Once the shadow RAM is enabled, it remains so until a powerup reset, 
at which time the RAM is disabled and the PROM is re-enabled. 



Hardware Operation - Local Memory Map 

Example code to enable shadow RAM: 

0000 code segment 
assume cs:code 

0100 org 100h 
0100 EB 01 90 entpt: jmp start 

COOO HSTSEG equ OCOOOh 
7000 HSTDATA equ 7000h 
7DOO HSTCTRL equ 7DOOh 
7EOO HSTADRL equ 7EOOh 
7FOO HSTADRH equ 7FOOh 

0103 start proc near 

0103 B8 COOO mov aX,HSTSEG 
0106 8E CO mov eS,ax 
0108 26 Al 7DOO mov aX,es: (HSTCTRL) 
OlOC OC 18 or a1,18h ;ENABLE AUTO INC ON 

READ AND WRITE 
010E 26: A3 7DOO mov es: (HSTCTRL) ,ax 
011226:C7 06 7EOO 0000 mov word ptr es: (HSTADRL) ,0000h 
011926:C7 06 7FOO 0400 mov word ptr es:(HSTADRH) ,0400h 
0120 26: C7 06 7000 0001 mov word ptr es: (HSTDATA) ,0001h 

0127 CD 20 int 20h 
start endp 

0129 code ends 
end entpt 

Figure 5-6. Example Code to Enable Shadow RAM 

Note: 

The SDS Debugger program uses an all-RAM system, and this code dis­
ables the onboard PROM and downloads the reset and interrupt vectors 
prior to execution. 

5-9 



Hardware Operation - Local Memory Map 

MEMORY LOCATION >0000 0000 

o 
o 

A 

o 
1 
6 

I RGBII RCBIRGBIIRGBI I 

I I 

LOCATION >OO'F FFFO 
A 

i , 
0 0 
0 1 

6 

I RGBII RGBIIRGBIIRGBI I 

I I 

P11P21P3lp4 

T T 
I 

1- ..1- "'PN-11 PH -.,.-.,. 
T T T 
I I 
I 

Figure 5-7. Pixel Memory Location and Screen Address 

5.2.2 Video Memory Organization 

5-10 

The Frame Buffer (video display memory) is comprised of eight TM4161 EV4 
SIPs and occupies a contiguous block of TMS34010 local memory -- from 
>00000000 to >001 F FFFF. This 256K bytes of multiport memory allows the 
SDB to contain up to 1024 x 512 pixels with 4 bits per pixel. The memory is 
organized in packed pixels, with four pixels sharing one 16-bit memory word. 
Figure 5-7 shows the correlation between the contents of two consecutive 
memory addresses and their corresponding pixels on the display screen. 

The Frame Buffer is divided into two equal sections, a division transparent to 
the user. This division minimizes the power consumption of the VRAMs. 



Hardware Operation - Color Palette 

5.3 Color Palette 

The SDB uses the TMS34070 Color Palette, a monolithic IC containing a color 
lookup table and providing three channels of analog video output for 
RGB-type CRTs. The Color Palette has sixteen internal registers, of which 
each contains: 

• 12 bits of color information -- blue, red, green (bits 04 to 015) 

• 2 bits for attributes (bits 01 & 02): 

- EXT (external pixel attribute to control external circuitry and 
support applications such as overlaying) 

- REPEAT (supports both rapid filling of screen areas with solid 
colors and real-time animation) 

• 2 "don't care" bits (bits 00 & 03). 

Figure 5-8 illustrates the organization of these bits into a data word. 

D D D D D D D D D D D D D D D D 
1111119876543210 
5 4 3 2 1 0 

B B B B R R R R G G G G E R 

L L L L E E E E R R R R X E 

U U U U D D D D E E E E T P 

E E E E E E E E E 

N N N N A 

T 

M L M L M L 

S S S S S S 

B B B B B B 

Figure 5-8. Color-Palette Internal Register Format 

The Palette's two modes of operation on the SOB are set using jumper W3 
(shown in Figure 2-2). The modes define two different times when the color 
lookup table should be loaded from video memory: 

• W3 set 2-3: TMS34070 in line-load mode (load table prior to start of 
individual scan line) 

• W3 set 2-1: TMS34070 in frame-load mode (load table prior to start of 
each frame). 

5-11 



Hardware Operation - Color Palette 

5.3.1 Color Palette Frame Load Mode 

The TMS34070 Palette is unique in that it loads its 12-bit color lookup table 
directly from the Frame Buffer. In line-load mode, the first line of information 
contains the color lookup table data. This line is automatically blanked so that 
no appear on the screen while the Palette is loading. This loading is accom­
plished by the TMS34070 monitoring the Blank output of the TMS34010. 
When Vertical Blanking goes active, the THS34070 loads the first line as color 
information, while it simultaneously blanks this line. All further horizontal lines 
are displayed. Figure 5-9 illustrates how the Frame Buffer is loaded into the 
TMS34070 in frame load mode. 

LIE 0 

UNE1 

LIE 2 

· • • 
LIE 611 

J 

612 BYTES 
A 

32 BYTES OF PALETTE INFORMATION 

" \ 

WORDoIWORD11· •• I WORD 181 NOT USED 

DISPLAY tFORMATION 

DISPLAY tFORMATION 

DISPLAY tFORMAllON 

DISPLAY WORMAllON 

Figure 5-9. Loading Frame Buffer in Frame-Load Mode 

5.3.2 Color Palette Line Load Mode 

5-12 

The unique line-load feature of the TMS34070 Palette allows the color lookup 
table to be reloaded on every horizontal line. This allows the possibility of 
displaying 16 colors on every horizontal line. The first 32 bytes of the 512-
byte horizontal width of the Frame Buffer is used to load the color lookup table 
in the TMS34070. The remaining 480 bytes can be used for display informa­
tion, allowing the maximum resolution in this mode to be 960 by 512 pixels 
with 4 bits per pixel. The TMS34070 automatically blanks the display during 
the loading of the Palette in the line-load mode. Figure 5-10 illustrates how 
the Frame Buffer is loaded into the TMS34070 in line-load mode. 



Hardware Operation - Color Palette 

UNEO 

UNE1 

LINE 2 

• • • 
UNE 611 

J 

WOROO 

WOROO 

WORD 0 

WORD 0 

WOROO 

32 BYTES OF 
PALETTE INFORMATION 

fI 

WORD 1 · . . 
WORD 1 · . . 
WORD 1 · . . 
WORD 1 · . . 
WORD 1 · . . 

V 

WORD 18 

WORD 18 

WORD 18 

WORD 18 

WORD 18 

480 BYTES OF 
DISPLAY INFORMATION 

fI 

DISPlAY INFORMATION 

DISPlAY INFORMATION 

DISPLAY INFORMATION 

DISPLAY INFORMATION 

DISPlAY INFORMATION 

\ 

Figure 5-10. Loading Frame Buffer in Line-Load Mode 

5.3.3 Color Palette Code 

5.3.3.1 Initialize Registers (iniLpalet function) 
This function initializes the 16 color palette registers to their default values. It 
calls the function to set palette registers which is described in Section 5.3.3.2. 

/* Declare external functions */ 
extern void setall_palet(); 

/* Default color palette values to be loaded at initialization */ 
short defpalet[16! = [ 

Oxoooo, OxFOOO, OxOOFO, OxFOFO, OxOFOO, OxFFOO, OxOFFO, OxFFFO, 
OxOAFO, Ox0900, OxFA70, OxF4AO, Ox17BO, Ox6660, Ox9990, OxBBBO 
} ; 

void init_palet() 
[ 

setall_palet(defpalet, OxFFFF, 480, 0); 

Description of arguments being passed (last line above): 

• defpa1et = short pa1etreg [16] = values for 16 color 
palette registers. 

• OxFFFF = int regmask = mask indicating which registers to 
load. 

• 480 = int nlines = number of lines over which palette is 
affected. 

• ° = int ystart = y value at start of affected area of screen. 

5-13 



Hardware Operation - Color Palette 

5.3.3.2 Set Palette Registers (setalLpalet function) 

5-14 

This function sets the multiple color palette registers. The following definitions 
apply: 

• Variable nlines gives the number of lines affected by the palette 
change. 

• Variable ystart gives the y value of the first line affected. The y value 
is specified relative to the xy origin located in the top left corner of the 
screen. 

• Only registers corresponding to one values in the 16 LSBs of the regis­
ter-load-enable mask are loaded. For example, a mask value of 
>00000017 would load only registers 0, 1, 2 and 4 from paletreg [ ] 
members 0, 1, 2 and 4. 

Each 16-bit palette register value is loaded into memory as follows: 

MSB 15 12 11 8 7 4 3 0 LSB 

I BLU 

I 
GRN 

I 
RED 

I 
ATT 

I 
This code is called by the previous register-initialization routine in Section 
5.3.3.1. 

/*-------------------------------------------------------------
* This function is designed to be called from a 
* GSP-C program. 
*--------------------------------------------------------------
* Usage: setall_palet(paletreg, regmask, nlines, ystart); 
* * Description of stack arguments: 
* short paletreg[16]; /* values for 16 color palette regs*/ 
* int regmask; /* mask indicating which registers to 
* load */ 
* int nlines; /* number of lines over which palette is 
* affected */ 
* int ystart; /* y value at start of affected area of 
* screen */ 
* 
* Returned in register AS: Void (undefined). 
* Registers altered: AS 
* *--------------------------------------------------------------

.title 

.file 
'set all palette' 
'setall_p.asm' 

--Declare Global Function Name 

.globl 

--Declare Constants 
; 
CONTROL 
PMASK 
PPOPJ4ASK 
TRNJ4ASK 
STK 

.set >COOOOOBO 

.set >C0000160 

.set >7COO 

.set >0020 

.set A14 

I/O Register 
I/O Register 
PPOP field in CONTROL 
T field in CONTROL 
parameter stack 



Hardware Operation - Color Palette 

; --Entry Point 
; 
_setall_palet: 

SETF 16,0,0 
MMTM SP,AO,Al,A2,A3 
MMTM SP,BO,B2,B4,B5,B6,B7,B9 

* Pop four arguments from stack. 

Set FSO:16 and FEO:O 
Save old A-file regs 
Save old B-file regs 

MOVE *-STK,AO,l ;Pop palet_array pointer 
MOVE AO,BO ;Copy array pointer to B file 
MOVE *-STK,AO,l ;Pop reg~ask from stack 
ZEXT AO,O ;Use only 16 LSBs of mask 
MOVE *-STK,Al,l ;Pop ~lines from stack 
MOVE *-STK,A8,l ;Pop ystart from stack 

* Convert y values ~lines and ystart to 16 MSBs 
* of x-y addresses. 

SLL l6,Al 
ADDK 4,Al 
MOVE Al,B7 
SLL l6,A8 

* Move X-Y offset to start 
* palette access. 

;Shift n_lines to 16 MSBs 
;Palet reg. width: 4 pixels 
;Load DYDX : (4,n_Iines) 
;Start address: (O,ystart) 

of frame buffer to allow 

CLR B4 
* Set window to area 

CLR B5 

;OFFSET : VRAM base address 
containing palette load data. 

MOVI 479*65536+63,B6 
* Enable all color planes. 

MOVE @PMASK,A3,l 
CLR Al 

;Set WSTART : (0,0) 
;Set WEND=(63,479) 

;Save old plane mask 

MOVE Al,@PMASK,l ;Enable all planes 
* Set pixel processing replace. Turn off transparency. 

MOVE @CONTROL,Al,O ;Read CONTROL 1/0 register 
MOVE Al,A2 ;Make 2nd copy 
ANDNI PPOP~ASK+TRN~ASK,A2 ;Set PPOp:O and T:O. 
MOVE A2,@CONTROL,O ;Load new CONTROL register 
MOVE @CONTROL,A2,O ;Read it back to be safe! 

* Load next palette register over n_Iines starting at ystart. 
NXTREG: 

SRL 
JRNC 
MOVE 
MOVE 
ADDK 
FILL 
JRUC 

NOLOAD: 

1,AO 
NOLOAD 
*BO+,B9,O 
A8,B2 
4,A8 
XY 
NXTREG 

JRZ DONE 
ADDK l6,BO 
ADDK 4,A8 
JRUC NXTREG 

* Restore previous contents 
* where required. 
DONE: 

;Examine next mask bit 
;If mask bit: 0, do not load 
;Set COLOR 1 : next register 
;Set DADDR for next register 
;Bump xstart to next register 
;Load register multiple lines 
;Repeat loop 

;Done when mask is all zeros 
;Skip over palet_array[nJ 
;Bump xstart to next register 
;Repeat loop 

of A- and B-file registers 

MOVE 
MOVE 
MMFM 
MMFM 
RETS 
.end 

Al,@CONTROL,O ;Restore CONTROL register 
A3,@PMASK,l ;Restore plane mask 
SP,BO,B2,B4,B5,B6,B7,B9 ;Restore old B-file regs 
SP,AO,Al,A2,A3 ;Restore old A-file registers 
2 ;Return 

5-15 



Hardware Operation - Serial Port 

5.4 Serial Port 

5-16 

The Software Devlopment Board is equipped with an RS232C serial output 
port (J3 shown in Figure 2-2). The USART (universal 
synchronous/asynchronous receiver transmitter) used on the SDB is the 
Standard Microsystems Corporation COM 2651. 

This port uses a standard male DB25 connector J3 located on the board edge. 
Its main use is input and output to the SDB for devices such as mice and di­
gitizing tablets. Table 5-2 lists the pinouts for the port. 

Table 5-2. Pinout for EIA Port 

OUTPUT PORT INTERFACE 

PIN SIGNAL 
NUMBER DESCRIPTION 

2 Transmit Data (TXD) 

3 Receive Data (RXD) 

4 Requset to Send (RTS) 

5 Clear to Send (CTS) 

6 Data Set Ready (DSR) 

7 Ground 

8 Data Carrier Detect (DCD) 

20 Data Terminal Ready (DTR) 

The USART is mapped into the TMS34010's local memory space between 
>0200 0000 and >022F FFFF. Table 5-3 contains the addresses for the in­
ternal registers of the COM 2651. Note there are different addresses for 
reading and writing to the part. 

Table 5-3. COM 2651 USART Internal Registers 

ADDRESS I FUNCTION 

>02000000 Read Receive Holding Register 
>02001000 Read Status Register 
>02002000 Read Mode Registers 1 and 2 
>02003000 Read Command Register 

>02200000 Write to Transmit Holding Register 
>02201000 Write to SYN1/SYN2/DLE Registers 
>02202000 Write to Mode Registers 1 and 2 
>02203000 Write to Command Register 

The device used to control this port, the COM 2651, is described in its data 
sheet in Appendix A. A description of this port is given in Table 6-2 on page 
6-16. 



Hardware Operation - Video Connector (Port J4) 

5.5 Video Connector (Port J4) 

The Software Development Board has a single DB9 video output connector 
which can be configured for a variety of digital and analog monitors. This is 
port J4 shown in Figure 2-2 on page 2-4. 

As shipped the connector comes configured for the I BM Professional Graphics 
Display, but can be reconfigured by the onboard jumpers shown in Figure 2-2. 
The Analog output supports 1-V peak-to-peak with 75-ohm drive capability, 
while the digital output supports an RGBI interface. 

The output connector can be configured to drive both seperate horizontal and 
vertical syncs in both polarities along with composite syncs of both polarities. 

Table 5-4 describes the jumper settings for analog monitors such as the IBM 
Professional Graphics Display or Princeton Graphics SR-12P. Table 5-5 lists 
the jumper settings for digital monitors such as the TI Professional Graphics 
Monitor. 

Table 5-4. Analog-Monitor Jumper Settings for Connector J4 

Pin 
Number I Signal 

Description I Jumper 
Settings 

1 
2 
3 
4 
5 

6 
7 
8 
9 

Red 
Green 
Blue 
CSYNC 
MODE (high) 

Ground 
Ground 
Ground 
Ground 

W9: 8 to 15 
W9: 9 to 16 
W9: 10 to 17 
W9: 11 to 18, W8: 2 to 3, W6: 2 to 3 
W9: 12 to 19, W5: 2 to 3, W4: 2 to 3 

W9: 13 to 20 
W9: 14 to 21 

Notes: 1. For monitors such as IBM Professional Graphics Display, Princeton Graphics SR-12P, 
or Equivalent. 

2. Resolution: 640 by 480 
3. U30 Oscillator frequency: 25 MHz 

5-17 



Hardware Operation - Video Connector (Port J4) 

Table 5-5. Digital-Monitor Jumper Settings for J4 

Pin I Signal I Jumper 
Number Description Settings 

1 Ground W9: 1 to 8 
2 Ground W9: 2 to 9 
3 Red W9: 3 to 10 
4 Green W9: 4 to 11 
5 Blue W9: 5 to 12 

6 Ground W7: 2 to 3 
7 Reserved 
8 HSYNC W9: 6 to 13, W6: 2 to 3, W8: 1 to 2 
9 VSYNC W9: 7 to 14, W4: 1 to 2, W5: 1 to 2 

Notes: 1. For monitors such as the TI Professional Graphics Monitor. 
2. Resolution: 720 by 300 
3. U30 Oscillator frequency: 18.432 Megahertz 

5-18 



Hardware Operation - Interrupts 

5.6 Interrupts, To Host 

Jumper W2 (shown in Figure 2-2) can be configured to select the interrupt 
to the host PC according to which PC is used: 

• interrupt level 3 for the IBM PC, or 
• interrupt level 2 for the TI PC. 

There are two sources for the interrupt: 

• the HINTL line for normal operation, and 
• the EMUACKL line which is used when the SDB is a target for the TI 

TMS34010 XDS Emulator. 

Figure 5-11 shows how to configure the interrupt jumper for both the IBM 
and TI PC. 

Figure 5-11. IBM/TI PC Interrupt Selection at Jumper W2 

The interrupt map for the TMS3401 0 is shown in Figure 6-15 on page 6-25. 

5-19 



Hardware Operation - Expansion Bus 

5.7 Expansion Bus 

5-20 

The Software Oevlopment Board operates in the TI PC or IBM PC expansion 
bus (and into the expansion connector of most IBM-compatible machines). 
The signals that the board uses are shown in Table 5-6. Note that the only 
difference between the IBM PC and the TI PC for the Software Development 
Board is the interrupt pins. This difference is handled by a jumper option, 
described in Section 5.6. 

Table 5-6. SOB Pinouts at P3 

Signal Name I Pin Number Signal Name I Pin Number 

POWER SIGNALS 
+5V B3, B29 -12 V 87 
Ground B1, B10, B31 +12 V 89 

CONTROL SIGNALS 
ROY A10 
RESET 82 
MEMW B11 IRQ2 824 
MEMR 812 IRQ3 B25 
OACKO B19 CLOCK B10 
OSC 830 

DATA SIGNALS 
DO A9 04 A5 
01 A8 05 A4 
02 A7 06 A3 
03 A6 07 A2 

ADDRESS SIGNALS 
AO A31 A10 A21 
A1 A30 A11 A20 
A2 A29 A12 A19 
A3 A28 A13 A18 
A4 A27 A14 A17 
A5 A26 A15 A16 
A6 A25 A16 A15 
A7 A24 A17 A14 
A8 A23 A18 A13 
A9 A22 A19 A12 



Hardware Operation - Power Consumption 

5.8 Power Consumption 

Note that the Software Develpoment Board requires a substainal amount of 
power. It is recommended that it be installed only in a PC with a minimum 
supply of 145 watts. 

Table 5-7. Power Requirements 

SUPPLY TYPICAL 
VOLTAGE CURRENT 

+5 Volts 1.40 A 

+12 Volts 20 rnA 

-12 Volts 20 rnA 

5-21 



Hardware Operation - Power Consumption 

5-22 



6. Theory of Operation 

The following sections explain the theory of operation of the TMS34010 
Software Development Board. The theory of operation is divided into six 
parts: 

Page 

• Host PC bus to the TMS3401 0 interface 6-2 

• TMS34010 to memory and peripherals 6-9 

• TMS34010 to the frame buffer 6-17 

• Frame buffer to video output interface 6-18 

• CRT timing generation 6-20 

• Software 6-21 

6-1 



Theory of Operation - PC Bus to TMS34010 (GSP) Interface 

6.1 PC Bus to TMS34010 (GSP) Interface 

6-2 

The TMS3401 0 Graphics System Processor (GSP) has a 16-bit wide host port 
directly onboard which allows the processor to be easily interfaced to any host 
bus. The host port has four registers HSTDATA, HSTCTl, HSTADRl, and 
HSTADRH: 

• HSTDATA Register is a 16-bit wide register used to transfer data: 

from the host to the TMS3401 O's local memory bus, and 
from the TMS3401 O's local memory bus to the Host's memory bus. 

• HSTCTl register controls various functions within the TMS3401 0 such 
as interrupts, cache control, and messages. 

• HSTADRH and HSTADRl are two 16-bit registers that comprise the 
32-bit address pointer register used for indirect communication to the 
TMS34010's local bus. 

These registers are read from or written to by 16 data lines and 9 control lines 
which comprise the TMS34010 host interface. The 16 host port data lines 
(HADO-HAD15) are connected to the the PC's bus through a 74AlS245 bi­
directional buffer. Since the PC's bus is only 8 bits wide and the TMS3401 O's 
host port is 16 bits wide, the upper and lower data strobes (HUDS and HLDS) 
of the TMS3401 0 are connected to the least significant address line of the PC 
bus. This allows byte access versus word access from the host port. When 
accessing bytes, the data lines from the bus are connected to both the high 
and low byte of the TMS3401 O's host port as shown in Figure 6-1. The di­
rection of the buffer is determined by the bus memory read line (MRDL) and 
enabled on the Host port chip select (HCS). 

The host ports HWRITE and HREAD signals are connected to the PC bus's me­
mory read (MRDL) and memory write (MWRL) signals after they are buffered 
by a 74AlS541 Octal Buffer. 



0) 

w 

." 

ce' 
e: .., 
CD 
en 

I 
..a 

o 
III 
r+ m ...... 
l> 
Q. 
Q. .., 
!! 
III 
e: 
(II 

r+ 
o 
-I 
~ 
en 
Col 

~ 
..a 
o 
5" 
r+ 
CD .., 
-to 
III 
n 
CD 

RESET 

40 MHz 
OSCILLATOR 

U4 

MWRL 
MROL. 

AO 

.... 

Ii uo-ur 

~CBL 

~II RDI. 

:U< -

:: .A8-A19 :: 

MWRL 
URDL 

01.1 ::KO 

74ALS541 

1.1 US Y1 
UWAL 
MRDI. A2 Y2 

--112. 1.3 Y3 
A4 Y4 

Y5 
VB - ~-AB Y7 

.....- G1 VB 
0-- G2 

-= 
74ALS245 

U2 

AB-A1 

G 
DIR 88-81 ·;;!!;!,!f~mmru!!: HDD-H[J 

PAL18L8 
U3 HCBL 

~In 

HF8L1 

U43 

I GSP 
RDL II '----c RESET U1 TR/Qg BAO 

INCLI< W RASL - ...c--c=l--, RDL wmiJ RAe - - '3PJ , READ CAS - - '! HCS I>DM - '..!1...f_J DEN 
~F8LO. 

HFSL1 . HFSO 

.fWt l:D1 
74AS04 

HLDS 

BAOL 
__ LADO-LAD16 

U43 
HUDS 

RUN/EMUL RUN/EMU 

HIJO-HD7 im'!;!'i~i!'!· HD8-HD15 
LAL ~ 

HaYNC I»--
VSVIiiC I»--
BI:ANK I»--

jml!j!i~iil;llm!ii!!~ HDD-HD7 ~~~ii!j,~~i· HDO-HD7 
LCU<1 f--VCLK 

~ LCLK2 f--
UNT1 

rS 
LINT2 HRDY f--
HOLD HINTL ~ LRDY EMUACKI.. 

-I 
~ 
CD o .., 
< 
o 
-to 

o 
"C 
CD .., 
III 
r+ 
O· 
::J 

"'CI 
o 
III 
c 
(II 

r+ o 
-I 
3: 
en 
fA) 

8 ... 
o -C) 
(I) 
"'CI -
::J 
r+ 
CD .., .... 
I» 
n 
CD 



Theory of Operation - PC Bus to TMS3401 0 (GSP) Interface 

6-4 

The four Host port registers have been placed into the host PC's memory map. 
U3 -- a TlBPAL 16L8 (a programmable array logic device) -- decodes the Host 
PC's address lines and generates the host chip select (HCS) and the two host 
function selects HFSO and HFS1. 

Table 6-1 shows the operations performed on the host port when the appro­
priate control signals are applied. Figure 6-2 shows the memory map for the 
four host port registers. The HSTDATA register is the largest to allow the au­
toincrementing feature of the host port to be used on uploads and downloads 
to and from the host port. 

PAL U3 is connected to the address lines A19-A8 of the PC bus and the 
control signal MRDL, MWRL, and DACKO. Whenever the Host processor ac­
cesses memory from >C7000 to >C7FFF on the bus, a host chip select is 
generated when MRDL goes active low or MWRL goes active low if DACKO is 
active high. DACKO is used to indicate a memory operation or a DMA opera­
tion. By ANDing DACKO into the equations, the PAL prevents refresh cycles 
from effecting the Software Development Board. PAL equations are shown: 

• for the IBM PC and AT host port decode PAL in Figure 6-3, 

• for the TI PC in Figure 6-4. 

Depending on the memory range accessed between >C7000 to >C7FFF, the 
appropriate host function selects are generated by the PAL in U3 as shown in 
Figure 6-2 and Table 6-1. 



Theory of Operation - PC Bus to TMS34010 (GSP) Interface 

Table 6-1. Signal Inputs to Select Host Functions 

t t t 
- - - - - - -
H H H H H H H 
C U L R W F F 
S 0 0 E R S S OPERATION 

S S A I 0 1 
0 T 

E 

H X X X X X X No Operation 

L L H L H L L HSTADRL read high byte (HAD8-HAD15) 

L H L L H L L HSTADRL read high byte (HADO-HAD7) 

L L H H L L L HSTADRL write high byte (HAD8-HAD15) 

L H L H L L L HSTADRL write high byte (HADO-HAD7) 

L L H L H L H HSTADRH read high byte (HAD8-HAD15) 

L H L L H L H HSTADRH read high byte (HADO-HAD7) 

L L H H L L H HSTADRH write high byte (HAD8-HAD15) 

L H L H L L H HSTADRH write high byte (HADO-HAD7) 

L L H L H H L HSTDATA read high byte (HAD8-HAD15) 

L H L L H H L HSTDATA read high byte (HADO-HAD7) 

L L H H L H L HSTDATA write high byte (HAD8- HAD15) 

L H L H L H L HSTDATA write high byte (HADO-HAD7) 

L L H L H H H HSTCTL read high byte (HAD8-HAD15) 

L H L L H H H HSTCTL read high byte (HADO-HAD7) 

L L H H L H H HSTCTL write high byte (HAD8- HAD15) 

L H L H L H H HSTCTL write high byte (HADO-HAD7) 

tThese signals come from the PAL at U3. 

6-5 



Theory of Operation - PC Bus to TMS34010 (GSP) Interface 

~7~~----------~ >E7~'------------~ 

HSTDATA HSTDATA 

>C7CFF >E7CFF 
~7DOO >E7DOO 

H$TCTL HSTCTL 

~7DFF >E7OFF 
~7EOO >E7EOO 

HSTADRL HSTADRL 

~7EFF >E7EFF 
~7FOO >E7FOO 

HSTADRH HSTADRH 

~7FFF >E7FFF 
a) FOR IBM-PC b) FOR ll-PC 

Figure 6-2. Memory Map for Four Host Port Registers 

6-6 



Theory of Operation - PC Bus to TMS34010 (GSP) Interface 

module tmsGSPU3IBM 
title 'GSP HOST INTERFACE CONTROL FOR IBM AT >C7000->C7FFF 
Designer Ron Peterson Texas Instruments Inc. APRIL 9, 1986' 

U3IBM device 'P16L8'. 
A11,A12,A13,A14,A15,A16,A17,A18,A19 
A10,A9,A8,W,RD,DACKO 
HFS1,HFSO,HCS 

pin 1,2,3,4,5,6,7,8,9. 
pin 11,13,14,15,16,17. 
pin 12,18,19. 

L,H,X = 0,1, .X .• 
INPUTS = [DACKO,W,RD,A19,A18,A17,A16,A15,A14,A13,A12,A11,A10,A9,A8]. 
OUTPUTS = [HCS,HFS1,HFSO]. 

equations 

IHCS = «A19&A18&!A17&!A16&!A15&A14&A13&A12&!W&DACKO)# 
(A19&A18&!A17&!A16&!A15&A14&A13&A12&!RD&DACKO». 

!HFS1 =«A19&A18&!A17&!A16&!A15&A14&A13&A12&A11&A10&A9&!A8)# "HSTADRL" 
(A19&A18&!A17&!A16&!A15&A14&A13&A12&A11&A10&A9&A8». "HSTADRH" 

!HFSO =«A19&A18&!A17&!A16&!A15&A14&A13&A12&!A11)# "HDATA" 
(A19&A18&!A17&!A16&!A15&A14&A13&A12&A11&!A10)# "HDATA" 
(A19&A18&!A17&!A16&!A15&A14&A13&A12&A11&A10&!A9&!A8)# "HDATA" 
(A19&A18&IA17&!A16&!A15&A14&A13&A12&A11&A10&A9&IA8». "HSTADRL" 

" HDATA >C7000->C7CFF" 
" HCNTL >C7DOO->C7DFF" 
" HSTADRL >C7EOO->C7EFF" 
" HSTADRH >C7FOO->C7FFF" 

test_vectors (INPUTS -> OUTPUTS) 

" D W R A A A A A A A A A A A A H H H 
" A D 1 1 1 1 1 1 1 1 1 1 9 8 C F F 
" C 9 8 7 6 5 4 3 2 1 0 S S S 
" K 1 0 
" 0 

L, X, X, X, X, X, X, X, X, X, X, X, X, X, X] -> [H, X, X] • 
H, L, H, H, H, L, L, L, H, H, H, L, X, X, X] -> [L, H, L] • "HDATA" 
H, L, H, H, H, L, L, L, H, H, H, H, L, X, X] -> [L, H, LJ. "HDATA" 
H, L, H, H, H, L, L, L, H, H, H, H, H, L, LJ -> [L, H, LJ. "HDATA" 
H, H, L, H, H, L, L, L, H, H, H, L, X, X, XJ -> [L, H, LJ. "HDATA" 
H, H, L, H, H, L, L, L, H, H, H, H, L, X, XJ -> [L, H, LJ. "HDATA" 
H, H, L, H, H, L, L, L, H, H, H, H, H, L, LJ -> [L, H, LJ. "HDATA" 
H, L, H, H, H, L, L, L, H, H, H, H, H, L, HJ -> [L, H, HJ. "HCNTL" 
H, H, L, H, H, L, L, L, H, H, H, H, H, L, HJ -> [L, H, HJ. "HCNTL" 
H, L, H, H, H, L, L, L, H, H, H, H, H, H, LJ -> [L, L, LJ. "HSTADRL" 
H, H, L, H, H, L, L, L, H, H, H, H, H, H, LJ -> [L, L, LJ. "HSTADRL" 
H, L, H, H, H, L, L, L, H, H, H, H, H, H, HJ -> [L, L, HJ. "HSTADRH" 
H, H, L, H, H, L, L, L, H, H, H, H, H, H, HJ -> [L, L, HJ. "HSTADRH" 

end tmsGSPU3IBM 

Figure 6-3. Equations for IBM PC and AT Host Port Decode PAL 

6·7 



Theory of Operation - PC Bus to TMS34010 (GSP) Interface 

module tmsGSPU3TI 
title 'GSP HOST INTERFACE CONTROL FOR TI AT >E7000->E7FFF 
Designer Ron Peterson Texas Instruments Inc. APRIL 9, 1986' 

U3TI device 'P16L8'; 
A11,A12,A13,A14,A15,A16,A17,A18,A19 
A10,A9,A8,W,RD,DACKO 
HFS1,HFSO,HCS 

pin 1,2,3,4,5,6,7,8,9; 
pin 11,13,14,15,16,17; 
pin 12,18,19; 

L,H,X = O,l,.X.; 
INPUTS = [DACKO,W,RD,A19,A18,A17,A16,A15,A14,A13,A12,A11,A10,A9,A8l; 
OUTPUTS = [HCS,HFS1,HFSOl; 

equations 

IHCS = «A19&A18&A17&!A16&!A15&A14&A13&A12&!W&DACKO)# 
(A19&A18&A17&!A16&!A15&A14&A13&A12&!RD&DACKO»; 

!HFS1 =«A19&A18&A17&!A16&IA15&A14&A13&A12&A11&A10&A9&!A8)# "HSTADRL" 
(A19&A18&A17&!A16&!A15&A14&A13&A12&A11&A10&A9&A8»; "HSTADRH" 

!HFSO =«A19&A18&A17&!A16&!A15&A14&A13&A12&!A11)# "HDATA" 
(A19&A18&A17&!A16&!A15&A14&A13&A12&A11&!A10)# "HDATA" 
(A19&A18&A17&!A16&!A15&A14&A13&A12&A11&A10&!A9&!A8)# "HDATA" 
(A19&A18&A17&!A16&!A15&A14&A13&A12&A11&A10&A9&!A8»; "HSTADRL" 

" HDATA >E7000->E7CFF" 
" HCNTL >E7DOO->E7DFF" 
" HSTADRL >E7EOO->E7EFF" 
" HSTADRH >E7FOO->E7FFF" 

test_vectors (INPUTS -> OUTPUTS) 

"D W R A A A A A A A A A A A A H H H 
"A D 1 1 1 1 1 1 1 1 1 1 9 8 C F F 
"c 9 8 7 6 5 4 3 2 1 0 S S S 
"K 1 0 
"0 

[L,X, X, X, X, X, X, X, X, X, X, X, X, X, Xl -> [H, X, Xl; 
[H,L, H, H, H, H, L, L, H, H, H, L, X, X, ~l -> ~L' H, Ll; "HDATA" 
[H,L, H, H, H, H, L, L, H, H, H, H, L, X, -> L, H, Lj; "HDATA" 
[H,L, H, H, H, H, L, L, H, H, H, H, H, L, Ll -> L, H, L ; "HDATA" 
[H,H, L, H, H, H, L, L, H, H, H, L, X, X, Xl -> [L, H, Ll; "HDATA" 
[H,H, L, H, H, H, L, L, H, H, H, H, L, X, Xl -> fL, H, Ll; "HDATA" 
[H,H, L, H, H, H, L, L, H, H, H, H, H, L, Ll -> L, H, Ll; "HDATA" 
[H,L, H, H, H, H, L, L, H, H, H, H, H, L, Hl -> [L, H, Hl; "HCNTL" 
[H,H, L, H, H, H, L, L, H, H, H, H, H, L, Hl -> [L, H, Hl; "HCNTL" 
[H,L, H, H, H, H, L, L, H, H, H, H, H, H, Ll -> [L, L, Ll; "HSTADRL" 
[H,H, L, H, H, H, L, L, H, H, H, H, H, H, Ll -> [L, L, Ll; "HSTADRL" 
[H,L, H, H, H, H, L, L, H, H, H, H, H, H, Hl -> [L, L, Hl; "HSTADRH" 
[H,H, L, H, H, H, L, L, H, H, H, H, H, H, Hl -> [L, L, Hl; "HSTADRH" 

end tmsGSPU3TI 

Figure 6-4. Equations for TI PC Host Port Decode PAL 

6-8 



Theory of Operation - TMS34010 to Memory Interface 

6.2 TMS34010 to Memory Interface 

The TMS3401 0 accesses local memory through a 16-bit tri-muxed bus. The 
TMS34010 supplies the the appropriate signals to interface easily to DRAM's 
and VRAM's. The device can also interface quite easily to other static devices 
such as RAMS, ROMS, and peripherals. 

The TMS3401 0 has an onboard instruction cache and memory controller. The 
CPU runs independently of the memory controller unless it is forced to wait 
for a memory operation to finish before further execution can continue. When 
the TMS3401 O's memory controller does a memory access, the tri-muxed bus 
(1) first outputs the row address on LAD15-LADO, then (2) outputs the col­
umn address and then (3) reads or writes data. The TMS3401 0 supplies: 

- a row address strobe (RAS), 
- a column address strobe (CAS), 
- two local clocks (LCLK1 and LCLK2), 
- an address latch enable (LAL), 
- a write strobe (VJ), 
- shift register transfer and output enable (TR/OE), 
- data direction output (DDOUT), and 
- data enable output (DEN). 

The part also has a local ready (LRDY) to allow wait states when accessing 
local memory. 

The Software Development Board has a variety of memory devices on the 
TMS34010's local bus. These include: 

- 512K bytes of dynamic RAM (DRAM), 
- 256K bytes of video RAM (VRAM), 
- two optional bipolar programmable read only memories (PROMS), 
- a universal synchronous/asynchronous receiver transmitter (USART). 

When the TMS3401 O's memory controller starts a memory cycle (state 01 in 
Figure 6-5), the row address is output on the LAD15-LADO pins. The 
LAD7-LADO outputs are input into a 74AS573 octal D transparent latch U10. 
The enable input to U10 is connected to the LAL signal. Since LAL is high 
during this part of the cycle (states 01-03 in Figure 6-5) the latches are in 
transparent state causing the outputs to follow the inputs and the row ad­
dresses propagate out of the latch to the memory array. 

1 ) 

2) 

3) 

4) 

Outputs LAD15-LAD13, LAD9, LADS, LAD1, LADO, and TR/OE are 
latched into a 74ALS573 octal D transparent latch U9 at the end of 02 
by the XLATCH signal. XLATCH is created by ANDing the RAS output 
and the LAL output with a 74AS11 three input AND gate. 
RAS then falls after state 02. This strobes the row addresses into the 
memory devices. , 
The LAD15-LADO now outputs the column addresses during state 04. 
Address latch enable LAL now goes low during state 04 latching the 
column address LAD7-LADO in latch U10. 
The CAS output goes low in state 05 and this strobes the column ad­
dresses into the memory devices. 

6-9 



Theory of Operation - TMS34010 to Memory Interface 

6-10 

Figure 6-6 shows the state of the LAD15-LADO pins when the row and col­
umn addresses are muxed out so that the lower LAD outputs can be buffered 
and directly driven to the memory array. Figure 6-7 shows how TMS34010 
address bits LADO to LAD7 are latched at U10 for multiplex operations. 

LCU<2 

w 
~ r-~~~~~~~--~--r+~~~--

DEN 

DDOUT 

LADY 

Figure 6-S. TMS34010 Memory Cycle Timing 



Theory of Operation - TMS3401 0 to Memory Interface 

R 
o 
w 

C 
o 
L 
U 
M 
N 

L L 
A A 
D D 
1 1 
5 4 

R L 
F A 

2 
8 

T ,. 
A R 
Q 

~ 
2 

L L L L 7"7"' L L L L L L L L 
A A A A A A A A A A A A A A 
D D D D D D D D D D D D 0 D 
1 1 1 1 8 8 7 8 5 4 3 2 1 0 
3 2 1 0 

L L L L L L L L L L L L L L 
A A A A A A A A A A A A A A 
2 2 2 2 2 2 1 1 1 1 1 1 1 1 
6 4 3 2 1 0 8 8 7 8 6 4 3 2 

L L L L L L L L L L L L L L 
A A A A A A A A A A A A A A 
2 2 2 1 1 1 1 1 8 8 7 8 6 4 
9 8 7 4 3 2 1 0 

~--------~v~--------~1 
ADDRESSES FOR 84K DEVICES I 

I 
~------------~v~-----------1 

ADDRE88ES FOR 2581< DEVlCE82 I 
I 

~------------------~vr------------~' 
ADDREB8E8 FOR 1 MEG DEVlCE81 

N01CS: 1. REQUIRES 4 BITS EXTERNALLY MUXED FOR LA23-U20 
FOR MEMORY ADDREB8E8 MRCAS AND MRCA8. 

2. REQUIRE8 2 BITS EXTERNALLY MUXED FOR LA20 I: LA21 
FOR MEMORY ADDRE88 MRCA8. 

Figure 6-6. LAD1S-LADO States To Drive Memory Array 

6-11 



Theory of Operation - TMS3401 0 to Memory Interface 

IlL 

-.0 
.... 1 

!WI --IIIH&IL 

6-12 

REiif~~ 

11~ lItO RP2 

II 
_ I.AIIO-UDIII 
l1li8 

IUIIIIiJ 

HD8-IID1I 

HDCI-HJJ 
LCUCI 

I 
LCLK2 

IRJY 
..m.. 

.. ROW COLLUI 
AlIDA ~ AlIDA 

~ - I..M)7 1. 11 

L.a 18 10 

...- 17 • 
I.M)4 1. • 
LADII 111 7 

IAI2 14 • 
LmI 18 II 

IA)O 12 4 

Figure 6-7. LAD7-LADO Multiplexing Latch Circuitry 

The bits latched into U9 during state Q2 by the XLATCH signal are used in 
determining which device should be selected. These outputs are labeled 
LA26, LA25, LA21, LA20 LA13, LA12, XFRCYCL, and REFCYCL. (The LA 
bits are the local address bits of the GPS's address bus.) XFRCYCL indicates 
if the access is a shift register transfer cycle, and REFCYCL dictates if a refresh 
cycle has been requested. These bits are driven into U11 a TIBPAL20L10 
programmable array logic device used for device decoding. Figure 6-8 con­
tains the equations for this PAL. 



Theory of Operation - TMS3401 0 to Memory Interface 

module tmsUll 
title 'GSP LOCAL BUS DECODE REV.1 
Designer Ron Peterson Texas Instruments Inc. April 21, 1986' 

Ul1 device 'P20L10'; 
LCLK1,LCLK2,REFCYC,XFRCYC,RASL,LAL,TRQE 
LA26,LA25,LA21,LA20,RESET 
RAMOE,RAMEN,RAMOFF,MRCA8,UARTCS,ROMCS 
DMRASO,DMRAS1,LMRAS,FLGCLK 

pin 1,2,3,4,5,6,7; 
pin 8,9,10,11,13; 
pin 14,15,16,17,18,19; 
pin 20,21,22,23; 

equations 

lFLGCLK = 

lLMRAS = 

lDMRAS1 = 

lDMRASO 

lROMCS 

lMRCA8 

!UARTCS 

lRAMOFF 

lRAMEN = 

lRAMOE = 

end tmsU11 

( l XFRCYC& l RASL) ; 

«lRASL&LA26&LA25)# 
(lRASL&lREFCYC)) ; 

«lRASL&lLA26&lLA25&LA20)# 
(lRASL&lREFCYC)# 
(lRASL&lXFRCYC)); 

«lRASL&lLA26&!LA25&lLA20)# 
(lRASL&lREFCYC)# 
(lRASL&lXFRCYC)); 

«LA26&LA25&LA21&LA20&lRAMEN&REFCYC)) ; 

«lLA21&LCLK2&LAL)# 
(LA20&lLCLK2)# 
(!MRCA8&lLAL)) ; 

«!RASL&lLA26&LA25&REFCYC)); 

«RESET) # 
(RAMEN)) ; 

«LA26&lLA25&lLA21&LA20&REFCYC&!RASL)# 
(RAMOFF)) ; 

«LA26&LA25&lRAMEN&lTRQE)# 
(LA26&LA25&lLA21&lRAMEN&lTRQE)# 
(LA26&LA25&!LA20&!RAMEN&lTRQE)); 

Figure 6-8. Equation for PAL U11 

6.2.1 Accessing Local DRAM Memory 

If the 512K bytes of system memory comprised of four TM4256EC4 SIPS are 
accessed, the LMRASL output of PAL U11 goes active. This memory is 
mapped from >FFCO 0000 to >FFFF FFFF. As discussed in Section 6.2, latch 
U10 supplies eight of the nine row and column address bits for these memory 
devices. The ninth address bit (for the row and column address) is supplied 
from the PAL U11. The TMS3401 O's two upper address bits are not output, 
and bits LA29-LA27 are not decoded for RAS selection because they are out­
put at column time. Thus, the upper five bits are actually don't-care bits in 
selecting external memory devices in this design. When LA26 and LA25 are 
both high, output LMRAS is driven active low during the RAS interval as shown 
in Figure 6-9. When the REFCYC output from latch U9 is low and RAS is low, 
a refresh cycle is taking place and LMRAS again is driven low by PAL U11. 

6-13 



Theory of Operation - TMS34010 to Memory Interface 

6-14 

Figure 6-9. Local DRAM Access Timing 

Data is enabled on read cycles through two 74ALS244's (U27 and U46) by 
signal RAMOE from PAL U11. RAMOE is a function of address and TROE as 
shown in the PAL equations shown in Figure 6-8. A third term RAMEN has 
been added to prevent the buffers from enabling on the upper 128K of memory 
(>FFFO 0000 to >FFFF FFFF) since this section of memory is shadow RAM 
behind the onboard PROM. Section 6.2.2. discusses this in more detail. The 
data then is driven through the two 74ALS245 bi-directional buffers U7 and 
U8. U7 and U8 are enabled by the TMS3401 O's DEN signal and the direction 
is controlled by the TMS3401 O's DDOUT output. On write cycles the data is 
driven directly into the TM4256EC4 SIPS from the two 74ALS245's U7 and 
U8. The 74ALS244's are required to isolate the D inputs and 0 outputs on 
the TM4256EC4 SIP memory devices since the TMS34010 does late write 
cycles (Write falls after CAS). 



Theory of Operation - TMS34010 to Memory Interface 

6.2.2 Accessing PROM and Enabling Shadow RAM 

After power-on Reset, the SDB has 1 K bytes of optional bipolar PROM ena­
bled. This PROM consists of 2-TBP24S42 devices mapped at the upper por­
tion of the TMS34010's memory space (>FFFO 0000 to >FFFF FFFF). The 
PROM has DRAM mapped behind it (i.e., they occupy the same area in me­
mory) which can be enabled by writing a >0001 to memory location >0400 
0000 in the TMS34010's memory space. Figure 6-10 shows the section of 
memory that the PROM and shadow RAM occupy in the TMS3401 O's local 
memory space. On power-on reset, an R-S latch constructed internally to PAL 
U11 is reset. The output of this latch is fed back around internally to PAL U11 
and is used for decoding whether the PROM is accessed or the shadow RAM 
is enabled. 

>FFFO 0000 ..-----...., 

NOT 
USED 

>FFFE 0000 PROM 
>FFFF FFFF '--___ .....J 

>FFFO 0000..-----...., 

SHADOW 
RAM 

>FFFF FFFFL..-___ ...... 

Figure 6-10. PROM Address Space and Shadow RAM 

When the TMS3401 0 accesses memory from> FFFO 0000 to > FFFF FFFF, the 
decode PAL U11 selects the two PROMs since the R-S latch is still in the reset 
state. The shadow RAM is enabled by writing to location >04000000 with 
a >0001. This causes the R-S latch to be set, and it remains set until another 
power-on reset. Setting the R-S latch enables the shadow RAM buffers U27 
and U42 and disables the PROM chip select for memory accesses in the range 
from> FFFO 0000 to > FFFF FFFF. 

6.2.3 Accessing the USART 

The Software Development Board has an on-board USART for serial commu­
nications to mice, digitizing tablets, and other serial devices. The board uses 
a Standard Microsytems COM2651 for serial communications. (A COM 2651 
data sheet is in Appendix A.) The USART is a memory mapped peripheral 
placed in the TMS3401 O's local memory space from locations >02000000 to 
>0220 3FFF. The USART has an 8-bit data path and is connected to the 
lower byte (LAD7-LADO) on the TMS34010. 

When memory is selected between >0200 0000 to >0220 3FFF, decode PAL 
U11 selects the USART. Besides selecting the USART directly, the UARTCSL 
signal from PAL U11 is input into U12, a D flip-flop. This flip-flop latchs the 
USART chip select. The output of this flip-flop is then negatively ANDed with 
the UARTCSL by the 74AS32 OR-Gate U42 which generates one wait state 
for every USART access. Since the R-/W line to the USART needs to be set 
up prior to CS the LA21 address line is used to control this operation. There-

6-15 



Theory of Operation - TMS34010 to Memory Interface 

6-16 

fore, a different address is used for reading and for writing to the USART's 
registers. The addresses for the USART registers are shown in Section 6.2.3. 

Table 6-2. USART Register Addresses 

ADDRESS 

>02000000 
>02001000 
>02002000 
>02003000 
>02200000 
>02201000 
>02202000 
>02203000 

I FUNCTION 

Read Receive Holding Register 
Read Status Register 
Read Mode Registers 1 and 2 
Read Command Register 
Write to Transmit Holding Register 
Write to SYN1 /SYN2/0LE Registers 
Write to Mode Registers 1 and 2 
Write to Command Register 

The three outputs of the USART (TxO, RTS, and DTR) are driven through 
75188 transmitters U40 to male OB25 connector J3. The four inputs (RxO, 
DSR C'i'S, and OeD) are driven by 75189 receivers at U37 which are sourced 
by the same OB25 connector J3. 

The USART can generate an interrupt to the TMS34010 from the TxRDY or 
RxRDY pins on the USART. These pins are the inverted state of status bits in 
the USART's status register. They indicate that a byte of data has been tran­
smitted or received by the USART and the device is ready for another opera­
tion. These outputs are negative ORed together by the 74AS11 and gate U45 
to form an 'interrupt level 1 request to the TMS34010's local bus (Trap 1 at 
> FFFF FFCO as shown in Figure 6-15 on page 6-25). This allows the USART 
to be an interrupt-driven peripheral. 



Theory of Operation - TMS34010 to Frame Buffer Interface 

6.3 TMS34010 to Frame Buffer Interface 

The Software Development Board has 256K bytes of video memory storage 
(VRAMS) consisting of eight TM4161 EV4 SI Ps. This allows a maximum re­
solution of 1 K x 512 pixels with 4 bits per pixel. The frame buffer is mapped 
from >0000 0000 to >001 F FFFF in the TMS34010's local memory space. 
Accessing the standard port of the memory is similar to accessing the DRAM's. 

The VRAM area is divided into two banks of 64K words apiece. This is done 
to save power by having only half the memories active whenever possible. 
When the TMS3401 0 accesses the range from >0000 0000 to >001 F FFFF, 
decode-PAL U11 generates a DMRASLO or DMRASl1 signal depending if 
the address is in the upper or lower bank of VRAM. This display-memory RAS 
strobe will strobe in the eight row addresses which are output through the 
74AS573 Octal D Latch U10. The CAS strobe follows shortly thereafter, 
strobing in the eight column addresses into the video memory. The output 
buffers on the memory devices are enabled by TR/QE. On refresh cycles (in­
dicated by the REFCYCL output of latch U9 low during the RAS interval) both 
the DMRASLO and DMRASL1 outputs go low to refresh the memories. 

On update cycles, the VRAMs transfer a row of memory to the on-chip 256-bit 
shift register or the contents of the shift register to the row of memory de­
pending on the state of the read/write line. For normal display operations, the 
memory is transferred to the shift register. A transfer operation is detected by 
the XFRCYCL output going low on the RAS interval on the 74ALS573 octal 
latch U9. The U11 decode PAL creates a DMRASLO and DMRASL 1 signal to 
both banks of display memory; thus transferring a row of memory to the shift 
register on the VRAMs. 

6-17 



Theory of Operation - Frame Buffer/Video Output Interface 

6.4 Frame Buffer to Video Output Interface 

6-18 

U28 

••• 

U18 

••• 

Figure 6-11. Frame Buffer Selection Logic 

The frame buffer is divided into two equal parts of 64K words apiece allowing 
a total video memory space of 256K bytes. Figure 6-11 is a diagram of the 
organization of the frame buffer in the TMS3401 O's local memory space. The 
32 serial outputs are grouped into two banks of 16 each. These two banks 
are physically tied together and only one bank is enabled at a time for serial 
access by using the SOUTS on the VRAM SIPs. The SOUT control logic is 
accomplished by latching the LA20 address line in flip-flop U12 on a transfer 
cycle. PAL U11 detects a transfer cycle at RAS time and generates output 
signal FLGCLK which clocks the state of LA20 into the the flip-flop. LA20 is 
used because this is the address line which divides the frame buffer in half. 
The outputs of this flip-flop are ANOed with a blanking signal to create a 
TOPSCNL and BOTSCNL serial output enable. These two signals allow only 
either the top or bottom of the frame buffer to be enabled at one time. 

The two groups of 16 serial outputs (SB15-SBO) from the frame buffer are 
driven into two 74ALS257 QUAO 2-to-1 multiplexers U28 and U29. These 
eight outputs, OA3-0AO and OB3-0BO, are time muliplexed by signal VCLK 
which is 1/4 the speed of the actual dotclock frequency as shown in Figure 
6-12. The initial clock divide is done by the TMS34070 Color Palette. The 



Theory of Operation - Frame Buffer/Video Output Interface 

palette output (CLKOUT) is input into the 74AS161 A at U25 for further divi­
sion. From here the output has two paths through the TMS34070 Color Pal­
ette for an analog output or through some other TTL for the digital output. 
Signal SCLK to the VRAMs is created by ANDing the blanking signals and the 
VCLK signal through 74AS11 AND gate U45. SCLK is turned off during the 
blanking interval so that the shift register transfers to the VRAMs can occur. 
The blanking signals are aligned to their proper time intervals by the dual D 
flip-flops in U26. 

DOTCLK 

CLKOUT 

VCLl< --.J '---___ -Jr--
BLANI<I.. 

DATAEN 

DA3-DAO 
DB3-OBO ---------------------«::]PO~tuM~~>< P2tP8 ><::: 

Figure 6-12. Frame Buffer Output Timing 

When the Color Palette output is used, the DA3-DAO and DB3-DBO outputs 
from the two 74ALS257 multiplexers are fed directly into the TMS34070. The 
TMS34070 operates on two pixels at once and time multiplexs them internally 
onto its RGB output pins. The TMS34070 is unique in that it loads directly 
from the frame buffer so that no microprocessor interface is necessary. The 
TMS34070 also has two modes of operation -- line load mode and frame load 
mode -- which are selected by jumper W3. The RGB outputs are fed into a 
Wye resistor network for impedance matching and then output to jumper 
platform WS. WS is used to select the analog or digital outputs. 

When jumper W9 is set for the digital outputs the DA3-DAO and DB3-DBO 
outputs are input into U33 a 74ALS878 Octal Latch with Clear. The Clear is 
used to blank the digital ouput during the blanking interval. The latch outputs 
then drive U34, a 74AS257 multiplexer. This multiplexer is time sliced by the 
CLKOUT output of the TMS34070 Color Palette. The outputs of multiplexer 
U34 derive a 4-bit RGBI code which is driven into the W9 jumper platform. 

The WS jumper platform is used to select the analog or digital output onto the 
DB9 connector J3. 

6-19 



Theory of Operation - CRT Timing Generation 

6.5 CRT Timing Generation 

6-20 

The CRT timing generation is done internally to the TMS34010. The 
TMS34010 has eight internal registers which control the timing of the 
HSYNC, VSYNC, and BLANK output pins. All timing parameters are fully pro­
grammable by these eight 16-bit internal registers. 

The horizontal parameters are derived from the VIDCLK input. While the ver­
tical parameters are calculated in horizontal lines, each of the vertical and 
horizontal parameters has four registers associated with them. These registers 
are Start Blank, End Blank, End Sync, and Total. Using these two sets of four 
registers, you can interface to almost any monitor. 

The Software Development Board has external logic which allows the user to 
select any combination of syncs. The user can have positive or negative 
composite sync. Both negative and positive values of either horizontal or 
vertical sync is also available. This vast array of syncs is configured by onboard 
jumpers outlined in Section 2. For more information on CRT timing generation 
see the TMS3401 0 User's Guide (SPVU001). 



Theory of Operation - Software 

6.6 Software 

The SDB340 software debugger consists of two independent but communi­
cating bodies of software: 

• PC software: this software resides on the PC side and operates under 
MS-DOS. 

• TMS34010 software: this resides on the TMS3401 0 and performs com­
mands given to it by the PC software. 

The two halves of the SDB340 debugger communicate with each other via the 
message bits in the HSTCTLL I/O register on the TMS3401 O. 

6.6.1 Program Bootup Sequence 

1) When invoked via MS-DOS, the PC software verifies SDB operation by 
running several minor checks. If these are passed, a second body of 
software is loaded through the host port to the SDB board. This software 
resides in the memory labelled "Reserved for Debugger" as shown in the 
SDB Memory Map (Figure 6-13). 

2) Once loaded, the PC software makes more minor checks to determine if 
the TMS3401 0 software was loaded correctly. If the checks are passed, 
the PC software loads the start address of the TMS3401 0 software into 
the non-maskable interrupt (NMI) vector (TRAP 8). 

3) The PC software then performs an NMI with the NMI mode set to inhibit 
the pushing of the PC and ST. This keeps the TMS3401 0 software from 
being overwritten by the NMI. 

4) Then the NMI transfers control to the TMS3401 0 software which: 
sets up the stack pointer, 
initializes local variables, 
loads the machine state values into a message area, and 
then waits for commands from the PC software. 

5) The PC software then uploads the machine state values, displays them, 
and waits for commands from the user. 

6-21 



Theory of Operation - Software 

MEMORY SPACE 

>00000000 
thru 

001F FFFO 

>00200000 
thru 

>BFFF FFFO 

>COOO 0000 
thru 

>COOO 01FO 

>FFCO 0000 
thru . 

>FFFD FFFO 

>FFFE 0000 
thru 

>FFFF FFFO 

OCCUPANTS 

DISPLAY RAM 

Reservedt 

IOREGS 

USER CODE 

RESERVED FOR 
DEBUGGER 

tFor a more detailed description of this area, 
see Figure 5-4 on page 5-6 

Figure 6-13. SOB Memory Map 

6.6.2 SDB340 Communications Protocol 

6-22 

1) When the PC software wishes the TMS34010 software to perform an 
action, it downloads the machine state values along with a command 
request value. Handshaking for this transaction is through the HSTCTLL 
I/O Register (shown in Figure 6-14). 

2) The PC software then writes a value of 5 into the MSGIN bits of the 
HSTCTLL Register. 

3) The TMS3401 0 software detects the 5, and writes a 5 into the MSGOUT 
bits of the HSTCTLL Register, signaling an acknowledgement to the PC 
software. 

4) Upon completion of the request, the TMS3401 0 software writes a 2 to 
the MSGOUT bits of the HSTCTLL register, signaling completion. 

5) The PC software uploads the machine state values along with a com­
mand response value. 

6) Upon completion of the upload, the PC software writes a 2 into the 
MSGIN bits of the HSTCTLL Register, acknowledging receipt of the 
data. 



Theory of Operation - Software 

HSTCTLL 
ADDR >COOO OOFO 

BITS 

8-15 
7 

4-6 

3 
0-2 

15 14 

NAME 

RESERVED 
INTOUT 
MSGOUT 

INTIN 
MSGIN 

11 7 864 3 210 

INTOUT INT1N 

FUNCTION 

When read, zeroes always returned 
Output interrupt bit 
Output message buffer, host read, 

TMS34010 write) 
Input interrupt bit 
Input message buffer (host write, 

TMS34010 read) 

Figure 6-14. HSTCTLL I/O Register 

6.6.3 SDB340 Execution Control 

The SOB340 debugger controls execution of target software via software 
TRAP instructions and the N M I. 

The NMI is used to halt the TMS34010 when the target software is allowed 
to run realtime by the use of a RUN command. The PC software detects a 
keystroke and then interrupts the target software by issuing an NMI. The NMI 
trap vector (TRAP 8) must point into the TMS3401 0 software for the SOB340 
to regain control. If the NMI is needed, such as in using the SY command to 
run another PC program to interface to the TMS34010, the NMI may be 
changed, but it must be restored so that the SDB340 can interrupt the 
TMS34010 target software. 

Single step (SS) and run with count (RUN) are controlled with software traps. 
Single step is controlled by inserting a TRAP 26 immediately after the in­
struction that is pointed to by the PC. If the instruction is a branch instruction 
(JUMP RS, TRAP n,EXGPC, etc.), then a second TRAP 26 is inserted at the 
possible branch location. The memory at SP and SP(32) are changed to cor­
respond to the PC and ST that are to be used in the instruction, and a RETI is 
executed. 

The RETI returns to the desired program location, performs the instruction, 
executes the TRAP 26, and returns to the TMS34010 software of the SOB. 
One requirement is that the following must be in writeable memory: 

• the word immediately after the instruction to be executed, or 
• the word at the possible branch location, or 
• the words preceding the stack. 

SOB340 detects these conditions and will not single step when there is a 
possiblity that the single step will fail. SOB340 also detects and prevents 
branches into itself on single step. As with the NMI, if the vector associated 
with TRAP 26 is overwritten and not restored, then the single step function 

6-23 



Theory of Operation - Software 

will not operate and the user will lose control of the TMS34010 software. 
Single stepping or running with count across an instruction that changes the 
TRAP 26 vector will also cause S08340 to immediately lose control. 

8reakpoint and trace are also controlled with software traps. Trace and break­
point functions insert a TRAP 29 at the instruction where the breakpoint or 
trace should take place. You can induce manual user halts by placing a TRAP 
29 into your code. Again, the trace and breakpoint functions will not operate 
if the TRAP 29 vector is overwritten; however, the consequences will not be 
as severe as overwriting the TRAP 8 and TRAP 26 vectors. 

The 1/0 functions of S08340 are controlled with TRAP 25, TRAP 27, and 
TRAP 28. The printf function used with the TMS3401 0 simulator can also be 
used with S08340. This function uses TRAP 27 and TRAP 28. TRAP 25 is 
reserved for future 1/0 function expansion. The 1/0 functions will not operate 
if these trap vectors are overwritten. The consequences are of the same severity 
as overwriting the trace and breakpoint trap vectors. 

6.6.4 Sharing of the Stack 

6-24 

Implicit in the use of TRAPs to control execution is that the stack is shared 
between the TMS34010 S08340 software and the TMS34010 target soft­
ware. This necessary sharing has side effects that you should be aware of 
when using the Stack Pointer (SP) in anything other than a strictly conven­
tional manner. For example, the following code will most likely produce un­
expected resu Its: 

move 
move 

AO,*SP(-16) 
*SP(-16), AO 

;Fie1d size 0 = 16 

The contents of AO probably will change when this code is stepped. This also 
applies to RUN with count. 

8y stepping through the first instruction, the TRAP 26 that is executed will 
cause the contents of the word above the stack to change to the value of the 
lower half of the PC. Remember that a trap causes the PC and ST to be pushed 
onto the hardware stack. In addition, The TMS3401 0 S08340 software per­
forms one subroutine call that causes an additional PC to be pushed onto the 
stack. Therefore, the user can expect the six words immediately above the top 
of the stack to be corrupted every time that a single step or a run with count 
is performed. 

6.6.5 TMS34010 Interrupt Map 

Interrupt vectors for the TMS3401 0 are shown in Figure 6-15. 



Theory of Operation - Software 

Trap 
Number Address 32 

0 FFFF FFEO 

1 FFFF FFCO 

2 FFFF FFAO 

3 FFFF FF80 
4 FFFF FF60 
5 FFFF FF40 
6 FFFF FF20 
7 FFFF FFOO 

8 FFFF FEEO 

9 FFFF FECO 

10 FFFF FEAO 

11 FFFF FE80 

12 FFFF FE60 
13 FFFF FE40 
14 FFFF FE20 
15 FFFF FEOO 
16 FFFF FDEO 
17 FFFF FDCO 
18 FFFF FDAO 
19 FFFF FD80 
20 FFFF FD60 
21 FFFF FD40 
22 FFFF FD20 
23 FFFF FDOO 
24 FFFF FCEO 

25 FFFF FCCO 
26 FFFF FCAO 
27 FFFF FC80 
28 FFFF FC60 
29 FFFF FC40 

30 FFFF FC20 

31 FFFF FCOO 

RESET 

INT1 

INT2 

Traps 3-7 

NMlt 

HI 

DI 

WV 

Traps 12-24 

Debugger 
Trapst 

ILLOP 

TRAP 31 

o 
Reset 

External Interrupt 1 

External Interrupt 2 

Nonmaskable Interrupt 

Host Interrupt 

Display Interrupt 

Window Violation 

Illegal opcode 

tDo not modify vectors for Traps 8. 25. 26. 27. 28. or 29. 
Any changes to these traps will cause a system failure. 

Figure 6-15. TMS34010 Interrupt Map 

6-25 



Theory of Operation - Software 

6-26 



A. COM 2651 Programmable Communication Interface 

The following is a data sheet on the COM 2651 Programmable Communi­
cation interface provided with the permission of the manufacturer, Standard 
Microsystems Corporation of Hauppauge, N.Y. 

A-1 



Appendix A - COM 2651 Data Sheet 

A-2 

COM 2651 
/-LPCFAMILY 

Programmable Communication Interface 
PCI 

FEATURES 
D Synchronous and Asynchronous Full Duplex or 

Half Duplex Operations 
D Re-programmable ROM on-chip baud 

rate generator 
D Synchronous Mode Capabilities 

- Selectable 5 to 8-Bit Characters 
- Selectable 1 or 2 SYNC Characters 
-Internal Character Synchronization 
- Transparent or Non-Transparent Mode 
- Automatic SYNC or OLE-SYNC Insertion 
-SYNC or OLE Stripping 
- Odd, Even, or No Parity 
- Local or remote maintenance loop back mode 

D Asynchronous Mode Capabilities 
- Selectable 5 to 8-Bit Characters 
-3 Selectable Clock Rates (IX, 16X, 64X the 

Baud Rate) 
- Line Break Detection and Generation 
-I, 1 'II, or 2-5top Bit Detection and Generation 
- False Start Bit Detection 
-Odd, Even, or No Parity 
- Parity, Overrun, and framing error detect 
- Local or remota maintenance loop back mode 
- Automatic serial echo mode 

D Baud Rates 
- DC to 1.0M Baud (Synchronous) 
- DC to 1.0M Baud (1 X, AsynchronOUS) 
-DC to 62.5K Baud (16X,Asynchronous) 
- DC to 15.625K Baud (64X, Asynchronous) 

D Double Buffering of Data 

PIN CONFIGURATION 

02 , 

032 
RxO 3 

GNO 4 

045 
056 

06 7 
07 8 

TxC 9 
A110 

eE" 
A012 

2801 

27 DO 

26 Vee 

25iiiC 
24DTR 

23m 

22DSR 

21 RESET 
20BRClK 
19TxO 

18 TxEMT/DSCHG 
17m 

16 !iCi5 IItw 13 

RxROY 14 '-______ -r'5~ 

Pack8ll" 28-pin 0.i.P. 

D Internal or External Baud Rate Clock 
-16 Internal Rates:50 to 19,200 Baud 

D Single +5 volt Power Supply 
D TTL Compatible 
D No System Clock Required 
D Compatible with 2651, INS2651 

GENERAL DESCRIPTION 
The COM 2651 is an MOS/LSI device fabricated 
using SMC's patented COPLAMose technology 
that meats the majority of asynchronous and 
synchronous data communicetion requirements, 
by interfacing parallel digital systems to asyn­
chronous and synchronous data communication 
channels while requiring a minimum of pr098ssor 
overhead. The COM 2651 contains a baud rate 
generator which can be programmed to either 
accept an external clock or to generate internal 
transmit or receive clocks. Sixteen different baud 
rates can be selected under program control when 
operating in the internal clock mode. The on-chip 
baud rate generator can be ROM reprogrammed to 
accommodate dillerent baud rates and dillerent 
starting frequencies. 
The COM 2651 is a Universal Synchronous! 

Asynchronous Receiver/Transmitter (USART) 
designed for microcomputer system data com· 
munications, The USART il used as a peripheral 
and is programmed by the processor to com­
municate in commonly used asynchronous and 
synchronous serisl data transmission techniques 
including IBM Bi-Sync. The USART receives serial 
data streams and converts them into parallel data 
characters for the processor. While receiving serial 
data, the USART will also accept data characters 
from the processor in parallel format, convert them 
to serial format and transmit. The USART will sig­
nal the processor when it has completely received 
or transmitted a character and requires service. 
Complete USART status Including data format 
errors and control Signals is available to the 
processor at any time. 



Appendix A - COM 2651 Data Sheet 

DATA BUS 

DO-D7 

AIIIT .. 
AI 

.,.eLK 

... .... 

'I v 

• 
• 

--

A 
a-,TAIUS 

BUFFER 

t 

O'IRATION CONTROL k= MODI RIGllTER 1 

MODI llllOllTII'I I 

COMMAND fII.QIITlR I--
STATUI "EGIITER 

r--

A'" aLE -f-
a 
GE 

CL.OCK CONTROL -

" 
SVNlDlE CONTROl 

~I SVN 1 REGISTER I 
I SVN 2 REGISTER I 
I DLE REGISTER I 

f-- TRANSMITTER P----
I--
"-~ I .J~=M~~8ij~"ER I -....,/ I TRANSMIT If-----SHIFT REGISTER 

T.O 

I-- 1 f 
fIIECEIVEA P----

~ 

r HO~~~:~Y:E~~~~EA I 

~ 
I RECEIYE I -. SHIFT REOISTER . . MODEM 

•• 0 

CONTROL --- 'ee - ClNO 

COM 2651 ORGANIZATION 

The COM 2651 Is organized into 6 major sections. 
Communication between each section is achieved via 
an internal data and control bus. The data bus buffer 
allows a processor acceas to all internal registers on the 
COM 2651. 
Operation Control 
This functional block stores configuration and opera­
tion commands from the processor and generatesappro­
priate signals to various internal sections to control the 
overall device operation. It contains raad and write cir­
cuits to permit communications with a processor via the 
data bus and contains Mode Registers 1 and 2, the 
Command Register, and the Status Register. Details of 
registar addressing and protocol are presented in the 
COM 2651 programming section of this specification. 

Timing 
The COM 2651 contains a Baud Rate Generator (BRG) 
which is programmable to accept external transmit or 
receive clocks or to divide an external clock to perform 
data communications. The unit can generate 16 corn­
monly used baud rates, anyone of which can be selected 
for full duplex operation. Table 6 illustrates all available 
baud rates. 
RICeIvw 
The Receiver accepts serial data on the RxD pin, con­
verts this serial input to parallel format, checks for bits 
or characters that are unique to the communication 

technique and stores the "assembled" character in the 
receive data holding register until read by the processor. 

Trllnemltter 
The Transmitter accepts parallel data from the processor, 
converts it to a serial bit stream, inserts the appropriate 
characters or bits (based on the communication tech­
nique) and outputs a composite serial stream of data on 
the TxD output pin. 

Modem Control 
The modem control provides threa output signals and 
accepts threa input signals used for "handshaking" and 
status iAdication between the COM 2651 and a modem. 

8YN/DLE Control 
This section contains control circuitry and three 8-bit 
registers storing the SYN1, SYN2, and OLE characters 
provided by the processor. These registers are used in 
the synchronous mode of operation to provide the 
characters requited for synchronization, idle fill and 
data transparency. 

Interfllce 81II'1II11 
The COM 2651 interface signals can ba grouped into two 
types: the processor-related aignals (shown in Table 2) which 
intarface the COM 2651 to the processor, and the device­
ralated signals (shown in Table 3), which are used to inter­
face to the communications equipment. 

A-3 



Appendix A - COM 2651 Data Sheet 

TABLE 2-PROCESSOR RELATED SIGNALS 

PIN NO. NAME SYMBOL FUNCTION 

1.2,5,6, Data 07-00 Bidirectional; 8 bit, three state data bus used to transfer commands, data and status 
7,8,27,28 between the COM 2651 and a processor. 00 Is the least significant bit; 07 is the mos' 

significant bit. 

10,12 Address Al,A8 Input; Address lines used to select COM 2651 registers. 

11 Chip Enable ~ Input; when this si~nal is low, the operation specified by the ~IW, A1 and AlA will be 
performed. When t is input Is high, 07-8 are in the high Impedance state. 

13 Reed/Write ~IW Input; Processor read/write diraction control. This signal defines the direelion of the 
dati bus 07-8 when the COM 2651 is selected. 07-8 rives out (read) when this signal is 
low and accepts data Input when this signal is high. The input only haa meaning when 
the chip enable input is active. 

14 Receiver Ready RxRDY Output; This signal Is the complement of Status Re~ster bit1 (SR1). When low, it 
indicates that the Receive Date Holding Ra~ister (R R) has a character ready for input 
to the processor. II goes high when the RH is read by the processor, and also when 
the receiver is disabled. It is an open drain output which can be used as an interrupt 
to the processor. 

15 Transmitter 'fXIm'l Output; This signal is the complement of Status Re~ister bit 0 (SRO). When low, it 
Ready indicates that the Transmll Data HOldinll. Register ( HR) is ready to accept a data 

character from the processor. II goes hig when the data charaeler is loaded. Thisoutput 
~:Ji! 0an~)~~~:U~~~d~~.;;:~~.nabled. II is an open drain output which can be 

18 Transmitter 6s~~-a Output; This signal is the complement of Stetus Register bit2 (SR2). When low, it 
empty/data indicates that the transmitter has completed seri~tio~e last character loaded 
selchange by the processor, or that a change of stete of the or inputs haa occurred. 

This output goes high when the Status Register is read by the processor, if the 
TxEMT condition does not exist. Otherwise, the THR must be loaded by the processor 
for this line to go high. Ills an open drain output which can be used as an interrupt 
to the processor. 

21 Reset Reset Input; A high on this input performs a master reset on the COM 2651. This signal 
asynchronously terminates any device activity and clears the Mode, Command and 
Stetus registers. The device assumes the idle state and remains there until initialized 
with the appropriate control words. 

26 Supply Voltege Vee +5 volls supply. 

4 Ground GND Ground. 

TABLE 3-DEVICE RELATED SIGNALS 

PIN NO. NAME SYMBOL FUNCTION 

3 Receive Data RxD Input; Serial data to the receiver. "Mark" is high "spece" islow. 

9 Transmitter ~ Input or Output; If the external transmitter clock is programmed, this input controls 
Clock the rate at which the character is transmitted. lis frequency i.,X, 16X or64X, the Baud 

rate as ~rogrammed by Mode Register 1. The transmitted date changes on the falling 
edge 0 the clock. If the internal transmitter clock Is programmed, this pin becomes 
an output at1X the programmed Baud rete. 

16 Data Carrier I5O'D Input; This signal must be low in orderfor the receiver to function. The complement 
Detect a~ ~us Register bit6 (SR6). When this input changes stete a low output 

on)( I occurs. 

17 Clear to Send rn Input; This signal must be low in orderforthe transmitter to function. If it goes high 
during transmission. the character in the Transmit Shift Register will be transmitted 
before termination. 

19 Transmit Data TxD Output; Serial date from the transmitter. "Mark" is high, "Spece" is low. This signal is 
held in the "Mark" condition when the transmitter is disabled. 

20 Baud Rate Clock BRCLK Input; The standard device requires a 5.0688MHz clock to the internal Baud rate 
generator allowing for Baud rete shown in Table6. The reprogrammable ROM on chip 
allows for user speclficed Baud rates and input frequency. Consullthe factory for 
details. This input is not required if external receive and transmit clocks are used. 

22 Date Set Ready 5§1 Input; This general purpose signal can be used for Data Set Readwor Ring Indicator 
condition. lis complement ap~s~gister bit7 (SR7). hen this input 
changes state, a low output on x I occurs. 

23 Request to Send m Output; This general purpose signal is the complement of the Command Register bitS 
(CRS).II is normally used to indicate Request to Send. 

A-4 



Appendix A - COM 2651 Data Sheet 

TABLE 3-DEVICE RELATED SIGNALS 

PIN NO. NAME SYMBOL FUNCTION I 

24 Data Terminal O'm Output; This !leneral purpose signal is the complement of the Command Register 
bitt (CR1). It IS normally used to indicate Data Terminal Ready. 

25 Receive Clock ~ Input or Output; lithe external receiver clock is programmed, this input controls the 
rate at which the character is to be received. Its frequency is IX, 16)(, or 64X the Baud 
rate, as programmed by Mode Register 1. Data are sampled on the rising edge of the 
clock. II internal receiver clock is programmed, this pin becomes an output at 1 X the 

I programmed Baud rate. 

COM 2651 OPERATION 

The functional operation of the COM 2651 isprogrammed 
by a set of control words supplied by the processor. 
These control words specify items such as synchronous 
or asynchronous mode, baud rate, number of bits per 
character, etc. The programming procedure is described 
in the COM 2651 Pnogramming section of this data sheet. 
After pnogramming, the COM 2651 is ready to perform 
the desired communications functions. The receiver 
performs serial to parallel conversion of data received 
from a modem or equivalent device. The transmitter 
converts parallel data received from the processor to a 
serial bit stream. These actions are accomplished within 
the framework specificed by the control words. 

R-wer 
The COM 2651 is conditioned to receive data when the 
DCD input is low and the RxEN bit in the command 
register is true. In the asynchronous mode, the receiver 
looks for a high to low transition on the RxD input line 
indicating the start bit. If a transition is detected, the 
state of the RxD line is sampled again after a delay of 
one-half of a bit time. If RxD is now high, the search for 
a valid start bit is begun again. If RxD is still low, a valid 
start bit is assumed and the receiver continues to sample 
the input line at one bit time intervals until the proper 
number of data bits, the parity bit, and the stop blt(s) 
have been assembled. The data Is then transferred to the 
Receive Data Holding RegiSwrll'B; RxRDY bit in the 
status register Is set, and the x output is asserted. 
If the character length is less than 8 bits, the high order 
unused bits in the Holding Register are set to zero, The 
Parity Error, Framing Error, and Overrun Error status 
bits are strobed into the status register on the positive 
going edge of ~ corresponding to the received char­
acter boundary. If a break condition is detected (RxD is 
low for the entire character as well as the stop bitls)), 
only one character consisting of all zeros (with the 
Framing error status bit set) will be transferred to the 
Holding Register. The RxD Input must return to a high 
condition before e search for the next start bit begins. 
When the COM 2651 is Initialized into the synchronous 
mode, the receiver first enters the hunt mode on a 0 to I 
transition of RxEN (CR2). In this mode, as data is shifted 
into the Reciver Shift Register a bit at a time, the con­
tents of the register are compared to the contents of the 
SYNI register. If the two are not equal, the next bit is 
shifted in and the comparison is repeated. When the two 
registers matCh, the hunt mode is terminated and char­
acter assembly begins. If the single SYN operation is 
programmed, the SYN DETECT status bit is set. If double 
SYN operation is programmed, the first character assem­
bled after SYNI must be SYN2 in order for the SYN 
DETECT bit to be set. Otherwise, the COM 2651 returns 

to the hunt mode. (Note that the sequence SYN1-SYN1-
SYN2 will not achieve synchronization). When syn­
chronization has been achieved, the COM 2651 con­
tinues to assemble characters and transfers them to the 
~o~m Register. The RxRDY status bit is set and the 

x output is asserted each time a character is assem-
bled and transferred to the Holding Register. The Overrun 
error (OE) and Parity error (PE) status bits are set as 
appropriate. Further receipt of the proper SYN 
sequence sets the SYN DETECT status bit. If the SYN 
stripping mode is commanded, SYN characters are not 
transferred to the Holding Register. Note that the SYN 
characters used to establish initial synchronization are 
not translerred to the Holding Register in any case. 

Transmitter 
The COM 2651 is conditioned to transmit data when the 
rn input is low and the TxEN command register bit is 
set. The COM 2651 indicates to the processor that it can 
accept a character for transmission by setting the 
TxRDY status bit and asserting the TXIrnV output. When 
the processor writes a character into the Transmit Data 
~o~~~ Register, the TxRDY status bit is reset and the 
x output is returned to a high (false) state. Data 

is transferred Irom the Holding Register to the Transmit 
Shift Register when it is idle or has completed trans­
mission 01 the previous character. The TxRDY condi­
tions are then asserted again. Thus, one lull character 
time of buffering is provided. 

In the asynchronous mode, the transmitter automatically 
sends a start bit followed by the programmed number 
of data bits, the least significant bit being sent first. It then 
appends an optional odd or even parity bit and the pro­
grammed number of stop bits. If, following transmission 
of the data bits, a new character is not available in the 
Transmit Holding Register, the TxD oUfE'tJ~mains ir, 
the marking (high) condition and the x 1r>sl5m 
output and its corresponding status bit are asserted. 
Transmission resumas when the processor loads a new 
cheracter into the Holding Register. The transmitter can 
be forced to output a continuous low (BREAK) condi­
tion by setting the Send Break command bit high. 

In the synchronous mode, when the COM 2651 is initially 
conditioned to transmit. the TxD output remains high and 
the TxRDY condition is asserted until the first character to 
be transmitted (usually a SYN character) is loaded by the 
processor. Subsequent to this, a continuous stream of 
characters is transmitted. No extra bits (other than parity, 
if commanded) are generated by the COM 2651 unless the 
processor fails to send a new character to the COM 2651 
by the time the transmitter has completed sending the 
previous character. Since synchronous communication 
does not allow gaps between characters, the COM 2651 

A-5 



Appendix A - COM 2651 Data Sheet 

asserts TxEMT and automatically "fills" the gap by 
Itansmitting SYNls, SYN1-SYN2 doublets, or DLE-SYNl 
doublets, depending on the state of MR16 and MR17. 
Normal transmission of the message resumes when a new 
character is available in the Transmit Data Holding 
Register. If the SEND OLE bit in the command register is 
true, the OLE character is automatically transmitted prior 
to transmission of the message character in the transmit 
holding register. 

COM 2651 PROGRAMMING 
Prior to initiating data communications, the COM 2651 
operational mode must be programmed by performing 
write operations to the mode and command registers. 
In addition, if synchronous operation is programmed, 
the appropriate SYN/DLE registers must be loaded. The 
COM 2651 can be reconfigured at any time during pro­
gram execution. However, if the change has an effect on 
the reception of a character the receiver should be dis­
abled. Alternatively if the change is made 1 '/a RxC periods 
after RxRDY goes active it will affect the next character 
assembly. A flowchart of the initialization process 
appears in Figure 1. 

The internal registers of the COM 265Lare accessed by 
applying specific signals to the CE, RIW, A 1 and AO 
inputs. The conditions necessary to address each register 
are shown in Table 4. 
The SYN1, SYN2, and OLE registers are accessed by 
performing ,!Irite operations with the conditions A 1 =0, 
AO=l, and RIW=l. The first operation loads the SYNl 
register. The next loads the SYN2 register, and the third 
loads the OLE register. Reading or loading the mode 
registers is done in a similar manner. The first write (or 
read) operation addresses Mode Register 1, and a sub­
sequent operation addresses Mode Register 2. If more 
than the required number of accesses are made, the 
internal sequencer recycles to point at the first register. 
The pointers are reset to SYNl Register and Mode 
Register 1 by a RESET input or by performing a "Read 
Command Register" operation, but are unaffected by any 
other read or write operation. 
The COM 2651 register formats are summarized in 
Tables 5, 6, 7 and 8. Mode Registers 1 and 2 define the 
general operational characteristics of the COM 2651, 
while the Command Register controls the operation 
within this basic framework. The COM 2651 indicates 
its status in the Status Register. These registers are 
cleared when a RESET input is applied. 

I CI A1 AD RIW 

I 

I X X X 
0 0 0 0 
0 0 0 I 
0 0 I 0 

i 0 0 I I 

I 

0 I 0 0 
0 I 0 1 
0 I 1 0 
0 I I I 

NOTE 
See AC Characteristics section lor timing requirements. 

COM 2111 INITIALIZATION FLOW CHART 

FUNCTION 

Tn-stale data bus 
Read receive holding register 
Write transmit holding register 
Read status register 
Write SYNI/SYN2JDLE registers 
Read mode registers I and 2 
Write mode registers 1 and 2 
Read command register 
Write command register 

T ..... 4-COM 2111 REGISTER ADDRESSING 

A-6 



Appendix A - COM 2651 Data Sheet 

MODE REGISTER 1 (MR1) 
Table 5 illustrates Mode Register 1. Bits MRll and MR10 performs a parity check on incoming data. MR1S selects 
select the communication format and Baud rate multi- odd or even parity when parity is enabled by MR14. 
plier. 00 specifies synchronous mode and lX multiplier. 
lX. 16X. and 64X multipliers are programmable for 
asynchronous format. However. the multiplier in asyn­
chronous format applies only if the external clock input 
option is selected by MR24 or MR25. 
MR13 and MR12 select a character length of 5. 6. 7. or 8 
bits. The character length does not include the parity bit. 
if programmed. and does not include the start and stop 
bits in asynchronous mode. 
MR14 controls parity generation. If enabled. a parity bit 
is added to the transmitted character and the receiver 

111117 11111. 111111 11111. 

In asychronous mode. MR17 and MRle select character 
framing of 1. 1.5. or 2 stop bits. (if lX baud rate is pr~ 
grammed. 1.5. stop bits defaults to 1 stop bits on trans­
mit). In synchronous mode. MR17 controls the number 
of SYN characters used to establish synchronization 
and for character fill when the transmitter is idle. SYNl 
alone is used if MR17=1. and SYN1-SYN2 is used when 
MR17=0. If the transparent mode is specified by MRle. 
DLE-SYNl is used for character fill and SYN Detect. but 
the normal synchronization sequence is used. Also OLE 
stripping and OLE Detect (with MR14=0) are enabled. 

l1li13 I 111112 111111 I 111110 

SynclAa,nc 
''''"' T,.. 

'd,Controi C"",. ... 'L ....... Mode.nd llatd R ... F.ctor 

AlYNCH: ITOP liT LINGTH 
OO=INVALIO 0=000 O=OISABLEO 00=5 BITS 
01 = 1 STOP BIT '=EVEN '=ENABLEO 0'=6 BITS 
'0='" STOP BITS '0=7 BITS 
,,=2 STOP BITS 11=BBITS 

lYNCH: NUIIIIII lYNCH: TIIANI· 
OFIYN CHAII PAMNC'tCONnlOl. 

O=OOL8LE SYN O=NOIOMAL 
1 =SINGLE SYN I=TRANSPI\RENT 

NOTE a.ud rat.'lctm In "ynchronOUl apph .. only" •• terna. ClOCk 1 ... lected Flctor 1118",1 
Intern.lelock I' ... tM Modi mull bl ..-eNId (MR,t, MRIO) In In\l c ... 

TABLE 5-MODE REGISTER 1(MR1) 

MODE REGISTER 2 (MR2) 

OO=SYNCHRONOUS'X RATE 
O'=ASYNCHRONOUS ,X RATE 
'O=ASYNCHRONOUS ,ex RATE 
l' =ASYNCHRONOUS 64X RATE 

Table 8 illustrates Mode Register 2. MR23. MR22. MR21. inputs TXC and ~ as the clock source for the trans-
and MR20 control the frequency of the internal Baud mitter and receiver. respectively. If the BRG clock is 
rate generator (BRG). Sixteen rates are selectable. When selected. the Baud rate factor in asynchronous mode is 
driven by a 5.0688 MHz input althe BRCLK input (pin 20). leX regardless of the factor selected by MRll and MR10. 
the BRG output has zero error except at 134.5. 2000. and In addition. the corresponding clock pin provides an 
19.200 Baud. which have errors of '+0.016% +0.253%. output at 1 X the Baud rate. Custom Baud rates other 
and +3.125% respectively. than the ones provided by the standard part are avail-
MR25 and MR24 select either the BRG or the external able. Contact the factory for details. 

1IR27 I l1li11 I IIIIIS I 11- 111123·111120 

! T_rotlcll Actual 
T __ 

i 
"Mel .. , ... d Frequency '''''''''' Pereen' 

Clock Clock C_ lio" llXClock 11. ClOCk 1,_ DI._ 
O=EXTERNAL i O=EXTERNAL 0000 

i 

50 Q8KHz o 8KHz -

I 
6336 

NOT USED 1=INTERNAL l=INTERNAL : 000' 75 , 2 '2 - 4224 
I 

; I 00'0 110 '76 '76 - 2880 

I 0011 1345 2152 2 '523 00'6 2355 

! 0100 150 2.' 2.4 - 2112 

; i 
0101 300 48 48 - '056 

I I 0110 600 96 96 - 528 
I 0111 '200 '92 '92 

, 
264 -

I I '000 '800 288 288 - 176 
; 1001 2000 320 32 oal 0253 '58 

I 1010 2400 384 384 - '32 

I 

I 
; 

! 

I 

I 

I 

I 1011 3600 576 576 -

"J 1100 4800 768 768 - 66 
I 1101 7200 1152 1152 - 44 

I I 1110 9600 1536 1536 - 33 

11" '9200· 3072 3'68 3125 '6 

NOTE -Error a1 19200 can be reduced to zero by usmg crystal ~requency 4 9152MHz 
,ax cioCIe IS used In .synChronous mode In synchronous mode. ClOCK multiplier IS tX 
Baud rat.s are valid for crystal frequency:: 50688MHz 

TABLE a-MODE REGISTER 2 (MR2) 

A-7 



Appendix A - COM 2651 Data Sheet 

I 

I 

A-S 

COMMAND REGISTER (CR) 
Table 7 illustrates the Command Register. BitsCRO (TxEN) 
and CR2 (RxEN) enable or disable the transmitter and 
receiver respectively. A 0 to 1 transition of CR2 forces 
start bit search oonc mode) or hunt mode (sync mode) 
on the second I1xC riSing edge. Disabling the receiver 
causes ~ to go high (inactive). If the transmitter is 
disabled, it will complete the transmission of the character 
in the Transmit Shift Register (if any) prior to terminat­
ing operation. The TxO output will then remain in the 
marking state (high) while the rxrmY and ~ will 
go high (inactive). If the receiver is disabled, it will termi­
nate operation immediately. Any character being assem­
bled will be neglected. 

In asynchronous mode, setting CR3 will force and hold 
the TxO output low (spacing condition) at the end of the 
current transmitted character. Normal operation resumes 
when CR3 is cleared. The TxO line will go high for at least 
one bit time before beginning transmission of the next 
character in the Transmit Data Holding Register. In syn­
chronous mode, setting CR3 causes the transmission 
of the OLE register contents prior to sending the char­
acter in the Transmit Data Holding Register. CR3 should 
be reset in response to the next TxROY. 
Setting CR4 causes the error flags in the Status Register 
(SR3, SR4, and SRS ) to be cleared. This is a one time 
command. There is no internal latch for this bit. 
The COM 2651 can operate in one of four sub-modes 
within each major mode (synchronous or asynchronous). 
The operational sub-mode is determined by CR7 and 
CR6. CR7-CR6=OO is the normal mode, with the trans­
mitter and receiver operating independently in accor­
dance with the Mode and Status Register instructions. 
In asynchronous mode, CR7-CR6=Ol places the COM 
2651 in the Automatic Echo mode. Clocked, regenerated 
received data is automatically directed to the TxO line 
while normal receiver operation continues. The receiver 
must be enabled (CR2=1), but the transmitter need not 
be enabled. Processor to receiver communications con­
tinues normally, but the processor to transmitter link 
is disabled. Only the first character of a break condi­
tion is echoed. The TxO output will go high until the 
next valid start is detected. The following conditions 
are true while in Automatic Echo mode: 
1. Data assembled by the receiver are automatically 

placed in the Transmit Holding Register and retrans­
mitted by the transmitter on the TxO output. 

2. The transmitter is clocked by the receive clock. 
3. ~~~~ut=l. 
4. The x ~DSCRG pin will reflect only the data set 

change condition. 

CR. I CM CAl CIM 

Oporotl .. -
""'UHlto _I .... -

00 = NORMAL OPERATION O=NORMAL 
01 =ASVNCH: AUTOMATIC O=FORCE lIT! 1=RESET 

ECHO MODE OUTPUT HIGH ERROR FLAG 
SVNCH: SVN ANDIOR : 1=FORCEm IN STATUS 
OLE STRIPPING MODE OUTPUT lOW (FE. DE. 

10= LCCAL LOOP BACK PE/DLE DETECT) 
" = REMOTe LOOP BACK 

5. The TxEN command (CRO) is ignored. 
In synchronous mode, CR7-CR6=Ol plllC8S the COM 
2651 in the Automatic SYN/OLE Stripping mode. The 
exact action taken depends on the setting of bits MR17 
and MR16: 
1. In the non-transparent, single SYN mode (MR17-

MR16=10), characters in the data stream matching 
SYNl are not trsnsferred to the Receive Data Holding 
Register (RHR). 

2. In the non-transparent, double SYN mode (MR17-
MR16=OO), characters in the data stream matching, 
SYN1, or SYN2 if immediately preceded by SYN1, ans 
not transferred to the RHR. However, only the first 
SYNl of an SYN1-SYNl pair is stripped. 

3. In transparent mode (MR16=1), characters in the 
data stream matching OLE, or SYNl if immedlataly 
preceded by OLE, ans not transferred to the RHR. 
However, only the first OLE of a OLE-OLE pair is 
stripped. 

Note that Automatic Stripping mode does not affect the 
setting of the OLE Detect and SYN Detect status bits 
(SR3 and SRS). 

Two diagnostic sub-modes can also be configured. In 
Local Loop Back mode (CR7-CR6=10), the follOWing 
loopa are connected internally: 
1. The transmitter output is connectad to the receiver 

inRl!t. 
2. OTR is connected to DCD and FITS is connected to 

rn. 
3. The receiver is clocked by the transmit clock. 
4. The MR, FITS andTiiC outputs are held high. 
5. The rn, lX:O, DSFI and RxO inputs ans ignored. 
Additional requirements to operate in the Local Loop 
Back mode are that CRO (TxEN), CRl (OTR), and CRS 
(RTS) must be set to 1. CR2 (RxEN) is ignored by the 
COM 2651. 

The second diagnostic mode is the Remota Loop Back 
mode (CR7-CR6=11). In this mode: 

1. Data assembled by the receiver is automatically 
placed in the Transmit Holding Register and retrans­
mittad by the transmitter on the TxO output. 

2. The transmitter is clocked by the receive clock. 
3. No data ans sent to the local processor, but the error 

status COndit~n~~;E, OE{~lffe set. 
4. The J!1xImV, x ,and x ~~ outputs are 

held high. 
5. CRO (TxEN) is ignored. 
6. All other signals operate normally. 

CRa CRI CR, ClIO 

Syne/Aa, nc R_ DIIOT_ ~ 
C_IR.IN) IINdr C_CTdN) 

AlYNCH: 
FDACI .RIAII 
O=NORMAL O=DISABLE O=FORCEm O=OISABLE 
I=FORCE 1 = ENABLE OUTPUT HIGH 1=ENABLE 

BREAK 1=FORCEm 

lYNCH: 
OUTPUT LOW 

•• NDDLE 

O=NORMAL 
1 =SENO OLE 

TABLE 7-COMMAND REGISTER (CR) 



Appendix A - COM 2651 Data Sheet 

STATUS REGISTER (SR) 

The data contained in the Status Register (as shown in 
Table 8) indicate receiver and transmitter conditions and 
modem/data set status. 

SRO is the Transmitter Ready (TxRDY) status bit. It, and 
its corresponding output, are valid only when the trans­
mitter is enabled. If equal to 0, it indicates that the 
Transmit Date Holding Register has been loaded by the 
processor and the data has not been transferred to the 
Transmit Shift Register. If set equal to 1, it indicates that 
the Holding Register is ready to accept data from the 
processor. This bit Is initially set when the Transmitter 
is enabled by CRO, unless a character has previously 
been loaded into the Holding Register. It is not set when 
the Automatic Echo or Remote Lool> Back modes are 
programmed. When this bit is set, the TXRD'i' output pin 
is low. In the Automatic Echo and Remote Loop Back 
modes, the output is held high. 

SR1, the Receiver Ready (RxRDY) status bit, indicates 
the condition olthe Receive Data Holding Register. If set, it 
indicates that a character has been loaded into the 
Holding Register from the Receive Shift Register and is 
ready to be read by the processor. If equal to zero. there 
is no new character in the Holding Register. This bit is 
cleared when the processor reads the Receive Data 
Holding Register or when the receiver is disabled by CR2. 
When set, the RXADV output is low. 

The TxEMT/DSCHG bit, SR2, when set, indicates either 
a change of state of the i5SR or DC[) inputs or that the 
Transmit Shift Register has completed transmission of a 
character and no new character has been loaded into 
the Transmit Data Holding Register. Note that in syn­
chronous mode this bit will be set even though the 
appropriate "fill" character is transmitted. TxEMT will not 
go active until at least one character has been trans­
mitted. It is cleared by loading the Transmit Data Hold-

III~ ... illS 8,... 

Dolo ... D"'~ fElS"'_ 0 .. """ "- -0= l5!m INPUT 0= 6ljlj INPUT ASYNCH, O=NORMAL 
ISHIGH IS HIGH 1=QVERRUN O=NQRMAL 

,=!mhNPUT , = 6ljlj INPUT 
1 = FRAMING ERROR 

'SLOW 'SLOW ERROR 

S...cH, 

0= NORMAL 
l=SYNCHAR 

DETECTED 

ing Register. The DSCHG condition is enabled when 
TxEN = 1 or RxEN = 1. It is cleared when the Stalus Reg­
ister is read by the processor. When SR2 is sel, the TxEMTI 
DSCHG output is low. 
SR3, when set, indicates a received parity error when 
parity is enabled by MR14. In synchronous transparent 
mode (MR16=1), with parity disabled, it indicates that 
a character matching the OLE Register has been received. 
However, only the first OLE of two successive DLEs will 
set SR3. This bit is cleared when the receiver is dis­
abled and by the Reset Error command, CR4. 
The Overrun Error status bit, SR4, indicates that the 
previous character loaded into the Receive Holding 
Register was not read by the processor at the time a new 
received character was transferred into it. This bit is 
cleared when the receiver is disabled and by the Reset 
Error command, CR4. 
In asynchronous mode, bit SRS signifies that the re­
ceived character was not framed by the programmed 
number of stop bits. (if 1.5 stop bits are programmed. 
only the first stop bit is checked.) If the RHR conlains all 
O's when SRS = 1, a break condition is present. In syn­
chronous non-transparent mode (MR16=0), it indicates 
receipt of the SYNl character in single SYN mode or the 
SYN1-SYN2 pair in double SYN mode. In synchronous 
transparent mode (MR16=1), Ihis bit is set upon detec­
tion of the initial synchronizing characters (SYNl or 
SYN1-SYN2) and, after synchronization has been 
achieved, when a DLE-SYNl pair is received. The bit is 
reset when the receiver is disabled, when the Reset Error 
command is given in asynchronous mode, or when the 
Status Register is read by the processor in the syn­
chronous mode. 
SR6 and SR7 reflect the conditions of the i5Ci5 and i5SR 
inputs respectively. A low input sets the corresponding 
status bit and a high input clears it. 

aRS 8112 SR, SAO 

PE/DLEDoIoct TxEIiT/DSCHG RxRDY bRDY 

O=NOFIMAL Q=RECEIVE O=TRANSMIT 
AS"'CH, 1 = CHANGE HOLDING REG HOLDING 
O=NORMAL IN l5mI OR EMPTY REG BUSV 
1 =PAA,TY =.OR 1=RECEIVE 1 = TRANSMIT 

ERROR TRANSMIT HOLDING REG HOLDING 

lYNCH: SHIFT REGIs.. HAS DATA REG EMPTY 

O=NORMAl 
l=P'ARITY 

TERIS 
EMPTY 

ERROR 
OR 

DLECHAR 
RECEIVED 

TABLE I-STATUS REGISTER (SRI 

A-9 



Appendix A - COM 2651 Data Sheet 

A-10 

TIMING DIAGRAMS 

'hAD\', TxEMT (Shown for 5-bit characters. no parity. 2 stop bit. [in asynchronous mode]) 

NOTES 
A "'Start till 
B"StQDblll 
C =S\OcI bll 2 
o =T .. Om.tl"ngeond"oon 

IUIlA) I 

T.EMT 110" low" Ih'~lnn,ng 01 tnelllll"'" bll. or ,I ~r'IY "'Nlbled. -,'hoebeg'"IIl"ll oIlh, PII"ly bit 

.C ... D ...... 

AxADV (Shown for S-bit character •. no parity. 2 stop bits [in asynchronous mode]) 

. 
".D~ .. ,t!I::"",.!II·!CI"'I'!I::.n.',4'·I·!C!-!D' 

~ .. _ ------lo.S'l.''::) I "1.~ ~ 
NOTES 

S .. rIM 
StopD,'! 

C Stop bII 2 
o r.Om.,k,ngeondol,on 

IDATAII 



Appendix A - COM 2651 Data Sheet 

m 
IIII'UT) 

nD 

TIMING DIAGRAMS (Confd) 

RElET CLOCK 

TRANSMIT RECEIVE 

1.lTn_ 
(1, 11. 0lIl" CLOCK "1ll10De) 

--1--"'-

"A. 

~", 
(WRITE) 

~ =::;f= fI.D __ .;;.~ ____ ; __ J 

~111)"\ F '-

READ AND WRITE 

~D, --~~~~~~J--____ ~~r-~~ __ 
Iq~)~~~~~~~~------+-~--------

A-11 



Appendix A - COM 2651 Data Sheet 

MAXIMUM GUARANTEED RATINGS· 
Operating Temperature Range ....•....•........•....••...•...•................................. O·C to + 70·C 
Storage Temperature Range ........•....•...•..••..•..•.....•......•....•.........•..•.....•. -SS·C to +150·C 
Lead Temperature (soldering, 10 sec.) .................................................................. +325·C 
Positive Voltage on any Pin, with respect to ground ....................................................... +18.OV 
Negative Voltage on any Pin. with respect to ground ....................................................... -o.3V 

·Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional 
operation of the device at these or at any other condition above those indicated in the operational sections of this 
specification is not implied. 

NOTE: When powering this device from laboratory or system power supplies, it it important that the Absolute Maximum 
Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their 
outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the 
OC output. For example, the bench power supply programmed to deliver +12 volts may have large voltage tranaients when 
the AC power is switched on and off. If this possibility exists it is suggested that a clamp circuit be used. 

DC ELECTRICAL CHARACTERISTICS T.=OOC to +70·C, Va;=5.OV ±5% 

PARAMETER MIN TYP MAX 
Input voltage 

V,l Low 0.8 
V," High 2.0 

Vo< 
Output voltage 

Low 0.4 
VOM High 2.4 

IlL Input leakage current 10 

ILH 
Output leak aile current 

10 Data bus high 
Iu. Data bus low 10 

Icc Power supply current 150 

C'N 
Capacitsnce 

Input 20 

COUT Output 20 

C'O Input/Output 20 

AC ELECTRICAL CHARACTERISTICS T.=O·C to +70·C, Vcc=5.OV ±5% 

A-12 

PAIIAMETER MIN TYP 
Pulse width 

tOE. Reset 1000 
tea Chip enable 300 

Setup and hold time 
20 tAS Address setup 

"'" Address hold 20 
tea R/W control setup 20 
tCH R/W control hold 20' 
tos Data setup for write 225 
tOM Data hold for write 0 
t ... Rxdatasetup 300 
tAlC" Rx data hold 350 

tDO Data delay time for read 
tOF Data bus floating time 

--1or~ 
tCEO CEtoC delay 700 

Input clock frequency 
f""'l ~do~'fx8enerator 1.0 5.0688 
fM de 

CloCk width 
t_ Baud rate high 70 
t .... Baud rate low 70 
tM" TXC or I1xC high 500 
tA/Tl' TXC or I1xC low 500 
tnco TxD delay from falling 

edgeolTXC 
\Yes Skew between TxD 

:~~~r~~~~~~~g 0 
NOTE: 
,. tM and tR,'TL shown tor all model except Local LoopbaCk. For Local Loopb.ck mode 

tM =0.7 MHz and til"" =7oonl min. 

MAX 

250 

150 

5.0738 
1.0 

650 

UNIT TEST CONDITIONS 

V 

V IOL=I.6mA 
IOM=-loopA 

pA V,N=O to 5.25V 

pA Vo=4.OV 
pA Vo=O.45V 
mA 

pF 
fC=IMHz 

pF Unmeasured pins tied 

pF 
to ground 

UNIT TEST CONDITIONS 

ns 
ns 

ns 
ns 
ns 
ns 
ns i ns 
ns 
ns 
ns CL=loopF 

ns CL=loopF 
ns 

MHz 
MHz 

ns f ••• =5.0688MHz 
ns f."" = 5. 0688MHz 
ns 
ns 

ns CL=loopF 

ns CL=loopF 



Appendix A - COM 2651 Data Sheet 

TYPICAL APPLICATIONS 

ASYNCHRONOUS INTERFACE 
TO CRT TERMINAL 

ASYNCHRONOUS INTERFACE 
TO TELEPHONE LINES 

..... 
" .. INTlII-.. " 

SYNCHRONOUS INTERFACE 
TO TERMINAL OR 

PERIPHERAL DEVICE 

Sl'NCHIIONOUI 
TlIIMtNAL 

OIl"JlI"-II"~ 
DIVlCE 

SYNCHRONOUS INTERFACE 
TO TELEPHONE LINES 

nNe ...... 
.... .. 

U .. 
11fT11I· .... 

CircUit diagrams utiliZing SMC products are InC:luded as a means of Illustrating typical semiconductor applica­
tions. consequently complete Information suffiCient for construction purposes IS not necessarily given The 
Intormatlon has been carefully checked and is beheved to be entirety reliable However. no responsibility IS 
assumed for InaccuraCies Furthermore. such Information does not convey to the purchaser of the semiconductor 
deviCes descnbed any license under the patent nghts of SMC or others SMC reserves the right to make changes 
at any time In order to Improve design and supply the best product possible 

A-13 



Appendix A - COM 2651 Data Sheet 

A-14 



B. List of Materials for TMDS3411804420 Board (SOB) 

ITEM PART DESCRIPTION LOCATION QTY/BRD 

TM DS3411804420 Software Development 
System PC Board 

2 Connector DB9 9-Pin Female, J4 
AMP 745112-2, or 
Burndy 107 -103-18, or equivalent 

3 Connector DB25 25-Pin Female, J3 
AMP 745106-2, or equivalent 

4 74AS04 Hex Inverter U43 

5 74AS32 Quad OR Gate U42 

6 74ALS245 Bidirectional Buffer U2,U7,U8 3 

7 74AS244 Octal Buffer U6 

8 74ALS244 Octal Buffer U27,U46 2 

9 74ALS573 Octal Latch U10 

10 74AS573 Octal Latch U9 

11 74ASOO Quad NAND Gate U41 

12 74AS74 Dual D Flip-Flop U12,U26 2 

13 74AS161 Counter U25 

14 74ALS257 Quad 2 to 1 Multiplexer U28,U29 2 

15 74AS11 Three-Input AND Gate U45 

16 74LS125 Quad Buffer U44 

17 74AS257 Quad 2 to 1 Multiplexer U34 

B-1 



Appendix B - Parts List 

ITEM PART DESCRIPTION LOCATION QTV/BRD 

18 74ALS541 Octal Buffer U5 

19 74ALS878 Octal Latch with Clear U33 

20 TBP28S42N Bipolar PROM (optional) U35,U36 2 

21 TIBPAL16L8-25 Programmable Array Logic U3 

22 TI BPAL20L 10 Programmable Array Logic U11 

23 Oscillator, 40 MMHz, Dale U4 1 
XO-33-D-40 or equivalent 

24 Oscillator, 25 MHz, Dale U30 
XO-33-D-25 or Equivalent 

25 Oscillator, 5.0688 Mz, Dale, U38 
XO-33-D-5.07 or Equivalent 

26 Resistor Pack, 8-Pin SIP, 10K OHM, RP3 
Bourns 4308R-1 01-1 03 

27 Resistor Pack, Isolated, 8-Pin SIP, RP1 
33 Ohms, Bourns 430Br-1 020330 

28 Resistor Pack, Isolated, 16-Pin DIP, RP2 
33 Ohms, Bourns 4116R-001 -330 

29 TMS34070NL Color Palette U32 

30 TMS34010 Graphics System Processor U1 

31 TM4256EC4-12L 256K by 4, U13-U16 4 
Dynamic RAM SIP 

32 TM4161 EV4-15L 64K by 4, U17-U24 8 
Video RAM SIP 

33 COM2651 SMC USART U39 

34 75158 Line Driver U31 

35 75188 Line Driver U40 

B-2 



Appendix B - Parts List 

ITEM PART DESCRIPTION LOCATION QTY/BRD 

36 75189 Receiver U37 

37 Socket, 68-Pin PLCC, XU1 
AMP 821574-1 or equivalent 

38 Socket, 22-Pin DIP, 400-mil, XU32 
Stamped Contact Tin -Plated, 
AMP 2-643295-1 

39 Socket, 20-Pin DIP, 300-mil, XU3,XU35,XU36 3 
Stamped Contact Tin-Plated, 
AMP 2-643294-1 

40 Socket, 24-Pin DIP, 300-mil, XU11 
Stamped Contact Tin-Plated, 
AMP 2-641932-1 

41 Capacitor Tantalum 22 uF, C101-C104 4 
Panasonic ECS-F1 CE226K 

42 Capacitor Decoupling 0.01 uF, C1-C12,C25-C39, 33 
AVX MD015E103ZAA C41-C46 

43 Resistor 31 .6 Ohm 1 /8 W, R4, R8, R11 3 
TRW 

44 Resistor 68.1 Ohm 1 /8 W, R6, R10, R13 3 
TRW 

45 Resistor 46.4 Ohm 1 /8 W, R5, R9, R12 3 
TRW 

46 Side Edge Bracket 

47 Mounting Kit for Edge Bracket, 2 
AMP 205817-1 

48 Stake Pins, 0.025 in. Square, W1 to W9 47 
BERG 75481 -002 

49 Rivets for J3 and J4, 0.124 in. 4 
Diameter by 0.25 in. length 

B-3 



Appendix B - Parts List 

8-4 



C. Diagnostics for Software Development Board 

This appendix covers the following: 

Page 

• Diagnostic Overview C-2 

Disk contents C-2 
Installation & Operation C-2 

• Diagnostic Tests C-4 

Messages C-4 
Memory address pattern tests C-4 
Memory data pattern tests C-4 
Execution test C-4 

• Troubleshooting C-5 

C-1 



Appendix C - Diagnostic Tests 

C.1 SOB Diagnostic Overview 

The 340 Software Development Board (SDB340) comes completely tested 
from the factory. However, should you ever suspect the board is not per­
forming properly, these diagnostics provide a quick and easy method to verify 
the unit's integrity. 

C.1.1 Diagnostic Disk Contents 

The diagnostics come on the diskette marked: 

Demo & Diagnostic 

The contents of the diagnostic disk are: 

README 1ST 
SDBDIAG EXE 
SDBDIAGT EXE 
SDBDIAG OUT 

Read first documentation 
Main diagnostic (IBM-PC Version) 
Main diagnostic (TI-PC Version) 
COFF load file used by diagnostics 

C.1.2 Installation and Operation 

C-2 

The diagnostics can either be executed from the floppy disk or from a Win­
chester disk. In either case, both SDBDIAG.EXE (SDBDIAGT.EXE for TI 
PC) and SDBDIAG.OUT must be located on the currently selected disk or di­
rectory. To execute the diagnostics off the diskette, insert it into drive A, then 
select the drive by entering A: at the command prompt. Next invoke the di­
agnostics by typing SDBDIAG. For example: 

>A:<CR> 
>SDBDIAG <CR> 

A short message will appear on the screen with the version number of the di­
agnostics and the computer type it was intended to run on. At this point you 
will be prompted to press 'Q' to quit or to press any other key to begin the 
diagnostics. If no errors are encountered, the screen display will look as 
shown in Section 4.5. 



Appendix C - Diagnostic Tests 

SDB340 Diagnostics, Version <ID number> - IBMPC 
(c) Copyright 1986, Texas Instruments Inc. 

Press 'Q' to quit, or <RETURN> to begin diagnostics: 

HALTING GSP !: 
ENABLING SHADOW RAM !: 

MEMORY ADDRESS PATTERN TEST !: 
FRAME BUFFER: 

Start: OOOOOOOOH Len: 
PASS ! 
SHADOW RAM: 

Start: FFEOOOOOH Len: 
[ PASS ! 

PROGRAM RAM: 
Start: FFCOOOOOH Len: 

PASS ! 

MEMORY DATA TEST ! : 
SHADOW RAM: 

Start: FFEOOOOOH Len: 
Start: FFEOOOOOH Len: 

PASS ! 
FRAME BUFFER: 

Start: OOOOOOOOH Len: 
Start: OOOOOOOOH Len: 

PASS ! 
PROGRAM RAM: 

Start: FFCOOOOOH Len: 
Start: FFCOOOOOH Len: 

PASS ! 

TMS34010 EXECUTION TEST 
PASS ! 

00200000H 

00200000H 

00200000H 

00200000H 
00200000H 

00200000H 
00200000H 

00200000H 
00200000H 

Data: OOOOH 

Data: OOOOH 

Data: OOOOH 

Data: 5555H 
Data: AAAAH 

Data: 5555H 
Data: AMAH 

Data: 5555H 
Data: AAAAH 

DIAGNOSTIC COMPLETE: ERROR COUNT = 0 

Figure C-1. Screen Display with No Errors 

Inc: 

Inc: 

Inc: 

0OO1H 

0OO1H 

0OO1H 

Output of the SDB340 diagnostics can be redirected to a device other than 
the screen by specifying the SDBDIAG command followed by a greater-than 
arrow and the name of the output device. 

EXAMPLE: 

SDBDIAG >PRN (Redirects output to the printer) 

Your DOS Users Manual contains terms identifying peripheral devices in the 
command section. Further information on redirecting output is in these man­
uals. 

C-3 



Appendix C - Diagnostic Tests 

C.2 Explanation of Diagnostic Tests 

The following briefly explains the different diagnostic tests and the possible 
status/error messages. 

C.2.1 Status Messages 

During testing, messages indicate action being taken by the diagnostics. For 
example: 

TMS340I0 HALTED, 
TMS34010 RUNNING, 
CACHE FLUSH, 
CACHE DISABLE, 
CACHE ENABLE, 
SHADOW RAM ENABLED. 

C.2.2 Memory Address Pattern Tests 

An incremental pattern is written to SOB memory and then verified. This 
verifies host port operation and checks the SOB for memory address failures. 
Each of the three SOB memory segments is tested independently and 
a PASS or FAIL message is printed after each. The section of memory 
currently under test is indicated by it's name followed by a starting bit ad­
dress followed by the length of the segment. 

EXAMPLE 

FRAME BUFFER 
Start: OOOOOOOOH Len: 002000000h Data: OOOOH Inc: OOOIH 

This indicates the video frame buffer starting at memory address >00000000 
is currently under test. 

Note: 

If the SOB fails the Memory Address Pattern Test, then subsequent tests 
will produce unreliable results. 

C.2.3 Memory Data Pattern Tests 

C-4 

For these tests, an non-incremental pattern is written to SOB memory and then 
verified to check the SOB340 for memory data failures. Each of the three SOB 
memory segments is tested independently and a PASS or FAIL message is 
printed after each. The section of memory currently under test is indicated 
by it's name followed by a starting bit address followed by the length of the 
segment: 

FRAME BUFFER 
Start: OOOOOOOOH Len: 002000000h Data: OOOOH Inc: OOOIH 

This indicates that the video frame buffer starting at memory address 
>00000000 is currently under test. 



Appendix C - Diagnostic Tests 

C.2.4 TMS34010 Execution Test 

COFF file SOBOIAG.OUT is loaded into SOB memory starting at memory 
location >00000000. An NMI vector, set up via the host port, points to the 
beginning of the code. TMS34010 execution then begins by the host initiat­
ing an NMI. Ouring the course of the test. the host processor and the 
TMS34010 send packets of data back and forth. The test fails if 

• incorrect data is received by the host, or 
• the TMS3401 0 doesn't respond after an allotted amount of time. 

C.3 Troubleshooting 

This section describes steps to take if one or more of the diagnostic tests fail. 

If a diagnostic test fails, then execute the following steps: 

1) Make sure your PC is able to handle the additional power requirements 
as listed in Table 5-7. 

2) Make certain the version of the SOB340 you are using is intended for 
your computer. The first message appearing after execution shows 
whether it is an IBM PC or TI PC version. 

3) Turn off the power and remove the SOB340 from the host computer. 
Verify that all components are seated firmly in their sockets. 

4) Verify a proper installation by rechecking the installation steps iii Section 
3.1.4 on page 3-6. 

5) Recheck the board jumper settings as listed in the tables in Section 2.3 
on page 2-4. 

6) Check the edge connector of the SOB340, if it appears dirty, clean it by 
gently rubbing the connector with a pencil eraser. 

7) Re-install the SOB340 board, power up the computer and run the di­
agnostics again. If you continue to get failures, contact the Technical 
Assistance Hotline at (713) 274-2340. 

C-5 



Appendix C - Diagnostic Tests 

C-6 



D. Glossary 

absolute address: An address that is permanently assigned by the machine 
designer to a storage location. 

absolute coordinates: The location of a point in terms of X, Y, or Z dis­
tance from a predefined origin. 

access time: The time interval between the request for information and the 
instant this information is available. 

address: A point into an array of bits, bytes or words of information. 

aliasing: A stairstep effect on a raster display of a line or arc segment. 

ALU: Arithmetic Logic Unit, a computational element of a digital computer 
which performs boolean or arithmetic operations. 

analog outputs: As opposed to digital output, the amplitude is contin­
uously proportionate to the stimulus, the proportionality being limited by the 
accuracy of the device. 

asynchronous communications: A method of transmitting data in which 
the timing of character placement of connecting transmitting lines is not crit­
ical. The transmitted characters are preceded by a start and followed by a stop 
bit, thus permitting the interval between characters to vary. 

array: 1. A series of related items. 2. An ordered arrangement or pattern of 
items or numbers, such as a determinant, matrix, vector,or a table of numbers. 

ASCII: (American National Standard Code for Information Inter­
change,1968) The standard code, using a coded character set consisting of 
7-bit coded characters (8 bits including parity check), used for information 
interchange among data processing systems, communication systems, and 
associated equipment. The ASCII set consists of control characters and 
graphic characters. 

aspect ratio: The ratio of width to height. For the rectangular picture 
transmitted by a television station, the aspect ratio is 4:3. 

assemble: To prepare a machine language program from a symbolic lan­
guage program by substituting absolute operation codes for symbolic opera­
tion codes and absolute of relocatable addresses for symbolic addresses. 

assembler: A software program that assembles. 

assembly language: A programming language which allows a computer 
user to write a program using mnemonics instead of numeric instructions. It 
is a low-level symbolic programming language which closely resembles ma­
chine code language. The language uses groups of letters; each group re­
presents a single instruction. 

attribute: A parameter specifying some characteristic or feature to be ap­
plied to subsequent pictorial information. 

back porch: The portion of a horizontal blanking pulse that follows the 
trailing edge of the horizontal synchronizing pulse. 

0-1 



Appendix 0 - Glossary 

0-2 

background illumination: The average brightness of a screen. 

bandwidth: The difference in frequency between the highest and lowest 
frequencies involved. 

base: 1. A reference value. 2. A number that is multiplied by itself as many 
times as indicated by an exponent. 3. Same as "radix. 

base address: A given address from which an absolute address is derived 
by combination with a relative address. 

bidirectional buffer: A buffer capable of acting as an input or as an output 
but not both at the same time. 

bit: A binary digit; usually 0 or 1. (Note: MSb = most-significant bit; LSb = 
least-significant bit.) 

Bit Bit: Bit aligned block transfer. Transfer of a rectangular array of pixel 
information from one location in a bitmap to another with potential of applying 
1 of 16 boolean operators during the transfer. 

bit map: 1. The digital representation of an image in which bits are mapped 
to pixels. 2. A block of memory used to hold raster images in a device-specific 
format. 

bit plane: Hardware used as a storage medium for a bit map. 

black level: The amplitude of the composite signal at which the beam of the 
picture tube is extinguished (becomes black) to blank retrace of the beam. 
This level is established at 75&PCT. of the signal amplitude. 

blanking signal: Pulses used to extinguish the scanning beam during hor­
izontal and vertical retrace periods. 

border: The area of the physical display that is outside the display area on 
a CRT display. 

branching: A method of selecting, on the basis of results, the next operation 
to execute while the program is in progress. 

breakpoint: A place in a routine specified by an instruction, instruction di­
git, or other condition, where the routine may be interrupted by external in­
tervention or by a monitor routine. 

byte: An 8-bit sequence of adjacent binary digits operated upon as a unit. 
(Note: MSB = most-significant byte; LSB = least-significant byte.) 

central processor unit (CPU): Part of a computer system which contains 
the main storage, arithmetic unit, and special register groups. It performs 
arithmetic operations, controls instruction processing, and provides timing 
signals and other housekeeping operations. 

CGI: Computer Graphics Interface. The interface between the device- inde­
pendent and the device-dependent levels of a graphics system. 

CGM: Computer Graphics Metafile. A mechanism for retaining and and 
transporting graphics data and control information at the level of the Virtual 
Device Interface. 



Appendix 0 - Glossary 

character: A letter, digit, or other symbol that is used as part of the organ­
ization, control, or representation of data. 

character field: The rectangular area within which a character is displayed. 
Also known as image cell. The character field includes intercharacter and in­
terrow spacing. 

clipping: Removing parts of display elements that lie outside a given boun­
dary, usually a window or a viewport. 

compiler: A translation program that converts a high level language set of 
instructions into a target machines assembly language. 

composite video: The color-picture signal plus all blanking and synchro­
nizing signals. The signal includes luminance and chrominance signals, verti­
cal- and horizontal-sync pulses, vertical- and horizontal-sync pulses, 
vertical-and horizontal-blanking pulses, and the color-burst signal. 

coordinates: A number of X, Y, and Z units that give the location of a point 
in a coordinate system. 

CRT: Cathode Ray Tube. A display tube with a television-like screen. 

DAC: Digital-to-analog converter. A device that converts a digital input 
code to an analog output voltage or current. The analog output level repres­
ents the value of the digital input code. 

direct access: Pertaining to the process of obtaining data from, or placing 
data into, storage where the time required for such access is independent of 
the location of the data most recently obtained or placed in storage. 

direct addressing: Method of programming that has the address pointing 
to the location of data or the instruction that is to be used. 

display: A visual representation of data. 

display area: The rectangular part of the physical display screen in which 
information coded in conformance with a video encoding standard is visibly 
displayed. The display area does not include the border area. 

display element: A basic graphic element that can be used to construct a 
display image. 

display memory: The area of memory which is used to hold the graphics 
image output to the video monitor. 

display pitch: The difference in memory addresses between two pixels that 
appear in vertically adjacent positions (one directly above the other) on the 
screen. 

display unit: A device which provides a visual representation of data. 

dot clock: The dot clock controls the rate at which analog video data is 
output at the analog outputs (RED, GRN and BLU) and the digital output, 
XAT. All on-chip timing is generated from this clock. 

download: To call for and receive a file from another computer storage 
medium. 

D-3 



Appendix D - Glossary 

0-4 

dump: To copy the contents of all or part of a storage, usually from an in­
ternal storage. 

endpoint: The end of a line segment expressed in terms of X, Y, and Z co­
ordinates. 

fetch: That portion of a computer cycle during which the next instruction is 
retrieved from memory. 

field: A set of scanning lines that, when interlaced with other such sets, 
constructs a complete picture on a television or similar raster-scan device. 

fill: Solid coloring or shading of a display surface, often achieved as a pat­
tern of horizontal segments. 

flag: A binary status indicator whose state indicates whether a particular 
condition has occurred or is in effect. 

frame: 1. The time required to refresh an entire screen. 2. The screen image 
output during a single vertical sweep. 

frame buffer: A portion of memory used to buffer rasterized data to be 
output to a CRT display monitor. The contents of the frame buffer are often 
referred to as the bit map of the display and contain the logical pixels corre­
sponding to the points on the monitor screen. 

front porch: The portion of a horizontal blanking pulse that precedes the 
leading edge of the horizontal sync pulse. 

GKS: Graphical Kernal System. An application programmer's interface to 
graphics. 

glue logic: The small- and medium-scale-integrated devices necessary to 
complete the interface between two or more large or very-large-scale inte­
grated devices. 

gray scale: A scale of light intensities from black to white. 

high impedance: The third state of a three-state output driver, in which the 
output is driven neither high or low but behaves as an open connection. 

hold time: The minimum amount of time that valid data must be present at 
an input after the device is clocked to ensure proper data acceptance. 

horizontal blanking interval: The time during which the display is 
blanked to cover the horizontal retracing of the electron beam. 

horizontal sync: The synchronization signal that enables horizontal retrace 
of the electron beam of a CRT display. retracing of the electron beam. 

icon: A graphic symbol representing a menu item. 

indirect addressing: Programming method that has the initial address be­
ing the storage location of a word that contains another address. This indirect 
address is then used to obtain the data to be operated upon. 

interlaced scanning: A system of TV-picture scanning. Odd-numbered 
scanning lines, which make up an odd field, are interlaced with the even­
numbered lines of an even field. The two interlaced fields constitute one 



Appendix D - Glossary 

frame. In effect, the number of transmitted pictures is doubled, thus reducing 
flicker. 

instruction: A statement that specifies an operation and the values or lo­
cations of its operands. 

instruction cycle: The period of time during which a programmed system 
obeys a particular instruction. 

instruction set: A set of operation codes for a particular computer or family 
of processors. 

interlaced scanning: A system of TV-picture scanning. Odd-numbered 
scanning lines, which make up an odd field, are interlaced with the even­
numbered lines of an even field. The two interlaced fields constitute one 
frame. In effect, the number of transmitted pictures is doubled, thus reducing 
flicker. 

interrupt: To stop a process in such a way that it can be resumed. 

jump: A departure from the normal sequence of executing instructions in a 
computer. 

jump conditions: Conditions defined in a transition table that determine 
the changes of flip-flops from one state to another state. 

label: One or more characters used to identify a statement or an item of data 
in a computer program. 

language: A set of representations, conventions, and rules used to convey 
information. 

linearity: 1. The relationship between two quantities when a change in a 
second quantity is directly proportional to a change in the first quantity. 2. A 
constant ratio of cause and effect (as in a straight line representation). 

linkage: In programming, coding that connects two separately coded rou­
tines. 

load: In programming, to enter data into storage or working registers. 

location: Any place in which data may be stored. 

lookup table: A table used during scan conversion of the digital image that 
converts color-map addresses into the actual color values displayed. 

loop: A sequence of instructions that is executed repeatedly until a terminal 
condition prevails. 

lSb: least significant bit. 

lSB: least significant byte. 

machine code: An operation code that a machine is designed to recognize. 
Usually expressed in ones and zeros. 

machine language: The basic language of a computer. Programs written 
in machine language require no further interpretation by a computer. 

D-5 



Appendix D - Glossary 

0-6 

macro: A command that allows a few keystrokes to reproduce a longer 
string of characters. 

macroinstruction: An instruction in a source language that is equivalent 
to a specified sequence of machine instructions. 

macroscopic: 1. Large enough to be observed by the naked eye. 2. Con­
sidered in terms of large units or elements. 

mapping: An operation that transforms one functional representation of in­
formation to another. 

mask: A pattern of characters that is used to control the retention or elimi­
nation of portions of another pattern of characters. 

matrix: An array of X, Y, and Z coefficients for calculating a geometric 
transformation. 

memory: The section of the computer where instructions and data are 
stored; synonymous with storage. 

microprocessor: An IC that can be programmed with stored instructions 
to perform a wide variety of functions, consisting at least of a controller, some 
registers, and some sort of ALU. 

monitor: A display device used for monitoring a video transmission. 

monochrome monitor: A monitor capable of displaying intensities of only 
a single color. 

monolithic integrated circuit: An integrated circuit formed in a single 
piece, as opposed to a hybrid circuit formed by connecting several pieces. 

monotonicity: The quality of proceeding in a uniform manner. For exam­
ple, the analog level output from a DAC should increase with each increase in 
the value of the digital input code. 

multiplexing: Refers to a process of transmitting more than one set of sig­
nals at a time over a single wire or communications link. 

MSb: Most significant bit. 

MSB: Most significant byte. 

NABTS: North American Broadcast Teletext Specification 

NAPLPS: North American Presentation Level Protocol Syntax -- a proposed 
standard for Videotex services. 

nonmaskable interrupt: An interrupt request that cannot be disabled. 

NTSC: National Television System Committee -- a group representing a 
wide range of interests in the television broadcast and video industry. The 
NTSC is instrumental in developing standards. 

object code: Output from a compiler or assembler which is itself executable 
machine code. 

object language: The language to which a statement is translated. 



Appendix D - Glossary 

object program: The instructions which come out of the compiler or as­
sembler, ready to run on the computer. The object program is the one which 
can be read by both machines and people. 

operand: That which is operated upon. An operand is usually identified by 
an address part of an instruction. 

operation: 1. A defined action, namely, the act of obtaining a result from 
one or more operands in accordance with a rule that completely specifies the 
result of any permissible combination of operands. 2. The set of such acts 
specified by such a rule, or the rule itself. 3. The act specified by a single 
computer instruction. 4. A program step undertaken or executed by a com­
puter, e.g., addition, multiplication, extraction, comparison, shift, transfer. The 
operation is usually specified by the operator part of an instruction. 5. The 
specific action performed by a logic element. 

origin: The zero intersection of X, Y, and Z axes from which all points are 
calculated. 

overlay: The plane of a graphics display that can be superimposed on an­
other plane. 

pack: To compress data in a storage medium by eliminating redundant in­
formation in such a way that the original data can later be recovered. 

palette: 1. Thin oval or oblong board with a thumb hole, used by artists for 
mixing and holding colors. 2. A digital lookup table used in a computer 
graphics display for translating data from the bit map into the pixel values to 
be shown on the display. 

pan: Movement across the X and Y grid. 

phase: The time interval for each clock period in a system is divided into two 
phases. One phase corresponds to the time the clock signal is high, and the 
other phase corresponds to the time the clock signal is low. 

PHIGS: The programmer's Hierarchical Interactive Graphics Standard 

pipelining: A design technique for reducing the effective propagation delay 
per operation by partitioning the operation into a series of stages, each of 
which performs a portion of the operation. A series of data is typically clocked 
through the pipeline in sequential fashion, advancing one stage per clock pe­
riod. 

PixBlt (abbreviation of Pixel Block transfer): Operations on arrays of 
pixels in which each pixel is represented by one or more bits. PixBlt oper­
ations are a superset of BitBlt operations, and include not only the common­
ly-used boolean functions, but also integer arithmetic and other multi-bit 
operations. 

pixel: Picture element. 1. The smallest controllable point of light on a CRT 
display screen. 2. In a bit-mapped display, the logical data structure that 
contains the attributes to be shown at the corresponding physical pixel posi­
tion on the CRT display screen. 

primary colors: A set of three colors from which all other colors may be 
regarded as derived; hence, any of a set of visual stimuli from which all colors 
may be produced by mixture. Each primary color must be different from the 

0-7 



Appendix D - Glossary 

0-8 

others, and a combination of two primaries must be capable of producing a 
third. In color television, the three primary colors are red, green and blue. 

primitive: The basic display element: point, segment, alphanumeric char­
acter, or marker. 

primitive attribute: A visual characteristic of an output primitive, such as 
character size, line style, or blink rate. 

priority interrupt: Designation given to method of providing some com­
mands to have precedence over others thus giving one condition of operation 
priority over another. 

program: 1. A series of actions proposed in order to achieve a certain result. 
2. Loosely, a routine. 3. To design, write, and test a program as in definition 
1 above. 4. Loosely, to write a routine. 

prompt: Output to the operator indicating that a specific input device is 
available. 

propagation delay: The time required for a change in logic level at an input 
to a circuit to be translated into a resulting change at an output. 

protocol: A set of rules, formats, and procedures governing the exchange 
of information between peer processes at the same level. 

pulse width: Pulse width, T w. The time interval between specified refer­
ence points on the leading and trailing edges of the pulse waveform. 

random access memory (RAM): A memory element which can be written 
to as well as read. 

raster: A rectangular grid of picture elements whose intensity levels are 
manipulated to represent images. In a bit-mapped display, the bits within a 
portion of the memory referred to as the frame buffer are mapped to the raster 
pattern of a CRT monitor. 

raster display: A CRT display generated by an electron beam that illumi­
nates the CRT by sweeping the beam horizontally across the phosphor surface 
in a predetermined pattern, providing substantially uniform coverage of the 
display area. 

raster graphics: Computer graphics in which a display image is composed 
of an array of pixels arranged in rows and columns. 

Raster-Op: The arithmetic or logical combination operation that takes place 
during the transfer of pixel arrays from one location to another. 

raster scan: The grid pattern traced by the electron beam on the face of the 
CRT in a television or similar raster-scan display device. 

read only memory (ROM): A semiconductor storage element containing 
permanent data preprogrammed at the factory which cannot be changed. 

real time: Pertaining to the performance of a computation during the actual 
time that the related physical process transpires, in order that results of the 
computation interact with the physical process. 



Appendix D - Glossary 

refresh: Method which restores charge on capacitance which deteriorates 
because of leakage. 

register: Temporary storage area for digital data. 

relative address: The number that specifies the differnce between the ab­
solute address and the base address. 

relative coordinates: Location of a point relative to another data point. 

relocate: In computer programming, to move a routine from one portion of 
storage to another and to adjust the necessary address references so that the 
routine, in its new location, can be executed. 

reset: To restore to normal action. 

resolution: The number of visible distinguishable units in the device coor­
dinate space. 

retrace: The line traced by the scanning beam or beams of a picture tube 
as it travels from the end of one horizontal line or field to the beginning of the 
next line or field. 

RGB monitor: Red-Green-Blue Monitor. An RGB monitor is a CRT moni­
tor capable of displaying colors and having separate inputs for the three sig­
nals used to drive the red, green and blue guns of the CRT. 

rotate: To transform a display or display item by revolving it around a spe­
cified axis or center point. 

routine: An ordered set of instructions that may have some general or fre­
quent use. 

scale: A size change made by multiplying or dividing the coordinate dimen­
sions. 

scale factor: The value by which you divide or multiply the display dimen­
sions in a scaling operation. 

scaling: Enlarging or reducing all or part of a display image by multiplying 
the coordinates of display elements by a constant value. 

scan: To traverse the surface of the disc with the video displayed. 

scan line: A horizontal line traced across a CRT by the electron beam in a 
television or similar raster-scan device. 

scrolling: Moving text strings or graphics vertically or horizontally. 

segment: A collection of display elements that can be manipulated as a unit. 

sequencing: Control method used to cause a set of steps to occur in a 
particular order. 

setup time: The minimum amount of time that valid data must be present 
at an input before the device is clocked to ensure proper data acceptance. 

shift: A movement of data to the right or left. 

0-9 



Appendix 0 - Glossary 

D-10 

shift register: A register in which the stored data can be moved from left 
to right, or vice versa. 

sign position: A position, normally located at one end of a number, that 
contains an indication of the algebraic sign of the number. 

simulator: A device, system, or computer program that represents certain 
features of the behavior of a physical or abstract system. 

software: A set of computer programs, procedures, and possibly associated 
documentation concerned with the operation of a data processing system, e.g., 
compilers, library routines, manuals, circuit diagrams. 

source language: The language from which a statement is translated. 

source program: A computer program written in a source language. 

sprite: A graphic object of a specified pattern appearing on its plane in a 
position determined by a single coordinate pair, specifying the sprite's location 
on the screen in the horizontal and vertical axis. 

stairstepping: Jagged raster representation of diagonals or curves, cor­
rected by antialiasing. 

static storage elements: Storage elements which contain storage cells 
that retain their information as long as power is applied unless the information 
is altered by external exitation. 

stored program: A set of instructions in memory specifying the operations 
to be performed. 

subroutine: A routine that can be part of another routine. 

superimposed: Refers to the process that moves data from one location to 
another, superimposing bits or characters on the contents of specified lo­
cations. 

symbol: A letter, numeral or mark which represents a numeral, operation or 
relation. An element of a computer languages's character set. 

syntax: The grammatical and structural rules of a language. All higher level 
programming languages possess a formal syntax. 

system diagnostics: Means of self-testing a system under normal operat­
ing conditions. 

trace: A line of the graphics display. 

transformation: Geometric alteration of a graphics display, such as scaling, 
translation, or rotation. 

TTL: Transistor-transistor logic. A kind of bipolar circuit logic that takes its 
name from the way the basic transistor components are interconnected. 

variable: A quantity that can assume any of a given set of values. 

vertical blanking interval: The time during which the display is blanked 
to cover the vertical retracing of the electron beam. 



Appendix D - Glossary 

vertical blanking pulse: A positive or negative pulse developed during 
vertical retrace and appearing at the end of each field. It is used to blank out 
scanning lines during the verticle retrace interval. 

vertical sync: The synchronization signal that enables vertical retrace of the 
electron beam of a CRT display. 

video: That part of a television or similar display device having to do with 
the reception and generation of the image, as distinguished from audio. 

video display processor: A microprocessor device dedicated to the tasks 
of display memory management (storage, retrieval, and refresh) and gener­
ation of all required video, control, and synchronization signals required by a 
TV display or CRT monitor. 

video overlay: The mixing of one video signal with another such that parts 
of the image carried by the first signal replace the corresponding parts of the 
image carried by the second signal. 

video RAM, VRAM: Video Random-Access Memory. A dual-ported me­
mory device for computer graphics applications, containing two interfaces; 
one interface to allow a processor to read or write data from an internal mem­
ory array; a second interface to provide a serial stream of screen refresh data 
to a CRT display device. 

viewport: The specified window on the display surface that marks the limits 
of a display. 

virtual coordinate system: A coordinate system created by mapping a 
portion of the world coordinate system to the space available on your device. 

virtual space: Space referenced with the coordinates defined by the appli­
cation. 

window: A specified rectangular ar~a of a virtual space shown on the dis­
play. 

window clipping: Blanking line segments at window boundaries. 

wire frame: A three-dimensional image displayed as a series of line seg­
ments outlining its surface. 

word: A character string or a bit string considered as an entity. 

world coordinate system: A device-independent coordinate system used 
to define display objects. 

zoom: To scale a display or display item so it is mangified or reduced on the 
screen. 

zooming: Enlarging or reducing all or part of a display image by multiplying 
the coordinates of display elements by a constant value. 

0-11 



Appendix 0 - Glossary 

0-12 



E. Hands-On Tutorial 

This appendix contains several demonstrations from Section 3, with sug­
gestions added to show how you can experiment with the software used in 
that section. This repeat of Section 3 contains additional text in italics which 
explain how to modify registers and execute the demo software to discover the 
effects of such changes. It is recommended that you first run through the ex­
ercises in Section 3 (not italicized) before attempting this section. 

HANDS-ON DEMONSTRATIONS 

The main difference between this section and the tutorial in Section 3 
are the suggestions in this appendix to first modify the machine state. 
In this way, we can visually show how changes in such things as reg­
ister contents can effect the graphic outcome. It also is meant to en­
courage experimentation by yourself to further your understanding of 
the TMS34010. The suggested modifications herein are in italics. You 
can first run through the regular tutorial demonstrations (not italicized), 
then run the italicized instructions which start page £-7. 

The added italicized suggestions in this section (vs. Section 3) are meant to 
change the machine state before executing instruction demonstrations. 
Thus, several aspects of the TMS3401 0 will be shown such as construction 
of specific registers. You can first run through the regular tutorial demon­
strations (not italicized), then run the italicized instructions which start on 
page E-7. 

In the italicized instructions, keystroke summaries in parentheses are to be 
used only when values in Table E-4 are preset. 

Also note that: 

• Not all parts of Section 3 are repeated here. but only the sections on: 

PIXT 
DRAV, and 
FILL. 

• This appendix does not contain the introductory material in Section 3. 

• However, the installation section is repeated for your convenience. 

Table E-1 is provided as a reference when making color changes. 

E-1 



Appendix E - Hands-On Tutorial 

Table E-1. Numerical Values for Colors 

E-2 

PIXEL VALU E I 
(BINARY) (DECIMAL) I 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1 xxx 

o 
1 
2 
3 
4 
5 
6 
7 

8-15 

COLOR 

Black 
Dark Blue 

Red 
Magenta (dark red) 

Green 
Cyan (light blue) 

Yellow 
White 

Various grey scale 



Appendix E - Hands-On Tutorial 

E.1 Calling the Tutorial Program 

The program can be called up (1) in a batch along with the Debugger or (2) 
with a Debugger command. In either case, the Debugger software must be on 
the current disk drive. 

E.1.1 Batch Call with Debugger 

An " -f" parameter (space precedes the '-f') must be added to the Debugger 
call. 

For an IBM-type PC: 

SDB340 -f<CR> 

The same operation for a TI PC: 

SDB340T -f<CR> 

The Debugger will be called and, in turn, execute the Tutorial software. If the 
" _fro was left off, only the debugger would be called. 

E.1.2 Call Tutorial From Debugger 

If you are in the Debugger program, call the Tutorial with the Load command. 
To call the Debugger: 

For an IBM-type pc: 

SDB340<CR> 

The same operation for a TI PC: 

SDB340T<CR> 

The TUTOR_E.OUT program must be on the current disk drive and the De­
bugger display is on the screen. Load the Tutorial with the following com­
mand: 

Command [1] L TUTOR-E<CR> 

E-3 



Appendix E - Hands-On Tutorial 

E.2 The Annotated Tutorial Program 

After loading the Tutorial (in Section E1), execute it with: 

Command[l] RU<CR> 

The Tutorial will execute until the first software breakpoint is encountered. 
Continued pressing of the <CR> (RETURN key) will re-execute the RUN 
command, demonstrating instructions in the order previously done for Section 
3 and shown in Table E-2. 

Table E-2. Order and Location of Demonstrations in Tutorial 
Program 

Order PC Value Demonstration Page 

1 >FFCO 0740 Pixel Transfer E-7 
2 >FFCO 0780 Draw and Advance E-12 
3 >FFCO 0820 Fills E-17 

E.2.1 Run Standard Program 

Execute the program in a standard sequential run by entering the RUN com­
mand: 

Command [2] RU<CR> 

The program will be executed in the order shown in Table E-2. At each soft­
ware halt, step through the program by pressing the <CR> key. 

E.2.2 Select Specific Demonstration 

E-4 

You can select anyone of the routines listed in Table E-2. To avoid visual 
confusion, select a specific program only when the simulated graphics screen 
appears blank except for the screen borders. 

To choose the routine,. enter: 

(1) Command [2] PC FFCOOxxx<CR> 

followed by: 

(2) Command[2] RU<CR> 

where "FFCOOxxx" is the program counter value listed under "PC Value" 
in Table E-2. 



Appendix E - Hands-On Tutorial 

E.3 Setting Up for Interaction Through the Keyboard 

A lot of the exercises change register values prior to an instruction demon­
stration. To reduce unnecessary keystrokes, the ten command buffers (0-9) 
can be useful. For example, register B7 (Register dydx) could be modified over 
and over by placing a "change Br command in command buffer 7. Then just 
three keystrokes can cause the register to be updated to the buffer 7 value 
("r, <CR>, <CR». 

Note: 

To store one or more commands in a buffer: 

1) Enter buffer number (0-9) followed by <CR>. 
2) Enter an exclamation mark (I) followed by the command (or string 

of commands separated by semicolons). The I inhibits execution of 
the command while being written into the buffer. 

3) End with a <CR>. 

For example, to place RUN in buffer 0 without executing a RUN: 

Command [ ) O<CR) 
Command[O) !RUN<CR) 

Enter Command Buffer 0 
RUN in Command Buffer 0 

Now go to the next command buffer to enter the next command, etc. 
(You can also enter other buffers with the up/down cursor controls.) 

With the command buffers set up, execute a command by entering: 

1) <Command Buffer number><CR> To go to the desired command buffer 

2) <CR> To execute the entire command string in the buffer 

Figure E-1 shows how command buffers 5 and 6 can be used to blank the 
entire screen (Figure 3-12 on page 3-25 shows how to use buffers 5 and 6 
to blank only the demonstration area). 

E-5 



AppendixE - Hands-On Tutorial 

E-6 

Note that this example uses the FILL XY demonstration in the Tutorial 
program; thus, the program must be present (TUTOR_E loaded). 

Enter into two Command Buffers (for example purposes, 5 and 6 are 
used here): 

Command[5] !PC FFC00820iRU<CR> PCoftheFILLXYDemo 

Command [5] 6<CR> Go to buffer 6 

Command[6] !B2 OiB7 OlCA024AiB9 OiSS<CR> 

Reg B2 = Address of ~ . -r-
Screen Upper Left ~ 

Reg B7 = Address of 
Screen Lower Right 

Reg B9 = 0 = Black-----1 

Single Step to Execute 

The following is a summary of the execution sequence: 

STEP 

(1 ) Command [x] 5<CR> Enter 1 st Buffer 

Command [5] PC FFCOO820iRU 1 st Buffer Displayed 

(2) Command [5] <CR> Execute 1 st Buffer 

(3 ) Command [5] 6<CR> Enter 2d Buffer 

Command [6] B2 OiB7 OlCA024AiB9 OiSS 2d Buffer Displayed 

(4) Command [6] <CR> Execute 2d Buffer 

This key sequence -- 5 <CR> <CR> 6 <CR> <CR> executes a series 
of instructions causing the screen to be blanked. Note that other command 
registers can be used instead of 5 and 6. 

This example blanks the entire screen. Figure 3-12 on page 3-25 shows 
values to blank only the demonstration area in the screen upper left. 

Figure E-1. Using Command Buffers 5 & 6 to Blank Entire Screen 



Appendix E - Hands-On Tutorial 

E.4 Pixel Transfer (PIXT) PC = >FFCO 0740 

E.4.1 PIXT Hands-On Setup 

Recommended command-buffer values are listed in Table E-3. 

Table E-3. PIXT Demo Suggested Command Buffer Values 

CMND 
BUFFER ENTER COMMENT 

0 PC FFC00740 PIXT PC start value 

1 A1 600080 1 st pixel XY address 

2 A25 Light-blue value in A2 

3 RUN Execute to next trap 

4 A460200 2d pixel linear address 

7 A56000CO 3d pixel XY address 

8 SS Single step 

NOTE: Buffers 5 and 6 can hold the display blank routine shown in 
Figure E-1. 

HANDS-ON DEMONSTRATIONS 

The difference between this section and the tutorial in Section 3 is that 
interspersed in this section are suggestions to change the machine state 
before executing instruction demonstrations. These suggestions are in 
italics and show aspects such as construction of various registers. You 
can first run through the regular tutorial demonstrations (not italicized), 
then run the italicized instructions which start on the next page. 

In the italicized instructions, keystroke summaries in parentheses are to 
be used only when values in Table £-4 are preset. 

E.4.2 PIXT Demonstration 

Syntax: PIXT <source>, <destination> 

Operation: A pixel value specified by the source operand is written to the lo­
cation indicated by the destination operand. The instruction 
formats supported by the TMS3401 0 are: 

PIXT RS,*Rd 

PIXT Rs,*Rd.xy 

PIXT *Rs,Rd 

Register to indirect linear 

Register to indirect xy 

Indirect linear to register 

E-7 



Appendix E - Hands-On Tutorial 

E-8 

PIXT *Rs:Rd Indirect linear to indirect linear 

PIXT *Rs.xy,Rd Indirect xy to register 

PIXT *Rs.xy:Rd.xy Indirect xy to indirect xy 

When the destination is an indirect address of either type (linear 
or XV), a pixel processing option may be selected via the Con­
trol Register to perform an operation on the source pixel value 
before it is transferred. If the following are present: 

• the transparency bit is set in the Control Register, and 
• the result of the source pixel combined with the destina-

tion pixel is zero, 

the destination pixel value will not be modified. The size of the 
pixel must be set in the PSIZE I/O Register and plane masking 
must be in effect as specified in the PMASK I/O Register. If 
either the source or destination are indirect xy mode, the ap­
propriate conversion factor I/O Register must be loaded. 

Demonstration Start: The PIXT demonstration begins at PC = 
>FFCO 0740 

(a) 

(1 ) 

To first run the regular demonstration 
use continuous <CR>s to write three 
yellow pixels to the screen (steps (1) 
through (5)). When the third pixel is 
written (before the DRAV demon­
stration begins), restart the PIXT dem­
onstration and follow only the italicized 
passages. Do this setup by entering 
PC FFC00740 and RUN commands 
(execute buffers 0 and 3 in Table E-3. 
To use values you set per Table E-3. 
enter the following keystrokes: 

o <CR> <CR> 3 <CR> <CR> 

Essentially. this executes the first RUN 
command immediately below, setting 
up for the PIXT A2:A1.xy move. The 
next italicized message makes changes 
before writing this first pixel. You can 
use the regular text for reference. but 
follow only the italicized instructions. 

Now proceed to the next italicized pas­
sage. 

Enter: RU<CR> 
stration. 

to begin the PIXT demon-

The mnemonic 'PIXT' is drawn in the upper left corner and the 
registers are set up for five demonstrations of the PIXT instruc-



Appendix E - Hands-On Tutorial 

tion. The first example of this instruction is a register-to-register 
indirect XV move: PIXT A2,*A1,xy. 

The value of the pixel to be moved is >6 (color yellow as 
shown on page E-2 in Table E-1). It is contained in the four 
least significant bits (LSbs) of Register A2. This value is written 
to the XV address contained in Register A1 (>00400080), re­
placing the value which is stored there. Since the destination is 
in the XV mode, it is necessary to set the CONVDP I/O Register 
(conversion register, destination pitch) to the appropriate value 
(>0013 for the demonstration screen size) for conversion to the 
correct address. This setup writes one yellow pixel to the center 
of the demonstration screen. 

(2) 

The fol/owing re-writes the first pixel to the screen but 
at a lower set of coordinates. 

(b) Change Register A 1 to write a new pixel 
located >20 pixels lower. Place 
>00600080 in Register A1 (>20 pixels 
below the previous >0040 Y-axis set­
ting). The X-axis parameter stays at 
>0080 pixels. (Enter 1 <CR>, <CR> 
to enter these Table E-3 values.) Note 
that the Y axis is on the left: 

Register A 1 = 0060 0080 

(c) 

(d) 

Y Axis X Axis 

To highlight the new position. change 
the pixel color to light blue (cyan) by 
writing "5" to Register A2. (Enter 2 
<CR> <CR> to set Table E-3 value.) 
Enter a RUN command to write the pixel 
to the bottom center of the display. 
(Enter 3 <CR> <CR>.) 

Now continue at the next italicized ses­
sion. 

Enter: RU<CR> to execute instruction PIXT 
A2,*A1,xy. 

The pixel appears in the center of the demonstration area, and 
the registers are unchanged. 

The instruction PIXT *A1.xy,A3 employs an XV address 
stored in Register A1 to point to a pixel value in memory (on the 
screen) as the source. The CONVSP I/O Register (conversion 
factor, destination pitch) must be loaded with the appropriate 
value to convert the XV source address (a program task). The 

E-9 



Appendix E - Hands-On Tutorial 

E-10 

pixel value is then copied into the LSbs of the destination reg­
ister, A3, with all MSbs set to zero. 

(3) Enter: RU<CR> to execute instruction PIXT 
*A1.xy,A3. 

The value of the yellow pixel (>6) drawn in the first example 
is copied into Register A3, replacing > FFFF FFFF with >0000 
0006. No other register values change. 

The third example of PIXT demonstrates a move from a register 
to a linear address. Since the move does not use the XV ad­
dressing mode, it is not necessary to set either the CONVSP or 
CONVDP I/O Registers. 

(e) 

(f) 

Set up to write the second pixel. First 
lower the Y axis of the pixel by entering 
the command-buffer 4 values to change 
Register A4 from from >40200 to 
>60200 (affecting the Y axis only). 
(Enter 4 <CR> <CR>.) NOTE: If you 
wish. enter your own calculated values. 
Enter a RUN. (Enter 3 <CR> <CR> 
<CR>., using Table E-3 buffer values). 
A second pixel is written in the display 
bottom left. Go to the next italicized 
passage. 

(4) Enter: RU<CR> to execute instruction PIXT 
A3,*A4. 

The pixel value stored in Register A3 is moved to the linear ad­
dress stored in A4 (>4 0200). A yellow pixel is drawn to the 
left of the first pixel. 

The fourth PIXT example demonstrates transferring pixels from 
one XV screen location to another. With both source and desti­
nation being XV indirect. both CONVSP and CONVDP I/O Re­
gisters must be set up. 

(g) Set up to write the third pixel. First, 
lower the pixef s Y axis destination by 
executing command buffer 5 (7, < CR>, 
<CR». This changes A5 from >40 
OOCO to >60 OOCO). 

(h) Execute RUN (3, <CR> <CR» to 
write the third pixel. 

(5) Enter: RU<CR> to execute instruction PIXT 
*A1.xy.*A3.xy. 

The pixel value at the XV address in A1 (>00400080) is copied 
to the location at the XV address in A5 (>0040 OOCO). The 
center yellow pixel is copied to the right. 



Appendix E - Hands-On Tutorial 

This completes the demonstration of the PIXT pixel transfer in­
struction. 

(i) For the next instruction, DRAV, set up 
the command buffers as shown in Table 
£-4. Then go to the italicized passages 
that follow. 

E-11 



Appendix E - Hands-On Tutorial 

E.5 Draw and Advance (DRAV) PC = >FFCO 0780 

E.5.1 DRAV Hands-On Setup 

Table E-4. DRAV Demo Suggested Command Buffer Values 

CMND 
BUFFER ENTER COMMENT 

0 PC FFC007BO DRAV PC start value 

1 A1 1 Increment X axis only 

2 A2900040 Start below 1 st rectangle 

3 RUN Execute to next trap 

4 B4120 Change Offset Register 

7 AO %5000 Extend number of loops to 5000 

8 SS Single step 

9 B95555 Light blue 

The display-blank routine can remain in command buffers 5 and 6. 

In the italicized instructions, keystroke summaries are shown in parentheses 
to be used when values in Table E-4 are preset. 

E.5.2 DRAV Demonstration 

E-12 

Syntax: DRAV < Rs(source) >, <Rd(destination) > 

Operation: A pixel of COLOR1 Register color is written to the XY location 
stored in Rd. Immediately following, the value in Rd is incre­
mented by the value in Rs. NOTE: Rs and Rd must both 
be in the same register file (either A or B). 

(1) Enter: RU<CR> This writes the mnemonic DRAV inside the 
demonstration box, and the appropriate operand registers are set 
up for the draw and advance. The display appears as shown in 
Figure E-2 (........ = don't care): 

(a) Enter successive <CR>s to draw the three lines in the 
regular demonstration: yel/ow vertical, red diagonal, 
and green horizontal. After this, set up to redraw the 
lines with different parameters. 

(b) Start again at the beginning of this demonstration by 
entering the PC start value (PC value and two <CR>s, 
or using Table E-4 values, enter 0 <CR> <CR». 

(e) Enter a RUN (3 <CR> <CR> or enter <CR> until 
Register A2 contains 001 E0040. 

(d) Lower the Y axis value to a point below the display 
area by entering >900040 in A2 (2 <CR> <CR» 

(e) Line color can be changed by entering a different value 
in 89 (buffer 9); single hexadecimal values can be 
used (9 <CR> <CR». 



Appendix E - Hands-On Tutorial 

GSP Register and 
Reg File A 

AO ............ .. 
A1 00010000 
A2 001E0040 
A3 ........... .. 
A4 ............... 
A5 .............. 
A6 ........ .. 
A7 ............ .. 

(f) Enter a RUN to write one pixel below the display area, 
now ready to begin a single step draw of the vertical 
line (3 <CR> <CR». 

Go to the next italicized entries. 

Machine Status--SDB Debugger fs 16/32 PS= 0 PM= 0000 
Reg File B fe 0/ 0 w=off pp= S -> D 

A8 .... ........... BO ............... saddr B8 .. ............ colorO 
A9 ................ B1 .. .............. sptch B9 66666666 color1 

A10 .......... .. B2 ............ .. daddr B10 ................ temp x 
All ............ .. B3 00001000 dptch Bll .............. temp y 
A12 .......... • O' B4 00000100 offset B12 ................ tempda 
A13 .... ........ B5 .. ............ wstart B13 .. ............. tempst 
A14 ........... .. B6 ............ .. wend B14 ............. tempct 

SP FFC2DEEO B7 ............ dydx 
Software Halt encountered (Trap 29) <Cache status> Cnt= 
st 00000010 
pc FFC02140 

NCZV=OOOO ITPVH=00010 SP=FFC2DEEO Ctl=OOOO 
F622 DRAV A1,A2 ;RETS 

Figure E-2. DRAV Screen Display 

As shown in the display: 

• The instruction DRAV A1.A2 now appears in the current instruction 
field of the RMS display. 

• Register A2 contains the destination address in XY mode (>001 E 0040: 
Y=001 E, X=0040) which is the location to which the pixel will be 
moved. 

• Register 89 is loaded with the >66666666, specifying the color yellow 
(see table on page E-2). 

When the instruction is executed, a yellow pixel is drawn 64 (>0040) pixels 
to the right and 30 (>001 E) pixels below the origin of the demonstration 
screen (upper left corner). Then the address value in Register A2 is incre­
mented by the value of Register A1 (>0001 0000: Y=1, X=O). To demon­
strate this: 

(2) 

(g) 

(h) 

(i) 

(j) 

Enter: RU<CR> The DRAV instruction is executed and a soft­
ware trap follows immediately. One yellow pixel is drawn in the 
display block. 

With one pixel drawn to the screen below the display 
area, you can now watch a vertical line slowly drawn 
by single stepping (SS command in buffer 8 followed 
by continuous < CRs» through the loop shown in the 
reverse assembly code that follows. 
Line color can be changed by entering a different value 
in 89 (buffer 9): single hexadecimal values can be 
used. 
Single step routines stop when AO reaches zero. To 
increase AO, enter a higher value using buffer 7 (7 
<CR> <CR». 
To draw to the right, change the Y axis increment in 
A 1 to zero and set a positive value on the X axis (right 

E-13 



Appendix E - Hands-On Tutorial 

Lnr Addr 

xxxxxxxx 
xxxxxxxx 
FFC02160 
FFC02l80 
FFC02190 
FFC021AO 
FFC021BO 

E-14 

four hex values). A negative value causes a line to the 
left. Control the X and Y advance with the Register 
A 1 increment that is added to the XY destination in 
A2 (buffer 1). 

When ready, you can quit this session and go to the 
next italicized entry by placing a loop counter value 
of one (1) in Register AO and entering RUN. 

Notice that a pixel has been drawn, and Register A2 is incremented (by 
> 10000). By placing this instruction inside a loop, a line of pixels can be 
drawn with an X address constant and a Y address repeatedly incremented by 
one. To see such a loop: 

(3) 

Op-
code 

xxxx 
xxxx 
09CO 
F622 
3C40 
091D 
09CO 

Enter: U<CR> to reverse-assemble the program (shown on the 
left of the screen); as follows: 

Rev Assembly Comment (not assembled) 

UNKNOWN 
UNKNOWN 
MOVI >OO4B,AO Load loop count register 
DRAV Al,A2 Draw and advance one pixel 
DSJS AO,@FFC02180 Dec Reg, jmp to DRAV if ¢ 0 
TRAP 29 Halt after loop 
MOVI >42,AO 

The reverse-assembled portion contains a loop. 

• The yeillow-colored line identifies the instruction just executed ("UN­
KNOWN" in the example). 

• The cyan (light blue) color identifes the instruction before the one just 
executed -- also "UNKNOWN" in the example. 

• Green identifies the next instruction to be executed. It loads Register 
AO with the loop count of >4B (75). 

• The next three instructions make a loop to draw a vertical line. (The 
TRAP 29 is a software breakpoint.) 

• AO is decremented. If not zero, a jump to DRAV occurs to complete the 
loop and execute another draw/advance. 

This loop will execute 75 times before the jump is discontinued -- each time 
drawing another pixel on the screen while incrementing the address in A2 one 
time in the Y direction. The final result is a vertical line 76 pixels in length. 

(4) 

(5) 

Enter: <Q> to quit the reverse assembly. 

Enter: RU<CR> to execute the loop and draw a yellow line (6s 
in Register COLOR1) on the screen. 

After being incremented by one 75 times, the value in destination Register A2 
is now >006A 0040. Note that loop counter AO has been decremented to zero. 

Two more examples show some of the flexibility of this instruction. The first 
employs a bidirectional increment to create a diagonal line. 



Appendix E - Hands-On Tutorial 

(6) 

(k) 

(I) 

(m) 
(n) 

(0) 

(p) 

Enter: RU<CR> to set up the operand registers for a diagonal 
draw and advance. 

Set up for drawing a diagonal line by entering the 
same XY start coordinates (A2) used for the vertical 
line (enter value stored in buffer 2 (2 <CR> <CR». 
By single stepping (buffer 7), a red diagonal line is 
slowly drawn. 
Color can be changed in Register B9 (buffer 9). 
Notice the Y and X increments in Register A 1 (Y in 16 
bits on left. X on right) to set the angle. These can be 
varied to change the angle of the line (Y value: positive 
= down, negative = up; X value: positive = left, neg­
ative = right; combinations cause diagonals). 
With the line going horizontal, vary the values in Reg­
ister COLOR1 (buffer 9) to 4444, 444, 44, and 4, 
noting changes in the line. You can also mix colors 
(2424,2224, etc.). 
Register A2 contains the destination point of the pixel 
(buffer 2). Changing A2 relocates the pixel to another 
part of the screen. 

Entering a loop count of one (1) in Register AO fo/­
lowed by a RUN sends the program to the next itali­
cized entries at the end of step (10). 

The destination register is loaded with the same initial value as in the first ex­
ample -- steps (1) to (5) above. The incrementing register (A1) contains 
>0001 0002 (Y=1, X=2), and the loop count in AO has been set to >42 (66). 
The COLOR1 Register is now >22222222, specifying red. 

(7) Enter: U<CR> to display the reverse-assembled program. 

The loop set up is similar to the first program (step (3» with the destination 
address being incremented in both the X and Y directions. 

Enter: Q to quit the reverse assembly. (8) 

(9) Enter: RU<CR> to draw a diagonal line from the same starting 
point as in the first example. 

Note the destination address is incremented by >42 in the Y direction and by 
>84 in the X direction. The final A2 value is >0060 00C4. 

The final demonstration produces a dotted green horizontal line. 

(10) Enter: RU<CR> to set up the register operands. 

An identical loop to that above is used in this example. 

- Destination Register A2 is the same as used previously. 
- Increment value of >00000006 is in A1. 
- COLOR1 Register contains >44444444 (green). 

After every pixel is drawn, the X address is incremented by 6, leaving five blank 
pixels between each green pixel. 

E-15 



Appendix E - Hands-On Tutorial 

E-16 

(q) Instead of a <CR> (in 11 below), single step (SS in 
buffer 7). Because of the X increment value of 6 in 
Register A 1, six pixels are skipped (appear black) be­
tween one pixel of the color specified in the COLOR1 
Register (buffer 9). You can vary the increment value 
(buffer 1). 

(r) You can also change the color characteristics of the 
line by varying Register COLOR1 (buffer 9). 

Enter a RUN command (buffer 3) to go to the FILL 
demonstration. 

(11) Enter: RU<CR> to execute the loop and draw the line. 

These are simple examples of the 'draw and advance' employing constant in­
crements. More elaborate schemes of altering the increment can be used to 
implement various graphical algorithms for figure drawing. 



Appendix E - Hands-On Tutorial 

E.6 Fill Array Instructions (FILL XV, FILL L) PC = >FFCO 0820 

These instructions perform a pixel processing operation on a memory array 
using the value in COLOR1 Register as the source pixel value. The destination 
is defined in either XY or linear addressing mode, depending on which in­
struction is used. 

E.6.1 Fill Array Hands-On Setup 

Table E-S. Fill-Demo Command Buffer Suggested Values 

CMND 
BUFFER ENTER COMMENT 

0 PC FFC00820 FILL PC start value 

2 B200290040 Lower the upper-left corner (DADDR) 

3 RUN Execute to next trap 

4 SS Single Step 

7 B700280050 2x height, %x width dimension in DYDX 

9 B92255 Red/cyan combination 

The screen-clear routine can remain in command buffers 5 and 6. 

In the italicized instructions, keystroke summaries are shown in parentheses 
to be used only when values in Table £-4 are preset. 

E.6.2 Fill Array Demonstration 

Syntax: FILL XY 

Operation: A pixel processing operation is performed between the pixel value 
stored in the COLOR1 Register and an XY array of memory. 

• The XY address in Register DADDR (B2) contains the lo­
cation of the array's least-significant corner (screen upper 
left). 

• Registers DPTCH, OFFSET, AND CONVDP (I/O) must 
contain values appropriate to the screen-memory format. 

• Register DYDX value of >OOOA OOAO specifies dimen­
sions of the destination array with the 16 MSbs indicating 
heighth and the 16 LSbs indicating width (both in pixels) 

• The CONTROL I/O Register specifies the pixel processing 
option. 

(a) It is recommended to first run through 
the complete FILL demonstration; then 
re-run it following the italicized 
hands-on suggestions. Return to FILL 
beginning by entering the PC value and 
a <RUN> command (0 <CR> <CR> 
3 <CR> <CR». 

E-17 



Appendix E - Hands-On Tutorial 

(1 ) 

Go to the next italicized instructions. 

Enter: RU<CR> to write the mnemonic FILL 
XV onto the screen and set up the appropriate 
operand registers to fill a rectangle on the screen. 

The screen appears as follows (Figure E-3): 

GSP Register and Machine Status--SDB Debu~ger fs 16/32 PS= 4 PM= 
Reg File A Reg F~le B fe 0/ 0 w=off pp= S 

0000 
-> D 
colorO 
colorl 
temp x 
temp y 
tempda 
tempst 
tempct 

AO ........ A8 ........ BO ........ saddr B8 ....... . 
AI00000000 A9 ........ Bl ........ sptch B922222222 
A200000000 AI0 ........ B2 00180040 daddr BI0 ....... . 
A3 ........ All ........ B3 00001000 dptch Bll ....... . 
A4 ........ A12 ........ B4 00000100 offset B12 ....... . 
A5 ........ A13 ........ B5 ........ wstart B13 ....... . 
A6 ........ A14 ........ B6 ........ wend B14 ....... . 
A7 ........ SP FFC2DEEO B7 OOOAOOAO dydx 
Halt on breakpoint. See below. <Cache status> Cnt= 484 
st 00000010 NCZV=OOOO ITPVH=OOOOO SP=FFC2DEEO Ctl=OOOO 
pc FFC02630 OFEO FILL XY IRETS 

E-18 

Figure E-3. Register Display for Fill Screen, XV Addressing 

The instruction FILL XV appears in the instruction field of the 
display, and the necessary registers are loaded to draw a red 
rectangle to the screen. 

• Register DADDR (82) is loaded to place the upper-left 
corner of the rectangle at the location > 18 pixels below 
and >40 pixels to the right of screen origin. 

• Register DYDX (87) specifies rectangle height of >OOOA 
(10) pixels and width of >OOAO (160) pixels. 

• Register COLOR1 (89) specifies red (>22222222). 
• Registers bPTCH (83) and CONVDP (I/O Register 

display with DR command) are loaded with values ap­
propriate for the screen used. 

(2) Enter: RU<CR> to draw a red rectangle onto the 
screen. 

Note that the destination address register has become cor­
rupted. 

The following make changes before re-executing the 
first FILL instruction to draw a rectangle in the vertical 
axis. 

(b) 

(c) 

Change the XY address in 82 to lower 
the starting point of the rectangle (2 
<CR> <CR» from >0018 to >0029 
in the Y axis. The X axis remains the 
same. 
Change the COLOR1 Register to >2255 
for a striped effect with two colors 
red and cyan (9 <CR> <CR». 



Appendix E - Hands-On Tutorial 

(d) 

(e) 

(f) 

(g) 

(h) 

( i) 

Execute single step to draw (4 <CR> 
<CR». 
Return to FILL beginning by entering 
the PC value and a <RUN> command 
(0 <CR> <CR> 3 <CR> <CR». 
Change the upper left corner start ad­
dress in buffer 2 to an arbitrary value. 
(E.g., you could double both the X and 
Y pixel addresses.) 
Change the rectangle length (Y axis or 
16 M5bs of 87/DYDX) and width (X 
axis or 16 L5bs of 87/DYDX). E.g., 87 
= >00280050 will double the height 
and halve the width (7 <CR> <CR». 
Change the COLOR1 Register (buffer 
9) to a different value. 
Execute a single step (55 in buffer 4 or 
4 <CR> <CR». 

This concludes the examples using the tutorial software for ex­
perimentation. Please feel free to proceed and run through these 
exercises again. using the values given or checking out your 
own. 

E-19 



Appendix E - Hands-On Tutorial 

E-20 



Index 
A 

A - Display A & B File Registers 4-26 
A# - Modify/Display an A File 

Register 4-27 
archiver 1 -5 
assembler 1 -5 
assembly language development 

flow 1-5 

B 

B - Display A & B File Registers 4-28 
B# - Modify/Display a B File 

Register 4-29 
block diagram of SOB 1-4 
board memory map 5-7 
BP - Display Existing Breakpoints 4-30 
BP# - Modify Existing Breakpoints 4-31 
BPAI - Set Breakpoint on Instruction Ad-

dress 4-33 

c 
CD - Modify Cache Disable Bit 4-34 
CF - Cache Flush/Modify Cache Flush 

Bit 4-35 
CF bit command 4-35 
character spacing 

block spacing 3-33 
kerned spacing 3-33 
proportional spacing 3-33 

CIF - Close Input File 4-36 

CLA - Clear A File Registers 4-37 
CLB - Clear B File Registers 4-38 
clear ~rea of screen 3-25 
CLIO - Clear I/O Registers 4-39 
CLR - Clear Both the A and B File 

Registers 4-40 
CLS - Clear Scratch Area of Display 4-41 
CNT - Display/Modify Command 

Count 4-42 
code conversion utility 1 -6 
COFF 1-5 
color palette 5-11 

frame load mode 5-12 
COM 2651 PCI 

data sheet A-1 
description 5-16 

CRTs 2-2 
cabling 2-2 
suggested models 2-2 
timing 6-20 

CTF - Close Trace File 4-43 
CTL - Display/Modify CONTROL I/O Re­

gister 4-44 

o 
DB - Display Bytes 4-45 
demonstration programs 3-12 
development tools overview 1-5 
diagnostics C-1 
OM - Display Memory 4-46 
documentation 1 -7 
DR - Display File Registers (A, a, 

I/O) 4-47 
DRAM access 6-13 
DRAV demo 3-17 
OW, 0 - Display Words of Memory 4-48 

Index-1 



Index 

E 

emulator 1 -6 
EPROM programmers 1-6 
equations 6-13 

PALU11 6-13 
port decode PAL, IBM host 6-7 
port decode PAL, TI host 6-8 

Exclusive-OR demonstration 3-30 
expansion bus 5-20 

F 

F - Fill Memory with Word 4-50 
FE - Modify Field Extension (FE) 

Bits 4-51 
features of SDB (list) 1-2 
Fill Array instructions 

linear addressing 3-23 
XV addressing 3-21 

frame buffer 6-17, 1-3 
interface to TMS3401 0 6-17 
interface to video output 6-18 
part of system 1 -3 

frame load mode 
colorpalette 5-12 

FS - Modify Field Size (FS) 4-52 
functional overview 1 -3 
FW - Find Word 4-53 

G 

glossary D-1 
graphics monitor connector 5-17 

H 

hands-on tutorial 
HELP - Enter Help Utility 4-54 
host function-select signals 6-4 
host port 5-2 
hotline C-5 
HSTADRH Register 5-2 
HSTADRL Register 5-2 
HSTCTL Register 5-2 
HSTCTLH Register 

Index-2 

CF bit command 4-35 
register figure 4-35 

HSTDATA Register 5-2 

I/O Memory Control Register 
figure 4-34 

I/O Register list 4-58 
I/O Registers 

bits affected by commands 
all Control Reg bits - CTL 4-44 
cache disable bit 4-34 
CF bit - cache flush 4-35 
ITPVH - TVH bits 4-60 
PBH,PBV - control bits 4-70 
pixel processing bits 4-76 
transparency bit 4-98 
window (W) bits 4-1 08 

HSTCTLH Register 4-35 
Mem Control Reg - CTL 4-44 

ID - Identify SDB Version Number 4-55 
IE - Modify Interrupt Enable Bit 4-56 
installation 2-1 

checkoff list 2-8 
interfaces 

frame buffer to video output 6-18 
frame buffer/TMS3401 0 

interface 6-17 
frame-buffer/video interface 6-18 
TMS34010 to frame buffer 6-17 
TMS34010 to PC bus 6-2 

interrupts 
execution control 6-23 
HSTCTL Register bits 5-4 
NMI at bootup 6-21 
TMS34010 interrupt map 6-24 
to host 5-19 
vectors (int. map) 6-24 

10 - Display I/O Registers 4-57 
10# - Modify I/O Register 4-58 
ITPVH - Display/Modify ITPVH 

Bits 4-60 

J 

jumper settings 2-4 



Index 

L 

L - Load COFF File 4-61 
LE - Display Last Errors 4-62 
LH - Display Last Halts 4-63 
line load mode 

color palette 5-1 2 
linker 1-5 
list of materials B-1 
LM - Display Last Monitor 

Messages 4-64 

M 

MAX demonstration 3-29 
memory 

host port 5-2 
local memory pointer 5-3 
memory map 4-17 
reserved 2-11 
SDB memory map 5-7 
video memory 5-10 

Memory Control Register 
See I/O Registers 

memory map of SDB 5-7 
MIN demonstration 3-30 
MM - Modify (or Evaluate) Memory -­

Word Align 4-65 
MMF - Modify Memory Field -- No Word 

Align. 4-67 
monitors 2-2 

N 

NCZV - Display/Modify ST NCZV 
Bits 4-68 

NR - Name Register 4-69 

p 

PAL U11 equation 6-13 
PAL, host port decode 

for IBM PC & AT 6-7 
for TI PC 6-8 

PAL, TMS3401 0 to memory 6-9 
parts list B-1 

PBH,PBV - Set/Toggle PBH or PBV 
Bits 4-70 

PBX - Set/Toggle PBX Bit in Status Reg-
ister 4-71 

PC - Modify Program Counter 4-72 
PCI data sheet A-1 
PIXBLT demo 3-26 
pixel move demo 3-29 
PIXT demo 3-14 
PM - Modify PMASK Register 4-73 
port J4 5-17 

signal description 5-17 
port P3 5-20 
power 5-21 
PP - Set Pixel Processing Option 4-74 
PS - Set PSIZE Register 4-76 

Q 

Q - Quit SDB 4-77 

R 

RDE - Restore Debug Environment 4-78 
RESET - Reset GSP 4-79 
RIO - Restore Temporary Copy of I/O Re-

gisters 4-80 
RMI - Restore Memory Image 4-81 
RMS - Restore Machine State 4-82 
RR - Restore Temporary Copy of 

Registers 4-83 
RS232 port 5-16 
RUN, RU - Run for a number of In­

structions 4-84 

5 

saturation demonstration 3-30 
screen displays 

clearing display 3-25 
Debugger 2-12 

SDE - Save Debug Environment 4-85 
serial port 

accessing (theory) 6-15 
architecture 5-16 

SF - Show File Utility 4-86 
shadow RAM 5-7 
shadow RAM access 6-15 

Index-3 



Index 

shipped condition 2-2 
simulator 1-6 
SID - Save Temporary Copy of I/O Regis-

ters 4-87 
SMI - Save Memory Image 4-88 
SMS - Save Machine State 4-90 
SP - Modify/Display Stack Pointer 4-91 
spacing between characters 3-33 

block spacing 3-33 
SR - Save Temporary Copy of 

Registers 4-92 
SS,SSF,SSFU,SSU - Single Step by 

Count 4-93 
ST,STN,STC,STZ,STV - Status 

Register 4-94 
Status Register 

Status Register figure 4-51 
STx command explanation 4-94 
support tools 1-5 
SWITCH - Switch Command Input 

Context 4-96 
SY - Execute System Function 4-97 
system 

T 

configuration 2-2 
typical system 2-2 

T - Toggle Transparency Bit 4-98 
terminals 2-2 
text character spacing 3-33 
theory of operation 6-1 
TMS34010 GSP 

interface to memory 6-9 
TMS34070 color palette 5-11 

line load mode 5-12 
TR - Display Existing Traces 4-99 
TR# - Modify Existing Traces 4-100 
TRAI - Set Trace on Address 4-102 
transparency demo 3-29 
traps, interrupt 

Index-4 

execution control 6-23 
NMI at bootup 6-21 
to host 5-19 
vectors (int. map) 6-24 

troubleshooting C-5 
tutorial 

u 

hands-on experience E-1 
without hands-on 3-1 

U - Unassemble (Reverse Assemble) 4-
103 

UJI PAL equation 6-13 
USART 5-16 

pinout for J3 5-16 
registers 5-16 

USART access 6-15 

v 
v - Evaluate Data 4-105 
video memory 5-10 
VMI - Verify Memory Image 4-106 

w 
W - Set Windowing Option 4-108 
windowing 3-31 

x 
XDS/22 emulator 1 -6 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



TI Worldwide 
Sales Offices 
ALABAMA: Huntsvilll: 500 wynn Drive. Suile 514. 
Huntsville. AL 35805, (205) 837·7530. 

ARIZONA: Photnl ... : 8825 N. 23rd Ave .. Phoenix. 
AZ 85021. (6021995·1007. 

CALIFORNIA: Irvine: 17891 Cartwright Ad .. Irvine. 
CA 92714. (714)660·8187: Sacramento: 1900 Point 
West Way, Suite 171, Sacramento, CA 95815, 

~~~~ 9~~'~~~'bf::o~b'~~~3~ (~;~i 2~~8:0~~e .. 
:;J:. 7!~;: i~53~~Vo::.~~~aK~~lCc~~~. CA
Torrance, CA 90502, (213) 217-7010;
Woodland Hills: 21220 Erwin St .. Woodland Hills.
CA 91367, (818) 704·7759.

COLORADO: Auro,.: 1400 S. Potomac Ave ..
Suite 101, Aurora, CO 80012. (303) 368-8000.

CONNECTICUT: Wallingford: 9 Barnes Industrial
Park Rd., Barnes Industrial Park, Wallingford.
CT 06492, (203)269-0074.

FLORIDA: Fl. Lauderdale: 2765 N.W. 62nd St.,
Ft. Lauderdale, FL 33309, (305) 973·8502;
_altland: 2601 Maitland Center Parkway,
Maitland. FL 32751, (305) 660·4600;

~:~=~ ~'g:ci9~{s,n~dl7gZ:2b~uile 101.

GEORGIA: Norcross: 5515 Spalding Drive, Norcross,
GA 30092, (404) 662·7900

~rtil~~~~: ~:~~t~~LH=~~:(g~~) ~40~~8~g,qUin,
:~D~::'~,: (~~'9r:l:'~~~~~0 Inwood Dr., Ft. Wayne,

IndlanapoUs: 2346 S. Lynhurst, Suite J·4oo,
Indianapolis, IN 46241. (317) 248-8555.

IOWA: Cedar Rapids: 373 Collins Rd. NE. Suite 200.
Cedar Rapids, IA 52402. (319) 395·9550.

MARYLAND: aaltlmore: 1 Rutherford PI.,
7133 Rutherford Rd .. Baltimore, MD 21207,
(301) 944·8600.

MASSACHUSEnS: Wanham: 504 Totten Pond Rd.,
Waltham, MA 02154. (617) 895·9100.

~~~~~~:~ ~~~I~t:~~N.'~1~7~l3~~. Mile Rd .. 

MINNESOTA: Eden Pralrla: 11000 W. 78th SI.. 
Eden Prairie. MN 55344 (612) 828-9300. 

~A~~~R~:4~~:,s(~~~1~3~:a~ard Pkwy .. Kansas 

St. Louis: 11816 Borman Drive. St. Louis, 
MO 63146. (314) 569-7600. 

NEW JERSEY: Iselin: 485E U.S. Roule 1 South. 
Parkway Towers, Iselin, NJ 08830 (201) 75().105O 

NEW MEXICO: Albuquerque: 2820·0 Broadbent Pkwy 
NE. Albuquerque, NM 87107, (505) 345·2555. 

~::C~!!~~:l~~5,r~~~)~~~~i9r;Ollamer Dr .. East 
Endicott: 112 Nanticoke Ave., P.O. Box 618, Endicott, 
NY 13760, (607) 754·3900; Melville: 1 Huntington 

~~~~~¥.1~5~6~i~~~t ;'?i~:'~~:S·l ~~~v~~~St .. 
Pittsford, NY 14534, (716) 385-6770;
Poughkeepsie: 385 South Rd .. Poughkeepsie.
NY 12601, (914) 473·2900.

NORTH CAROLINA: Charlotte: 8 Woodlawn Green.
Woodlawn Rd., Charlotte, NC 28210. (704) 527-0930:
~e~~1.'fg~~iB;:~;:5~ Blvd .. Suite 100, Raleigh.

OHIO: eeachwood: 23408 Commerce Park Ad ..
Beachwood, OH 44122, (2161464-6100:

g:r~0ti3~~(~f~r~:~~7:'24 Linden Ave .. Dayton.

OREGON: aea.,.rton: 6700 SW 105th St.. Suite 110.
Beaverton. OR 97005, (503) 643-6758.

PENNSYLVANIA: Ft. W.shlngton: 260 New York Dr ..
Ft. Washington, PA 19034, (215)643-6450;
Coraopolis: 420 Rouser Rd .. 3 Airport Office Park.
Coraopolis. PA 15108, (412) 771·8550.

PUERTO RICO: Hato Rey: Mercanli! Plaza Bldg ..
Suite 505. Halo Rey, PR 00919, (809) 753·8700.

TEXAS: Austin: P.O. Box 2909. Austin. TX 78769.
(512) 250·7655; Richardson: 1001 E. Campbell Rd
Richardson. TX 75080,
(214) 680·5062: HOUlton: 9100 Southwest Frwy ..
Suite 237. Houston, TX 77036. (713) 778-6592:
San Antonio: 1000 Central Parkway South,
San Antonio. TX 78232, (512)496·1779.

UTAH: Murray: 5201 South Green SE. Suite 200.
Murray, UT 84107. (801) 266·8972.

VIRGINIA: Fairtax: 2750 Prosperity, Fairfax. VA
22031, (703) 849-'400.

WASHINGTON: Redmond: 5010 148th NE, Bldg B.
Suite 107. Redmond, WA 98052, (206) 881·3080

WISCONSIN: Brooklleld: 450 N. Sunny Slope.
Suite 150. Brookfield, WI 53005, (414) 785·7140.

CANADA: Nepean: 30' Moodie Drive, Mallorn
Center, Nepean, Ontario, Canada, K2H9C4.
(613) 726·1970. Richmond Hill: 280 Centre St. E ..
Aichmond Hill L4C1Bl, Ontario, Canada
(416) 884·9181: 51. Laurlnt: Ville SI. Laurent Quebec.

~~aJ~a~:S~~j~~,~)j35~39~~urent, Quebec.

ARGENTINA: Texas Instruments Argentina
S.A.I.C.F.: Esmeralda 130, 15th Floor, 1035 Buenos
Aires, Argentina, 1 + 394·3008.

AUSTRALIA fa NEW ZEALAND),: Texas Instruments
Australia Ltd.: 6·10 Talavera Rd., North Ryde
(Sydney), New South Wales, Australia 2113.
2 + 887·1122; 5th Floor, 418 SI. Kilda ROad.
Melbourne, Victoria, Australia 3004. 3 + 267·4677:
171 Philip "4ighway, Elizabeth, South Australia 5112,
8 + 255·2066.

AUSTRIA: Texas Instruments Ges.m.b.H.:
Industrieslrabe B/16, A·2345 Brunn/Gebirge.
2236·846210.

~~~~J~Md:n~~:,s ~~~~I~r;;:~:s,~: R~:18~u:: ~u~~, 
1130 Brussels, Belgium, 21720.80.00. 

BRAZIL: Texas Instruments Electronicos do Brasil 
Ltda.: Rua Paes Leme, 524·7 Andar Pinheiros. 05424 
Sao Paulo. Brazil, 0815-6166. 

DENMARK: Texas Instruments AIS, Mairelundvej 
46E, oK·273O Herlev, Denmark, 2 . 91 74 00. 

FINLAND: Texas Instruments Finland OY: 
Teoilisuuskatu 19000511 Helsinki 51. Finland, (90) 
701·3133. 

FRANCE: Texas Instruments France: Headquarters 
and Prod. Plant, BP 05. 06270 Vllieneuve·Loube!, 
(93) 20·01-01; Paris Office. BP 67 8·10 Avenue 

~~~6~9~~~;nLe;o:~~!sV~;fi~·~iIL~~~I~YECUIlY. 
Batiment B, Chemin de la Forestlere, 69130 Ecully,

~~ ~!;O:~~~t6~~~~Us?r::~~~r~fg;~e~ Sebastopol

~S:~~2~:~~S~(~e~; .~~~; ~~~I~~:au~:I!'!~V~de,
if 1~r~Oo~ro::e.~~~)m~,,~~ l:;~~~::~re CS;~I!~~;~~:.'
~~:1~7~~~~~S-146 Rue Paradis, 13006 Marseille,

• TEXAS
INSTRUMENTS

GERMANY (FICI. Republic of O.,INny): Texas
Instruments Deutschland GmbH: HagQertystrasse 1.
D·80!'O Freising. 8161 +80·4591; Kurfuerstendamm
1951196. 0·1000 Berlin 15, 30 + 882·7365; III. Hagen
431Kibbelstrasse, .19. 0-4300 Essen, 201·24250;
Frankfurter Allee 6·8, 0-6236 Eschborm "
06196+8070; Hamburgerslrasse 11. 0·2000 Hamburg
76, 040 + 220·1154, Kirchhorsterstrasse 2. 0·3000
Hannover 51. 511 +648021; Maybachstrabe 1"
0·7302 Ostfildern 2·Nelingen, 711 +547001;

~~~~~~~i~~~9,OR=t7:s~:u,re. ~5:&+ :~~I~~': 
261 +35044. 

HONG KONG C + PEOPLES REPUBLIC OF CHINA)' 
Texas Instruments Asia Ltd .. 8th Floor, World 
Shipping Ctr., Harbour City, 7 Canton Rd., Kowloon. 
Hong Kong, 3 + 722·1223. 

IRELAND: Texas Instruments (Ireland) Limited' 
Brewery Rd., Stillorgan, County Dublin, Eire. 
1831311. 

ITALY: Texas Instruments Semiconduttori Italia Spa: 
Viale Delle Scienze, " 02015 Cltladucale (Aleli). 
Italy, 746 694.1; Via Salaria KM 24 (Palazzo Cosma). 
Monterotondo Scalo (Rome), Italy, 6 + 9003241; Viale 
Europa, 38-44. 20093 Cologno Monzese (Milano), 
22532541; Corso Svizzera, 185, 10100 Torino. Italy, 
11 774545; Via J. Barozzl 6, 40100 Bologna, Italy. 51 
355851. 

JAPAN: Texas Instruments Asia Ltd.: 4F Aoyama 
Fuji Bldg .. 6,12, Kita Aoyama 3·Chom., Minato·ku, 
Tokyo, Japan 107,3-498-2111; Osaka BranCh. 5F. 
Nlssho Iwai Bldg., 30 Imabashi 3· Chome, 
Higashi·ku, Osaka, Japan 541. 06·204·1881; Nagoya 
Branch, 7F Daini Toyota West Bldg., 10-27, Meieki 
4·Chome. Na!(amura·ku Nagoya, Japan 
450, 52·583·8691. 

KOREA: Texas Instruments Supply Co.: 3rd Floor, 

~;5~~~:~~o~~~~a:4g~~rangnam'ku, 
MEXICO: Texas Instruments de MeKico S.A.: Mexico 
City, AV Reforma No. 450 - 10th Floor. Mexico. 
D.F., 06600, 5 + 5t4·3OO3. 

MIDDLE EAST: Texas Instruments: No. 13, 1st Floor 

~:~~~aB~~~ra?~~~~~~~~ 1;~~: :7~·}~~~,~35, 
NETHERLANDS: Texas Instruments Holland B.V .. 
P.O. Box 12995, (Bullewijk) 1100 CB Amsterdam. 
Zuid·Oost, Holland 20+56029". 

=~::::~3J,eo~~01~~INuo7:~~~ (~)O~t~~.fS: PB106, 

PHILIPPINES: Texas Instruments Asia Ltd.: 14th 

~~~~ii~:';e\~:~!~i~,d~hi~~~Tn::~~O+ ~~~r' 
PORTUGAL: Texas Instruments Equipamento

5:~i~~~~~~ (&~~~~:16aL~aa~a~~:7~n~ar~~;~~~~al.
2·948-1003.

SINGAPORE C + INDIA, INDONESIA, MALAYSIA,
THAILAND.: Texas Instruments Asia Ltd.: 12 Lorong
Bakar Batu. Unit 01-02, Kolam Ayer Industrial Estate,
Republic of Singapore, 747·2255.

SPAIN: Texas Instruments Espana. SA: ClJose
Lazaro Galdiano No.6, Madrid 16, 11458.14.58.

SWEDEN: Texas Instruments International Trade
Corporation (Sverigefilialen): Box 39103. 10054
Stockholm, Sweden, 8 . 235480.

SWITZERLAND: Texas Instruments. Inc .. Reidstrasse
6, CH·8953 Dietikon (Zuerich) Switzerland,
1·7402220.

TAIWAN: Texas Instruments Supply Co.: Room 903.
205 Tun Hwan Rd., 71 Sung·Kiang ROad. Taipei,
Taiwan, Republic of China. 2 + 521·9321 .

UNITED KINGDOM: Texas Instruments Limited:
Manton Lane, Bedford, MK41 7PA, England. 0234
67466; St. James House. Wellington Road North.
Stockport, SK4 2RT. England, 61 + 442·7162.

8M

TI Sales Offices TI Distributors
ALABAMA: Huntsville (205) 837·7530.

ARIZONA: Phoenix (602) 995·1007;
Tucson (602) 624·3276.

CALIFORNIA: Irvine (714) 660·8187;
Sacramento (916) 929-0192:

~:~t~i~'a~~~~~~n~£6~;
Torrance (213) 217·7010;
Woodland Hills (81B) 704·7759.

COLORADO: Aurora (303) 368·8000.

CONNECTICUT: Wallingford (203) 269-0074.

FLORIDA: Ft. Lauderdale (305) 973-8502;
Altamonte Springs (305) 260·2116;
Tampa (813) 870·6420

GEORGIA: Norcross (404) 662-7900.

ILLINOIS: Arlington Heights (312) 640-2925.

INDIANA: Ft. Wayne (219) 424·5174:
Indianapolis (317) 24&8555.

IOWA: Cedar Rapids (319) 395·9550.

MARYLAND: Baltimore (301) 944·8600.

MASSACHUSETTS: Waltham (617) a9S-9100

MICHIGAN: Farmington Hills (313) 553·1500:
Grand Rapids (616) 957·4200.

MINNESOTA: Eden Prairie (612) 828-9300

MISSOURI: Kansas City (816) 523·2500;
St. Louis (314) 569-7600.

NEW JERSEY: Iselin (201) 750-'050.

NEW MEXICO: Albuquerque (505) 345·2555.

NEW YORK: East Syracuse (315) 463·9291;
Melville (516) 454-6600; Pittsford (716) 385-6770;
Poughkeepsie (914) 473·2900.

NORTH CAROLINA: Charlotte (704) 527-0930;
Raleigh (919) 876-2725.

OHIO: Beachwood (216) 464-6100;
Dayton (513) 258-3877.

OREGON: Beaverton (503) 643-6758.

PENNSYLVANIA: Blue Bell (215) 825-9500.

PUERTO RICO: Hato Rey (809) 753-8700

TEXAS: Austin (512) 250·7655;
Houston (713) 778-6592; Richardson (214) 680-5082;
San Antonio (512) 496·1779.

UTAH: Murray (801) 266·8972.

VIRGINIA: Fairfax (703) 849·1400

WASHINGTON: Redmond (206) 881·3080.

WISCONSIN: Brookfield (414) 785·7140.

~~~!~~~ ~~r.br:;t~~~a(~f6\6~~.~~~-,\970; 
SI. Laurent, Quebec (514) 335·8392. 

TI Regional 
Technology Centers 
CALIFORNIA: Irvine (714) 660·8140, 
Santa Clara (408) 748-2220. 

GEORGIA: Norcross (404) 662-7945 

ILLINOIS: Arlington Heights (312) 640-2909 

MASSACHUSETTS: Waltham (617) 895-9197 

TEXAS: Richardson (214) 680·5066. 

CANADA: Nepean, Ontario (613) 726-1970 

Customer 
Response Center 
TOLL FREE: (800) 232-3200 

OUTSIDE USA: (214) 995-6611 
(8:00 a.m. - 5:00 p.m. CST) 

TI AUTHORIZED DISTRIBUTORS IN 
USA 

Arrow Electronics 
General Radio Supply Company 
Graham Electronics 
Hall·Mark Electronics 
Kierulll Electronics 
Marshall Industries 
Newark Electronics 
Schweber Electronics 
Time Electronics 
Wyle Laboratories 
Zeus Component, Inc. (Military Only) 

TI AUTHORIZED DISTRIBUTORS IN 
CANADA 

Arrow Electronics Canada 
Future Electronics 

TI AUTHORIZED DISTRIBUTORS IN 
USA 

-OBSOLETE PRODUCT ONLY­
Rochester ElectroniCS, Inc. 
Newburyport, Massachusetts 
(617) 462·9332 

ALABAMA: Arrow (205) 837-6955; 
Hall-Mark (205) 837-8700; Kieru"f (205) 883-6070, 
Marshall (205) 881-9235; Sch ...... eber (205) 895-0480. 

ARIZONA: Arrow (602) 968·4800; 
Hall·Mark (602) 437-1200; Kierulff (602) 437-0750; 
Marshall (602) 968-6181; Schweber (602) 997-4874: 
Wyle (602) 866-2888. 

~~~:-?8~~)I~~}_~~~~?:~:r£':~~~2?ounty: 
Hall-Mark (818) 716-7300, (714) 669-4700,
(213) 217·8400; Kierulff (213) 725·0325, (714) 731-571',
(714) 220·6300; (818) 407·2500;
Marshall (818) 407-0101, (818) 459·5500,
(714) 458-5395; Schweber (818) 999·4702,
(714) 863-0200; (213) 327-8409; Wyle (213) 322-8100,
(818) 880-9001, (714) 863-9953; Zeus (714) 921·9000;
Sacramento: Hall-Mark (916) 722·8600;
Marshall (916) 635-9700; Schweber (916) 929-9732;
Wyle (916) 638-5282;
San Diego: Arrow (619) 565·4800;
Hal'·Mark (619) 268-1201; Kierulff (619) 278-2112,
Marshall (619) 578-9600; Schweber (619) 450-0454;
Wyle (619) 565-9171;
San Francisco Bay Area: Arrow (408) 745-6600;
(415) 487-4600; Hall-Mark (408) 946·0900;
Kierulff (408) 971-2600; Marshall (408) 942-4600;
Schweber (408) 946-7171; Wyle (408) 727-2500;
Zeus (408) 998-5121.

COLORADO: Arrow (303) 696-1111;
Hall-Mark (303) 790-1662; Kierulff (303) 790-4444;
Marshall (303) 451-8444; Schweber (303) 799·0258;
Wyle (303) 457·9953

CONNECTICUT: Arrow (203) 265-7741;
Hall-Mark (203) 269-0100; Kierulff (203) 265·1115;
Marshall (203) 265-3822; Schweber (203) 748-7080.

FLORIDA: Ft. Lauderdale: Arrow (305) 429-8200;
Hall-Mark (305) 971-9280; Kierulff (305) 486-4004;
Marshall (305) 977-4880; Schweber (305) 977-7511;
Orlando: Arrow (305) 725-1480;
Hall·Mark (305) 855-4020; Kierulff (305) 682-6923;
Marshall (305) 841-1878; Schweber (305) 331-7555;
Zeus (305) 365-3000;
Tampa: Hall-Mark (813) 530-4543;
Marshall (813) 576-1399.

GEORGIA: Arrow (404) 449-8252;
Hall-Mark (404) 447-8000; Kierulff (404) 447·5252;
Marshall (404) 923-5750; Schweber (404) 449-9170.

ILLINOIS: Arrow (312) 397-3440;
Hall·Mark (312) 860-3800; Kierulff (312) 250·0500:
Marshall (312) 490-0155; Newark (312) 784-5100;
Schweber (312) 364-3750.

TEXAS
INSTRUMENlS

INDIANA: Indianapolis: Arrow (317) 243·9353;
Graham (317) 634-8202; Hall·Mark (317) 872·8875;
Marshall (317) 297-0483;
Ft. Wayne: Graham (219) 423·3422

IOWA: Arrow (319) 395·7230;
Schweber (319) 373-1417.

KANSAS: Kansas City: Arrow (913) 541·9542;
Hall-Mark (913) 888-4747; Marshall (913)492·3121;
Schweber (913) 492·2921

MARYLAND: Arrow (301) 995-0003;
Hall-Mark (301) 968-9800; Kierulff (301) 840·1155;
Marshall (301) 840-9450; Schweber (;301) 840-5900;
Zeus (301) 997-1118.

MASSACHUSETTS: Arrow (617) 933-8130;
Hall-Mark (617) 667-0902; Kierulff (617) 667-8331;
Marshall (617) 658·0810; Schweber (617) 275·5100,
(617) 657·0760; Time (617) 532·6200;
Zeus (617) 863·8800

MICHIGAN: Detroit: Arrow (313) 971-8220;
Marshall (313) 525-5850; Newark (313) 967-0600;
Schweber (313) 525-8100;
Grand Rapids: Arrow (616) 243-0912.

MINNESOTA: Arrow (612) 830-1800;
Hall·Mark (612) 941-2600; Kierulff (612) 941-7500;
Marshall (612) 559·2211; Schweber (612) 941-5280.

MISSOURI: SI. louis: Arrow (314) 567·6888;
Hall-Mark (314) 291-5350; Kierulff (314) 997-4956;
Schweber (314) 739-0526.

NEW HAMPSHIRE: Arrow (603) 668-6968;
Schweber (603) 625-2250.

NEW JERSEY: Arrow (201) 575-5300,
(609) 596-8000; General Radio (609) 964-8560;
Halt-Mark (201) 575·4415, (609) 235·1900;
Kierulff (201) 575-6750, (609) 235-1444;
Marshall (201) 882-0320, (609) 234-9100;
Schweber (201) 227·7880.

NEW MEXICO: Arrow (505) 243-4566.

~;I~M~~kR(~:lk~~87 ~~:O~~: r::;~~aW ~i6~32'7~~20g~3;
Schwaber (516) 334·7555; Zeus (914) 937-7400.
Rochester: Arrow (716) 427-0300;
Marshall (716) 235-7620; Schweber (716) 424·2222.
Syracuse: MarShall (607) 798-1611.

NORTH CAROLINA: Arrow (919) 876-3132,
(919) 725·8711; Hall·Mark (919) 872·0712;
Kierulff (919) 872-8410; Marshall (919) 878·9882;
Schweber (919) 876-0000.

OHIO: Cleveland: Arrow (216) 248·3990;
Hall-Mark (216) 349-4632; Kierulff (216) 831-5222;
Marshall (216) 248-1788; Schweber (216) 464·2970.
Columbus: Arrow (614) 885-8362;
Hall-Mark (614) 888-3313;
Dayton: Arrow (513) 435·5563;
Kierulff (513) 439·0045; Marshall (513) 236-8088;
Schweber (513) 439-1800.

OKLAHOMA: Arrow (918) 665-7700;
Kierulff (918) 252·7537; Schweber (918) 622-8000.

OREGON: Arrow (503) 684·1690;
Kierulff (503) 641-9153; Wyle (503) 640-6000;
Marshall (503) 644-5050.

PENNSYLVANIA: Arrow (412) 856-7000,
(215) 928-1800; General Radio (215) 922-7037;
Schweber (215) 441-0600, (412) 782·1600.

TEXAS: Austin: Arrow (512) 835-4180;
Hall-Mark (512) 258-8848; Kierulff (512) 835·2090:
Marshall (512) 837·1991; Schweber (512) 458·8253;
Wyle (512) 834-9957;
Dallas: Arrow (214) 380-6464;
Hall-Mark (214) 553·4300; KieruUf (214) 840-0110;
Marshall (214) 233·5200; Schweber (214) 661-5010;
Wyle (214) 235-9953; Zeus (214) 783·7010:
Houston: Arrow (713) 530-4700;
Hall-Mark (713) 781-6100; Kierulff (713) 530-7030;
Marshall (713) 895-9200; Schweber (713) 784-3600:
Wyle (713) 879-9953.

UTAH: Arrow (801) 972-0404;
Hall-Mark (801) 972-1008; Kierulff (801) 973-6913;
Marshall (801) 485-1551; Wyle (801) 974-9953;

WASHINGTON: Arrow (206) 643-4800;
Kierulff (206) 575-4420; Wyle (206) 453-8300;
Marshall (206) 747-9100.

WISCONSIN: Arrow (414) 792-0150;
Hall-Mark (414) 797-7844; Kierulff (414) 784-8160;
Marshall (414) 797·8400: Schweber (414) 784-9020.

CANADA: Calgary: Future (403) 235·5325;
Edmonton: Future (403) 438-2858;
Montreal: Arrow Canada (514) 735-5511;
Future (514) 694-7710;
Ottawa: Arrow Canada (613) 226-6903;
Future (613) 820-8313;
Quebec City: Arrow Canada (418) 687-4231;
Toronto: Arrow Canada (416) 661·0220;
Future (416) 638·4771;
Vancouver: Future (604) 294·1166
Winnipeg: Future (204) 339·0554

as

May 1987
Revision A
2539567-9701
Printed in U.S.A .

• TEXAS
INSTRUMENTS SPVU002A

