

Designer's Handbook

Datapath VLSI Products

TMS34082 Designer's Handbook

2564007-9721 revision A May 1991

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue any semiconductor product or service identified in this publication without notice. TI advises its customers to obtain the latest version of the relevant information to verify, before placing orders, that the information being relied upon is current.

TI warrants performance of its semiconductor products to current specifications in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Unless mandated by government requirements, specific testing of all parameters of each device is not necessarily performed.

TI assumes no liability for TI applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Texas Instruments products are not intended for use in life-support appliances, devices, or systems. Use of a TI product in such applications without the written consent of the appropriate TI officer is prohibited.

Copyright © 1991, Texas Instruments Incorporated

Preface

Read This First

How to Use This Manual

The purpose of this user's guide is to provide the TI customer with information on the TMS34082 graphics floating-point processor. This manual can also be used as a reference guide for developing hardware or software applications. The following list summarizes the contents of the chapters and appendices in this user's guide.

Chapter 1 Overview of the TMS34082

Introduces the TMS34082, its key features, typical applications, and support tools available.

Chapter 2 Pinout and Pin Descriptions

Illustrates the TMS34082s package, identifies the interfaces that signals are associated with, and provides an explanation of each signal.

Chapter 3 Data Formats

Discusses the integer and floating-point operand formats accepted by the TMS34082.

Chapter 4 Architecture

Describes the architectural elements of the TMS34082. Includes the bus interfaces, sequence control, registers, internal floating-point unit core, and test logic.

Chapter 5 Coprocessor Mode

Describes using the TMS34082 as a coprocessor to the TMS34020, including the hardware interface, recommended configurations, and example programs with timing diagrams.

Chapter 6 Host-Independent Mode

Provides information on using the TMS34082 as a stand-alone processor or a coprocessor to another host.

Chapter 7 Internal Instructions

Shows how to use internal instructions in both coprocessor and host-independent mode. Explains the format and provides an alphabetical reference of the internal instruction set.

Chapter 8 External Instructions

Shows how to use external instructions in both coprocessor and host-independent mode. Explains the format and provides an alphabetical reference of the external instruction set.

Appendix A System Design Considerations

Provides recommendations on logic design, bypass capacitors, PWB design, and thermal considerations.

Appendix B TMS34082 Data Sheet

Contains the commercial data sheet for the TMS34082A.

Appendix C SMJ34082 Data Sheet

Contains the advance information military data sheet for the SMJ34082A.

Appendix D Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

Contains an application note on interfacing the TMS34082 (in host-independent mode) to the Motorola MC68030.

Appendix E A High-Performance Floating-Point Image Computing Workstation for Medical Applications

Contains an application note on an imaging system using a TMS34020 with four TMS34082 coprocessors.

Appendix F Parallel Signal and Matrix Processing with the TMS34082

Contains an application note outlining and analyzing a TMS34082-based parallel architecture design.

Related Documentation

The following documents are available from Texas Instruments. To obtain a copy of any of these TI documents, please call the Customer Response Center (CRC) at (800) 232-3200 unless otherwise noted. When ordering, please identify the book by its title and corresponding literature number.

- **TMS34082A Data Sheet** (literature number SCGS001) is included in Appendix B of this book. It contains electrical specifications, timing information, and mechanical data for the TMS34082A.
- SMJ34082A Data Sheet (literature number SGUS012A) is included in Appendix C of this book. It contains electrical specifications, timing information, and mechanical data for the SMJ34082A.
- TMS34020 User's Guide (literature number SPVU019) discusses hardware aspects of the TMS34020, such as pin functions, architecture, stack operations, and interfaces. Contains the TMS34020 instruction set and interface to the TMS34082.
- **TMS34020 Data Sheet** (literature number SPVS004) contains electrical specifications, timing information, and mechanical data for the TMS34020.
- TMS34082 Software Tool Kit User's Guide describes the C compiler, assembler, linker, librarian, and simulator that are available for developing TMS34082 external instruction code. Call your TI sales representative for the demonstration version of the tool kit.
- TMS340 Family Code-Generation Tools User's Guide (literature number SPVU004) describes the C compiler, assembler, linker, archiver, and auxiliary tools that are available for developing TMS34010, TMS34020, or TMS34020/TMS34082 code.
- TMS34082 Assembly Support for Code-Generation Tools User's Guide (literature number SPVU029) summarizes the instruction code used with the TMS34082.
- **TIGA Interface User's Guide** (literature number SPVU015) describes the Texas Instruments Graphics Architecture (TIGA), a software interface that standardizes communication between application software and TMS340-based hardware for IBM-compatible PCs.
- TMS34082 3-D Graphics Library User's Guide describes an extensive array of C-callable functions including polygon clipping, shading, and vector and matrix operations. This library is TIGA-compatible and can also be used in non-TIGA applications. Call your TI sales representative or the DVP System Engineering Hotline for information on purchasing this product.

You may also find the following documentation useful. Many of the complex graphics instructions in the TMS34082 are based on algorithms found in this book:

Foley, James, and Andries van Dam. *Fundamentals of Interactive Computer Graphics*. Reading, Massachusetts: Addison-Wesley, 1982.

Style and Symbol Conventions

This document uses the following conventions.

Program listings, program examples, filenames, and symbol names are shown in a special typeface similar to a typewriter's. Examples use a bold version of the special typeface for emphasis.

Here is a sample program listing:

0011	0005	0001	.field 1,	2
0012	0005	0003	.field 3,	4
0013	0005	0006	.field 6,	3
0014	0006		.even	

In syntax descriptions, the instruction is in a **bold** typeface font and parameters are in an *italic* typeface. Portions of a syntax that are in **bold** should be entered as shown; portions of a syntax that are in *italics* describe the type of information that should be entered. Here is an example of an instruction syntax:

NEGF CRs, CRd

This instruction has two parameters, indicated by *CRs* and *CRd*. When you use NEGF, the parameters must be actual TMS34082 registers, such as RA9 and RB1.

Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify the information within the brackets; you don't enter the brackets themselves. Here's an example of an instruction that has an optional parameter:

MOVD +Rs+, CRd [, count]

The MOVD instruction has three parameters. The first two parameters, *Rs* and *CRd*, are required. The third parameter, *count*, is optional. As this syntax shows, if you use the optional third parameter, you must precede it with a comma.

In the internal instruction set listings, Rs and Rd refer to TMS34020 source and destination registers, respectively. CRs and CRd refer to coprocessor or TMS34082 registers.

Trademarks

EPIC, SCOPE, and TIGA are trademarks of Texas Instruments Incorporated.

IBM, PC-DOS, and PC/AT are trademarks of International Business Machines, Inc.

MS-DOS is a trademark of Microsoft Corporation.

NeXT is a trademark of NeXT, INC.

PAL is a registered trademark of Monolithic Memories, Inc.

X Windows Systems is a trademark of the Massachusetts Institute of technology.

If You Need Assistance . . .

If you want to	Do this
Receive more information about TI floating-point products	Call the CRC Hot Line: (800) 232-3200
	Or write to: Texas Instruments Incorporated Datapath VLSI Products Marketing Communications P.O. Box 655303, M/S 8316 Dallas, Texas 75265
Order TI documentation	Call the CRC Hot Line: (800) 232-3200
Ask questions about product operation or report suspected problems	Call DVP Systems Engineering Hot Line: (214) 997-3970
Inquiries related to this document:	Write to: Texas Instruments Incorporated Datapath VLSI Products Marketing Communications P.O. Box 655303, M/S 8316 Dallas, Texas 75265

Contents

0000000

1	Over	view of the TMS34082 1-1
	1.1	TMS34082 Key Features 1-2
	1.2	Performance Benchmarks 1-3
	1.3	TMS34082 General Description 1-4
	1.4	Typical Applications 1-9
	1.5	Development Tools 1-11
		1.5.1 TMS34082 Software Tool Kit 1-11
		1.5.2 TMS34082 3-D Graphics Library 1-12
		1.5.3 TMS34082 Demonstration Board 1-13
	1.6	TMS34020 Graphics System Processor 1-14
		1.6.1 TMS34020 Key Features 1-14
		1.6.2 TMS34020 Software Tools 1-17
		1.6.3 TIGA Graphics Interface 1-19
		1.6.4 TMS34020 Software Development Board 1-20
	1.7	TMS34082 Ordering Information 1-21
	1.8	Technical Assistance
2	Pinor	It and Pin Descriptions
	2.1	Pinout
	2.2	Pin Functional Descriptions
_		
3		Formats
	3.1	
		3.1.1 Signed Integers
		3.1.2 Unsigned Integer
	3.2	Floating-Point Formats3-33.2.1Single-Precision Floating-Point3-3
		3.2.1 Single-Precision Floating-Point 3-3 3.2.2 Double-Precision Floating-Point 3-3
		3.2.3 Denormal and Wrapped Numbers
		3.2.4 Special Floating-Point Numbers
		3.2.5 Range of Floating-Point Numbers
		5.2.5 Range of Floating-Foint Numbers
4	Archi	itecture
	4.1	Functional Block Diagram 4-2
	4.2	Operating Modes 4-3
	4.3	Bus Interfaces 4-4

		4.3.1	LAD Bus	4-4
		4.3.2	MSD Bus	4-5
	4.4	Sequer	nce Control	4-7
	4.5	Registe	ers	4-8
		4.5.1	Register Files RA and RB 4	1-11
		4.5.2	Feedback Registers C and CT 4	-12
		4.5.3	Configuration Register (CONFIG) 4	-13
		4.5.4	Status Register 4	-19
		4.5.5	Indirect Address Register 4	-22
		4.5.6	Stack	
		4.5.7	Interrupt Vector Register	1-23
		4.5.8	Interrupt Return Register 4	
		4.5.9	COUNTX and COUNTY Registers	
		4.5.10	MIN-MAX/LOOPCT Register 4	
	4.6		ore	
		4.6.1	Operand Selection	
		4.6.2	Pipeline Registers	
		4.6.3	ALU	
		4.6.4	Multiplier	
		4.6.5	Output Control	
	4.7		and RDY	
	4.8		ion Control	
	4.9		Fest Port	
		4.9,1	Test Instructions	
		4.9.2	Boundary Scan Register	
5	•		Mode	
	5.1		020/TMS34082 Interface Overview	
	5.2			
	5.3	TMS34	082 Initialization	5-4
	5.4	Configu	uration Register Settings for Coprocessor Mode	5-5
		5.4.1	Exception Masks	
		5.4.2	Fast vs IEEE Mode	5-5
		5.4.3	Pipeline Mode Settings	
	5.5	TMS34	020/TMS34082 LAD Bus Operation	
		5.5.1	LAD Bus Protocol	5-7
		5.5.2	Enabling the LAD Bus Drivers 5	5-12
		5.5.3	Bus Faults	5-12
	5.6	Polling	the Coprocessor 5	5-14
	5.7	Interrup	ot Handling	5-15
		5.7.1	Exception Detect Interrupts 5	5-15
		5.7.2	Software Interrupts 5	5-16
		5.7.3	Interrupting the TMS34020 5	5-16
	5.8	TMS34	020/TMS34082 Code Example 5	5-18

	5.9	TMS34	020/TMS34082 Timing Examples	5-20
	5.10	MSD B	us Operation in Coprocessor Mode	5-24
		5.10.1	Connecting External Memory	5-24
		5.10.2	TMS34082 External SRAM Timing Analysis	5-25
		5.10.3	Using External Code	5-26
	5.11	TMS34	020/TMS34082/SRAM Code Example	5-28
	5.12		e TMS34082s	
6	Host-	Indeper	ndent Mode	6-1
Ŭ	6.1	•	ation	
	0.1	6.1.1	Pin Connections	
		6.1.2	Bootstrap Loader	
	6.2		JS	
	0.2	6.2.1	Control Signals	
		6.2.2	Immediate Data Transfers	
	6.3			
	0.0	6.3.1	MSD Bus Control Signals	
		6.3.2	Memory Models	
	6.4			
	6.5		ates	
	6.6		rogrammable Outputs	
	6.7		onal Code Input	
	6.8		onal Gode Input	
	0.0	6.8.1		
			Hardware Interrupts	
		6.8.2	Software Interrupts	
		6.8.3	Exception Detect Interrupts	0-11
7	Intern	nal Instr	uctions	7-1
	7.1		I Instructions Overview	
	7.2	Comple	ex Graphics Instructions	7-4
	7.3		I Routine Addresses and Cycle Counts	
	7.4	Coproc	essor Mode Internal Instruction Format	7-14
		7.4.1	Coprocessor ID Field	7-14
		7.4.2	Register Field	7-14
		7.4.3	Addressing Mode Field	7-15
		7.4.4	FPU Operation Field	7-15
	7.5	Type, S	Size, and I Fields	7-16
	7.6	Interna	Instruction Opcodes	7-17
8	Exter	nal Inst	ructions	8-1
-	8.1		ЭШ	
	8.2		ocessing Instruction Format	
		8.2.1	FPU Processing Sequencer Opcodes	
		8.2.2	Operand Selection	
			· · · · · · · · · · · · · · · · · · ·	

	8.3 8.4	8.2.3 FPU Processing Instruction Codes	
	8.5	External Assembly Instructions	
Α	Syste	em Design Considerations	A-1
	A.1	Logic Design	
	A.2	Bypass Capacitors	
	A.3	PWB Design	
	A.4	Clock Routing	
	A.5	Thermal Considerations	A-6
В	TMS	34082A Data Sheet	B-1
С	SMJ3	34082A Data Sheet	C-1
D	Maxi	mizing Your MFLOPS with the TMS34082 and Motorola MC68030	D-1
	Oven	view ,	
		Objectives	
		TMS34082 Overview	
	Syste	m Architecture	
		System Overview	
		Objectives and Trade-Offs	
	Softw	vare Description	
		Overview of Code Development	
		Big Endian, Little Endian	
		TMS34082 Code Development	
		Motorola MC68030 Code Development	
	Lord	Intel 80286 Code Development	
	naju	Overview	
		PC/AT Interface	
		Host Processor Interface	
		TMS34082 as a Parallel Processor	
	Perfo	mance Analysis	
		em Information — Parts List	
		matics — Hardware Design	
		Code Listing	
		Memory Decode for TMS34082 Accelerator Board	
		I/O Decode for TMS34082 Accelerator Board	
		Status Control for TMS34082 Accelerator Board	
		Byte Enable Decode for TMS34082 Accelerator Board	
		Pattern Decode for TMS34082 Accelerator Board	
	Softw	vare Listings	D-47
	Refe	rences	D-47

Ε	A High Performance Floating-Point Image Computing Workstation for	
	Abstract	
	Abstract	
	Introduction	
	Background	
	System Architecture	
	NeXT [™] Host System and Interface Logic	E-6
	Processors	E-8
	Memory	E-9
	Video Display	E-9
	Software Architecture	E-10
	Application Areas	E-12
	PACS Workstation	E-12
	Electronic Alternator	E-13
	Image Processing and Graphics	
	Conclusion	
	Acknowledgements	
	References	
F	Parallel Signal and Matrix Processing with the TMS34082	F-1
	Introduction	F-3
	The HARP Architecture	
	TMS34082 Host-Independent Mode Optimizations	F-8
	Algorithms	
	Simulation Results and Performance Analysis	
	Conclusion	
	Bibliography	

Figures

Figure 1–1.	TMS34082 High-Level Block Diagram 1-4
Figure 1–2.	Coprocessor Mode Bus Architectures 1-7
Figure 1-3.	Host-Independent Mode Bus Architectures 1-8
Figure 1–4.	Sample TMS34082 Architectures 1-10
Figure 1–5.	Overview of TMS34082 Code-Generation Tools 1-11
Figure 1–6.	TMS34082 Demonstration Board Block Diagram 1-13
Figure 1–7.	TMS34020 High-Level Block Diagram 1-15
Figure 1–8.	TMS34020 and TMS34082 Software Tools 1-18
Figure 1–9.	Graphics Processing Shared Between TMS340 and Host Processors 1-19
Figure 1-10.	TMS34020 SDB Block Diagram 1-20
Figure 2–1.	TMS34082 Pinout, 145-Pin PGA Package 2-2
Figure 3–1.	IEEE Signed Integer Format 3-2
Figure 3–2.	IEEE Unsigned Integer Format 3-2
Figure 3–3.	IEEE Single-Precision Format 3-3
Figure 3-4.	IEEE Double-Precision Format
Figure 3–5.	Special Floating-Point Formats 3-5
Figure 4–1.	Functional Block Diagram 4-2
Figure 4–2.	Register Usage
Figure 4–3.	TMS34082 Register Model 4-9
Figure 4–4.	General-Purpose Registers 4-11
Figure 4–5.	Register Files with ONEFILE High 4-12
Figure 4–6.	Host-Independent Mode LAD Bus Configuration for LADCFG High 4-15
Figure 4-7.	MSD Bus Configuration for MEMCFG Low 4-16
Figure 4–8.	MSD Bus Configuration for MEMCFG High 4-16
Figure 4–9.	Indirect Address Register Format 4-22
Figure 4-10.	Stack Register Format 4-23
Figure 4-11.	Interrupt Vector Register Format 4-23
Figure 4-12.	Interrupt Return Register Format 4-23
Figure 4–13.	COUNT Registers Format 4-24
Figure 4-14.	MIN-MAX/LOOPCT Register Format

Figure 4-15.	FPU Core Functional Block Diagram	4-26
Figure 4-16.	Effects of Pipelining	4-28
Figure 4-17.	Functional Diagram for ALU	4-29
Figure 4-18.	Functional Diagram for Multiplier	4-30
Figure 4-19.	Instruction Register Order of Scan	4-34
Figure 4-20.	Boundary Scan Register Order of Scan	4-36
Figure 5-1.	TMS3402/TMS34082 Register Model	5-2
Figure 5-2.	TMS34020/TMS34082 Interconnection	5-3
Figure 5–3.	Transferring a Command from the TMS34020 to the TMS34082	5-8
Figure 5-4.	Transferring TMS34020 Registers to the TMS34082	5-9
Figure 5-5.	Transferring from the TMS34082 to a TMS34020 Register	5-10
Figure 5–6.	Transferring Memory to the TMS34082	5-11
Figure 5–7.	Transferring from the TMS34082 to Memory	5-12
Figure 5–8.	Multiply 2 Double-Precision Numbers in TMS34020 Registers and Store Back to TMS34020 Registers (Mode 1)	5-21
Figure 5–9.	Add 2 Single-Precision Numbers from DRAM and Store Result Back to DRAM (Mode 2)	
Figure 5–10.	Add 2 Single-Precision Numbers from DRAM and Store Result Back to DRAM (Mode 2), Instructions Not in TMS34020 Cache	
Figure 5–11.	TMS34020/TMS34082/SRAM with Minimal SRAM Code Space	5-24
Figure 5-12.	TMS34020/TMS34082/SRAM with Maximum SRAM Code/Data Space (MEMCFG = L)	5-25
Figure 5–13.	Memory Map for External Memory	
Figure 5–14.	Example Subroutine Using the Jump Table	
Figure 5–15.	TMS34020 with Multiple TMS34082/SRAM Blocks (MEMCFG = L)	
Figure 6–1.	Bootstrap Loader	
Figure 6–2.	Using FIFOs on the LAD Bus	
Figure 6–3.	Using COINT as a Device Select (LADCFG=H)	
Figure 7–1.	Source for Internal Instructions in Coprocessor Mode	
Figure 7–2.	3-D Graphics Pipeline Using TMS34082 Complex Instructions	
Figure 8–1.	Source of Instructions for Coprocessor Mode	
Figure 8–2.	Instructions in Host-Independent Mode	
Figure 8–3.	Operand Selection	
Figure A-1.	Example of Using RAS and CAS Buffers in Coprocessor Mode	
Figure A–2.	Recommended Bypass Capacitor Placement	
Figure A-3.	Recommended Clock Routing Techniques	
Figure D-1.	Motorola MC68030 Interface to the TMS34082 – Block Diagram	
Figure D-2.	Data Organization in Memory	

Figure D-3.	Block Diagram – TMS34082 Code	. D-8
Figure D-4.	Block Diagram – Motorola MC68030 Code	D-9
Figure D-5.	Block Diagram – PC/AT Code	D-10
Figure D-6.	PC/AC Interface: I/O and Memory Addressing	D-11
Figure D-7.	Motorola MC68030 Interface: Memory Addressing	D-12
Figure D-8(a)	Block Diagram	D-15
Figure D-8(b)	Block Diagram	D-16
Figure D–9.	PC/AT I/F and Control, Details of U1, U5, U6, U7, and U8	D-17
-	PC/AT I/F and Control, Details of U29	
Figure D-11.	PC/AT I/F and Control, Details of U2, U3, and U4	D-19
Figure D-12.	Motorola MC68030 and Address Buffers, Details of U31, U32, and U33	D-20
Figure D-13.	Motorola MC68030 and Address Buffers, Details of U10	D-21
Figure D-14.	Motorola MC68030 and Address Buffers, Details of Oscillator and U30	D-22
Figure D-15.	Motorola MC68030 Decode/Control, Details of U11	D-22
Figure D-16.	Motorola MC68030 Decode/Control, Details of RP1, RP2, and RP3	D-23
Figure D-17.	Motorola MC68030 Decode/Control, Details of U11, U12, U13, and U30	D-24
Figure D-18.	8K × 8 SRAM, Details of U15, U16, U17, and U18	D-25
Figure D-19.	Motorola MC68030 Decode/Control, Details of U3, and U37	D-27
Figure D-20.	8K × 8 DP-SRAM, Details of U14, and U19	D-28
Figure D-21.	FIFO Logic, Details of U23, U24, U25, and U26	D-29
Figure D-22.	8K × 8 DP-SRAM, Details of U20	D-31
Figure D-23.	FIFO Logic, Details of U21	D-32
Figure D-24.	FIFO Logic DP-SRAM, Details of U22	D-33
Figure D-25.	FIFO Logic, Details of U14	D-34
Figure D-26.	TMS34082, Details of U38	D34
Figure D-27.	TMS34082, Details of U28	D-35
Figure D-28.	TMS34082, Details of U28	D-36
Figure D-29.	AT-Bus Connector	D-37
Figure D-30.	Capacitors	D-38
Figure E-1.	UWGSP3 Software Architecture	. E-6
Figure E-2.	UWGSP3 Software Architecture	E-10
Figure E-3.	Lowpass Filter Specification Window	E-11
Figure E-4.	Image Load (left) and Virtual Frame Buffer (right) Windows	E-12
Figure F-1.	System Architecture	. F-5
Figure F-2.	System Memory Map	. F-6
Figure F-3.	PE Architecture	. F-7
Figure F-4.	LAD Bus Controller Architecture	. F-7
Figure F-5.	Parallel Jaccobi Updating on a Systolic Architecture	F-12

Figure F-6.	Matrix Multiplication Performance on 10-Processor Systems	F-14
Figure F-7.	28 × 128 Matrix Multiplication on P-Processor Systems	F-14
Figure F-8.	QRD Performance on 10-Processor Systems	F-16
Figure F–9.	28 × 128 QRD on P-Processor Systems	F-16
Figure F-10.	SVD Performance on 8-Processor Systems	F-17
Figure F-11.	48 × 48 SVD on P-Processor Systems	F-18

Tables

Table 1-1.	TMS34082 Integer Benchmark Timings 1-3
Table 1-2.	TMS34082 Floating-Point Benchmark Timings1-3
Table 1-3.	Description of the Benchmarks Used 1-3
Table 1-4.	Applications for the TMS34082 1-9
Table 1-5.	TMS34082 Product Information 1-21
Table 2-1.	Pin Assignments (PGA Package) 2-3
Table 2–2.	Alphabetical Listing — Pin Assignments (PGA Package)
Table 2–3.	LAD Bus Signals
Table 2–4.	MSD Bus Signals 2-7
Table 2–5.	Clock and Control Signals 2-9
Table 2–6.	Emulation Control Signals 2-9
Table 2–7.	Power and N/C Signals
Table 3–1.	Floating-Point Number Representations 3-6
Table 4-1.	MSD Bus Control Signals 4-5
Table 4-2.	Memory Operations on MSD 4-5
Table 4–3.	Internal Registers 4-10
Table 4-4.	Configuration Register Definition 4-14
Table 4–5.	Pipeline Settings 4-17
Table 4–6.	Handling Wrapped Multiplier Outputs 4-18
Table 4–7.	Data Ordering for Loads/Stores 4-18
Table 4–8.	Rounding Modes 4-19
Table 4–9.	Status Register Definition 4-20
Table 4–10.	Signal States During Reset 4-32
Table 4-11.	Test Modes 4-33
Table 4–12.	Test Pins for Normal Operation 4-34
Table 4–13.	Instruction Register Opcodes 4-35
Table 4–14.	Boundary Scan Register Enable Bits 4-35
Table 5-1.	Recommended TMS34082 Pin Connections 5-3
Table 5–2.	Bus Cycle Completion Conditions 5-13
Table 5–3.	Bit Definitions for TMS34020 Status Check Command

Table 5–4.	Parameters Used for Calculating SRAM Speed 5-25
Table 6-1.	Pin Connections 6-2
Table 7-1.	Internal ROM Routines (for Mode 0 FPU Operations)
Table 7–2.	Coprocessor IDs
Table 7–3.	Addressing Modes
Table 7-4.	Operand Types
Table 8–1.	Cycle Counts for External Instructions 8-9
Table 8–2.	Bit Definitions for External Instructions 8-14
Table D-1.	Performance Comparison Chart D-13
Table D-2.	System Information — Parts List D-14
Table D-3.	$8\mathrm{K}\times8$ SRAM DP-SRAM, Detail Pin Assignments for U15, U16, U17, and U18 . D-26
Table D-4.	FIFO Logic, Details of Pin Assignments for U23, U24, U25, and U26 D-30
Table F-1.	Distributed FFT Performance Results F-15
Table F-2.	Pipelined FFT Performance Results for Real-Time Signal and Image Processing F-17

Examples

Example 5-1.	Using the Status Check Command	5-14
Example 5–2.	Saving and Restoring the TMS34082 Machine State	5-16
Example 5-3.	Multiplying Two 3 × 3 Matrices	5-18
Example 5-4.	Instructions for a 3 × 3 by 3 × 3 Matrix Multiply	5-19
Example 5-5.	Assembler Source for Double-Precision Multiply	5-20
Example 5-6.	Assembler Source for Single-Precision Add	5-20
Example 5–7.	TMS34020 Assembler Listing for 3 \times 3 by 3 \times 3 Matrix Multiply	5-29
Example 58.	TMS34082 Assembler Listing for 3 × 3 by 3 × 3 Matrix Multiply	5-30
Example 5-9.	Assembler Code for Multiple TMS34082s	5-38

Chapter 1

Overview of the TMS34082

The Texas Instruments TMS34082 Graphics Floating-Point Processor is designed for your advanced numeric applications. This high-performance device offers an outstanding price/performance ratio, flexibility, and ease of use with TI's development tools. The TMS34082 acts as either a tightly coupled coprocessor for the TMS34020 Graphics System Processor (GSP), as an independent processor, or as a coprocessor to another host.

By integrating a 64-bit IEEE Floating-Point Unit (FPU) with a modified Harvard architecture microprocessor and multi-port register files onto a single device, the TMS34082 can sustain exceptionally high internal throughput rates. All internal data paths are 64 bits wide. The RISC-like basic instruction set executes at a rate of one instruction per clock cycle. In addition, many popular numeric and graphics routines are contained directly on-chip.

The TMS34082 offers an attractive cost/performance ratio and supports the integration of graphics- and computation-intensive solutions in a single, low-cost device. The cost per MFLOP performance achieved by the TMS34082 makes it an ideal floating-point solution.

Texas Instruments supports the TMS34082 with a complete set of PC-based hardware and software development tools, including an easy-to-use simulator, a TMS34020/TMS34082 software development board, a TMS34082 demonstration board, a 3-D graphics library, an optimizing C compiler, a macro-assembler, and software libraries.

1.1 TMS34082 Key Features

High-performance floating-point RISC processor optimized for graphics

Two operating modes:

Floating-point coprocessor for the TMS34020 Graphics System Processor Independent floating-point processor

Direct connection to TMS34020 coprocessor interface

Direct extension to the TMS34020 instruction set Multiple TMS34082 capability

Fast instruction cycle time:

TMS34082-40...50-ns coprocessor mode, 50-ns host-independent mode TMS34082-32...62.5-ns coprocessor mode, 60-ns host-independent mode

Sustained data transfer rates of 160M bytes/second (TMS34082-40)

Sequencer executes internal or user-programmed instructions

Twenty-two 64-bit data registers

Comprehensive floating-point and integer instruction set

Internal programs for vector, matrix, and 3-D graphics operations

Full IEEE Std 754-1985 compatibility:

Addition, subtraction, multiplication, and comparison Division and square root

Selectable data formats:

32-bit integer 32-bit single-precision floating-point 64-bit double-precision floating-point

External memory addressing capability:

Program storage (up to 64K words) Data storage (up to 64K words)

0.8-µm EPIC™ CMOS technology

High-performance Low power (<1.5 W)

1.2 Performance Benchmarks

Tables 1–1 and 1–2 show benchmark timings. Table 1–3 describes the benchmarks selected to show TMS34082 performance.

Table 1–1. TMS34082 Integer Benchmark Timings[†]

Davida		Integer	
Benchmark	Units of Measure	TMS34082A-32	TMS34082A-40
MIPS Equivalents	MIPS	32	40
Dhrystones	Dhrystones/second	10,240	12,800

Table 1-2. TMS34082 Floating-Point Benchmark Timings[†]

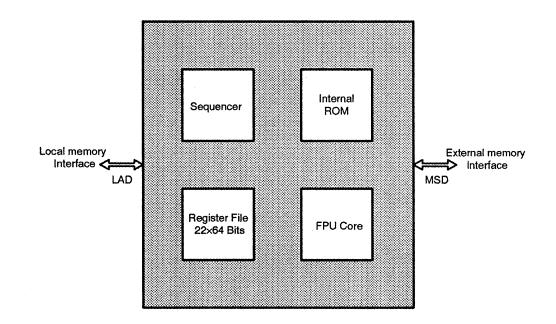
Benchmark	Units of Measure	Single-Precision		Double-Precision	
		TMS34082A-32	TMS34082A-40	TMS34082A-32	TMS34082A-40
Peak MFLOPS	MFLOPS	32	40	16	20
Linpack	MFLOPS	11.0	13.7	6.3	7.9
Whetstones	MWhetstones/second	7.9	9.9	4.6	5.7

[†] Based on actual measured system performance.

Table 1-3. Description of the Benchmarks Used[‡]

Benchmark	Operations Tested	Where Applicable
Linpack	Floating-point and integer array manipulation, including Gaussian elimination, vector dot products, and matrix multiplication	Dense systems of linear equations with array manipulation
Whetstones	Mathematical operations: integer, floating-point, and trigonometric operations	Engineering and scientific computing applications
Dhrystones	Enumeration, record and pointer manipulation, and integer operations	Systems programming applications

‡ Reference: Hinnant, David F., "What Makes a Good Benchmark?", MIPS, September, 1989, pp. 102-103.


1.3 TMS34082 General Description

The TMS34082 is a high-speed floating-point processor implemented in the Texas Instruments advanced 0.8 μ m CMOS technology. On a single chip, the TMS34082 combines a 16-bit sequencer and a three-operand 64-bit FPU (source A, source B, destination) with twenty-two 64-bit data registers. The data registers are organized into two banks of 10 registers each, with two registers for internal feedback. In addition, an instruction register to control FPU execution, a status register to retain the most recent FPU status results, eight control registers, and a two-register stack are provided. The key architectural elements are shown in Figure 1–1.

The ALU and the multiplier are closely coupled and work in parallel to perform sums of products and products of sums. During multiply/accumulate operations, both the ALU and the multiplier are active, and the registers in the FPU core can be used to feed back products and accumulate sums without tying up locations in register banks A and B.

Data or code may be transferred between the LAD and MSD ports at the rate of one 32-bit word per clock cycle with a one clock latency. That comes out to 1.28 billion bits/second. This provides sufficient bandwidth to quickly transfer vector or scalar arrays into or out of external memories. Up to 512 words may be transferred with a single memory move instruction.

Figure 1-1. TMS34082 High-Level Block Diagram

The TMS34082 complies fully with IEEE Std 754-1985, the industry standard for binary floating-point formats. Floating-point operands can be either singleor double-precision. In addition to floating-point operations, the TMS34082 performs 32-bit integer arithmetic, logical comparisons, and shifts. Integer operations may be performed on 32-bit 2s complement or unsigned operands. Floating-point to integer and integer to floating-point conversions are also available.

The comprehensive RISC-like instruction set eliminates the need for complex CISC-type instructions or wide microcoded instruction words. By programming the TMS34082 at the simplest level, operations are customized for each application and most instructions execute in one clock cycle. Divide and square root instructions are ideal for numeric processing and graphics rendering, such as ray tracing routines. Using dedicated hardware and patented algorithms, the TMS34082 calculates a 64-bit double-precision divide or square root result in only 13 or 16 clock cycles, respectively.

In a single clock cycle, two single-precision or integer operands may:

- 1) Be read from the register file
- 2) Be run through the ALU and/or multiplier
- 3) Have result placed back into the register file

This is accomplished with both the internal pipeline and output registers disabled. Double-precision multiplies take two clock cycles to complete. Such low latencies simplify writing assembly language code, eliminating the problem of data coherency in a long pipeline. Refilling or flushing the instruction pipeline is fast, also.

An internal ROM includes many commonly used matrix, graphics, and vector routines as described below. With the exception of MIN-MAX and compare operations, these routines are constructed directly from the TMS34082's basic instruction set. The internal routines include:

Matrix operations consisting of 1×3 , 3×3 , 1×4 , and 4×4 matrix multiplies

Graphics routines such as backface testing, clipping, 2-D and 3-D compares, linear interpolation, 1-D and 2-D MIN-MAX, viewport scaling and conversion, cubic splines, and polygon elimination

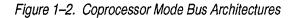
Vector operations including add, subtract, magnitude, scaling, dot product, cross product, normalization, and reflection

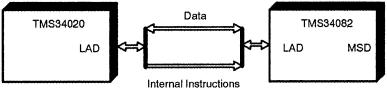
Additional routines for 3×3 convolution, multiply/accumulate, and polynomial expansion

When used with the TMS34020, the TMS34082 operates in coprocessor mode. The TMS34020 can control multiple TMS34082 coprocessors without any additional glue logic or buffering. The clock and control signals are generated directly by the TMS34020. You can use external memory to store subroutines as well as data for those subroutines. See Chapter 5 for additional information.

When used alone or with processors other than the TMS34020, the TMS34082 functions in host-independent mode. The TMS34082 is fully programmable and can interface to other processors (such as a RISC, 80x86, or Motorola MC680x0 processor) or floating-point subsystems through its two 32-bit bidirectional buses. Chapter 6 covers this mode in greater detail.

Other features include:


Support of common microprocessor addressing modes (register, direct, indirect, postincrement, immediate)


A fully synchronous, on-chip, direct memory interface to SRAMs/ EPROMs with no glue logic and to DRAMs/VRAMs with minimal glue logic

Fully user-programmable hardware and software realtime interrupts.

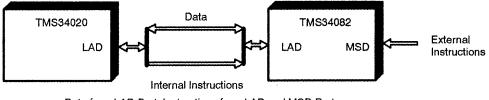
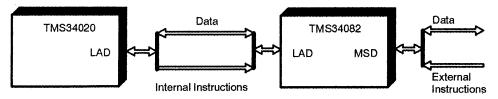
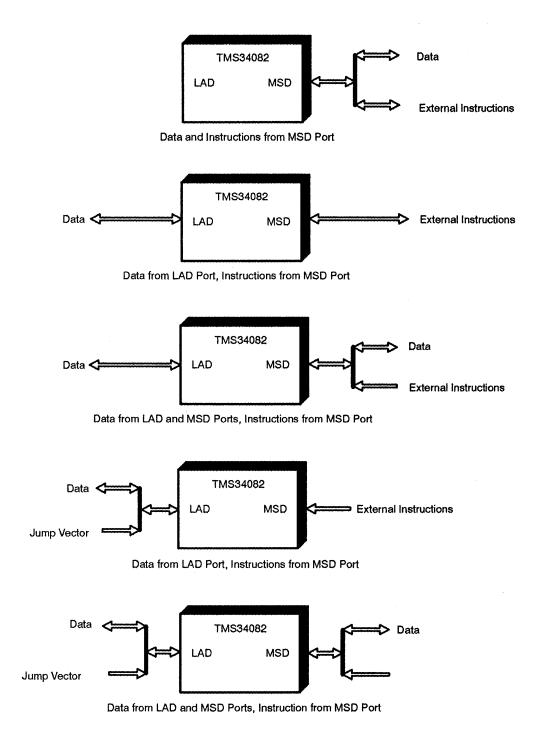

The TMS34082 may implement a von Neumann architecture, a modified Harvard architecture, or a mixture of both. In a von Neumann architecture, data and instruction memories both reside on the same bus. However, a Harvard architecture has separate data and instruction sources so that both may be fetched in parallel. External data may originate from either the LAD or MSD ports. External instructions may only come from the MSD port, but the LAD port can be used to input jump entries into the MSD port memory.

Figure 1–2 shows possible TMS34082 bus architectures for coprocessor mode. In addition, Figure 1–3 shows several example architectures for host-independent mode.

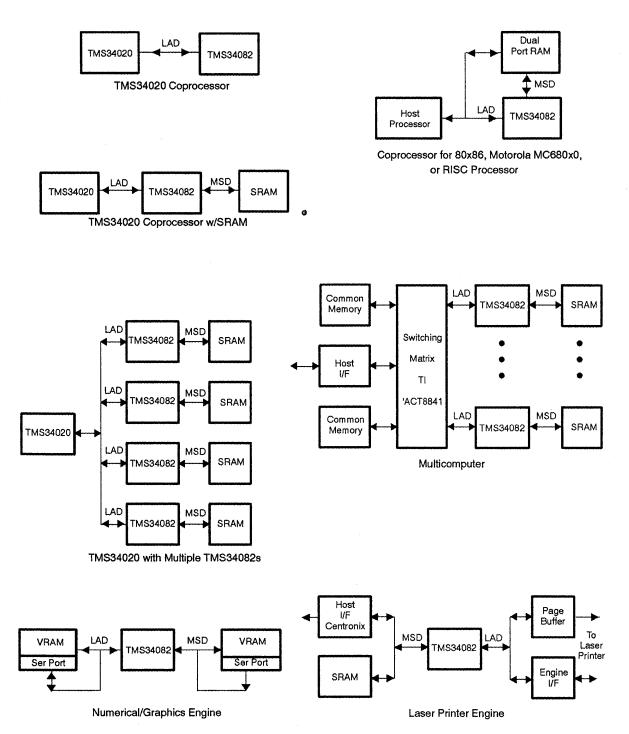




Data from LAD Port, Instructions from LAD and MSD Port

Data from LAD and MSD Ports, Instructions from LAD and MSD Port

Figure 1–3. Host-Independent Mode Bus Architectures


1.4 Typical Applications

The 64-bit power and exceptional flexibility of the TMS34082 meet system computing requirements across the performance spectrum. These range from workstations to personal computers to embedded controllers. Table 1–4 lists typical end uses for this device. Figure 1–4 shows several examples of systems using the TMS34082.

Numeric Processor **Graphics Processor** CAD/CAE workstations 3-D graphics processing UNIX/DOS accelerator for RISC/CISC machines Graphics workstations/super workstations Scientific computing Image processing Personal computers Laser printers Graphics rendering engines Vector processing Multiprocessing architectures Imaging compression/decompression, JPEG Digital signal processing Flight simulators High-speed protocol engines Electronic publishing Array processing Computer animation

Table 1–4. Applications for the TMS34082

Overview of the TMS34082

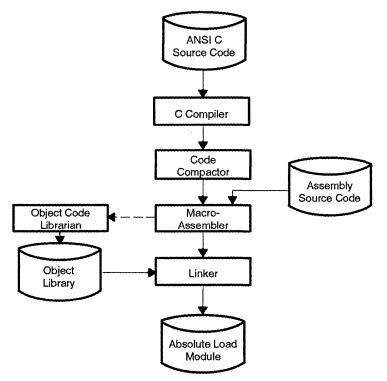
1.5 Development Tools

1.5.1 TMS34082 Software Tool Kit

The TMS34082 Software Tool Kit can be used to develop code for host-independent mode applications or for external subroutines in coprocessor mode. The tool kit includes:

An ANSI standard, optimizing C compiler

A macro-assembler


A linker

An object code librarian

A functional simulator

The C compiler supports common subexpression elimination. A peephole optimizer is also provided to further enhance the execution speed and the code size of the source program. Inline assembly code can be incorporated into the C program for time-critical and hardware-dependent code sections. The object librarian allows the storage of frequently used functions in libraries for easy access (see Figure 1–5).

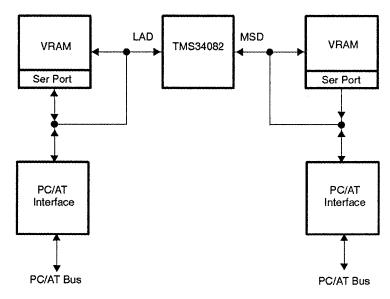
Figure 1–5. Overview of TMS34082 Code-Generation Tools

Included with the TMS34082 tool kit are highly optimized transcendental assembly language routines for sine, cosine, tangent, arc sine, arc cosine, and arc tangent. These are accurate to the least significant bit.

The TMS34082 tool kit will execute on an IBM PC/AT or compatible machine with MS-DOS (or PC-DOS) 2.0 or higher, 640K of memory, one floppy drive, and one hard drive. An 80287/80387 math coprocessor is required for the simulator. A demonstration version of the Software Tool Kit is also available.

The interactive simulator displays the entire machine state of the TMS34082 (such as registers, address counter, stack, status register) and works with the C compiler/assembler/linker object files. The simulator is menu driven. During program execution, breakpoints may be set and the trace memory displayed. The cycle counting feature is useful when evaluating performance of the processor or during code optimization.

The TMS340 Family compiler and assembler, which support both the TMS34020 and TMS34082, are described in subsection 1.6.3 of this document.


1.5.2 TMS34082 3-D Graphics Library

The TMS34082 3-D Graphics Library contains an extensive array of C-callable functions including polygon clipping, shading, and vector and matrix operations. The library is TIGA-compatible and can also run as a non-TIGA product, giving the user portability and flexibility. The task of porting graphics standard to the TMS34020/TMS34082 is greatly simplified with the variety of functions in the library. The library also includes a 3-D graphics pipeline that can shorten the development time for application programs.

1.5.3 TMS34082 Demonstration Board

The TMS34082 Demonstration Board is a 40-MFLOP parallel processor with up to 3M bytes of on-board memory. This powerful board allows you to evaluate performance and write code for the TMS34082 using the software tool kit, develop algorithm implementations, and integrate the software modules with the hardware. In addition, programs are executed directly on the TMS34082, resulting in much faster execution times than a software simulator. The board plugs into a PC/ATTM 32-bit card slot. Figure 1–6 is a block diagram of the demonstration board.

Figure 1–6. TMS34082 Demonstration Board Block Diagram

Built on a PC/AT card occupying a single slot, the TMS34082 Demonstration Board features:

TMS34082-40 Floating-Point Processor (operating in host-independent mode)

20 MHz processor clock speed, 7.9 MFLOPs double-precision Linpack

Fully programmable: von Neumann or modified Harvard architectures or both

2M-bytes VRAM memory on LAD port accessible though PC/AT bus interface

256K-bytes VRAM memory on MSD port accessible through PC/AT bus interface, expandable up to 1M bytes of VRAM memory

1.6 TMS34020 Graphics System Processor

The TMS34020 Graphics System Processor (GSP) is an advanced 32-bit microprocessor optimized for graphic display systems. The TMS34020 is a member of the TMS340 family of computer graphics products from Texas Instruments.

The TMS34020 provides high-performance cost-effective solutions for applications that require efficient data manipulations in a graphics environment. The TMS34020 can be configured to serve in a host-based, standalone, or multiprocessing system. It has both host and multiprocessor interfaces to facilitate implementation of multiple TMS34020 systems.

The TMS34020 is supported by a full set of hardware and software development tools, including an optimizing C compiler, assembler, software libraries, a PC-based development board on a PC-based emulator. The TMS340 Family Code Generation Tools may be used to develop code for the TMS34082 in coprocessor mode. In addition, the TMS34020 is fully compatible with and supported by the Texas Instruments Graphics Architecture (TIGA).

1.6.1 TMS34020 Key Features

Fully programmable 32-bit general-purpose processor with 512M-byte linear address range (bit addressable)

Second generation graphics system processor:

Object code compatible with the TMS34010

Enhanced instruction set

Optimized graphics instructions

Direct coprocessor interface to TMS34082 Floating-Point Processor

On-chip peripheral features include:

Programmable CRT control

Direct DRAM/VRAM interface

Direct communication with an external (host) processor

Communication with multiple TMS34020s

Functional expansion with the coprocessor interface

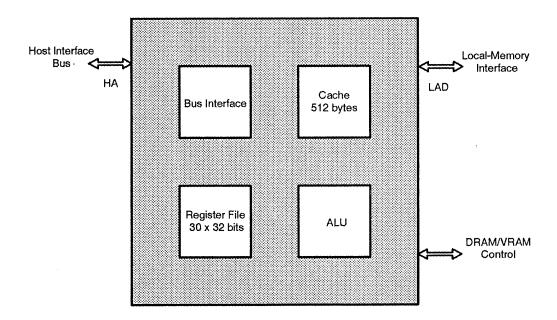
Automatic CRT display refresh

Instruction set supports special graphics functions such as pixel processing, XY addressing, and window clip/hit detection

Programmable 1-,2-,4-,8-,16-, or 32-bit pixel size

16 Boolean and 6 arithmetic pixel processing options (raster-ops)

30 general-purpose 32-bit registers


512-byte LRU on-chip instruction cache

General Description

The TMS340 family from Texas Instruments combines the best features of general-purpose microprocessors and graphics controllers to create a range of cost-effective, flexible, powerful graphics systems. The key features of the TMS340 family are speed, a high degree of programmability, and efficient manipulation of hardware-supported data types such as pixels and 2-dimensional pixel arrays.

With a built-in instruction cache, the ability to simultaneously access memory and registers, and an instruction set that enhances raster graphics operations, the TMS34020 provides programmable control of the CRT interface as well as the memory interface (both standard DRAM and multiport RAM). The 4G-bit (512M-byte) physical address space is completely bit addressable on bit boundaries using variable width data fields (1 to 32 bits). Figure 1–7 is a TMS34020 high-level block diagram.

Figure 1-7. TMS34020 High-Level Block Diagram

The TMS34020 unique memory interface speeds performance of tasks such as bit alignment and masking while supporting advanced DRAM access modes. The 32-bit architectures supplies the large blocks of contiguously-addressable memory that are necessary in graphics applications.

Systems designed with the TMS34020 can utilize VRAM technology to facilitate applications such as high-bandwidth frame buffers. This circumvents the bottleneck often encountered when using conventional DRAMs in graphics systems.

The TMS34020 instruction set includes a full complement of general-purpose instructions, as well as graphics functions, that can be used to construct efficient high-level instructions. The instructions support arithmetic and Boolean operations, data moves, conditional jumps, and subroutine calls and returns.

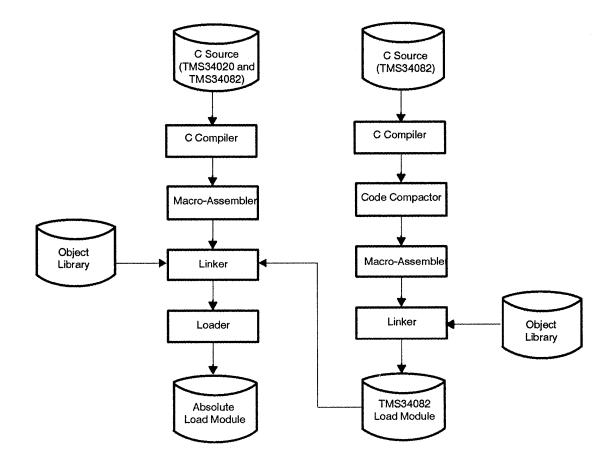
The TMS34020 architecture supports a variety of pixel sizes, frame buffer sizes, and screen sizes. On-chip functions have been carefully selected so that no functions tie the TMS34020 to a particular display resolution. This enhances the portability of graphics software and allows the TMS34020 to adapt to graphics standards such as MIT's X-Windows[™], CGI/CGM, GKS, NAPLPS, PHIGS, and evolving industry standards.

Texas Instruments offers a wide variety of system solutions. The simplest TMS340 graphics system consists of the TMS34020 alone. Floating-point computations are performed in software using IEEE floating-point libraries. Adding a TMS34082 appears merely as an extension to the TMS34020 instruction set. The same calculations run much faster in dedicated hardware rather than software.

Adding external memory to the TMS34082 allows user-programmed subroutines, such as shading or contour fitting, to execute while the TMS34020 is performing other functions. Since the data for the subroutines is also in external memory, the TMS34082 is effectively decoupled from the TMS34020. The TMS34020 can poll the TMS34082 to see if the subroutine has finished. The highest performance TMS340 graphics solutions contain one or more TMS34020 along with multiple TMS34082s in a parallel processing environment. The TMS34020 acts as the display manager and also orchestrates tasks for the floating-point coprocessors. Jobs and/or data may be loaded into external memory of one TMS34082 while other TMS34082s are still executing.

1.6.2 TMS34020 Software Tools

Texas Instruments offers extensive development support for the TMS340 graphics family. Software tools for the TMS34020 also comprehend the TMS34082. The TMS340 Family software tools include:

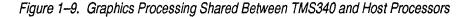

An optimizing C compiler An assembler An archiver for building object libraries A linker A loader for TMS34020 and TMS34082 absolute load modules A C source debugger

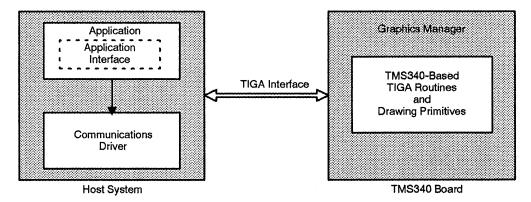
The compiler accepts programs written in C language. It outputs assembly language source code that is then processed by the assembler to convert the mnemonics to object code. The compiler and assembler generate efficient TMS34082 code in the form of internal instructions. The C compiler allows time-critical routines written in assembly language to be called from within the C program. The converse is also available; assembly routines may call C functions.

If external TMS34082 memory is present, the TMS34082 Software Tool Kit must be used to generate the subroutine code in the form of external instructions. When the TMS34082 load module has been generated, the TMS34020 loader can download both load modules as shown in Figure 1–8.

The TMS340 Family C Source Debugger supports both the TMS34020 and the TMS34082 in coprocessor mode. Other debugging tools for the TMS34082 in coprocessor and host-independent modes are available from third-party vendors.

Figure 1-8. TMS34020 and TMS34082 Software Tools

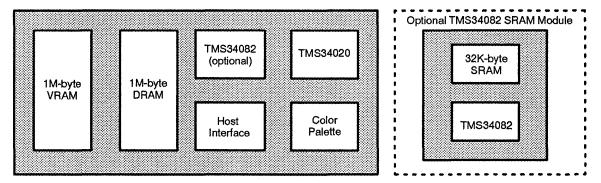



TMS340 Family Software Code Generation Tools (used for generating TMS34020 code and TMS34082 internal instructions)

TMS34082 Software Tool Kit (generates TMS34082 code for external memory)

1.6.3 TIGA™ Graphics Interface

The Texas Instruments Graphics Architecture (TIGA) is a software interface standard for the TMS340 family of graphics system processors. TIGA enhances the performance of MS-DOS-based PCs that contain a TMS34020 or TMS34020 (and an optional TMS34082) and an 8088/86 or 80286/80386 host microprocessor by optimizing communications between the graphics processor and the host processor. The TIGA interface allows the host and graphics processors to share execution of the application, as shown in Figure 1–9.



1.6.4 TMS34020 Software Development Board

The TMS34020 Software Development Board (SDB20) is a high-performance PC/AT bus graphics card. It allows you to write applications software for the TMS34020 and its companion floating-point processor, the TMS34082. The board also demonstrates the simplicity of hardware design using the TMS34020 and TMS34082 for high-performance bit-mapped graphics displays.

An optional upgrade kit, the TMS34082 SRAM Upgrade Kit, contains a business card sized board with the TMS34082 and 32K bytes of SRAM, plus software and documentation. The board plugs into the TMS34082 socket presently existing on the SDB20.

Figure 1–10. TMS34020 SDB Block Diagram

Key features of the TMS34020 SDB include:

1M-byte VRAM organized as $256K \times 32$ bits

1M-byte DRAM organized as 256K × 32 bits

TMS34082 Floating-Point Coprocessor (optional)

VGA support for 640×480 pixel resolution

Software selectable resolutions:

 1024×768 by 4 or 8 bits per pixel

 640×480 by 4 or 8 bits per pixel

 640×480 VGA mode

Software configurable base address over a full 16M-byte range

TMS34020 emulation support

1.7 TMS34082 Ordering Information

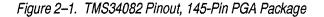
For the latest ordering and pricing information, please call your local TI field sales representative or authorized TI distributor. Table 1–5 summarizes the products available for the TMS34082.

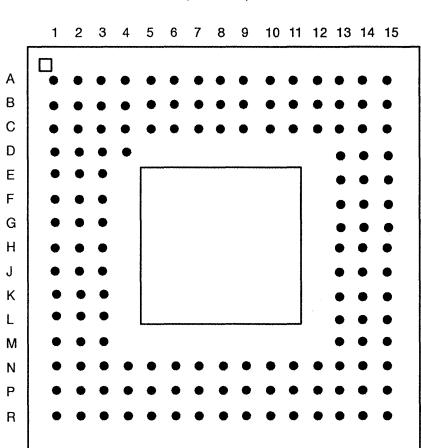
Table 1-5. TMS34082 Product Information

Туре	Description	Part Number
Silicon Devices	TMS34082A device, 32 MHz, 145-pin ceramic PGA package	TMS34082AGC-32
	TMS34082A device, 40 MHz, 145-pin ceramic PGA package	TMS34082AGC-40
Documentation	TMS34082A Data Sheet	SCGS001
	TMS34082 Designer's Handbook	SCGU004
Software	TMS34082 Demonstration Software Tool Kit	Contact TI
	TMS34082 Software Tool Kit	TMDS3440808201
	TMS34082 3-D Graphics Library	Contact TI
	TIGA Software Developer's Kit (includes the TMS340 Family Code Generation Tools and C Debugger for the PC)	TMS340SDK-PC
Hardware	TMS34020 Software Development Board (SDB20)	TMS3460120000
	TMS34082 SRAM Upgrade Kit	TMDS3481800-02

1.8 Technical Assistance

The Texas Instruments Datapath VLSI Products Systems Engineering group is a resource available to help you in the selection of TI's high-performance FPUs, such as the TMS34082 Graphics Floating-Point Processor. Located in Dallas, the group works directly with designers to provide ready answers to device-related questions and also prepares a variety of applications information. The phone number for the DVP Systems Engineering hotline is (214) 997-3970.


Chapter 2


Pinout and Pin Descriptions

This chapter illustrates the TMS34082 pinouts and provides detailed descriptions of the TMS34082 signals. For mechanical dimensions of the TMS34082A packages, please refer to the data sheet in Appendix B. For mechanical dimensions of the SMJ34082A packages, please refer to the data sheet in Appendix C.

2.1 Pinout

The TMS34082A and the SMJ34082A are offered in a ceramic, 145-pin grid array (PGA) package (GC). Figure 2-1 shows the 145-pin PGA pinout.

(TOP VIEW)

Table 2–1. Pin Assignments (PGA Package)

	Pin		Pin		Pin		Pin		Pin		
GC#	Name	GC#	Name	GC#	Name	GC#	Name	GC#	Name		
A1	NC	B15	LAD27	F1	MSD10	K15	RDY	P2	NC		
A2	LAD1	C1	MSD4	F2	MSD9	L1	MSD18	P3	MSD29		
A3	LAD3	C2	MSD3	F3	Vcc	1.2	MSD21	P4	MSD31		
A4	LAD5	C3	MSD0	F13	CORDY	L3	MSD23	P5	MSA1		
A5	LAD8	C4	VSS	F14	ALTCH	L13	VSS	P6	MSA3		
A6	LAD9	C5	Vcc	F15	CAS	L14	CIDO	P7	MSA6		
A7	LAD11	C6	LAD6	G1	MSD13	L15	CID2	P8	MSA8		
A8	LAD12	C7	VSS	G2	MSD12	M1	MSD20	P9	MSA10		
A9	LAD13	C8	Vcc	G3	MSD11	M2	MSD24	P10	MSA13		
A10	LAD15	C9	VSS	G13	WE	МЗ	VSS	P11	MWR		
A11	LAD17	C10	Vcc	G14	EC1	M13	Vcc	P12	MOE		
A12	LAD19	C11	LAD21	G15	EC0	M14	LCLK1	P13	INTG		
A13	LAD22	C12	VSS	H1	MSD14	M15	LCLK2	P14	BUSFLT		
A14	LAD24	C13	LAD25	H2	TDO	N1	MSD22	P15	RAS		
A15	NC	C14	LAD26	H3	VSS	N2	MSD26	R1	NC		
B1	MSD1	C15	LAD29	H13	VSS	N3	Vcc	R2	MSD27		
B2	NC	D1	MSD6	H14	LOE	N4	MSD28	R3	MSD30		
B3	LAD0	D2	MSD5	H15	TDI	N5	Vss	R4	MSA0		
B4	LAD2	D3	MSD2	J1	MSD15	N6	Vcc	R5	MSA2		
B5	LAD4	D4	NC	J2	MSD16	N7	MSA5	R6	MSA4		
B6	LAD7	D13	Vcc	J3	Vcc	N8	VSS	R7	MSA7		
B7	LAD10	D14	LAD28	J13	CC	N9	Vcc	R8	TCK		
B8	TMS	D15	LAD31	J14	MASTER	N10	MSA14	R9	MSA9		
B9	LAD14	E1	MSD8	J15	CLK	N11	VSS	R10	MSA11		
B10	LAD16	E2	MSD7	K1	MSD17	N12	MAE	R11	MSA12		
B11	LAD18	E3	VSS	K2	MSD19	N13	LRDY	R12	MSA15		
B12	LAD20	E13	VSS	КЗ	V _{SS}	N14	SF	R13	DS/CS		
B13	LAD23	E14	LAD30	K13	CID1	N15	RESET	R14	MCE		
B14	NC	E15	COINT	K14	INTR	P1	MSD25	R15	NC		

Ρ	in	Pin		F	in	P	in		Pin
Name	GC#	Name	GC#	Name	GC#	Name	GC#	Name	GC#
ALTCH	F14	LAD14	B9	MSA3	P6	MSD16	J2	тск	R8
BUSFLT	P14	LAD15	A10	MSA4	R6	MSD17	K1	TDI	H15
CAS	F15	LAD16	B10	MSA5	N7	MSD18	L1	TDO	H2
CC	J13	LAD17	A11	MSA6	P7	MSD19	K2	TMS	B8
CIDO	L14	LAD18	B11	MSA7	R7	MSD20	M1	Vcc	C5
CID1	K13	LAD19	A12	MSA8	P8	MSD21	L2	Vcc	C8
CID2	L15	LAD20	B12	MSA9	R9	MSD22	N1	Vcc	C10
CLK	J15	LAD21	C11	MSA10	P9	MSD23	L3	Vcc	D13
COINT	E15	LAD22	A13	MSA11	R10	MSD24	M2	VCC	F3
CORDY	F13	LAD23	B13	MSA12	R11	MSD25	P1	Vcc	J3
DS/CS	R13	LAD24	A14	MSA13	P10	MSD26	N2	Vcc	M13
EC0	G15	LAD25	C13	MSA14	N10	MSD27	R2	Vcc	N3
EC1	G14	LAD26	C14	MSA15	R12	MSD28	N4	Vcc	N6
INTG	P13	LAD27	B15	MSD0	C3	MSD29	P3	Vcc	N9
INTR	K14	LAD28	D14	MSD1	B1	MSD30	R3	VSS	C4
LAD0	B3	LAD29	C15	MSD2	D3	MSD31	P4	VSS	C7
LAD1	A2	LAD30	E14	MSD3	C2	MWR	P11	VSS	C9
LAD2	B4	LAD31	D15	MSD4	C1	NC	A1	VSS	C12
LAD3	A3	LCLK1	M14	MSD5	D2	NC	A15	VSS	E3
LAD4	B5	LCLK2	M15	MSD6	D1	NC	B2	Vss	E13
LAD5	A4	LOE	H14	MSD7	E2	NC	B14	VSS	H3
LAD6	C6	LRDY	N13	MSD8	E1	NC	D4	VSS	H13
LAD7	B6	MAE	N12	MSD9	F2	NC	P2	VSS	К3
LAD8	A5	MASTER	J14	MSD10	F1	NC	R1	Vss	L13
LAD9	A6	MCE	R14	MSD11	G3	NC	R15	VSS	M3
LAD10	B7	MOE	P12	MSD12	G2	RAS	P15	Vss	N5
LAD11	A7	MSA0	R4	MSD13	G1	RDY	K15	Vss	N8
LAD12	A8	MSA1	P5	MSD14	H1	RESET	N15	Vss	N11
LAD13	A9	MSA2	R5	MSD15	J1	SF	N14	WE	G13

Table 2-2. Alphabetical Listing --- Pin Assignments (PGA Package)

2.2 Pin Functional Descriptions

The following tables contain the TMS34082 signal descriptions grouped by their functions.

Table 2-3. LAD Bus Signals

Pi	n		
Name	No.	1/0/Z	Description
ALTCH	ALTCH F14	1	Address Latch, active low. In coprocessor mode, falling edge of ALTCH latches instruction and status present on the LAD bidirectional bus (LAD31-0).
	, , , ,	0	In host-independent mode, ALTCH is an address output write strobe for memory accesses on LAD31-0.
BUSFLT	P14	I	Bus Fault . In coprocessor mode when high, indicates a data fault on the LAD bus (LAD31-0) during current bus cycle which causes TMS34082 not to capture the current data on LAD bus. Tied low if not used. Not used in host-independent mode.
CAS	F15	1	Column Address Strobe , active low. In the coprocessor mode, causes TMS34082 to latch LAD bus data on CAS low-to-high transition if LRDY was high and BUSFLT was low at the previous LCLK2 rising edge.
		O/Z	In host-independent mode, this signal is the read strobe output.
LAD0	B3		
LAD1	A2	1	
LAD2	B4		
LAD3	A3		
LAD4	B5		
LAD5	A4		
LAD6	C6		
LAD7	B6		
LAD8	A5		
LAD9	A6		
LAD10	B7		
LAD11	A7		Local Address and Data Bus. In coprocessor mode, used by TMS34020 to input instructions
LAD12	A8	1/0/Z	and data operands to TMS34082, and used by TMS34082 to output results. In
LAD13	A9		host-independent mode, used by the TMS34082 for address output and data I/O.
LAD14	B9		
LAD15	A10		
LAD16	B10		
LAD17	A11		
LAD18	B11		
LAD19	A12		
LAD20	B12		
LAD21	C11]	
LAD22	A13		
LAD23	B13		
LAD24	A14	L	

Pi	n	107	Description
Name	No.	I/O/Z	Description
LAD25	C13		
LAD26	C14		
LAD27	B15		Local Address and Data Bus. In coprocessor mode, used by TMS34020 to input instructions
LAD28	D14	1/0/Z	and data operands to TMS34082, and used by TMS34082 to output results. In host-independent
LAD29	C15		mode, used by the TMS34082 for address output and data I/O.
LAD30	E14		
LAD31	D15		
LOE	H14	ł	Local Bus Output Enable , active low. Enables the local bus (LAD31-0) to be driven at the proper times when low. In addition, during the host-independent mode when LADCFG is low, does not affect ALTCH, CAS, WE, CORDY, or COINT. When LADCFG is high, ALTCH, COINT, and CORDY are not disabled by LOE high; CAS and WE are disabled.
LRDY	N13	I	Local Bus Data Ready. In coprocessor mode, LDRY high indicates that data is available on LAD bus. LRDY low indicates that the TMS34082 should not load data from LAD31-0. In host-independent mode, when LRDY goes low, the device is stalled until LRDY is set high again. Tied high if not used.
RAS	P15	1	Row Address Strobe , active low. In coprocessor mode this signal is high during all coprocessor instruction cycles. Not used in host-independent mode.
SF	N14	I	Special Function . When high, indicates the LAD bus input is an instruction or data from TMS34020 registers. When low, indicates the LAD input is a data operand from memory. Not used in host-independent mode.
WE	G13	1	Write Enable, active low. In coprocessor mode, the LAD bus write strobe from the TMS34020 to enable a write to or from the TMS34082 LAD bus.
		O/Z	In host-independent mode, WE is the TMS34082 data write strobe.

Table 2–3.LAD Bus Signals (Continued)

Pin			
Name	No.	I/O/Z	Description
DS/CS	R13	ο	Data Space/Code Space Select . When MEMCF is low and DS/CS is low, selects program memory on MSD port. When MEMCFG is low and DS/CS is high, selects data memory on MSD port. When MEMCFG is high, DS/CS is memory chip select, active low.
MAE	N12	I	External Memory Address and Data Output Enable, active low. When this signal is low, the TMS34082 can output an address on MSA15-0 and data on MSD31-0. MAE high does not disable DS/CS, MCE, MWR, or MOE.
MCE	R14	0	Memory Chip Enable . When MEMCFG is low, active (low) indicates access to external memory on MSD31-0. When MEMCFG is high, MCE low is external code memory chip select.
MOE	P12	0	Memory Output Enable , active low. When low, enables output from external memory onto the MSD port.
MSA0	R4		0
MSA1	P5		
MSA2	R5		
MSA3	P6		
MSA4	R6		
MSA5	N7		
MSA6	P7		
MSA7	R7	o/z	Memory Address Bus. Addresses up to 64K words of external program memory or up to 64K
MSA8	P8		words of external data memory on the MSD port, depending on setting of DS/CS select.
MSA9	R9		
MSA10	P9		
MSA11	R10		
MSA12	R11		
MSA13	P10		
MSA14	N10		
MSA15	R12		

Table 2-4. MSD Bus Signals

Pi	Pin		Dens Indian
Name	No.	I/O/Z	Description
MSD0 MSD1 MSD2 MSD3 MSD4 MSD5 MSD6 MSD7 MSD8 MSD7 MSD10 MSD10 MSD10 MSD11 MSD12 MSD13 MSD14 MSD13 MSD14 MSD15 MSD16 MSD17 MSD18 MSD20 MSD21 MSD22 MSD23 MSD24 MSD25 MSD25 MSD25 MSD26 MSD27 MSD28 MSD29 MSD30 MSD31	C3 B1 D3 C2 C1 D D1 E2 F1 G3 C3 H1 J2 K1 L2 N1 S2 D1 E2 F1 G3 C3 H1 J2 K1 L2 N1 S2 F1 D2 E1 F2 F1 G3 C3 H1 J2 K1 D2 C1 D2 F1 D2 F1 D2 F1 D2 F1 D2 F1 D2 F1 D2 F1 D2 F1 D2 F1 D2 F1 D2 F1 D2 F1 D2 F1 D2 F1 D2 F1 D2 F1 D2 F1 D2 F1 D2 F1 F1 F1 G3 C2 F1 D2 F1 F1 F1 F1 G3 C2 F1 D2 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	I/O/Z	External Memory Data Bus. Used to read from or write to external data or program memory.
MWR	P11	0	Memory Write Enable. When low, data on MSD31-0 can be written to external program or data memory.

MSD Bus Signals (Continued)

Pi	n		
Name	No.	I∕O/Z	Description
CC	J13	1	Condition Code Input. May be used as an external conditional input for branch conditions.
CID0 CID1 CID2	L14 K13 L15	I	Coprocessor ID . Used to set a coprocessor ID so that TMS34020 Graphics System Processor controlling multiple TMS34082s can designate which coprocessor is being selected by the current instruction. Tied low in host-independent mode.
CLK	J15	1	System Clock in host-independent mode. Tied low in coprocessor mode.
COINT	E15	ο	Coprocessor Interrupt Request , active low. In coprocessor mode, signals an exception not masked out in the configuration register. Remains low until the status register is read. In host-independent mode, user programmable I/O when LADCFG is low. Designates bus cycle boundaries on LAD31-0 when LADCFG is high.
CORDY	F13	ο	Coprocessor Ready . In coprocessor mode, if the TMS34020 sends an instruction before the TMS34082 has completed a previous instruction, this signal goes low to indicate that the TMS34020 should wait. User-programmable in host-independent mode.
INTG	P13	0	Interrupt Grant. This signal is set high to acknowledge an interrupt request input in host-independent mode.
INTR	K14	1	Interrupt Request, active low. Causes call to subroutine address in interrupt vector register in host-independent mode. Tied high in coprocessor mode.
LCLK1 LCLK2	M14 M15	I	Local Clock 1 and 2, generated by the TMS34020, 90 degrees out of phase, to provide timing inputs to TMS34082 in coprocessor mode. Tied low in host-independent mode.
MSTR	J14	ļ	Coprocessor/Host-Independent Mode Select . When low, puts the TMS34082 in coprocessor mode. When high, puts the TMS34082 in host-independent mode.
RDY	K15	I	Ready. When RDY is low, causes a nondestructive stall of sequencer and floating-point operations. All internal registers and status in the FPU core are preserved. Also, no output lines will change state.
RESET	N15	I	Reset , active low. Resets sequencer output and clears pipeline registers, internal states, status, and exception disable registers in FPU core. Other registers are unaffected.

Table 2–5. Clock and Control Signals

Table 2–6. Emulation Control Signals

P	Pin					
Name	No.	1/0/Z	Description			
EC0 EC1	G14 G15	I	Emulator Mode Control and Test. Tied high for normal operation.			
тск	R8	I	Test Clock for JTAG 4-wire boundary scan. Tied low for normal operation.			
TDI	H15	1	Test Data Input for JTAG 4-wire boundary scan. May be left floating.			
TDO	H2	0	Test Data Output for JTAG 4-wire boundary scan.			
TMS	B8	1	Test Mode Select for JTAG 4-wire boundary scan. May be left floating.			

P	in	
Name	No.	Description
NC	A1	
NC	A15	
NC	B2	
NC	B14	No internal connection. These pins should be left floating.
NC	D4	
NC	P2	
NC	R1	
NC	R15	
Vcc	C5	
Vcc	C8	
Vcc	C10	
Vcc	D13	
Vcc	F3	
Vcc	JЗ	
Vcc	M13	5-V power supply. All pins must be connected and used.
Vcc	N3	
Vcc	N6	
Vcc	N9	
VSS	C4	
VSS	C7	
VSS	C9	
Vss	C12	
VSS	E3	
Vss	E13	
Vss	НЗ	Ground pins. All pins must be connected and used.
VSS	H13	
VSS	КЗ	
VSS	L13	
VSS	MЗ	
VSS	N5	
VSS	N8	
VSS	N11	

Table 2–7. Power and N/C Signals

Chapter 3

Data Formats

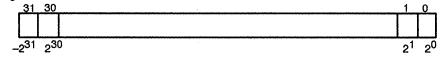
The TMS34082 accepts operands as either:

IEEE floating-point numbers (IEEE Standard 754-1985)

Unsigned 32-bit integers

32-bit 2s-complement signed integers

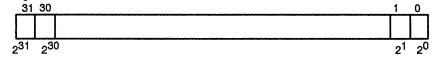
Floating-point operands may be either single-precision (32 bits) or double-precision (64 bits). All internal integer instructions use signed integer data formats.


3.1 Integer Formats

The TMS34082 recognizes two types of integers: signed and unsigned. Only one type may be used in a single instruction. Internal instructions use only signed integers.

3.1.1 Signed Integers

A signed integer is a 32-bit value in 2s-complement format, as shown below. The most significant bit is the sign bit; a 1 signifies a negative number. Signed integers can represent values from -2,147,438,648 to +2,147,438,647.


Figure 3–1. IEEE Signed Integer Format

3.1.2 Unsigned Integer

An unsigned integer is also a 32-bit value, but can only represent positive numbers. The range for unsigned integers is 0 to 4,294,967,295.

Figure 3–2. IEEE Unsigned Integer Format

3.2 Floating-Point Formats

IEEE formats for floating-point operands, both single- and double-precision, consist of three fields; the sign (s), the exponent (e), and the fraction (f), in that order. The most significant bit is the sign bit. The value of the mantissa contains a hidden bit, an implicit leading 1, as shown below:

1.fraction

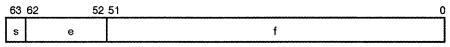
The representation of a normalized floating-point number is:

 $(-1)^{s} \times 1.f \times 2^{(e-bias)}$

The bias is a number added to the true exponent to ensure that the exponent (e) is always positive. The bias is 127 for single-precision or 1023 for double-precision. Further details of IEEE formats and exceptions are covered in the IEEE Standard for Binary Floating-Point Arithmetic, IEEE Standard 754-1985.

3.2.1 Single-Precision Floating-Point

Single-precision floating-point numbers are 32 bits long; the exponent field is 8 bits, and the fraction field is 23 bits. The exponent is biased by 127. Single precision can represent values from $\pm 2^{-126}$ to $\pm 2^{127} \times (2-2^{-23})$. That is approximately $\pm 1.2 \times 10^{-38}$ to $\pm 3.4 \times 10^{38}$. The format for a single-precision number is shown in Figure 3–3.


31	30	23	22 0	
s		e	f	

s: sign of fraction e: 8-bit exponent, biased by 127 (true exponent + 127) f: 23-bit fraction

3.2.2 Double-Precision Floating-Point

A double-precision floating-point number is a 64-bit value. The exponent field is 11 bits, biased by 1023, and the fraction field is 52 bits. The range for double-precision is $\pm 2^{-1022}$ to $\pm 2^{1023} \times (2-2^{-52})$, or approximately $\pm 2.2 \times 10^{-308}$ to $\pm 1.8 \times 10^{308}$.

Figure 3-4.	IEEE Double-Precision Format	
-------------	------------------------------	--

s: sign of fraction e: 11-bit exponent, biased by 1023 (true exponent + 1023) f: 52-bit fraction

3.2.3 Denormal and Wrapped Numbers

The TMS34082 also handles two other data formats that permit operations on very small floating-point numbers. Denormalized and wrapped floating-point numbers represent the same values, but in different formats. If very small values can be approximated by 0 in your application, you can set the Fast bit in the configuration register to force all denormal and wrapped inputs and outputs to 0.

The ALU accepts denormalized numbers, that is, floating-point numbers so small that they cannot be normalized. A denormalized number results from decrementing the biased exponent field to 0 before normalization is complete. A denormal has the form of a floating-point number with a 0 exponent, a nonzero fraction, and a 0 in the leftmost (hidden) bit of a mantissa.

A single-precision denormalized number is equal to the following:

 $(-1)^{s} \times (2)^{-126} \times 0.f$

For double-precision, a denormal is equal to the following:

 $(-1)^{s} \times (2)^{-1022} \times 0.5$

If denormalized numbers are input to the multiplier, they will cause status exceptions. Denormals can be passed to the ALU to be *wrapped*. The wrapped operand is then input to the multiplier.

A wrapped number is a number created by normalizing a denormalized number's fraction field and subtracting from the exponent the number of shift positions (minus one) required to do so. The exponent is encoded as a 2s-complement negative number. When the mantissa of the denormal is normalized by shifting it left, the exponent field decrements from all 0s (wraps past 0) to a negative 2s-complement number (except in the case of 0.1xxx..., where the exponent is not decremented).

3.2.4 Special Floating-Point Numbers

There are three other special floating-point value representations (see Figure 3–5):

Zero (positive or negative) is represented by the appropriate sign bit, a 0 exponent field, and a 0 fraction field.

Infinity (positive or negative) is represented by the appropriate sign bit, 1s in the exponent field, and a 0 fraction field.

A Not a Number (NaN) designates data that has no mathematical value. A NaN has 1s in the exponent field with a nonzero fraction.

A NaN is produced whenever an invalid operation (such as division by 0) is executed. The TMS34082 treats all NaNs as signaling NaNs, setting the invalid (I) flag in the status register. The TMS34082 outputs all NaNs (regardless of input form) with a 0 sign bit and all 1s in the exponent and fraction fields.

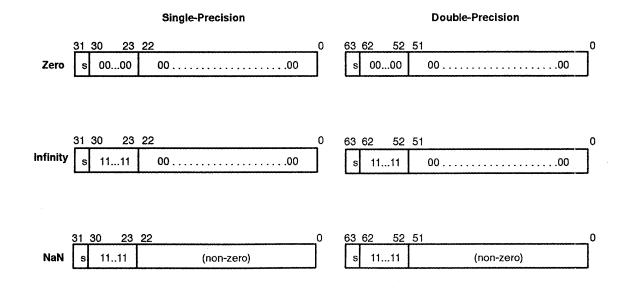


Figure 3–5. Special Floating-Point Formats

3.2.5 Range of Floating-Point Numbers

Table 3-1 shows the range of possible single- and double-precision floating-point numbers.

Table 3-1. Floating-Point Number Representations

Туре	Sign	Exponent	Hidden Bit	Fraction
NaNs	0	11 11		11 11
		: :	1	::
	0	11 11		10 00
	0	11 11		01 11
		: :	1	: :
	0	11 11		00 01
Positive Infinity	0	11 11	1	00 00
	0	11 10		11 11
Positive Normals		: :	1	: :
	0	00 01		00 00
	0	00 00		11 11
Positive Denormals		: :	0	: :
	0	00 00		00 01
Zero (Positive)	0	00 00	1	00 00
Zero (Negative)	1	00 00	1	00 00
	1	00 00		00 01
Negative Denormals		: :	0	: :
	1	00 00		11 11
	1	00 01		00 00
Negative Normals		: :	1	: :
	1	1110		11 11
Negative Infinity	1	11 . 11	1	00 00
NaNs	1	11 11		00 01
		:::	1	::
	1	11 11		01 11
	1	11 11		1000
		: :	1	: :
	1	1111		11 11
	Single:	< 8 bits >		<-23 bits ->
	Double:	< 11 bits >		<- 52 bits - >

Chapter 4

Architecture

Because the sequencer, control and data registers, and FPU core are closely coupled, the TMS34082 can execute a wide variety of complex floating-point or integer calculations rapidly with a minimum of external data transfers. The internal architecture of the FPU core supports concurrent operation of the multiplier and the ALU, providing several options for storing or feeding back intermediate results. Also, several special registers are available to support calculations for graphics algorithms. Each of the main architectural elements of the TMS34082 is discussed in this chapter.

4.1 Functional Block Diagram

The main architectural features of the TMS34082 are illustrated in Figure 4-1.

Figure 4-1. Functional Block Diagram

4.2 Operating Modes

The TMS34082 has two operating modes: coprocessor mode and host-independent mode.

In coprocessor mode, the TMS34082 acts as a floating-point coprocessor to the TMS34020 Graphics System Processor. The TMS34082 is a direct extension of the TMS34020 and its instruction set. Operation in coprocessor mode is signaled by tying the MSTR input low. Chapter 5 details this operating mode.

In host-independent mode, the TMS34082 is a floating-point RISC processor. It may be used as a coprocessor to another host processor, as a parallel processor, or as a stand-alone processor. To operate in host-independent mode, the MSTR input must be high. This mode is covered in Chapter 6.

4.3 Bus Interfaces

The TMS34082 has two buses: the LAD (LAD31-0) and the MSD (MSD31-0). Each is a 32-bit bidirectional bus which can be used to transfer instructions and/or data.

One 32-bit operand can be input to the TMS34082 data registers each cycle. A 64-bit double-precision floating-point operand is input in two cycles. Transfers to and from the data registers can normally be programmed as block moves (loading one or more sets of operands with a single move instruction to minimize I/O overhead). Block transfers up to 512 words in length can be programmed in either direction between the LAD and MSD buses.

4.3.1 LAD Bus

When the TMS34082 is used as a coprocessor to the TMS34020, the LAD bus is the main interface between the two devices. Both data and instructions from the TMS34020 are input on the LAD bus. The data can be stored in internal registers or transferred to memory on the MSD port. In addition, data (from registers or the MSD bus) can be sent to the TMS34020.

With a single TMS34020 instruction, the TMS34020 can transfer both an instruction and data to the TMS34082. Data may be from TMS34020 registers or the local memory controlled by the TMS34020.

In host-independent mode, the LAD bus is used as a data bus. Instructions may not be input on the LAD bus. However, data (an address) may be read from the LAD port to an internal register, and a jump to that address performed.

To permit direct input to or output from the LAD bus, other options are available for control of the bus in host-independent mode. When two 32-bit operands are selected for input to the FPU core, one operand may come directly from the LAD bus. A result from the FPU core may simultaneously be written to a data register and the LAD bus.

The main control signals for the LAD bus are:

ALTCH CAS WE LOE

SF (coprocessor mode only).

The function of these signals depends upon the operating mode and are discussed further in Chapters 5 — Coprocessor Mode — and Chapter 6 — Host-Independent Mode.

4.3.2 MSD Bus

The MSD bus (MSD31-0) and its associated address bus (MSA15-0) are the external memory interface for the TMS34082. Control signals allow you to have separate code and data storage on the MSD port. Up to 64K 32-bit words of code space and 64K words of data space are directly supported. The bus and control signals are optimized for use with static RAM (SRAM) memory. However, with some external logic, this bus may also be connected to DRAMs, VRAMs, or other system buses.

The MSD bus is the main instruction source in host-independent mode. Data may also be accessed on this port. The TMS34082 can operate with the LAD bus as its single data bus and the MSD bus as the instruction source, or with data storage on both ports and the program memory on the MSD port.

In coprocessor mode, use of the MSD bus is optional. External user-generated subroutines may be accessed via the MSD bus. In addition, data for these routines may be stored in memory on the MSD port. The code and data for these subroutines may be downloaded from the TMS34020 memory using an LAD-to-MSD move.

MSD bus control is the same in both coprocessor and host-independent modes. Control signals are summarized in Table 4–1. Different combinations of $\overline{\text{MCE}}$, $\overline{\text{MWR}}$, and $\overline{\text{MOE}}$ distinguish between memory reads and writes. Table 4–2 lists the memory operation performed for each combination of signals.

Table 4–1. MSD	Bus	Control	Signals
----------------	-----	---------	---------

Name	Function
MSA15-0	Memory Address Output
DS/CS	Data Space/Code Space Select. This signal goes low to select program memory or high to select data memory.
MCE	Memory Chip Enable. This signal goes low when reading from or writing to memory.
MOE	Memory Output Enable. This signal goes low when reading from memory.
MWR	Memory Write Enable. This signal goes low when writing to memory.
MAE	MSD Bus Enable. When this input is low, the TMS34082 can output data and address on MSD and MSA.

Table 4–2. Memory Operations on MSD

MCE	MWR	MOE	Memory Operation
0	0	0	Invalid
0	0	1	Write to memory
0	1	0	Read from memory
0	1	1	Invalid
1	x	×	No memory access

The DS/CS output acts as the most significant address bit selecting between code and data memory. If a single block of memory is used for both code and data space, this output may be ignored. Without DS/CS, only 64K words of memory can be accessed.

An alternate control scheme is chosen by setting the MEMCFG bit in the configuration register high. Then, DS/\overline{CS} is the data space chip enable and \overline{MCE} is the code space chip enable. Refer to subsection 4.5.3.3 — MSD Bus Configuration — for more information.

If the memory on the MSD port is shared with another processor, MAE may be used to prevent bus conflicts. When memory on the MSD port is shared, the host processor can monitor the state of the memory chip enable (MCE) to determine when the TMS34082 is accessing memory.

Otherwise, MAE may be tied low. The TMS34082 will only drive the MSD bus when writing to memory (signaled by MWR low).

4.4 Sequence Control

The sequencer selects the next program execution address either from internal code or from external program memory. Next address sources include:

Program counter

Instruction register

Stack

Interrupt vector register

Interrupt return register

Indirect address register

The two-deep stack is used to store return addresses for jump-to-subroutine instructions. When the TMS34082 receives an interrupt, the sequencer jumps to the interrupt service routine at the address given by the interrupt vector register. The interrupt return register stores the address where execution resumes after the interrupt routine is completed. The indirect address register is used for indirect branches and jumps to subroutines.

The sequencer allows many options for program execution control. Branches on status, conditional and unconditional jumps to subroutines, counted loops, and interrupt service routines may be programmed.

4.5 Registers

The TMS34082 contains:

Twenty 64-bit general-purpose registers

Two embedded 64-bit feedback registers

Ten control registers

Control registers are 17 to 32 bits long as shown in the register model in Figure 4–3. The 32-bit control registers COUNTX, COUNTY, and MIN-MAX/LOOPCT are used for internal graphics instructions. When you are not using these instructions, the registers are available for temporary storage.

32-bit single-precision floating-point or integer data is stored in the upper half (bits 63-32) of a register as shown in Figure 4–2. Double-precision data uses the complete 64-bit register. If a double-precision number is loaded into a 32-bit register, both halves are written to the register. The first half of the data is lost because it is overwritten by the second half.

Figure 4–2. Register Usage

63	32	31	0
32-bit data		xx(unl	(nown)xx

Integer or Single-Precision Numbers

63	32	31	0
MSH		LSI	4

Double-Precision Numbers

Register files RA and RB can be written to or read from the external buses as can the control registers. Internal registers C and CT are embedded in the FPU core and can only be accessed by the FPU internal buses. The C and CT registers cannot be used as sources or destinations for move instructions. Several other registers are not available as sources for FPU operations as listed in Table 4–3.

Block moves begin at the register address given in the instruction and sequence through the registers in the order shown in the register model, Figure 4–3. C and CT are omitted from the sequence because they cannot be accessed by the external buses. After the last register address (MIN-MAX/LOOPCT), the sequence starts again at address 0 (RA0).

Figure 4-3. TMS34082 Register Model

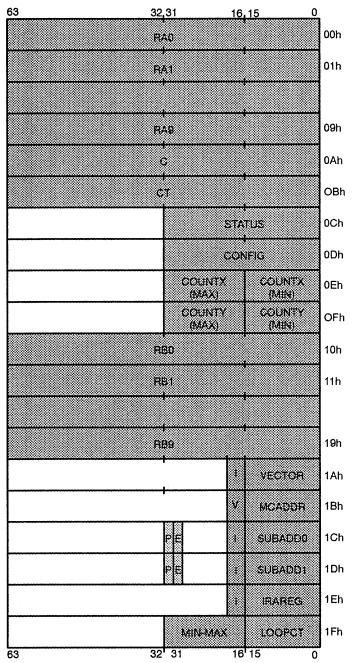
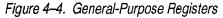
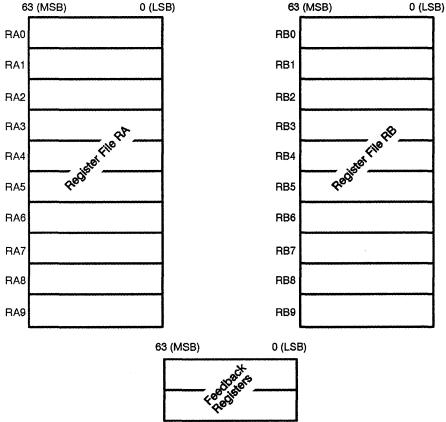


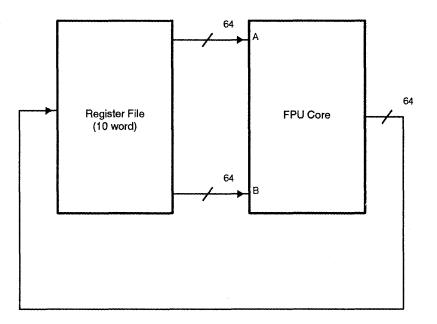
Table 4–3. Internal Registers


Address	Register	Restrictions on Use
00000	RA0	
00001	RA1	
00010	RA2	
00011	RA3	
00100	RA4	
00101	RA5	
00110	RA6	
00111	RA7	
01000	RA8	
01001	RA9	
01010	C	Not a source or destination for external moves. C and CT cannot both be used as operands in the same instruction.
01011	ст	Not a source or destination for external moves. C and CT cannot both be used as operands in the same instruction.
01100 [†]	STATUS	Not a source for FPU instructions
01101‡	CONFIG	Not a source for FPU instructions
01110 [‡]	COUNTX	Not a source for FPU instructions
01111 [‡]	COUNTY	Not a source for FPU instructions
10000	RB0	
10001	RB1	
10010	RB2	
10011	RB3	
10100	RB4	
10101	RB5	· · · · · · · · · · · · · · · · · · ·
10110	RB6	
10111	RB7	
11000	RB8	
11001	RB9	
11010	VECTOR	Not a source for FPU instructions
11011	MCADDR	Not a source for FPU instructions
11100†	SUBADD0	Not a source for FPU instructions
11101‡	SUBADD1	Not a source for FPU instructions
11110‡	IRAREG	Not a source for FPU instructions
11111‡	MIN-MAX/LOOPCT	Not a source for FPU instructions


[†] Using this address as a source register in external code inputs data directly from the LAD bus to the FPU. Only valid in host-independent mode.

[‡]Using this address as a source register in external code inputs the value one of the appropriate format (integer, single-, or double-precision) to the FPU.

4.5.1 Register Files RA and RB


The TMS34082 contains two register files, each with ten 64-bit registers. Most instructions operate on one value from each of the RA and RB register files and return the result to any register. Figure 4–4 illustrates the general-purpose registers of the TMS34082.

When the ONEFILE control bit is set high in the configuration register, data written to a register in RA file is simultaneously written to the corresponding location in RB file. For example, the same data is written to both RA1 and RB1 at once. In this mode the two register files act as a ten-word, two-read/one-write register file, as shown in Figure 4–5.

Figure 4–5. Register Files with ONEFILE High

4.5.2 Feedback Registers C and CT

The two 64-bit feedback registers, C and CT, are embedded in the FPU core. Data is stored in the C and CT registers in an unpacked format. That is, integer and single-precision numbers are not stored in the upper 32-bits of the registers, but aligned in fields throughout the 64 bits. For this reason, you should always make sure the data type in the instruction matches the actual data in the register.

C or CT can be used as one or both operands in an instruction, but may not be used together in the same instruction. For example, C + CT is not valid, but C + C is. The feedback registers may not be accessed for external moves.

The CT feedback register is used in integer divide and square root operations as a temporary holding register. *Any data stored in CT will be lost during an integer divide or square root.*

Registers

4.5.3 Configuration Register (CONFIG)

The configuration register (CONFIG) is a special 32-bit register which you load to set up the following TMS34082 functions:

Exception handling

Bus configurations

Pipeline configurations

Denormalized number handling

Data transfer operations

Rounding modes

The configuration register is initialized to FFE00020h. Writing to this register during a block move will not change the operation of LADCFG, MEMCFG, and LOAD until the move is complete. There is a one-cycle delay from when a new value is moved to the configuration register until that value takes effect. If the instruction following a move to the configuration register requires the new setting of the register to be valid, insert one nop (No Operation) instruction after the move.

The format of the configuration register is given in Table 4-4.

	·	Decentration						
Bit No.	Name	Description						
31	MIVAL	Multiplier invalid operation (I) exception mask. Initialized to one (enabled).						
30	MOVER	Multiplier overflow (V) exception mask. Initialized to one (enabled).						
29	MUNDER	Multiplier underflow (U) exception mask. Initialized to one (enabled).						
28	MINEX	Multiplier inexact (X) exception mask. Initialized to one (enabled).						
27	MDIV0	Divide by zero (DIV0) exception mask. Initialized to one (enabled).						
26	MDENORM	Multiplier wrapped number output (DENORM) exception mask. Initialized to one (enabled).						
25	AIVAL	ALU invalid operation (I) exception mask. Initialized to one (enabled).						
24	AOVER	ALU overflow (V) exception mask. Initialized to one (enabled).						
23	AUNDER	ALU underflow (U) exception mask. Initialized to one (enabled).						
22	AINEX	ALU inexact (X) exception mask. Initialized to one (enabled).						
21	ADENORM	ALU denormal output (DENORM) exception mask. Initialized to one (enabled).						
20-11	N/A	Reserved for later use. Initialized to all zeros.						
10	VERSION	Version number, read only. Set to one.						
9	LADCFG LAD bus configuration for host-independent mode. When high, COINT define boundaries. The setting of this bit has no effect in coprocessor mode. Initializ							
8	MEMCFG	MSD bus configuration. When high, MCE and DS/CS are code and data space chip enable, respectively. Initialized to zero.						
7	N/A	Reserved for later use. Initialized to zero. Note: You must always write a zero to this bit.						
6	ONEFILE	When high, causes simultaneous write to both register files. Initialized to zero.						
5	PIPES2	When high, makes the FPU core output registers transparent. When low, the output registers are enabled. Initialized to one.						
4	PIPES1	When high, makes the FPU core internal pipeline registers transparent. When low, the FPU internal pipeline registers are enabled. Initialized to zero.						
3	FAST	When high, Fast mode is selected (all denormalized inputs and outputs are zeroed). When low, IEEE mode is selected. Initialized to zero.						
2	LOAD	Load order. 0 = MSH, then LSH; 1= LSH, then MSH. Initialized to zero.						
1	RND1	Rounding mode select 1. Initialized to zero.						
0	RND0	Rounding mode select 0. Initialized to zero.						
	L							

Table 4-4. Configuration Register Definition

x

4.5.3.1 Exception Mask

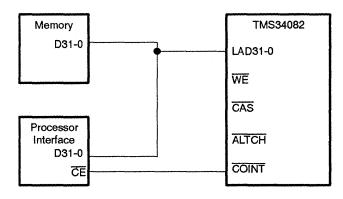
The mask bits (bits 31-21) serve as exception detect enables. Setting bits high enables the detection of the specific exceptions. Exceptions that are unimportant to your specific application may be masked to prevent unwanted interrupts. When an enabled exception occurs, the ED bit in the status register is set high and can be used to generate interrupts.

When the exception mask has been loaded, the mask is applied to the contents of the status register to disable unnecessary exceptions. Status results are ORed together and, if true, the exception detect (ED) status bit is set high. Individual status flags remain active and can be read independently of mask operations.

Since inexact results are normal for floating-point operations, you should usually mask out this exception for both the ALU (AINEX) and multiplier (MINEX).

4.5.3.2 LAD Bus Configuration (Host-Independent Mode)

The LADCFG bit (bit 9) defines the LAD bus configuration for host-independent mode. Two different configurations are possible.

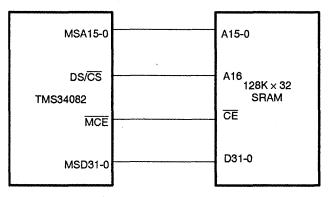

When LADCFG is low, $\overline{\text{COINT}}$ is a user-programmable signal not associated with the LAD bus. $\overline{\text{CAS}}$ and $\overline{\text{WE}}$ are not affected by $\overline{\text{LOE}}$ (LAD bus enable).

When LADCFG is high, $\overline{\text{COINT}}$ defines LAD bus cycle boundaries and is controlled by bit 1 (C bit) of LAD move instructions. Also, $\overline{\text{CAS}}$ and $\overline{\text{WE}}$ are disabled (placed in a high impedance state) when $\overline{\text{LOE}}$ is high.

With LADCFG high, a move instruction with the C bit high sets COINT low before the first word is moved. COINT remains low until the move is complete. You could use COINT to select between two devices on the LAD bus. COINT becomes the chip enable for one of the devices as shown in Figure 4–6.

The setting of COINT has no effect in coprocessor mode.

Figure 4-6. Host-Independent Mode LAD Bus Configuration for LADCFG high



4.5.3.3 MSD Bus Configuration

The MEMCFG bit defines the function of control signals for the MSD bus. Two different configurations are possible.

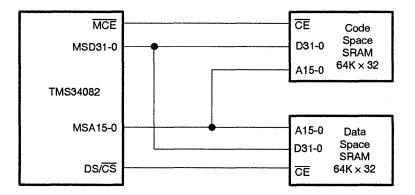

When MEMCFG is low, $\overline{\text{MCE}}$ is the memory chip enable signal. It goes low when memory is being accessed. DS/ $\overline{\text{CS}}$ functions as the most significant address bit, selecting data memory when high or code memory when low. This configuration is illustrated in Figure 4–7.

Figure 4–7. MSD Bus Configuration for MEMCFG low

When MEMCFG is high, $\overline{\text{MCE}}$ becomes the code space chip enable and DS/ $\overline{\text{CS}}$ the data space chip enable. Both are active low. This may eliminate the need for an external inverter on DS/ $\overline{\text{CS}}$. Figure 4–8 show this configuration.

Figure 4-8. MSD Bus Configuration for MEMCFG high

4.5.3.4 Pipeline Settings

The PIPES2 and PIPES1 bits (bits 5-4) of the configuration register define the piepline register settings for the internal FPU core. PIPES2 is the enable for the FPU core output registers; PIPES1 is for the FPU core internal pipeline registers. Both are active low. When high, data flows through the registers. Table 4–5 details the pipeline operation for each setting of PIPES.

Table 4–5. Pipeline Settings

PIPES2	PIPES1	Operation
0	0	Both pipeline registers enabled
0	1	Only FPU internal pipeline registers enabled
1	0	Only FPU output registers enabled
1	1	Both pipeline registers disabled (flowthrough)

For more information on pipeline registers, refer to subsection 4.6.2 — Pipeline Registers.

4.5.3.5 Fast and IEEE Modes

The FAST bit (bit 3) selects the mode for handling denormalized inputs and outputs. For many applications, very small numbers may be treated as zero, allowing the programmer to use Fast mode. In the Fast mode (FAST=1):

All denormalized or wrapped inputs and outputs are forced to zero and do not cause any status exceptions.

The DENIN (denormal input) status exception is disabled.

Using Fast mode simplifies error handling because you do not have to wrap and unwrap denormalized numbers. Forcing very small (denormalized) numbers to zero causes a loss of accuracy, however. If you multiply a very large number by a denormal, the result may be significantly larger than zero. If it is important in your application to distinguish between very small numbers and zero, use IEEE mode.

Setting FAST = 0 selects IEEE mode. In this mode, the ALU can operate on denormalized inputs and return denormals. Denormals are not valid input to the multiplier; they must be wrapped first. If you input a denormal to the multiplier, the DENIN flag will be asserted and the result will be invalid (I flag set). Exponent underflow is possible during multiplication of small operands even when the operands are not wrapped numbers. If the multiplier result underflows, a wrapped number will be output. In IEEE mode, the wrapped number is not forced to zero.

When the multiplier produces a wrapped number as its result, it may be passed to the ALU and unwrapped. A zero is output if the wrapped result is too small to represent as a denormal (smaller then the minimum denormal). Table 4–6 describes how you should unwrap multiplier results and the status flags that are set when wrapped numbers are output from the multiplier.

Table 4-6. Handling Wrapped Multiplier Outputs

Type of Result	Stat	us Bits		Notes		
	DENORM	X	RND	Notes		
Wrapped, exact	1	0	0	Unwrap with Wrapped, exact instruction		
Wrapped, inexact	1	1	0	Unwrap with Wrapped, inexact instruction		
Wrapped, increased in magnitude	1	1	1	Unwrap with Wrapped, rounded instruction		

4.5.3.6 Load Order

Since 64-bit double-precision data must be transferred 32 bits at a time, the TMS34082 must know which half of the word is loaded first. The LOAD bit (bit 2) defines the expected order. If LOAD = 0, the most significant half (MSH) is transferred first, followed by the least significant half (LSH). When LOAD = 1, the LSH is transferred first. The LOAD bit also determines the order data is read out of a register. Table 4–7 shows the load order for all data formats.

Table 4–7. Data Ordering for Loads/Stores

		Words Accessed							
Data Format	Size	CONFIG	G LOAD bit=0	CONFIG LOAD bit =1					
		31	0	31	0				
Integer	32 bits		Nord 0	Wo	rd 0				
Single-precision	32 bits		Word Ø	Wo	rd 0				
Double-precision	64 bits	Wor Wor	d 1 (MSH) d 0 (LSH)	Word 0 Word 1) (LSH) (MSH)				

4.5.3.7 Rounding Modes

The TMS34082 supports the four IEEE standard rounding modes:

Round to nearest

Round towards zero (truncate)

Round towards positive infinity (round up)

Round towards minus infinity (round down)

The rounding function is selected by bits RND1 and RND0 as shown in Table 4–8. The default setting is round to nearest.

Table 4–8. Rounding Modes

RND1	RND0	Rounding Modes	
0	0	Round towards nearest	
0	1	Round towards zero (truncate)	
1	0	Round towards infinity (round up)	
1	1	Round towards negative infinity (round down)	

You should select the rounding mode which will minimize procedural errors. Rounding to nearest introduces an error no more than half of the least significant bit. Since rounding to nearest may involve rounding either up or down in successive steps, rounding errors tend to cancel each other.

In contrast, directed rounding modes may introduce errors approaching one bit for each rounding operation. Rounding errors may accumulate rapidly, particularly with single-precision operations.

4.5.4 Status Register

The floating-point status register (STATUS) is a 32-bit register used for reporting the exceptions that occur during TMS34082 operations and status codes set by the results of implicit and explicit compare operations. The status register is cleared upon reset, except for the INTENED flag which is set to one in coprocessor mode.

The status register can be used by test-and-branch instructions to control program flow. Because of the large number of FPU status outputs, branches on status can be used to save program execution time. The status register contents are also important when dealing with status exceptions including such conditions as overflow, underflow, invalid operations, or illegal data formats (such as infinity, Not a Number (NaN), or denormalized operands).

Bit No.	Name	Description
31	N	Sign bit. When high, the result is negative. (A < B for compare operations)
30	GT	A > B (valid only for compare operations)
29	Z	zero flag. (A = B for compare operations)
28	v	IEEE Overflow flag. The result is greater than the largest allowable value for the specified format.
27	I	IEEE Invalid Operation flag. A NaN has been input to the FPU or an invalid operation has been requested. If I goes high because a NaN was input, the STX flags indicate which port had the NaN.
26	υ	IEEE Underflow flag. The result is inexact and less than the minimum allowable value for the specified format. In Fast mode, this condition causes a zero result.
25	X	IEEE inexact flag. The result of an operation is inexact.
24	DIV0	Divide by zero. An invalid operation involving a zero divisor has been detected by the multiplier.
23	RND	The mantissa of a number has been increased in magnitude by rounding. If the number generated was wrapped, then the <i>unwrap, rounded</i> instruction must be used to properly unwrap the wrapped number (see Table 4–6).
22	DENIN	The input to the multiplier is a denormal number. When DENIN goes high, the STX flags indicate which port had the denormal input.
21	DENORM	The multiplier output is a wrapped number or the ALU output is a denormal number. In the Fast mode, this condition causes the result to go to zero. It also indicates an invalid integer operation, for example, PASS (–A) with unsigned integer operand.
20	STX1	A NaN or a denormal has been input on the A port.
19	STX0	A NaN or a denormal has been input on the B port.
18	ED	Exception detect status signal representing logical OR of all enabled exceptions in the exception disable register.
17	UNORD	The two inputs of a comparison operation are unordered, that is, one or both of the inputs is a NaN.
16	INTFLG	Software interrupt flag. Set by external code to signal a software interrupt.
15	INTENHW	Hardware interrupt (INTR) enable
14	NXOROV	N (negative) XOR V (overflow)
13	VANDZB	V(overflow) AND NOTZ (not zero)
12	INTENED	ED interrupt enable (initialized to zero in host-independent mode, one in coprocessor mode).
11	INTENSW	Software interrupt enable for INTFLG (bit 16)
10	ZGT	Zn > Zmax (valid for 2-D MIN-MAX instructions)
9	ZLT	Zn < Zmin (valid for 2-D MIN-MAX instructions)
8	YGT	Yn > Ymax (valid for 1-D or 2-D MIN-MAX instructions)
7	YLT	Yn < Ymin (valid for 1-D or 2-D MIN-MAX instructions)
6	XGT	Xn > Xmax (valid for 1-D or 2-D MIN-MAX instructions)
5	XLT	Xn < Xmin (valid for 1-D or 2-D MIN-MAX instructions)
4	HINT	Hardware interrupt flag
3-0	n/a	Reserved, set to zero

Table 4–9. Status Register Definition

Output exceptions may be due to either an illegal data format or to a procedural error, such as:

Results too large or too small to be represented in the selected precision are signaled by V (overflow) and U (underflow).

An ALU output which was increased in magnitude by rounding causes X (inexact) to be set.

Wrapped outputs from the multiplier may be inexact and increased in magnitude by rounding, which sets the X (inexact) and RND (rounded) status flags high.

DENORM is set when the multiplier output is wrapped or the ALU output is denormalized.

DENORM is also set high when an illegal integer operation is performed.

DIV0 is set whenever the divisor is zero. The result of the operation is infinity.

Invalid operations cause the I flag to be set. The I bit will also go high if a NaN is input to the FPU.

The ED flag is a logical OR of the above exceptions. If any of the exception flags is high, ED will also be high. Exceptions can be masked out of ED by setting the appropriate bits in the configuration register. If the ED interrupt (INTENED) is enabled, an interrupt is generated when ED goes high.

Status flags are provided for both floating-point and integer results. Integer status is provided using Z for zero detect, N for sign, and V for overflow/carryout. Bits 14 and 13 are logical combinations of these three flags.

If the floating-point input to the multiplier is a denorm, DENIN will be set. If the input to the FPU is a NaN, I (invalid operation) will be set. STX1-0 indicate which operand is the source of the exception when either a denormal is input to the multiplier (DENIN=1) or a NaN is input (I=1).

NaN inputs are all treated as IEEE signaling NaNs causing the I flag to be set. When the FPU outputs a NaN, it is always in the form of a signaling NaN with the I and appropriate STX flags set high. The exponent and fraction fields of the NaN are set to all 1s, regardless of the input fraction. Invalid operations that set the I flag include:

Operations with NaN inputs

Zero divided by zero

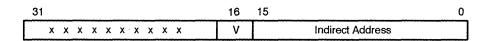
Positive infinity minus positive infinity or negative infinity minus negative infinity

Positive infinity plus negative infinity

Square root of a negative number

Zero multiplied by infinity

The result of these operations is a NaN.


Bits 15, 12, and 11 in the status register are used to enable interrupts. Interrupts are enabled by setting INENHW (hardware interrupt), INTENSW (software interrupt), or INTENED (ED interrupt) high. A software interrupt is generated by writing to the status register with bit 16 (INTFLG) set to one.

4.5.5 Indirect Address Register

The indirect address register (MCADDR) can be set to point to a memory location for indirect move or jump operations on the MSD port. MCADDR is cleared upon reset. Although MCADDR cannot be used directly as an operand for FPU instructions, you can do an arithmetic operation on the value in MCADDR by first moving the contents to a register file location. Then perform the operation, choosing MCADDR as the destination.

The function of bit 16 varies, depending on whether the instruction is a move or jump. During a move instruction, bit 16 selects data space when set high or code space when low. During a jump instruction, bit 16 selects an internal instruction when set high or an external instruction when low (see Figure 4–9).

4.5.6 Stack

The stack contains two subroutine return address registers (SUBADD0 and SUBADD1) which serves as a two-deep last-in, first-out (LIFO) stack. A subroutine jump causes the program counter to be pushed onto the stack, and a return from subroutine pops the last address pushed onto the stack. More than two pushes will overwrite the contents of SUBADD1.

Bit 31 (Pointer) is set high in the stack location that was written last and reset to zero in the other stack location. Setting bit 30 (Enable) high enables a write into bit 31 (set or reset the pointer) in either stack location. If bit 31 is zero in both SUBADD0 and SUBADD1 (as when the stack has been saved externally and later restored), SUBADD0 can be designated as top of stack by setting bit 31. The stack pointers are cleared upon reset.

Bit 16 (I) is set high when the address in a stack location points to an internal routine or set low when the address is an external instruction.

Figure 4–10. Stack Register Format

31	30											 16	15 0
Р	Е	х	х	х	х	х	х	х	х	х	х	1	SUBADD0
Р	Е	х	х	x	х	х	х	x	x	х	х	1	SUBADD1

4.5.7 Interrupt Vector Register

The interrupt vector register (VECTOR) serves as a pointer to an external program to be executed upon receipt of an interrupt. Bit 16 (I) is always set low to point to a routine in external code space. The interrupt vector is cleared on reset. This register is only 17 bits wide (as shown in Figure 4–11) and should not be used for temporary storage.

Figure 4–11. Interrupt Vector Register Format

31									16	15 0	
хх	×	х	х	х	х	х	х	x	1	Interrupt Address	

4.5.8 Interrupt Return Register

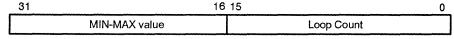
The interrupt return register (IRAREG) retains a copy of the program counter at the time of an external interrupt. This address is used as the next execution address upon returning from the interrupt. Bit 16 (I) is set high when the address points to an internal instruction or set low when the address is in an external instruction. This register is not affected by the reset signal and, as illustrated in Figure 4–12, is only 17 bits wide and should not be used for temporary storage.

31	Ŭ								_		16	15	0	
	x	х	х	х	x	х	x	x	x	x	I	Inte	errupt Return Address	

4.5.9 COUNTX and COUNTY Registers

The counter registers (COUNTX, COUNTY) are used to store the current counts of the minimum and maximum values when executing MIN-MAX instructions. They may also serve as temporary storage for the user. COUNTX and COUNTY are cleared on reset.

Figure 4–13. COUNT Registers Format


31	16	15 0)
Count for MAX value		Count for MIN value	

The COUNTX register is updated on both the 1-D and 2-D MIN-MAX instruction such that the count of the current minimum value is in the lower 16 bits of the register and the count of the current maximum value is in the upper 16 bits. The COUNTY register is used only in the 2-D MIN-MAX instruction to keep track of the counts of the minimum and maximum for the second value of a pair.

4.5.10 MIN-MAX/LOOPCT Register

The MIN-MAX/LOOPCT register stores the current values of two separate counters. The LSH contains the current loop counter and the MSH is used to hold the current minimum or maximum value of a MIN-MAX operation. This register may also serve as temporary storage for the user. The MIN-MAX/LOOPCT register is cleared upon reset.

Figure 4–14. MIN-MAX/LOOPCT Register Format

4.6 FPU Core

The FPU core consists of a multiplier and ALU, each with an intermediate pipeline register and an output register. The multiplier and ALU may operate independently or in parallel.

The major components include:

Operand multiplexers

Pipeline registers

ALU

Multiplier

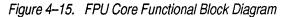
Output control

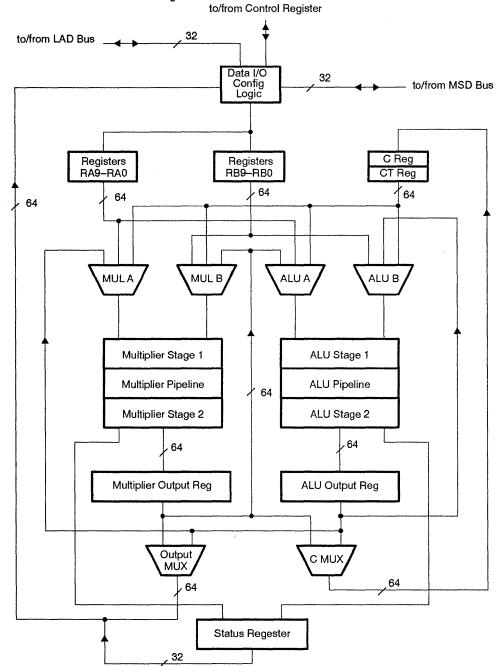
Figure 4–15 shows a functional block diagram of the FPU core.

4.6.1 Operand Selection

Four multiplexers select the multiplier and ALU operands. Possible operand sources are:

RA and RB register files


Internal feedback registers C and CT


FPU core output registers

The FPU core output registers provide the previous multiplier or ALU result. Note that if the output registers are used as operands, they must be enabled. (See subsection 4.6.2 — Pipeline Registers — for additional details.)

For external instructions, immediate data from the LAD bus or the value 1 may also be chosen as operands. These are selected by setting the appropriate address bits (see section 4.5 — Registers) and selecting the RA or RB register file as operands.

The selection of operands also depends on the ALU or multiplier operation chosen. Single-operand instructions are generally performed only on registers in the RA file. Exceptions to this are the PASS instruction and certain complex internal instructions. Also in chained mode (the ALU and multiplier acting in parallel) the RB operand may optionally be forced to 0 in the ALU or 1 in the multiplier.

4.6.2 Pipeline Registers

Two levels of internal data registers are available to segment the internal data paths of the TMS34082 FPU core. The registers are enabled by setting the PIPES2-1 bits in the configuration register. The most basic choice is whether to use the device in unpipelined mode (with no internal registers enabled) or whether to enable one or more pipeline registers. When no internal registers are enabled, the clock period is longest (the TMS34082 timing specifications are contained in Appendix A).

Enabling one or both sets of pipeline registers segments the data paths. When the intermediate pipeline is enabled, the register-to-register delay inside the device is minimized, allowing operation with the minimum cycle time. While one FPU instruction is executing, the next instruction may be input so that overlapping operations occur. This is commonly known as pipelined execution.

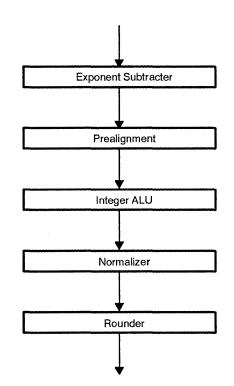
The TMS34082 may also operate with both sets of pipeline registers disabled. With this setting, two 32-bit operands are read from the register file, an operation is performed by the ALU or multiplier, and the result is stored in the register file, all in one clock cycle. A double-precision ALU operation takes one clock cycle, but double-precision multiplies require two clock cycles to complete.

When the ALU and multiplier operate in parallel (chained mode), two data operands come from the register files while multiplier and ALU feedback provide the other two operands. Therefore, *in chained mode the FPU core output registers must be enabled.* After the chained operation is completed and the results have been stored, the FPU core output registers may be disabled again. Wait until all operations have completed to change pipeline settings to avoid loosing any results.

The selection of pipeline registers determines the latency from input to output, the number of cycles required for an instruction to be processed and the results to appear. For each register level enabled in the data path, one clock cycle is added to the latency from input to when the result is valid in the register file. Figure 4–16 shows the latency of different pipeline settings. A result may be used as input on the same cycle that it is clocked into the register file.

Figure 4–16. Effects of		0	_							
Clock Cycle	1	2	3	4	5	6	7			
Instruction Register	Instruction 1	Instruction 2	Instruction 3	Instruction 4]					
Register File		Instruction 1 Results	Instruction 2 Results	Instruction 3 Results	Instruction 4 Results]				
(Destination)			PIF	2ES2-1=11		-				
Instruction Register	Instruction 1	Instruction 2	Instruction 3	Instruction 4						
Pipeline Register		Instruction 1 Values	Instruction 2 Values	Instruction 3 Values	Instruction 4 Values					
Register File			Instruction 1 Results	Instruction 2 Results	Instruction 3 Results	Instruction 4 Results				
(Destination)	PIPES2-1=10									
Instruction Register	Instruction 1	Instruction 2	Instruction 3	Instruction 4						
Pipeline Register		Instruction 1 Values	Instruction 2 Values	Instruction 3 Values	Instruction 4 Values					
Output Register			Instruction 1 Results	Instruction 2 Results	Instruction 3 Results	Instruction 4 Results				
		·		Instruction 1 Results	Instruction 2 Results	Instruction 3 Results	Instruction 4 Results			
Register File (Destination)			PIPE	S2-1=00						

Both sets of pipeline registers are controlled by the PIPES2 and PIPES1 bits in the configuration register. When the device is powered up or reset, the intermediate pipeline registers are enabled (PIPES1=0) and the output registers are transparent (PIPES2=1). For internal instructions, control logic sets the pipeline registers as needed and restores them to their previous configuration after the instruction is completed.


Pipeline settings should be changed only when all instructions executing in the FPU core are completed and results are stored in the register file. Otherwise, results will be lost. The nop (No Operation) instruction may be inserted to allow time for the last instruction to finish before changing the pipeline configuration.

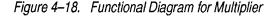
When using chained mode, the nop instruction may be used to adjust output register timing. Each nop instruction keeps the results in the output registers for one additional clock cycle. nop may be used in this manner only when the output registers are enabled.

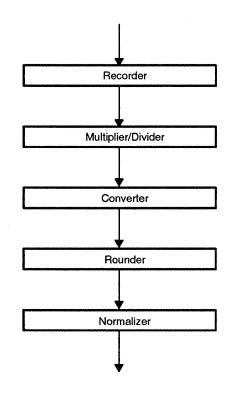
4.6.3 ALU

The pipelined ALU contains a circuit for floating-point addition and/or subtraction of aligned operands, a pipeline register, an exponent adjuster, and a normalizer/rounder as shown in Figure 4–17. Exception logic is provided to detect denormalized inputs; these can be flushed to zero if the FAST input is set high. If the FAST input is low, the ALU accepts a denormal as input. The denormal exception flag (DENORM) goes high when the ALU output is a denormal.

Figure 4–17. Functional Diagram for ALU

Integer processing in the ALU includes both arithmetic and logical operations in either 2s complement numbers or unsigned integers. The ALU performs addition, subtraction, comparison, logical shifts, logical AND, logical OR, and logical XOR. Format conversions and wrapping/unwrapping of denormals are also done by the ALU.


4.6.4 Multiplier


The pipelined multiplier (see Figure 4–6) performs a basic multiply function, division, and square root. The operands can be single- or double-precision floating-point numbers and can be converted to absolute values before multiplication takes place. Integer operands may also be used.

If the operands to the multiplier are double-precision or mixed precision (i.e., one single-precision and one double-precision), then one extra clock cycle is required to get the product through the multiplier pipeline. This means that for PIPES1=1, one clock cycle is required for the multiplier pipeline; for PIPES1=0, two clock cycles are required for the multiplier pipeline.

An exception circuit is provided to detect denormalized inputs; these are indicated by a high on the DENIN signal. Denormalized inputs must be wrapped by the ALU before multiplication, division, or square root. If results are wrapped (signaled by a high on the DENORM status pin), they must be unwrapped by the ALU first.

The multiplier and ALU can be operated simultaneously. Division and square root are each performed as an independent multiplier operation, even though both multiplier and ALU are active during these operations.

4.6.5 Output Control

An output MUX selects which result (ALU or multiplier) is written to the register. The instruction specifies where the result is stored. Results may be directed to the twenty registers in files RA and RB, the feedback registers (C and CT), or the other temporary storage registers.

Although it is possible to direct the result to the CONFIG, STATUS, MCADDR, VECTOR, IRAREG, SUBADDO, and SUBADD1 registers, it is not recommended. These registers have dedicated functions as discussed in section 4.5.

The COUNTX, COUNTY, and MIN-MAX/LOOPCT may be used as temporary storage registers. Because they are only 32-bits wide, double-precision results cannot be stored in these registers.

4.7 RESET and RDY

The RESET input is an active low signal that asynchronously clears the internal states and resets the configuration and status registers to the default values. Internal pipeline registers are cleared, but the register files, C, and CT are not affected.

During reset, control inputs are in an inactive state as shown in Table 4–10. The LAD and MSD buses are placed in a high-impedance state, and the MSA bus outputs an address of 0.

Signal Name	Logic Level				
LAD31-0	high impedance				
ALTCH	high				
CAST	high				
WET	high				
MSD31-0	high impedance				
MSA15-0	low				
DS/ CS	high				
MAE	high				
MCE	high				
MOE	high				
MWR	high				
COINT	high				
CORDY	high				
INTG	low				

Table 4–10. Signal States During Reset

[†] Host-independent mode only.

Operation resumes on the rising edge of the clock after RESET is set high again. In host-independent mode, MCE becomes active and causes a read from code address 0. In coprocessor mode, the TMS34082 goes to an idle state, waiting for an instruction from the TMS34020.

The TMS34082 can be nondestructively stalled by setting the RDY input low. The next rising clock edge is inhibited. Normal operation resumes on the cycle after the RDY input is set high again.

While halted, the registers and internal states are unaltered. Output pins remain at their previous levels. The asynchronous inputs ($\overline{\text{LOE}}$, $\overline{\text{MOE}}$, and $\overline{\text{RESET}}$) are still active. If an interrupt is received while the device is stalled, it will be queued and serviced after operation resumes.

4.8 Emulation Control

Two emulation mode control pins, EC1-0, support system testing. These may be used, for example, to place all outputs in a high-impedance state, isolating the TMS34082 from the rest of the system.

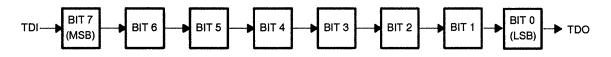
Test modes are given in Table 4–11 . For normal operation, EC1 and EC0 must both be high.

Table 4–11. Test Modes

EC1-0	Operation
0 0	All output and I/O pins are forced low
0 1	All output and I/O pins are forced high
1 0	All output pins are placed in high-impedance state
1 1	Normal operation

4.9 JTAG Test Port

The TMS34082 includes a 4-wire Test Access Port (TAP) interface that allows serial scan access to test circuitry within the device. This TAP is compatible with the IEEE 1149.1 (JTAG) specification. It was designed using the TI Scope™ (System Controllability, Observability, and Partitioning Environments) guidelines. For normal operation, the input pins should be connected as shown below.


Table 4–12. Test Pins for Normal Operation

Signal Name	Logic Level	
TCLK	Tied low or high	
TDI	Tie high or leave floating	
TMS	Tie high or leave floating	

4.9.1 Test Instructions

The TAP includes an 8-bit instruction register used to tell the device what instruction is to be executed. The instruction register is loaded serially via the TDI input. The order of scan is shown in Figure 4–19.

Figure 4–19. Instruction Register Order of Scan

Four test instructions are supported; Table 4–13 lists their binary opcodes. Any instruction code not supported is interpreted as the Bypass instruction.

Bypass

A one-bit bypass register is selected in the scan path. Data input from TDI is shifted into the bypass register, then out through TD0.

Extest

This is the 1149.1 Extest instruction with the boundary scan register in the scan path. Data appearing at the device inputs and outputs is captured. Data previously loaded into the boundary scan register is applied to the device inputs and through the device outputs.

Intest

This is the 1149.1 Intest instruction with the boundary scan register in the scan path. Data appearing at the device inputs and outputs is captured. Data previously loaded into the boundary scan register is applied to the device inputs and through the device outputs.

Sample

This instruction conforms to the 1149.1 Sample/Preload instruction. Data appearing at the device inputs and outputs is sampled without affecting normal operation. The boundary scan register is selected in the scan path.

Table 4–13. Instruction Register Opcodes

Binary Opcode	Opcode	Description	
0000000	BYPASS	Bypass scan	
00000011	INTEST	Boundary scan in test mode	
10000010	SAMPLE Sample boundary scan in normal mode		
1111111	EXTEST	Boundary scan in test mode	

4.9.2 Boundary Scan Register

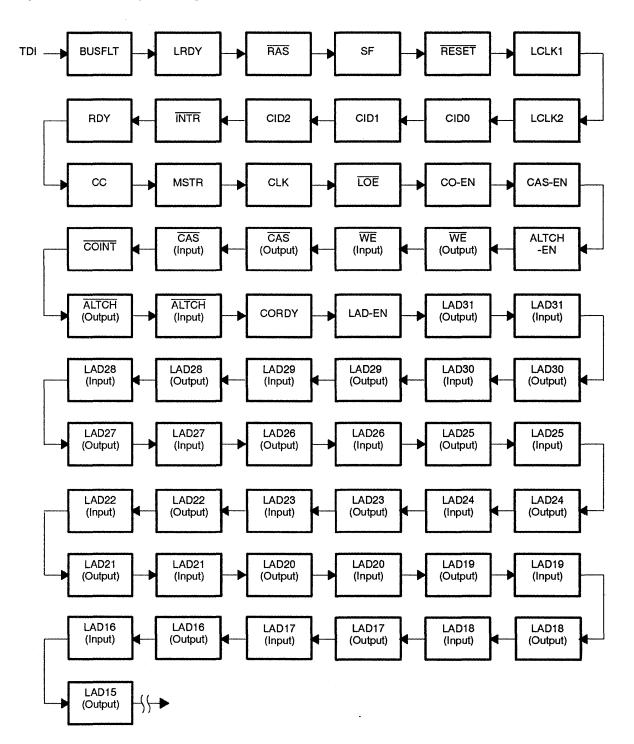

The boundary scan register contains 181 bits, one for each functional input and output on the TMS34082. Each I/O pin has both an input and an output register bit associated with it. In addition, some three-state outputs have an additional bit in the scan register. These represent internal three-state enable registers, not actual pins on the package. Table 4–14 lists these scan bits and the outputs they affect.

Table 4–14. Boundary Scan Register Enable Bits

Scan Name	Affected Outputs	
CO-EN	COINT, CORDY	
ALTCH-EN	ALTCH (output)	
CAS-EN	CAS (output), WE (output)	
LAD-EN	LAD31-0 (outputs only)	
MSD-EN	MSD31-0 (outputs only)	
MSA-EN	MSA15-0	
MWR-EN	MWR, MOE, DS/CS, MCE, INTG	

The boundary scan register is used to store test data that is to be applied internally and/or externally to the TMS34082 and to capture and store data that is applied to the functional inputs and outputs. The boundary scan register order of scan is shown in Figure 4–20.

Architecture

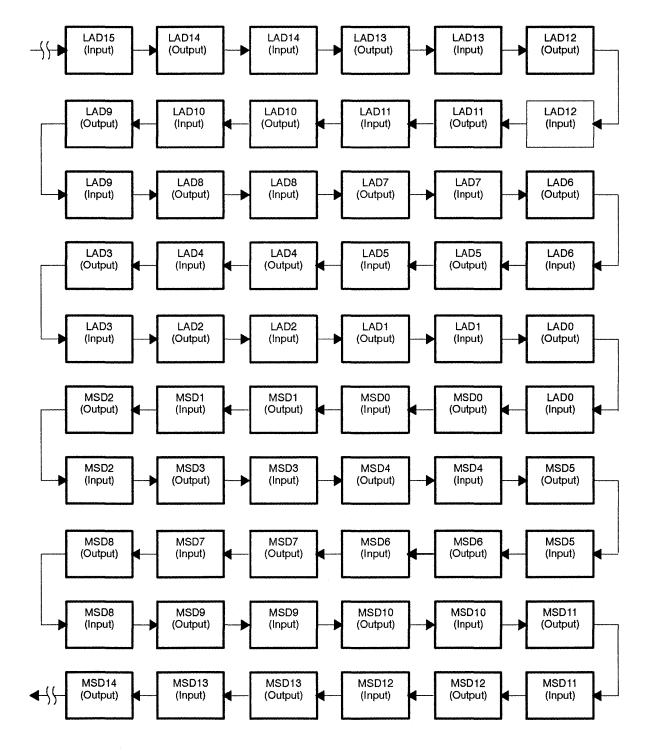


Figure 4–20. Boundary Scan Register Order of Scan (Continued)

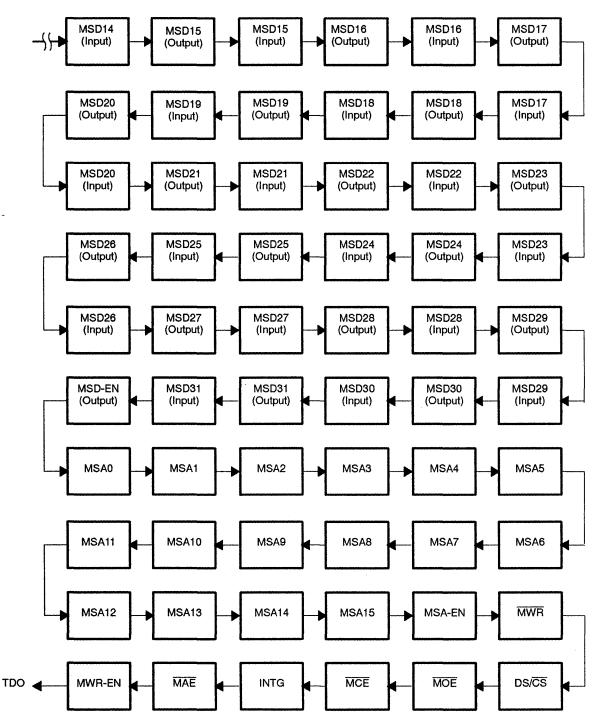


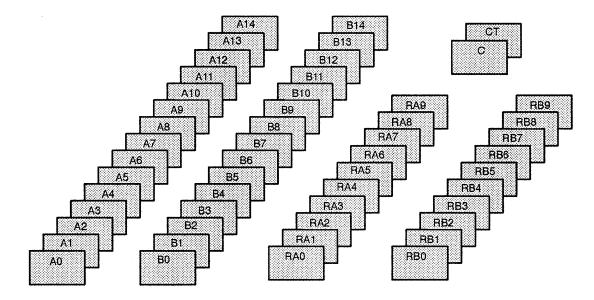
Figure 4–20. Boundary Scan Register Order of Scan (Continued)

Chapter 5

Coprocessor Mode

The TMS34082 provides closely coupled floating-point support for the TMS34020. The devices were designed with a direct-wire interface that requires no additional external glue logic. Combinations of TMS34020 and TMS34082 devices provide the performance to cover a broad range of graphic applications. This family of solutions makes upgrading your design easy.

......


The TMS34082 is more than a simple coprocessor. It contains complex instructions specifically tailored for graphics operations. The ability of the TMS34020 and TMS34082 to operate in parallel, support for multiple TMS34082 devices, and the option of adding external user-generated subroutines also increase system performance.

5.1 TMS34020/TMS34082 Interface Overview

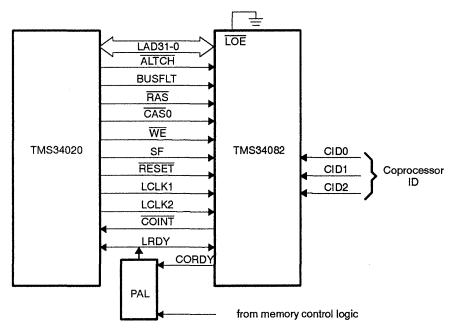
Operation in coprocessor mode assumes the MSTR input signal is set low. In this mode, the TMS34082 acts as a tightly coupled coprocessor to the TMS34020. In terms of the instruction set and register resources, the TMS34082 appears as an extension to the TMS34020 register and instruction set.

Figure 5–1 shows the register allocation for the TMS34020/TMS34082 combination.

TMS34020 Registers

TMS34082 Registers

The TMS34082 executes two different instruction sets:


Internal instructions from the TMS34020 are input on the LAD port. They include complex graphics, matrix, and vector routines. These are described in Chapter 7.

External instructions are input on the MSD port. This is a RISC-like instruction set. They are used to write user-defined subroutines. External instruction are covered in Chapter 8.

The interface between the TMS34020 and the TMS34082 consists of direct connections between pins. No glue logic is required other than gating the ready signals into the TMS34020. Figure 5–2 shows the interconnection.

The LAD interface includes the following signals: LAD31-0, LOE, ALTCH, LRDY, BUSFLT, RAS, CAS, WE, SF, COINT, CORDY. These signals communicate between TMS34020 and TMS34082 in coprocessor mode. COINT and CORDY are the only signals that go from the TMS34082 to the TMS34020; all other signals are inputs to the TMS34082. COINT should be connected to one of the TMS34020 local interrupt requests, LINT1 or LINT2.

Figure 5–2. TMS34020/TMS34082 Interconnection

CORDY from the TMS34082 is logically ORed with other ready signals from the system to form the TMS34020 LRDY input ready signal. Note that LRDY connects to both the TMS34020 and the TMS34082 inputs.

When operating in the coprocessor mode, connect the remaining TMS34082 pins as shown in Table 5–1.

 Table 5–1.
 Recommended TMS34082 Pin Connections

Signal Name	Description	Logic Level tie low	
MSTR	Coprocessor/Host-independent mode select		
CLK	Host-independent mode clock	tie low	
CID2-0	Coprocessor ID (assembler default is 0002)	tie low	
EC1-0	Emulator mode control	tie high	
ТСК	Test clock input	tie low	
LOE	LAD output enable	tie low	
INTR	Interrupt request input	tie high	

5.2 Clocks

Local clock input signals LCLK1 and LCLK2 are generated by the TMS34020. Internally, the TMS34082 generates a rising clock edge from each LCLK1 edge (rising or falling). In coprocessor mode, the TMS34082 actually operates at twice the LCLK1 input clock frequency.

LCLK1 controls most of the TMS34082 internal logic while LCLK2 is used for several simple functions such as synchronizing interrupt requests.

CLK is the system clock input in host-independent mode. It should be tied low for coprocessor mode.

5.3 TMS34082 Initialization

The TMS34082 uses the same RESET input signal that the TMS34020 uses. Upon reset, the TMS34082 clears all pipeline registers and internal states. The configuration register and status register return to their default values. When RESET returns high in coprocessor mode, the TMS34082 is in an idle state waiting for the next instruction from the TMS34020. The RESET signal is an asynchronous signal and does not require specific setup or hold times to a clock. However, the minimum pulse duration requirement must be met.

5.4 Configuration Register Settings for Coprocessor Mode

The configuration register (CONFIG) defines several selectable features of the TMS34082. The following subsections recommend settings for this register in coprocessor mode. Part of your system initialization program should set the configuration register to the appropriate value.

5.4.1 Exception Masks

Since inexact operations are common in floating-point operations, you should usually disable this exception for both the multiplier and ALU by setting the MINEX and AINEX bits to 0.

5.4.2 Fast vs IEEE Mode

For most graphics applications where integer and single-precision floating-point number formats are used, operating the TMS34082 in Fast mode is sufficient. This also holds true for most double-precision floating-point applications. Because the internal instruction set does not include instructions to wrap and unwrap denormalized numbers, you should use Fast mode if you do not have memory on the MSD port for external instructions.

However, when working with very large or very small double-precision values, IEEE mode can be used to operate on denormalized numbers. Possible uses of IEEE mode include image processing and digital signal processing applications where accuracy is critical. External instructions must be used to wrap and unwrap denormalized numbers. See Chapter 8 for details on these instruction.

5.4.3 Pipeline Mode Settings

For coprocessor mode, the TMS34082 pipeline mode settings (PIPES2-1 in the CONFIG register) affect the performance of very few internal instructions. Most simple instructions, such as adds or multiplies, finish executing before the TMS34020 can issue the next instruction. Using the default setting allows you to run the TMS34082 at the maximum clock rate. This setting (PIPES2 = 1, PIPES1 = 0) is recommended unless you are using chained mode external instructions. While using chained mode instructions, PIPES2 should be set low to enable the FPU core output registers.

The complex instructions contained in internal ROM change the pipeline setting as needed and restore the previous pipeline setting after the instruction is completed.

5.5 TMS34020/TMS34082 LAD Bus Operation

The TMS34020 local memory interface is made up of a multiplexed address/data bus and associated control signals. During a memory cycle, the address and status are output on the LAD bus, and then the LAD bus is used for the data transfer. The local memory and DRAM/VRAM interfaces are used for transferring data or instructions between the TMS34020, memory, or the TMS34082 in addition to generating refreshing cycles for DRAM/VRAM.

In coprocessor mode, the TMS34082 LAD bus connects directly to the TMS34020 LAD bus. Coprocessor commands from the TMS34020 are input on this bus. In addition, data transfers between the TMS34020 or its local memory and the TMS34082 occur through the LAD bus. Transfers between the LAD and MSD buses can also be programmed.

A single coprocessor instruction may be used to pass a command to the TMS34082 and transfer data to/from the TMS34020 or memory. There are five general types of coprocessor instructions.

Command-only instructions transfer no data to the TMS34082.

TMS34020 to TMS34082 transfer instructions pass a command and data to the coprocessor. Three types of transfers are available:

move one 32-bit parameter

move two 32-bit parameters

move one 64-bit parameter

TMS34082 to TMS34020 transfer instructions pass a command to the coprocessor and the TMS34082 outputs data to the LAD bus. Two types of instructions are available:

move one 32-bit parameter

move one 64-bit parameter

Memory to TMS34082 transfer instructions pass a command from the TMS34020 and data from memory to the coprocessor. Up to 32 32-bit words may be transferred. Three types of memory moves are available:

move the number of words specified in the coprocessor instruction using postincrement

move the number of words specified in the coprocessor instruction using predecrement

move the number of words specified in a register using postincrement.

TMS34082 to memory transfer instructions pass a command to the coprocessor and the TMS34082 outputs data to the LAD bus. Up to 32 32-bit words may be transferred. Two types of memory moves are available:

move the number of words specified in the coprocessor instruction using postincrement

move the number of words specified in the coprocessor instruction using predecrement

5.5.1 LAD Bus Protocol

Both data and instructions are transferred over the bidirectional LAD bus in coprocessor mode. A unique combination of signal inputs distinguishes an instruction from data. SF, ALTCH, CAS, RAS, and WE are used to distinguish coprocessor functions from other operations on the LAD bus.

The TMS34020 first fetches a coprocessor instruction from either internal cache or from local memory on the LAD bus. A coprocessor command is then issued to the TMS34082 from the TMS34020 by way of the following protocol:

A valid coprocessor ID (CID2-0) on LAD31-29

 $LAD3-0 = 0000_2$

RAS high

SF high during the falling edge of ALTCH

Note: When using one TMS34082 in a system, the assembler/compiler default for CID2-0 = 000_2 .

The command is then decoded and executed by the appropriate TMS34082. If a command-only instruction is issued, the TMS34082 begins execution at the rising edge of LCLK1 after ALTCH falls. A timing diagram for command-only instructions is shown in Figure 5–3.

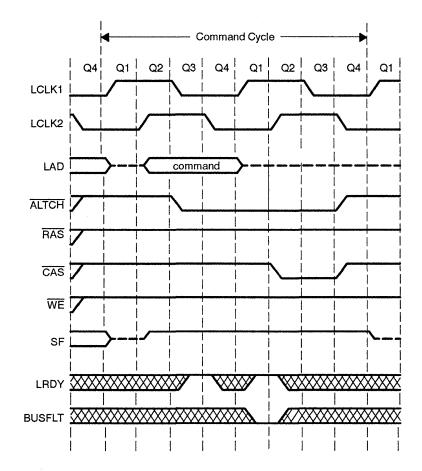


Figure 5–3. Transferring a Command from the TMS34020 to the TMS34082

If operands are required from DRAM/VRAM, the TMS34020 sets up the appropriate DRAM/VRAM address and timing. The data is then transferred directly between the TMS34082 and DRAM/VRAM.

All transfers to/from the TMS34082 are 32 bits wide. Therefore, the TMS34082 uses neither the TMS34020 SIZE16 signal nor all four individual byte enables (CAS3-0). Also, the **.even 32** TMS34020 assembler directive should be placed before all blocks of DRAM/VRAM memory that are used to store data or external code to be sent to the TMS34082. If the 32-bit words are not aligned on long word boundaries, the data is not sent to the TMS34082 correctly.

Instructions that pass data and commands to the TMS34082 begin execution on the rising edge of LCLK1 after \overline{CAS} rises after the last data transfer. Timing diagrams for instructions that transfer data and commands are given in Figures 5–4 through 5–7.

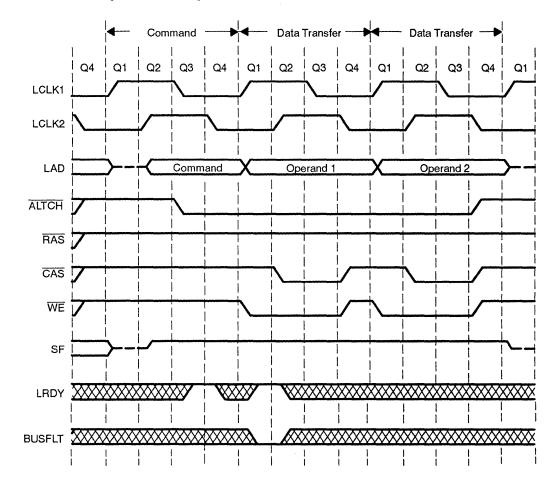


Figure 5-4. Transferring TMS34020 Registers to the TMS34082

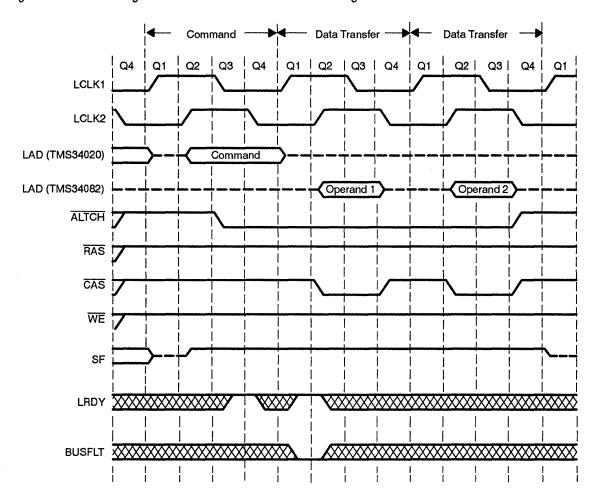


Figure 5–5. Transferring from the TMS34082 to a TMS34020 Register

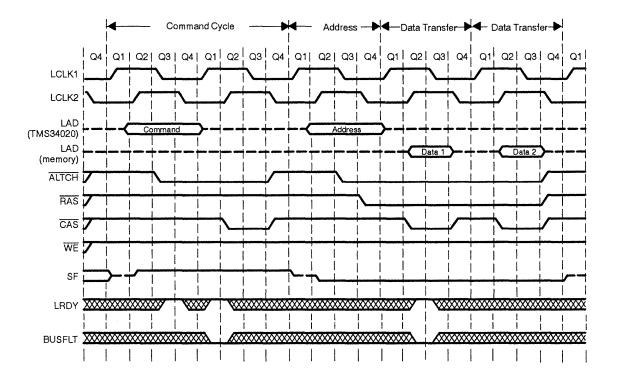
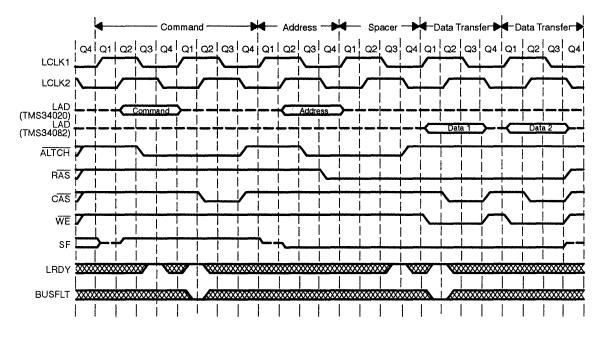
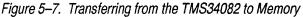




Figure 5–6. Transferring Memory to the TMS34082

When the TMS34082 is transferring data to memory, the TMS34020 outputs the memory address on the LAD bus. An extra clock cycle, called a spacer, is then inserted before the TMS34082 outputs data. The spacer is added to allow time for the TMS34020 to stop driving the LAD bus and the TMS34082 to set up valid data on LAD.

5.5.2 Enabling the LAD Bus Drivers

The LAD bus drivers are enabled only when $\overline{\text{LOE}}$ is low, the correct TMS34082 coprocessor ID has been selected, and during the proper time slot within the execution cycle. Just bringing $\overline{\text{LOE}}$ low does not cause the LAD bus drivers to turn on. For most applications using a single TMS3020, TMS34082, and DRAM/VRAM, $\overline{\text{LOE}}$ may be tied low.

In a system with multiple TMS34082 coprocessors, only one coprocessor can drive the LAD bus at a time. The TMS34082 contains internal logic that only allows it to drive the LAD bus when its coprocessor ID is contained in the move instruction. A TMS34082 write instruction with the broadcast ID is ignored.

5.5.3 Bus Faults

The TMS34082 BUSFLT input signal also ties directly to the TMS34020 BUSFLT pin. The TMS34082 supports bus retries and bus fault conditions in conjunction with the TMS34020. The bus cycle conditions are defined in Table 5–2.

Table 5–2. Bus Cycle Completion Conditions

Completion Condition	BUSFLT	LRDY
Wait	0	0
Successful transfer	0	1
Retry	1	0
Bus fault	1	1

In the event of a systems fault involving the TMS34082, the abort command allows the TMS34020 to regain control. The abort terminates all coprocessor activity, restoring the TMS34082 to a known state so that it is available for further commands from the TMS34020. Chapter 7 covers the abort command in greater detail.

5.6 Polling the Coprocessor

When the TMS34020 issues an instruction to the TMS34082, CORDY (coprocessor ready) is high. It remains high even while the TMS34082 is busy executing the instruction. However, if another instruction is sent by the TMS34020 before the previous instruction has completed, CORDY will go low immediately, indicating that the TMS34020 must wait. When the TMS34082 is ready to accept the new instruction, CORDY returns high to signal the TMS34020 that the coprocessor is ready to accept a command. Because CORDY is usually ORed with other terms to form LRDY, CORDY going low also sends LRDY low, halting the TMS34020.

The instruction will still be valid on the LAD bus when CORDY (and LRDY) toggle, and the TMS34082 will latch the instruction. However, for longer TMS34082 operations, such as lengthy subroutines stored in SRAM, the TMS34020 may have to wait for a long period of time before the TMS34082 is ready. This ties up the TMS34020 and keeps it from executing other code. Instead, the TMS34020 can check the coprocessor's operating condition before issuing an instruction by way of the *check status* command. The TMS34020 assembler pseudo-op for this command is CHECK.

In response to the check status command, the TMS34082 outputs a status code to signal if it is busy or not. The TMS34082 returns a value of all 1s if busy or all 0s if idle, as shown in Table 5–3. This instruction is described further in Chapter 7.

Table 5–3. Bit Definitions for TMS34020 Status Check Command

Description	LAD Output
Coprocessor not busy	0000 0000h
Coprocessor busy	FFFF FFFFh

The TMS34020 does not have to enter an extended wait state to obtain access to the selected coprocessor, but may continue with another task not requiring the TMS34082. This allows the two devices to execute instructions in parallel. See Example 5–1 for an example of code using the check status command.

Example 5–1. Using the Status Check Command

CHECK Al CMPI 0,Al JRNE busy	; put output status in TMS34020 register Al ; compare with all zeros ; if busy, then execute more TMS34020 code
not_busy:	; start next TMS34082 routine
busy:	; execute more TMS34020 code while coprocessor is busy

5.7 Interrupt Handling

The TMS34082 has two interrupt input sources in coprocessor mode:

An exception detect (ED) interrupt used to signal the TMS34082 that a status exception occurred

A software interrupt generated by an external instruction input on the MSD bus

Each exception has its own interrupt enable flag in the status register. If external SRAM memory is not used, the software interrupt should be disabled. On reset, the exception detect (ED) interrupt is enabled and the software interrupt is disabled.

Because hardware interrupts are *not* allowed in coprocessor mode, the hardware interrupt should be disabled. This is the default setting of the hardware interrupt enable flag in the status register. Also, INTR should be tied high.

5.7.1 Exception Detect Interrupts

If the exception detect interrupt is enabled, $\overline{\text{COINT}}$ goes low when the ED flag in the status register is 1. The ED flag goes high when a status exception occurs (see subsection 4.5.3.1) $\overline{\text{COINT}}$ signals the exception to the TMS34020. This exception does *not* cause the TMS34082 to branch to the interrupt vector register address. The TMS34082 aborts the current instruction and goes to an idle state.

The COINT signal may be connected to either the TMS34020 LINT1 or LINT2 input. You can also combine COINT with other interrupt requests in the system to form LINT1 or LINT2. If its interrupts are enabled, the TMS34020 will branch to an interrupt vector to service the TMS34082 request.

COINT and ED are reset by reading the STATUS register. You should do this as part of your interrupt service routine.

In the interrupt service routine, saving the state of the TMS34082 may be desired. This is best accomplished by executing a block move of the TMS34082 registers to DRAM/VRAM memory. The TMS34020 assembly language instructions listed in Example 5–2 can be used for the desired precision. These routines do not save or restore the C and CT register. Restoring the TMS34082 machine state consists of moving the register values from memory back to the TMS34082. Restoring the status register sets the ED flag high. However, writing a 1 to ED will *not* cause an interrupt.

Example 5-2. Saving and Restoring the TMS34082 Machine State

MOVE RAO, *A1+, 30 ; integer TMS34020 move, use register A1 ; as the memory pointer MOVF RA0, *A1+, 30 ; single-precision move, use TMS34020 ; register Al as memory pointer MOVD RA0, *A1+, 15 ; double-precision TMS34020 move, use ; register A1 as memory pointer, MOVD RB1, *A1+, 15 ; remainder of double-precision move ; restoring TMS34082 machine state MOVE *A1+, RA0, 30 ; integer TMS34020 register Α1 move, use ; as the memory pointer MOVF *A1+, RA0, 30 ; single-precision TMS34020 move, use ; register A1 as memory pointer MOVD *A1+, RA0, 15 ; double-precision TMS34020 move, use ; register Al as memory pointer, MOVD *A1+, RB1, 15 ; remainder of double-precision move

5.7.2 Software Interrupts

If software interrupts are enabled, an interrupt may be generated by an external instruction fetched from the MSD port. The interrupt sets the interrupt grant output (INTG) low, saves the current program counter in the interrupt return register (IRAREG) and branches to the address in the interrupt vector register. Interrupts are also disabled.

Your service routine should restore software interrupts at the end. The final instruction should be a return from interrupt that will branch to the value in the interrupt return register.

5.7.3 Interrupting the TMS34020

For some applications using long external subroutines, it is desirable to interrupt the TMS34082 to signal that the subroutine is finished. This relieves the TMS34020 from having to check the TMS34082 to see if it is ready for the next instruction.

This may be accomplished by intentionally executing an instruction (in external code) that sets the ED flag high. This causes COINT to go low, signaling an interrupt to the TMS34020. Any instruction that generates an exception flag, such as invalid operation, will work.

Possible instructions include:

Divide using 0 as the dividend

Use NaN as the operand for any instruction

Unwrap the floating-point value one (unwrap ONE.f)

In order to distinguish an intentional ED interrupt from one generated by a real exception, a register or memory location should first be loaded with a status code. Then the illegal operation is performed. The TMS34020 interrupt service routine should read the register or memory location to determine if the interrupt was intentional. The routine should also reset the register or memory location.

Before causing the ED interrupt, the external routine should make sure the internal stack (registers SUBADDR0 and SUBADDR1) is empty. This can be accomplished by clearing the stack pointers (bit 31) in both registers. You may wish to save the contents of these registers in external memory *before* clearing the stack pointers.

5.8 TMS34020/TMS34082 Code Example

Using combinations of the MMPY0F, MMPY1F, MMPY2F,and MMPY3F single-precision floating-point multiply instructions allows for several matrix multiply operations: 1×3 by 3×3 , 1×4 by 4×4 , 3×3 by 3×3 , and 4×4 by 4×4 . The following example shows the use of MMPY0F, MMPY1F and MMPY2F in performing a single-precision floating-point 3×3 by 3×3 matrix multiply, giving a 3×3 matrix result.

Example 5–3. Multiplying Two 3 × 3 Matrices

$$\begin{bmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{00} & B_{01} & B_{02} \\ B_{10} & B_{11} & B_{12} \\ B_{20} & B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} C_{00} & C_{01} & C_{02} \\ C_{10} & C_{11} & C_{12} \\ C_{20} & C_{21} & C_{22} \end{bmatrix}$$
Algorithm:

$$C_{00} = A_{00} \times B_{00} + A_{01} \times B_{10} + A_{02} \times B_{20}$$

$$C_{01} = A_{00} \times B_{01} + A_{01} \times B_{11} + A_{02} \times B_{21}$$

$$C_{02} = A_{00} \times B_{02} + A_{01} \times B_{12} + A_{02} \times B_{22}$$

$$C_{10} = A_{10} \times B_{00} + A_{11} \times B_{10} + A_{12} \times B_{20}$$

$$C_{11} = A_{10} \times B_{01} + A_{11} \times B_{11} + A_{12} \times B_{21}$$

$$C_{12} = A_{10} \times B_{02} + A_{11} \times B_{12} + A_{12} \times B_{22}$$

$$C_{20} = A_{20} \times B_{00} + A_{21} \times B_{10} + A_{22} \times B_{20}$$

$$C_{21} = A_{20} \times B_{01} + A_{21} \times B_{11} + A_{22} \times B_{21}$$

$$C_{22} = A_{20} \times B_{00} + A_{21} \times B_{10} + A_{22} \times B_{22}$$
Matrix values:
MATRIX A = 10 0 11

$$-3 -1 -5$$

$$13 1 6$$
MATRIX B = 3 1 5

$$2 1 3$$

$$4 -1 1$$
MATRIX C = 76 -1 61

$$-32 1 -23$$

$$65 8 74$$

.

Example 5-4. Instructions for a 3×3 by 3×3 Matrix Multiply

```
Code for multiplying one 3 \times 3 by another 3 \times 3 matrix
  .IEEEFL
                           ; Force IEEE floating-point representations
BEGIN;
; Move matrix B to the TMS34082
  MOVI
             MATRIXB, AO
  MOVF
             *A0+,RA0, 10
  MOVF
             *A0+,RB0,6
 Point A0 to first row of matrix A
;
             MATRIXA, AO
  MOVI
; Point A1 to first row of matrix C
  MOVI
             MATRIXC, A1
  MOVI
             3, A2
                           ; three rows
ROWLOOP;
; Loop through all three rows
                           ; Movefirst A value on row to the TMS34082
  MOVF
             *A0+,RB9,1
  MMPY OF
                           ; Multiply down the B column
  MOVF
             *A0+, RB9, 1 ; Move second A value on row to the TMS34082
  MMPY1F
                           ; Multiply and accumulate down the second B column
             *A0+, RB9, 1 ; Move third A value on row to the TMS34082
  MOVF
  MMPY2F
                            ; Multiply and accumulate down the third B column
; Move the current C row into TMS34020 memory
             RB6, *A1+, 3 ; Get the three row values
  MOVE
  DEC
             Α2
                           ; Done four rows yet?
  TRNZ
             ROWLOOP
                            ; If no, then compute the next row
HERE;
             JRUC
                     HERE ; Done, endless loop
;Matrix storage
  . SECT "DATA"
MATRIXA
  . FLOAT
             10,
                   Ο,
                       11
                        - 5
  . FLOAT
             -3,
                  -1,
                       16
  . FLOAT
             13,
                   1,
MATRIXB
  . FLOAT
              3,
                   1,
                         5,
                            0
                                    ; The zeros on the end of these rows are
  . FLOAT
              2,
                   1,
                         З,
                             0
                                    ; not necessary, but allow a memory-to-
                                    ; register transfer for the matrix.
  . FLOAT
              4,
                        1,
                             0
                  -1,
  . FLOAT
              0,
                   Ο,
                        Ο,
                            0
                                    ; This row of zeros is necessary
MATRIXC
                   Ο,
                        0
  . FLOAT
              0,
              0,
                   0,
  . FLOAT
                        0
  . FLOAT
              Ο,
                   Ο,
                         0
. SECT
             "TEXT"
```

5.9 TMS34020/TMS34082 Timing Examples

The following timing diagrams illustrate the timing relationships between the TMS34020 and TMS34082.

Figure 5–8 shows the multiplication of two double-precision numbers in TMS34020 registers and assumes that the TMS34020 instructions are contained in cache. The assembler source code is shown below.

Example 5–5. Assembler Source for Double-Precision Multiply

MOVD A0, A1, RA0 MOVD A2, A3, RB0 MPYD RA0, RB0, RA4 MOVD RA4, A4, A5

Figure 5–9 shows an add operation for two single-precision numbers from DRAM assuming that the TMS34020 instructions are contained in cache. The assembler source code is shown below.

Example 5–6. Assembler Source for Single-Precision Add

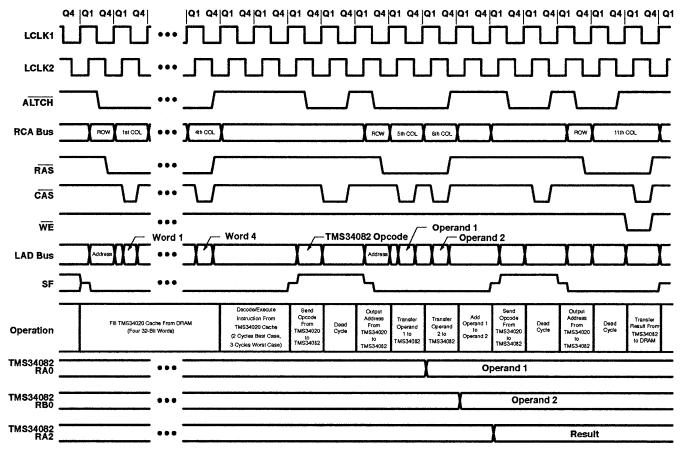
ADDF *A0+, RA0, RB0, RA2 MOVF RA2, *A1+

Figure 5–10 shows the same add operation (adding two single-precision numbers from DRAM). However, this time the TMS34020 instructions are not in cache.

	Q4 Q1 Q4
LCLK1	
LCLK2	
ALTCH	
CORDY	
CAS	
WE	TMS34082 OpcodeTMS34082 OpcodeTMS34082 Opcode
LAD Bus	Operand 1 Operand 1 Operand 2 Operan
SF	
Operation	Send TMS34020 Cache Send Opcode From TMS34020 Transfer Operand 1 Send Opcode From TMS34020 to TMS34020 to TMS34020 Transfer Operand 2 Send Opcode From TMS34020 to TMS34020 to TMS34020 to TMS34020 Multiply Operand 1 & 2 Send Copcode From TMS34020 to TMS34020 to TMS34020 to TMS34020 Transfer MS Transfer M
MS34082 RA0	Operand 1
MS34082 RB0	Operand 2
MS34082 RA4	Result
MS34020 A4/A5	Result —

Note: Assume instructions are in TMS34020 cache, TMS34082 pipeline registers turned on (PIPES1=0) and output registers turned off (PIPES2=1), TMS34082 load order is MSH, then LSH.

Figure 5–8. Multiply 2 Double-Precision Numbers in TMS34020 Registers and Store Result Back to TMS34020 Register (Mode 0)


5-21

	Q4 Q1
LCLK1	
LCLK2	
ALTCH	
RAS	
CAS	
WE	TMS34082 OpcodeTMS34082 Opcode
LAD Bus	Address (Oper 2) Address (Result)
SF	
RCA Bus	ROW 1st COL 2nd COL ROW 3rd COL
- Operation	Fetch Instruction From TMS34020 cache Send Operand to TMS34082 Dead Cycle Output Address to DRAM Transfer Operand 1 to TMS34082 Forch TMS34020 to TMS34082 Send Opcode TMS34020 to TMS34082 Output Address TMS34020 Dead Cycle Transfer Tesult From TMS34082 Forch TMS34020 to TMS34082 Dead Cycle Transfer TMS34082 Transfer TMS34082
TMS34082 RA0	Operand 1
TMS34082 RB0	Operand 2
TMS34082 RA2_	Result

. .

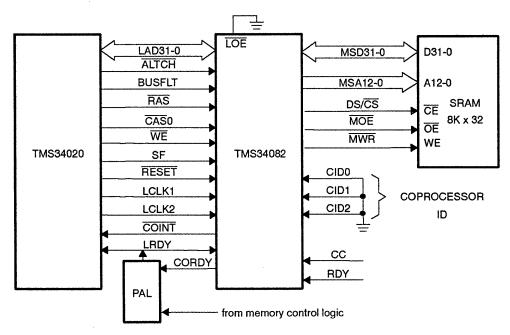
Note: Assume instructions are in TMS34020 cache, TMS34082 pipeline registers turned on (PIPES1=0) and output registers turned off (PIPES2--1), DRAM page mode accesses.

Figure 5–9. Add 2 Single-Precision Numbers from DRAM and Store Result Back to DRAM (Mode 2)

Note: Assume instructions are not in TMS34020 cache, TMS34082 pipeline registers turned on (PIPES1=0) and output registers turned off (PIPES2=1) DRAM page mode accesses.

Figure 5–10. Add 2 Single-Precision Numbers from DRAM and Store Result Back to DRAM (Mode 2), Instructions Not in TMS34020 Cache


5.10 MSD Bus Operation in Coprocessor Mode


Use of the MSD bus in coprocessor mode is optional. External memory on MSD31-0 can be used to store data, user-programmed subroutines, or both. External instructions for user-defined subroutines are covered in Chapter 8. Control signals for MSD and MSA buses, discussed in subsection 4.3.2, operate the same in host-independent and coprocessor modes. Different combinations of control signals distinguish between data memory and code memory.

Data or program code can be downloaded to external memory from the LAD bus. The data (or code) can be stored in the TMS34020's DRAM/VRAM memory and loaded by a LAD-to-MSD bus transfer.

5.10.1 Connecting External Memory

External coprocessor code space is added to the TMS34082 MSD port by adding external SRAM as shown in Figure 5–11. No external glue logic is necessary.

The maximum amount of external memory directly addressable by the TMS34082 is 64K words of program code and 64K words of data as shown in Figure 5–13. This comes out to 512K bytes total. When additional memory is necessary, segmentation or paging techniques can be utilized.

Coprocessor Mode

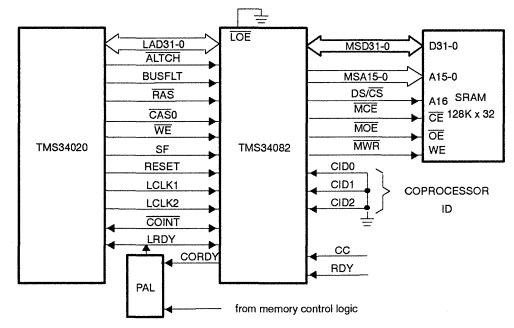


Figure 5–12. TMS34020/TMS34082/SRAM with Maximum SRAM Code/Data Space (MEMCFG = L)

CC is a condition code input and may be used as an external input for branch conditions in external code. It is not used in internal instructions.

5.10.2 TMS34082 External SRAM Timing Analysis

When connecting external SRAM to the TMS34082 for code space and/or data space on the MSD port, the following calculations can be used in determining the total SRAM access time. These times must also include any chip select decode delays. The general formula for computing SRAM access times is:

 $(1/2) \times t_{c(LC1)} - t_{su(MSD)} - t_{p(LC1-MSAV)} = SRAM$ access speed

A description of these parameters is provided in Table 5-4.

Table 5-4. Parameters Used for Calculating SRAM Speed

Parameter	Description
t _{c(LC1)}	Local clock LCLK1 period: 1/f _{clock}
^t su(MSD)	Setup time: MSD data before LCLK1 high
^t p(LC1-MSAV)	Propagation delay: LCLK1 to MSA valid

The time delay incurred by inserting decode logic between the TMS34082 and external SRAM memory would be subtracted from the left side of the equation. For example, if an SN74AS32 (with a propagation delay of 6 ns maximum) is used in generating the SRAM chip enable (\overline{CE}), then the SRAM access time requirements would subsequently be decreased by 6 ns.

5.10.3 Using External Code

Adding external memory to the MSD port allows you to write customized subroutines for your applications. External code is executed by performing a jump to subroutine command issued by the TMS34020.

The memory space is divided into a jump table and general-purpose memory for code and data, as shown in Figure 5–13. There are 32 entries into the subroutine jump table. The jump entry points start at address 0 and increment by 2. This allows two instructions (in the jump table) per subroutine. Using this memory organization, the jump table is relatively small, leaving the remaining memory to be partitioned as best suits your application.

Figure 5–13. Memory Map for External Memory

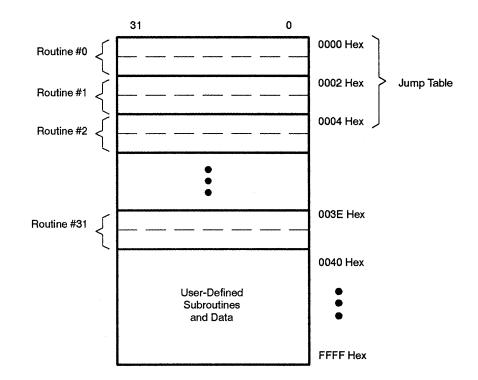
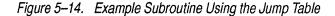
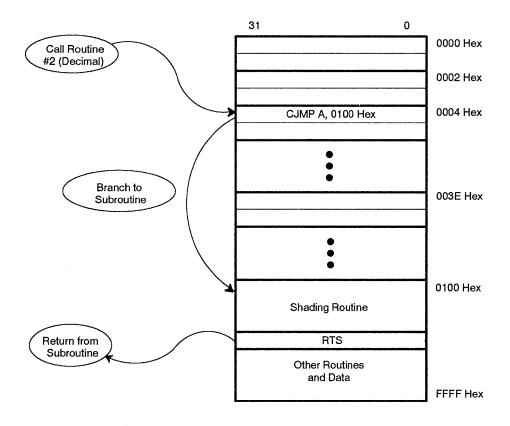




Figure 5–14 illustrates how an external subroutine would execute. The final instruction in the subroutine should be a return from subroutine (RTS). This puts the TMS34082 in an idle mode, waiting for the next instruction from the TMS34020.

Note: Before executing the final return from subroutine, the stack (SUBADDR1-0) must be empty. You may wish to save the contents of these registers in external memory. Then clear the stack pointers (bit 31) in both registers.

5.11 TMS34020/TMS34082/SRAM Code Example

This example describes a 3×3 by 3×3 matrix multiply routine using a subroutine stored in TMS34082 external SRAM. Data values for both matrices are stored in DRAM/VRAM. Therefore, they must be fetched from memory and transferred to RA8-0 and RB8-0 (using the memory address pointers contained in TMS34020 registers B1 and B2, respectively).

Description of operation:

$\left[\begin{array}{cccc}A_{00}&A_{01}&A_{02}\\A_{10}&A_{11}&A_{12}\\A_{20}&A_{21}&A_{22}\end{array}\right]$	×	$\begin{bmatrix} B_{00} & B_{01} & B_{02} \\ B_{10} & B_{11} & B_{12} \\ B_{20} & B_{21} & B_{22} \end{bmatrix}$	=	$\begin{bmatrix} C_{00} & C_{01} & C_{02} \\ C_{10} & C_{11} & C_{12} \\ C_{20} & C_{21} & C_{22} \end{bmatrix}$
---	---	--	---	--

Algorithm:

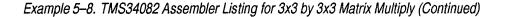
$\begin{split} C_{00} &= A_{00} \times B_{00} + A_{01} \times B_{10} + A_{02} \times B_{20} \\ C_{01} &= A_{00} \times B_{01} + A_{01} \times B_{11} + A_{02} \times B_{21} \\ C_{02} &= A_{00} \times B_{02} + A_{01} \times B_{12} + A_{02} \times B_{22} \end{split}$
$C_{10} = A_{10} \times B_{00} + A_{11} \times B_{10} + A_{12} \times B_{20}$ $C_{11} = A_{10} \times B_{01} + A_{11} \times B_{11} + A_{12} \times B_{21}$ $C_{12} = A_{10} \times B_{02} + A_{11} \times B_{12} + A_{12} \times B_{22}$
$C_{20} = A_{20} \times B_{00} + A_{21} \times B_{10} + A_{22} \times B_{20}$ $C_{21} = A_{20} \times B_{01} + A_{21} \times B_{11} + A_{22} \times B_{21}$ $C_{22} = A_{20} \times B_{02} + A_{21} \times B_{12} + A_{22} \times B_{22}$

The register file contents before the routine are:

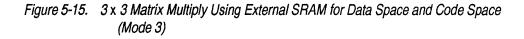
RA0 = A ₀₀	RB0 = B ₀₀
$RA1 = A_{01}$	RB1 = B ₀₁
$RA2 = A_{02}$	RB2 = B ₀₂
$RA3 = A_{10}$	RB3 = B ₁₀
$RA4 = A_{11}$	$RB4 = B_{11}$
RA5 = A ₁₂	RB5 = B ₁₂
RA6 = A ₂₀	RB6 = B ₂₀
RA7 = A ₂₁	RB7 = B ₂₁
$RA8 = A_{22}$	$RB8 = B_{22}$

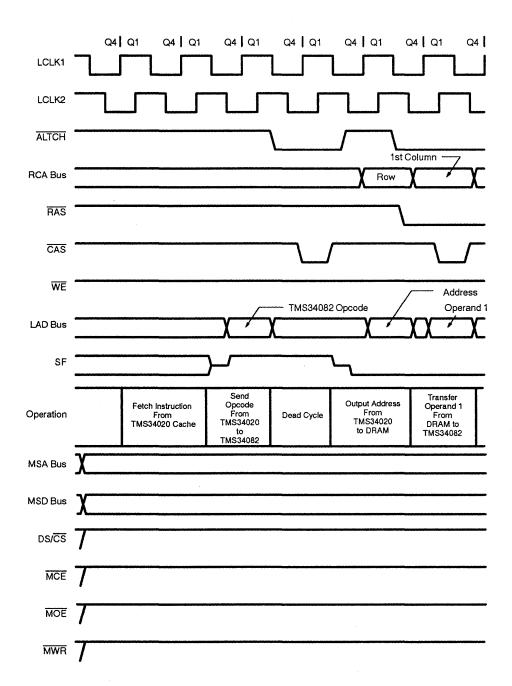
The register file contents after the routine are:

$RA0 = C_{00}$	RB0 = B ₀₀
$RA1 = C_{01}$	$RB1 = B_{01}$
$RA2 = C_{02}$	$RB2 = B_{02}$
$RA3 = C_{10}$	$RB3 = B_{10}$
$RA4 = C_{11}$	$RB4 = B_{11}$
$RA5 = C_{12}$	$RB5 = B_{12}$
$RA6 = C_{20}$	$RB6 = B_{20}$
$RA7 = C_{21}$	$RB7 = B_{21}$
RA8 = C_{22}	$RB8 = B_{22}$
CT = unknown	


Examples 5–7 and 5–8 are the assembly language source listings for both the TMS34020 and the TMS34082. The TMS34082 listing is for the TMS34082 external matrix multiply instructions contained in SRAM. Assume that the matrix multiply routine begins at address 3Eh in SRAM and that the SRAM area for constants is from address FEh through FFh. The timing diagram for this example is shown in Figure 5–15.

Example 5–7. TMS34020 Assembler Listing for 3×3 by 3×3 Matrix Multiply


MOVEF *B1+, RA0, 9	; move first matrix to coprocessor register file A, ; starting at memory address contained in 34030
MOVEF *B2+, RB0, 9	; register B1 ; move second matrix to coprocessor register file B, ; starting at register file B, memory address
CEXEC 0, 0000FFF	; contained in 34020 register B2 ; coprocessor jump to external routine #31 decimal, at ; SRAM address 3Eh


Example 5–8. TMS34082 Assembler Listing for 3×3 by 3×3 Matrix Multiply

```
segment
              code, memtype=0
    cjmp A, MAT
        ; jump to matrix multiply routine
MAT: 1d CONFIG.i, all pipes, 1
       ; load CONFIG register to turn on output registers (PIPES2=0)
    mult RAO.f, RBO.f, CT
        ; A00 * B00
    mult RAO.f, RB1.f, C
        ; A00 * B01
    mult.pass RA1.f, MULFB, RB3.f, CT, MULT
        ; A_{01} * B_{10}, (A_{00} * B_{00}) + 0
    mult.pass RA1.f, MULFB, RB4.f, CT, MULT
        ; A_{01} * B_{11}, (A_{00} * B_{01}) + 0
    mult.add RA2.f, MULFB, RB6.f, ALUFB, CT, ALU
        ; A_{02} * B_{20}, (A_{01} * B_{10}) + (A_{00} * B_{00})
    mult.add RA2.f, MULFB, RB7.f, ALUFB, CT, ALU
        ; A_{02} * B_{21}, (A_{01} * B_{11}) + (A_{00} * B_{01})
    mult.add RAO.f, MULFB, RB2.f, ALUFB, RAO, ALU
        ; A_{00} * B_{02}, (A_{02} * B_{20}) + ((A_{01} * B_{10}) + (A_{00} * B_{00})) = C_{00}
     mult.add RA3.f, MULFB, RB0.f, ALUFB, RA1, ALU
        ; A_{10} * B_{00}, (A_{02} * B_{21}) + ((A_{01} * B_{11}) + (A_{00} * B_{01})) = C_{01}
     mult.pass RA1.f, MULFB, RB5.f, CT, MULT
        ; A_{01} * B_{12}, (A_{00} * B_{02}) + 0
     mult.pass RA4.f, MULFB, RB3.f, CT, MULT
        ; A_{11} * B_{10}, (A_{10} * B_{00}) + 0
     mult.add RA2.f, MULFB, RB8.f, ALUFB, CT, ALU
        ; A_{02} * B_{22}, (A_{01} * B_{12}) + (A_{00} * B_{02})
     mult.add RA5.f, MULFB, RB6.f, ALUFB, CT, ALU
        ; A_{12} * B_{20}, (A_{11} * B_{10}) + (A_{10} * B_{00})
     mult.add RA3.f, MULFB, RB1.f, ALUFB, RA2, ALU
        ; A_{10} * B_{01}, (A_{12} * B_{22}) + ((A_{01} * B_{12}) + (A_{00} * B_{02})) = C_{02}
     mult.add RA3.f, MULFB, RB2.f, ALUFB, RA3, ALU
        ; A_{10} * B_{02}, (A_{12} * B_{20}) + ((A_{11} * B_{10}) + (A_{10} * B_{00})) = C_{10}
     mult.pass RA4.f, MULFB, RB4.f, CT, MULT
        ; A_{11} * B_{11}, (A_{10} * B_{01}) + 0
     mult.pass RA4.f, MULFB, RB5.f, CT, MULT
        ; A_{11} * B_{12}, (A_{10} * B_{02}) + 0
     mult.add RA5.f, MULFB, RB7.f, ALUFB, CT, ALU
        ; A_{12} * B_{21}, (A_{11} * B_{11}) + (A_{10} * B_{01})
     mult.add RA5.f, MULFB, RB8.f, ALUFB, CT, ALU
        ; A_{12} * B_{22}, (A_{11} * B_{12}) + (A_{10} * B_{02})
     mult.add RA6.f, MULFB, RB0.f, ALUFB, RA4, ALU
        ; A_{20} * B_{00}, (A_{12} * B_{21}) + ((A_{11} * B_{11}) + (A_{10} * B_{01})) = C_{11}
     mult.add RA6.f, MULFB, RB1.f, ALUFB, RA5, ALU
        ; A_{20} * B_{01}, (A_{12} * B_{22}) + ((A_{11} * B_{12}) + (A_{10} * B_{02})) = C_{12}
     mult.pass RA7.f, MULFB, RB3.f, CT, MULT
        ; A_{21} * B_{10}, (A_{20} * B_{00}) + 0
     mult.pass RA7.f, MULFB, RB4.f, CT, MULT
        ; A<sub>21</sub> * B<sub>11</sub>, (A<sub>20</sub> * B<sub>01</sub>) + 0
     mult.add RA8.f, MULFB, RB6.f, ALUFB, CT, ALU
        ; A_{22} * B_{20}, (A_{21} * B_{10}) + (A_{20} * B_{00})
```


mult.add RA8.f, MULFB, RB7.f, ALUFB, CT, ALU ; A22 * B21, (A21 * B11) + (A20 * B01) mult.add RA6.f, MULFB, RB2.f, ALUFB, RA6, ALU ; $A_{20} * B_{02}$, $(A_{22} * B_{20}) + ((A_{21} * B_{10}) + (A_{20} * B_{00})) = C_{20}$ mult.add RA7.f, MULFB, RB5.f, ALUFB, RA7, ALU ; $A_{21} * B_{12}$, $(A_{22} * B_{21}) + ((A_{21} * B_{11}) + (A_{20} * B_{01})) = C_{21}$ mult.pass RA8.f, MULFB, RB8.f, CT, MULT ; $A_{22} * B_{22}$, $(A_{20} * B_{02}) + 0$ pass MULFB.f, RA8 ; $(A_{21} * B_{12}) + 0$ add MULFB.f, ALUFB.f, CT ; $(A_{22} * B_{22}) + (A_{20} * B_{02})$ nop ; no operation add RA8.f, ALUFB, RA8.f ; $(A_{21} * B_{12}) + ((A_{22} * B_{22}) + (A_{20} * B_{20})) = C_{22}$ nop ; no operation nop ; no operation ld CONFIG.i, pipeline_only, 1 ; load configuration register to turn off output registers (PIPES2=1) rts ; return from subroutine, go to internal TMS34082 wait state .segment data,memtype=1 0xFFC08 all_pipes: .data ; CONFIG register setting for all pipeline registers enabled pipeline only: .data 0xFFC28 ; CONFIG register setting to turn off output registers only

Coprocessor Mode

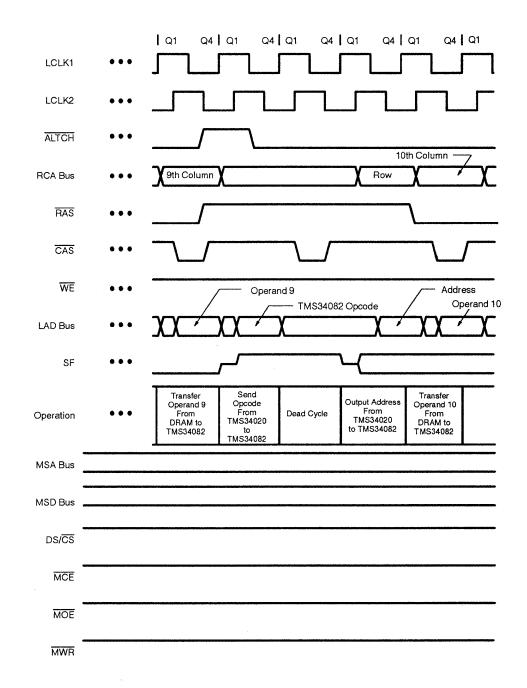
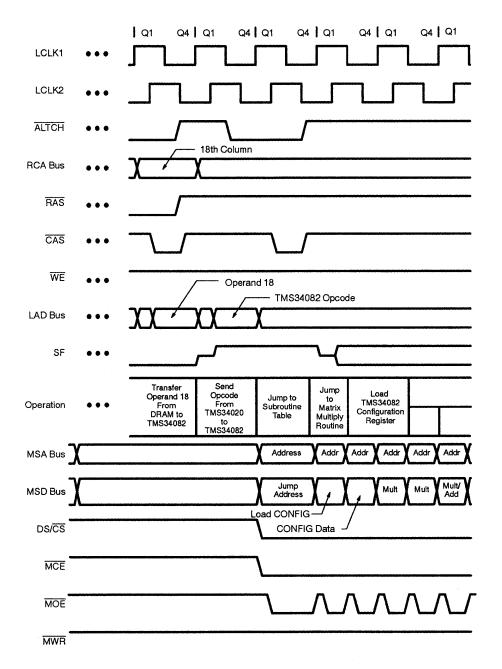
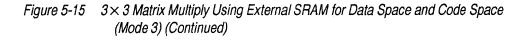
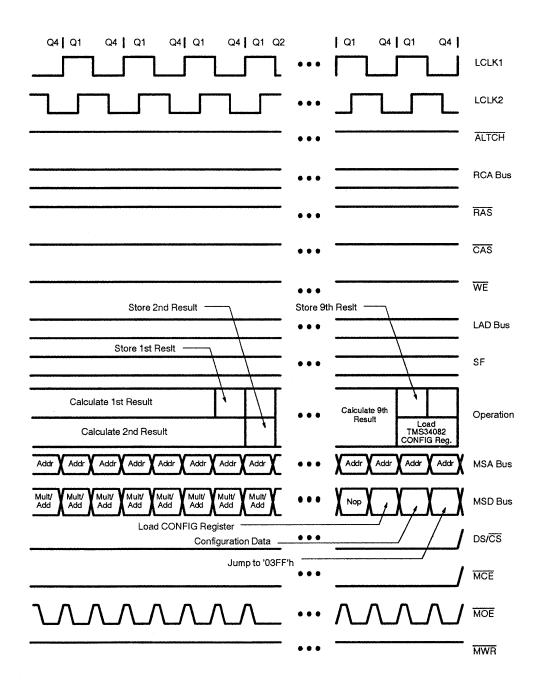





Figure 5-15. 3 × 3 Matrix Multiply Using External SRAM for Data Space and Code Space (Mode 3) (Continued)

Figure 5-15. 3 × 3 Matrix Multiply Using External SRAM for Data Space and Code Space (Mode 3) (Continued)

5.12 Multiple TMS34082s

More than one coprocessor may be connected to the TMS34020 by setting the appropriate coprocessor ID field (CID2-0). Up to seven TMS34082s may be used with each TMS34020. See Figure 5–16. Assuming that each TMS34082 CORDY pin has a separate pull-up resistor, the TMS34020 can determine which coprocessors are present in the system by writing to and reading from TMS34082 register locations.

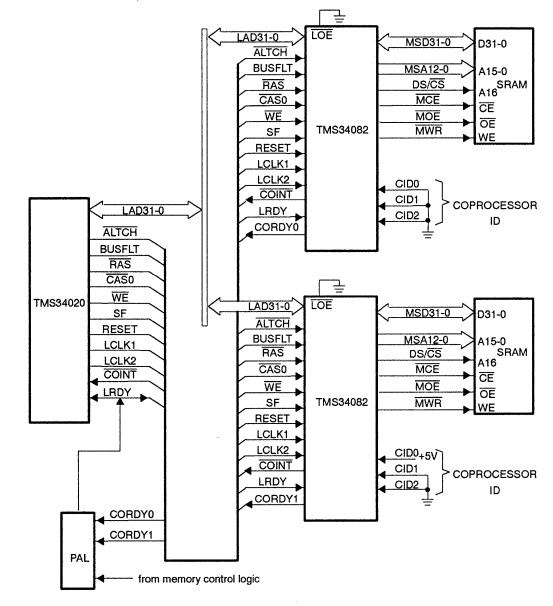


Figure 5–15. TMS34020 with Multiple TMS34082/SRAM Blocks (MEMCFG = L)

When CID2-0 = 100_2 , the TMS34020 broadcasts the instruction to all coprocessors. Broadcast reads by the TMS34082s are not permitted and are ignored.

Using the TMS34020 assembler directive called **.coproc**, the coprocessor ID number (between 0 and 7) may be set for generic coprocessor instructions. This directive maintains the coprocessor ID until another directive is received. An example follows where the default coprocessor ID is set to 1 and then to 0.

Example 5–9. Assembler Code for Multiple TMS34082s

.coproc 1	; set the default coprocessor ID to 001 for the following ; instructions
MPYF	RA2, RB0, RA8
ADDF	RA8, RB2, RA5
SQRTF	RA5, RA5
.coproc 0	; set the default coprocessor ID to 000 for the following ; instructions
SUB	RA0, C, RA0
SUB	RA1,C,RA1

Thus, while coprocessor 1 is still calculating its floating-point square root, coprocessor 0 is performing integer subtracts. For additional details on the assembler directives, refer to the *TMS340 Family Code Generation Tools User's Guide*.

Chapter 6

Host-Independent Mode

Operation in the host-independent mode assumes that the MSTR input signal is set high. The TMS34082 has several hardware control signals, as well as programmable features, which support system functions such as initialization, data transfer, or interrupts in host-independent mode. Details of initialization, LAD bus (LAD31-0) and MSD bus (MSD31-0) interface control, and interrupt handling are provided in this chapter.

6.1 Initialization

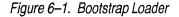
The following sections detail pin connections and initialization in host-independent mode.

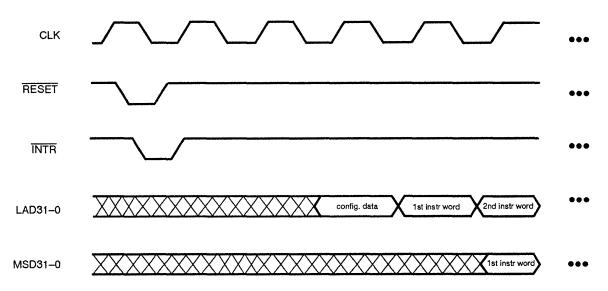
6.1.1 Pin Connections

When operating in host-independent mode, you should connect TMS34082 pins as shown in Table 6–1.

Table 6–1. Pin Connections

Signal Name	Description	Logic Level
SF	Special function input; not used in host-independent mode	tie low
RAS	Row Address Strobe; not used in host-independent mode	tie low
CID2-0	Coprocessor ID; not used in host-independent mode	tie low
LCLK1-2	Local clocks for coprocessor mode	tie low
MSTR	Host-independent/coprocessor mode select	tie high
EC1-0	Emulator mode control	tie high
ТСК	Test Clock	tie low


6.1.2 Bootstrap Loader


To simplify initialization of external program memory, the TMS34082 provides a bootstrap loader. Once invoked, the loader causes the TMS34082 to read 65 words from the LAD bus and write 64 words to the external program memory on the MSD bus. The first word read is used to initialize the configuration register. The remaining words are instructions written to the code space of external memory, starting at address 0.

To invoke the loader:

- 1) Set RESET low
- 2) Set INTR low
- 3) After the minimum pulse duration, set RESET and INTR high again

As shown in Figure 6–1, RESET must remain low while INTR is pulled low. During the initialization, the TMS34082 is reset. Internal states and status are cleared, but data registers are not affected; the control registers return to their default values.

Loader operation begins on the second clock cycle after RESET and INTR return high. The first word is read into the configuration register on the rising edge of the third clock. Each successive rising edge loads an instruction word. The instruction word is output on the MSD bus one clock cycle after it is input on the LAD bus.

Once the loader is activated, an external interrupt (signaled by INTR low) is not granted until the load sequence is finished. However, RESET going low terminates the loader. When the load sequence is finished, program execution begins at external address 0.

6.2 LAD Bus

In host-independent mode, the LAD bus is used to transfer data or instructions to and from the TMS34082 or the MSD bus. Instruction words may be transferred from the LAD bus to the MSD bus, but instructions cannot be input to the TMS34082 from the LAD bus. Details of LAD bus control and data input are given in the following sections.

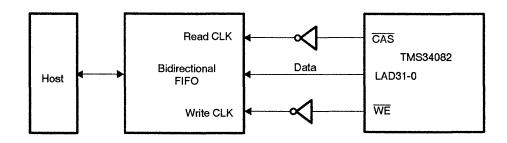
6.2.1 Control Signals

Data transfers on the LAD bus are controlled primarily by the following signals:

ALTCH, the address write strobe

CAS, the memory read strobe

WE, the memory write enable


The TMS34082 outputs an address during a cycle when ALTCH is low. The address may be latched externally on the rising edge of ALTCH. Because all 32 bits of the LAD bus can be used for an address, the LAD bus accesses up to 4G 32-bit words of memory.

When $\overline{\text{WE}}$ is low, data is output by the TMS34082 on the LAD bus. If multiple 32-bit words are output, $\overline{\text{WE}}$ toggles high at each rising clock edge, then returns low.

When CAS is low, the LAD bus is an input, reading data into the TMS34082. When multiple words are input, CAS toggles at each rising clock edge.

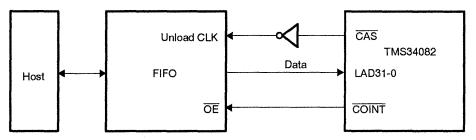

If a bidirectional FIFO is used instead of memory, \overline{CAS} can be directly connected to the read clock and \overline{WE} to the write clock. The CC input can be used to signal the TMS34082 when data is ready for input from the FIFO stack. (See Figures 6–2 and 6–3 for possible configurations.)

Figure 6–2. Using FIFOs on the LAD Bus

If LADCFG is set high in the configuration register, COINT defines bus cycle boundaries. If an indirect move to or from the LAD bus is coded with the C bit (bit 1) set high, COINT goes low at the beginning of the move and remains low until the move is complete. COINT can be used to select a device on the LAD bus, as shown in Figure 6–2. In this case, COINT is the output enable for a FIFO.

Figure 6–3. Using COINT as a Device Select (LADCFG=H)

The TMS34082 only drives the LAD bus during instructions that output an address or data. The LAD bus drivers are disabled at any other time.

LOE, the LAD bus output enable, enables and disables the LAD bus. The LAD bus is placed in a high-impedance state when $\overline{\text{LOE}}$ is high. However, bringing $\overline{\text{LOE}}$ low does not cause the LAD bus drivers to turn on. The instruction being executed must also enable the drivers.

If no other processors share the LAD bus, LOE may be tied low. Other wise, LOE may be used to prevent bus conflicts between the TMS34082 and other system masters.

LADCFG controls the signals affected by \overline{LOE} . If LADCFG is high, setting \overline{LOE} high also disables \overline{CAS} and \overline{WE} . When LADCFG is low, \overline{COINT} is a user-programmable output. \overline{LOE} does not affect \overline{CAS} or \overline{WE} .

6.2.2 Immediate Data Transfers

Data input on the LAD bus can be written to data registers, control registers, or passed through for output on the MSD bus. Alternatively, the LAD bus input can be selected directly as an FPU source operand without writing to a register.

The clock period may be extended for immediate data input that does not meet the minimum data setup time. The clock is stretched by the data delay plus 5 ns. Refer to TMS34082 data sheet timing diagrams for additional information.

An FPU result can be written to a data register and passed out to the LAD bus. When this is done, the minimum clock period is extended by 15 ns (TMS34082-40) to allow for the propagation delay from the FPU core to the outputs.

Depending on the specific system implementation, transferring data to and from the LAD bus without intervening register operations can significantly improve throughput. Data moves to and from internal registers can be minimized at the cost of adjusting the clock period to assure integrity of FPU results onto the LAD bus.

Host-Independent Mode

6.3 MSD Bus

The MSD bus can be used to access either external data memory or external code memory, depending on the combination of control signals required. In the host-independent mode, the MSD bus is the source for all instructions. Data can also be transferred to or from the TMS34082 over the MSD bus, and data transfers between the LAD and MSD buses are possible.

6.3.1 MSD Bus Control Signals

Up to 64K 32-bit data operands and 64K instructions may be directly addressed on the MSD bus. The address of memory is output on MSA15-0.

External memory operations are controlled by:

 DS/\overline{CS} , data space/code space select

MCE, memory chip enable

MOE, memory output enable

MWR, memory write enable

MAE, MSD bus output enable

When memory configuration (MEMCFG) is low, DS/\overline{CS} functions as the most significant address bit. DS/\overline{CS} high selects data memory; DS/\overline{CS} low selects code memory. MCE is the memory chip enable for both code and data memory.

When MEMCFG is high, DS/\overline{CS} is the chip select for data memory and \overline{MCE} is the chip select for code memory. This may eliminate the need for an external inverter.

The TMS34082 outputs data on the MSD bus when MWR and MAE are low. Otherwise, the device does not drive the MSD bus. If memory on the MSD bus is not shared, MAE can be tied low.

If the memory on the MSD port is shared with a host processor, the \overline{MAE} and RDY signals can be used to prevent conflicts between the TMS34082 and the host processor. The host processor can monitor the state of \overline{MCE} (for MEMCFG low) to determine when the TMS34082 is not accessing memory. If \overline{MCE} is not active, the host processor takes control of the MSD bus by asserting \overline{MAE} and RDY low. Setting RDY low halts the TMS34082.

6.3.2 Memory Models

The TMS34082 Software Tool Kit supports three memory models: small, medium, and large.

The small memory model places the code and data in the same memory space. DS/\overline{CS} is unused. The maximum memory allowed is 64K 32-bit words, a combination of instructions and data.

The medium memory model uses separate data and code spaces. Up to 64K of data words and 64K of instructions are accessed.

The large memory model partitions the code space into banks, each containing 64K words. External segment registers determine which bank is being accessed. Constants are stored in the same bank as the code that uses them. Variable data is stored in memory on the LAD bus. For more information on segment register requirements, see the *TMS34082 Software Tool Kit User's Guide*.

6.4 Reset

The TMS34082 is reset when the RESET input is brought low. RESET is an asynchronous signal that requires no setup or hold times with respect to the clock. However, the minimum pulse duration requirement must be met. Data registers are not affected by reset.

Upon reset, all internal states and pipeline registers are cleared. Control registers return to their default values, except for the interrupt register which is unaffected. Data registers are also not affected by reset. The state of control signals during reset is listed in Chapter 4, Table 4–10.

The TMS34082 ignores the first rising clock edge after RESET is returned high. Program execution begins on the second cycle at address 0. RESET is also used in conjunction with the INTR signal to call a bootstrap loader. This operation is detailed in subsection 6.1.2.

6.5 Wait States

Setting RDY low causes the TMS34082 to stall. This input can be used to create wait states for slow memory accesses. Stalling the device does not affect any internal states or registers and output lines do not change.

In host-independent mode, LRDY can be used to stall the device. The function and timing are the same as RDY.

RDY (or LRDY) must be set low a minimum setup time before the rising clock edge you wish to inhibit. Operation resumes on the next rising clock edge after RDY (or LRDY) is set high. Again, there is a minimum setup time requirement before that clock edge.

6.6 User Programmable Outputs

In the host-independent mode, CORDY is a user-programmable output. If the LADCFG bit in the configuration register is low, COINT is also a user-programmable output. When LADCFG is high, COINT is used in LAD bus moves and is not programmable.

CORDY (or COINT) is set high or low using the set mask instruction. CORDY (or COINT) remains at that setting until it is changed by another set mask instruction. COINT and CORDY are set/reset independent of each other.

6.7 Conditional Code Input

The CC pin is an external condition code input. A conditional jump to subroutine or conditional branch can be performed based on the state of this pin.

The CC input allows you to control program flow based on some external status from other devices in your system. By polling this input, you can determine, for example, if a host processor has an instruction queued for the TMS34082.

6.8 Interrupts

The TMS34082 supports three types of interrupts in host-independent mode: hardware, software, and exception detects. Each of these has its own interrupt enable.

6.8.1 Hardware Interrupts

Upon power up or reset, hardware interrupts are disabled. Before enabling interrupts, the address of the interrupt handling routine should be stored in the interrupt address register. Hardware interrupts are enabled by setting INTENHW (bit 15 of the status register) high using the set mask instruction. A hardware interrupt is then signaled by setting INTR low.

When a hardware interrupt is received, the current program counter is pushed into the interrupt return register. The hardware interrupt flag, HINT (bit 4 of the status register), and interrupt grant, INTG, are set high. The interrupt mask is saved and all interrupts are disabled. The address in the interrupt vector is output to MSA15-0, causing a branch to the interrupt service routine.

After the interrupt service routine, the interrupts should be enabled again before a return from interrupt instruction is executed. Restoring the hardware interrupt clears the HINT flag and INTG.

Only one hardware interrupt may be queued. If a hardware interrupt is received while the first interrupt is being processed, the interrupt is recorded and serviced after the first interrupt sequence is finished. If a third or subsequent hardware interrupt is signaled, it will be ignored.

If a hardware interrupt is received during a multicycle instruction (such as divides, square roots, or moves), the interrupt is queued and serviced after the instruction is completed.

6.8.2 Software Interrupts

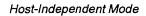
Upon power up or reset, software interrupts are disabled. Before enabling interrupts, the address of the interrupt handling routine should be stored in the interrupt address register. Software interrupts are enabled by setting INTENSW (bit 11 of the status register) high using the set mask instruction. An interrupt is then signaled by using the set mask instruction to send a software interrupt.

When a software interrupt is received, the current program counter is pushed into the interrupt return register. The software interrupt flag, INTFLG (bit 16 of the status register), and INTG is set high. The address in the interrupt vector is output to MSA15-0, causing a branch to the interrupt service routine.

The interrupts should be re-enabled before a return from interrupt instruction is executed. Restoring the software interrupt clears the HINT flag.

Because hardware interrupts may be queued, a hardware interrupt received while a software interrupt is being processed is recorded and serviced after the software interrupt is complete. This assumes the hardware interrupt was enabled before the software interrupt was received. If another hardware interrupt is signaled, it will be ignored.

6.8.3 Exception Detect Interrupts


A third type of interrupt is the exception detect interrupt. In the event of an FPU status exception in host-independent mode, the internal ED signal (bit 18 of the status register) is set high, causing an exception detect interrupt. If interrupts based on specific exceptions are not desired, the exceptions can be masked from the error detect (ED) logic by using the appropriate bits in the configuration register.

Upon power up or reset, exception detect interrupts are disabled. Before enabling interrupts, the address of the exception handling routine should be stored in the interrupt address register. Exception interrupts are enabled by setting INTENED (bit 12 of the status register) high using the set mask instruction.

When an error is detected and ED interrupts are enabled, the current program counter is pushed into the interrupt return register. ED is set high. The address in the interrupt vector is output to MSA15-0, causing a branch to the interrupt service routine.

The interrupts should be restored before a return from interrupt instruction is executed. Restoring interrupts clears the ED flag.

Because hardware interrupts may be queued, a hardware interrupt received while an exception interrupt is being processed is recorded and serviced after the first interrupt is finished. This assumes the hardware interrupt was enabled before the exception interrupt was received. If another hardware interrupt is signaled, it will be ignored.


Chapter 7

Internal Instructions

The TMS34082 internal instruction set includes arithmetic and logical operations, as well as complex instructions stored in an internal program ROM. Several addressing modes are available for internal instructions in addition to data types for integer, single- and double-precision floating-point formats.

In the coprocessor mode, the TMS34082 executes internal instructions through the LAD bus as shown in Figure 7–1.

Figure 7–1. Source for Internal Instructions in Coprocessor Mode

In the host-independent mode, an internal instruction can be executed by jumping to the proper internal ROM address. Chapter 8 of this manual shows the correct syntax for the JSR (jump to subroutine) and CJSR (conditional jump to subroutine) instructions.

7.1 Internal Instructions Overview

The TMS34082 FPU performs a wide range of internal arithmetic and logical operations, as well as complex operations (flagged [†]), summarized below. Complex instructions are multicycle routines stored in the internal program ROM. These form a powerful set of primitives for graphics operations.

One Operand Operations

Absolute Value	1s Complement
Square Root Reciprocal [†]	2s Complement
• •	p

Conversions

Integer to Single-Precision	Single-Precision to Integer
Integer to Double-Precision	Double-Precision to Integer
Single- to Double-Precision	Double- to Single-Precision

Two Operand Operations

Add Subtract Compare Multiply Divide

Matrix Operations

4×4, 4×4 Multiply[†] 3×3, 3×3 Multiply[†] 1×4, 4×4 Multiply[†] 1×3, 3×3 Multiply[†]

Graphics Operations

Backface Testing [†]
Polygon Clipping [†]
2-D Linear Interpolation [†]
2-D Window Compare [†]
2-Plane Clipping $(X, Y, X)^{\dagger}$
2-Plane Clipping (X, Y, X) [†] 2-D Cubic Spline [†]

Image Processing

3×3 Convolution[†]

Chained Operations

Polynomial Expansion[†] 1-D Min/Max[†]

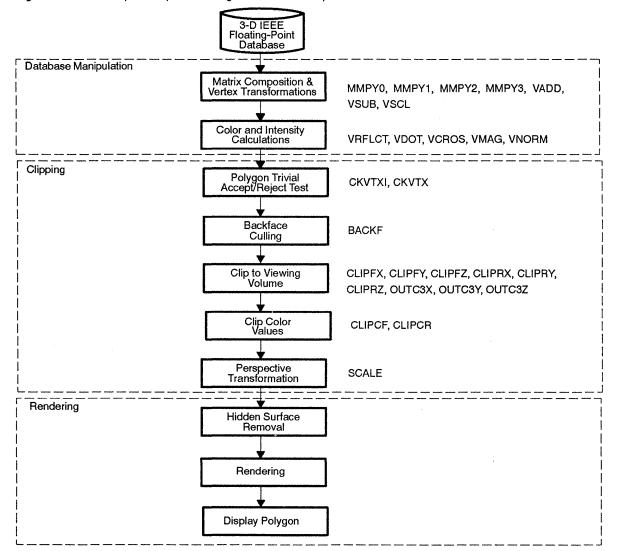
Vector Operations

Add[†] Subtract[†] Magnitude[†] Scaling[†]

[†] Indicates complex instructions

Polygon Elimination[†] Viewport Scaling and Conversion[†] 3-D Linear Interpolation[†] 3-D Volume Compare[†] 2-Plane Color Clipping (R, B, G, I)[†] 3-D Cubic Spline[†]

Multiply/Accumulate[†] 2-D Min/Max[†]


Dot Product[†] Cross Product[†] Normalization^T Reflection[†]

The internal routines can be used in either coprocessor or host-independent mode. In coprocessor mode, the internal routines are invoked by TMS34020 instructions to its coprocessor(s). When the TMS34082 is used as a stand-alone processor, the internal microprograms can be called as subroutines by the externally stored code.

7.2 Complex Graphics Instructions

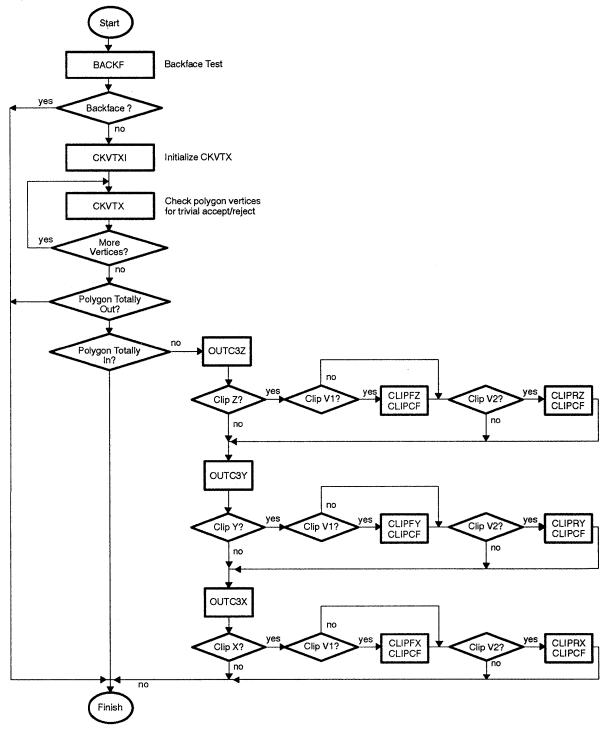

The internal complex instructions may be combined to form a 3-D graphics pipeline. A typical 3-D graphics pipeline includes three major operations on the input object database. The object database is first manipulated to generate normal vectors, and then transformed. The color and intensity values are also calculated. The second step involves the clipping of the objects to the viewing volume. Finally, the objects are displayed according to the rendering style selected. Figure 7-2 shows a typical 3-D graphics pipeline using the complex instructions.

Figure 7-2. 3-D Graphics Pipeline Using TMS34082 Complex Instructions

The complex instructions used in the polygon clipping mechanism can be organized into three functional groups. The first set consists of a single test (BACKF) to determine whether the polygon is forward or backward facing. The second set of instructions (CKVTXI, CKVTX) performs a test to trivially accept or reject a polygon as being visible by checking the vertex coordinates against the viewing volume. The third set of instructions (OUTC3X, OUTC3Y, OUTC3Z, CLIPFX, CLIPFY, CLIPFZ, CLIPRX, CLIPRY, CLIPRZ, CLIPCF, CLIPCR) determines whether the polygon edge crosses the viewing volume boundary and generates the new vertices and color values for the clipped polygon.

The complex instructions are implemented to make efficient use of the TMS34082 Registers and internal status is maintained throughout the clipping mechanism, thus allowing successive polygon edges to be clipped without repeated loading of vertex information. Figure 7-3 details the clipping portion of the pipeline.

The second s

Figure 7–3. 3-D Polygon Clipping Flow Chart

7.3 Internal Routine Addresses and Cycle Counts

External programs can call internal routines by executing a jump to subroutine with bit 16 (internal code select) set high and the address of the internal routine as the jump address. Internal routine addresses are given in Table 7–1.

The following table lists internal routines, their addresses, and the number of machine states required to complete the routine. The number in parenthesis after the machine states is the number of cycles before the next operation may begin. For example, it takes five clock cycles to complete an integer CPW (compare point to window) instruction where the status and results are valid; it would take 4 cycles after the CPW began executing before another operation to begin. In coprocessor mode, a machine state is half an LCLK1 period. Therefore, the number of LCLK1 cycles required is the number of machine states divided by 2. In host-independent mode, a machine state is one CLK period.

These cycle counts are for mode 0 instructions only (no data transfers) *after* the instruction reaches the TMS34082. Only mode 0 instructions may be used in host-independent mode. In coprocessor mode, the time required to execute mode 1 and mode 2 instructions is the same as the related mode 1 instruction *after* both instruction and data have reached the TMS34082. The TMS34020 takes one LCLK1 cycle to output a mode 0 instruction and two (one-operand) or three (two-operand) LCKL1 cycles for a mode 1 instruction. A mode 2 instruction requires three TMS34020 LCLK1 cycles, plus one cycle for each memory transfer.

Hex Address	Description		Precision	Machine States	
000	ADD	Sum of ra and rb	integer	2(1)	
001	SUB	Subtract rb from ra	integer	2(1)	
002	CMP	Set status bits on result of ra minus rb	integer	2(1)	
003	SUB	Subtract ra from rb	integer	2(1)	
004		reserved			
005		reserved			
006	MOVET	Load n FPU registers from TMS34020 GSP or its memory	integer	(see Note)	
007	MOVET	Save n FPU registers from TMS34020 GSP or its memory	integer	(see Note)	
008	MPYS	Multiply ra and rb	integer	2(1)	
009	DIVS	Divide ra by rb	integer	16(15)	
00A	INV	Divide 1 by rb	integer	16(15)	
00B		reserved			
00C		reserved			
00D	MOVE	Move ra to rd, multiple, for n registers	integer	(see Note)	
00E	MOVE	Move rb to rd, multiple, for n registers	integer	(see Note)	
00F	1	reserved			
010	CPW	Compare point to window	integer	5(4)	
011	CPV	Compare point to volume	integer	7(6)	
012	BACKF	Test polygon for facing direction (backface test)	integer	16(15)	
013	INMNMX	Setup FPU registers for MNMX1 or MNMX2 instruction		2(1)	
014	LINTX	Linear interpolation, X plane	integer	26(25)	
015	CLIPFX	Clip a line to an X plane pair boundary (start w/point 1)	integer	34(33)	
016	CLIPRX	Clip a line to an X plane pair boundary (start w/point 2)	integer	34(33)	
017	CLIPC	Clip color values to a plane pair boundary (start w/point 1)	integer	27(26)	
018	SCALE	Scale and convert coordinates for viewport	integer	56(55)	
019	MTRAN	Transpose a matrix	integer	13(12)	
01A	СКУТХ	Compare polygon vertex to a clipping volume	integer	6(5)	
01B	CONV	3x3 convolution	integer	32(31)	
01C	CLIPCR	Clip color values to a plane pair boundary (start w/point 2)	integer	27(26)	
01D	OUTC3X	Compare a line to a clipping value, X plane	integer	5(4)	
01E	CSPLN	Calculate cubic spline	integer	22(21)	
01F		reserved			
020	MOVE	Copy ra to rd	integer	2(1)	
021	NOT	Place 1's complement of ra in rd	integer	2(1)	
022	ABS	Place absolute value of ra in rd	integer	2(1)	
023	NEG	Place negated value of ra in rd	integer	2(1)	
024	1	reserved			
025		reserved		·	

Table 7–1. Internal ROM Routines (for Mode 0 FPU Operations)

Hex Address	Description		Precision	Machine States	
026		reserved			
027	VSCL [†]	Multiply vector by a scaling factor	integer	4(3)	
028	SQAR	Place (ra ∗ ra) in rd	integer	4(3)	
029	SQRT	Extract square root of ra	integer	20(19)	
02A	SQRTA	Extract square root of absolute value of ra	integer	20(19)	
02B	ABORT	Stop execution of any FPU instruction	integer	2(1)	
02C	CKVTX1	Initialize check vertex instruction		2(1)	
02D	CHECK	Check for previous instruction completion		2(1)	
02E	MOVTSRAM [†]	Move data from system memory to external memory			
02F	MOVFSRAMT	Move data to system memory from external memory			
030	POLYT	Polynomial expansion	integer	4(3)	
031	MACT	Multiply and accumulate	integer	4(3)	
032	MNMX1 [†]	Determine 1-D minimum and maximum of a series	integer	3(2)	
033	MNMX2 [†]	Determine 2-D minimum and maximum of a series of pairs	integer	5(4)	
034	MMPY0	Multiply matrix elements 3-0 by vector element 0	integer	6(5)	
035	MMPY1	Multiply matrix elements 7-4 by vector element 1	integer	10(9)	
036	MMPY2	Multiply matrix elements 11-8 by vector element 2	integer	12(11)	
037	MMPY3	Multiply matrix elements 15-12 by vector element 3	integer	12(11)	
038	MADD	Add matrix elements 15-12 to vector integer	integer	9(8)	
039	VADD	Add two vectors	integer	4(3)	
03A	VSUB	Subtract a vector from a vector	integer	4(3)	
03B	VDOT	Compute scalar dot product of two vectors	integer	7(6)	
03C	VCROS	Compute cross product of two vectors	integer	9(8)	
03D	VMAG	Determine the magnitude of a vector	integer	30(29)	
03E	VNORM	Normalize a vector to unit magnitude	integer	50(49)	
03F	VRFLCT	Given normal and incident vectors, find the reflection	integer	16(15)	
080	ADDF	Sum of ra and rb	single	2(1)	
081	SUBF	Subtract rb from ra	single	2(1)	
082	CMPF	Set status bits on result of ra minus rb	single	2(1)	
083	SUBF	Subtract ra from rb	single	2(1)	
084	ADDA	Absolute value of sum of ra and rb	single	2(1)	
085	SUBA	Absolute value of (ra minus rb)	single	2(1)	
086	MOVF	Load n FPU registers from TMS34020 GSP or its memory	single		
087	MOVF	Save n FPU registers from TMS34020 GSP or its memory	single		
088	MPYF	Multiply ra and rb	single	2(1)	
089	DIVF	Divide ra by rb	single	7(6)	
08A	INVF	Divide 1 by rb	single	7(6)	
08B	ASUBA	Absolute value of ra minus absolute value of rb	single	2(1)	
08C		reserved			

Table 7–1. Internal ROM Routines (for Mode 0 FPU Operations) (Continued)

Hex Address	Assembler Opcode	Description		Machine States	
08D	MOVEF [†]	Move ra to rd, multiple, for n registers	single	(see Note)	
08E	MOVEF [†]	Move ra to rd, multiple, for n registers	single	(see Note)	
08F		reserved			
090	CPWF	Compare point to window	single	5(4)	
091	CPVF	Compare point to volume	single	7(6)	
092	BACKFF	Test polygon for facing direction (backface test)	single	16(15)	
093	INMNMXF	Setup FPU registers for MNMX1 and MNMX2	single	2(1)	
094	LINTXF	Linear interpolation, X plane	single	17(16)	
095	CLIPFXF	Clip a line to an X plane pair boundary (start w/point 1)	single	25(24)	
096	CLIPRXF	Clip a line to an X plane pair boundary (start w/point 2)	single	25(24)	
097	CLIPCF	Clip color values to a plane pair boundary (start w/point 1)	single	18(17)	
098	SCALEF	Scale and convert coordinates for viewport	single	21(20)	
099	MTRANF	Transpose a matrix	single	13(12)	
09A	CKVTXF	Compare polygon vertex to a clipping volume	single	6(5)	
09B	CONVF	3x3 convolution	single	17(16)	
09C	CLIPCRF	Clip color values to a plane pair boundary (start w/point2)	single	18(17)	
09D	OUTC3XF	Compare a line to a clipping value, X plane	single	5(4)	
09E	CSPLNF	Calculate cubic spline	single	22(21)	
09F	1	reserved			
0A0	MOVE	copy ra to rd	single	2(1)	
0A1	NOT	Place 1's complement of ra in rd	single	2(1)	
0A2	ABS	Place absolute value of ra in rd	single	2(1)	
0A3	NEG	Place negated value of ra in rd	single	2(1)	
0A4	CVFD	Convert single-precision to double-precision	single	2(1)	
0A5	CVFI	Convert single-precision to integer	single	2(1)	
0A6	CVIF	Convert integer to single-precision	single	2(1)	
0A7	VSCLF [†]	Multiply vector by a scaling factor	single	4(3)	
0A8	SQARF	Place (ra + ra) in rd	single	4(3)	
0A9	SQRTF	Extract square root of ra	single	10(9)	
0AA	SQRTAF	Extract square root of absolute value of ra	single	10(9)	
0AB	ABORT	Stop execution of any FPU instruction		2(1)	
0AC	CKVTX1	Initialize check vertex instruction		2(1)	
0AD	CHECK	Check for previous instruction completion		2(1)	
0AE	MOVTSRAMT	Move data from system memory to external memory			
0AF	MOVFSRAMT	Move data to system memory from external memory			
0B0	POLYF	Polynomial expansion	single	4(3)	
0B1	MACFT	Multiply and accumulate	single	4(3)	
0B2	MNMX1F [†]	Determine 1-D minimum and maximum of a series	single	3(2)	
0B3	MNMX2F [†]	Determine 2-D minimum and maximum of a series of pairs	single	5(4)	

Table 7–1. Internal ROM Routines (for Mode 0 FPU Operations) (Continued)

Hex Address	Assembler Opcode	Description	Precision	Machine States	
0B4	MMPY0F	Multiply matrix elements 3-0 by vector element 0	single	6(5)	
0B5	MMPY1F	Multiply matrix elements 7-4 by vector element 1	single	10(9)	
0B6	MMPY2F	Multiply matrix elements 11-8 by vector element 2	single	12(11)	
0B7	MMPY3F	Multiply matrix elements 15-12 by vector element 3	single	12(11)	
0B8	MADDF	Add matrix elements 15-12 to vector	single	9(8)	
0B9	VADDF	Add two vectors	single	4(3)	
0BA	VSUBF	Subtract a vector from a vector	single	4(3)	
0BB	VDOTF	Compute scalar dot product of two vectors	single	7(6)	
0BC	VCROSF	Compute cross product of two vectors	single	9(8)	
0BD	VMAGF	Determine the magnitude of a vector	single	20(19)	
0BE	VNORMF	Normalize a vector to unit magnitude	single	31(30)	
0BF	VRFLCTF	Given normal and incident vectors, find the reflection	single	16(15)	
0C0	ADDD	Sum of ra and rb	double	2(1)	
0C1	SUBD	Subtract rb from ra	double	2(1)	
0C2	CMPD	Set status bits on result of ra minus rb	double	2(1)	
0C3	SUBD	Subtract ra from rb	double	2(1)	
0C4	ADDA	Absolute value of sum of ra and rb	double	2(1)	
0C5	SUBA	Absolute value of (ra minus rb)	double	2(1)	
0C6	MOVDT	Load n FPU registers from TMS34020 GSP or its memory	double	(see Note)	
0C7	MOVDT	Save n FPU registers from TMS34020 GSP or its memory	double	(see Note)	
0C8	MPYD	Multiply ra and rb	double	3(2)	
0C9	DIVD	Divide ra by rb	double	13(12)	
0CA	INVD	Divide 1 by rb	double	13(12)	
0CB	ASUBA	Absolute value of ra minus absolute value of rb	double	2(1)	
0000		reserved		· · · ·	
0CD	MOVDT	Move ra to rd, multiple, for n registers	double	(see Note)	
0CE	MOVDT	Move rb to rd, multiple, for n registers	double	(see Note)	
0CF		reserved			
0D0	CPWD	Compare point to window	double	5(4)	
0D1	CPVD	Compare point to volume	double	7(6)	
0D2	BACKFD	Test polygon for facing direction (backface test)	double	25(24)	
0D3	INMNMXD	Setup FPU registers for MNMX1 and MNMX2	double	2(1)	
0D4	LINTXD	Linear interpolation, X plane	double	26(25)	
0D5	CLIPFXD	Clip a line to an X plane pair boundary (start w/point 1)	double	35(34)	
0D6	CLIPRXD	Clip a line to an X plane pair boundary (start w/point 1)	double	35(34)	
0D7	CLIPCD	Clip color values to a plane pair boundary (start w/point 1)	double	28(27)	
0D8	SCALED	Scale and convert coordinates for viewport	double	33(32)	
0D9	MTRAND	Transpose a matrix	double	13(12)	
0DA	CKVTXD	Compare polygon vertex to a clipping volume	double	6(5)	

Table 7–1. Internal ROM Routines (for Mode 0 FPU Operations) (Continued)

Hex Assembler Address Opcode		Description	Precision	Machine States	
0DB	CONVD	3x3 convolution	double	29(30)	
0DC	CLIPCRD	Clip color values to a plane pair boundary (start w/point 1)	double	31(30)	
0DD	OUTC3XD	Compare a line to a clipping value, X plane	double	5(4)	
0DE	CSPLND	Calculate cubic spline	double	31(30)	
0DF	1	reserved			
0E0	MOVE	Copy ra to rd	double	2(1)	
0E1	NOT	Place 1's complement of ra in rd	double	2(1)	
0E2	ABS	Place absolute value of ra in rd	double	2(1)	
0E3	NEG	Place negated value of ra in rd	double	2(1)	
0E4	CVDF	Convert double-precision to single-precision	double	2(1)	
0E5	CVDI	Convert double-precision to integer	double	2(1)	
0E6	CVID	Convert integer to double-precision	double	2(1)	
0E7	VSCLD [†]	Multiply vector by a scaling factor	double	7(6)	
0E8	SQARD	Place (ra * ra) in rd	double	5(4)	
0E9	SQRTD	Extract square root of ra	double	16(15)	
0EA	SQRTAD	Extract square root of absolute value of ra	double	16(15)	
0EB	ABORT	Stop execution of any FPU instruction		2(1)	
0EC	CKVTX1	Initialize check vertex instruction		2(1)	
0ED	CHECK	Check for previous instruction completion		2(1)	
0EE		reserved			
0EF		reserved			
0F0	POLYD	Polynomial expansion	double	5(4)	
0F1	MACD [†]	Multiply and accumulate	double	5(4)	
0F2	MNMX1D [†]	Determine 1-D minimum and maximum of a series	double	3(2)	
0F3	MNMX2D [†]	Determine 2-D minimum and maximum of a series of pairs	double	5(4)	
0F4	MMPY0D	Multiply matrix elements 3-0 by vector element 0	double	11(10)	
0F5	MMPY1D	Multiply matrix elements 7-4 by vector element 1	double	14(13)	
0F6	MMPY2D	Multiply matrix elements 11-8 by vector element 2	double	16(15)	
0F7	MMPY3D	Multiply matrix elements 15-12 by vector element 3	double	16(15)	
0F8	MADDD	Add matrix elements 15-12 to vector	double	9(8)	
0F9	VADDD	Add two vectors	double	4(3)	
0FA	VSUBD	Subtract a vector from a vector	double	4(3)	
0FB	VDOTD	Compute scalar dot product of two vectors	double	10(9)	
0FC	VCROSD	Compute cross product of two vectors	double	15(14)	
0FD	VMAGD	Determine the magnitude of a vector	double	29(28)	
0FE	VNORMD	Normalize a vector to unit magnitude	double	49(48)	
0FF	VRFLCTD	Given normal and incident vectors, find the reflection	double	23(22)	
114	LINTY	Linear interpolation, Y plane	integer	26(25)	

Table 7–1. Internal ROM Routines (for Mode 0 FPU Operations) (Continued,	Table 7–1. Internal ROM Routines (for Mode	e 0 FPU Operations) (Continued)
--	--	---------------------------------

† Cannot be used in host-independent mode.

Hex Address	Assembler Opcode	Description	Precision	Machine States
115	CLIPFY	Clip a line to an Y plane pair boundary (start w/point 1)	integer	34(33)
116	CLIPRY	Clip a line to an Y plane pair boundary (start w/point 2)	integer	34(33)
11D	OUTC3Y	Compare a line to a clipping value, Y plane	integer	5(4)
194	LINTYF	Linear interpolation, Y plane	single	17(16)
195	CLIPFYF	Clip a line to an Y plane pair boundary (start w/point 1)	single	25(24)
196	CLIPRYF	Clip a line to an Y plane pair boundary (start w/point 2)	single	25(24)
19D	OUTC3YF	Compare a line to a clipping value, Y plane	single	5(4)
1D4	LINTYD	Linear interpolation, Y plane	double	17(16)
1D5	CLIPFYD	Clip a line to an Y plane pair boundary (start w/point 1)	double	25(24)
1D6	CLIPRYD	Clip a line to an Y plane pair boundary (start w/point 2)	double	25(24)
1DD	OUTC3YD	Compare a line to a clipping value, Y plane	double	5(4)
214	LINTZ	Linear interpolation, Z plane	integer	26(25)
215	CLIPFZ	Clip a line to an Z plane pair boundary (start w/point 1)	integer	34(33)
216	CLIPRZ	Clip a line to an Z plane pair boundary (start w/point 2)	integer	34(33)
21D	OUTC3Z	Compare a line to a clipping value, Z plane	integer	5(4)
294	LINTZF	Linear interpolation, Z plane	single	17(16)
295	CLIPFZF	Clip a line to an Z plane pair boundary (start w/point 1)	single	25(24)
296	CLIPRZF	Clip a line to an Z plane pair boundary (start w/point 2)	single	25(24)
29D	OUTC3ZF	Compare a line to a clipping value, Z plane	single	5(4)
2D4	LINTZD	Linear interpolation, Z plane	double	17(16)
2D5	CLIPFZD	Clip a line to an Z plane pair boundary (start w/point 1)	double	25(24)
2D6	CLIPRZD	Clip a line to an Z plane pair boundary (start w/point 2)	double	25(24)
2DD	OUTC3ZD	Compare a line to a clipping value, Z plane	double	5(4)

Table 7-1. Internal ROM Routines (for Mode 0 FPU Operations) (Continued)

7.4 Coprocessor Mode Internal Instruction Format

The format of the TMS34082 instruction in coprocessor mode is shown below. The instruction is issued by the TMS34020 via the LAD bus.

31	28	24	20	15	13	8	7	6	5	0
ID	ra	rb	rd	md	fpuop	type	size	0	I	00000

7.4.1 Coprocessor ID Field

The 3-bit ID field identifies which coprocessor the instruction is intended for. This coprocessor ID corresponds to the settings of the CID2-0 pins. To broadcast an instruction to all coprocessors, the ID field is set to 4. The TMS34020 documentation recommends the coprocessor ID assignments shown below. However, both the TMS34020 and TMS34082 support using up to seven TMS34082s per TMS34020.

The assembler defaults to an ID of 000_2 . To define another ID as the current ID, use the coprocessor assembler directive.

Table 7–2. Coprocessor IDs

ID	Coprocessor	ID	Coprocessor
000	FPU 0	100	FPU broadcast
001	FPU 1	101	Reserved (or FPU 4)
010	FPU 2	110 Reserved (or FPU 5)	
011	FPU 3	111	User defined (or FPU 6)

7.4.2 Register Field

The ra, rb, and rd fields are for the two sources (A and B) and destination within the FPU. For most two-operand instructions, one operand must come from each register file. Register addresses were listed in Table 4–3. For the ra and rb fields, only the four least significant bits of the register address are used. Some multi-operand instructions redefine the ra, rb, and rd field.

Valid values for registers operands are:

- ra: RA0-RA9 (also, C, and CT following rules below)
- rb: RB0-RB9 (also, C, and CT following rules below)
- rd: RA0-RA9 RB0-RB9, C, and CT

NOTE: Although the TMS34020 assembler only allows the above registers as destinations, the TMS34082 will accept any register address as a destination.

The following is a list of rules for using the C and CT registers as operands:

- 1) Do not use C or CT as source operands in any mode 1 or 2 ("Load and.") instructions.
- 2) Do not use C or CT in any MOVE, MOVD, or MOVF instructions. If it is necessary to move a value to or from the C or CT register, use the PASS, PASSF, or PASSD instruction (depending on the type of number in C or CT). C and CT are legal operands for the PASSx instructions. However, the type of number in C or CT must match the type (integer single-, or double-precision) of the PASSx instruction.
- Do not use C or CT as source operands for integer divide (DIVS), integer inverse (INV), convert integer to single-precision (CVIF) or convert integer to double-precision (CVID) instructions.
- 4) For instructions requiring two source operands, C *or* CT can be used as both operands, but cannot be used together in the same instruction.

7.4.3 Addressing Mode Field

Four addressing modes are defined for the TMS34082. The md field indicates the addressing mode. Each addressing mode corresponds to one or two general-purpose TMS34020 coprocessor commands. Specific TMS34082 instructions are created by specifying the fields of the internal instruction as shown above.

Table 7-5. Addressind Mode	Table	7-3.	Addressing Modes	;
----------------------------	-------	------	------------------	---

Mode	md Field	Operation	General TMS34020 Coprocessor Command
0	00	FPU internal operations with no jumps or external moves	CEXEC
1	01	Transfer instruction and data to/from TMS34020 registers	CMOVGC, CMOVCG
2.	10	Transfer instruction and data to/from memory (controlled by TMS34020) on LAD bus	CMOVMC, CMOVCM
3	11	Jump to external instructions in TMS34082 external memory	CEXEC

7.4.4 FPU Operation Field

The fpuop field tells the TMS34082 which operation (such as addition or subtraction) or complex instructions (such as clipping) to perform. Sometimes the rb field is also used to specify the operation. A list of instructions and their associated fpuop field is given in the TMS34082A Data Sheet (Appendix B).

7.5 Type, Size, and I Fields

The type and size bits identify the type of operand, as shown in Table 7–4. The I bit is used to indicate to the coprocessor that this is a 'reissue' of a coprocessor instruction due to a bus interruption. The least significant four bits are the bus status bits, which will all be zero to indicate a coprocessor cycle.

Table 7-4. Operand Types

Туре	Size	Operand Type					
0	0	32-bit Integer					
0	1	Reserved					
1	0	Single-precision floating-point (32-bit)					
1	1	Double-precision floating-point (64-bit)					

7.6 Internal Instruction Opcodes

Details of each internal routine follow. The routines are listed alphabetically by their TMS34020 assembler opcodes.

Sets of related instructions (same operation, different operand types) are listed together. Sets begin on a new page and may contain the following information.

Syntax: Shows you how to enter an instruction. Each valid operand type is listed, along with its syntax. Bold text should be entered as shown. Italic text represents a symbol that tells what type of information should be entered. These symbols are further described in the *operand* section.

Execution: Illustrates the effects of execution on TMS34020 and TMS34082 registers and memory. The shaded portion represents steps that are executed for double-precision instructions only.

TMS34020 Instruction Words: Shows the object code generated for an instruction. This is the instruction *to* the TMS34020. In this instruction, *transfers* is the number of 32-bit words moved across the LAD bus. *Transfers* will generally be the number of operands for an integer or single-precision instruction. For a double-precision instruction, *transfers* is twice the number of operands.

TMS34082 Instruction Word: Shows the command generated by the TMS34020 that is sent (via the LAD bus) to the TMS34082. In this word, *t* and *s* are used to specify the type and size bits, respectively.

Operands: Explains the symbols used in the syntax section. Implied operands are values that must be in the appropriate register(s) before the instruction is executed. The following symbols are used as operands:

Rs, Rs ₁ , Rs ₂	TMS34020 source register(s)
Rd, Rd ₁ , Rd ₂	TMs34020 destination register(s)
CRs, CRs ₁ , CRs ₂	TMS34082 source register. Must be from the RA or RB register files, C, or CT. See the restrictions on the use of C and CT given in subsection 7.3.2.
CRd	Unless otherwise noted, C or CT may be substituted for RA or RB registers in any instruction which does not require data transfers to/from the TMS34020 or memory.

Description: Discusses the purpose of the instruction and any other general information related to it.

Algorithm: Illustrates the operations performed in a multicycle, complex instruction. The shaded portion represents steps that are executed for double-precision instructions only.

Temporary Storage: Lists registers that are used in complex instructions. Any value stored in these registers prior to instruction execution will be lost.

Outputs: Lists the registers that contain the result(s) of the complex instruction.

Instruction Type: Shows the type of TMS34020 coprocessor instruction. The TMS34020 has several general-purpose coprocessor instructions that are used to create the specific TMS34082 instructions.

Examples: Illustrates the correct syntax for a specific instruction and describes the effects of the instruction on memory and registers using various sets of data.

Not all topics are included for each instruction set. Each set contains at least the Syntax, Execution or Algorithm, both Instruction Words, and the Description sections.

Syntax	ABC)RT														
Execution	Halts	s TM	S340	82												
'34020	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	1	1	0	1	1	0	0	0	0	0	1	1	1	1	0	0
		ID		0	0	0	0	1	0	1	1	0	0	0	0	0
Instruction to '34082	31	29														0
	ID	0	0 0	01	01	10	00	00	0 0	01	11	10	00	00	00	00
Description	to ar	inac	tives	state.	Any		this i	nstru	ction	is pr	esen	tona	a cop	roce	ssor	FPU cycle

with a valid coprocessor ID, the addressed TMS34082 will ABORT all internal processing activity immediately. Block moves will be aborted before completion of the last move.

Instruction Type CEXEC, short

ABSx Absolute Value

Syntax	TypeSyntaxIntegerABSCRs, CRdDouble-PrecisionABSDCRs, CRdSingle-PrecisionABSFCRs, CRd							
Execution	$ CRs \rightarrow CRd$							
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 type size	Ð						
	ID CRs 0 0 1 0 CRd							
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0010 CRd 0001 1111 \$000 0000							
Operands	CRs TMS34082 RA source register containing the operand							
	CRd TMS34082 destination register							
Description	ABSx takes the absolute value of the contents of CRs and stores the result i CRd.	in						
	The source register, CRs, must be in the RA register file.							
Instruction Type	CEXEC, short							
Example	ABS RA6, RB7							
	This example takes the absolute value of the integer contents of RA6 an stores the integer result in RB7.	ıd						

Syntax	Τγρε	Ż				Syn	tax									
oymax	Integ							:1, CH	Rs, C	Rd						
	Double-Precision ABSD Rs ₁ , Rs ₂ , CRs, CRd															
	Sing	le-Pr	ecisi	on		ABS	SF R	s ₁ ', C	Rs, (CRd						
Execution	Rs ₁	$\rightarrow C$	Rs													
	R5 2															
	CR	s -	→ CR	d												
'34020																
Instruction Words	Integ 15	er or 3 14	Single 13	- Prec 12	ision: 11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	1	1	0	0	0	1	R		Rs		
	0	1	0	1	1	1	1	type	0	0	0	0	0	0	0	0
		ID			C	Rs		0	0	1	0			CRd		
	Doub	le-Pre	cisio	n:												
	15	14	13	12	11	10	9	8	7	6	5	4 R	3	2	1	
	0	0	0	0	0	1	1	0	0	1	0	R	 	Re	······	
	–		<u> </u>	<u> </u>	L	L_' Rs	L_'	0	0		0		Rs ₂ CRd			
	L								ł	· -	ł	ł				
Instruction to '34082	31	29	28 CR		5 24	2	1 20	CRd	16	15 010	1	111t		000		0
		L														
Operands	Rs ₁													cision		
			pera		5340	82 (0			une	04-DI	t van	ue ic	a ac	uble-	prec	ISION
	_		•		_						-	_				
	Rs ₂						-	ster 1 -point				-		of th	ne 6	64-bit
				•			-									
	CRs	T	MS3	4082	2 RA	regis	ter to	o con	tain 1	the 3	2-bit	integ	er op	beran	d	
	CRd	Т	MS3	4082	2 des	tinati	on re	egiste	r							
Description														on val es the		
	CRd		55 U II	e aus	olute	valu	eon		JILEI	115 01	UNS	, anu	5101	65 016	6168	
	The	TMS	3408	32 so	urce	regis	ter, (CRs,	must	t be i	n the	RA r	egis	ter file	э.	
Instruction Type	СМС	OVG	C, on	e or	two r	egiste	ers									
Example	ABSI	F A5	, R	A6,	RB7											
	This	exan	nplel	oads	thes	ingle	-pre	cisior	ncon	tents	ofTN	1 S34	Ó20	regist	erA	5 into
	TMS	3408	32 reg	giste	r RA6	, take	es th	e abs	olute					nts of		
	store	es the	e sing	gle-p	recisi	on re	sult	in RE	37.							

Syntax	Type	Sy AB	ntax	Rs, CRd	-			
	Integer Double-Precisio Single-Precisior	on AB	3SD *Rs+, Cl 3SD *Rs+, Cl 3SF *Rs+, Cl	Rs, CRd				
Execution	*Rs → CRs Rs + 32 → Rs *Rs → CRs Rs + 32 → Rs CRs → CRd							
'34020	15 14 13	<u>12 11 10</u>	9 8 7	7 6 5	4 3	2 1 0		
Instruction Words		0 0 1	1 0 1		0 0	0 transfers		
	1 0 0 ID	1 1 1	1 type siz		R	Rs		
		CRs	0 0	0 1 0		CRd		
Instruction to '34082	31 29 28			1001	111t s(0		
Operands	Rs TMS34020 register containing the memory address CRs TMS34082 RA register to contain the operand							
	CRd TMS340	082 destinat	tion register					
Description	ABSx loads the absolute value o load from memo	of the conten	nts of CRs, and	d stores the i				
	The TMS34082	source regi	ister, CRs, mι	ust be in the	RA regist	er file.		
Instruction Type	CMOVMC, post	tincrement, o	constant cour	nt				
Example	ABSD *A5+, F	RA6, RB7						
	This example loa the address giv takes the absolu	en by TMS	34020 registe	er A5 into TI	MS34082	register RA6,		

Syntax	Type Integer Double-Precision Single-Precision	Syntax ABS – *Rs, CRs, CRd ABSD – *Rs, CRs, CRd ABSF – *Rs, CRs, CRd							
Execution	Rs – 32 → Rs ∗Rs → CRs Rs – 32 → Rs ∗Rs → CRs CRs → CRd								
'34020 Instruction Words	15 14 13 12 11 0 0 0 0 1								
	0 0 0 0 1								
		CRs 0 0 1 0 CRd							
Instruction to '34082	31 29 28 25 24	21 20 16 15 0							
		0010 CRd 1001 111t s000 0000							
Operands	Rs TMS34020 reg	gister containing the memory address							
Description	 CRs TMS34082 RA register to contain the operand CRd TMS34082 destination register ABSx loads the contents of memory pointed to by Rs into CRs, takes the absolute value of the contents of CRs, and stores the result in CRd. Before each load from memory, Rs is decremented by 32. 								
	The TMS34082 source	e register, CRs, must be in the RA register file.							
Instruction Type	CMOVMC, predecreme	ient, constant count							
Example	ABS —*A5, RA6, RB	B7							
	TMS34020 register A5	te integer contents of memory at the address given by 5 minus 32 into TMS34082 register RA6, takes the contents of RA6, and stores the integer result in RB7.							

7-23

ADDx Add

Syntax	TypeSyntaxIntegerADD CRs1, CRs2, CRdDouble-PrecisionADDD CRs1, CRs2, CRdSingle-PrecisionADDF CRs1, CRs2, CRd							
Execution	$CRs_1 + CRs_2 \rightarrow CRd$							
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 0 0 0 type size							
	ID CRs ₁ CRs ₂ CRd							
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs1 CRs2 CRd 00000 000t s000 0000							
Operands	CRs ₁ TMS34082 register containing the first operand							
	CRs ₂ TMS34082 register containing the second operand							
	CRd TMS34082 destination register							
Description	ADDx adds the contents of CRs_1 and CRs_2 and stores the result in CRd.							
	The two source registers, CRs_1 and CRs_2 , must be in opposite register files.							
Instruction Type	CEXEC, short							
Example	ADDD RA5, RB6, RB7							
	This example adds the double-precision floating-point contents of RA5 and RB6 and stores the result in RB7.							

Load and Add ADDx

Syntax		Syntax ADD Rs1, Rs2, CRs1, CRs2, CRd							
		ADDF Rs_1 , Rs_2 , CRs_1 , CRs_2 , CRd							
Execution	$\begin{array}{l} \operatorname{Rs}_1 \to \operatorname{CRs}_1 \\ \operatorname{Rs}_2 \to \operatorname{CRs}_2 \\ \operatorname{CRs}_1 + \operatorname{CRs}_2 \to \operatorname{CRd} \end{array}$								
'34020	15 14 13 12 11	10 9 8 7 6 5 4 3 2 1 0							
Instruction Words		1 1 0 0 1 0 R Rs ₁							
		0 0 type 0 0 0 R Rs2							
	ID CRs	et CRs2 CRd							
Instruction to '34082	31 29 28 25 24	<u>21 20 16 15 0</u>							
	ID CRs ₁ CRs	s ₂ CRd 0100 000t 0000 0000							
Operands	Rs ₁ TMS34020 source register for the first value to TMS34082								
	Rs ₂ TMS34020 source register for the second value to TMS34082								
	CRs ₁ TMS34082 register to contain the first operand								
	CRs ₂ TMS34082 regist	ster to contain the second operand							
	CRd TMS34082 destir	nation register							
Description		s of Rs_1 and Rs_2 into CRs_1 and CRs_2 respectively, s_1 and CRs_2 , and stores the result in CRd.							
	The two TMS34082 sour register files.	rce registers, CRs ₁ and CRs ₂ , must be in opposite							
	The double-precision floa	pating-point form of this instruction is not supported.							
Instruction Type	CMOVGC, two registers								
Example	ADDF A5, A6, RA5, F	RB6, RB7							
		34020 registers A5 and A6 into TMS34082 registers y, adds the single-precision floating-point values from s the result in RA7.							

ADDx Load from Memory (Postincrement) and Add

Syntax		Syntax		
		ADD *Rs+, CRs ADDD *Rs+, CR		
		ADDF *Rs+, CR		
Execution	∗Rs → CRs ₁			
	Rs + 32 → Rs •Rs → CRs			
	$Rs + 32 \rightarrow Rs$			
	∗Rs → CRs ₂			
	Rs + 32 → Rs			
	∗Rs → CRs ₂ Rs + 32 → Rs			
	$CRs_1 + CRs_2 \rightarrow CRd$			
'34020	15 14 13 12 11	10 9 8 7	765	4 3 2 1 0
Instruction Words	0 0 0 0 0	1 1 0 1	1 0 0	0 0 transfers
			ze 0 0	R Rs
		51	CRs ₂	CRd
Instruction to '34082	31 29 28 25 24		1000 (0 000t s000 0000
	· .	-		
Operands	Rs TMS34020 regis	ster containing th	ne memory a	ddress
	CRs ₁ TMS34082 regis	ster to contain the	e first opera	nd
	CRs ₂ TMS34082 regis	ster to contain the	e second op	erand
	CRd TMS34082 dest	ination register		
Description	ADDx loads the content			
	adds the contents of CRs load from memory, Rs is			esult in CRd. After each
	The two TMS34082 sou register files.	irce registers, CF	Rs ₁ and CR	s ₂ , must be in opposite
Instruction Type	CMOVMC, postincreme	nt, constant cour	nt	
Example	ADD *A5+, RA5, RB6	5, RB7		
	This example loads me register A5 into TMS340 from RA5 and RB6, and	82 registers RA	5 and RB6, a	

Load from Memory (Predecrement) and Add ADDx

Syntax	Type Synt	tax
	Integer ADD	$D = *Rs, CRs_1, CRs_2, CRd$
		DD −∗Rs, CRs ₁ , CRs ₂ , CRd DF −∗Rs, CRs ₁ , CRs ₂ , CRd
Execution	$Rs - 32 \rightarrow Rs$	
	∗Rs → CRs ₁	
	Rs−32 → Rs	
	∗Rs → CRs₁ Rs – 32 → Rs	
	*Rs \rightarrow CRs ₂	
	Rs−32 → Rs	
	$*Rs \rightarrow ORs_2$	
	$CRs_1 + CRs_2 \rightarrow CRd$	
'34020 Instruction Words	15 14 13 12 11 10 0 0 0 0 1 0	9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 0 0 transfers
	1 0 0 0 0 0	0 type size 0 0 R Rs
	ID CRs ₁	CRs ₂ CRd
Instruction to '34082	31 29 28 25 24 21	1 20 16 15 0
	ID CRs ₁ CRs ₂	CRd 1000 000t s000 0000
Operands	Rs TMS34020 register c	containing the memory address
	CRs1 TMS34082 register to	o contain the first operand
	CRs ₂ TMS34082 register to	o contain the second operand
	CRd TMS34082 destination	on register
Description		emory pointed to by Rs into CRs_1 and CRs_2 , add
	the contents of CRs ₁ and CRs from memory, Rs is decreme	s ₂ , and stores the result in CRd. Before each load ented by 32.
	The two TMS34082 source r	registers, CRs1 and CRs2, must be in opposite
	register files.	
Instruction Type	CMOVMC, predecrement, co	onstant count
Example	ADD —*A5, RA5, RB6, RH	B7
		y starting at the address given by TMS34020 S34082 registers RA5 and RB6, adds the integer nd stores the result in RB7.

ADDAx Absolute Value of Sum

Syntax	Type Double-Precision Single-Precision	Syntax ADDAD CRs ₁ , Cl ADDAF CRs ₁ , Cl	Rs ₂ , CRd Rs _{2,} CRd	-
Execution	$ CRs_1 + CRs_2 \rightarrow CRd$		·	
'34020 Instruction Words	15 14 13 12 11 1 1 0 1 1 ID CR	10 9 8 7 0 0 0 0 Rs ₁ C	6 5 0 0 Rs ₂	4 3 2 1 0 1 0 0 1 s CRd
Instruction to '34082	31 29 28 25 24 ID CRs ₁ CF	21 20 16 Rs ₂ CRd	15 0000 1	0 1001 s000 0000
Operands	CRs ₂ TMS34082 regi	ster containing the ster containing the	•	
Description	CRd TMS34082 dest ADDAx takes the absolu result in CRd. CRs ₁ and CRs ₂ , the tw register files.	ite value of the sum	·	-
	The integer form of this	instruction is not s	upported.	
Instruction Type	CEXEC, short			
Example	ADDAF RA3, RB9, RA	A1		
	This example adds the RB9, takes the absolute	- ·	• •	

Load and Absolute Value of Sum, Single-Precision ADDAF

Syntax	ADDAF Rs1, Rs2, CRs1, CRs2, CRd
Execution	$\begin{aligned} \text{Rs}_1 &\rightarrow \text{CRs}_1 \\ \text{Rs}_2 &\rightarrow \text{CRs}_2 \\ \text{CRs}_1 + \text{CRs}_2 &\rightarrow \text{CRd} \end{aligned}$
'34020 Instruction Words	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs1 CRs2 CRd 01 00 0 00 0
Operands	Rs ₁ TMS34020 source register for first 32-bit single-precision floating- point value to TMS34082
	Rs ₂ TMS34020 source register for second 32-bit single-precision floating-point value to TMS34082
	CRs ₁ TMS34082 register to contain the first single-precision operand
	CRs ₂ TMS34082 register to contain the second single-precision operand
	CRd TMS34082 destination register
Description	ADDAF loads the contents or Rs_1 and Rs_2 into CRs_1 and CRs_2 respectively, takes the absolute value of the sum of CRs_1 and CRs_2 , and stores the result in CRd.
	CRs ₁ and CRs ₂ , the two TMS34082 source registers, must be in opposite register files.
	The integer and double-precision floating-point forms of this instruction are not supported.
Instruction Type	CMOVGC, two registers
Example	ADDAF A5, A9, RA7, RB9, RB0
	This example loads the contents of TMS34020 registers A5 and A9 into TMS34082 registers RA7 and RB9 respectively, adds the contents of RA7 and RB9, takes the absolute value, and stores the result in RB0.

ADDAx Load from Memory (Postincrement) and Absolute Value of Sum

Syntax	Туре	Syntax
C ymax	Double-Precision	ADDAD *Rs+, CRs1, CRs2, CRd
	Single-Precision	ADDAF * <i>Rs</i> +, <i>CRs</i> ₁ , <i>CRs</i> ₂ , <i>CRd</i>
Execution	∗Rs → CRs ₁	
	Rs + 32 → Rs ∗Rs → CRs₁	
	Rs + 32 - + Rs	
	∗Rs → CRs ₂	
	Rs + 32 → Rs ∗Rs → CRs₂	
	Rs + 32 → Rs	
	$ CRs_1 + CRs_2 \rightarrow CRd$	
'34020	15 14 13 12 11	10 9 8 7 6 5 4 3 2 1 0
Instruction Words	0 0 0 0 0	1 1 0 1 0 0 0 0 transfers
	1 0 0 0 1 ID CI	0 0 1 size 0 0 R Rs Rs1 CRs2 CRd </th
	L	
Instruction to '34082	31 29 28 25 24 ID CRs ₁ C	21 20 16 15 0 Rs ₂ CRd 1000 1001 \$000 0000
Operands	Rs TMS34020 reg	ister containing the memory address
	CRs ₁ TMS34082 reg	ister to contain the first operand
	CRs ₂ TMS34082 reg	ister to contain the second operand
	CRd TMS34082 des	tination register
Description	adds the contents of CF	ints of memory pointed to by Rs into CRs_1 and CRs_2 , Is_1 and CRs_2 , takes the absolute value, and stores the absolute value and stores the bload from memory, Rs is incremented by 32.
	CRs ₁ and CRs ₂ , the tw register files.	vo TMS34082 source registers, must be in opposite
	The integer form of this	operation is not supported.
Instruction Type	CMOVMC, postincreme	ent, constant count
Example	ADDAD *A5+, RA7,	RB9, RB0
	register A5 into TMS340	emory starting at the address given by TMS34020 082 registers RA7 and RB9, adds the double-precision B9, takes the absolute value, and stores the result in

Internal Instructions

Syntax	Туре	Syntax
	Double-Precision	ADDAD -+Rs, CRs1, CRs2, CRd
	Single-Precision	ADDAF – $\star Rs$, CRs_1 , CRs_2 , CRd
Execution	Rs – 32 → Rs	
	∗Rs → CRs ₁	
	Rs – 32 → Rs	
	∗Rs → CRs ₁	
	Rs – 32 → Rs	
	$*Rs \rightarrow CRs_2$	
	Rs−32 → Rs	
	$*Rs \rightarrow CRs_2$	
	$ CRs_1 + CRs_2 \rightarrow CRd$	
'34020	<u>15 14 13 12 11</u>	10 9 8 7 6 5 4 3 2 1 0
Instruction Words	0 0 0 0 1	0 0 0 0 0 1 0 0 transfers
	1 0 0 0 1	0 0 1 size 0 0 R Rs
	ID CF	As ₁ CRs ₂ CRd
Instruction to '34082	31 29 28 25 24	21 20 16 15 0
	the second se	Rs ₂ CRd 1000 1001 s000 0000
Onerende		ator containing the memory address
Operands	Rs TMS34020 regi	ster containing the memory address
	CRs ₁ TMS34082 regi	ster to contain the first operand
	CRs ₂ TMS34082 regi	ster to contain the second operand
	CRd TMS34082 des	tination register
Description	ADDAx loads the conte	nts of memory pointed to by Rs into CRs ₁ and CRs ₂ ,
·	adds the contents of CR	s ₁ and CRs ₂ , takes the absolute value, and stores the
	result in CRd. Before ea	ach load from memory, Rs is decremented by 32.
		o TMS34082 source registers, must be in opposite
	register files.	
	The integer form of this	instruction is not supported.
Instruction Type	CMOVMC, predecreme	nt, constant count
Example	ADDAD —*A5, RA7, 1	RB9, RB0
	This example loads me	emory starting at the address given by TMS34020
	-	into TMS34082 registers RA7 and RB9, adds the g-point contents of RA7 and RB9, takes the absolute
	value, and stores the re	

ASUBAx Subtract Absolute Values

.....

Syntax	TypeSyntaxDouble-PrecisionASUBAD CRs1, CRs2, CRdSingle-PrecisionASUBAF CRs1, CRs2, CRd
Execution	$ CRs_1 - CRs_2 \rightarrow CRd$
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 size ID CRs1 CRs2 CRd CRd CRd CRd CRd
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs1 CRs2 CRd 0001 0111 \$000 0000
Operands	CRs ₁ TMS34082 register containing the first operand. Must be from RA reg- ister file.
	CRs ₂ TMS34082 register containing the second operand. Must be from RB register file.
	CRd TMS34082 destination register.
Description	ASUBADx subtracts the absolute value of CRs_2 from the absolute value of CRs_1 , placing the result in CRd.
	The integer form of this instruction is not supported.
Instruction Type	CEXEC, short
Example	ASUBAF RA7, RB2, C
	This example subtracts the absolute value of the single-precision contents of RB2 from the absolute value of the single-precision contents of RA7 and stores the result in the C register.

......

Syntax	ASUBAF Rs1, Rs2, CRs1, CRs2, CRd
Execution	$Rs_{1} \rightarrow CRs_{1}$ $Rs_{2} \rightarrow CRs_{2}$ $ CRs_{1} - CRs_{2} \rightarrow CRd$
'34020 Instruction Words	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs1 CRs2 CRd 0101 0111 0000 0000
Operands	Rs ₁ TMS34020 source register for first 32-bit single-precision floating-point operand
	Rs ₂ TMS34020 source register for second 32-bit single-precision floating-point operand
	CRs ₁ TMS34082 register to contain the first single-precision operand. Must be from RA register file
	CRs ₂ TMS34082 register to contain the second single-precision operand. Must be from RB register file
	CRd TMS34082 destination register
Description	ASUBAF loads the contents of Rs_1 and Rs_2 into CRs_1 and CRs_2 , respectively, and subtracts the absolute value in CRs_2 from the absolute value in CRs_1 , placing the result in CRd.
	The integer and double-precision forms of this instruction are not supported.
Instruction Type	CMOVGC, two registers
Example	ASUBAF A3, A2, RA5, RB3, RB1
	This example loads the contents of TMS34020 registers A3 and A2 into RA5 and RB3 respectively, subtracts the absolute value of the contents of RB3 from the absolute value of RA5, and stores the result in RB1.

ASUBAx Load from Memory (Postincrement) and Subtract Absolute Values

Syntax	Type Syntax
Ofinax	Double-Precision ASUBAD $\star Rs+$, CRs_1 , CRs_2 , CRd
	Single-Precision ASUBAF $*Rs+$, CRs_1 , CRs_2 , CRd
Execution	∗Rs → CRs ₁
	Rs + 32 → Rs
	$Rs + 32 \rightarrow Rs$ $*Rs \rightarrow CRs_{2}$
	$Rs + 32 \rightarrow Rs$
	+Rs → CRs ₂
	Rs + 32 → Rs
	$ CRs_1 - CRs_2 \rightarrow CRd$
'34020	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction Words	0 0 0 0 0 1 1 0 1 0 0 0 0 transfers
	1 0 0 1 0 1 1 1 size 0 0 R Rs
	ID CRs ₁ CRs ₂ CRd
Instruction to '34082	<u>31 29 28 25 24 21 20 16 15 0</u>
	ID CRs1 CRs2 CRd 1001 0111 s000 0000
Operands	Rs TMS34020 register containing the memory address
	CRs ₁ TMS34082 register to contain the first operand. Must be from RA register file.
	CRs ₂ TMS34082 register to contain the second operand. Must be from RB register file.
	CRd TMS34082 destination register
Description	ASUBAx loads the contents of memory pointed to by Rs into CRs_1 and CRs_2 and subtracts the absolute value in CRs_2 from the absolute value in CRs_1 , placing the result in CRd. After each load from memory, Rs is incremented by 32.
	The integer form of this instruction is not supported.
Instruction Type	CMOVMC, postincrement, constant count
Example	ASUBAD *A3+, RA7, RB3, RB1
	This example loads memory starting at the address given by TMS34020 register A3 into TMS34082 registers RA7 and RB3, subtracts the absolute value of the contents of RB3 from the absolute value of RA7, and stores the result in RB1.

Internal Instructions

Syntax	Type		Syntax											
• • • • • • • • • • • • • • • • • • • •	Double-Precis	ion) -+/	Rs, C	Rs₁,	CRs	2, CF	Rd				
	Single-Precisio	on				Rs, C	•							
Execution	Rs – 32 → Rs													
	∗Rs → CRs ₁													
	Rs = 32 → Rs													
	•Rs → CRs	I												
	$Rs - 32 \rightarrow Rs$													
	∗Rs → CRs ₂													
	Rs−32 → Rs	I												
	∗Rs → CRs ₂	l												
	CRs ₁ – CRs	₂ → CRc	i											
'34020	15 14 13	12 11	10	9	8	7	6	5	4	3	2	1	0	
Instruction Words	0 0 0	0 1	0	0	0	0	0	1	0	0	tr	ansfers		
	1 0 0	1 0	1	1	1	size	0	0	R			S		
	ID	CF	Rs1			CR	IS2		L		CRd			
Instruction to '34082	31 29 28	25 24	2.	1 20		16 1	5						0	
	ID CRs	5 ₁ CI	Rs ₂		CRd		100	1 C)111	S	000	000)0	
Operands	Rs TMS3	4020 regi	ister o	onta	ininc	the i	mem	orv a	ddre	ss				
oporando		1020109				,			auro	00				
	CRs ₁ TMS3 registe	4082 regi er file.	ister to	0 00	ntain	the f	irst o	pera	nd. N	lust l	oe fro	om RA	۱.	
	CRs ₂ TMS3 registe	4082 regi er file.	ster to	o cor	ntain	the s	econ	d op	erand	d. Mu	ist be	e from	RB	
	CRd TMS3	4082 des	tinatio	on re	giste	er								
Description	ASUBAx loads and subtracts placing the res by 32.	the abso	lute v	alue	in C	Rs ₂ f	from	the a	absol	ute v	alue	in CF	≀s ₁ ,	
	The integer for	rm of this	instru	uctio	n is r	not su	ippor	ted.						
Instruction Type	CMOVMC, pre	edecreme	nt, co	nsta	int co	ount								
Example	ASUBAF -*A3	3, RA7,	RB3	, RI	31									
	This example register A3 min absolute value	nus 32 in	to TN	1S34	082	regist	ters F	RA7	and	RB3,	sub	tracts	the	

Syntax	Type Integ Dout	er	recis	ion		Syntax BACKF BACKFD											
	Sing						CKF										
'34020	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Instruction Words	1	1	0	1	1	0	0	0	0	1	0	0	1	0	type	size	
		ID		0	0	0	0	0	0	0	0	0	0	0	0	0	
Instruction to '34082	31 ID	29 0	0 0	000	0	000	0	000	0	010	0	10t	s	000	0 (0	
Description	area of po vertio direc coun instru pass may	or if i lygo ces c tion i tercl uction es th be c	t is fa ns th of the is clo ockw n als roug Iraw	icing at do poly ockwi vise o de h the n as	awa o not /gon ise (f (bac tects viev a lir	y fror need are orwa kwar the ving p ie or	n the d to b enter rd fa rd fa case coint ignc	curre e dra ed a cing) cing) whe (posi ored.	ent vi awn i nd te , the , the re the ition) The	ew a n the ested poly en th e pla of th algo	rea. ⁻ e curr l as t gon i ne p ne d e eye rithm	This a rent in o rota s visi olygo efine e. In ta s ass	allow mage ation ble; i bn is d by his ca sume	s the e. Th dire if the invi the t ase, f s tha	elimir e first ction. direc isible. hree p the po	This points lygon of the	
Implied Operands		= X1 = X2 re Xr	, 2, 1,Yn,		RA5 RB1 Vn ai	5 = Y = Y	$\begin{array}{llllllllllllllllllllllllllllllllllll$										
Algorithm	where Xn,Yn,Zn,Wn are coprocessor registers. $C = RB1 \times RA3$ $C = C - (RA1 \times RB3)$ $RB8 = C \times RA4$ $C = RA0 \times RB3$ $C = C - (RB0 \times RA3)$ $RB9 = C \times RA5$ $C = RB0 \times RA1$ $C = C - (RA0 \times RB1)$ $RA8 = C \times RA7$ RA8 = RA8 + RB9 RA8 = RA8 + RB8 if RA8 < 0 then N = 1 else N = 0 if RA8 = 0 then Z = 1 else Z = 0							; (Y2 ; ((Y, ; X0 ; (X0 ; (X2 ; (Y, ; (X2) ; (Y, ; (Y)	2 × \ × W 0 × V 2 × Y 2 × ` ((X0 2 × \ ((X0	V0) - V0) 2 V2) - W2) 0 - Y0) - Y0) - Y0) - X W0) X W0) X X W0) X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	- (Y0 - (X2 - (X2 - (Y2 - (Y2 - (Y2 - (Y0 /2) - (0) - (0) - (V2)) V0)) 0)) × 0)) × 0)) × V2)) × W	× Y1 W1 0)) × × X1 0)) ×	Y1 Y1		

Internal Instructions

à.

Temporary Storage	C, CT, RA8, RB8, RB9
Outputs	The N and V status bits are set to indicate the following:
	 N Z Description 0 0 Polygon is forward facing 0 1 Polygon is parallel to view (reject or draw as line) 1 0 Polygon is backward facing 1 1 Polygon is backward facing
Instruction Type	CEXEC, short

CHECK Check Coprocessor Status

Syntax	CHECK Rd													
Execution	If coprocessor is busy FFFF FFFFh \rightarrow Rd If coprocessor is idle 0000 0000h \rightarrow Rd													
'34020	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													
Instruction Words	0 0 0 0 0 1 1 0 0 1 1 R Rd													
	ID 0 0 0 0 1 1 0 1 0 0 0 0													
Instruction to '34082	<u>31 29 0</u>													
	ID 0 0001 1010 0000 0001 1110 0000 0000													
Operands	Rd TMS34020 destination register for status information													
Description	CHECK checks the status of the coprocessor. If the TMS34082 coprocessor is busy, CHECK sets all the bits in Rd to 1. If the TMS34082 coprocessor is idle, CHECK sets all the bits in Rd to 0.													
	This instruction allows polling of the TMS34082 prior to sending subsequent instructions to avoid halting the TMS34020 if the FPU is not ready to accept new commands. This polling may be required for user-defined instruction sequences that utilize the external program and data memory of the TMS34082.													
Instruction Type	CMOVGC, one register													
Example	CHECK A4													
	If the TMS34082 coprocessor is busy, this example sets all the bits in register A4 to 1. If the TMs34082 coprocessor is idle, this example resets all the bits in register A4 to 0.													

Check Vertex CKVTXx

Syntax	Type Integer Double-Precision Single-Precision	<u>Syntax</u> CKVTX CKVTXD CKVTXF													
'34020	15 14 13 12 1	1 10 9	8	7	6	5	4	3	2	1	0				
Instruction Words				Ō	1	1	0	1	0	type	size				
	ID 0 0	0 0	0	0	0	0	0	0	0	0	0				
Instruction to '34082	31 29	·····				L		•			0				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0000	0000	0	011	0	1 O t	s	000	0 0	000				
Description	The CKVTXx instruction volume in a perspection a polygon to determin partially within the clip CKVTXIx instruction using homogeneous	ve display le if the el ping volu pefore the	r. It may ntire po me. Th e first it	/ be u olygo ie TM	n is t S34	with a otally 082 r	a list (/ with nust	of vei nin, to be in	rtice: otally itiali:	s desc ⁄ outsi zed wi	ribing de, or th the				
Implied Operands	RA0 = Xn RA1 = Yn RA2 = Zn RA3 = Wn									n] to c coordi					
Algorithm	RB9 = RA3		; cop	by RA	A3 to	RB9	ł								
	If (RB9 – RA0) < 0 set XLT else		; X OR outcode, status bit 5												
	reset XGT		; X AND outcode, status bit 6												
	If (RB9 – RA1) < 0 set YLT else reset YGT			DR oi											
	If (RB9 – RA2) < 0 set ZLT else reset ZGT		·	DR ou											
	10001 201		, , ,			,	Julia	0 0.0							
	If ((XGT OR YGT OF set V bit else	ZGT) = 1	; if A	ND c			-								
	reset V bit		; all	AND	outc	odes	; = 0,	, part	ially	visible	Э				
	If ((XLT OR YLT OR set Z bit else	ZLT) = 0)		R ou			-			L	-1-				
	reset Z bit		; all		uico	ues :	= 1, 1	IOT E	nure	ly insi	ue				

You may now reload vertex V(n+1) and repeat the instruction for all vertices in a polygon.

Temporary Storage

Outputs

The status is set (ZGT, ZLT, YGT, YLT, XGT, and XLT) according to position.

V = 1 Vertex out

C, RB9

Z = 1 Vertex in

If repeated for all vertices in a polygon then:

- V
 Z
 Description

 0
 0
 The polygon crosses the boundary of the clipping volume
- 0 1 The polygon is totally inside the clipping volume
- 1 0 The polygon is totally outside the clipping volume
- 1 1 Not valid

The boundaries of the clipping volume that are crossed by the polygon may be determined by the ZLT (Z-plane), YLT (Y-plane), and XLT (X-plane) bits.

Instruction Type CEXEC, short

Example

CKVTXI MOVF *A5+, RA0, 4 CKVTXF

This example first initializes the TMS34082 by executing the check vertex initialize instruction. Then the four homogeneous coordinates of the vertex are loaded, starting at the address given in TMS34020 register A5. Finally the status register is set according to the results of the check.

Syntax	СКУ	ΤΧΙ														
'34020 Instruction Words	15	14	13 0	12	<u>11</u>	10	9	8	7	6	5	4	3	2	1	
		ID		0	0	0	0	1	1	0	0	0	0	0	0	0
Instruction to '34082	31 29														0	
	ID	ID 0 0001 1000 0000 0001 110												00	0.0	00
Description	The CKVTXI instruction is used to initialize several bits in the status registe before the first Check Vertex (CKVTX) instruction.												gister			
Algorithm	reset reset set X set Y set Z	t YLT t ZLT (GT 'GT	•					set s set s set s set s	startir startir startir startir	ng Y ng Z ng X ng Y	OR o OR o AND AND		de to de to de to ode ode	0 0 to 1 to 1		
Instruction Type	CEX	EC, s	short	:												

CLIPCFx Clip Color, Forward

Syntax	Type Integer Double-Precision Single-Precision		Syntax CLIPC CLIPC CLIPC	F FD								
'34020	15 14 13 12		10 9	8	7	6	5	4	3	2	1	0
Instruction Words	1 1 0 1 ID 0	1	0 0	0	0	1	0	1	1	1	type 0	size 0
Instruction to '34082	31 29 ID 0 0000	0.0		000		010		11t	I	000	I	0
Description	The CLIPCFx inst shaded line after th the CLIPFx instruct green, blue) for the to the viewing surfa is modified to take transformation.	ne first tion. T e endp ace. T	t vertex he clipp point of he inte	has b ed co he lin polati	een o lor va e whe on fa	lippe luer en th ctor	ed to epre e line (t) fro	the v sent e is p om th	viewi sthe ersp ie CL	ng vo coloi ectiv .IPFx	olume r value e-proj c instru	using e (red, ected uction
Implied Operands	$RA3 = W1' \text{ (intens} \\ RA4 = R1 \text{ (red)} \\ RA5 = B1 \text{ (blue)} \\ RA6 = G1(\text{green}) \\ C = t \text{ (interpolation)} $		ctor) fro	m CL	RB4 RB5 RB6	8 = W 1 = R 5 = B 5 = G instr	2 (re 2 (bl i2 (g	ue) reen)			
Algorithm	$C = C \times RB3$ RB9 = RA3 RA8 = RB4 - RA4 C = C / RB9 RA9 = RB5 - RA5 $CT = RA8 \times C$ RA4 = CT + RA4 $CT = RA9 \times C$ RA5 = CT + RA5 RA8 = RB6 - RA6 $CT = RA8 \times C$ RA6 = RA6 + CT			; ť = ; B2 ; (R2 ; R1 ; (B2 ; B1 ; (B2 ; G2 ; (G2	W2 - R1 $t \times N$ - B1 2 - R 2 - R	W2 / 1) × 1 + (I 1) × I + (I I 1) ×	ť R2 – ť 32 – ť	B1)	ם			
Temporary Storage	CT, RA8, RA9											
Outputs	RA4 = R1' (red) RA5 = B1' (blue) RA6 = G1' (green) CT = t'											
Instruction Type	CEXEC, short											

Syntax	Type Integer Double-Precision Single-Precision	Syntax CLIPCR CLIPCRD CLIPCRF									
'34020 Instruction Words	15 14 13 12 11 1 1 0 1 1 ID 0 0 0	10 9 8 0 0 0 0 0 0	7 6 0 1 0 0	5 1 0	4 1 0	3 0 0	2 0 0	1 type 0	0 size 0		
Instruction to '34082	31 29 ID 0 0000 00	000 0000	0011	1	0 0 t	S	000	0 0	0		
Description	The CLIPCRx instructio shaded line after the se using the CLIPRx instr value (red, green, blu perspective-projected t distortion caused by pe	econd vertex l uction. The c ie) for the e to the viewin	has been lipped col ndpoint c g surface	clipp for va of the c. Th	ed to alue e lin	o the repre e wl	view esent nen	ing vo s the the li	olume color ne is		
Implied Operands	RA3 = W2' (intensity) $RB4 = R2$ (red) $RA4 = R1$ (red) $RB5 = B2$ (blue) $RA5 = B1$ (blue) $RB6 = G2$ (green) $RA6 = G1$ (green) $RB7 = W1$ (intensity) $C = t$ (interpolation factor) from CLIPRx instruction										
Algorithm	$C = C \times RB7$ RB9 = RA3 RA8 = RA4 - RB4 C = C / RB9 RA9 = RA5 - RB5 $CT = RA8 \times C$ RA4 = CT + RB4 $CT = RA9 \times C$ RA5 = CT + RB5 RA8 = RA6 - RB6 $CT = RA8 \times C$ RA6 = RA6 + CT	; ť = ; B1 ; (R ; R2 ; (B ; B2 ; G1 ; (G	W1 - R2 - B2 1 - R2) × $A^{2} = R2 + (1 - B2) \times 12$ $A^{2} = R2 + (1 - B2) \times 12$ $A^{2} = B2 + (1 - G2) \times 12$ $A^{2} = G2 + (1 - G2) \times 12$ $A^{2} =$	ť R1 – ť B1 – ť	B2) :	ם					
Temporary Storage	CT, RA8, RA9, RB9				-						
Outputs	RA4 = R2' (red) RA5 = B2' (blue) RA6 = G2' (green) CT = t'										
Instruction Type	CEXEC, short										

CLIPFXx Clip a Line to the X Plane, Forward

Syntax	Туре	Syntax	,								
Official	Integer	CLIPF									
	Double-Precision	CLIPF									
	Single-Precision	CLIPF	KF								
'34020	15 14 13 12 11	10 9	8	7	6	5	4	3	2	1	0
Instruction Words	1 1 0 1 1	0 0	0	0	1	0	1	0	1	type	size
	ID 0 0	0 0	0	0	0	0	0	0	0	0	0
Instruction to '34082	31 29										0
	ID 0 0000 C	000 0	000	0 0	010	1	01t	s	000	0 (000
Description	The CLIPFXx Instruct endpoint is outside the coordinate of the first e provides an interpolat performing Gouraud homogeneous coordin	clipping indpoint o ion factor shading	viewa f a line that is . The	able) e is ou s use e en	volui utsid ed by idpoi	me. I e of t the ints	Jse (he vi CLIF are	CLIP ewin PCx i des	FXx (g vol nstru scribe	only if ume. Iction ed by	the X It also when / the
Implied Operands	RA1 = Y1 RE RA2 = Z1 RE	0 = X2 1 = Y2 2 = Z2 3 = W2									
Algorithm	C = RA0 CT = RB0 If RA0 < 0 then set (N If N = 1 then RB8 = RB3 + CT RA8 = RA3 + C else RB8 = RB3 - CT RA8 = RA3 - C RB9 = RB0 - RA0 RB8 = RA8 - RB8 RA9 = RB1 - RA1 C = RA8 / RB8 RA9 = RB1 - RA1 C = RA8 / RB8 RA8 = RB2 - RA2 CT = RB9 × C RA0 = CT + RA0 CT = RA9 × C RA1 = CT + RA1 RA9 = RB3 - RA3 CT = RA8 × C RA2 = CT + RA2 CT = RA9 × C RA3 = CT + RA3	=1)	; W2 ; (Z2 ; Z1' ; (W:	W1 W2 W1 - X1 b - Y1 a / (a - Z1 - X1 - X1 - X1 - X1 - X1 - X1 - X1 - X	+ X1 - X2 - X2 - X1 - X1 - X2 - X1 - X1 -) X2 - Y2 - X2 - X2 -	Y1) Z1)>	×t <t< th=""><th></th><th></th><th></th></t<>			

Internal Instructions

Temporary Storage	CT, RA8, RA9, RB8, RB9
Outputs	RA0 = X1' RA1 = Y1' RA2 = Z1' RA3 = W1' C = t
Instruction Type	CEXEC, short

Syntax	Type Integer Double-Pre Single-Pred		Syntax CLIPFY CLIPFYD CLIPFYF											
'34020	15 14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	1 1	0 1	1	0	0	0	0	1	0	1	0	1	type	size
	ID	0	0	0	0	0	0	0	0	0	0	0	0	1
Instruction to '34082	31 29 ID 0	0000	0	000	0 (001	0 (010	1	0 1 t	S	000	0 0	0
Description	The CLIPF endpoint is coordinate provides ar performing homogene	outsic of the n inter Gou	le the first er polatio raud	clipp ndpoi on fao shao	ing (\ int of ctor t ding.	iewa a line hat is The	able) e is ou s use e er	volui utside ed by idpoi	me.l eoft the ints	Jse (he vie CLIF are	CLIPI ewing Cx i des	FYx (g voli nstru cribe	only if ume. l ction ed by	the Y t also when y the
Implied Operands	RA0 = X1 RA1 = Y1 RA2 = Z1 RA3 = W1		RB ⁻ RB2) = X I = Y 2 = Z 3 = W	2 2									
Algorithm	C = RA1 CT = RB1 If RA1 < 0 If N = 1 the RB8 = RI RA8 = RA else RB8 = RB RB9 = RB0 RB8 = RA8 RA9 = RB1 C = RA8 RA9 = RB1 C = RA8 RA0 = CT CT = RA9 RA1 = CT RA9 = RB3 CT = RA8 RA2 = CT CT = RA8 RA2 = CT CT = RA8 RA2 = CT CT = RA8 RA3 = CT	$\begin{array}{l} 8 \\ 8 \\ 8 \\ 8 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 4$	CT CCT C 0 8 1 3 2 3	=1)		; (Y2 ; Y1' ; W2 ; (Z2 ; Z1' ; (W2	W1 W2 W1 - X1 b - Y1 a / (a - Z1 2 - Y 2 - Y 2 - Y 2 - Y 2 - Z1 2 - V	+ Y1 - Y2 - Y1 1) × 1 1 + () 1) × 1 1 + ((1 1) × 1 1 + ((2 V1) × (2)) X2 t Y2 t Z2 t t	X1) : Y1) : Z1) > – W [:]	×t <t< th=""><th></th><th></th><th></th></t<>			

Internal Instructions

Temporary Storage	CT, RA8,RA9, RB8, RB9
Outputs	RA0 = X1' RA1 = Y1' RA2 = Z1' RA3 = W1' C = t
Instruction Type	CEXEC, short

Syntax	Type Integer Double-Precision Single-Precision	CL	ntax PFZ PFZ PFZ	D									
'34020 Instruction Words	15 14 13 12 1 1 0 1 ID 0 0	11 1 0	10 0 0	9 0 0	8 0 0	7 0 0	6 1 0	5 0 0	4 1 0	3 0 0	2 1 0	1 type 1	0 size 0
Instruction to '34082	31 29 ID 0 0000	000	0 (010	0 (010	1	0 1 t	S	000	0 0	000	
Description	The CLIPFZx Instruction clips a line to the viewing volume when endpoint is outside the clipping (viewable) volume. Use CLIPFZx only coordinate of the first endpoint of a line is outside of the viewing volume provides an interpolation factor that is used by the CLIPCx instruction performing Gouraud shading. The endpoints are described homogeneous coordinates P1 = [X1, Y1, Z1, W1] and P2 = [X2, Y2, Z2]									only if ume. l Iction ed by	the Z t also when the		
Implied Operands	RA0 = X1 RA1 = Y1 RA2 = Z1 RA3 = W1	RB1 RB2) = X; = Y; ? = Z; } = W	2 2									
Algorithm	C = RA2 CT = RB2 If RA2 < 0 then set If N = 1 then RB8 = RB3 + C RA8 = RA3 + C else RB8 = RB3 - C RB9 = RB0 - RAC RB9 = RB0 - RAC RB9 = RB1 - RA1 C = RA8 / RB8 RA8 = RB2 - RA2 CT = RB9 × C RA0 = CT + RA0 CT = RA9 × C RA1 = CT + RA1 RA9 = RB3 - RA3 CT = RA8 × C RA2 = CT + RA2 CT = RA9 × C RA3 = CT + RA3	T ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1)		; Z2 ; (X2 ; X1' ; (Y2 ; Y1' ; W2 ; (Z2 ; Z1' ; (W)	W1 W2 W1 - X1 b - Y1 2 - X 2 - Y 2 - Y - Y - Y - Z1 - W - Z1 = Z1	++ Z1 Z2 Z1 1) × 1 1 + (2 1) × 1 1 + (1 1) × 1 1 + (2 V1) ×) K2 t Y2 t t t	Y1)∶ Z1)⇒	×t <t< th=""><th></th><th></th><th></th></t<>			

Internal Instructions

Temporary Storage	CT, RA8, RA9, RB8, RB9
Outputs	RA0 = X1' RA1 = Y1' RA2 = Z1' RA3 = W1' C = t
Instruction Type	CEXEC, short

CLIPRXX Clip a Line to the X Plane, Reverse

Syntax	Type Integer Double-Precision Single-Precision	CLIPF CLIPF	Syntax CLIPRX CLIPRXD CLIPRXF								
'34020 Instruction Words	1 1 0 1	1 10 9 1 0 0 0 0 0	0	7 0 0	6 1 0	5 0 0	4 1 0	3 1 0	2 0 0	1 type 0	0 size 0
Instruction to '34082	31 29 ID 0 0000	0000	0010	0 (010	1	1 O t	s	000	0 (0
Description	The CLIPRXx Instruct endpoint is outside the coordinate of the second It also provides an inter- when performing Generation homogeneous coord	ne clipping cond endpo terpolation ouraud sh	(viewa bint of factor ading.	ble) a line that i The	volur e is c is us enc	ne. l outsid ed by Ipoin	Jse (de of / the its a	CLIP the CLIF re de	RXx (viewi PCRx escril	only if ng vo instru oed b	the X lume. uction by the
Implied Operands	RA1 = Y1 R RA2 = Z1 R	B0 = X2 B1 = Y2 B2 = Z2 B3 = W2									
Algorithm	$CT = RB0$ $C = RA0$ If RB0 < 0 then set () If N = 1 then $RB8 = RA3 + C$ $RA8 = RB3 + CT$ else $RB8 = RA3 - C$ $RA8 = RB3 - CT$ $RB9 = RA0 - RB0$ $RB8 = RA8 - RB8$ $RA9 = RA1 - RB1$ $C = RA8 / RB8$ $RA9 = RA1 - RB1$ $C = RA8 / RB8$ $RA8 = RA2 - RB2$ $CT = RB9 \times C$ $RA0 = CT + RB0$ $CT = RA9 \times C$ $RA1 = CT + RB1$ $RA9 = RA3 - RB3$ $CT = RA8 \times C$ $RA2 = CT + RB2$ $CT = RA9 \times C$ $RA2 = CT + RB3$	N=1)	; a = ; b = ; a = ; X1 ; t = ; Z1 ; (X1 ; X2' ; (Y1 ; Y2' ; W1 ; (Z1 ; Z2' ; (W	– Y2 a / (a	- X2 + X1 + X2 2) × t 2 + (X 2) × t 2 + (X 2 2) × t 2 + (X 2 2) × t 2 + (X 2 2) × t 2 + (X 2) × t 2 + (X 2) × t 2 + (X) 2 + (X	<1 – (1 – (1 – (1 –	Y2) : Z2) >	×t			

Internal Instructions

Temporary Storage	CT, RA8, RA9, RB8, RB9
Outputs	This writes [X2',Y2',Z2',W2'] over [X1,Y1,Z1,W1]. RA0 = X2' RA1 = Y2' RA3 = Z2' RA4 = W2' C = t
Instruction Type	CEXEC, short

CLIPRYx Clip a Line to the Y Plane, Reverse

Syntax	Type Syntax						ntav.									
Oy max	Integ						PRY									
	-	ble-P	recis	sion			PRY									
	Sing	le-Pr	ecisi	on		CL	PRY	F								
'34020	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	1	1	0	1	1	0	Ō	Ō	Ó	1	Ō	$\overline{1}$	type	size		
				0	0	0	0	0	0	0	0	0	0	0	0	
	L			I		L			i		L	I	I	1	I	ليستعمد
Instruction to '34082	31	29														0
	ID	0	00	000		000		001		010		10t		000		000
Description	The CLIPRYx Instruction endpoint is outside the															
																lume.
		•				•										uction
		•		-					-							ed by , W2].
Implied Operands		= X1		B0 =			•	[***,	, .	_ , , ,	.1.0		- 1	···, 1	6	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	RA1 = Y1 $RB1 = Y2$															
	RA2 = Z1 RB2 = Z2 RA3 = W1 RB3 = W2															
	RA3	= W	1 R	B3 =	• W2											
Algorithm		= RB	1													
		RA1	0 tha		+ /NI -	-1)										
	If RE	= 1 tl		n se	l (IN =	= 1)										
		 38 =		+ C				; b =	W1 -	– Y1						
	RÆ	- 8	RB3	+ C1	Γ		a = W2 - Y2									
	else		-													
		B8 = A8 =			т		; b = W1 + Y1 ; a = W2 + Y2									
		= R/					; X1 – X2									
		= R/						; a –								
	RA9	= R/						; Y1	– Y2							
	C	= R/							a / (a	ι – b))					
		= R/						•	- Z2	.						
		= RI = C						•	- X2 = X2	-		VO	· •			
		= C = R/							- Y	•		~ 2)	×ι			
		= C							= Y2			Y2)	×t			
		= R/							– W			,				
	CT	= R/	\8 ×	С				; (Z1	- Z2	2)×t						
		= C						•	= Z2	•		Z2) >	< t			
		= R/					; (W1 – W2) × t ; W2' = W2 + (W1 – W2) × t									
	RA3	= C	Γ + F	8B3				; W2	' = V	/2 +	(W1	– W	2) × [.]	t		

Temporary Storage	CT, RA8, RA9, RB8, RB9
Outputs	This writes [X2',Y2',Z2',W2'] over [X1,Y1,Z1,W1]. RA0 = X2' RA1 = Y2' RA3 = Z2' RA4 = W2' C = t
Instruction Type	CEXEC, short

CLIPRZx Clip a Line to the Z Plane, Reverse

Syntax					Svi	ntax										
Jimax	Integer					PRZ										
	Double-	Precis	sion		CL	IPRZ	D									
	Single-F	Precis	ion		CL	IPRZ	:F									
'34020	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Instruction Words	1 1	0	1	1	0	0	0	0	1	0	1	1	0	type	size	
	ID		0	0	0	0	0	0	0	0	0	0	0	1	0	
Instruction to '34082	31 2	2													0	
			000	0 (000	0	010	0	010	1	10t	S	000	0 (000	
	L															
Description	The CL															
	endpoir coordin															
	lt also p															
	when p															
	homoge	neou	s coo	ordina	ates l	21 =	[X1,	Y1, Z	21, W	/1] a	nd P	2 = [)	<2, Y	'2, Z2	, W2].	
Implied Operands	RA0 = >	(1 F	80 =	• X2												
	RA1 = Y1 RB1 = Y2															
		RA2 = Z1 RB2 = Z2 RA3 = W1 RB3 = W2														
	HA3 = 1	V1 F	(B3 =	• 992												
Algorithm	CT = RI															
	C = RA If RA2 <		on co	+ /NI -	- 1)											
	If N = 1		31 30	. (14 -	- יי											
	RB8 =		+ C				; b =	W1 -	– Z1							
	RA8 =	RB3	+ C1	Γ		a = W2 - Z2										
	else RB8						• h	14/4	. 71							
	RA8					; b = W1 + Z1 ; a = W2 + Z2										
	RB9 = 1					; X1 – X2										
	RB8 = {	RA8	RB8			; a – b										
	RA9 = [; Y1 – Y2										
		A8 / 1						a / (a	a – b							
	RA8 = I CT = F						•	– Z2 – X	2) v 1							
	RA0 = (-	' = X2			X2) :	×t				
	CT = F							– Y			,	•				
	RA1 = ()T + F	RB1				; Y2'	' = Y2	2 [′] + (`	Y1 -	Y2) :	×t				
	RA9 = RA3 - RB3							– W								
	$CT = RA8 \times C$; (Z1 – Z2) × t										
	RA2 = 0					$; Z2' = Z2 + (Z1 - Z2) \times t$										
	CT = F RA3 = (; (W1 – W2) × t ; W2' = W2 + (W1 – W2) × t										
		71 T f	, **2	. — v	1 <u>6</u> T	(* * 1	- 447	c / ^	•							

Internal Instructions

Temporary Storage	CT, RA8, RA9, RB8, RB9
Outputs	This writes [X2',Y2',Z2',W2'] over [X1,Y1,Z1,W1]. RA0 = X2' RA1 = Y2' RA3 = Z2' RA4 = W2' C = t
Instruction Type	CEXEC, short

CLR Clear a Register

Syntax	Type Integer Double-Prec Single-Preci	Syntax CLR CRd CLRD CRd CLRF CRd												
Execution	$0 \rightarrow CRd$													
'34020	15 14 13	12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	1 1 0	1	1	0	0	0	0	0	0	0	0	1	type	size
	ID	1	1	0	1	1	1	0	1	l		CR	3	
Instruction to '34082	31 29 28	2	5 24		21 20		16	15						0
	ID 1	01	1	101		CRo	ł	00	00	00	1 t	s00	0 0	000
Operands	CRd TMS	3408	2 de	stinat	tion r	egist	er.							
Description	CLRx loads bit in the sta			•	• •			e in tl	ne re	giste	er, Cl	Rd. T	he Z	(zero)
Instruction Type	CEXEC, sho	rt												
Example	CLRF C													
	This exampli register C.	e loa	ds a	sing	gle-pr	recisi	on f	oatir	ng-po	oint z	ero	into	TMS	34082

Compare CMP

Syntax	Type Integer Double-Precision Single-Precision				CM	P CI PD (Rs ₁ , CRs ₁ CRs ₁	, CĤ	S2						
Execution	Flags (Cl	7s ₁ -	- CR	s ₂) –	→ TMS	5340	082 5	Statu	s Re	giste	r				
'34020 Instruction Words	15 14 1 1	13 0	12 1	11 1	10 0	9 0	8 0	7 0	6 0	5 0	4 0	3	2 0	1 type	0 size
	ID			CF	ls ₁			CF	ls2		0	0	0	0	0
Instruction to '34082	31 29 ID	28 CR	25 \$1	24 C	21 Rs ₂	20	000	0	000	0	1 O t	S	000	0 (000
Operands	r	egist	er file	э.				-		-					m RA
			er file	-			an ni ny	Juie	2001	nu c	pera	nu. n	nusi	De li u	m RB
Description	CMPx su status bit									Rs ₁	and	sets	the a	appro	priate
Instruction Type	CEXEC,	shor	t												
Example	CMP RAS	, R	в6												
	This exa status bit									f RB	6 fro	m R/	45 a	nd se	ts the

.....

CMPx Load and Compare

Syntax											
•	Integer		, Rs ₂ , CRs ₁ , CRs ₂								
	Single-Precision	CMPF R	s ₁ , Rs ₂ , CRs ₁ , CRs	2							
Execution	$Rs_1 \rightarrow CRs_1$										
	$Rs_2 \rightarrow CRs_2$										
	Flags (CRs ₁ – CRs ₂) \rightarrow TMS34082 Status Register										
'34020	15 14 13 12	11 10 9	8 7 6 5	4 3 2 1 0							
Instruction Words	0 0 0 0	0 1 1	0 0 1 0	R Rs ₁							
	0 1 0 0	0 1 0	t 0 0 0	R Rs2							
	ID	CRs ₁	CRs ₂	0 0 0 0							
Instruction to '34082	31 29 28 25	5 24 21 20		0							
	ID CRs ₁	CRs2 00	000 0100 01	0t 0000 0000							
Operands	Rs ₁ TMS34020 source register for the first value to TMS34082										
	Rs ₂ TMS34020 source register for the second value to TMS34082										
	CRs ₁ TMS34082 register to contain the first operand. Must be from RA register file.										
	CRs ₂ TMS3408 register fil		ntain the second op	erand. Must be from RB							
Description		from CRs ₁ , and		and CRs ₂ respectively, riate status bits in the							
	The double-precis	sion form of this	instruction is not su	ipported.							
Instruction Type	CMOVGC, two re	gisters									
Example	CMPF A5, A6,	RA5, RB6									
	RA5 and RB6 r	espectively, su	btracts the single-	nto TMS34082 registers precision floating-point ts the status bits in the							

TMS34082 status register.

Syntax	Type Syntax
	IntegerCMP $*Rs+$, CRs_1 , CRs_2 Double-PrecisionCMPD $*Rs+$, CRs_1 , CRs_2 Single-PrecisionCMPF $*Rs+$, CRs_1 , CRs_2
Execution	$\begin{array}{l} *Rs \to CRs_1 \\ Rs + 32 \to Rs \\ \hline Rs \to CRs_1 \\ \hline Rs \to CRs_2 \\ \ast Rs \to CRs_2 \\ Rs + 32 \to Rs \\ \hline Rs = CRs_2 \\ \hline Rs = Rs \\ \hline Rs $
'34020	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>
Instruction Words	0 0 0 0 0 1 1 0 1 0 0 0 transfers
	1 0 0 0 1 0 t s 0 0 R Rs ID CRs1 CRs2 0
Instruction to '34082	31 29 28 25 24 21 20 0 ID CRs1 CRs2 000000 10000 010t s0000 00000
Operands	Rs TMS34020 register containing the memory address
	 CRs₁ TMS34082 register to contain the first operand. Must be from RA register file. CRs₂ TMS34082 register to contain the second operand. Must be from RB register file.
Description	CMPx loads the contents of memory pointed to by Rs into CRs_1 and CRs_2 , subtracts CRs_2 from CRs_1 , and sets the appropriate status bits in the TMS34082 status register. After each load from memory, Rs is incremented by 32.
Instruction Type	CMOVMC, postincrement, constant count
Example	CMP *A5+, RA5,RB6
	This example loads the contents of memory starting at the address given by TMS34020 register A5 into TMS34082 registers RA5 and RB6, subtracts the integer contents of RB6 from RA5, and sets the status bits in the TMS34082 status register.

CMPx Load from Memory (Predecrement) and Compare

Syntax	TypeSyntaxInteger $CMP - *Rs, CRs_1, CRs_2$ Double-Precision $CMPD - *Rs, CRs_1, CRs_2$ Single-Precision $CMPF - *Rs, CRs_1, CRs_2$							
Execution	$\begin{array}{l} \text{Rs} - 32 \rightarrow \text{Rs} \\ \textbf{\ast} \text{Rs} \rightarrow \text{CRs}_1 \\ \textbf{Rs} & \textbf{32} \\ \textbf{Rs} & \textbf{32} \\ \textbf{Rs} & \textbf{\ast} \text{CRs} \\ \text{Rs} - 32 \rightarrow \text{Rs} \\ \textbf{\ast} \text{Rs} - 32 \rightarrow \text{Rs} \\ \textbf{\ast} \text{Rs} \rightarrow \text{CRs}_2 \\ \textbf{Rs} & \textbf{\ast} \text{CRs}_2 \\ \textbf{Rs} & \textbf{\ast} \text{CRs}_2 \\ \textbf{Rs} & \textbf{\ast} \text{CRs}_2 \\ \textbf{Flags} (\text{CRs}_1 - \text{CRs}_2) \rightarrow \text{TMS34082 Status Register} \end{array}$							
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
	0 0 0 0 1 0 0 0 0 1 0 0 transfers 1 0 0 0 1 0 0 1 0 0 transfers							
	1 0 0 0 1 0 t s 0 0 R Rs ID CRs1 CRs2 0							
Instruction to '34082	31 29 28 25 24 21 20 0							
mstruction to 54062	ID CRs1 CRs2 00000 1000 010t s000 0000							
Operands	 Rs TMS34020 register containing the memory address CRs₁ TMS34082 register to contain the first operand. Must be from RA register file. 							
	CRs ₂ TMS34082 register to contain the second operand. Must be from RB register file.							
Description	CMPx loads the contents of memory pointed to by Rs into CRs_1 and CRs_2 , subtracts CRs_2 from CRs_1 , and sets the appropriate status bits in the TMS34082 status register. Before each load from memory, Rs is decremented by 32.							
Instruction Type	CMOVMC, predecrement, constant count							
Example	CMP -*A5, RA5, RB6							
	This example loads the integer contents of memory starting at the address given by TMS34020 register A5 minus 32 into TMS34082 registers RA5 and RB6, subtracts the integer contents of RB6 from RA5, and sets the status bits in the TMS34082 status register.							

Convolution CONVx

Syntax	Type		Svr	ntax									
- j // · · · · ·	Integer		CO	NV									
·	Double-Precision Single-Precision		CONVD CONVF										
	Ū					_		-		_	-		
'34020 Instruction Words	15 14 13 1	2 11	10	9	8	7	6	5	4	3	2	1 type	0 size
	ID (0	0	0	0	0	0	0	0	0	0	0
Instruction to '34082	31 29		I		L		L	L	1		L	L	0
	ID 0 000	0 0	000 0000			0 0011 011t				s	000	0 0	000
Description	The CONVx inst convolution assu are in TMS34082 in register RAS instructions (CC maintained in RA typically greater	uming t 2 regist 9for th 9NVD a 49 to r	he co ters. ne ir and (educ	onsta The c ntege CON	nts (convo r in VF),	C9-C olutio struc the	01) a n div tion inve	nd th ride c (CC rse (ne inf const ONV) of the	eger ant (. Fo e div	valu K) is or flo vide (es (P maint bating const	9-P1) ained -point ant is
Implied Operands	RA0 = P1 RA1 = P2 RA2 = P3	RA3 RA4 RA5	= P5		I	RA6 RA7 RA8	= P8						
	RA9 = K or RA9 = 1/K	(for th (for fl) and		NVF)	
	RB0 = C1 RB1 = C2 RB2 = C3	RB3 RB4 RB5	= C5		1	RB6 RB7 RB8	= C8						
Algorithm	$C = RA0 \times RB0$ $CT = C + (RA1)$ $C = CT + (RA2)$ $CT = C + (RA3)$ $C = CT + (RA4)$ $CT = C + (RA5)$ $C = CT + (RA6)$ $CT = C + (RA7)$ $C = CT + (RA8)$ If type = integer, RB9 = C / RA else	× RB2) < RB3) < RB4) < RB5) × RB6 < RB7) < RB8) then)									cons	
	$RB9 = C \times R$	49			; mu	ltiply	the i	nver	se of	the	divid	e con	stant
Temporary Storage	C, CT												
Outputs	C = [(C11) + (C2 RB9 = [(C1 × P1	•		•			(P9)]/K					
Instruction Type	CEXEC, short												

CPVx Compare Point to Volume

Syntax '34020 Instruction Words	Type Syntax Integer CPV Double-Precision CPVD Single-Precision CPVF 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 10 0 1 0 0 1 type size ID 0
Instruction to '34082	31 29 0 ID 0 0 0 0 0 0 0 0 0 0 0
Description	A point [Xn,Yn,Zn] is compared to the volume defined by Xmin,Ymin, Zmin and Xmax,Ymax, Zmax. Six comparison bits within the status register are set according to the comparison. The TMS34020 may read the status and perform a 64-way branch based on the six comparison bits.
Implied Operands	$\begin{array}{ll} RA0 = Xmin & RA3 = Xmax & RB0 = Xn \\ RA1 = Ymin & RA4 = Ymax & RB1 = Yn \\ RA2 = Zmin & RA5 = Zmax & RB2 = Zn \end{array}$
Algorithm	If RB0 - RA0 < 0, set XLT
Temporary Storage	СТ
Outputs	Status register set
Status Bits	XLT (bit 5) is set high if (Xn < Xmin) XGT (bit 6) is set high if (Xn > Xmax) YLT (bit 7) is set high if (Yn < Ymin) YGT (bit 8) is set high if (Yn > Ymax) ZLT (bit 9) is set high if (Zn < Zmin) ZGT (bit10) is set high if (Zn > Zmax)
Instruction Type	CEXEC, short

.....

Internal Instructions

Syntax	TypeSyntaxIntegerCPWDouble-PrecisionCPWDSingle-PrecisionCPWF
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1 0 0 type size ID 0
Instruction to '34082	31 29 0 ID 0 0000 0000 0010 000t \$0000 0000
Description	A point [Xn,Yn] is compared to the window defined by Xmin, Ymin and Xmax, Ymax. Four comparison bits within the status register are set according to the comparison. The TMS34020 may read the status and perform a 16-way branch based on the four comparison bits.
Implied Operands	$\begin{array}{ll} RA0 = Xmin & RA2 = Xmax & RB0 = Xn \\ RA1 = Ymin & RA3 = Ymax & RB1 = Yn \end{array}$
Algorithm	If RB0 - RA0 < 0, set XLT; test for XLT (Xn - Xmin)else reset XLT; test for XGT (Xmax - Xn)If RA3 - RB0 < 0, set XGT; test for XGT (Xmax - Xn)else reset XGT; test for YLT (Yn - Ymin)else reset YLT; test for YGT (Ymax - Yn)else reset YGT; test for YGT (Ymax - Yn)
Temporary Storage	СТ
Outputs	Status register set
Status Bits	XLT (bit 5) is set high if (Xn < Xmin) XGT (bit 6) is set high if (Xn > Xmax) YLT (bit 7) is set high if (Yn < Ymin) YGT (bit 8) is set high if (Yn > Ymax)
Instruction Type	CEXEC, short

CSPLNx Cubic Spline

Syntax	TypeSyntaxIntegerCSPLNDouble-PrecisionCSPLNDSingle-PrecisionCSPLNF
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 0 type size ID 0
Instruction to '34082	31 29 0 ID 0 00000 00000 0011 110t \$0000 0000
Description	Given a cubic spline defined by: $X = (A3 \times T^3) + (A2 \times T^2) + (A1 \times T) + A0$ $Y = (B3 \times T^3) + (B2 \times T^2) + (B1 \times T) + B0$ $Z = (C3 \times T^3) + (C2 \times T^2) + (C1 \times T) + C0$ This routine will calculate X,Y,Z for a series of values of T. The previous T value is incremented from 0 to 1 by an amount dT. Note this instruction may also be used to calculate X and Y for a 2-D cubic spline by ignoring the values of the Z coefficients and results.
Implied Operands	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Algorithm	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Temporary Storage	C, CT
Outputs	RA7 = X RA8 = Y RA9 = Z
Instruction Type	CEXEC, short

Syntax	CVDF CRs, CRd								
Execution	$(CRs) \rightarrow CRd$								
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1								
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0100 CRd 0001 1111 1000 0000								
Operands	CRs TMS34082 source register containing a 64-bit double-precision floating-point operand								
	CRd TMS34082 destination register								
Description	CVDF converts a 64-bit IEEE double-precision floating-point number to a 32-bit IEEE single-precision floating-point number. The double-precision number resides in CRs, and the converted single-precision number is stored in CRd.								
	The source register, CRs, must be in the RA register file.								
Instruction Type	CEXEC, short								
Example	CVDF RA5, RA7								
	This example converts the contents of RA5 to a single-precision floating-point number and stores the result in RA7.								

CVDF Load and Convert, Double-Precision to Single-Precision

Syntax

CVDF Rs1, Rs2, CRs, CRd

Execution

 $\begin{array}{c} \text{Rs}_1, \, \text{Rs}_2 \rightarrow \text{CRs} \\ \textit{(CRs)} \rightarrow \text{CRd} \end{array}$

'34020	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	0	0	0	0	0	1	1	0	0	1	0	R		1		
	0	1	0	1	1	1	1	1	1	0	0	R	Rs ₂			
		ID			CF	ls ₁		0	1	0	0		CRd			
Instruction to '34082	31	29	28	25	24	20	21		16	15						0
		<u> </u>	CR	s	01	00		CRd		010	1	1111	1	000	00	00
Operands	Rs ₁		TMS3 Ioatin				-			half 1	the (64-bi	t do	ubie-	preci	sion
	Rs ₂ TMS34020 source register for remaining half of double-precision floating-point operand.								of th	e 6	4-bit					
	CRs		rMS3 Ioatin				_	jister	to	con	tain	the	do	uble-	preci	sion
	CRd	1	rms3	4082	des	tinati	on re	giste	r							
Description	CVDF loads the double-precision contents of Rs ₁ and Rs ₂ into CRs and converts the 64-bit IEEE double-precision floating-point number to a 32-bit IEEE single-precision floating-point number. The converted single-precision number is stored in CRd.								2-bit							
	The	TMS	3408	2 so	urce	regis	ter, C	CRs,	must	t be ir	n the	RA r	egis	ter file	Э.	
Instruction Type	CMC)VG	C, two	o reg	isters	S										
Example	CVD	FR	45, I	RA7												
	This example converts the contents of RA5 to a single-precision floating-poin number and stores the result in RA7.									ooint						

Syntax	CVDF +Rs+, CRs, CRd								
Execution	$\begin{array}{l} *Rs \to CRs \\ Rs + 32 \to Rs \\ *Rs \to CRs \\ Rs + 32 \to Rs \\ (\mathit{CRs}) \to CRd \end{array}$								
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 R Rs ID ID CRs1 0 1 0 0 0 CRd ID ID								
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0100 CRd 1001 1111 1000 0000								
Operands Description	 Rs TMS34020 register containing the memory address CRs TMS34082 register to contain the 64-bit double-precision floating-point operand CRd TMS34082 destination register CVDF loads the double-precision contents of memory pointed to by Rs into CRs and converts the 64-bit IEEE double-precision floating-point value to a 32-bit IEEE single-precision floating-point value. The double-precision number is stored in CRs, and the converted single-precision number is stored in CRs. 								
Instruction Type	The TMS34082 source register, CRs, must be in the RA register file. CMOVMC, postincrement, constant count								
Example	CVDF *B5+, RA5, RA7								
	This example loads the contents of memory starting at the address given by TMS34020 register B5 into TMS34082 register RA5, converts the contents of RA5 to a single-precision number, and stores the result in RA7.								

CVDF Load from Memory (Predecrement) and Convert, Double-Precision to Single-Precision)

Syntax	CVDF – <i>∗Rs, CRs, CRd</i>							
Execution	$\begin{array}{l} Rs - 32 \rightarrow Rs \\ *Rs \rightarrow CRs \\ Rs - 32 \rightarrow Rs \\ *Rs \rightarrow CRs \\ (CRs) \rightarrow CRd \end{array}$							
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
	0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 R Rs							
	ID CRs 0 1 0 0 CRd							
Instruction to '34082	31 29 28 25 24 21 20 16 15 0							
11511001101110 54002	ID CRs 0100 CRd 1001 1111 1000 0000							
Operands	Rs TMS34020 register containing the memory address CRs TMS34082 register to contain the 64-bit double-precision floating-point operand							
Description	CRd TMS34082 destination register							
Description	CVDF loads the double-precision contents of memory pointed to by Rs into CRs and converts the 64-bit IEEE double-precision floating-point value to a 32-bit IEEE single-precision floating-point value. The double-precision number resides in CRs, and the converted single-precision number is stored in CRd. Before each load from memory, Rs is decremented by 32.							
	The TMS34082 source register, CRs, must be in the RA register file.							
Temporary Storage	CMOVMC, predecrement, constant cont							
Example	CVDF -*B5, RA5, RA7							
	This example loads the contents of memory starting at the address given by TMS34020 register B5 minus 32 into TMS34082 register RA5, converts the contents of RA5 to a single-precision number, and stores the result in RA7.							

Syntax	CVDI CRs, CRd								
Execution	$(CRs) \rightarrow CRd$								
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1								
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0101 CRd 0001 1111 1000 0000								
Operands	CRs TMS34082 source register containing a 64-bit double-precision floating-point operand								
Description	CRd TMS34082 destination register CVDI converts a 64-bit IEEE double-precision floating-point number to a 32-bit integer number. The double-precision number resides in CRs, and the converted integer number is stored in CRd.								
	The source register, CRs, must be in the RA register file.								
Instruction Type	CEXEC, short								
Example	CVDI RA5, RB7								
	This example converts the contents of RA5 to an integer and stores the result in RB7.								

CVDI Load and Convert, Double-Precision to Integer

Syntax	CVDI Rs ₁ , Rs ₂ CRs, CRd								
Execution	(CRs) \rightarrow CRd								
'34020 Instruction Words	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0101 CRd 0101 1111 1000 0000								
Operands	Rs ₁ TMS34020 source register for half the 64-bit double-precision floating-point value to TMS34082								
	 Rs₂ TMS34020 source register for remaining half of the 64-bit double-precision floating-point operand CRs TMS34082 source register to contain the double-precision floating-point operand 								
	CRd TMS34082 destination register								
Description	CVDI loads a 64-bit IEEE double-precision floating-point number from Rs_1 and Rs_2 into CRs and converts it to a 32-bit integer number. The double-precision number resides in CRs, and the converted integer number is stored in CRd.								
	The TMS34082 source register, CRs, must be in the RA register file.								
Instruction Type	CMOVGC, two registers								
Example	CVDI A4, A5, RA5, RB7								
	This example loads TMS34020 registers A4 and A5 into TMS34082 register RA5, converts the contents of RA5 to an integer, and stores the result in RB7.								

Syntax	CVDI •Rs+, CRs, CRd								
Execution	$\begin{array}{l} *Rs \to CRs \\ Rs + 32 \to Rs \\ *Rs \to CRs \\ Rs + 32 \to Rs \\ (\mathit{CRs}) \to CRd \end{array}$								
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 R Rs ID CRs 0 1 0 1 0 1 CRd								
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0101 CRd 1001 1111 1000 0000								
Operands Description	 Rs TMS34020 register containing the memory address CRs TMS34082 register to contain the 64-bit double-precision floating-point operand CRd TMS34082 destination register CVDI loads the double-precision contents of memory pointed to by Rs into CRs and converts the 64-bit IEEE double-precision floating-point value to an integer 								
	value. The double-precision number resides in CRs, and the converted integer number is stored in CRd. After each load from memory, Rs is incremented by 32. The TMS34082 source register, CRs, must be in the RA register file.								
Instruction Type	CMOVMC, postincrement, constant count								
Example	CVDI *B5+, RA5, RA7								
	This example loads the contents of memory starting at the address given by TMS34020 register B5 into TMS34082 register RA5, converts the contents of RA5 to an integer number, and stores the result in RA7.								

Syntax	CVDI – +Rs, CRs, CRd							
Execution	$Rs - 32 \rightarrow Rs$ *Rs $\rightarrow CRs$ $Rs - 32 \rightarrow Rs$ *Rs $\rightarrow CRs$ (CRs) $\rightarrow CRd$							
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 R Rs ID CRs 0 1 0 1 0 1 CRd							
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0101 CRd 1001 1111 1000 0000							
Operands Description	 Rs TMS34020 register containing the memory address CRs TMS34082 register to contain the 64-bit double-precision floating-point operand CRd TMS34082 destination register CVDI loads the double-precision contents of memory pointed to by the predecremented value of Rs into CRs and converts the 64-bit IEEE double-precision floating-point value to an integer value. The double-precision number resides in CRs, and the converted integer number is stored in CRd. Before each load from memory, Rs is decremented by 32. 							
Instruction Type	The TMS34082 source register, CRs, must be in the RA register file. CMOVMC, predecrement, constant count							
Example	CVDI -*B5, RA5, RA7							
	This example loads the contents of memory starting at the address given by TMS34020 register B5 minus 32 into TMS34082 register RA5, converts the contents of RA5 to an integer number, and stores the result in RA7.							

Convert, Single-Precision to Double-Precision CVFD

Syntax	CVFD CRs, CRd							
Execution	(CRs) \rightarrow CRd							
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0 ID CRs 0 1 0 0 0 CRd CRd							
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0100 CRd 0001 1111 0000 0000							
Operands	CRs TMS34082 source register containing a 32-bit single-precision floating-point operand							
Description	CRd TMS34082 destination register CVFD converts a 32-bit IEEE single-precision floating-point value to a 64-bit IEEE double-precision floating-point value. The single-precision number resides in CRs, and the converted double-precision number is stored in CRd.							
Instruction Type	The source register, CRs, must be in the RA register file. CEXEC, short							
Example	CVFD RA5, RB7							
	This example converts the contents of RA5 to a double-precision number and stores the result in RB7.							

CVFD Load and Convert, Single-Precision to Double-Precision

Syntax

CVFD Rs, CRs, CRd

Execution

 $Rs \rightarrow CRs$ (CRs) $\rightarrow CRd$

'34020	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	0	0	0	0	0	1	1	0	0	0	1	R		R	s	
	0	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0
		ID		I	С	Rs		0	1	0	0			CRd		
Instruction to '34082	31	29	28	25	24	21	20		16	15						0
			CR	s	01	00		CRd		010	1 .	1111	0	000	0 0	00
Operands	Rs					urce alue t	-			ining	the	32-k	oit si	ngle-	prec	ision
	CRs CRd	f		g-po	int op	egiste beran	d		ontai	n th	ie :	32-bi	t si	ngle-	prec	ision
	Сна	I	10123	4082	des	tinatio	onre	giste	f							
Description	CVFD loads the single-precision contents of Rs into CRs and converts the 32-bit IEEE single-precision floating-point value to a 64-bit IEEE double-precision floating-point value. The single-precision number resides in CRs, and the converted double-precision number is stored in CRd.															
	The	TMS	3408	82 so	urce	regis	ter, C	CRs,	mus	t be i	n the	RAr	egis	ter fil	e.	
Instruction Type	CMC	OVG	C, on	e reg	jister											
Example	CVF	D B5	5, R2	A5,	RA7											
	con		the c									NS34 numl				RA5, s the

.....

Syntax	CVFD +Rs+, CRs, CRd
Execution	+Rs → CRs Rs + 32 → Rs (CRs) → CRd
'34020	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>
Instruction Words	
	1 0 0 1 1 1 0 0 0 R Rs ID CRs 0 1 0 0 CRd <
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0100 CRd 1001 1111 0000 0000
Operands	Rs TMS34020 register containing the memory address CRs TMS34082 register to contain the 32-bit single-precision floating-point operand
	CRd TMS34082 destination register
Description	CVFD loads the single-precision contents of memory pointed to by Rs into CRs and converts the 32-bit IEEE single-precision floating-point value to a 64-bit IEEE double-precision floating-point value. The single-precision number resides in CRs, and the converted double-precision number is stored in CRd. After each load from memory, Rs is incremented by 32.
	The TMS34082 source register, CRs, must be in the RA register file.
Instruction Type	CMOVMC, postincrement, constant count
Example	CVFD *B5+, RA5, RA7
	This example loads the contents of memory starting at the address given by TMS34020 register B5 into TMS34082 register RA5, converts the contents of RA5 to a double-precision number, and stores the result in RA7.

Syntax	CVFD -+Rs+, CRs, CRd
Execution	Rs – 32 → Rs *Rs → CRs (<i>CRs</i>) → CRd
'34020	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction Words	
	1 0 0 1 1 1 0 0 0 R Rs ID CRs 0 1 0 0 CRd <
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0 0 CRd 1001 1111 0000 0000
Operands	Rs TMS34020 register containing the memory address
eporanao	
	CRs TMS34082 register to contain the 32-bit single-precision floating-point operand
	CRd TMS34082 destination register
Description	CVFD loads the single-precision contents of memory pointed to by Rs into CRs and converts the 32-bit IEEE single-precision floating-point value to a 64-bit IEEE double-precision floating-point value. The single-precision number resides in CRs, and the converted double-precision number is stored in CRd. Before each load from memory, Rs is decremented by 32.
	The TMS34082 source register, CRs, must be in the RA register file.
Instruction Type	CMOVMC, predecrement, constant count
Example	CVFD -*B5, RA5, RA7
	This example loads the contents of memory starting at the address given by TMS34020 register B5 minus 32 into TMS34082 register RA5, converts the contents of RA5 to a double-precision number, and stores the result in RA7.

Syntax	CVFI CRs, CRd								
Execution	$(CRs) \rightarrow CRd$								
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0 ID CRs 0 1 0 1 0 1 CRd								
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0 10 CRd 0 0 1 1 1 0								
Operands	CRs TMS34082 source register containing a 32-bit single-precision floating-point operand								
Description	CRd TMS34082 destination register CVFI converts a 32-bit IEEE single-precision floating-point value to a 32-bit integer value. The single-precision number resides in CRs, and the converted integer number is stored in CRd.								
Instruction Type	The source register, CRs, must be in the RA register file. CEXEC, short								
Example	CVFI RA5, RA7								
	This example converts the contents of RA5 to an integer and stores the result in RA7.								

Syntax	CVFI Rs, CRs, CRd							
Execution	$Rs \to CRs$ (CRs) $\to CRd$							
'34020	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
Instruction Words	0 0 0 0 0 1 1 0 0 0 1 R Rs							
	0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0							
	ID CRs 0 1 0 1 CRd							
Instruction to '34082	<u>31 29 28 25 24 21 20 16 15 0</u>							
	ID CRs 0101 CRd 0101 1111 0000 0000							
Operands	Rs TMS34020 source register for the 32-bit single-precision floating- point value to TMS34082							
	CRs TMS34082 register to contain the 32-bit single-precision floating-point operand							
	CRd TMS34082 destination register							
Description	CVFI loads the single-precision contents of Rs into CRs and converts the 32-bit IEEE single-precision floating-point value to a 32-bit integer value. The single-precision number resides in CRs, and the converted integer number is stored in CRd.							
	The TMS34082 source register, CRs, must be in the RA register file.							
Instruction Type	CMOVGC, one register							
Example	CVFI B5, RA5, RB7							
	This example loads TMS34020 register B5 into TMS34082 register RA5, converts the contents of RA5 to an integer, and stores the result in RB7.							

Syntax	CVFI +Rs+, CRs, CRd							
Execution	*Rs \rightarrow CRs Rs + 32 \rightarrow Rs (<i>CRs</i>) \rightarrow CRd							
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 R Rs ID CRs 0 1 0 1 0 1 CRd CRd							
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0101 CRd 1001 1111 0000 0000							
Operands Description	 Rs TMS34020 register containing the memory address CRs TMS34082 register to contain the 32-bit single-precision floating-point operand CRd TMS34082 destination register CVFI loads the single-precision contents of memory pointed to by Rs into CRs and converts the 32-bit IEEE single-precision floating-point value to a 32-bit integer value. The single-precision number resides in CRs, and the converted integer number is stored in CRd. After each load from memory, Rs is incremented by 32. The TMS34082 source register, CRs, must be in the RA register file. 							
Instruction Type	CMOVMC, postincrement, constant count							
Example	CVFI *B5+, RA5, RA7							
	This example loads the contents of memory starting at the address given by TMS34020 register B5 into TMS34082 register RA5, converts the contents of RA5 to an integer number, and stores the result in RA7.							

CVFI Load from Memory (Predecrement) and Convert, Single-Precision to Integer

and changes and a second

Syntax	CVFI – •Rs, CRs, CRd					
Execution	Rs – 32 → Rs *Rs → CRs (CRs) → CRd					
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1					
	1 0 0 1 1 1 1 1 0 0 0 R Rs					
	ID CRs 0 1 0 1 CRd					
Instruction to '34082	<u>31 29 28 25 24 21 20 16 15 0</u>					
	ID CRs 0101 CRd 1001 1111 0000 0000					
Operands	Rs TMS34020 register containing the memory address					
	CRs TMS34082 register to contain the 32-bit single-precision floating-point operand CRd TMS34082 destination register					
Description	CVFI loads the single-precision contents of memory pointed to by Rs into CRs and converts the 32-bit IEEE single-precision floating-point value to a 32-bit integer value. The single-precision number resides in CRs, and the converted integer number resides in CRd. Before each load from memory, Rs is decremented by 32.					
	The TMS34082 source register, CRs, must be in the RA register file.					
Instruction Type	CMOVMC, predecrement, constant count					
Example	CVFI -*B5, RA5, RA7					
	This example loads the contents of memory starting at the address given by TMS34020 register B5 minus 32 into TMS34082 register RA5, converts the contents of RA5 to an integer number, and stores the result in RA7.					

Syntax	CVID CRs, CRd								
Execution	$(CRs) \rightarrow CRd$								
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1								
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0110 CRd 0001 1111 1000 0000								
Operands	CRs TMS34082 source register containing the 32-bit integer operand								
	CRd TMS34082 destination register								
Description	CVID converts a 32-bit integer value to a 64-bit IEEE double-precision floating-point value. The integer resides in CRs, and the converted double-precision number is stored in CRd.								
	The source register, CRs, must be in the RA register file. C and CT may not be used as operands for this instruction.								
Instruction Type	CEXEC, short								
Example	CVID RA5, RB7								
	This example converts the contents of RA5 to a double-precision number and stores the result in RB7.								

CVID Load and Convert, Integer to Double-Precision

Syntax	CVID Rs, CRs, CRd									
Execution	$Rs \to CRs$ (CRs) $\to CRd$									
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 1 0 0 1 0 R Rs 0 1 0 1 1 1 1 0 0 R Rs 0 1 0 1 1 1 1 0 0 R Rs ID CRs 0 1 1 0 CRd CRd									
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0110 CRd 0101 1111 1000 0000									
Operands	Rs TMS34020 source register containing the 32-bit integer value to TMS34082									
	CRs TMS34082 source register to contain the 32-bit integer operandCRd TMS34082 destination register									
Description	CVID loads the integer contents of Rs into CRs and converts a 32-bit integer value to a 64-bit IEEE double-precision floating-point value. The integer resides in CRs, and the converted double-precision number is stored in CRd. For this instruction, the integer in Rs must be sent as both words of a 64-bit transfer.									
	The TMS34082 source register, CRs, must be in the RA register file.									
Instruction Type	CMOVGC, two registers									
Example	CVID B5, RA5, RA7									
	This example loads TMS34020 register B5 into TMS34082 register RA5, converts the contents of RA5 to a double-precision number, and stores the result in RA7.									

Convert, Integer to Single-Precision CVIF

Syntax	CVIF CRs, CRd									
Execution	$(CRs) \rightarrow CRd$									
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0 ID CRs 0 1 1 1 0 CRd CRd									
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0110 CRd 0001 1111 0000 0000									
Operands	CRs TMS34082 source register containing the 32-bit integer operand									
Description	CRd TMS34082 destination register CVIF converts a 32-bit integer value to a 32-bit IEEE single-precision floating-point value. The integer resides in CRs, and the converted single-precision number is stored in CRd.									
	The source register, CRs, must be in the RA register file. C and CT may not be used as operands for this instruction.									
Instruction Type	CEXEC, short									
Example	CVIF RA5, RA7									
	This example converts the contents of RA5 to a single-precision number and stores the result in RA7.									

Syntax	CVIF Rs, CRs, CRd							
Execution	$Rs \to CRs$ (CRs) $\to CRd$							
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
	ID CRs 0 1 1 0 CRd							
Instruction to '34082	31 29 28 25 24 21 20 16 15 0							
	ID CRs 0110 CRd 0101 1111 0000 0000							
Operands Description	RsTMS34020 source register for the 32-bit integer value to TMS34082CRsTMS34082 source register to contain the 32-bit integer operandCRdTMS34082 destination registerCVIF loads the integer contents of Rs into CRs and converts a 32-bit integer value to a 32-bit IEEE single-precision floating-point value. The integer resides in CRs, and the converted single-precision number resides in CRd.							
	The TMS34082 source register, CRs, must be in the RA register file.							
Instruction Type	CMOVGC, one register							
Example	CVIF A3, RA5, RA7							
	This example loads TMS34020 registers of A3 into TMS34082 register RA5, converts the contents of RA5 to a single-precision number, and stores the result in RA7.							

Syntax	CVIF *Rs+, CRs, CRd								
Execution	*Rs → CRs Rs + 32 → Rs (<i>CRs</i>) → CRd								
'34020	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								
Instruction Words	0 0 0 0 0 1 1 0 1 0 0 0 0 0 1								
	1 0 0 1 1 1 1 1 0 0 0 R Rs								
	ID CRs 0 1 1 0 CRd								
Instruction to '34082	31 29 28 25 24 21 20 16 15 0								
	ID CRs 0110 CRd 1001 1111 0000 0000								
Operands Description	 Rs TMS34020 register containing the memory address CRs TMS34082 register to contain the 32-bit integer operand CRd TMS34082 destination register CVIF loads the integer contents of memory pointed to by Rs into CRs and converts the 32-bit integer value to a 32-bit IEEE single-precision floating-point value. The integer number resides in CRs, and the converted single-precision number is stored in CRd. After each load from memory, Rs is incremented by 32. 								
	The TMS34082 source register, CRs, must be in the RA register file.								
Instruction Type	CMOVMC, postincrement, constant count								
Example	CVIF *B5+, RA5, RA7								
	This example loads the contents of memory starting at the address given by TMS34020 register B5 into TMS34082 register RA5, converts the contents of RA5 to a single-precision number, and stores the result in RA7.								

CVIF Load from Memory (Predecrement) and Convert, Integer to Single-Precision

Syntax	CVIF ~ ∗Rs, CRs, CRd									
Execution	Rs – 32 → Rs +Rs → CRs (CRs) → CRd									
'34020	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>									
Instruction Words	0 0 0 1 0 0 0 1 0 0 1 0 0 1									
	1 0 0 1 1 1 1 1 0 0 0 R Rs									
	ID CRs 0 1 1 0 CRd									
Instruction to '34082	<u>31 29 28 25 24 21 20 16 15 0</u>									
	ID CRs 0110 CRd 1001 1111 0000 0000									
Operands	Rs TMS34020 register containing the memory address									
Description	 CRs TMS34082 register to contain the 32-bit integer operand CRd TMS34082 destination register CVIF loads the integer contents of memory pointed to by Rs into CRs and converts the 32-bit integer value to a 32-bit IEEE single-precision floating-point value. The integer number resides in CRs, and the converted single-precision number is stored in CRd. Before each load from memory, Rs is decremented by 32. 									
· · · · · · · · · · · · · · · · · · ·	The TMS34082 source register, CRs, must be in the RA register file.									
Instruction Type	CMOVMC, predecrement, constant count									
Example	CVIF -*B5, RA5, RA7									
	This example loads the contents of memory starting at the address given by TMS34020 register B5 minus 32 into TMS34082 register RA5, converts the contents of RA5 to a single-precision number, and stores the result in RA7.									

Type Integer Double-Precision Single-Precision	Syntax DEC CRs [, CRd] DECD CRs [, CRd] DECF CRs [, CRd]							
$\text{CRs}-1 \rightarrow \text{CRd}$								
15 14 13 12 11 1 1 0 1 1 ID C	10 9 8 7 0 0 0 0 0 Rs 1 1 1	6 5 4 3 2 1 0 0 0 0 1 1 type size 0 1 CRd						
31 29 28 25 24 ID CRs 1	21 20 16 1 0 1 CRd	15 0 0000 001t s000 0000						
CRs TMS34082 source register (also destination register if CRd is not specified). Must be from RA register file.								
DECx subtracts one (of the appropriate type) from the value in CRs and stores the result in CRd. If CRd is not specified, the result is stored in CRs.								
CEXEC, short								
DEC CT This example subtracts an integer one from the value in TMS34082 register								
	Integer Double-Precision Single-Precision CRs – 1 \rightarrow CRd <u>15 14 13 12 11</u> <u>1 1 0 1 1</u> <u>ID CRs 11</u> CRs TMS34082 so specified). Mus CRd TMS34082 de DECx subtracts one (of the result in CRd. If CF CEXEC, short DEC CT This example subtracts	Integer Double-PrecisionDEC $CRs [, CRd]$ DECD $CRs [, CRd]$ DECD $CRs [, CRDECF CRs [, CRCRs - 1 \rightarrow CRd15141312111098711011000151413121110987110110001DCRs1110031292825242120161DCRs1101CRdCRsTMS34082 source register (alsospecified). Must be from RA regisCRdTMS34082 destination register.DECx subtracts one (of the appropriate typthe result in CRd. If CRd is not specified, fDEC CTDEC CT$						

DECx Decrement a TMS34082 RB Register

Syntax	Type Integer Double-Precision Single-Precision	Syntax DEC CRs [, CRd] DECD CRs [, CRd] DECF CRs [, CRd]							
Execution	$CRs - 1 \rightarrow CRd$								
'34020 Instruction Words	15 14 13 12 11 1 1 0 1 1 1 ID C C C C	10 9 8 7 0 0 0 0 0 Rs 1 1 1	6 5 4 3 2 1 0 0 0 0 1 1 type size 0 1 CRd CRd CRd CRd CRd						
Instruction to '34082	31 29 28 25 24 ID CRs 1	21 20 16 1 0 1 CRd	15 0 0000 011t s000 0000						
Operands	CRs TMS34082 source register (also destination register if CRd is not specified). Must be from RB register file.								
	CRd TMS34082 des	stination register.							
Description			e) from the value in CRs and stores the result is stored in CRs.						
Instruction Type	CEXEC, short								
Example	DECF RB2, C								
	This example subtracts a single-precision one from the value in TMS34082 register RB2 and stores the result in the C register.								

Divide **DIVx**

Syntax	TypeSyntaxIntegerDIVS CRs_1 , CRs_2 , CRd Double-PrecisionDIVD CRs_1 , CRs_2 , CRd Single-PrecisionDIVF CRs_1 , CRs_2 , CRd						
Execution	$\left(\frac{CRs_1}{CRs_2}\right) \rightarrow CRd$						
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 type size ID CRs1 CRs2 CRd CRd CRd CRd						
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs1 CRs2 CRd 0001 001t s000 0000						
Operands	CRs ₁ TMS34082 register containing the first operand. Must be in RA register file.						
	CRs ₂ TMS34082 register containing the second operand. Must be in RB register file.						
	CRd TMS34082 destination register						
Description	DIVx divides the contents of CRs ₁ by CRs ₂ and stores the result in CRd. For integer divides, the CT register is used for temporary storage. Any value stored in this register prior to DIVS will be corrupted.						
	C and CT may not be used as operands for the integer form of this instruction, DIVS.						
Instruction Type	CEXEC, short						

Syntax	Type S	Syntax							
-		DIVS Rs ₁ , Rs ₂ , CRs ₁ , CRs ₂ , CRd							
	Single-Precision [DIVF Rs_1 , Rs_2 , CRs_1 , CRs_2 , CRd							
Execution	$Rs_1 \rightarrow CRs_1$								
	$Rs_2 \rightarrow CRs_2$								
	100								
	$\left(\frac{CRs_1}{CRs_2}\right) \rightarrow CRd$								
	(ORS_2)								
'34020		<u>10 9 8 7 6 5 4 3 2 1 0</u>							
Instruction Words		1 1 0 0 1 0 R Rs ₁							
	0 1 0 1 0 ID CRs	0 1 type 0 0 0 R Rs2 s1 CRs2 CRd							
	.								
Instruction to '34082	31 29 28 25 24 ID CRs1 CRs	<u>21 20 16 15 0</u> s2 CRd 0101 001t 0000 0000							
Operands	Rs ₁ TMS34020 sourc	ce register for the first value to TMS34082							
	Rs ₂ TMS34020 sourc	ce register for the second value to TMS34082							
	CRs ₁ TMS34082 regist register file.	ster to contain the first operand. Must be in RA							
	CRs ₂ TMS34082 register to contain the second operand. Must be in RB register file.								
	CRd TMS34082 destir	ination register							
Description	DIVx loads the contents of Rs_1 and Rs_2 into CRs_1 and CRs_2 respectively, divides the contents of CRs_1 by CRs_2 , and stores the result in CRd. For integer divides, the CT register is used for temporary storage. Any value stored in this register prior to DIVS will be corrupted.								
	The double-precision form	m of this instruction is not supported.							
Instruction Type	CMOVGC, two registers								
Example	DIVF A5, A6, RA5, H	RB6, RA7							
		34020 registers A5 and A6 into TMS34082 registers ly, divides the contents of RA5 by RB6, and stores the							

Load from Memory (Postincrement) and Divide DIVx

Syntax Execution	Type Integer Double-Precision Single-Precision +Rs → CRs ₁ Rs + 32 → Rs Rs + 32 → Rs +Rs → CRs ₂ Rs + 32 → Rs +Rs → CRs ₂ Rs + 32 → Rs Rs + 32 → Rs Rs + 32 → Rs Rs + 32 → Rs Rs + 32 → Rs	Syntax DIVS *Rs+, CRs ₁ , CRs ₂ , C DIVD *Rs+, CRs ₁ , CRs ₂ , C DIVF *Rs+, CRs ₁ , CRs ₂ , C	Rd						
'34020 Instruction Words	15 14 13 12 11 0 0 0 0 0 1 0 0 1 0	10 9 8 7 6 5 1 1 0 1 0 0 0 1 t s 0 0	4 3 2 1 0 0 0 transfers transfers R Rs Rs Rs						
Instruction to '34082	ID CF 31 29 28 25 24 ID CRs1 CF	CRs2 21 20 16 15 Rs2 CRd 1001	CRd 0 001t s000 0000						
Operands	 Rs TMS34020 register containing the memory address CRs₁ TMS34082 register to contain the first operand. Must be in RA register file. CRs₂ TMS34082 register to contain the second operand. Must be in RB register file. 								
Description	CRd TMS34082 destination register DIVx loads the contents of memory pointed to by Rs into CRs ₁ and CRs ₂ , divides the contents of CRs ₁ by CRs ₂ , and stores the result in CRd. After each load from memory, Rs is incremented by 32. For integer divides, the CT register is used for temporary storage. Any value stored in this register prior to DIVS will be corrupted.								
Instruction Type Example	TMS34020 register A5		A5 and RB6, divides the						

DIVx Load from Memory (Predecrement) and Divide

Syntax	Туре	Svntax					
- Cymax	Integer Double-Precision	DIVS $- *Rs, CRs_1, Cl DIVD - *Rs, CRs_1, Cl$					
	Single-Precision	DIVF $-*Rs$, CRs_1 , C					
Execution	$Rs - 32 \rightarrow Rs$ +Rs → CRs ₁ Rs - 32 → Rs +Rs - 32 → Rs +Rs → CRs ₂ Rs Rs - 6Rs (CRs ₁ (CRs ₁) → CRd						
'34020	<u>15 14 13 12 11</u>	10 9 8 7 6	······································				
Instruction Words	0 0 0 0 1 1 0 0 1 0	0 0 0 0 0 0 1 type size 0					
	- And the second s	Rs ₁ CRs ₂	CRd				
Instruction to '34082	31 29 28 25 24	21 20 16 15	0				
	ID CRs ₁ C	Rs ₂ CRd 10	01 001t s000 0000				
Operands	Rs TMS34020 reg	ister containing the me	mory address				
	CRs ₁ TMS34082 reg file.	ister to contain the first o	operand. Must be in RA register				
	CRs ₂ TMS34082 reg register file.	ister to contain the sec	ond operand. Must be in RB				
	CRd TMS34082 des	stination register					
Description	DIVx loads the contents of memory pointed to by Rs into CRs_1 and CRs_2 , divides the contents of CRs_1 by CRs_2 , and stores the result in CRd. Before each load from memory, Rs is decremented by 32. For integer divides, the CT register is used for temporary storage. Any value stored in this register prior to DIVS will be corrupted.						
Instruction Type	CMOVMC, predecreme	ent					
Example	DIVF -*A5, RA5, R	B6, RA7					
	starting at the addres	s given in TMS3402 A5 and RB6, divides the	ting-point contents of memory 0 register A5 minus 32 into e single-precision floating-point t in RA7.				

Syntax	GETCST															
Execution	TMS34082 Status Register \rightarrow ST register of TMS34020															
'34020		14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0
	0	1	0	0	1	1	1	0	0	0	0	0	0	0	0	1
		ID		0	0	0	0	0	0	0	0	0	1	1	0	0
Instruction to '34082	31	29														0
	ID	0	0 0	00	0.0	00	0 0	00	0 1	00	11	10	0 0	00	00	00
Description	GETCST loads 4 MSBs of the TMS34082 status register (STATUS) into the TMS34020 status register (ST).															
Instruction Type	CMC	ovce	3													
Example	GET	CST														
	This example sends the TMS34082 status register to the TMS34020. The TMS34020 takes the value and masks off the 4 MSBs; it then stuffs the values															

in the TMS34020 status register corresponding to the N, C, Z, V bits.

7-93

INCx Increment a TMS34082 RA Register

Syntax	Type Integer Double-Precision Single-Precision	Syntax INC CRs [, CRd] INCD CRs [, CRd] INCF CRs [, CRd]	-			
Execution	1 + CRs \rightarrow CRd					
'34020 Instruction Words	15 14 13 12 11 1 1 0 1 1 ID C C	10 9 8 7 0 0 0 0 Rs 1 1	6 5 0 0 0 1	4 3 0 0	2 1 0 type CRd	0 size
Instruction to '34082	31 29 28 25 24 ID CRs 1	21 20 16 101 CRd	15 0000	0 0 0 t	s000 0	000
Operands	specified.)	rce register. (Also c stination register.	destinatio	n registe	r if CRd is	not
Description	INCx adds one (of the stores the result in CR					
Instruction Type	CEXEC, short					
Example	INC RA0 This example adds an i stores the result in RA	-	lue in TM	S34082 r	egister RA	0 and

.....

Syntax	Type Integer Double-Precision Single-Precision	Syntax INC CRs [, CRd] INCD CRs [, CRd] INCF CRs [, CRd]										
Execution	1 + CRs \rightarrow CRd											
'34020 Instruction Words	15 14 13 12 11 1 1 0 1 1 ID Ci Ci	10 9 8 7 0 0 0 0 0 Rs 1 1 1	6 5 0 0 0 1	4 3 0 0	2 1 0 type CRd	0 size						
Instruction to '34082	31 29 28 25 24 ID CRs 1	21 20 16 0 1 CRd	15 0 0 0 0	0 0 0 t	s000 (0000						
Operands	specified.)	rce register. (Also c	lestinatio	n registe	r if CRd is	not						
		· ·										
Description	INCx adds one (of the a stores the result in CRa											
Instruction Type	CEXEC, short											
Example	INCD RB1, RA7											
	This example adds a do RB1 and stores the res	-	to the va	lue in TM	S34082 re	egister						

INMNMX Min/Max Setup

Syntax	INM	ΝМХ														
'34020	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	1	1	0	1	1	0	0	0	0	1	0	0	1	1	0	0
		ID		0	0	0	0	0	0	0	0	0	0	0	0	0
Instruction to '34082	31	29	0.0	00	0.0	00	0.0	0.0	0.0	10	0 1	10	0.0	00	0.0	0
Description	MNN	ΛX1	or M	NMX	2 ins	struct	ion.	The	-	wing	•					er the ernal
Algorithm	RB1 RB2 RB3 COU	= M = M = M = M JNTX JNTY nt = (N AX N (= 0 ' = 0	; s ; s ; s ; b ; b	et to et to et to its 1 its 1	nega posit nega 5-0 fc 5-0 fc	ative live in ative or X r or Y r	infinity nfinity infinit ninim ninim	ty (us / (us ty (us nums nums	sed to ed to sed to , bits , bits	o sto stor o sto 31- 31-	re ma e mir re ma 16 foi 16 foi	axim nimul axim r X m r Y m	m X v um X m Y v um Y naxim naxim oOPC	valu value valu valu ums ums	es) s) es)
Instruction Type	CEX	ίεc,	shor	:												

Inverse INVx

Syntax	Integer I Double-Precision I			INV	CRs D CF	, CR Rs, C Rs, C	Rd								
Execution	$\frac{1}{CRs} \rightarrow$	CRd													
'34020	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words		0	1		0	0	0	0	0	1	0	1	0	type	size
	ID		0	0	0	0			Rs		I		CRd		
Instruction to '34082	31 29	28	25	24	21 Rs	20	CRd	16	15		0101		000		0
Operands	CRs	TMS3 RB re	34082	2 sou	rce re	I		ntain							
	CRd	TMS3	84082	2 des	tinati	on re	giste	r							
Description	This ins instructi to INV w	ons, C	CT is	used	as a		-								•
	C and C INV.	T may	/ not	be us	ed a	s ope	erand	ls for	the i	nteg	er for	m if t	his ir	nstruc	ction,
Instruction Type	CEXEC	shor	t												
Example	INV RB	9, R	A7												
	This exa	mple	divid	les 1	by th	e coi	ntent	s of	RB9	ands	store	s the	resu	lt in l	RA7.

INVx Load and Inverse

Syntax Execution	$\frac{Type}{Integer}$ Integer Double-Pre Single-Pre Rs ₁ → CR $\frac{1}{CRs} \rightarrow C$	ecision Is		INV	Rs ₁ , D Rs	CRs 1, Rs 51, C	5 ₂ , Cl	R s, C	Rd	_				
'34020 Instruction Words	Integer or S 15 14	ingle-Prec 13 12 0 0	ision: 11 0	10	9 1	8	7	6	5	4 R	3	2 Rs	1	0
	0 1	0 1	0	1	0	type	0	0	0	0	0	0	0	0
	ID	0	0	0	0		CF	7s				CRd		
	Double-Pred 15 14	<i>cision:</i> 13 12	11	10	9	8	7	6	5	4	3	2	1	0
	0 0	0 0	0	1	1	0	0	1	0	R		Rs		Ĺ
	0 1 ID	0 1	0	1	0	1	1 Cl	0	0	R		Rs CRd	2	
		0			L	I			<u>.</u>					
Instruction to '34082	31 29 ID	28 25 0000	24 C	<u>21</u> Rs	20 Cl	<u>16</u> Rd	15 01	01	01	Ot	s 0	00	000	0
Operands		VIS34020 Duble-pre			-			-	•	erand	(or h	alfof	the 6	4-bit
		MS34020 puble-pre					conta	ining	the	rem	ainir	ng ha	lf of	the
	CRs TN file	MS34082 e.	2 regi	ster t	o cor	ntain	the o	perai	nd. N	lustb	e in t	the RI	3 reg	ister
	CRd TM	MS34082	2 des	tinati	on re	egiste	er							
Description	This instru into CRs, c CT is used will be con	divides 1 l as a terr	by Cl	Rs, a	nd pl	aces	the r	esult	in CF	Rd. F	or int	teger	inver	ses,
Instruction Type	CMOVGC	, one or	two r	egist	ers									
Example	INV A2,	RB8, F	RB2											
	This exam 1 by RB8,								regis	ter A	2 inte	o RB8	3, div	ides

Syntax Execution	TypeIntegerDouble-PSingle-Pr $*Rs \rightarrow Cl$ $Rs + 32 - 32$ $Rs + 32 - 32$	ecisior Rs → Rs			INV	≁Rs- D ∗R	s+, C	Rs, Cl CRs, (CRs, (CRd	_					
	$\frac{1}{CRs} \rightarrow 0$	CRd													
'34020 Instruction Words	15 14 0 0	13 0	12 0	11 0	10 1	9 1	8	7	6 0	5 0	4	3 0	2	J	0 sfers
	1 0 ID	0	1	0	1	0	type	size CF	0 Rs	0	R		F CRd	ls	
Instruction to '34082	31 29 ID	28 000	25 0	24 Cl	21 Rs	20 C	16 Rd	15 10	01	0 1	0 t	s 0	0 0	0 0	000
Operands	CRs T r	MS34 MS34 egister	082 [·] file	regi	ster	to co	ntain	the c		•			1 the	RB	
Description	This instr divides 1 Rs is inc storage r	by CR remen	s, ai ted	nd p by 3	laces 32. Fo	the or int	resul teger	t in C inve	Rd. A rses,	After CT	each is us	load ed a	fron	n mei temp	nory,
Instruction Type	CMOVM	C, post	tincr	reme	ent, c	onsta	ant co	ount							
Example	INVD *7	2+, 1	RB8	, R	B1										
	This exa address (1 by RB8	given b	y TN	NS3	4020	regi	ster A	2 into							

Syntax	Type Integer Double-Precision Single-Precision	Syntax INV – ∗Rs, Cl INVD – ∗Rs, (INVF – ∗Rs, (CRs, CRd		
Execution	Rs – 32 → Rs •Rs → CRs Rs 32 → Rs Rs CRs $\frac{1}{CRs}$ → CRd				
'34020	15 14 13 12 11	1 10 9 8	7 6 5	4 3	2 1 0
Instruction Words	0 0 0 1		0 0 1	0 0	0 transfers
			size 0 0	R	Rs CRd
			CRs	I	Ска
Instruction to '34082	31 29 28 25 24		15	Ot s0	0
	ID 0000	CRs CRd	1001 01		00 0000
Operands	Rs TMS34020 re	egister containing	g the memory a	address	
	register file.	egister to contain		Must be f	rom the RB
B	This issue that has been		(
Description	This instruction loads divides 1 by CRs, and Rs is decremented by storage register. Any	places the result y 32. For integer	in CRd. Before r inverses, CT	each loa is used a	d from memory, as a temporary
Instruction Type	CMOVMC, predecrem	nent, constant co	ount		
Example	INVF -*A2, RB8,	RB1			
	This example loads th given by TMS34020 re 1 by RB8, and stores	egister A2 minus 3	32 into TMS340		

Syntax	JUMPC n															
Execution	Exec	cute	exter	nal	TMS	3408	2 inst	ructi	ons fo	und	at ac	dres	ss 2 >	(n		
'34020	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
	1	1	<u> </u>		n			0	0	0	0	0	0	0	0	0
		ID		0	0	0	0	0	0	0	0	0	0	0	0	0
Instruction to '34082	31	29	28	25	24	21	20	16	15 14	13		9	8	4	3	0
	10	ID 0000 0000 0000 11 n 00000 0000														
Operands Description	TMS TMS															
Instruction Type	CEX	EC,	long													
Example	JUM	IPC 4	1													
		JUMPC 4 This example executes TMS34082 instructions stored in the TMS34082's local memory on the MSD bus. Instruction execution begins at address 8.														

LINTXX Linear Interpolation of X

Syntax '34020 Instruction Words	Type Integer Double-P Single-Pr 15 14 1 1 ID	11 1 0	Syn LIN ⁻ LIN ⁻ 10 0	TX TXD	8 0 0	7 0	6 1 0	5 0 0	4	3 0 0	2 0	1 type 0	0 size 0		
Instruction to '34082	31 29 ID 0	0 0	00	0 0	00	0 0	00	00	10	10	0 t	s 0	0 0	0 0	000
Description	Perform linear interpolation perpendicular to one of the NOTE: If the Z1 and Z2 va a 2-D linear interpolation. RA0 = X1 RB					oord	inate	axe	s).	·	·	•			
Implied Operands	RA0 = X1 RA1 = Y1 RA2 = Z1 RB9 = X3	B0 = B1 = B2 =	Y2												
Algoríthm	RA3 = RI RB6 = RI RB7 = RI RB8 = RI C = RA3/ RB6 = C RB7 = C RB7 = C RB8 = C RA0 = RI RA1 = RI RA2 = RI	30 – 31 – 32 – RB6 × RB × RB × RB 36 + 37 +	RA0 RA1 RA2 6 7 8 8 RA0 RA1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	t × (t × (t × (X3 = Y3 =	- X1 - Y1 X3 - X2 - Y2 - Z2 - = X1 = Y1	X1) Y1) Z1) + (t> + (t>	< (X2 – < (X2 < (Y2 < (Z2	— X1 — Y1))))			
Temporary Storage	C, RA3, I	RB8-1	RB6												
Outputs	RA0 = X3 RA1 = Y3 RA2 = Z3			;	intei	rpola	ted v	alues	6						
Instruction Type	CEXEC,	short	:												

Syntax	Type Integer Double-P Single-Pr				Syn Lin Lin Lin	ΓY ΓYD									
'34020 Instruction Words	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1 1 ID	0	1	1	0	0	0	0	1	0	1	0	0	type 0	size 1
			U	0	0		0			<u> </u>	0			<u> </u>	
Instruction to '34082	31 29 ID 0	0 0	00	0 0	00	0 0	01	0 0	10	10	0 t	s 0	00	0 0	000
Description	Perform li perpendic	ular	to or	e of	the c	oord	inate	axe	s).			-			
	NOTE: If a 2-D line					es are	e igni	orea,	, this	wiii p	enor	mm	e eq	uivaie	ent of
Implied Operands	RA0 = X1 RA1 = Y1 RA2 = Z1 RB9 = Y3	RI	30 = 31 = 32 =	Y2											
Algorithm	RA3 = RE RB6 = RE RB7 = RE RB8 = RE C = RA3/ RB6 = C RB7 = C RB8 = C RA0 = RE RA1 = RE RA2 = RE			; $Y3 - Y1$; $X2 - X1$; $Y2 - Y1$; $Z2 - Z1$; $t = (Y3 - Y1) / (Y2 - Y1)$; $t \times (X2 - X1)$; $t \times (Y2 - Y1)$; $t \times (Z2 - Z1)$; $X3 = X1 + (t \times (X2 - X1))$; $Y3 = Y1 + (t \times (Y2 - Y1))$; $Z3 = Z1 + (t \times (Z2 - Z1))$											
Temporary Storage	C, RA3, F	RB8-F	RB6												
Outputs	RA0 = X3 RA1 = Y3 RA2 = Z3			;	inter	pola	ted v	alues	\$						
Instruction Type	CEXEC,	short													

LINTZX Linear Interpolation of Z

.....

Syntax	TypeSyntaxIntegerLINTZDouble-PrecisionLINTZDSingle-PrecisionLINTZF
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 1 0
Instruction to '34082	31 29 0 ID 0 0000 0010 100t \$0000 0000
Description	Perform linear interpolation given two points and a plane (the plane is assumed perpendicular to one of the coordinate axes).
Implied Operands	RA0 = X1RB0 = X2RA1 = Y1RB1 = Y2RA2 = Z1RB2 = Z2RB9 = Z3
Algorithm	RA3 = RB9 - RA2; $Z3 - Z1$ RB6 = RB0 - RA0; $X2 - X1$ RB7 = RB1 - RA1; $Y2 - Y1$ RB8 = RB2 - RA2; $Z2 - Z1$ C = RA3/RB8; t = ($Z3 - Z1$) / ($Z2 - Z1$)RB6 = C × RB6; t × ($X2 - X1$)RB7 = C × RB7; t × ($Y2 - Y1$)RB8 = C × RB8; t × ($Z2 - Z1$)RB8 = C × RB8; t × ($Z2 - Z1$)RA0 = RB6 + RA0; $X3 = X1 + (t × (X2 - X1))RA1 = RB8 + RA1; Y3 = Y1 + (t × Y2 - Y1)RA2 = RB8 + RA2; Z3 = Z1 + (t × (Z2 - Z1))$
Temporary Storage	C, RA3, RB8-RB6
Outputs	RA0 = X3 ; interpolated values RA1 = Y3 RA2 = Z3
Instruction Type	CEXEC, short

Syntax	Type Syntax									
- j	Integer MAC CRs ₁ , CRs ₂									
	Double-Precision MACD CRs ₁ , CRs ₂									
	Single-Precision MACF CRs ₁ , CRs ₂									
Execution	$C + (CRs_1 \times CRs_2) \rightarrow C$									
'34020	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
Instruction Words	1 1 0 1 1 0 0 0 0 1 1 1 1 1 type size									
	ID CRs ₁ 0 0 0 1 1 CRs ₂									
Instruction to '34082	31 29 28 25 24 20 19 16 15 0									
	ID CRs ₁ 00011 CRs ₂ 0011 111t s000 0000									
Operands	CRs ₁ TMS34082 register containing an A _n operand. Must be in the RA register file.									
	CRs ₂ TMS34082 register containing a B _n operand. Must be in the RB register file.									
Implied Operands	C Register Previously accumulated sum									
Description	MACx is used to perform multiply and accumulate operations of the form:									
	$((A_0 \times B_0) + (A_1 \times _1) + (A_2 \times B_2) + (A_n \times B_n)).$									
	The MACx instruction performs one multiply and adds the result to the previously accumulated sum.									
Outputs	The new accumulated sum is stored in the C Register. The next multiply/accumulate may now be performed.									
Instruction Type	CEXEC, short									
Example	CLRD C MACD RA0, RB0 MACD RA1, RB1 MACD RA2, RB2									
	This example performs a sum of three products. First, the C register is set to zero. Then, the double-precision contents of RA0 and RB0 are multiplied. The next instruction multiplies RA1 by RB1 and adds this product to the previous									

next instruction multiplies RA1 by RB1 and adds this product to the previous result, storing the sum in the C register. The next instruction multiplies RA2 by RB2 and adds the product to the value in C. The sum of products is stored in C.

Syntax	Type Syntax
	Integer MAC Rs ₁ , Rs ₂ , CRs ₁ , CRs ₂
	Single-Precision MACF Rs_1 , Rs_2 , CRs_1 , CRs_2
Execution	$Rs_1 \rightarrow CRs_1$
	$Rs_2 \rightarrow CRs_2$
	$C + (CRs_1 \times CRs_2) \rightarrow C$
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 1 1 1 0 0 1 0 R Rs1
	0 1 1 1 1 1 1 type 0 0 0 R Rs2
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Instruction to '34082	31 29 28 25 24 20 19 16 15 0
	ID CRs ₁ 00011 CRs ₂ 0111 111t 0000 0000
Operands	Rs ₁ TMS34020 source register for the first (An) value to TMS34082
	Rs ₂ TMS34020 source register for the second (Bn) value to TMS34082
	CRs ₁ TMS34082 register to contain the A_n operand. Must be in the RA
	CRs ₁ TMS34082 register to contain the A _n operand. Must be in the RA register file.
	CRs ₂ TMS34082 register to contain the B _n operand. Must be in the RB register file.
Implied Operands	C Register Previously accumulated sum
Description	MACx is used to perform multiply and accumulate operations of the form:
	$((A_0 \times B_0) + (A_1 \times B_1) + (A_2 \times B_2) + (A_n \times B_n)).$
	This instruction loads two operands from Rs_1 and Rs_2 into CRs_1 and CRs_2 respectively, performs one multiply, and adds the result to the previously accumulated sum.
	The double-precision form of this instruction is not supported.
Outputs	The new accumulated sum is stored in the C Register. The next multiply/accumulate may now be performed.
Instruction Type	CMOVGC, two registers
Example	MAC A1, A2, RA1, RB1
	This instruction loads the integer contents of A1 and A2 into RA1 and RB1, respectively, and multiples the contents of RA1 by RB1. The product is added to the value stored in the C register and the result is stored back in C.

Syntax	Type Syntax														
	Integer						s+, C								
	Single-P	ecisi	on		MA	UF */	Rs+,	CHS	1, Ur	152 [,	cour	Щ			
Execution	Repeat c			s:											
	•Rs →														
	Rs + 3														
	+Rs →	-		- \											
	C + (C	ns ₁ >	KUR	s ₂)	÷U										
'34020 Instruction Words	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	0 0	0	0	0	1	1	0	1	0	0		tra	ansfers		
	1 0	1	1			1	type	0	0	0	R		Re		
	ID			CF	₹s ₁		0	0	0	1	1	CRs ₂]
Instruction to '34082	31 29	28	25	24		20	19	16	15						0
	ID	CR	s ₁	0 (0011		CRs	2	101	1	1111	t 0 (000	00	00
Operands	Rs TMS34020 register containing the memory address														
Operanus	Rs TMS34020 register containing the memory address														
	CRs ₁ TMS34082 register to contain the A _n operand. Must be in the RA														Α
	register file.														
	CRs ₂ TMS34082 register to contain the B _n operand. Must be in the RB														
		egist							-11 -1						_
	aquint N	l. mah		+:	a tha			n in	<u> </u>	utod		at ha	hotu		1 1 6
							truction froft						Detw	een	1-10
				•							000				
implied Operands	C Registe	er		P	revio	usly	accui	mula	ted s	um					
Description	MACx is	used	to p	erfori	n mu	Itiply	and	accu	umula	ate oj	oerat	ions d	of the	forn	n:
							_			_					
	((A ₀ ×	: B ₀)	+ (A ₁	× 1)) + (A	$A_2 \times E$	3 ₂) +	(A	n × E	3 _n)).				
	This instr	uctio	nloa	ds tw	0 006	erand	ds froi	m me	emor	/ star	tina a	atthe	addre	ess o	liven
	by TMS3				-				-		-			-	
	one mult							•							
	sequence incremer		•		cour	nt tim	ies. /	Atter	eac	h loa	ad tro	om m	nemo	ry, F	is is
	Incremen		Jy 02	•											
	The dout	ole-pr	recisi	on fo	rm o	f this	instr	uctic	on is r	not si	uppo	rted.			
Outputs	The new	v ac	cum	ulate	d sı	ım i	is ste	ored	in	the	C r	egiste	ər. T	he	next
	multiply/a	accur	nulat	e ma	y nov	w be	perfo	orme	d.			-			
Instruction Type	CMOVM	C. no	etino	roma	ant o	onet	antic	trunt							
папасноп туре		0, pu	Sunc	GINE	лц, С	01136		Junt							

Example

CLRF C MACF *A1+, RA9, RB9, 6

This example performs a sum of six products. First, the TMS34082 C register is set to zero. Then, the single-precision contents of memory starting at TMS34020 register A1 is loaded into TMS34082 registers RA9 and RB9. The contents of RA9 and RB9 are multiplied, the result is added to the C register, and the sum is stored in C. This process is repeated 5 more times. The end result is stored in C.

Syntax	Type Syntax												
	Integer		MAC -										
	Single-Precisio	on	MACF -	- <i>∗Rs,</i> (CRs	1, Cl	Rs ₂ [, cou	nt]				
Execution	m Rs - 32 ightarrow m Fs $ m *Rs ightarrow m CRs_1$ m Rs - 32 ightarrow m Fs $ m *Rs ightarrow m CRs_2$	Repeat <i>count</i> times: Rs - 32 \rightarrow Rs *Rs \rightarrow CRs ₁ Rs - 32 \rightarrow Rs *Rs \rightarrow CRs ₂ C + (CRs ₁ \times CRs ₂) \rightarrow C 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
'34020	15 14 13	12 11	10 9	8	7	6	5	4	32	1 0			
Instruction Words	0 0 0	0 1	0 0	0	0	0	1	Γ	transfere	5			
	1 0 1	1 1	1 1	type	0	0	0	R	R	;			
	ID	CI	Rs ₁	0	0	0	1	1	CR	\$2			
Instruction to '34082	31 29 28	25 24	20	19	16	15				0			
	ID CRs		0011	CRs ₂		101	1	111t	0000	0000			
Operands	CRs ₁ TMS3 register CRs ₂ TMS3 register count Number	4082 reg er file. 4082 reg er file. er of time	ister to co	ontain t ontain t	the / the f	A _n op 3 _n op exec	berar berar uted	nd. M nd. M ; mus	ust be in th ust be in th st be betwo	ne RB			
Implied Operands	C Register	Р	reviously	accum	nulat	ted si	um						
Description	MACx is used	to perfor	m multiply	and a	accu	imula	ite oj	perati	ions of the	form:			
	((A ₀ \times	B ₀) + (A ₁	_I × B ₁) + ($A_2 \times E$	3 ₂) +	· (/	A _n ×	B _n)).					
	This instruction by TMS34020 respectively, p accumulated s from memory, The double-pre	register F performs sum. This Rs is dec	ts (minus) one multi sequence cremented	32) inte iply, a e is re d by 32	o TN nd a peat 2.	1S34 adds ced c	082 r the ount	regist resul times	ers CRs ₁ a t to the p s. Before e	nd CRs ₂ reviously			
Outputs	The new acc multiply/accum	cumulate	d sum i	is sto	ored	in		••		he next			
Instruction Type	CMOVMC, pre		-	•									

MADDx Matrix Add to Vector

.

Syntax	Type Integer Double-Precision Single-Precision					Syn MAI MAI MAI	DD DDD									
'34020 Instruction Words	1		0	12 1 0	11 1 0	10 0 0	9 0 0	8 0 1	7 0 0	6 1 0	5 1 0	4 1 0	3 1 0	2 1 0	1 type 0	0 size 0
Instruction to '34082	31 ID	29 0	000	1	0 0	00	0 0	00	0 0	11	11	1 t	s 0	00	0 0	000
Description	This in and M the fou	MPY	2) to	exp	edite	e the	mult	iplica	tion	ofa3						
Implied Operands	A 4 × 4 RA0 = RA4 = RA8 = RB2 =	R R R	egiste A1 = A5 = A9 = B3 =	B01 B11 B21		R R	A6 = B0 =	B02 B12 B22 B32		R. R	A7 = B1 =	B03 B13 B23 B33				
	The accumulated sums from MMPY0, MMPY1, and MMPY2 RB6 = $(A00 \times B00) + (A01 \times B10) + (A02 \times B20)$ RB7 = $(A00 \times B01) + (A01 \times B11) + (A02 \times B21)$ RB8 = $(A00 \times B02) + (A01 \times B12) + (A02 \times B22)$ RB9 = $(A00 \times B03) + (A01 \times B13) + (A02 \times B23)$															
Algorithm	RB6 = RB7 = RB8 = RB9 =	= RB7 = RB8	' + R + R	B3 B4												
Temporary Storage	СТ															
Outputs	The re RB6 = RB7 = RB8 = RB9 =	= (A00 = (A00 = (A00) × B) × B) × B	800) 801) 802)	+ (A + (A + (A	01 × 01 × 01 ×	B10 B11 B12) + (A) + (A) + (A	402 > 402 > 402 >	< B20 < B21 < B22) + B 2) + B	31 332				
Instruction Type	CEXE	C, sh	ort													

Multiply Matrix by Vector Element 0 MMPY0x

Syntax	Type Integer Double-Pre Single-Prec		MM	tax PY0 PY0[PY0F												
'34020 Instruction Words		3 12 0 1 0	11 1 0	10 0 0	9 0 0	8 0 0	7 0	6 1 0	5 1 0	4	3 1 0	2 1 0	1 type 0	0 size 0		
Instruction to '34082	31 29 ID 0	1 0	00	0 0	0 0	0 0	11	11	1 t	s O	0 0	0.0				
Description	This instruct may be com several size matrix multi	nbined v es.1 × 4	with N by 4	ИМР` ×4,	Y1, N 4 × 4	/MP` by 4	Y2,a ↓×4,	nd M	MPY	'3 to	multi	ply n	natric	es of		
Implied Operands	A 4×4 matrix in the FPU regisRA0 = B00RA1 = BRA4 = B10RA5 = BRA8 = B20RA9 = BRB2 = B30RB3 = B					01 RA2 = B02 11 RA6 = B12 21 RB0 = B22 31 RB4 = B32						RA3 = B03 RA7 = B13 RB1 = B23 RB5 = B33				
Algorithm	The first ele RB6 = RB9 RB7 = RB9 RB8 = RB9 RB9 = RB9 CT= RB9	× RA0 × RA1 × RA2	4x0)	of a r	- - - - - - - - - - - - - - - - - - -	Ax0 Ax0 Ax0 Ax0 CT	× BC × BC × BC × BC is u)0)1)2)3)sed			•		03) \	value		
Temporary Storage	С															
Outputs	RB6 = Ax0 RB7 = Ax0 RB8 = Ax0 RB9 = CT =	× B01 × B02	B03													
Instruction Type	CEXEC, sh															
Example	See Examp	for a 3 \times 3 by 3 \times 3 matrix multiply.														

Syntax	TypeSyntaxIntegerMMPY1Double-PrecisionMMPY1DSingle-PrecisionMMPY1F
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 type size ID 0 0 0 0 1 0 1 0 0 0 0
Instruction to '34082	31 29 0 ID 0 00000 1010 0000 0011 111t \$000 0000
Description	This instruction multiplies the matrix B by an vector element, A1. This instruction may be combined with MMPY0, MMPY2, and MMPY3 to multiply matrices of several sizes. 1×4 by 4×4 , 4×4 by 4×4 , 1×3 by 3×3 , and 3×3 by 3×3 matrix multiplies may be implemented.
Implied Operands	A 4 × 4 matrix in the FPU registers: RA0 = B00 RA1 = B01 RA2 = B02 RA3 = B03 RA4 = B10 RA5 = B11 RA6 = B12 RA7 = B13 RA8 = B20 RA9 = B21 RB0 = B22 RB1 = B23 RB2 = B30 RB3 = B31 RB4 = B32 RB5 = B33 The initial products from MMPY0 for the resulting matrix row: RB6 = Ax0 × B00 RB7 = Ax0 × B01 RB8 = Ax0 × B02 CT = Ax0 × B03 The second element (Ax1) of a row vector: RB9 = Ax1
Algorithm	$RB6 = RB6 + (RB9 \times RA4)$; $(Ax0 \times B00) + (Ax1 \times B10)$ $RB7 = RB7 + (RB9 \times RA5)$; $(Ax0 \times B01) + (Ax1 \times B11)$ $RB8 = RB8 + (RB9 \times RA6)$; $(Ax0 \times B02) + (Ax1 \times B12)$ $RB9 = CT + (RB9 \times RA7)$; $(Ax0 \times B03) + (Ax1 \times B13)$ $CT = RB9$; CT is used to store the fourth value since; RB9 will be corrupted.
Temporary Storage	C
Inputs	$\begin{array}{l} RB6 = (Ax0 \times B00) + (Ax1 \times B10) \\ RB7 = (Ax0 \times B01) + (Ax1 \times B11) \\ RB8 = (Ax0 \times B02) + (Ax1 \times 12) \\ RB9 = CT = (Ax0 \times B03) + (Ax1 \times B13) \end{array}$
Instruction Type	CEXEC, short
Example	See Example 5–4 for code for a 3×3 by 3×3 matrix multiply.

Internal Instructions

Multiply Matrix by Vector Element 2 MMPY2x

Syntax	Type Syntax Integer MMPY2										
	IntegerIMMP12Double-PrecisionMMPY2DSingle-PrecisionMMPY2F										
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 type size										
	ID 0 0 0 0 1 1 0 0 0 0 0										
Instruction to '34082	31 29 0 ID 0 0000 1100 0000 0011 111t \$000 0000										
Description	This instruction multiplies the matrix B by a vector element, A2. This instruction may be combined with MMPY0, MMPY1, and MMPY3 to multiply matrices several sizes. 1×4 by 4×4 , 4×4 by 4×4 , 1×3 by 3×3 , and 3×3 by 3×3 matrix multiplies may be implemented.										
Implied Operands	A 4×4 matrix in the FPU registers:RA0 = B00RA1 = B01RA2 = B02RA3 = B03RA4 = B10RA5 = B11RA6 = B12RA7 = B13RA8 = B20RA9 = B21RB0 = B22RB1 = B23RB2 = B30RB3 = B31RB4 = B32RB5 = B33										
	The accumulated sums from MMPY0 and MMPY1 for the resulting matrix: $RB6 = (Ax0 \times B00) + (Ax1 \times B10)$ $RB7 = (Ax0 \times B01) + (Ax1 \times B11)$ $RB8 = (Ax0 \times B02) + (Ax1 \times B12)$ $CT = (Ax0 \times B03) + (Ax1 \times B13)$										
	The third element (Ax2) of a row vector: $RB9 = Ax2$										
Algorithm	$RB6 = RB6 + (C \times RA8)$; $(Ax0 \times B00 + Ax1 \times B10) + (Ax2 \times B20)$ $RB7 = RB7 + (C \times RA9)$; $(Ax0 \times B01 + Ax1 \times B11) + (Ax2 \times B21)$ $RB8 = RB8 + (C \times RB0)$; $(Ax0 \times B02 + Ax1 \times B12) + (Ax2 \times B22)$ $RB9 = CT + (C \times RB1)$; $(Ax0 \times B03 + Ax1 \times B13) + (Ax2 \times B23)$ $CT = RB9$; CT is used to store the fourth value since; RB9 will be corrupted.										
Temporary Storage	СТ										
Outputs	$\begin{array}{l} RB6 = (Ax0 \times B00) + (Ax1 \times B10) + (Ax2 \times B20) \\ RB7 = (Ax0 \times B01) + (Ax1 \times B11) + (Ax2 \times B21) \\ RB8 = (Ax0 \times B02) + (Ax1 \times B12) + (Ax2 \times B22) \\ RB9 = CT = (Ax0 \times B03) + (Ax1 \times B13) + (Ax2 \times B23) \end{array}$										
	Note that the result of this operation is the completed row for a 1×3 by 3×3 or 3×3 by 3×3 matrix multiply.										
Instruction Type	CEXEC, short										
Example	See Example 5–4 for code for a 3×3 by 3×3 matrix multiply.										

MMPY3x Multiply Matrix by Vector Element 3

Syntax		Syntax	č										
	Integer	MMPY	3										
	Double-Precision	MMPY											
	Single-Precision		MMPY3F					-	_				
'34020 Instruction Words	15 14 13 12 11 1 1 0 1 1 1		8	7	6	5	4	3	2	1 type	0 size		
		0 0			1	1	0	0	0	0	0		
Instruction to '34082	31 29			L				L	L	I			
		110 C	000	00	11	11	1 t	s 0	00	0 0	00		
Description	This instruction multipli	as the me	atrix R k	<u></u>	actor	olon	ant	<u>۸</u> 3 -	Thie i	netru	ction		
Description	may be combined with												
	several sizes. 1×4 by												
	matrix multiplies may t	e implen	nented	i.									
Implied Operands	A matrix in FPU registe					_			-				
		l = B01 5 = B11		RA2 RA6				RA3 RA7					
		∂ = B21		RB0				RB1					
		3 = B31		RB4	= B3	2		RB5	= B3	33			
	The accumulated sum matrix:	The accumulated sums from MMPY0, MMPY1 and MMPY2 for the resulting											
	$RB6 = (Ax0 \times B00) + (x)$ $RB7 = (Ax0 \times B01) + (x)$ $RB8 = (Ax0 \times B02) + (x)$ $CT = (Ax0 \times B03) + (x)$	Ax1 imes B1 Ax1 imes B1	1) + (A 2) + (A	$x2 \times x2 \times x2$	B21) B22)	I							
	The fourth element (A)	(3) of a r	ow vec	tor: F	89 =	Axa	3						
Algorithm	C = RB9 RB9 = CT RB6 = RB6 + (C × RB2			0 × B(0 + A	\x2 ×	: B20)		
			· ·	x3 ×									
	$RB7 = RB7 + (C \times RB3)$	3)		0 × B0 \x3 ×			× B1	1 + A	$x2 \times$: B21)		
	RB8 = RB8 + (C × RB4	1)	; (Ax	$0 \times B($ $0 \times 3 \times$	02 +	Ax1	× B1	2+4	\x2 ×	822)		
	RB9 = RB9 + (C × RB	5)	; (Ax	0 × B(\x3 ×	03 + .	Ax1	× B1	3 + A	\x2 ×	(B23)		
Temporary Storage	С												
Outputs	The output of this oper RB6 = Result x0 RB7 = Result x1 RB8 = Result x2 RB9 = Result x3	ation is t	he res	ult ma	atrix r	ΌW.							
Instruction Type	CEXEC, short												

Syntax	Туре											
-	Integer	MNMX1	CRs									
	Double-Precision	MNMX1										
	Single-Precision	MNMX1	CR	S								
'34020	15 14 13 12 11	10 9	8	7	6	5	4	3	2	1	0	
Instruction Words		0 0	0	Ó	1	1	1	1	1	type	size	
	ID C	Rs	0	0	1	0	0	0	0	0	0	
						L	l	L		I	L.,	
Instruction to '34082	31 29 28 25 24 ID CRs 00100 0000 0011 111t s000 (
	ID CRs 00	100 00	000	00) 1 1	1 .	11t	s 0	00	00	00	
Description	The 1-D Min/Max funct value and a current m minimum then the mini greater than the current data. For each current minimum or maximum v a minimum count or maresponsible for the mini The INMNMX instruction before the first MNMX1	aximum v mum is se maximum data teste values are aximum c mum or m on should	value et to then ed a upda ount axim be u	. If the contract the formation of the f	he c curre naxir iter is the c ster s is in t	urrer nt da num s incr surrer so the	nt da ta; if value reme nt cou at the espec	ta is the is se nted unter e cou ctive	less curre et to t and valu unt o cour	thar the cu whe e is p f the t reg	n the ata is rrent n the out in data ister.	
Operands	CRs TMS34082 reg mum. Must be					e to t	est fo	or mii	nimu	m/ma	axi-	
Implied Operands	RB0 = Current integer r RB1 = Current integer r COUNTX contains the o Bits 15-0 are th Bits 31-16 are t	naximum counts for le count va	alue f	for th	e cu	rrent	miniı	num		um va	alues	
Algorithm	If CRs < RB0 RB0 = CRs COUNTX bits 15-0 = 0 If CRs > RB1 RB1 = CRs COUNTX bits 31-16 = Count = Count + 1	Count ;	RB0 RB1									
Temporary Storage	None											
Outputs	RB0 = minimum of (CR RB1 = maximum of (CF COUNTX 15-0 is updat COUNTX 31-16 is updat	Rs and RB ed to the c	1) curre									
Instruction Type	CEXEC, short											

MNMX2x 2-D Minimum / Maximum

Syntax	Type Synta	
	•	X2 CRs ₁ , CRs ₂
	Double-Precision MNM)	X2D CRs ₁ , CRs ₂
	Single-Precision MNM)	X2F CRs ₁ , CRs ₂
'34020		9 8 7 6 5 4 3 2 1 0
Instruction Words	1 1 0 1 1 0	0 0 0 1 1 1 1 1 type size
	ID CRs ₁	0 0 1 1 0 CRs ₂
Instruction to '34082	31 29 28 25 24 2	0 19 16 15 0
	ID CRs1 00110	CRs2 1011 111t s000 0000
Description	current minimum value and a cu than the minimum then the min data is greater than the current current data. For each current of the minimum or maximum value in a minimum count or maximum responsible for the minimum of	npares two current data values (X and Y) to a urrent maximum value. If the current data is less nimum is set to the current data; if the current maximum then the maximum value is set to the data tested a counter is incremented and when es are updated, the current counter value is put um count register so that the count of the data or maximum is in the respective count register. ald be used to initialize the min/max registers stion.
Operands		containing the value to test for X flust be in RA register file.
		containing the value to test for Y fust be in RA register file.
Implied Operands	Bits 15-0 are the count Bits 31-16 are the count COUNTY contains the counts for Bits 15-0 are the count	for the current maximum and minimum values t value for the current X minimum nt value for the current X maximum or the current Y maximum and minimum values t value for the current Y minimum nt value for the current Y maximum

Algorithm	If $CRs_1 < RB0$ $RB0 = CRs_1$ COUNTX bits 15-0 = Count If $CRs_1 > RB1$ $RB1 = CRs_1$ COUNTX bits 31-16 = Count If $CRs_2 < RB2$ $RB2 = CRs_2$ COUNTY bits 15-0 = Count If $CRs_2 > RB3$ $RB3 = CRs_2$ COUNTY bits 31-16 = Count Count = Count + 1	; RB0 tracks current X minimum ; RB1 tracks current X maximum ; RB2 tracks current Y minimum ; RB3 tracks current Y maximum
Temporary Storage Outputs	COUNTX 31-16 is updated to t COUNTY 15-0 is updated to th	RB1) RB2) RB3) e current count if CRs ₁ is a X minimum. he current count if CRs ₁ is a X maximum. e current count if CRs ₂ is a Y minimum.
Instruction Type	COUNTY 31-16 is updated to t CEXEC, short	he current count if CRs ₂ is a Y maximum.

Syntax	Type Integer Single-Precision				Syntax MOVE Rs, CRd MOVF Rs, CRd											
Execution	Rs –	→ CR	d													
'34020		14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	0	0	0	0	0	1	1	0	0	0	1	R		R	- 	
	0		0	0	0	1	0	type 0	0	0	0	0	0	0 CRd	0	0
	L			0						1_0				Спа		
Instruction to '34082	31 29 28 ID 0000 0				2	1 20	CRd	16	15		1101		000		0	
							1	Сна		010		1101		000		000
Operands	Rs	T	MS3	4020) sou	rce r	egist	er for	^r the	32-bi	it val	lue to	TM	S340	82	
	CRd	Т	MS3	4082	2 des	tinati	on re	egiste	er to	hold 1	the 3	2-bit	valu	е		
Description	MOV	/x m	oves	the c	conte	nts o	f Rs	into (CRd.							
Instruction Type	СМС)VG(C, on	e reg	jister											
Example	MOVI	F A5	, R.	A7												
			•			-	•	ecisio ter R/		bating	j-poir	ntcon	tent	sofT	MS3	4020

Syntax	Type	Svnta	x									
- ,	Integer		VE Rs ₁ , Rs _{2, CRd}									
	Double-Precision	MOVI) Rs ₁ , F	RS2. CRd								
	Single-Precision	MOVI	⁻ Rs ₁ , R	RS2, CRd								
Execution												
	Integer or Single	-Precision		Doub	le-Pr	ecisi	ion:					
	$Rs_1 \rightarrow CRd$			Rs			(MSH or L	SH)				
	advance to nex	d TMS3408	2 registe				LSH or N					
	$Rs_2 \rightarrow CRd$											
'34020	15 14 13 12		9 8	7 6	5	4	3 2	1 0				
Instruction Words	0 0 0 0		1 0	0 1	0	R	Rs	1				
	0 1 0 0	╉───╁───╁╍) type	size O	0	R	Re	2				
	ID 0	0 0	0 0	0 0	0		CRd]				
Instruction to '34082	31 29 28	20		16 15				0				
	ID 0000	0000	CRd	010	0	110t	s000	0000				
Operands	Rs ₁ TMS34020) source reg	ster for t	the first va	alue (or ha	If of a dou	ole-preci-				
	•) to TMS340						h				
) source reg				ue (o	r the rema	ining half				
	of the doub	ble-precisio	i value)	to 1MS34	4082							
	CRd TMS34082	2 destination	reaiste	r that hole	ds th	e first	t value. Fo	or integer				
		-precision m										
	register in	the TMS340)82 regi	ster sequ	ence	list.						
Description	MOVx moves the c	contents of I	Rs1 and	Rs ₂ into	CRd	(and	CRd+1 fo	or integer				
	and single-precisio			_								
	For double-precision	on moves, t	ne TMS	34082 co	nfiau	ratior	n reaister	LOAD bit				
	determines whethe				-		-					
	If the LOAI	D bit = 1.	then t	he LSBs	are n	nove	d first					
				SBs of the								
	If the LOA	D bit = 0,	then t	he MSBs	are	move	d first					
		,					ISBs of the	fraction)				
	The LOAD bit defa	ult is 0.										
Instruction Type	CMOVGC, two reg	jisters										
Example	MOVE A5, A6, R	RA7										
		This instruction moves the integer contents of TMS34020 registers A5 and A into TMS34082 registers, RA7 and RA8, respectively.										

MOVx Move, One TMS34082 Register to One TMS34020 Register

Syntax	Integ	Type Integer Single-Precision						CRs, CRs,								
Execution	CRs	$\rightarrow R$	d													
'34020	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
Instruction Words	0	0	0	0	0	1	1	0	0	1	1	R		R	· · · · · ·	
	0	1	0	0	1	1	1	type	0	0	0	0	0	0	0	0
	L	ID		0	0	0	0	0	0	0	0	I		CRs]
Instruction to '34082	31	29	28			2	1 20		16	15						0
	1		000	0 0	0 0	00		CRs		010	0	111	t 0	000	0 0	000
Operands	CRs	Т	'MS3	4082	2 sou	rce r	egist	er ho	Iding	the	32-bi	it valı	he			
	Rd	Т	MS3	4020) des	tinati	on re	egiste	er							
Description	MO Rd.	/x mo	oves	32-bi	tvalı	ie fro	mΤΝ	/ IS34	0821	regist	ter Cl	Rs to	TMS	3402	0 reç	gister
Instruction Type	CMC	OVC	G, on	e reg	jister											
Example	MOV	E RA	7, 1	A5												
		exa 33402	-				ntege	er col	ntent	ts of	TMS	\$3408	32 re	egiste	er RA	A7 to

......

Syntax	MOVD	CRs, I	Rd ₁ ,	Rd₂											
Execution		CRs (MSH or LSH) $\rightarrow \text{Rd}_1$ CRs (LSH or MSH) $\rightarrow \text{Rd}_2$													
'34020 Instruction Words	15 14 0 0 0 1 ID	13 0 0	12 0 0	11 0 1 0	10 1 1	9 1 1 0	8 0 1	7 0 1	6 1 0	5 1 0	4 R R	3	2 Rd Rd	······	0
Instruction to '34082	31 29	28 0 0 0		L		0 19	CRd		15 010	· · · · ·	1111	1	000	0 0	0
Operands						-		-					4020 cisior	val	10
	Rd ₂		4020) des	tinati	on re	-					•	of the		76
Description	MOVD m registers				it va	ue fi	rom T	MS	3408;	2 reg	ister	CRs	to TN	NS34	4020
	The TMS or the MS						ster l	-OAI	D bit d	deter	mine	s whe	ether	the L	SBs
	ľ	the I	LOAI	D bit	= 1,				SBs of the				t		
	ŀ	the I	LOAI) bit	= 0,				/ISBs onen				st of the	frac	tion)
	The LOA	D bit	defa	ult is	0.										
Instruction Type	CMOVC	G, two	o reg	isters	5										
Example	MOVD RA	7,2	A5,	A6											
	This example moves the double-precision floating-point contents TMS34082 register RA7 to TMS34020 registers A5 and A6. The order (MS or LSBs in A5) depends on the value of the LOAD bit in the configurat register.								SBs						

Syntax	Type				Svn	tax										
	Integer						Rs+,	CR	d, Rd	1						
	Double		sion		MO	VD -	Rs+,	CR	d, Ra	1						
	Single-	Precis	ion		MO	VF +/	Rs+,	CRc	l, Rd							
Execution																
		er or S	ingle	-Pre	cisio	n:			If Rd = 1 \rightarrow 31							
		d = 0 beat 32) time	8							$1 \rightarrow 3$: <i>Rd</i> tin					
		Rs →								•	$\rightarrow CR($					
		Rs + 3									+ 32					
	8	advanc			rmsa	3408	2				ince to		TMS	3408	32	
		re	giste	r							reę	gister				
	Doub	le-Pre														
		d = 0	12101	1.					If F	3d =	1 → 3	1				
		beat 16		S							Rd/2		i			
		$ls \rightarrow C$								•	$\rightarrow CR$					
		ls + 32 ls → C		Rđ						Rs -	+ 32	→ CRc	Ł			
		$s \rightarrow 0$ s + 32		Bd							$\rightarrow CR($					
		Ivance		-	MS34	082					+ 32		-	0400	00	
		reg	ister							aova	nce to rec	gister		3400	32	
								1			105	310101				
'34020	15 1	4 13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Instruction Words	0 0) 0	0	0	1	1	0	1	1	1	R		Rd	·		
	1 () 0	0	1	1	0	type	size	0	0	R		Rs			
	<u> </u>	D	0	0	0	0	0	0	0	0		C	CRd			
		~ ~ ~			•	o 10									•	
Instruction to '34082	31 2 ID	29 28	00	0 0	200	0 19	CRd	10	3 15 1 0 0	00	110t	s 0	00	000		
	L					1			L							
Operands	Rs	TMS:	34020) รดม	rce r	enist	er co	ntai	nina t	the s	ddres	s of tl	he firs	st 32	-hit	
oporanao						-			-		the T				2.1	
			•													
	CRd	TMS	34082	2 des	tinati	on re	egiste	er to	hold	the f	irst val	lue				
	Rd	TMS	34020) rec	ister	con	tainin	ng tl	ne nu	umbe	er of 3	32-bit	trans	sfers	to	
		make		-	-			-								
		If Rd	= 0			1	hen :	32.3	2-hit	trans	sfers a	re ma	ade			
		If Rd		→ 31							sfers a					
			•													
	Noteth									quire	two 32	?-bit m	loves	, an c	bbc	

number in Rd will give unpredictable results.

Internal Instructions

,

DescriptionMOVx moves values from memory beginning at the address in Rs into
TMS34082 registers beginning at CRd. Rs is incremented after each transfer.
CRs is advanced to the next register in the sequence list after each 32-bit
transfer for integer and single-precision moves, after every two 32-bit transfers
for double-precision moves. The number of 32-bit transfers made is
determined by the value of Rd.

For double-precision moves, the TMS34082 configuration register LOAD bit determines whether the LSBs or the MSBs will be moved first:

If the LOAD bit = 1,	then the LSBs are moved first (32 LSBs of the fraction)
If the LOAD bit $=$ 0,	then the MSBs are moved first (sign, exponent, and 20 MSBs of the fraction)
The LOAD bit default is 0.	
CMOVMC, postincrement, reg	ister count

Example MOVE *A5+, RA7, B7

Instruction Type

This instruction moves integer values from TMS34020 memory location pointed to by A5 to TMS34082 registers beginning at RA7. After each 32-bit transfer, register A5 is incremented, and the TMS34082 destination is advanced to the next register in the TMS34082 register sequence list. B7 holds the number of 32-bit transfers to be made.

MOVx Move, Memory to TMS34082 Registers (Postincrement), Constant Count

Syntax Execution	Integer M Double-Precision					/D +	Rs+, Rs+, Rs+,	CRo	-				
	advai	nce to	o the	next	TMS	340	32 re	giste	er				
'34020	15 14	13	12	11	10	9	8	7	6	5	4	3 2	1_0
Instruction Words	0 0	0	0	0	1	1	0	1	0	0		transfers	3
	1 0	0	0	1	1	0	type	size	0	0	R	Rs	;
	ID		0	0	0	0	0	0	0	0		CRd	
Instruction to '34082	31 29	28			20	0 19		16	15				0
	ID	000	0	0 0	00		CRd		100	0 ·	110t	s000	0000
Operands						•			-			of the firs TMS3408	
	count T ir	he nu hthe i	umbe range	er of 3 e 1 to	32-bit 5 32 f	t or 6 or int	- 4-bit teger	tran and	sfers singl	to ma e-pre	ake. T ecisio	erand This value n moves c	or 1 to 16
		or dou ne va					es. Th	ne de	efault	value	e is 1.	Count de	termines
	ir		f cou	int =			n:		en tra en tra) count	
	C		f cou	int =		15,			en tra en tra) 2 × count	
Description	TMS3408 CRs is a transfer fo	32 reg dvand or inte le-pre	gister ced t eger a ecisio	rsbeg to the and s on m	ginnir e nex ingle noves	ng at t reg -prec s. Th	CRd ister ision ne n	. Rs in th mov	is inci ne sec /es, a	reme quen fter e	nted ce lis very t	ddress in after each at after eac two 32-bit ransfers	transfer. ch 32-bit transfers

For double-precision moves, the TMS34082 configuration register LOAD bit determines whether the LSBs or the MSBs will be moved first:

If the LOAD bit = 1,	then the LSBs are moved first (32 LSBs of the fraction)
If the LOAD bit = 0 ,	then the MSBs are moved first (sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is 0.

Instruction Type CMOVMC, postincrement, constant count

Example

MOVD *A5+, RB7, 4

This example moves four 64-bit double-precision floating-point values from TMS34020 memory location pointed to by A5 to TMS34082 registers beginning at RB7. After each 32-bit transfer, register A5 is incremented; after every two 32-bit transfers, the TMS34082 destination is advanced to the next register in the TMS34082 register sequence list. *Count* specifies that four 64-bit transfers (eight 32-bit transfers) are made.

Overlay					Cumboy										
Syntax	Type Integer				Syntax MOVE – +Rs, CRd, [, count]										
	Double	Precis	sion							ount	-				
	Single-I	Precis	ion		MOVF +Rs, CRd [, count]										
Execution	Repeat	Repeat count times													
		- 32 -													
		$\rightarrow CF$													
		-32 		8											
		ance		next	t TMS	S340	82 re	aiste	r						
'34020	15 14		12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	0 0		0	1	0	0	0	0	0	1	l l		ansfers		
	1 0	0	0	1	1	0	type	size	0	0	R		Rs	;	
	וכ)	0	0	0	0	0	0	0	0			CRd		
Instruction to '34082		9 28				0 19		16	15						0
	ID	00	00	0 0	000		CRd		100	0	1101	S	000	000	01
Operands	Rs	TMS													
		imme	diate	ly att	ertne	tirst	32-0	r 64-1	ortva	lueto	o mov	etot	ne IN	1534	082
	CRd	TMS	34082	2 des	tinati	on re	giste	er to h	nold	the fi	rst va	lue			
	count	The r	umb	or of	30- 0	r 61.	hit tr	anefo	vre to	mak	o Th	ie va	luo m	uet h	o in
	count	the ra													
		doub	-												
		value	of tr	ansf	ers:										
		Integ	or or	Sinal	Pro-Pro	ocieire	·n·								
		-	If cou	-		501310	<i>.</i>	th	en tr	ansfe	ers =	0			
			If cou			31,						coun	t		
		Doub						+h	on tr	ansfe		0			
			If cou If cou			15							count		
Deperintion							n ha								into
Description	MOVx I TMS34														
	Rs are		•		•	•						-			
	double-	-													
	register				-		•	ence	list.	hen	umb	erott	ranste	ersm	ade
	is deter							0400	0	ntin	rotic		inter l	م ۸۲) " "
	For dou determi	-								-		-		_UAL	
		If the	LOA	D bit	= 1,					are n		d first	t		

(32 LSBs of the fraction)

Internal Instructions

If the LOAD bit = 0,

then the MSBs are moved first (sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is 0.

Instruction Type CMOVMC, predecrement, constant count

Example

MOVF -*A5, RB7, 4

This example moves four 32-bit single-precision floating-point values from TMS34020 memory location pointed to by (A5–32) to TMS34082 registers beginning at RB7. Before each 32-bit transfer, register A5 is decremented; after each transfer, TMS34082 destination is advanced to the next register in the TMS34082 register sequence list. Count specifies that four 32-bit transfers are made.

MOVx Move, TMS34082 Registers to Memory (Postincrement), Constant Count

Runtav	Tuno	Sunt	-										
Syntax	Type Integer		Synt MOV		CRd	*Rd+		ount]	-				
	Double-Preci	sion						ount]					
	Single-Precis	ion	MOV					-					
Execution	Repeat count $CRs \rightarrow *$ $Rd + 32 \rightarrow$ CRs Rd + 32 advance	Rd → Rd	t TMS	340	82 re	giste	r						
'34020	15 14 13	12 11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	0 0 0	0 0	1	1	0	1	0	1	R		R		
	1 0 0	1	1	type	size	0	0		tr	ansfer	s		
	ID	0 0	0	0	0	0	0	0			CRd		
Instruction to '34082	31 29 28		20) 19		16	15						0
		00 00	000		CRd		100	0	1111	S	000	0 0	00
Operands		34082 sou t value) to						82-bit	valu	e (or	half (of the	e first
		34020 re ferred	gister	con	itaini	ng ti	he a	addre	ess f	or ti	he fi	rst v	alue
	the ra doub	number of ange 1 to 3 le-precisio of transfe	32 for i on mov	nteg	er ar	nd sin	igle-j	orecis	sion r	nove	es or "	1 to 1	6 for
	Integ	er or Sing If <i>count</i> = If <i>count</i> =	32,		n:			ansfe ansfe			nt		
	Dout	le-Precisi If <i>count</i> = If <i>count</i> =	16,	15,				ansfe ansfe			coun	t	
Description	MOVx move memory beg incremented. TMS34082 r single-precisi double-precisi value of <i>cour</i>	nning at t The TMS egister se on move ion moves	the ad 34082 equences or	Idres reg ce a af	ss in ister fter ter	Rd. is ad every every	Afte vanc / 32 / si	r eac ced to -bit t econ	h 32 5 the ransf d 32	-bit t next er fo 2-bit	transt regis or into trar	fer, F ster in eger nsfer	Rd is the and for

For double-precision moves, the TMS34082 configuration register LOAD bit determines whether the LSBs or the MSBs will be moved first:

If the LOAD bit = 1,	then the LSBs are moved first (32 LSBs of the fraction)
If the LOAD bit = 0 ,	then the MSBs are moved first (sign, exponent, and 20 MSBs of the fraction)
The LOAD bit default is 0.	
CMOVCM, postincrement, con	istant count

Instruction Type CMOVCM, postincrement, constan

Example MOVE RB7, *A5+, 4

This example moves four 32-bit integer values from TMS34082 registers beginning at RB7 to TMS34020 memory pointed to by A5. After each 32-bit transfer, register A5 is incremented, and the TMS34082 destination is advanced to the next register in the TMS34082 register sequence list. *Count* specifies that four 32-bit transfers are made.

MOVx Move, TMS34082 Registers to Memory (Predecrement), Constant Count

......

_ ------

Syntax	Type					Syntax										
- J / J / J / J / J / J / J / J / J / J	Integer							CRs,	- +R	d [, C	ountj	ī				
	Double							CRs,			-					
	Single-	Prec	sisic	n		MO	VF (CRs,	- + R	d [, C	ountj					
Execution	Repea Bd	t cou I – 32			5											
		ls →														
					*											
		ls			~~											
	ad	vanc	e to	o the	next	TMS	6340	82 re	giste	er						
'34020	15 1	4	13	12	11	10	9	8	7	6	5	4	3	2	1 (0
Instruction Words	0	0	0	0	0	1	1	0	1	1	1	R		Rd		
	1	0	0	0	1	1	1	type	size	0	0		tra	nsfers		
		D		0	0	0	0	0	0	0	0		. (CRd		
Instruction to '34082	31	29 28				2	0 19		16	15						0
	ID	_	00	0	0 0	00	T	CRd		100	0	1111	s C	000	000	0
Operands	CRd	тм	S34	4082	sou	rce re	egist	er for	the	first	/alue	to T	MS34	020 n	nemo	ry
	Rd	foll	owi	ng th	1e 32	bits	(or 6		s for				he bit on mo			
	count	be 16	in tl for	he ra r do	inge uble-	1 to 3 preci	32 foi ision	r integ	ger a ves.	nd si	ngle	prec	e. Thi ision i value	move	s or 1	to
		Inte	Ī	f col	int =	e-Pre 32, 1 →		on:	-			ers = ers =	0 <i>coun</i> t	t		
		Do	ľ	f col	ecisio Int = Int =		15,					ers = ers =	0 <i>2</i> × 0	count		
Description	MOVx memo is dec double registe	ry be reme -pre er in 1	gin ente cisi the	ning ed; a on n TMS	at th after nove \$340	ne ad eacl s), th 82 re	dres h 32 ie TI giste	s (Rd -bit MS34 r seq	l – 32 trans 082 juenc	2). Be sfer regis	efore (or e ster i	each every s adv	1 32-b two vance	it tran trans d to t	sfer, fers the n	Rd for ext

made is determined by the value of count.

For double-precision moves, the TMS34082 configuration register LOAD bit determines whether the LSBs or the MSBs will be moved first:

If the LOAD bit = 1,	then the LSBs are moved first (32 LSBs of the fraction)
If the LOAD bit = 0 ,	then the MSBs are moved first (sign, exponent, and 20 MSBs of the fraction)
The LOAD bit default is 0.	

Instruction Type CMOVCM, predecrement, constant count

Example MOVD RB7, -*A5, 2

This example moves two 64-bit double-precision values from TMS34082 registers beginning at RB7 to TMS34020 memory pointed to by (A5 - 32). Before each 32-bit transfer, register A5 is decremented; after every two 32-bit transfers, the TMS34082 destination is advanced to the next register in the TMS34082 register sequence list. *Count* specifies that two 64-bit transfers are made (four 32-bit transfers).

Syntax	TypeSyntaxIntegerMOVECRs, CRd [, count]Double-PrecisionMOVDCRs, CRd [, count]Single-PrecisionMOVFCRs, CRd [, count]			
Execution	Repeat count times: CRs \rightarrow CRd advance to the next TMS34082 CRs and CRd registers			
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1 1 0 1 type size ID CRs count CRd CRd CRd CRd			
Instruction to '34082	31 29 28 25 24 20 19 16 15 0 ID CRs count CRd 0 0 1 1 1 s 0			
Operands	CRs Source register RA that holds the first value to move			
	CRd Destination register to hold the first value movedcount The number of registers to move. This value must be in the range of 1 to 15; the default is 1.			
Description	MOVx moves <i>count</i> values from registers starting with CRs to registers starting with CRd. Both source and destination registers are advanced to the next register in the TMS34082 register sequence after each move.			
	The first source register, CRs, must be in the RA register file.			
Instruction Type	CEXEC, short			
Example	MOVF RA7, RB4, 3			
	This example moves three 32-bit single-precision floating-point values from TMS34082 register RA7, RA8, and RA9 to TMS34082 registers RB4, RB5, and RB6, respectively.			

an analysister of the construction of the second

Syntax	Integer Double-Precision	Syntax MOVE CRs, CRd [, count] MOVD CRs, CRd [, count] MOVF CRs, CRd [, count]		
Execution	Repeat count times: CRs \rightarrow CRd advance to the next	TMS34082 CRs and CRd registers		
'34020 Instruction Words	15 14 13 12 11 1 1 0 1 1 ID CR	10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 1 1 0 type size is count CRd CRd CRd CRd		
Instruction to '34082	31 29 28 25 24 ID 0 0 0 0 cou	20 19 16 15 0 unt CRd 0 0 0 1 1 1 0 t s 0 0 0 0 0 0 0		
Operands	CRd Destination regis	rce register RB that holds the first value to move ister to hold the first value moved registers to move. This value must be in the range of ault is 1.		
Description	starting with CRd. Both s	alues from registers starting with CRs to registers source and destination registers are advanced to the S34082 register sequence after each move.		
	The first source register,	, CRs, must be in the RB register file.		
Instruction Type	CEXEC, short			
Example	MOVD RB3, RA7, 3			
		he 64-bit double-precision values from TMS34082 nd RB5 to TMS34082 registers RA7, RA8, RA9,		

.....

Syntax	MOVFSRAM +Rd+ [, count]					
Execution	Repeat <i>count</i> times +MCADDR → +Rd Rd + 32 → Rd MCADDR + 32 → MCADDR					
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 1 0 1 0 1 R Rd 1 0 0 1 1 1 0 <t< th=""></t<>					
Instruction to '34082	31 29 28 0 ID 0 0 11 1					
Operands	RdTMS34020 register (indirect postincrement) containing the address of the first 32-bit integer value transferredcountThe number of 32-bit transfers to make. This value must be in the range 1 to 32; the default value is 1. Count determines the value of transfers:If count = 32, If count = 1 \rightarrow 31,then transfers = 0 then transfers = count					
Implied Operands	MCADDR TMS34082 indirect address register containing the first address in memory on the MSD port for the first 32-bit value to move					
Description	MOVFSRAM moves the 32-bit values from memory on the MSD point beginning with the address in MCADDR to memory beginning at the address in Rd. After each 32-bit transfer, Rd and MCADDR are incremented. The number of 32-bit transfers made is determined by the value of count. <i>NOTE: Since MCADDR refers to 32-bit word addresses and Rs refers to bit addresses, MCADDR is incremented by 1 (one 32-bit word) and Rs is incremented by 32 (one 32-bit word).</i>					
Instruction Type	CMOVCM, postincrement, constant count					

Syntax	MOVFSRAM -+Rd [, count]			
Execution	Repeat count times Rd – $32 \rightarrow Rd$ *MCADDR $\rightarrow *Rd$ MCADDR + $32 \rightarrow MCADDR$			
'34020	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>			
Instruction Words	0 0 0 0 0 1 1 0 1 1 R Rd			
	1 0 0 1 1 1 1 0 0 0 0 transfers			
	ID 0 0 0 1 1 1 1 0 0 0 0 0			
Instruction to '34082	31 29 28 0			
	ID 0 0011 1100 0000 1001 1110 0000 0000			
Operands	RdTMS34020 register (indirect predecrement) containing the address of the bit immediately following the 32-bits used to store the first 32-bit integer value transferredcountThe number of 32-bit transfers to make. This value must be in the range 1 to 32; the default value is 1. Count determines the value of transfers:If count = 32,then transfers = 0 If count = 1 \rightarrow 31,then transfers = count			
Implied Operands	MCADDR TMS34082 indirect address register containing the first address in memory on the MSD port for the first 32-bit value to move			
Description	MOVFSRAM moves the 32-bit values from memory on the MSD port beginning at the address in MADDR to memory beginning at the address (Rd – 32). Before each 32-bit transfer, Rd is decremented; after each 32-bit transfer, MCADDR is incremented. The number of 32-bit transfers made is determined by the value of count.			
	addresses, MCADDR is incremented by 1 (one 32-bit word) and Rs is decremented by 32 (one 32-bit word).			
Instruction Type	CMOVCM, predecrement, constant count			

MOVTSRAM Move, Memory (LAD) to MSD (Postincrement), Register Count

Syntax MOVTSRA

MOVTSRAM +Rs+, Rd

Execution

Execution	If Rd = 0 Repeat 32 times ∗Rs → ∗MCADI Rs + 32 → Rs MCADDR + 32	5	If $Rd = 1 \rightarrow 31$ Repeat Rd times *Rs \rightarrow *MCADDR Rs + 32 \rightarrow Rs MCADDR + 32 \rightarrow MCADDR		
'34020	15 14 13 12	<u>11 10 9 8</u>	7 6 5 4	3 2 1 0	
Instruction Words	0 0 0 0	0 1 1 0	1 1 1 R	Rd	
	1 0 0 1	1 1 1 0	0 0 0 R	Rs	
	ID 0	0 0 0 1	1 1 1 0	0 0 0 0	
Instruction to '34082	31 29 28			0	
	ID 0 0 0 0 1	1100 0000	1001 1110	0000 0000	
Operands		source register (the first 32-bit val		ent) containing the	
	Rd TMS34020 register containing the number of 32-bit transfers to make. This value must be in the range 0 to 31				
	If Rd = 0, If Rd = 1 \rightarrow		32 32-bit transfers Rd 32-bit transfers		
Implied Operands	MCADDR TMS34082 indirect address register containing the first address in memory on the MSD port where the 32-bit values are to be stored				
Description	MOVTSRAM moves 32-bit values from memory beginning at the address in Rs into memory on the MSD port beginning at the address in MCADDR. After each transfer, Rs and MCADDR are incremented. The number of 32-bit transfers made is determined by the contents of Rd.				
	NOTE: Since MCADDR refers to 32-bit word addresses and Rs refers to bit addresses, MCADDR is incremented by 1 (one 32-bit word) and Rs is incremented by 32 (one 32-bit word).				
Instruction Type	CMOVMC, postincrement, register count				

Syntax	MOVTSRAM *Rs+ [, count]				
Execution	Repeat <i>count</i> times ∗Rs → ∗MCADDR Rs + 32 → Rs MCADDR + 32 → MCADDR				
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 1 0 1 0 0 transfers 1 0 0 1 1 1 0 0 0 Rs ID 0 0 0 1 1 1 0				
Instruction to '34082	31 29 28 0 ID 0				
Operands	RsTMS34020 source register (indirect postincrement) containing the address of the first 32-bit value to movecountThe number of 32-bit transfers to make. This value must be in the range 1 to 32; the default value is 1. Count determines the value of transfers:If count = 32,then transfers = 0 If count = 1 \rightarrow 31,				
Implied Operands	MCADDR TMS34082 indirect address register containing the first address in memory on the MSD port where the 32-bit values are to be stored				
Description	MOVTSRAM moves the 32-bit values from memory beginning at the address in Rs into memory on the MSD port beginning at the address in MCADDR. After each transfer, Rs and MCADDR are incremented. The number of 32-bit transfers made is determined by the value of <i>count</i> . <i>NOTE: Since MCADDR refers to 32-bit word addresses and Rs refers to bit addresses, MCADDR is incremented by 1 (one 32-bit word) and Rs is</i>				
Instruction Type	incremented by 32 (one 32-bit word). CMOVMC, postincrement, constant count				

Syntax	MOVTSRAM -+Rs [, count]			
Execution	Repeat <i>count</i> times Rs – 32 → Rs ∗Rs → ∗MCADDR MCADDR + 32 → MCADDR			
'34020	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0			
Instruction Words	0 0 0 0 1 0 0 0 0 0 1 transfers			
	1 0 0 1 1 1 0 0 0 0 R Rs			
	ID 0 0 0 1 1 1 0 0 0 0 0 0			
Instruction to '34082	31 29 28 0			
	ID 00001 1100 0000 1001 1110 0000 0000			
Operands	Rs TMS34020 source register (indirect predecrement) containing the address of the bit immediately after first 32-bit integer to move to the coprocessor			
	count The number of 32-bit transfers to make. This value must be in the range 1 to 32; the default value is 1. Count determines the value of transfers:			
	If $count = 32$,then transfers = 0If $count = 1 \rightarrow 31$,then transfers = $count$			
Implied Operands	MCADDR TMS34082 indirect address register containing the first address in memory on the MSD port where the 32-bit values are to be stored			
Description	MOVTSRAM moves the 32-bit values from memory beginning at the address in (Rs – 32) into memory on the MSD port beginning at the address in MCADDR. Before each transfer, the contents of Rs are decremented; after each transfer, the contents of the MCADDR register are incremented. The number of 32-bit transfers made is determined by the value of count. <i>NOTE: Since MCADDR refers to 32-bit word addresses and Rs refers to bit addresses, MCADDR is incremented by 1 (one 32-bit word) and Rs is</i>			
Instruction Type	decremented by 32 (one 32-bit word). CMOVMC, predecrement, constant count			

····

.....

Multiply MPYx

Syntax	Type Integer Double-Precision Single-Precision	MPYD	CRs ₁ , CF CRs ₁ , C CRs ₁ , CF	Rs₂, CRd			
Execution	$CRs_1 \times CRs_2 \rightarrow CF$	Rd					
'34020 Instruction Words	15 14 13 12 1 1 0 1	11 10 9 1 0 0	8 7 0 0	6 5 0 1	4 3 0 0	I	1 0 /pe size
	ID	CRs ₁	C	Rs2]	CRd	
Instruction to '34082	31 29 28 25 ID CRs ₁	24 21 2 CRs ₂) 16 CRd	15 0001	000t s	000	0000
Operands	CRs ₁ Coprocessor register containing the first operand CRs ₂ Coprocessor register containing the second operand CRd Coprocessor destination register						
Description	MPYx multiplies the result in CRd. The tw files.						
Instruction Type	CEXEC, short						
Example	MPYD RA5, RB6, This example multip RB6 and stores the	plies the dout	•	-	•	tents of	RA5 by
				ooun m			

MPYx Load and Multiply

Syntax	TypeSyntaxIntegerMPYS Rs1, Rs2, CRs1, CRs2, CRdSingle-PrecisionMPYF Rs1, Rs2, CRs1, CRs2, CRd				
Execution	$\begin{array}{l} \operatorname{Rs}_1 \to \operatorname{CRs}_1 \\ \operatorname{Rs}_2 \to \operatorname{CRs}_2 \\ \operatorname{CRs}_1 \times \operatorname{CRs}_2 \to \operatorname{CRd} \end{array}$				
'34020	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>				
Instruction Words	0 0 0 0 0 1 1 0 0 1 0 R Rs1 0 1 0 1 0 0 0 type 0 0 0 R Rs2				
	0 1 0 0 0 type 0 0 R Rs2 ID CRs1 CRs2 CRd CRd ID ID<				
In atmost on to 104000					
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs1 CRs2 CRd 0101 000t 0000 0000				
<i>Operands</i> <i>Description</i>	Rs1TMS34020 source register for the first value to coprocessorRs2TMS34020 source register for the second value to coprocessorCRs1Coprocessor register to contain the first operandCRs2Coprocessor register to contain the second operandCRdCoprocessor destination registerMPYx loads the contents of Rs1 and Rs2 into CRs1 and CRs2 respectively,				
2000, pilon	multiplies $CRs_1 \times CRs_2$, and stores the result in CRd. The two operands, CRs_1 and CRs_2 , must be in opposite register files. The double-precision form of this instruction is not supported.				
Instruction Type	CMOVGC, two registers				
Example	MPYS A5, A6, RA5, RB6, RA7				
	This example loads TMS34020 registers A5 and A6 into TMS34082 registers RA5 and RB6 respectively, multiplies the contents of RA5 by RB6, and stores the integer result in RA7.				

Syntax	Туре	Syntax			
	Integer Double Provision	MPYS +Rs+, CRs			
	Double-Precision Single-Precision	MPYD ∗Rs+, CRs MPYF ∗Rs+, CRs			
	Oligie i redision		1, 01152, 011	ŭ	
Execution	$\star Rs \rightarrow CRs_1$				
	$Rs + 32 \rightarrow Rs$				
	•Rs CRs				
	Rs + 32 Rs				
	$*Rs \rightarrow CRs_2$				
	$Rs + 32 \rightarrow Rs$				
	•Rs → CRs2				
	Rs+32-Rs				
	$\text{CRs}_1 \times \text{CRs}_2 \to \text{CRd}$				
'34020 Instruction Words	15 14 13 12 11	10 9 8 7	6 5 4		
Instruction Words	0 0 0 0 0	1 1 0 1			
		0 0 type size	0 0 F		
	ID CR	s ₁ CR	s2	CRd	
Instruction to '34082	31 29 28 25 24	21 20 16	15	0	
	ID CRs ₁ CF	Rs2 CRd	1001 00	0t s000 0000	
Operands	Rs TMS34020 sou	rce register containi	ina the mem	orv address	
oporando	110 11100-1020 000				
	CRs ₁ Coprocessor re	gister to contain the	e first operan	d	
	0.0				
	CRs ₂ Coprocessor re	gister to contain the	e second ope	erand	
	CRd Coprocessor de	estination register			
Description	MPYx loads the conten	ts of memory pointe	ed to by Rs i	nto CRs ₁ and CRs ₂ ,	
	multiplies CRs ₁ by CRs	2 and stores the re	sult in CRd.	After each load from	
	memory, Rs is incremer		operands, C	Rs ₁ and CRs ₂ , must	
	be in opposite register f	iles.			
Instruction Type	CMOVMC, postincrement, constant count				
Example	MPYS *A5+, RA5, R	B6, RA7			
	This example loads me	emory starting at th	ne address g	given by TMS34020	
	register A5 into coproce			ultiplies the contents	
	of RA5 by RB6 and stor	es the result in RA7			

ŧ

Syntax Execution	TypeIntegerDouble-PrecisionSingle-PrecisionRs - 32 \rightarrow Rs*Rs \rightarrow CRs1Rs - 32 \rightarrow Rs*Rs \rightarrow CRs2*Rs \rightarrow CRs3*Rs \rightarrow CRs3 <th>MPYD - MPYF -</th> <th>- *Rs, CR</th> <th>Rs₁, CRs₂, Is₁, CRs₂, Rs₁, CRs₂</th> <th>CRd</th> <th>1</th> <th></th> <th></th> <th></th>	MPYD - MPYF -	- *Rs, CR	Rs ₁ , CRs ₂ , Is ₁ , CRs ₂ , Rs ₁ , CRs ₂	CRd	1				
'34020	15 14 13 12	2	1	0						
Instruction Words	0 0 0 0	1 0 0	0 0	0 1	0	0		count		
		0 0 0	type size		R					
	ID	CRs ₁		Rs2	CRd					
Instruction to '34082	31 29 28 25 1 ID CRs1	24 21 20 CRs2	16 CRd	15 1001	0 1 000t s000 0000					
Operands	Rs TMS34020 s CRs ₁ Coprocesso	source regist	er contair contain th	ning the m	iemor erand	y add			<u> </u>	
	CRs ₂ Coprocesso	or register to c	contain th	e second	opera	and				
	CRd Coprocesso	or destination	register							
Description	MPYx loads the con multiplies CRs ₁ by C memory, Rs is decre be in opposite regist	CRs ₂ and stor emented by 32	res the re	sult in CR	d. Be	fore e	each	load f	from	
Instruction Type	CMOVMC, predecre	ement, consta	ant count							
Example	MPYD -*A5, RA5,	, RB6, RA7								
	This example loads register A5 minus 32 contents of RA5 by I	2 into coproce	essor reg	isters RA5	5 and					

Transpose a Matrix MTRANX

Syntax	Type Integer Double-Precision Single-Precision		MTRAN MTRAND MTRANF								
'34020	<u>15 14 13 1</u>	12 11 10 9 8	7 6 5 4	3 2 1 0							
Instruction Words	1 1 0	1 1 0 0 0	0 1 1 0	0 1 type size							
	ID	0 0 0 0 0	0 0 0 0	0 0 0 0							
Instruction to '34082	31 29 28			0							
	ID 0000	00 0000 0000	0011 001t	s000 0000							
Description	This instruction elements of the	transposes a matrix	k. (Interchanges th	e row and column							
Implied Operands	RA0 = B00,	RA1 = B01,	RA2 = B02,	RA3 = B03,							
· · ·	RA4 = B10,	•	RA6 = B12,	RA7 = B13,							
	RA8 = B20,	RA9 = B21,	RB0 = B22,	RB1 = B23,							
	RB2 = B30,	RB3 = B31,	RB4 = B32,	RB5 = B33							
Temporary Storage	None										
Outputs	RA0 = B00,	RA1 = B10,	RA2 = B20,	RA3 = B30,							
	RA4 = B01,	RA5 = B11,	RA6 = B21,	RA7 = B31,							
	RA8 = B02,	RA9 = B12,	RB0 = B22,	RB1 = B32,							
	RB2 = B03,	RB3 = B13,	RB4 = B23,	RB5 = B33							
Instruction Type	CEXEC, short										

NEGX Negate

Syntax	Type Integer Double-Precisio Single-Precisior		Syntax NEG CRs, CRd NEGD CRs, CRd NEGF CRs, CRd											
Execution	–CRs \rightarrow CRd													
'34020 Instruction Words	15 14 13	<u>12 11</u>	10 0	9	8	7	6	5	4	3	2	1	0 size	
	ID	 CF		-	0	0	1	1	1		CRd	type	5120	
Instruction to '34082	31 29 28 ID CRs	<u>25 24</u> 00	20 1 1	19	CRd	16	15 000	1	1 1 1 t	s	000	0 0	0	
Operands		082 regis			-		oper	and				*****		
Description	NEGx negates t The integer instr and stores the r The source regi	the conte ruction (N result in (ents o NEG) 1 CRd.	f reç take	gister is the	r CR: 2s c	ompl	leme	nt of 1					
Instruction Type	CEXEC, short		o, ma		0 (31010						
Example	NEGD RA5, RE	В7												
·	This example n stores the result	negates t		uble	e-pre	cisio	n floa	ating	-poin	t valı	ue in	RA5	and	

contraction from the

Load and Negate NEGx

Syntax	σνΤ	à				Svn	tax									
- Jinan	Integ							1, CF	is, C	Rd		-				
	-	ble-P	recis	ion				95 ₁ , I			CR	đ				
	Sing	le-Pr	ecisi	on		NEC	GF /	Rs ₁ , (CRs,	CRd	1					
Execution	Rs ₁	$\rightarrow C$	Rs													
	R si,			Rs												
	-CR	s →	CRd													
'34020		er or				10	•	0	7	•	F		0	•	4	0
Instruction Words	15	14	<u>13</u> 0	12	<u>11</u> 0	<u>10</u> 1	9	8	7	6	5	4 R	3	 Rs	1	
			0				1	type	0	0	0	0	0		0	0
	ļ,	ID	<u> </u>	<u> </u>	<u> </u>	CRs	L	1.31-	0	0	1	1		CF		
	Dout	Double-Precision:														
	15	14	13	<u>12</u>	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0.	1	1	0	0	1	0	R		Re		
	0	1 ID	0	1	$\lfloor 1 \\ C$	1	1	1	1	0	0	R		Re	2	
				L		HS	Rs 0 0 1 1					L		CRd]
Instruction to '34082	31	29	28	25	24	20	19		16	15 010	4			0.0.0		0
			CR	15	00)11	L	CRd]	010	-	1111	. 5	000		000
Operands	Rs ₁	Т	MS3	4020) sou	rce re	egist	er for	the	value	(or h	nalf tr	ie va	lue fo	r do	uble-
		p	recis	ion)	to TN	/ S34	082									
	Rs ₂	Т	MS3	4020) sou	rce r	əgist	er for	the	rema	inde	r of th	ne 64	l-bit c	loub	e-
	_	р	recis	ion f	loatir	ng-po	int v	alue t	ο ΤΝ	IS34	082					
	CRs	Т	MS3	4082	2 regi	ister o	conta	aining	the	oper	and					
	CRd	Т	MS3	4082	2 des	tinati	on re	egiste	r							
Description	NEG	ix loa	ıds th	ne co	nten	ts of	Rs₁	(and	Rs2	for d	ouble	e-pre	cisio	n) int	o rec	jister
	CRs	, neg	ates	CRs,	and	store	s the	resu	lt in (
	take	s the	2s c	ompl	eme	nt of	the v	alue.								
	The	sour	ce re	giste	r, CF	Rs, m	ust b	e in t	he F	RA TN	1834	082	regis	ter fil	e.	
Instruction Type	CMC	OVG	C, on	e or t	two r	egist	ers									
Example	NEG	D A5	, A	6, F	ŁΑ5,	RB7										
								ecisio								
	regis resu			uiu A	io int	URA	о, н	egate	่อแต	5 001			1/40	anu s	lore	

Syntax	Type Integer Double-Precision Single-Precision	Syntax NEG *Rs+, CRs, C NEGD *Rs+, CRs, NEGF *Rs+, CRs,	CRd
Execution	•Rs → CRs Rs + 32 → Rs •Rs + CRs Rs + 32 → Rs −CRs → CRd		
'34020	<u>15 14 13 12 11</u>	10 9 8 7	6 5 4 3 2 1 0
Instruction Words	0 0 0 0 0	1 1 0 1	0 0 0 0 0 transfers
	1 0 0 1 1	1 1 type size	0 0 R Rs
	ID C	Rs 0 0	1 1 CRd
Instruction to '34082	31 29 28 25 24		150
	ID CRs 0	011 CRd	1001 111t s000 0000
Operands	-	ister containing the	-
	_	ister to contain the c stination register	perano
Description	contents of CRs, and s	tores the result in CF	ed to by Rs into CRs, negates the Rd. The integer instruction (NEG) er each load from memory, Rs is
	The source register, Cl	Rs, must be in the R	A TMS34082 register file.
Instruction Type	CMOVMC, postincrem	ent, constant count	
Example	NEGF *A5+, RA5, R	в7	
			s given by TMS34020 register A5 contents of RA5, and stores the

Syntax	Type Integer Double-Precisi Single-Precisio		Synt NEG NEG NEG	_+ D -	- + Rs,	CR	s, CF	-					
Execution	$Rs - 32 \rightarrow Rs$ $Rs \rightarrow CRs$ $Rs - 32 \rightarrow Rs$ Rs - CRs $-CRs \rightarrow CRd$	Rs → CRs Rs → 32 → Rs Rs → CRs											
'34020 Instruction Words					T	r	0						
	0 0 0	0 1	0	0	0 type	0 size	0	1 0	0 R	0	0 R:	1	0
			1_' Rs	-	0	0	1	1	<u> </u>		CRd		
Instruction to '34082	31 29 28 ID CRs	25 24 s 0 0	20 0 1 1	19	CRd	16	15 100	1	1111	s	000	0 0	000
Operands	Rs TMS34	4020 reg	ister co	onta	ining	the	mem	ory a	addre	SS			
		4082 reg 4082 des					opera	and					
Description	NEGx loads the contents of CR takes the 2s co decremented b	is, and stompleme	tores ti	he r	esult	in C	Rd. T	he ir	ntege	r ins	tructio	on (N	EG)
	The source reg	gister, CF	Rs, mu	ist b	e in t	he R	A TN	1 S34	082 I	regis	ter file	Э.	
Instruction Type	CMOVMC, pre	decreme	ent, co	nsta	nt co	unt							
Example	NEGD -*A5,	RA5, R	В7										
	This example register A5 mir RA5, and store	nus 32 ir	nto TM	IS34	1082								

7-147

NOT Not, 1s Complement, Integer

Syntax	NOT CRs, CRd												
Execution	NOT CRs \rightarrow CRd												
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 ID CRs 0 0 0 1 1 CRd CRd												
Instruction to '34082	31 29 28 25 24 20 19 16 15 0 ID CRs 0001 CRd 0001 1110 0000 0000												
Operands	CRs TMS34082 source register containing the 32-bit integer operand CRd TMS34082 destination register												
Description	NOT takes the 1s complement of the contents (integer) of CRs and stores the result in CRd.												
	The source register, CRs, must be in the RA TMS34082 register file.												
Instruction Type	CEXEC, short												
Example	NOT RA5, RA7												
	This example takes the 1s complement of the contents of RA5 and stores the result in RA7.												

Load and Not, 1s Complement, Integer NOT

Syntax	NOT Rs, CRs, CRd													
Execution	$\begin{array}{l} Rs \to CRs \\ NOT \ CRs \to CRd \end{array}$													
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 1 0 0 0 1 Rs 0 1 0 1 1 0 <t< th=""></t<>													
	ID CRs 0 0 0 1 CRd													
Instruction to '34082	31 29 28 25 24 20 19 16 15 0 ID CRs 0001 CRd 0101 1110 0000 0000													
Operands	Rs TMS34020 source register for the 32-bit integer value to TMS34082													
	CRs TMS34082 register to contain the 32-bit integer operand CRd TMS34082 destination register													
Description	NOT loads the contents (integer) of Rs into the CRs, takes the 1s complement of the contents of register CRs, and stores the result in CRd.													
	The source register, CRs, must be in the RA TMS34082 register file.													
Instruction Type	CMOVGC, one register													
Example	NOT A5, RA5, RA7													
	This example loads TMS34020 register A5 into TMS34082 register RA5, takes the 1s complement of the contents of RA5, and stores the result in RA7.													

Syntax	NOT ∗Rs+, Cl	NOT *Rs+, CRs, CRd											
Execution	*Rs → CRs Rs + 32 → Rs NOT CRs → CRd												
'34020	15 14 13	12 11	10	9	8	7	6	5	4	3_	2	1	0
Instruction Words	0 0 0	0 0	1	1	0	1	0	0	0	0	0	0	1
	1 0 0	1 1	1	1	0	0	0	0	R			ls	
	ID ·	ID CRs 0 0 1 CRd											
Instruction to '34082	31 29 28	25 24	20	19		16	15						0
	ID CRs	s 00	001		CRd		010	1	1110	0 0	000	0 0	000
Operands Description	CRs TMS34 CRd TMS34 NOT loads the	CRs TMS34082 register to contain the 32-bit integer operand											
	the 1s complet CRd. After eac The source reg	ch load fr	om m	emo	ry, R	s is i	ncren	nent	ed by	/ 32.			ult in
And a state of the	•	-	·							. 0			
Instruction Type	CMOVMC, pos	suncrem	ent, co	onsta		ount							
Example	NOT *A5+, R	RA5, RA	7										
	This example I into TMS34082 and stores the	2 register	RA5,				-	•				•	

Syntax	NOT +Rs, CRs, CRd													
Execution	Rs – 32 → Rs +Rs → CRs NOT CRs → CRd													
'34020 Instruction Words	0 0 0 1 0 0	12 11 10 0 1 0 1 1 1	9 8 0 0 1 0	7 0 0	6 5 0 1 0 0	4 0 R	l	1 0 0 1 Is						
Instruction to '34082	ID 31 29 28 ID CRs	CRs 25 24 20 0 0 0 1	0 19 CRd	0 16	0 1 15 0101	1110	CRd	0000						
Operands		,												
	CRd TMS340	082 destinatio	on registe	er										
Description	NOT loads the o takes the 1s com in CRd. Before e	nplement of th	ne conten	ts of	register C	Rs, a	ind stores							
	The source regi	ister, CRs, mi	ust be in t	the R	A TMS34	1082	register fil	e.						
Instruction Type	CMOVMC, pred	lecrement, co	onstant co	ount										
Example	NOT -*A5, RA	A5, RA7												
	This example lo minus 32 into contents of RA5	TMS34082 r	egister R	A5 t	akes the			-						

Syntax	Type Integer Double-Precis Single-Precisi	ON ON	ntax E <i>CF</i> ED (EF (CRd										
Execution	$1 \rightarrow CRd$													
'34020	15 14 13	12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	1 1 0	1	1	0	0	0	0	0	1	0	0	0	type	size
	ID	1	1	0	1	1	1	0	1	<u> </u>		CRo	b]
Instruction to '34082	31 29 28	25	5 24		21 20		16	15						0
	ID 11	01	1 '	01		CRo		00	01	000	Dt	s 0 0	0 0	000
Operands	CRd TMS3	34082	2 des	stinat	ion r	egist	er.							
Description	ONEx loads the	he va	due d	one (of the	e app	oropr	iate 1	type)) in th	ne CF	Rd re	egister	
Instruction Type	CEXEC, shor	t											×	
Example	ONED RA3													
	This example loads RA3 with a double-precision one.													

and the second sec

Compare a Line to Two Planes of a Clipping Volume **OUTC3Xx**

Syntax	Type Integer Double-I Single-P	Syntax OUTC3X OUTC3XD OUTC3XF													
'34020 Instruction Words	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		0	1	1	0	0	0	0	1	1	1	0	1	type 0	size 0
	L	······									<u> </u>	L.	<u> </u>	<u> </u>	Ľ
Instruction to '34082	31 29	_	000	0.0	000	0.0	000	0.0	11	1 ()1t	s 0	00	0.0	00
Description	The OU ^T volume i the locat is used b to be clip	n the ion of efore	X-ax the tv	is. Tł vo en	ne ins Idpoi	struc nts w	tion s ith re	sets ti spec	hree t to th	statu ie clip	is reģ oping	gister J volu	r bits me. (base OUT(ed on C3Xx
Implied Operands	RA0 = X RA1 = Y RA2 = Z RA3 = V	1 1			RB0 = X2 RB1 = Y2 RB2 = Z2 RB3 = W2										
Algorithm	CT = RE $C = RA$ $CT = CT$ $C = C - If N = 1$	3 RI - RA(ן: וו	and (sign	,	C = set \ set	= W2 = W1 V = 1 N = 1 X2),	if (V if (V	V1 –	[X1])	< 0			
Temporary Storage	C, CT														
Outputs	Status b	ts se	t:												
	ZNVDescription111both points outside on same side of volume in X-axis011both points outside on opposite sides of the volume in X-axis010only point P1 [X1,Y1,Z1,W1] outside of volume in X-axis001only point P2 [X2,Y2,Z2,W2] outside of volume in X-axis000both points P1 and P2 inside the volume in X-axis										axis				
Instruction Type	CEXEC,	short	1												

OUTC3Yx Compare a Line to Two Planes of a Clipping Volume

Syntax '34020	TypeSyntaxIntegerOUTC3YDouble-PrecisionOUTC3YDSingle-PrecisionOUTC3YF15141312111098765432151413121110987654321514131215141312151413121514131215141312161413121714131218141312191413121014131215141312161413121714131218141419141514131215141315121416141714181419141914191410141514161417141814191419141914191419141914191419141
Instruction Words	1 1 0 1 1 0 0 0 0 1 1 1 0 1 type size
	ID 0 0 0 0 0 0 0 0 0 0 0 0 1
Instruction to '34082	31 29 28 0 ID 0
Description	The OUTC3Yx algorithm compares the given endpoints of a line to the clipping volume in the Y-axis. The instruction sets three status register bits based on the location of the two endpoints with respect to the clipping volume. OUTC3Yx is used before the clipping instructions to determine which ends of the line need to be clipped.
Implied Operands	RA0 = X1 $RB0 = X2$ $RA1 = Y1$ $RB1 = Y2$ $RA2 = Z1$ $RB2 = Z2$ $RA3 = W1$ $RB3 = W2$
Algorithm	CT = RB3; $CT = W2$ $C = RA3$; $C = W1$ $CT = CT - RB1 $; set $V = 1$ if $(W2 - Y2) < 0$ $C = C - RA1 $; set $N = 1$ if $(W1 - Y1) < 0$ If $N = 1$ and $V = 1$ and (sign Y1 = sign Y2), then set $Z = 1$
Temporary Storage	C, CT
Outputs	Status bits set:
	ZNVDescription111both points outside on same side of volume in Y-axis01both points outside on opposite sides of the volume in Y-axis010only point P1 [X1,Y1,Z1,W1] outside of volume in Y-axis01only point P2 [X2,Y2,Z2,W2] outside of volume in Y-axis00both points P1 and P2 inside the volume in Y-axis
Instruction Type	CEXEC, short

Compare a Line to Two Planes of a Clipping Volume **OUTC3Zx**

Syntax	Type Syntax
	Integer OUTC3Z
	Double-Precision OUTC3ZD
	Single-Precision OUTC3ZF
'34020	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>
Instruction Words	1 1 0 1 1 0 0 0 0 1 1 1 0 1 type size
Instruction to '34082	31 29 28 0
	ID 0 0000 0000 0010 0011 101t s000 0000
Description	The OUTC3Zx algorithm compares the given endpoints of a line to the clipping
	volume in the Z-axis. The instruction sets three status register bits based on
	the location of the two endpoints with respect to the clipping volume. OUTC3Zx is used before the clipping instructions to determine which ends of the line need
	to be clipped.
Implied Operands	RA0 = X1 RB0 = X2
implied Operands	RAU = X1 $RB1 = Y2$
	RA2 = Z1 $RB2 = Z2$
	RA3 = W1 RB3 = W2
Algorithm	CT = RB3 ; CT = W2
	C = RA3 ; C = W1
	CT = CT - RB2 ; set V = 1 if (W2 - Z2) < 0
	C = C - RA2 ; set N = 1 if (W1 - Z1) < 0
	If N = 1 and V = 1 and (sign Z1 = sign Z2), then set Z = 1
Temporary Storage	C, CT
Outputs	Status bits set:
	Z N V Description
	1 1 1 both points outside on same side of volume in Z-axis
	0 1 1 both points outside on opposite sides of the volume in Z-axis
	0 1 0 only point P1 [X1,Y1,Z1,W1] outside of volume in Z-axis
	0 0 1 only point P2 [X2,Y2,Z2,W2] outside of volume in Z-axis
	0 0 0 both points P1 and P2 inside the volume in Z-axis
Instruction Type	CEXEC, short

PASSx Pass, Coprocessor to Coprocessor, One Register

Syntax	TypeSyntaxIntegerPASS CRs, CRdDouble-PrecisionPASSD CRs, CRdSingle-PrecisionPASSF CRs, CRd
Execution	$CRs \rightarrow CRd$
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 type size ID CRs 0 0 0 0 0 CRd CRd
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 0000 CRd 0001 1111 s000 0000
Operands	CRs TMS34082 source register containing the operand. Must be from RA register file
	CRd TMS34082 destination register
Description	PASSx moves a value from CRs to CRd. PASSx may be used to move values into and out of the C and CT feedback registers.
Instruction Type	CEXEC, short
Example	PASSD CT, RB0
	This example moves the 64-bit double-precision value from feedback register CT to TMS34082 register RB0.

Polynomial Expansion POLYx

Syntax	Туре		Syntax POLY CRs1, CRs2												
	Integer														
	Double-Prec		POLYD												
	Single-Precis	sion	POLYF CRs ₁ , CRs ₂												
'34020	15 14 13	12 11	10 9	8	7	6	5	4	3	2	1	0			
Instruction Words	1 1 0	1 1	0 0	0	0	1	1	1	1	1	type	size			
	ID	c	Rs ₁	0	0	0	0	1		CF	1s2				
				 4 0	L	4			.						
Instruction to '34082	31 29 28	25 24 Rs1 0	20	19 CRs	16		150 0011 111t s000 0000								
			0001		<u>2</u>	001	1								
Description	POLYx perfo	rms a mul	tiply and	accun	nulat	e of t	he fo	orm:							
		$X^n + A_{n-1}$													
	which can al				•		•	Ū							
	((($(((A_n \times X + A_{n-1}) \times X + A_{n-2}) \times X +) + A_0$													
		where the value X is assumed present in the TMS34082 C register and t													
	coefficients /														
	instruction m	ultiplies C	Rs_1 by C,	adds	ther	esult	to C	нs ₂ ,	and	store	is the	sum			
	in CRs ₁ .														
Implied Operands	CRs ₁ TMS	34082 reg	ister con	taining	q An	or ac	cum	ulate	d val	ue. I	Must I	be in			
		RA registe			• ••										
					-										
		34082 reg				n-1 C	or ne	ext co	pettic	ient	in se	eries.			
	MUS	be in the	RB regist	er tile	•										
Algorithm	$CT = C \times CF$	\$ ₁		; A _n >	< X										
	$CRs_1 = CT +$	CRs ₂		; (A _n	×X)	+ An	-1								
Temporary Storage	CT														
Outputs	The new acc	umulated	value in (Rs₁											
Instruction Type	CEXEC, sho	rt													

SCALEX Scale and Convert Coordinates for Viewport

Syntax '34020	Type Integer Double-Pr Single-Pre				7	6	5	4	3	2	1	0			
Instruction Words	1 1 ID	0	1	1 0	0	0	0	type 0	size 0						
Instruction to '34082	31 29 ID	28 0 0 0	00	0 0	00	0 0	00	0 0	11	0 0	0 t	s 0	0 0	0 0	000
Description	This instruviewport s Y1, Z1, W	calin	g co	nsta	nt, Ci	n is t	he ce	enter	of vie						
Implied Operands	RA0 = X1 RA1 = Y1 RA2 = Z1 RA3 = W1 RA7 = Sx RA8 = Sy RA9 = Sz		; 		se ar = Cx = Cy		e and noge				nates				
Algorithm	CT = RA3 $C = RA0$ $RA0 = (C$ $C = RA1$ $RA1 = (C$ $RA2 = RA$ $RA3 = CT$ $RA2 = RA$ $RA2 = RA$	/ CT × RA / CT × RA 2 / C 2 × F	8) + 8) + T RA9			;	Y1 =	= ((Y	1 / W	1) × 1 1) × 1	Sy) +	- Cy			
Temporary Storage Outputs	C, CT RA0 = X1 RA1 = Y1 RA2 = Z1 ² RA3 = W1	7													
Instruction Type	CEXEC, s	hort													

Square SQRx

Syntax	TypeSyntaxIntegerSQR CRs, CRdDouble-PrecisionSQRD CRs, CRdSingle-PrecisionSQRF CRs, CRd
Execution	$CRs \times CRs \to CRd$
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 type size ID CRs 1 0 0 0 0 0 CRd
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 1000 CRd 0001 111t \$000 0000
Operands	CRs TMS34082 source register containing the operand
Description	CRd TMS34082 destination registerSQRx squares the contents of CRs and stores the result in CRd.The source register, CRs, must be in the RA TMS34082 register file.
Instruction Type	CEXEC, short
Example	SQR RA5, RA7 This example squares the contents of RA5 and stores the result in register RA7.

SQRx Load and Square

Syntax	Type	•				Svn	tax									
	Integ							s ₁ , Cl	Rs, C	Rd		-				
			recis					Rs ₁ , I				1				
	Sing	le-Pr	ecisi	on		SQI	RF /	7s ₁ , (CRs,	CRd						
Execution	Rs ₁	→ C	Rs													
	As ₂	÷C	Rsi													
	CRs	×CF	Rs →	CR	ł											
'34020			Single	-Prec						•	_		-			•
Instruction Words	15	<u>14</u> 0	1 <u>3</u> 0	12 0	<u>11</u> 0	10 1	9	8	7	6 0	5	4 R	3	2 Rs	1	
	0	1	0	1	1	1	1	type	0	0	0	0	0		0	0
		ID	1		C	Rs	L	1	0	0	0		1	CRd		
	Dout	lo_Dr	ecisio	n.												
	15	14	13	<u>12</u>		10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	1	1	0	0	1	0	R		Re		
	0	1	0	1		1	1	1	1	0	0	R		Rs		
	L	ID		I	<u> </u>	Rs		1	0	0	0	0		CF	10	
Instruction to '34082	31	29	28	25	24	21	20		16	15						0
	I	D	CF			000		CRd		010		1111	S	000	0.0	00
Operands	Rs ₁						-	er for MS34		value	(or h	alf th	ne va	lue fo	or dou	uble-
	Rs ₂		MS3 o the				egist	erfor	ther	əmaiı	ningl	nalfo	fthe	64-bi	t ope	rand
	CRs	ר	MS3	4082	2 reg	ister	to co	ntain	the	opera	and					
	CRd	דו	MS3	4082	2 des	tinati	on re	egiste	r							
Description			ads tl e res				Rs i	nto C	Rs, s	squar	res th	ne co	nten	ts of	CRs,	and
	The	sour	ce re	giste	r, CF	₹s, m	ust k	be in t	he F	A TN	// S34	082	regis	ter fil	e.	
Instruction Type	CMC	OVG	C, on	e reç	gister											
Example	SQR	Α5,	RA	5, F	RB7											
			-					regis d stor						regis	ster	RA5,

Syntax	Type Integer Double-Pre Single-Pre	SQF	R + R	Rs+,	CRs	CRd , CR , CR	-							
Execution	$*Rs \rightarrow CRs$ $Rs + 32 \rightarrow$ $*Rs \rightarrow CRs$ $Rs + 32 \rightarrow$ $CRs \times CRs$	Rs Rs												
'34020	15 14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	0 0	0 0	0	1	1	0	1	0	0	0	0	0	trans	fers
	1 0	0 1	1		1	type	size	0	0	R		R	S	
	ID	l	CI			1	0	0	0			CRd]
Instruction to '34082	31 29 1 ID	28 25 CRs	24 1 0	21 0 0	20	CRd	16	15 100	1	1111	s	000	0 0	00
Operands	Rs TN	AS3402) sou	rce re	gist	er co	ntain	ing th	ne m	emor	y ad	dress	;	
		/IS3408 /IS3408	-					opera	and					
Description	SQRx load contents of Rs is incre	f CRs, a	nd st	ores t					-					
	The source	e registe	er, CR	ls, mu	ust b	e in t	he R	A TN	IS 34	082	regis	ter fil	е.	
Instruction Type	CMOVMC,	, postino	reme	ent, co	onsta	ant co	ount							
Example	SQR *A5+	-, RA5	, RB	7										
	This exam register A5 stores the	5 into TM	/ IS34	082 r										

SQRx Load from Memory (Predecrement) and Square

Syntax	Type Integer Double-Precision Single-Precision	SQF SQF	Syntax SQR -+Rs, CRs, CRd SQRD -+Rs, CRs, CRd SQRF -+Rs, CRs, CRd									
Execution	$Rs - 32 \rightarrow Rs$ $*Rs \rightarrow CRs$ $Rs - 32 \rightarrow Rs$ $Rs - 32 \rightarrow Rs$ $CRs \times CRs \rightarrow CRd$	j										
'34020	15 14 13 12	11 10	98	7	65	4	3 2 1 0					
Instruction Words	0 0 0 0	1 0	0 0	0	0 1	0	0 0 transfers					
	1 0 0 1 ID	1 1 CRs	1 type s	size 0	0 0	R	Rs CRd					
	L				<u></u>		Chu					
Instruction to '34082	31 29 28 25	24 21 1000	20 CRd		1001	111t	0 s000 0000					
Operands Description	Rs TMS34020 CRs TMS34082 CRd TMS34082 SQRx loads the co	eregister to destination	o contain t	the of	perand		-					
Description	squares the conten from memory, Rs is The source register	nts of CRs, s decreme	, and store ented by 32	es the 2.	e result in	CRd	I. Before each load					
Instruction Type	CMOVMC, predecr	rement, co	onstant cou	unt								
Example	SQR -*A5, RA5, F	RB7										
	This example load register A5 minus 3 RA5, and stores the	32 into TN	AS34082 r									

And the second sec

Square Root SQRTx

Syntax	TypeSyntaxIntegerSQRTDouble-PrecisionSQRTDCRs, CRdSingle-PrecisionSQRTFCRs, CRd
Execution	$\sqrt{CRs} \rightarrow CRd$
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 type size ID CRs 1 0 0 1 0 1 CRd
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs 1001 CRd 0001 111t s000 0000
Operands	CRs TMS34082 source register containing the operand
Description	CRd TMS34082 destination register SQRTx takes the square root of the contents of CRs and stores the result in CRd.
	The source register, CRs, must be in the RA TMS34082 register file.
Transparency	CEXEC, short
Example	SQRTD RA5, RA7
	This example takes the square root of the contents of RA5 and stores the result in RA7.

SQRTx Load and Square Root

and showing the state of the st

Syntax	Туре	2				Syn	tax									
	Integ								-	CRd						
	Doul									, CRs		Rd				
	Sing	le-Pr	ecisi	on		SQF	RTF	Rs ₁ ,	CRs	s, CR	d					
Execution	Rs ₁															
	R62															
	√CR	$s \rightarrow 0$	СКа													
'34082 Instruction Word				_												
	<i>Integ</i> 15	er or 3 14	Single 13	- Prec 12	ision. 11	: 10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	1	1	0	0	0	1	R		Rs ₁		
	0	1	0	1	1	1	1	type	0	0	0	0	0	0	0	0
	L	ID			C	Rs		1	0	0	1			CRd		
	Doub 15	l e-Pre 14	ecisio 13	n: 12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	1	1	0	0	1	0	R		Rs		
	0	1	0	1	1	1	1	1	1	0	0	R		Rs ₂		
		ID			С	Rs		1	0	0	1			CRd		
Instruction to '34082	31	29	28	25	24	21	20		16	15						0
			CR		_	0 1	T	CRd		010	1	1111	t s	000	000	
Operands	Rs ₁					rce re MS34	-	er for	the	value	(or h	nalf th	ne do	ouble-p	recis	sion
	Rs ₂						-			value 3408		he re	emaii	ning ha	lf of	the
	CRs	T	MS3	4082	2 reg	ister 1	to co	ntain	the	opera	Ind					
	CRd	Т	MS3	4082	2 des	tinati	on re	egiste	r							
Description						nts of result			Rs, ta	kes tł	ne sq	uare	root	ofthec	onte	ents
	The	sour	ce re	giste	r, CF	Rs, m	ust b	e in t	he F	A TN	1834	082	regis	ter file.		
Transparency	CMC	OVG	C, on	e reg	jister											
Example	SQF	RTF A	\5, R	A5, I	RA7											
		quar	e roc	ot of t				v					•	ster RA A5, an	-	

Internal Instructions

Syntax	TypeSyntaxIntegerSQRT +Rs+, CRs, CRdDouble-PrecisionSQRTD +Rs+, CRs, CRdSingle-PrecisionSQRTF +Rs+, CRs, CRd
Execution	*Rs \rightarrow CRs Rs + 32 \rightarrow Rs *Rs *Rs *Rs *Rs $\sqrt{CRs} \rightarrow CRd$
'34020	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Instruction Words	0 0 0 0 0 1 1 0 1 0 0 0 0 0 transfers
	1 0 0 1 1 1 1 type size 0 0 R Rs
	ID CRs 1 0 0 1 CRd
Instruction to '34082	<u>31 29 28 25 24 21 20 16 15 0</u>
	ID CRs 1001 CRd 1001 111t s000 0000
Operands	Rs TMS34020 source register containing the memory address
	CRs TMS34082 register to contain the operand
	CRd TMS34082 destination register
Description	SQRTx loads the contents of memory pointed to by Rs into CRs, takes the square root of the contents of CRs, and stores the result in CRd. After each load from memory, Rs is incremented by 32.
Transparency	CMOVMC, postincrement, constant count
Example	SQRTD *A5+, RA5, RA7
	This example loads memory starting at the address given by TMS34020 register A5 into TMS34082 register RA5, takes the square root of the double-precision floating-point value in RA5, and stores the result in RA7.

Syntax	TypeSyntaxIntegerSQRT - *Rs,Double-PrecisionSQRTD - *RSingle-PrecisionSQRTF - *Rs	Rs, CRs, CRd
Execution	Rs – 32 → Rs •Rs → CRs Rs \sqrt{CRs} → CRd	
'34020	<u>15 14 13 12 11 10 9 8</u>	7 6 5 4 3 2 1 0
Instruction Words	0 0 0 0 1 0 0 0	0 0 1 0 0 0 transfers
	1 0 0 1 1 1 1 type ID CRs 1	size 0 0 R Rs 0 0 1 CRd
Instruction to '34082	31 29 28 25 24 21 20 ID CRs 1001 CRd	<u>16 15 0</u> 1 1001 111t s000 0000
Operands Description	Rs TMS34020 source register co CRs TMS34082 register to contain CRd TMS34082 destination register SQRTx loads the contents of memory	ontaining the memory address
	Before each load from memory, Rs is The source register, CRs, must be in t	decremented by 32.
Transparency	CMOVMC, predecrement, constant co	ount
Example	SQRTF –*A5, RA5, RA7	
		g at the address given by TMS34020 egister RA5, takes the square root of the n RA5, and stores the result in RA7.

Syntax	Type Integer Double-Precision Single-Precision	Syntax SQRTA CRs, SQRTAD CR SQRTAF CR	Rs, CRd		
Execution	$\sqrt{\text{CRs}} \rightarrow \text{CRd}$				
'34020 Instruction Words	15 14 13 12 11 1 1 0 1 1 1 ID C C C C	10 9 8 0 0 0 Rs 1	7 6 5 0 0 1 0 1 0	4 3 2 1 0 1 1 1 type size CRd	
Instruction to '34082	31 29 28 25 24 ID CRs 1	21 20 0 1 0 CRd	16 15 0001	0 111t s000 0000	
Operands	CRs TMS34082 reg	gister containing	the operand		
Description	CRd TMS34082 destination register SQRTAx takes the square root of the absolute value of the contents of CRs and stores the result in CRd.				
	The source register, Cl	Rs, must be in th	he RA TMS34	1082 register file.	
Transparency	CEXEC, short				
Example	SQRTA RA5, RB7				
	This example takes the the result in RB7.	e square root of	the absolute	value of RA5 and stores	

SQRTAX Load and Square Root of Absolute Value

Syntax	Туре					Syn	tax									
	Integ							•		s, CR						
	Dout									52, Cl		Rd				
	Sing	le-Pr	ecisi	on		SQF	RTAF	- Rs	1, CI	Rs, Cl	Rd					
Execution	Rs ₁	→ Cl	Rs													
	882															
	√CR	$s \rightarrow $	CRd													
'34082 Instruction Word	s															
	Integ	e r or 3 14					0	0	7	6	E	4	0	0		0
	15	0	13	12	<u>11</u> 0	10	9	8	7	6	5 1	4 R	3	 Rs	1	
	0		0	1		1	1	type	0	0	, 0	0	0		0	0
		ID	l		c	Rs	L	1	0	1	0			CRd		
																
	Doub 15	<i>le-Pre</i> 14	ecisio 13	<i>n:</i> 12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	1	1	0	0	0	0	R		Rs	1	
	0	1	0	1	1	1	1	1	1	0	0	R		Rs	2	
		ID			С	Rs		1	0	1	0			CRd		
Instruction to '34082	'34082 31 29 28 25 24 21 20 16 15 0															
			CR			10		CRd		010	1	1111	s	000	0 0	00
Operands	Rs ₁ Rs ₂	р Т	recis	ion v 4020	alue)) sou) to T rce re	MS3	4082						64-bi ouble-		
	CRs	Т	MS3	4082	2 regi	ister t	to co	ntain	the	opera	nd					
	CRd	Т	MS3	4082	2 des	tinati	on re	egiste	r							
Description														are ro CRd		f the
	The	sour	ce re	giste	r, CF	₹s, m	ust b	e in t	he F	A TN	1834	082 ı	regis	ter file	Э.	
Transparency	CMOVGC, one register															
Example	SQR	TAD	A3, .	A5, F	RA5,	RA7										
	This example loads TMS34020 register A5 and A3 into TMS34082 register RA5, takes the square root of the absolute value of the contents of RA5, and stores the result in RA7.															

of RA5, and stores the result in RA7.

د

Syntax	Туре	Syntax			
	Integer	SQRTA +Rs+, C		•	
	Double-Precision	SQRTAD +Rs+,	•		
	Single-Precision	SQRTAF +Rs+,	CHS, CHA		
Execution	$\star Rs \rightarrow CRs$				
	$Rs + 32 \rightarrow Rs$				
	SRS CRS				
	Rs + 32 → Rs √CRs → CRd				
'34020 Instruction Words	15 14 13 12 11 0 0 0 0 0 0	10 9 8 7 1 1 0 1		4 3 2 1 0 0 0 0 transfers	
		1 1 type size		R Rs	
	ID C	Rs 1 0	1 0	CRd	
Instruction to '34082	31 29 28 25 24	21 20 16	6 15	0	
		010 CRd		111t s000 0000	
Operands	Rs TMS34020 sou	irce register contai	ining the me	amony address	
Operanus	113 1100-020 300	ince register contai	aning the me	smory dualess	
	CRs TMS34082 reg	ister to contain the	e operand		
	CRd TMS34082 des	tination register			
Description	SORTAX loads the cont	tents of memory of	ointed to by	Rs into CRs, takes the	
Description				Rs, and stores the result	
	in CRd. After each load	I from memory, Rs	s is increme	nted by 32.	
	The source register, CF	Rs, must be in the	RA TMS34	082 register file.	
Transparency	CMOVMC, postincreme	ent, constant coun	ıt		
Example	SQRTA *A5+, RA5, RA7				
				s given by TMS34020 uare root of the absolute	

register A5 into TMS34082 register RA5, takes the square root of the absol value of the contents of RA5, and stores the result in RA7.

SQRTAX Load from Memory (Predecrement) and Square Root of Absolute Value

.....

and the constraints are abled as an experimental and the second second second second second second second second

Syntax	Type Integer Double-Precision Single-Precision	Syntax SQRTA -+Rs, Cl SQRTAD -+Rs, C SQRTAF -+Rs, C	CRs, CRd		
Execution	Rs – 32 → Rs •Rs → CRs Rs 22 Rs •Rs → CRs •Rs → CRs \sqrt{CRs} → CRd				
'34020	15 14 13 12 11	10 9 8 7	6 5	4 3	2 1 0
Instruction Words	0 0 0 0 1	0 0 0 0	0 1	0 0	0 transfers
	1 0 0 1 1 ID C	11typesizeRs10	00	R	Rs CRd
Instruction to '34082	31 29 28 25 24	21 20 16			0
		010 CRd		111t s	0000 0000
Operands	CRs TMS34082 reg	irce register contain ister to contain the stination register	-	emory ac	ldress
Description	SQRTAx loads the contents of memory pointed to by Rs minus 32 into CRs, takes the square root of the absolute value of the contents of CRs, and stores the result in CRd. Before each load from memory, Rs is decremented by 32.			CRs, and stores	
	The source register, Cl	Rs, must be in the R	RA TMS34	082 regis	ster file.
Transparency	CMOVMC, predecreme	ent, constant count			
Example	SQRTA*A5, RA5, RA	47			
	This example loads m register A5 minus 32 int absolute value of the c	o TMS34082 registe	er RA5, tak	es the so	uare root of the

. . • .

Syntax	Type Integer Double-Precision Single-Precision	Syntax SUB CRs ₁ , CRs SUBD CRs ₁ , CR SUBF CRs ₁ , CR	ns ₂ , CRd	-
Execution	$CRs_1 - CRs_2 \to CRd$			
'34020 Instruction Words	15 14 13 12 11 1 1 0 1 1 1 ID CF CF CF CF	10 9 8 7 0 0 0 0 0 Rs1 C	6 5 0 0 CRs2	4 3 2 1 0 0 0 1 type size CRd
Instruction to '34082	31 29 28 25 24 ID CRs ₁ C	21 20 16 Rs ₂ CRd	0000	0 001t s000 0000
Operands	CRs ₁ TMS34082 RA	register containing	g the minue	end operand
		register containing	g the subtra	ahend operand
Description		· ·	CRs ₁ and	stores the result in CRd.
	(RB register — RA regi	ster) is similar. The d. If an RA register	e order of tl is listed firs	nstruction for subtract he operands determines t, this instruction is used.
Transparency	CEXEC, short			
Example	SUBD RA5, RB3, RA7			
	This example subtracts RA7.	the contents of RE	33 from RA	5 and stores the result in

Syntax	TypeSyntaxIntegerSUB CRs2, CRs1, CRdDouble-PrecisionSUBD CRs2, CRs1, CRdSingle-PrecisionSUBF CRs2, CRs1, CRd
Execution	$CRs_2 - CRs_1 \rightarrow CRd$
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 0 0 0 0 0 0 1 1 type size ID CRs1 CRs2 CRd CRd CRd CRd
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs1 CRs2 CRd 0000 0111 s000 0000
Operands	CRs ₁ TMS34082 RA register containing the subtrahend operand
Description	CRs ₂ TMS34082 RB register containing the minuend operand CRd TMS34082 destination register
Description	SUBx subtracts the contents of CRs_1 from CRs_2 and stores the result in CRd. Notice in the syntax that the CRs_2 operand is listed first.
	The syntax for this instruction and the previous instruction, subtract (RA register — RB register), is similar. The order of the operands determines which instruction is used. If an RA register is listed first, the previous instruction is used. If an RB register is first, this instruction is used.
Transparency	CEXEC, short
Example	SUB RB5, RA3, RA7
	This example subtracts the contents of RA3 from RB5 and stores the result in RA7.

Syntax	Туре	Syntax		
•	Integer	SUB Rs ₁ , Rs ₂ , CRs ₁ , CRs ₂ , CRd		
	Single-Precision	SUBF Rs_1 , Rs_2 , CRs_1 , CRs_2 , CRd		
Execution	$Rs_1 \rightarrow CRs_1$			
	$Rs_2 \rightarrow CRs_2$			
	$CRs_1 - CRs_2 \rightarrow CRd$			
'34020	15 14 13 12 11	10 9 8 7 6 5 4 3 2 1 0		
Instruction Words	0 0 0 0 0	1 1 0 0 1 0 R Rs1		
	0 1 0 0 0	0 1 type 0 0 0 R Rs2		
	ID C	Rs ₁ CRs ₂ CRd		
Instruction to '34082	31 29 28 25 24	21 20 16 15 0		
	ID CRs ₁ C	Rs ₂ CRd 0100 001t 0000 0000		
Operands	Rs1 TMS34020 sou	rce register for the first (minuend) value to TMS34082		
Operanus	1131 11004020 300			
	Rs ₂ TMS34020 so TMS34082	urce register for the second (subtrahend) value to		
	CRs ₁ TMS34082 RA	register to contain the minuend operand		
	CRs ₂ TMS34082 RB	register to contain the subtrahend operand		
	CRd TMS34082 des	tination register		
Description		ts of Rs_1 and Rs_2 into CRs_1 and CRs_2 respectively, of CRs_2 from CRs_1 , and stores the result in CRd.		
	The syntax for this instruction and the next instruction for su (RB register — RA register) is similar. The order of the operands deter which instruction is used. If an RA register is listed first, this instruction is If an RB register is first, the other instruction is used.			
	The double-precision for	orm of this instruction is not supported.		
Transparency	CMOVGC, two register	S		
Example	SUBF A0, A3, RA5, RE	33, RA7		
		S34020 registers A0 and A3 into TMS34082 registers s the contents of RB3 from RA5, and stores the result		

SUBx Load and Subtract, (RB Register – RA Register)

Syntax	Type S	Svntax
-,		UB Rs ₂ , Rs ₁ , CRs ₂ , CRs ₁ , CRd
		UBF Rs ₂ , Rs ₁ , CRs ₂ , CRs ₁ , CRd
Execution	$\begin{array}{l} \operatorname{Rs}_1 \to \operatorname{CRs}_1 \\ \operatorname{Rs}_2 \to \operatorname{CRs}_2 \\ \operatorname{CRs}_2 - \operatorname{CRs}_1 \to \operatorname{CRd} \end{array}$	
'34020	15 14 13 12 11 1	0 9 8 7 6 5 4 3 2 1 0
Instruction Words		1 1 0 0 1 0 R Rs1
	0 1 0 0 1	1 1 type 0 0 0 R Rs2
	ID CRs ₁	CRs2 CRd
Instruction to '34082	31 29 28 25 24	21 20 16 15 0
	ID CRs ₁ CRs ₂	
Operands	Rs ₁ TMS34020 sourc TMS34082	ce register for the first (subtrahend) value to
	Rs ₂ TMS34020 sourc TMS34082	ce register for the second (minuend) value to
	CRs ₁ TMS34082 RA re	gister to contain the subtrahend operand
	CRs ₂ TMS34082 RB re	gister to contain the minuend operand
	CRd TMS34082 destin	ation register
Description	subtracts the contents of C	of Rs_1 and Rs_2 into CRs_1 and CRs_2 respectively, CRs_1 from CRs_2 , and stores the result in CRd. Note d CRs_2 are listed before Rs_1 and CRs_1 .
	(RA register — RB register which instruction is used.	struction and the previous instruction, subtract er), is similar. The order of the operands determines f an RA register is listed first, the previous instruction is first, this instruction is used.
	The double-precision form	n of this instruction is not supported.
Transparency	CMOVGC, two registers	
Example	SUB A3, A0, RB5, RA3, F	} A7
		4020 registers B6 and A0 into TMS34082 registers he contents of RA3 from RB5, and stores the result

Curitary	Turne	Cuntor			
Syntax	Type Integer	Syntax SUB +Rs+, CRs ₁ , CRs ₂ , CRd			
	Double-Precision	SUBD $\star Rs+$, CRs_1 , CRs_2 , CRd			
	Single-Precision	SUBF +Rs+, CRs ₁ , CRs ₂ , CRd			
Execution	$*Rs \rightarrow CRs_1$				
	$Rs + 32 \rightarrow Rs$				
	Rs → CRs				
	Rs + 32 → Rs				
	$\star Rs \rightarrow CRs_2$				
	$Rs + 32 \rightarrow Rs$				
	PRS → CRS2				
	Rs+32 Rs				
	$CRs_1 - CRs_2 \rightarrow CRd$				
'34020	15 14 13 12 11	10 9 8 7 6 5 4 3 2 1 0			
Instruction Words	0 0 0 0 0	1 1 0 1 0 0 0 transfers			
	1 0 0 0 0	0 1 type size 0 0 R Rs			
	ID	CRs ₁ CRs ₂ CRd			
Instruction to '34082	31 29 28 25 24	21 20 16 15 0			
		Rs2 CRd 1000 001t s000 0000			
Operands	Rs TMS34020 reg	ister containing the memory address			
		uncipation to a contain the unique and a consumed			
	CRs ₁ TMS34082 RA	register to contain the minuend operand			
	CRs ₂ TMS34082 RB	register to contain the subtrahend operand			
	CRd TMS34082 des	stination register			
Description	SI IPy loads the contor	nts of memory pointed to by Rs into CRs1 and CRs2,			
Description		of CRs_2 from CRs_1 , and stores the result in CRd . After			
		y, Rs is incremented by 32.			
		instruction and the next instruction for subtract			
		ister) is similar. The order of the operands determines d. If an RA register is listed first, this instruction is used.			
		, the other instruction is used.			
	·				
Transparency	CMOVMC, postincrement, constant count				
Example	SUBF *A0+, RA5, RB3, RA7				
		nemory starting at the address given by TMS34020 082 registers RA5 and RB3, subtracts the contents of pres the result in RA7.			

a contract of the analysis and and a second

Syntax	Туре	Svntax		
•	Integer	SUB +Rs+, CRs2		
	Double-Precision Single-Precision	SUBD +Rs+, CRs SUBF +Rs+, CRs		
	Single-r recision	3001 */137, 0/18	2, 01137, 0	/10
Execution	$Rs \rightarrow CRs_1$			
	$Rs + 32 \rightarrow Rs$			
	RSHCRS			
	Rs + 32 — Rs ∗Rs → CRs₂			
	$Rs + 32 \rightarrow Rs$			
	RS-CR5			
	Rs + 32 - Rs			
	$CRs_2 - CRs_1 \to CRd$			
'34020	15 14 13 12 11	10 9 8 7	65	4 3 2 1 0
Instruction Words	0 0 0 0	1 1 0 1	0 0	0 0 transfers
	1 0 0 0 0	1 1 type size	0 0	R Rs
		s ₁ CF	ls2	CRd
Instruction to '34082	31 29 28 25 21		15	0
	ID CRs ₁ C	Rs ₂ CRd	1000 0	011t s000 0000
Operands	Rs TMS34020 reg	ister containing the	memory a	ddress
	CRs ₁ TMS34082 RA	register to contain	the subtral	hend operand
	CRs ₂ TMS34082 RB	register to contain	the minuer	nd operand
	CRd TMS34082 des	stination register		
Description	SUBx loads the conter	nts of memory point	ed to by B	is into CRs1 and CRs2,
Description				the result in CRd. After
	each load from memory			e in the syntax that CRs ₂
	is listed before CRs ₁ .			
	The syntax for this	instruction and th	e previou	s instruction, subtract
				e operands determines
	is used. If an RB regist	-		, the previous instruction ed.
Transparency	CMOVMC, postincrem			
Example	SUBF *B6+, RB5, RA3			
		-		
	•	082 registers RB5	and RA3, s	s given by TMS34020 ubtracts the contents of

Load from Memory (Predecrement) and Subtract, (RA Register – RB Register) SUBx

Syntax	Туре	Svntax						
v ymax	Integer	SUB – +Rs, CRs ₁ , CRs ₂ , CRd						
	Double-Precision	SUBD $- Rs, CRs_1, CRs_2, CRd$						
	Single-Precision	SUBF $- *Rs$, CRs_1 , CRs_2 , CRd						
Execution	$Rs - 32 \rightarrow Rs$							
	$\star Rs \rightarrow CRs_1$							
	$Rs - 32 \rightarrow Rs$							
	•Rs CAs _t							
	$Rs - 32 \rightarrow Rs$							
	$\star Rs \rightarrow CRs_2$							
	Rs-32-Rs							
	+Rs-+CRs2							
	$CRs_1 - CRs_2 \rightarrow CRd$							
'34020	15 14 13 12 11	10 9 8 7 6 5 4 3 2 1 0						
Instruction Words	0 0 0 1	0 0 0 0 0 1 0 0 transfers						
	1 0 0 0 0							
		CRs ₁ CRs ₂ CRd						
Instruction to '34082	31 29 28 25 24	21 20 16 15 0						
	ID CRs ₁ C	CRs ₂ CRd 1000 001t s000 0000						
Operands	Rs TMS34020 reg	gister containing the memory address						
	CRs ₁ TMS34082 RA	A register to contain the minuend operand						
	CRs ₂ TMS34082 RB	3 register to contain the subtrahend operand						
	CRd TMS34082 des	estination register						
Description	subtracts the contents o	ints of memory pointed to by Rs into CRs_1 and CRs_2 , of CRs_2 from CRs_1 , and stores the result in CRd. Before ry, Rs is decremented by 32.						
	(RB register — RA regi which instruction is use	instruction and the next instruction for subtract gister) is similar. The order of the operands determines ed. If an RA register is listed first, this instruction is used. t, the other instruction is used.						
Transparency	CMOVMC, predecreme	ient, constant count						
Example	SUBF -*A0, RA5, RB3	3, RA7						
	register A0 minus 32 ir	nemory starting at the address given by TMS34020 into TMS34082 registers RA5 and RB3, subtracts the RA5, and stores the result in RA7.						

Syntax	Type Syntax											
- j · · · · · · ·	Integer		∗Rs, CRs	2, CR	s ₁ , C	Rd						
	Double-Precision		–+Rs, CF		•							
	Single-Precision	SUBF . – $\star Rs$, CRs ₂ , CRs ₁ , CRd										
Execution	$Rs - 32 \rightarrow Rs$											
	$\star Rs \rightarrow CRs_1$											
	$Rs - 32 \rightarrow Rs$											
	-Rs - CRs											
	Rs=32= Rs											
	∗Rs → CRs ₁											
	RS#32#BS											
	$\frac{\mathbf{Rs}}{\mathbf{CRs}_2} - \mathbf{CRs}_1 \rightarrow \mathbf{CRd}$											
'34020 Instruction Words	<u>15 14 13 12 11</u> 0 0 0 0 1		87	6	5	4	3	2	<u>1 (</u> ansfers)		
			type siz		0	R		<u> </u>				
		1		Rs ₂	<u> </u>		I	CRd				
Instruction to '34082	31 29 28 25 24	01.00				A				~		
Instruction to 54082		21 20 Rs ₂	CRd	15	0 (011t	s	000	000			
				1	······			r		لسب		
Operands	Rs TMS34020 reg	ister cont	aining the	emem	ory a	ddre	SS					
	CRs1 TMS34082 RA	reaister t	o contain	the su	ıbtral	hend	oper	and				
							-1					
	CRs ₂ TMS34082 RB	register t	to contain	the m	inuer	nd op	eran	d				
	CRd TMS34082 des	stination r	eaister									
			•						÷			
Description	SUBx loads the content											
	CRs ₂ , subtracts the cor Before each load from			Sec. 1								
	that CRs ₂ is listed befo	•		emen		y 02.	NOR	2 II I U	ie synt	an		
	. –					o in	-	tion	o ubtra	n+		
	The syntax for this (RA register — RB regi											
	which instruction is use											
	is used. If an RB regist	er is first,	this instr	uction	is us	ed.						
Transparency	CMOVMC, postincrem	ent, const	tant coun	t								
Example	SUBF ∗B6+, RB5, RA3	, RA7										
	This example loads m											
	register B6 minus 32 in contents of RA3 from F						RA3,	sub	tracts t	he		
	CONCERNS OF MAS HOLD F	ibb, and i		10901		<i>ι</i>						

Syntax	Double-Precision	Syntax SUBAD CRs ₁ , CRs ₂ , CRd SUBAF CRs ₁ , CRs ₂ , CRd										
Execution	$ CRs_1 - CRs_2 \to CRd$											
'34020 Instruction Words	15 14 13 12 11 1 1 0 1 1	10 9 8 7 6 5 4 0 0 0 0 0 0 1	3 2 1 0 0 1 1 size									
	ID CR:	t CRs2	CRd									
Instruction to '34082	<u>31 29 28 25 24</u>	21 20 16 15 s2 CRd 0000 101	0									
	ID CRs ₁ CR	s ₂ CRd 0000 101										
Operands	CRs ₁ Coprocessor register containing the first operand. Must be from RA register file.											
	CRs ₂ Coprocessor register containing the second operand. Must be from RB register file.											
	CRd Coprocessor de	stination register										
Description	This instruction subtracts result in CRd.	s CRs ₂ from CRs ₁ , placing the al	bsolute value of the									
	The integer form of this i	nstruction is not supported.										
Instruction Type	CEXEC, short											
Example	SUBAD RA8, RB3, RB1											
	•	the double-precision floating-poi takes the absolute value of the di										

SUBAx Load and Absolute Value of Subtraction

Syntax	SUBAF Rs1, Rs2, CRs1, CRs2, CRd											
Execution	$\begin{array}{l} \operatorname{Rs}_1 \to \operatorname{CRs}_1 \\ \operatorname{Rs}_2 \to \operatorname{CRs}_2 \\ \operatorname{CRs}_1 - \operatorname{CRs}_2 \to \operatorname{CRd} \end{array}$											
'34020 Instruction Words	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs1 CRs2 CRd 0100 1011 0000 0000											
Operands	Rs ₁ TMS34020 source register for first 32-bit single-precision floating-point value to coprocessor											
	Rs ₂ TMS34020 source register for second 32-bit single-precision floating-point value to coprocessor											
	CRs ₁ Coprocessor RA register to contain the first single-precision operand											
	CRs ₂ Coprocessor RB register to contain the second single-precision operand											
	CRd Coprocessor destination register											
Description	This instruction loads the contents of Rs_1 and Rs_2 into CRs_1 and CRs_2 respectively and subtracts CRs_2 from CRs_1 , placing the absolute value of the result in CRd.											
	The integer and double-precision forms of this instruction are not supported.											
Instruction Type	CMOVGC, two registers											
Example	SUBAF A9, A3, RA9, RB3, RB1											
	This instruction loads the contents of TMS34020 registers A9 and A3 into coprocessor registers RA9 and RB3 respectively, subtracts RB3 from RA9, takes the absolute value of the difference, and stores the result in RB1.											

Syntax	Type Syntax
•	Double-Precision SUBAD *Rs+, CRs1, CRs2, CRd
	Single-Precision SUBAF +Rs+, CRs ₁ , CRs ₂ , CRd
Execution	$\star Rs \rightarrow CRs_1$
	$Rs + 32 \rightarrow Rs$
	#Rs==+CRs
	Rs+32→Rs
	$\star Rs \rightarrow CRs_2$
	$Rs + 32 \rightarrow Rs$
	•Rs+ CRs2 Rs +- 32 Rs
	$ CRs_1 - CRs_2 \rightarrow CRd$
'34020 Instruction Words	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 transfers
	0 0 0 0 1 1 0 1 0 0 0 0 transfers 1 0 0 0 1 1 1 size 0 0 R Rs
	ID CRs ₁ CRs ₂ CRd
Instruction to '34082	31 29 28 25 24 21 20 16 15 0 ID CRs1 CRs2 CRd 1000 1011 s000 0000
Operands	Rs TMS34020 register containing the memory address
	CRs ₁ Coprocessor RA register to contain the first operand
	CRs ₂ Coprocessor RB register to contain the second operand
	CRd Coprocessor destination register
Description	This instruction loads the contents of memory pointed to by Rs into CRs1 and
	CRs_2 and subtracts CRs_2 from CRs_1 , placing the absolute value of the result
	in CRd. After each load from memory, Rs is incremented by 32.
	The integer form of this instruction is not supported.
Instruction Type	CMOVMC, postincrement, constant count
Example	SUBAD *A9+, RA9, RB3, RB1
	This instruction loads the contents memory starting at the address given by TMS34020 register A9 into coprocessor registers RA9 and RB3 respectively, subtracts RB3 from RA9, takes the absolute value of the difference, and stores the result in RB1.

SUBAx Load from Memory (Predecrement) and Absolute Value of Subtraction

Type Syntax
Double-Precision SUBAD -+Rs, CRs ₁ , CRs ₂ , CRd
Single-Precision SUBAF $\rightarrow Rs$, CRs_1 , CRs_2 , CRd
$Rs - 32 \rightarrow Rs$
$\cdot Rs \rightarrow CRs_1$
Rs=32=+ Rs
+Rs CRs
$Rs - 32 \rightarrow Rs$
$*Rs \rightarrow CRs_2$
Rs-32Rs
+Rs==+CRs2
$ CRs_1 - CRs_2 \rightarrow CRd$
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 0 1 0 0 transfers
1 0 0 0 1 0 1 1 size 0 0 R Rs
ID CRs ₁ CRs ₂ CRd
31 29 28 25 24 21 20 16 15 0
ID CRs1 CRs2 CRd 1000 1011 s000 0000
Rs TMS34020 register containing the memory address
CRs ₁ Coprocessor RA register to contain the first operand
CRs ₂ Coprocessor RB register to contain the second operand
CRd Coprocesor destination register
This instruction loads the contents of memory pointed to by Rs into CRs_1 and
CRs ₂ and subtracts CRs ₂ from CRs ₁ , placing the absolute value of the result
in C.Rd. Before each load from memory, Rs is decremented by 32.
The integer form of this instruction is not supported.
CMOVMC, predecrement, constant count
SUBAD –*A9, RA9, RB3, RB1
This instruction loads the contents memory starting at the address given by TMS34020 register A9 minus 32 into coprocessor registers RA9 and RB3
respectively, subtracts RB3 from RA9, takes the absolute value of the
difference, and stores the result in RB1.

Syntax	Integer Double-Precision	Syntax TWO CRd TWOD CRd TWOF CRd
Execution	$2 \rightarrow CRd$	
'34020	15 14 13 12 11	10 9 8 7 6 5 4 3 2 1 0
Instruction Words	1 1 0 1 1	0 0 0 0 0 0 0 0 0 type size
	ID 1 1	0 1 1 1 0 1 CRd
Instruction to '34082	31 29 28 25 24	21 20 16 15 0
	ID 1101 110	01 CRd 0000 000t s000 0000
Operands	CRd TMS34082 destin	ination register.
Description	TWOx loads the value tw	wo (of the appropriate type) into register CRd.
Instruction Type	CEXEC, short	
Example	TWO RB6	
	This example loads an in	nteger two into TMS34082 register RB6.

VADDx Vector Add

Syntax	TypeSyntaxIntegerVADDDouble-PrecisionVADDDSingle-PrecisionVADDF	
'34020 Instruction Words		8 7 6 5 4 3 2 1 0
		0 0 1 1 1 1 1 type size 1 0 0 1 0 0 0 0 0 0
Instruction to '34082	31 29 28	0 000 0011 111t s000 0000
Description	Adds the X, Y and Z components of a vector in RA2-RA	of a vector in RB2–RB0 to the X, Y, and Z A0.
Implied Operands	RA1 = Y1 RI	B0 = X2 B1 = Y2 B2 = Z2
Algorithm	RA1 = RA1 + RB1 ; ነ	X1 + X2 Y1 + Y2 Z1 + Z2
Temporary Storage	None	
Outputs	The sum of the vectors is stored in	RA2-RA0.
Instruction Type	CEXEC, short	

Syntax	Type Integer Double-Pre Single-Pre	Syntax VCROS VCROSD VCROSF													
'34020 Instruction Words	15 14 1 1 ID	13 12 0 1 0 0	11 1 0	10 0 0	9 0 0	8 0 1	7 0 1	6 1 0	5 1 0	4 1 0	3 1 0	2 1 0	1 type 0	0 size 0	
Instruction to '34082	31 29 28 ID 0	000) 1	100) (0000	0	011	1	1 1 t	s (000	0 0	000	
Description	Given two v product (V			(RA2	-RA	0) an	d V2	(RB2	-RB	0), fir	ndthe	eir ve	ctoro	ross	
Implied Operands	RA1 = Y1					RB0 = X2 RB1 = Y2 RB2 = Z2									
Algorithm	$C = RA1 \times RA0 = C - C = RA2 \times RA1 = C - C = RA0 \times RA2 = C - C = RA0 \times RA2 = C - C = $	(RB1 × RB0 (RB2 × RB1	RA0)		; Y1 → ; (Y1 ; Z1 → ; (Z1 ; X1 → ; (X1	× Z2 < X2 × X2 < Y2) — (Z	2 ×3	X1)					
Temporary Storage	С														
Temporary Storage	C, RB9														
Temporary Storage	С														
Outputs	The vector cross product V3 is stored in registers RA2–RA0. RA0 = X3 RA1 = Y3 RA2 = Z3														
Instruction Type	CEXEC, st	nort													

VDOTx Scalar Dot Product

Syntax	Type Integer Double-Precision Single-Precision				Syntax VDOT VDOTD VDOTF										
'34020	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Instruction Words	1 1	0	1	1	0	0	0	0	1	1	1	1	1	type	size
	ID		0	0	0	0	1	0	1	1	0	0	0	0	0
Instruction to '34082	31 29 28										0				
	ID	0	000	1	011)	0000	0 0	011	1	11t	s (000	0 0	00
Description	Given to product		ctors	V1	in RA	2-F	A0 a	and V	'2 in	RB2	-RB(), ca	Icula	te the	e dot
Implied Operands	Vector \ RA0 = > RA1 = \ RA2 = 2	(1 (1	₹A2-	RA0	and		RB0 RB1	in RI = X2 = Y2 = Z2	32-F	80					
Algorithm	• •	A0 × ; + (R ; + (R	A1 ×		•			× X2 × X2 × X2			•	⊦ (Z1	×Z2	2)	
Temporary Storage	С														
Outputs	The sca	lar do	t proc	duct	of the	e two	vec	tors is	s stoi	red ir	۱RA	4.			
Instruction Type	CEXEC	, shor	t												

Vector Magnitude VMAGX

Syntax	TypeSyntaIntegerVMAGDouble-PrecisionVMAGSingle-PrecisionVMAG														
'34020 Instruction Words	15 14 13 1 1 0	12 1	<u>11</u>	10 0	9	8	7	6	5	4	3	2	1 type	0 size	
	ID	0	0	0	0	1	. 1	0	1	0	0	0	0	0	
Instruction to '34082	31 29 28 ID 0 0									s 0	0000 0000				
Description	Given a vector in RA2-RA0, compute the length of the vector.														
Implied Operands	RA0 = X1 RA1 = Y1 RA2 = Z1														
Algorithm	C = RA0 RA3 = C × C CT = RA1				;	(X ×	: X)								
	$CT = CT \times C$ RA3 = CT + R C = RA2					(Y × (X ×	< Y) < X) +	• (Y ×	(Y)						
	$CT = C \times C$ RA3 = CT + R RA3 = SQRT(1			(Z × (X × SQF	: Z) : X) + RT (X	(Y × (2 +)	(Y) + (² +)	· (Z × Z ²)	: Z)				
Temporary Storage	C, CT														
Outputs	The scalar ma	gnitu	ide o	f the	vect	or is	store	d in l	RA3.						
Instruction Type	CEXEC, short														

VNORMX Normalize a Vector

Syntax	Туре	Synta	~											
Jymax	Double-Precision	VNORMD												
	Single-Precision	VNORMF												
	Oligica recision													
'34020	15 14 13 12 11	10 8		7	6	5	4	3	2	1	0			
Instruction Words	1 1 0 1 1	0 0	0	0	1	1	1	1	1	1	size			
	ID 0 0	0.0) 1	1	1	0	0	0	0	0	0			
	<u> </u>										0			
Instruction to '34082	31 29 28 ID 0 0001	1100 0000 0011 1111 s000 000												
		1100												
Description	Given a vector in RA2	–RA0. fi	nd the	unit	lenat	h ve	ctor ·	that i	is in	the	same			
	direction as the given w				U									
	-													
	The integer form of this	instruc	tion is I	not si	ioqqi	ted.								
Implied Operands	RA0 = X0													
piica operanae	RA1 = Y0													
	RA2 = Z0													
Algorithm	C = RA0													
Aigonunn	$C = C \times C$; X0 :	~ Y∩										
	$C = C \times C$ CT = RA1		, 70 /	x 70										
	$RA9 = CT \times CT$; Y0 :	~ V ∩										
	RA9 = C + RA9		; (X0 × X0) + (Y0 × Y0)											
	C = RA2	; (AU × AU) + (TU × TU)												
	$C = C \times C$; Z0 × Z0												
	RA9 = C + RA9													
	C = SQRT(RA9)	; (X0 × X0) + (Y0 × Y0) + (Z0 × Z0) : SQRT (X0 ² + Y0 ² + Z0 ²)												
	RA3 = C	; save the magnitude in RA3												
	C = 1/C		;1/1		-									
	$RA0 = C \times RA0$			-										
	$RA1 = C \times RA1$													
	$RA2 = C \times RA2$													
Temporary Storage	C, CT, RA9													
Outputs	The unit length vector i	s stored	in regi	sters	RA2	-RA	0.							
	RA0 = X0 / (SQRT(X02 + Y02 + Z02)) $RA1 = Y0 / (SQRT(X02 + Y02 + Z02))$ $RA2 = Z0 / (SQRT(X02 + Y02 + Z02))$ $RA3 = SQRT(X02 + Y02 + Z02)$ $C = 1 / (SQRT(X02 + Y02 + Z02))$													
Instruction Type	CEXEC, short													

Vector Reflection VRFLCTx

Syntax	Type Integer Double-Precision Single-Precision	Syntax VRFLC1 VRFLC1 VRFLC1	FLCT FLCTD										
'34020 Instruction Words	15 14 13 12 11 1 1 0 1 1	10 9	8	7	6	5	4	3	2	1 type	0 size		
		0 0	1	1	1	1	0	0	0	0	0		
Instruction to '34082	31 29 28 ID 0 0001	1110 (0000	0 (011	1	1 1 t	S	000	0 0	000		
Description	The VRFLCT instruction a surface defined by a n before issuing the VRF	ormal vec	tor. T	he no									
Implied Operands	Vector in RA2—RA0 i RB2–RB0 is the <i>incider</i> RA0 = Xn RA1 = Yn RA2 = Zn	nt vector	r <i>mal</i> + (X _i i + RB0 = RB1 = RB2 =	Y _i j + = Xi = Yi	r (X _n Zi k))	, i +	Y _n j	+ Z _r	ז <mark>ר)</mark> .	Vecto	or in		
Algorithm	$C = RA0 \times RB0$ $C = C + (RA1 \times RB1)$ $C = C + (RA2 \times RB2)$ $C = C + C$ $CT = C \times RA0$ $RB0= CT - RB0$ $CT = C \times RA1$ $RB1= CT - RB1$ $CT = C \times RA2$ $RB2= CT - RB2$;	; C = ; Xr = ; Yr =	ar dol 2 × co Xn × Yn × Zn ×	(2 × (2 ×	neta) cos(cos((The (The	ta)) - ta)) -	- Xi - Yi	eta))			
Temporary Storage	C, CT, RA9												
Outputs	The reflected vector co	mponents	s x, y a	and z	ares	store	ed in	RB2	-RB	0.			
	$\begin{array}{l} RB0 = Xr = Xn \times (2 \times ((Xn \times Xr) + (Yn \times Yr) + (Zn \times Zr))) - Xi \\ RB1 = Yr = Yn \times (2 \times ((Xn \times Xr) + (Yn \times Yr) + (Zn \times Zr))) - Yi \\ RB2 = Zr = Zn \times (2 \times ((Xn \times Xr) + (Yn \times Yr) + (Zn \times Zr))) - Zi \end{array}$												
Instruction Type	CEXEC, short												

......

Syntax	Type Integer Double-Precision Single-Precision	Syntax VSCL CRs VSCLD CRs VSCLF CRs
'34020 Instruction Words	15 14 13 12 11 1 1 0 1 1 ID 0 0 0	10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 1 1 1 1 type size 0 0 0 1 1 1 1 CRs
Instruction to '34082	31 29 28 25 24 ID CRs 0	0 1110 0000 0001 111t s000 0000
Description	The X, Y, and Z compo by a scalar in CRs.	nents of a vector in registers RA2-RA0 are multiplied
Operands	CRs RB register co file.	ntaining the scaling factor. Must be in the RB register
Implied Operands	RA0 = X1 RA1 = Y1 RA2 = Z1	
Algorithm	$RA0 = RA0 \times CRs$ $RA1 = RA1 \times CRs$ $RA2 = RA2 \times CRs$	
Temporary Storage	None	
Outputs	The scaled vector is st RA0 = X1' RA1 = Y1' RA2 = Z1'	pred in RA2–RA0.
Instruction Type	CEXEC, short	

~~~~~

#### Syntax

| Type             | Synta |
|------------------|-------|
| Integer          | VSCL  |
| Double-Precision | VSCL  |
| Single-Precision | VSCL  |

Syntax VSCL Rs<sub>1</sub>, CRs VSCLD Rs<sub>1</sub>, Rs<sub>2</sub>, CRs VSCLF Rs<sub>1</sub>, CRs

#### '34082 Instruction Words

| 34082 Instruction Word |                   | or or ( | Sinalo  | Drog   | ision:           |         |          |                  |        |       |        |          |       |       |          |       |
|------------------------|-------------------|---------|---------|--------|------------------|---------|----------|------------------|--------|-------|--------|----------|-------|-------|----------|-------|
|                        | 15                | 14      | 13      | 12     | 11               | 10      | 9        | 8                | 7      | 6     | 5      | 4        | 3     | 2     | 1        | 0     |
|                        | 0                 | 0       | 0       | 0      | 0                | 1       | 1        | 0                | 0      | 0     | 1      | R        |       | R     | \$1      |       |
|                        | 0                 | 1       | 0       | 1      | 1                | 1       | 1        | type             | 0      | 0     | 0      | 0        | 0     | 0     | 0        | 0     |
|                        |                   | ID      | L       | 0      | 0                | 0       | 0        | 0                | 1      | 1     | 1      | 1        |       | CI    | Rs       |       |
|                        | Doub              | le-Pre  | cisio   | n:     |                  |         |          |                  |        |       |        |          |       |       |          |       |
|                        | 15                | 14<br>0 | 13      | 12     | 11<br>0          | 10<br>1 | 9        | 8                | 7      | 6     | 5      | 4<br>  R | 3     | 2     | 1        | _0    |
|                        | 0                 | 1       | 0       |        | 1                |         |          |                  | 1      | 0     | 0      | R        |       |       | \$1      |       |
|                        |                   |         |         | 0      | 0                | 0       | 0        | 0                |        | 1     | 1      | 1        |       |       | s2<br>Rs |       |
|                        | L                 |         |         | 1      | I                | L       | <u> </u> | <u> </u>         | L      | L     | L      | I        | I     |       |          |       |
| Instruction to '34082  | 31<br>ID          | 29 2    | 8<br>CR |        | 24<br>0          | 111     | 0        | 000              | 0 0    | )101  | 1      | 11t      | s     | 000   | 0.0      | 0     |
|                        | L                 |         |         |        |                  |         | <u> </u> |                  |        |       |        |          |       |       |          |       |
| Description            |                   |         |         |        | ompo<br>(load    |         |          |                  | tor in | regis | sters  | RA2      | -RA(  | ) are | multi    | plied |
| Operands               | Rs <sub>1</sub>   |         |         |        |                  |         |          | er for<br>-point |        |       |        |          |       |       | 4-bit    |       |
|                        | Rs <sub>2</sub>   |         |         |        | ) so<br>TMS      |         | _        | jister           | for    | res   | t of   | the      | do    | uble  | -prec    | ision |
|                        | CRs               |         |         |        | or Rl<br>r file. |         | ister    | to co            | ontain | the   | scalii | ng fa    | ctor. | Mus   | t be i   | n the |
| Implied Operands       | RA0<br>RA1<br>RA2 | = Y1    |         |        |                  |         |          |                  |        |       |        |          |       |       |          |       |
| Algorithm              | Rs <sub>1</sub>   | → C     | Rs      |        |                  |         |          |                  |        |       |        |          |       |       |          |       |
|                        | Rsy               | ÷       | Rs      |        |                  |         |          |                  |        |       |        |          |       |       |          |       |
|                        | RA0               |         |         |        |                  |         |          |                  |        |       |        |          |       |       |          |       |
|                        | RA1               |         |         |        |                  |         |          |                  |        |       |        |          |       |       |          |       |
|                        | RA2               |         | 12 X    | GHS    |                  |         |          |                  |        |       |        |          |       |       |          |       |
| Temporary Storage      | None              | Э       |         |        |                  |         |          |                  |        |       |        |          |       |       |          |       |
| Outputs                |                   |         |         | ctor i | is sto           | red i   | n RA     | 2-R/             | 40.    |       |        |          |       |       |          |       |
|                        | RA0<br>RA1        |         |         |        |                  |         |          |                  |        |       |        |          |       |       |          |       |
|                        | RA2               |         |         |        |                  |         |          |                  |        |       |        |          |       |       |          |       |
| Instruction Type       | СМС               | VG      | C, on   | e or t | two r            | egist   | ers      |                  |        |       |        |          |       |       |          |       |

### VSCLx Load from Memory (Postincrement) and Multiply a Vector by a Scaling Factor

| Syntax                | Type Syntax                                                                    |
|-----------------------|--------------------------------------------------------------------------------|
| <b>Oymax</b>          | Integer VSCL *Rs+, CRs                                                         |
|                       | Double-Precision VSCLD +Rs+, CRs                                               |
|                       | Single-Precision VSCLF *Rs+, CRs                                               |
|                       |                                                                                |
| '34020                | <u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>                                   |
| Instruction Words     | 0 0 0 0 0 1 1 0 1 0 0 0 0 transfers                                            |
|                       | 1 0 0 1 1 1 1 type size 0 0 R Rs                                               |
|                       | ID 0 0 0 0 0 1 1 1 1 CRs                                                       |
| Instruction to '34082 | 31 29 28 25 24 0                                                               |
|                       | ID CRs 0 1110 0000 1001 111t s000 0000                                         |
|                       |                                                                                |
| Description           | The X, Y, and Z components of a vector in registers RA2-RA0 are multiplied     |
|                       | by a scalar in CRs (loaded from memory pointed to by Rs). After each load from |
|                       | memory, Rs is incremented by 32.                                               |
| Operands              | Rs TMS34020 register containing the memory address                             |
|                       | CRs Coprocessor RB register to contain the scaling factor. Must be in the      |
|                       | RB register file.                                                              |
| Implied Operands      | RA0 = X1                                                                       |
| Implieu Operalius     | RA1 = Y1                                                                       |
|                       | RA2 = Z1                                                                       |
|                       |                                                                                |
| Algorithm             | ∗Rs → CRs                                                                      |
|                       | $Rs + 32 \rightarrow Rs$                                                       |
|                       | ins in Cha                                                                     |
|                       | Rs+32Rs                                                                        |
|                       | $RA0 = RA0 \times CRs$                                                         |
|                       | $RA1 = RA1 \times CRs$                                                         |
|                       | $RA2 = RA2 \times CRs$                                                         |
| Temporary Storage     | None                                                                           |
| Outputs               | The scaled vector is stored in RA2–RA0.                                        |
|                       | RA0 = X1'                                                                      |
|                       | RA1 = Y1'                                                                      |
|                       | RA2 = Z1'                                                                      |
| Instruction Type      | CMOVMC, postincrement, constant count                                          |

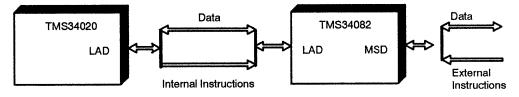
Load from Memory (Predecrement) and Multiply a Vector by a Scaling Factor, Integer VSCL

| Syntax                | Type                                                                                                                                                                                              |            |        | Syn    | tax   |        |       |       |       |       |       |     |             |   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|--------|-------|--------|-------|-------|-------|-------|-------|-----|-------------|---|
|                       | Integer                                                                                                                                                                                           |            |        |        |       | +Rs,   | CRs   |       |       |       |       |     |             |   |
|                       | Double-Preci                                                                                                                                                                                      |            |        |        |       | -+R    |       |       |       |       |       |     |             |   |
|                       | Single-Precis                                                                                                                                                                                     | ion        |        | VSC    | CLF   | - +R   | s, CF | ls    |       |       |       |     |             |   |
| '34020                | 15 14 13                                                                                                                                                                                          | 12         | 11     | 10     | 9     | 8      | 7     | 6     | 5     | 4     | 3     | 2   | 1 0         |   |
| Instruction Words     | 0 0 0                                                                                                                                                                                             | 0          | 1      | 0      | 0     | 0      | 0     | 0     | 1     | 0     | 0     | 0   | transfers   |   |
|                       | 1 0 0                                                                                                                                                                                             | 1          | 1      | 1      | 1     | type   | size  | 0     | 0     | R     |       | F   | ls          |   |
|                       | ID                                                                                                                                                                                                | 0          | 0      | 0      | 0     | 0      | 1     | 1     | 1     | 1     |       | С   | Rs          |   |
| Instruction to '34082 | 31 29 28                                                                                                                                                                                          | 25         | 24     |        |       |        |       |       |       |       |       |     | 0           |   |
|                       |                                                                                                                                                                                                   | Rs         | 0      | 111    | 0     | 000    | 0     | 001   | 1     | 11t   | s     | 000 | 0000        | ٦ |
| Description           | The X, Y, and<br>by a scalar in<br>from memory                                                                                                                                                    | CRs        | (loac  | led fr | om r  | nemo   | ry po |       |       |       |       |     |             |   |
| Operands              | Rs TMS                                                                                                                                                                                            | 34020      | ) regi | ster   | conta | aining | the   | mem   | ory a | addre | SS    |     |             |   |
|                       | CRs Copr<br>RB re                                                                                                                                                                                 |            |        |        | ister | to co  | ntair | the : | scali | ng fa | ctor. | Mus | t be in the | 9 |
| Implied Operands      | RA0 = X1<br>RA1 = Y1<br>RA2 = Z1                                                                                                                                                                  |            |        |        |       |        |       |       |       |       |       |     |             |   |
| Algorithm             | $Rs - 32 \rightarrow Rs$ $*Rs \rightarrow CRs$ $Rs - 32 \rightarrow Rs$ $Rs - 32 \rightarrow Rs$ $Ra = Ra \times Ra = Ra \times Ra = Ra \times Ra = Ra \times Ra + Ra + Ra + Ra + Ra + Ra + Ra +$ | CRs<br>CRs |        |        |       |        |       |       |       |       |       |     |             |   |
| Temporary Storage     | None                                                                                                                                                                                              |            |        |        |       |        |       |       |       |       |       |     |             |   |
| Outputs               | The scaled ve<br>RA0 = X1'<br>RA1 = Y1'<br>RA2 = Z1'                                                                                                                                              | ector      | is sto | ored i | n RA  | 2-R/   | 40.   |       |       |       |       |     |             |   |
| Instruction Type      | CMOVMC, pi                                                                                                                                                                                        | edec       | reme   | nt, c  | onsta | ant co | unt   |       |       |       |       |     |             |   |

# VSUBx Subtract Vectors

......

| Syntax                | TypeSyntaxIntegerVSUBDouble-PrecisionVSUBDSingle-PrecisionVSUBF                   |       |
|-----------------------|-----------------------------------------------------------------------------------|-------|
| '34020                | <u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>                                      |       |
| Instruction Words     | 1 1 0 1 1 0 0 0 0 1 1 1 1 type size                                               | _     |
|                       | ID 0 0 0 1 0 1 0 0 0 0 0 0                                                        |       |
| Instruction to '34082 | 31 29 28 0                                                                        | )<br> |
|                       | ID 0 0001 0100 0000 0011 111t s000 0000                                           |       |
| Description           | Subtract a vector in RB2-RB0 from a vector in RA2-RA0.                            |       |
| Implied Operands      | RA0 = X1 RB0 = X2                                                                 |       |
|                       | RA1 = Y1 RB1 = Y2                                                                 |       |
|                       | RA2 = Z1 RB2 = Z2                                                                 |       |
| Algorithm             | $RA0 = RA0 - RB0 \qquad ; X1 - X2$                                                |       |
|                       | RA1 = RA1 – RB1 ; Y1 – Y2<br>RA2 = RA2 – RB2 ; Z1 – Z2                            |       |
| Temporary Storage     | None                                                                              |       |
| Outputs               | The resulting vector is stored in RA2–RA0.<br>RA0 = X1'<br>RA1 = Y1'<br>RA2 = Z1' |       |
| Instruction Type      | CEXEC, short                                                                      |       |


-----

# **Chapter 8**

# **External Instructions**

The external instruction set is executed through the MSD port of the TMS34082. The multiplier and ALU may be operated in parallel using these RISC-like instructions. Integer, single-precision, and double-precision floating-point formats are supported. In coprocessor mode, user-defined subroutines constructed out of external instructions may be executed through the MSD port. See Figure 8–1.

Figure 8-1. Source of Instructions for Coprocessor Mode



In host-independent mode, the TMS34082 is controlled by external instructions input on the MSD bus.

Figure 8–2. Instructions in Host-Independent Mode



#### 8.1 Overview

External instructions are 32 bits long and their formats (number, length, and function of fields) depend upon the operations being selected. Separate formats are provided for data transfers to and from the TMS34082, FPU processing, test and branch operations, and subroutine calls.

In the host-independent mode, the TMS34082 is controlled by external instructions input on the MSD bus. In the coprocessor mode, the TMS34082 executes user-defined routines (external instructions stored in memory on the MSD bus) by executing a jump to external code. Up to 32 routines may be defined by the user using external instructions in coprocessor mode.

To cause a jump to the external routine, the TMS34020 sends the TMS34082 an instruction with the md field (bits 15–14) set high. The fpuop is the routine number (0-31). The TMS34082 multiplies the routine number by two to get the jump address. This creates a compact jump table where every other address is the starting address of a routine. The remaining memory can then be allocated according to user need. Using every other address as a starting address allows a single-instruction subroutine to be implemented without another jump. For more complex routines, the first instruction in the routine will be a jump to another memory location. In either case, the last instruction should be a return from subroutine or jump to internal instruction address 10FFF (hex). This puts the TMS34082 in an idle state, waiting for the next instruction from the TMS34020. Before the last return from subroutine or jump to internal address 10FFF, the stack (SUBADDR1-0) must be cleared. This can be accomplished by setting the stack pointer (bit 31) in both registers to 0. You may wish to save the contents of these registers in external memory before clearing the stack pointers.

#### 8.2 FPU Processing Instruction Format

The largest group of external instructions control FPU operations. These instructions can select operands from input registers, internal feedback, or from the LAD bus (32-bit operations only). Independent ALU or multiplier operations and chained-mode operations (ALU and multiplier acting in parallel) can be coded.

The format for an FPU processing instruction is shown below:

| 31          | 28  | 27 23 | 3 22 | 20 | 19 | 15 | 14 | 11    | 10            | 0 |
|-------------|-----|-------|------|----|----|----|----|-------|---------------|---|
| sequencer c | p ' | ra    | rt   | >  | rđ |    | S  | əl_op | FPU operation |   |

#### 8.2.1 FPU Processing Sequencer Opcodes

Valid sequencer opcodes for this instruction format:

0000 continue

- 0001 continue with LAD enable for output (ALTCH strobe)
- 0010 continue with LAD enable for output  $\overline{WE}$  strobe)<sup>†</sup>
- Permits simultaneous write to a register and to the LAD bus. Writing to the LAD bus during FPU operation requires a 15-ns extension (TMS34082-40) of the clock period when the write is performed.

#### 8.2.2 Operand Selection

Instructions that control FPU operations can select operands from internal registers, internal feedback, or the LAD bus (32-bit operations only). When register addresses are used as sources (ra or rb field), only the lower four bits are used. Most instructions use three operands:

ra is the operand A source address (RA9-0, C, CT)

rb is the operand B source address (RB9-0, C, CT)

rd is the result destination address

When ra (or rb) is set to 1100<sub>2</sub>, the A (or B) operand comes from the LAD bus without first being written into a register.

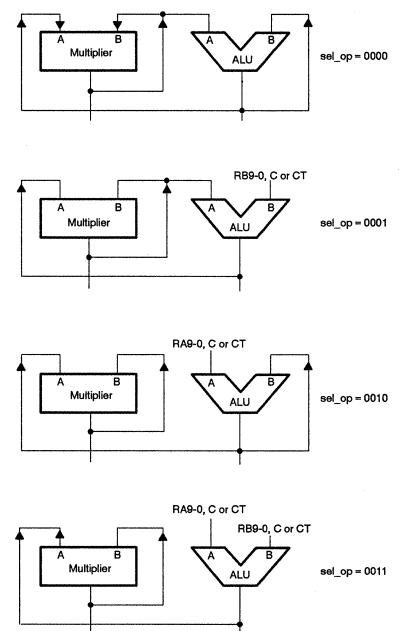
When the CONFIG, COUNTX, or COUNTY register (address 13, 14, or 15) is selected as the ra operand, a one is input to the FPU.

When the SUBADD1, IRAREG, or MIN-MAX/LOOPCT register (address 29, 30, or 31) is selected as the rb operand, a one is input to the FPU.

The sel\_op field chooses the operands. When low, sel\_op bits 14-11 select the following feedback operands:

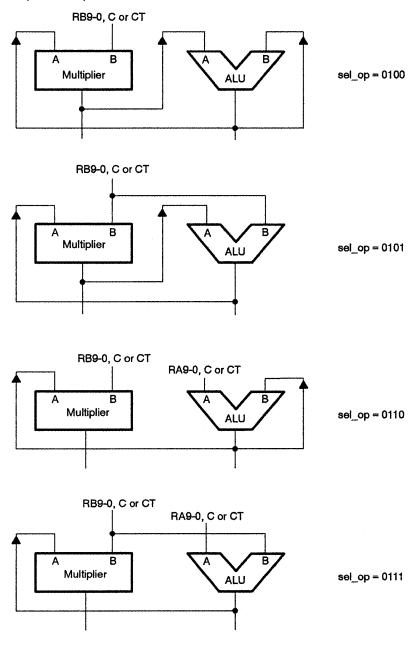
bit 14 for ALU feedback to multiplier A input

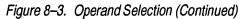
bit 13 for multiplier feedback to multiplier B input

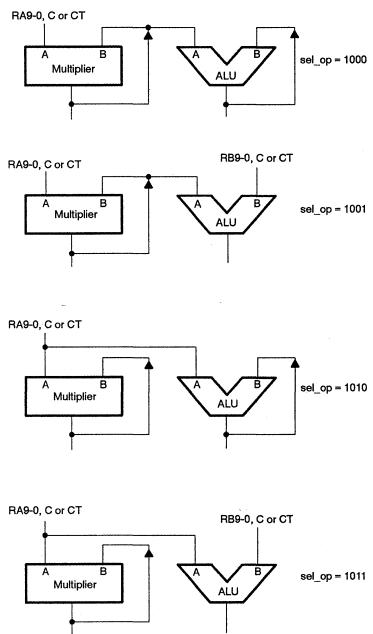

bit 12 for multiplier feedback to ALU A input

bit 11 for ALU feedback to ALU B input

The sel\_op bits allow many different combinations of operands from the register file and feedback registers. Figure 8–1 shows the operands selected for each combination of sel\_op bits.

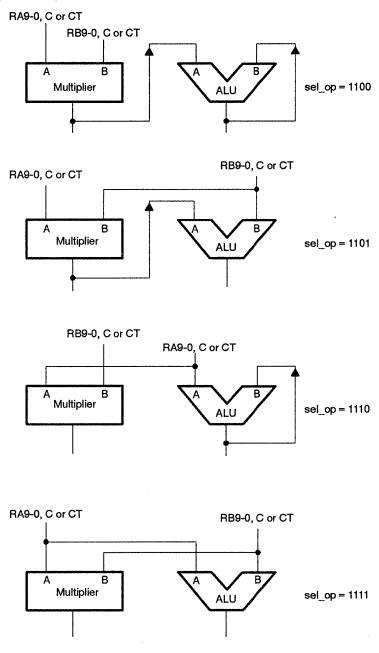

Note: If feedback operands are used, the FPU core output registers must be enabled (PIPES2=0).


# Figure 8-3. Operand Selection




External Instructions

Figure 8–3. Operand Selection (Continued)








External Instructions

Figure 8-3. Operand Selection (Continued)



## 8.2.3 FPU Processing Instruction Codes

Instruction bits 10-0 select the multiplier or ALU operation. When the FPU core is busy with multicycle operations (division, square root, or double-precision floating-point multiplication), the FPU stops the sequencer until the FPU is ready for the next operation.

# 8.3 External Instruction Cycle Counts

Table 8–1 lists external instructions, pipeline settings, and the number of cycles required to complete each routine. The number in parenthesis after each cycle count is the number of cycles before the next operation may begin. For block move operations, *n* specifies the number of words transferred.

#### Table 8–1. Cycle Counts for External Instructions

|                     | Description                          | Cycle Counts |          |          |          |  |  |  |  |
|---------------------|--------------------------------------|--------------|----------|----------|----------|--|--|--|--|
| Assembler<br>Opcode | Description<br>of Routine            | PIPES2-1     | PIPES2-1 | PIPES2-1 | PIPES2-1 |  |  |  |  |
|                     |                                      | 11           | 10       | 01       | 00       |  |  |  |  |
| ADD                 | Add A + B                            | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| AND                 | Logical AND A, B                     | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| ANDNA               | Logical AND not A, B                 | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| ANDNB               | Logical AND A, not B                 | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| CJMP                | Conditional jump                     | 1(1)         | 1(1)     | 1(1)     | 1(1)     |  |  |  |  |
| CSJR                | Conditional jump to subroutine       | 1(1)         | 1(1)     | 1(1)     | 1(1)     |  |  |  |  |
| CMP                 | Compare A, B                         | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| COMPL               | Pass 1's complement of A             | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| DIV                 | Divide A / B                         |              |          |          |          |  |  |  |  |
|                     | single-precision                     | 8(8)         | 8(7)     | 9(7)     | 9(7)     |  |  |  |  |
|                     | double-precision                     | 13(13)       | 13(12)   | 15(12)   | 15(12)   |  |  |  |  |
|                     | integer                              | 16(16)       | 16(15)   | 17(15)   | 17(15)   |  |  |  |  |
| DTOF                | Convert from DP to SP                | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| DTOI                | Convert from DP to integer           | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| DTOU                | Convert from DP to unsigned integer  | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| FTOD                | Convert from SP to DP                | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| FTOI                | Convert from SP to integer           | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| FTOU                | Convert from SP to unsigned integer  | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| ITOD                | Convert from integer to DP           | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| ITOF                | Convert from integer to SP           | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| LD                  | Load n words into register           |              |          |          |          |  |  |  |  |
|                     | single-precision                     | n + 1        | n + 1    | n+1      | n+1      |  |  |  |  |
|                     | double-precision                     | 2n + 1       | 2n + 1   | 2n + 1   | 2n + 1   |  |  |  |  |
|                     | integer                              | n+1          | n+1      | n + 1    | n+1      |  |  |  |  |
| LDLCT               | Load loop counter with value         | 1(1)         | 1(1)     | 1(1)     | 1(1)     |  |  |  |  |
| MASK                | Set programmable mask                | 1(1)         | 1(1)     | 1(1)     | 1(1)     |  |  |  |  |
| MOVA                | Move A                               | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| MOVLM               | Move n words from LAD bus to MSD bus |              |          |          |          |  |  |  |  |
|                     | single-precision                     | n+1          | n+1      | n+1      | n+1      |  |  |  |  |
|                     | double-precision                     | 2n + 1       | 2n + 1   | 2n + 1   | 2n + 1   |  |  |  |  |
|                     | integer                              | n+1          | n+1      | n+1      | n+1      |  |  |  |  |

| Table 8–1. Cycle Counts for External Instructions | (Continued) |
|---------------------------------------------------|-------------|
|---------------------------------------------------|-------------|

|            |                                                                                | Cycle Counts |          |          |          |  |  |  |  |
|------------|--------------------------------------------------------------------------------|--------------|----------|----------|----------|--|--|--|--|
| Assembler  | Description                                                                    | PIPES2-1     | PIPES2-1 | PIPES2-1 | PIPES2-1 |  |  |  |  |
| Opcode     | of Routine                                                                     | 11           | 10       | 01       | 00       |  |  |  |  |
| MOVML      | Move n words from MSD bus to LAD bus                                           | 1            |          |          | 1        |  |  |  |  |
|            | single-precision                                                               | n + 1        | n+1      | n+1      | n+1      |  |  |  |  |
|            | double-precision                                                               | 2n + 1       | 2n + 1   | 2n + 1   | 2n + 1   |  |  |  |  |
|            | integer                                                                        | n+1          | n + 1    | n+1      | n+1      |  |  |  |  |
| MOVRR      | Multiple move, register to register                                            |              |          |          |          |  |  |  |  |
|            | single-precision                                                               | n+1          | n+1      | n+1      | n+1      |  |  |  |  |
|            | double-precision                                                               | 2n + 1       | 2n + 1   | 2n + 1   | 2n + 1   |  |  |  |  |
|            | integer                                                                        | n+1          | n+1      | n+1      | n+1      |  |  |  |  |
| MULT       | Multiply A * B                                                                 |              |          |          |          |  |  |  |  |
|            | single-precision                                                               | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
|            | double-precision                                                               | 2(2)         | 3(2)     | 3(2)     | 4(2)     |  |  |  |  |
|            | integer                                                                        | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| MULT.ADD   | Multiply A <sub>1</sub> * B <sub>1</sub> , Add A <sub>2</sub> + B <sub>2</sub> |              |          |          |          |  |  |  |  |
|            | single-precision                                                               | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
|            | double-precision                                                               | 2(2)         | 3(2)     | 3(2)     | 4(2)     |  |  |  |  |
|            | integer                                                                        | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| MULT.NEG   | Multiply A1 * B1, Subtract 0 – A2                                              | -            |          |          |          |  |  |  |  |
|            | single-precision                                                               | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
|            | double-precision                                                               | 2(2)         | 3(2)     | 3(2)     | 4(2)     |  |  |  |  |
|            | integer                                                                        | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| MULT.PASS  | Multiply A1 + B1, Add A2 + 0                                                   |              |          |          |          |  |  |  |  |
|            | single-precision                                                               | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
|            | double-precision                                                               | 2(2)         | 3(2)     | 3(2)     | 4(2)     |  |  |  |  |
|            | integer                                                                        | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| MULT.SUB   | Multiply A1 * B1, Subtract A2 - B2                                             |              | 1        |          |          |  |  |  |  |
|            | single-precision                                                               | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
|            | double-precision                                                               | 2(2)         | 3(2)     | 3(2)     | 4(2)     |  |  |  |  |
|            | integer                                                                        | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| MULT.2SUBA | Multiply A1 + B1, Subtract 2-A2                                                |              |          |          |          |  |  |  |  |
|            | single-precision                                                               | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
|            | double-precision                                                               | 2(2)         | 3(2)     | 3(2)     | 4(2)     |  |  |  |  |
|            | integer                                                                        | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| MULT.SUBRL | Multiply A1 * B1, Subtract B2 - A2                                             | 1            | <u> </u> |          | †        |  |  |  |  |
|            | single-precision                                                               | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
|            | double-precision                                                               | 2(2)         | 3(2)     | 3(2)     | 4(2)     |  |  |  |  |
|            | integer                                                                        | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |

|            |                                    |          | Cycle Counts |          |          |  |  |  |  |  |
|------------|------------------------------------|----------|--------------|----------|----------|--|--|--|--|--|
| Assembler  | Description                        | PIPES2-1 | PIPES2-1     | PIPES2-1 | PIPES2-1 |  |  |  |  |  |
| Opcode     | of Routine                         | 11       | 10           | 01       | 00       |  |  |  |  |  |
| NEG        | Pass – A                           | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
| NOR        | Logical NOR A, B                   | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
| OR         | Logical OR A, B                    | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
| PASS       | Pass A                             | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
| PASS       | Pass B                             | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
| PASS.ADD   | Multiply A1 * 1, Add A2 + B2       |          |              |          | 1        |  |  |  |  |  |
|            | single-precision                   | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
|            | double-precision                   | 2(2)     | 3(2)         | 3(2)     | 4(2)     |  |  |  |  |  |
|            | integer                            | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
| PASS.NEG   | Multiply A1 * 1, Subtract 0-A2     |          | 1            | 1        | İ        |  |  |  |  |  |
|            | single-precision                   | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
|            | double-precision                   | 2(2)     | 3(2)         | 3(2)     | 4(2)     |  |  |  |  |  |
|            | integer                            | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
| PASS.PASS  | Multiply $A_1 * 1$ , Add $A_2 + 0$ |          |              |          |          |  |  |  |  |  |
|            | single-precision                   | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
|            | double-precision                   | 2(2)     | 3(2)         | 3(2)     | 4(2)     |  |  |  |  |  |
|            | integer                            | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
| PASS.SUB   | Multiply A1 + 1, Subtract A2 - B2  |          |              |          |          |  |  |  |  |  |
|            | single-precision                   | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
|            | double-precision                   | 2(2)     | 3(2)         | 3(2)     | 4(2)     |  |  |  |  |  |
|            | integer                            | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
| PASS.2SUBA | Multiply A1 + 1, Subtract 2-A2     |          |              |          |          |  |  |  |  |  |
|            | single-precision                   | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
|            | double-precision                   | 2(2)     | 3(2)         | 3(2)     | 4(2)     |  |  |  |  |  |
|            | integer                            | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
| PASS.SUBRL | Multiply A1 + 1, Subtract B2 - A2  |          | -(-)         |          | +        |  |  |  |  |  |
|            | single-precision                   | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
|            | double-precision                   | 2(2)     | 3(2)         | 3(2)     | 4(2)     |  |  |  |  |  |
|            | integer                            | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
| RTI        | Return from interrupt              | 1(1)     | 1(1)         | 1(1)     | 1(1)     |  |  |  |  |  |
| RTS        | Return from subroutine             | 1(1)     | 1(1)         | 1(1)     | 1(1)     |  |  |  |  |  |
| SLL        | Logical shift left A by B bits     | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |
| SQRT       | Square root of A                   |          | +            |          |          |  |  |  |  |  |
|            | single-precision                   | 11(11)   | 11(10)       | 12(10)   | 12(10)   |  |  |  |  |  |
|            | double-precision                   | 16(16)   | 16(15)       | 17(15)   | 17(15)   |  |  |  |  |  |
|            | integer                            | 20(20)   | 20(19)       | 21(19)   | 21(19)   |  |  |  |  |  |
| SRA        | Arithmetic shift right A by B bits | 1(1)     | 20(19)       | 2(1)     | 3(1)     |  |  |  |  |  |
| SRL        | Logical shift right A by B bits    | 1(1)     | 2(1)         | 2(1)     | 3(1)     |  |  |  |  |  |

# Table 8–1. Cycle Counts for External Instructions (Continued)

÷

|           |                                     | Cycle Counts |          |          |          |  |  |  |  |
|-----------|-------------------------------------|--------------|----------|----------|----------|--|--|--|--|
| Assembler | Description                         | PIPES2-1     | PIPES2-1 | PIPES2-1 | PIPES2-1 |  |  |  |  |
| Opcode    | of Routine                          | 11           | 10       | 01       | 00       |  |  |  |  |
| ST        | Store n words from register         |              |          |          |          |  |  |  |  |
|           | single-precision                    | n + 1        | n+1      | n+1      | n+1      |  |  |  |  |
|           | double-precision                    | 2n + 1       | 2n + 1   | 2n + 1   | 2n + 1   |  |  |  |  |
|           | integer                             | n+1          | n+1      | n+1      | n+1      |  |  |  |  |
| SUB       | Subtract A-B                        | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| SUBRL     | Subtract B-A                        | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| UTOD      | Convert from unsigned integer to DP | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| UTOF      | Convert from unsigned integer to SP | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| UWRAPI    | Unwrap inexact operand              | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| UWRAPR    | Unwrap rounded operand              | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| UWRAPX    | Unwrap exact operand                | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| WRAP      | Wrap denormalized operand           | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |
| XOR       | Logical exclusive OR A, B           | 1(1)         | 2(1)     | 2(1)     | 3(1)     |  |  |  |  |

or the location of these same

Table 8–1. Cycle Counts for External Instructions (Continued)

#### 8.4 General Restrictions for External Instructions

Restrictions that apply to all external instructions are as follows:

Registers C and CT cannot both be used as operands in the same instruction.

Absolute value modifiers are permitted with floating-point operations only.

Integer and floating-point operand types cannot be used in the same operation (except conversions).

Signed and unsigned integer operand types cannot be used in the same operation.

Operands with the LAD bus as the source cannot be specified with a double-precision operand type.

Multiplier and ALU feedback (MULFB and ALUFB) cannot be specified as operands unless the FPU core output registers are turned on (PIPES2 = 1).

Results from chained-mode operations are always of the same type. If one result is double-precision, the other is forced to be also. For example, a multiply/pass operation with double-precision multiplier inputs and a single-precision input for the pass operation will result in two double-precision outputs. Be careful that subsequent instructions have the correct data types when these results are used as input.

# 8.5 External Assembly Instructions

A detailed explanation of each external instruction is provided on the following pages of this chapter. The instructions are in alphabetical order by their TMS34082 assembler opcode. Table 8–2 is a list of the selectable bit definitions used in this chapter.

Table 8–2. Bit Definitions for External Instructions

| Bit Number | Mnemonic  | Description                                                                                                                                                                                                                                                                                                                                                 |
|------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29         | е         | 0 = normal operation,<br>1 = send output to LAD bus with $\overline{\text{WE}}$ strobe                                                                                                                                                                                                                                                                      |
| 28         | h         | 0 = normal operation,<br>1 = send output to LAD bus with $\overline{\text{ALTCH}}$ strobe                                                                                                                                                                                                                                                                   |
| 27-24      | ra        | operand A source address                                                                                                                                                                                                                                                                                                                                    |
| 23-20      | rb        | operand B source address                                                                                                                                                                                                                                                                                                                                    |
| 19-15      | rd        | result destination address                                                                                                                                                                                                                                                                                                                                  |
| 14-11      | sel_op    | operand selection (see subsection 8.2.2)                                                                                                                                                                                                                                                                                                                    |
| 9–7        | type or t | operand format:<br>000 = single-precision on ra and single-precision on rb<br>001 = single-precision on ra and double-precision on rb<br>010 = double-precision on ra and single-precision on rb<br>011 = double-precision on ra and double-precision on rb<br>100 = integer (2's complement) on both ra and rb<br>101 = unsigned integer on both ra and rb |
| 8          | ра        | precision of ra:<br>0 = single-precision, 1 = double-precision                                                                                                                                                                                                                                                                                              |
| 7          | pb        | precision of rb:<br>0 = single-precision, 1 = double-precision                                                                                                                                                                                                                                                                                              |
| 6          | S         | output source:<br>0 = ALU result, 1 = multiplier result                                                                                                                                                                                                                                                                                                     |
| 5          | а         | negate ALU result:<br>0 = normal ALU result, 1 = negated ALU result                                                                                                                                                                                                                                                                                         |
| 4          | va        | absolute value of ra:<br>0 = ra, 1 =   ra                                                                                                                                                                                                                                                                                                                   |
| 3          | vb        | absolute value of rb:<br>0 = rb, 1 =   rb                                                                                                                                                                                                                                                                                                                   |
| 2          | vy        | absolute value of rd:<br>0 = rd, 1 =   rd                                                                                                                                                                                                                                                                                                                   |
| 2          | m         | negate multiplier result:<br>0 = normal multiplier result, 1 = negated multiplier result                                                                                                                                                                                                                                                                    |
| 2          | ny        | negate output result:<br>0 = normal output result, 1 = negated output result                                                                                                                                                                                                                                                                                |
| 1          | wa        | wrapped number on ra:<br>0 = normal format, 1 = wrapped number                                                                                                                                                                                                                                                                                              |
| 0          | dw        | wrapped number on rb:<br>0 = normal format, 1 = wrapped number                                                                                                                                                                                                                                                                                              |

| Syntax                  | add ra.[modifier]type, rb.[modifier]type, rd[.modifiers]                                                                                     |       |    |     |      |    |   |    |    |       |    |      |    |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-----|------|----|---|----|----|-------|----|------|----|
| Execution               | $ra + rb \rightarrow rd$                                                                                                                     |       |    |     |      |    |   |    |    |       |    |      |    |
| Instruction Words       | 31                                                                                                                                           |       | 3  | 0   | 28   | 29 |   | 27 | ,  | 24 23 | 2  | 0 19 | 15 |
|                         | 0                                                                                                                                            |       | 0  |     | е    |    | h |    | ra |       | rb |      | rd |
|                         | 14                                                                                                                                           | 11 1  | 0  | 9   | 8    | 7  | 6 | 5  | 4  | 3     | 2  | 1    | 0  |
|                         | o                                                                                                                                            | p     | 0  | t   | pa   | pb | 0 | 0  | va | vb    | vy | 0    | 0  |
| Description             | This instruction places the sum of the values in ra and rb in rd.                                                                            |       |    |     |      |    |   |    |    |       |    |      |    |
| Sources for ra          | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                       |       |    |     |      |    |   |    |    |       |    |      |    |
| Sources for rb          | RB9-RB0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                              |       |    |     |      |    |   |    |    |       |    |      |    |
| Types for ra and rb     | f (single-precision floating-point)<br>d (double-precision floating-point)<br>i (signed integer)<br>u (unsigned integer)                     |       |    |     |      |    |   |    |    |       |    |      |    |
| Modifiers for ra and rb | v (absolute value, not valid for integer types)                                                                                              |       |    |     |      |    |   |    |    |       |    |      |    |
| Destinations for rd     | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT                          |       |    |     |      |    |   |    |    |       |    |      |    |
| Modifiers for rd        | v (absolute value, not valid for integer types)<br>e (send output to LAD bus, <u>WE str</u> obe)<br>h (send output to LAD bus, ALTCH strobe) |       |    |     |      |    |   |    |    |       |    |      |    |
| Example                 | add I                                                                                                                                        | RA7.v | d, | RB9 | .vd, | С  |   |    |    |       |    |      |    |

#### and Logical AND A, B

| Syntax                  | and ra.type, rb.type, rd[.modifier]                                                                                                                                                                         |  |  |  |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Execution               | ra AND rb $\rightarrow$ rd                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Instruction Words       | 31         30         29         28         27         24         23         20         19         15           0         0         e         h         ra         rb         rd                            |  |  |  |  |  |  |  |
|                         | 14       11       10       9       8       7       6       5       4       3       2       1       0         sel_op       0       1       0       t       0       0       0       1       0       0       0 |  |  |  |  |  |  |  |
| Description             | This instruction takes the logical AND of ra with rb and places the result in rd.                                                                                                                           |  |  |  |  |  |  |  |
| Sources for ra          | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                                                                                      |  |  |  |  |  |  |  |
| Sources for rb          | RB9-RB0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                                                                                             |  |  |  |  |  |  |  |
| Types for ra and rb     | i (signed integer)<br>u (unsigned integer)                                                                                                                                                                  |  |  |  |  |  |  |  |
| Modifiers for ra and rb | none                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Destinations for rd     | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT                                                                                         |  |  |  |  |  |  |  |
| Modifiers for rd        | e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe)                                                                                                                           |  |  |  |  |  |  |  |
| Restrictions            | The types for ra and rb must be the same.                                                                                                                                                                   |  |  |  |  |  |  |  |
| Example                 | and LAD.i, ONE.i, CT                                                                                                                                                                                        |  |  |  |  |  |  |  |

| Syntax                  | andna ra.type, rb.type, rd[.modifier]                                                                                  |        |      |               |       |        |     |    |       |    |      |    |
|-------------------------|------------------------------------------------------------------------------------------------------------------------|--------|------|---------------|-------|--------|-----|----|-------|----|------|----|
| Execution               | (NOT ra) AND rb $\rightarrow$ rd                                                                                       |        |      |               |       |        |     |    |       |    |      |    |
| Instruction Words       | 31 30                                                                                                                  |        |      | 29            |       | 28     | 2   | 27 | 24 23 | 2  | 0 19 | 15 |
|                         | 0                                                                                                                      |        | )    | е             |       | h      |     | ra |       | rb |      | rd |
|                         | 14 11                                                                                                                  | 10     | 9    | 8             | 7     | 6      | 5   | 4  | 3     | 2  | 1    | 0  |
|                         | sel_op                                                                                                                 | 0      | 1    | 0             | t     | 0      | 0   | 0  | 1     | 0  | 1    | 0  |
| Description             | This instruction takes the logical AND operation of (NOT ra) with rb and places the result in rd.                      |        |      |               |       |        |     |    |       |    |      |    |
| Sources for ra          | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |        |      |               |       |        |     |    |       |    |      |    |
| Sources for rb          | RB9-RB0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)        |        |      |               |       |        |     |    |       |    |      |    |
| Types for ra and rb     | i (signed integer)<br>u (unsigned integer)                                                                             |        |      |               |       |        |     |    |       |    |      |    |
| Modifiers for ra and rb | none                                                                                                                   |        |      |               |       |        |     |    |       |    |      |    |
| Destinations for rd     | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT    |        |      |               |       |        |     |    |       |    |      |    |
| Modifiers for rd        | e (send oi<br>h (send oi                                                                                               |        |      |               |       |        |     |    |       |    |      |    |
| Restrictions            | The types                                                                                                              | for ra | and  | rb mu         | st be | the sa | me. |    |       |    |      |    |
| Example                 | andna R                                                                                                                | A0.u   | , RB | 8 <i>.</i> u, | C.h   |        |     |    |       |    |      |    |

].

#### andnb Logical AND A, NOT B

| Syntax              | andnb ra.type, rb.type, rd[.modifier]                                                                                  |           |            |         |     |       |       |    |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------|-----------|------------|---------|-----|-------|-------|----|--|
| Execution           | ra AND (NOT rb) $\rightarrow$ rd                                                                                       |           |            |         |     |       |       |    |  |
| Instruction Words   | 31 30                                                                                                                  |           | 29         | 28      | 27  | 24 23 | 20 19 | 15 |  |
|                     | 0                                                                                                                      | 0         | e          | h       |     | ra    | rb    | rd |  |
|                     |                                                                                                                        | 10 9      | 8 7        | 6       | 5   | 4 3   | 2 1   | 0  |  |
|                     |                                                                                                                        | 0 1       | 0 t        | 0       | 0   | 0 1   | 0 0   |    |  |
| Description         | This instruction takes the logical AND operation of ra with (NOT rb) and places the result in rd.                      |           |            |         |     |       |       |    |  |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |           |            |         |     |       |       |    |  |
| Sources for rb      | RB9-RB0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)        |           |            |         |     |       |       |    |  |
| Types for ra and rb | i (signed integer)<br>u (unsigned integer)                                                                             |           |            |         |     |       |       |    |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT    |           |            |         |     |       |       |    |  |
| Modifiers for rd    | e (send outp<br>h (send outp                                                                                           |           |            |         | ce) |       |       |    |  |
| Restrictions        | The types fo                                                                                                           | or ra and | rb must be | the sam | ıe. |       |       |    |  |
| Example             | andnb C.i                                                                                                              | , ONE.    | i, RB1.h   |         |     |       |       |    |  |

| Syntax                       | cjmp cond_masks, address                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Execution                    | If condition is true,<br>jump address → Program Count<br>If condition is false,<br>1+ Program Count → Program Count                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Instruction Words            | 31       30       29       28       27       26       25       24       23       22       21       20       19       18       17       16         1       0       0       0       A       N       G       Z       V       E       C       P       D       0       M       I         15       jump address                                         |  |  |  |  |  |  |  |
| Description                  | Jump conditional to the specified branch address. During a jump instruction, no FPU operations are performed.                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Conditions for<br>cond_masks | Listed below are the jump instruction condition mask bits (enabled when high):                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|                              | AAlwaysCCC pinNNegativePChange polarity (for N,G,Z,V,E,C, and D)GGreater thanDDecrement LOOPCT, Jump not zeroZZeroMJump indirect using MCADDRVOverflowIJump to internal ROM routineEED bit                                                                                                                                                        |  |  |  |  |  |  |  |
|                              | An unconditional jump may be done by setting the A mask bit high. If C is enabled, all other jump condition enables except P, M, and I are turned off. Multiple jump conditions are separated by vertical bar,  , and are logically ORed together. The condition mask P changes polarity for each individual bit before the logical OR operation. |  |  |  |  |  |  |  |

Range for address

0x0-0xFFFF

Alternate Opcodes The following are alternative opcodes recognized by the TMS34082 Software Tool Kit that perform the same instruction as cjmp.

| Opcode         | Description                            |
|----------------|----------------------------------------|
| beq address    | Branch on equal                        |
| bge address    | Branch on greater than or equal        |
| bgt address    | Branch on greater than                 |
| ble address    | Branch on less than or equal           |
| blt address    | Branch on less than                    |
| bne address    | Branch on not equal                    |
| boh address    | Branch on overflow high                |
| bol address    | Branch on overflow low                 |
| br address     | Branch unconditional                   |
| brloop address | Branch on loop count                   |
| bucch address  | Branch on CC pin high                  |
| buccl address  | Branch on CC pin low                   |
| jmpind         | Jump indirect unconditional            |
| jmpindcch      | Jump indirect on CC pin high           |
| jmpindccl      | Jump indirect on CC pin low            |
| jmpindeq       | Jump indirect on equal                 |
| jmpindge       | Jump indirect on greater than or equal |
| jmpindgt       | Jump indirect on greater than          |
| jmpindle       | Jump indirect on less than or equal    |
| jmpindlt       | Jump indirect on less than             |
| jmpindne       | Jump indirect not equal                |
| jmpindoh       | Jump indirect on overflow high         |
| jmpindol       | Jump indirect on overflow low          |

Example

cjmp D | P, 0x030

This example decrements the value in the LOOPCT register, then checks to see if it is zero. If it is, the jump is taken (since P is set to change polarity). The address output on MSA15-MSA0 is 30 hex.

| Syntax                       | cjs                                                                                                                                                     | r con | d_ma   | asks,  | add    | ress   |        |         |        |        |      |        |       |       |       |                                       |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|--------|--------|--------|---------|--------|--------|------|--------|-------|-------|-------|---------------------------------------|
| Execution                    | If condition is true,<br>Program Counter → SABADDRx<br>jump address → Program Counter<br>If condition is false,<br>Program Counter +1 → Program Counter |       |        |        |        |        |        |         |        |        |      |        |       |       |       |                                       |
| Instruction Words            | 31                                                                                                                                                      | 30    | 29     | 28     | 27     | 26     | 25     | 24      | 23     | 22     | 21   | 20     | 19    | 18    | 17    | 16                                    |
|                              | 1                                                                                                                                                       | 0     | 0      | 1      | Α      | Ν      | G      | Z       | V      | E      | С    | Р      | D     | 0     | М     | 1                                     |
|                              | 15 0                                                                                                                                                    |       |        |        |        |        |        |         |        |        |      |        |       |       |       |                                       |
|                              | [                                                                                                                                                       |       |        |        |        |        | j      | ump a   | ddres  | s      |      |        |       |       |       |                                       |
| Description                  | Jump conditional to the specified subroutine address. During a jump instruction, no FPU operations are performed.                                       |       |        |        |        |        | a jump |         |        |        |      |        |       |       |       |                                       |
| Conditions for<br>cond_masks | List                                                                                                                                                    | ed be | low a  | are th | ne jur | np in  | struc  | tion    | cond   | ition  | mas  | k bits | (ena  | ablec | l whe | en high):                             |
|                              | А                                                                                                                                                       | Alw   | ays    |        |        | С      | C      | C pin   | 1      |        |      |        |       |       |       |                                       |
|                              | Ν                                                                                                                                                       |       | gative | Э      |        | Ρ      |        | hang    |        | larity | (for | N,G    | ,Z,V, | E,C,  | and   | D)                                    |
|                              | G                                                                                                                                                       | Gre   | ater   | than   | 1      | D      | D      | ecrer   | nent   | LOC    | PC   | r, Ju  | mp n  | ot ze | ero   |                                       |
|                              | Ζ                                                                                                                                                       | Zer   | 0      |        |        | Μ      | JL     | ımp i   | ndire  | ect us | sing | MCA    | DDF   | 3     |       |                                       |
|                              | V                                                                                                                                                       |       | erflov | v      |        | I      | Ju     | imp t   | o int  | erna   | I RO | M ro   | utine |       |       |                                       |
|                              | Ε                                                                                                                                                       | ED    | bit    |        |        |        |        |         |        |        |      |        |       |       |       |                                       |
|                              | ena                                                                                                                                                     | bled  | and t  | he C   | C bi   | t is h | igh, a | all otl | her ju | Imp    | conc | lition | ena   | bles  | exce  | I. If C is<br>opt P, M,<br>al bar ' ' |

and are logically ORed together. The condition mask P changes polarity for each individual bit before the logical OR operation.

Range for address

0x0-0xFFFF

Alternate Opcodes

The following are alternative opcodes recognized by the TMS34082 Software Tool Kit that perform the same instruction as cjsr.

| Opcode          | Description                            |
|-----------------|----------------------------------------|
| call address    | Call unconditional                     |
| callcch address | Call on CC pin high                    |
| callccl address | Call on CC pin low                     |
| calleq address  | Call on equal                          |
| callge address  | Call on greater than or equal          |
| calligt address | Call on greater than                   |
| callie address  | Call on less than or equal             |
| callit address  | Call on less than                      |
| caline address  | Call on not equal                      |
| calloh address  | Call on overflow high                  |
| callol address  | Call on overflow                       |
| callind         | Call indirect unconditional            |
| callindcch      | Call indirect on CC pin high           |
| callindccl      | Call indirect on CC pin low            |
| callindeq       | Call indirect on equal                 |
| callindge       | Call indirect on greater than or equal |
| callindgt       | Call indirect on greater than          |
| callindle       | Call indirect on less than or equal    |
| callindit       | Call indirect on less than             |
| callindne       | Call indirect on not equal             |
| callindoh       | Call indirect on overflow high         |
| callindol       | Call indirect on overflow low          |
| intcall address | Internal call unconditional            |

#### Example

#### cjsr | C J M

This instruction checks the CC input and jumps to the address in the MCADDR register if CC is high.

Note: 'cjsr A, address' is equivalent to 'call address'

| Syntax                  | cmp ra.[modifier]type, rb.[modifier]type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Execution               | status flags (ra – rb) $\rightarrow$ status register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Instruction Words       | 31         30         29         28         27         24         23         20         19         18         17         16         15           0         0         e         h         ra         rb         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |  |  |  |  |  |  |  |
|                         | 14 11 10 9 8 7 6 5 4 3 2 1 0<br>sel_op 0 t pa pb 0 0 va vb 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Description             | This instruction subtracts the value in rb from the value in ra, and sets the status register accordingly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Sources for ra          | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| Sources for rb          | RB9-RB0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Types for ra and rb     | f (single-precision floating-point)<br>d (double-precision floating-point)<br>i (signed integer)<br>u (unsigned integer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| Modifiers for ra and rb | v (absolute value, not valid for integer types)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Example                 | cmp RA9.vf, CT.vf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |

## compl Pass 1s Complement of A

| Syntax              | compl ra.type, rd[.modifier]                                                                                                                                                                                              |  |  |  |  |  |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Execution           | (NOT ra) $\rightarrow$ rd                                                                                                                                                                                                 |  |  |  |  |  |  |
| Instruction Words   | 31         30         29         28         27         24         23         22         21         20         19         15           0         0         e         h         ra         0         0         0         rd |  |  |  |  |  |  |
|                     | 14       11       10       9       8       7       6       5       4       3       2       1       0         sel_op       0       1       type       0       1       0       0       0       1       0                    |  |  |  |  |  |  |
| Description         | This instruction takes the 1s complement of ra and places it in rd.                                                                                                                                                       |  |  |  |  |  |  |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                                                                                                    |  |  |  |  |  |  |
| Types for ra        | i (signed integer)<br>u (unsigned integer)                                                                                                                                                                                |  |  |  |  |  |  |
| Modifiers for ra    | none                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT                                                                                                       |  |  |  |  |  |  |
| Modifiers for rd    | e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe)                                                                                                                                         |  |  |  |  |  |  |
| Example             | compl RA7.i, C.h                                                                                                                                                                                                          |  |  |  |  |  |  |

and the second s

| Syntax              | div ra.[modifier]type, rb.[modifier]type, rd[.modifiers]                                                                 |             |                                        |         |     |      |     |      |     |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------|---------|-----|------|-----|------|-----|--|
| Execution           | ra / rb $\rightarrow$ rd                                                                                                 |             |                                        |         |     |      |     |      |     |  |
| Instruction Words   | 31                                                                                                                       | 30          | 29                                     | 28      | 27  | 24 2 | 3 2 | 0 19 | 15  |  |
|                     | 0                                                                                                                        | 0           | е                                      | h       |     | ra   | rb  |      | rd  |  |
|                     | 14 11                                                                                                                    | 10 9        | 87                                     | 6       | 5   | 4 3  | 2   | 1    | 0   |  |
|                     | sel_op                                                                                                                   | 0 t         | pa pb                                  | 1       | 1 \ | va 0 | ny  | wa   | wb  |  |
| Description         | This instruction takes the result of dividing ra by rb and places it in rd.                                              |             |                                        |         |     |      |     |      | rd. |  |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>ONE (the value one)                                                                       |             |                                        |         |     |      |     |      |     |  |
| Sources for rb      | RB9-RB0<br>C or CT Register<br>ONE (the value one)                                                                       |             |                                        |         |     |      |     |      |     |  |
| Types for ra and rb | f (single-precision floating-point)<br>d (double-precision floating-point)<br>i (signed integer)<br>u (unsigned integer) |             |                                        |         |     |      |     |      |     |  |
| Modifiers for ra    | <ul> <li>v (absolute value, not valid for integer types)</li> <li>w (wrapped, not valid for integer types)</li> </ul>    |             |                                        |         |     |      |     |      |     |  |
| Modifiers for rb    | w (wrapped, not valid for integer types)                                                                                 |             |                                        |         |     |      |     |      |     |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT      |             |                                        |         |     |      |     |      |     |  |
| Modifiers for rd    | e (send ou                                                                                                               | utput to LA | for integer<br>D bus, WE<br>D bus, ALT | strobe) | be) |      |     |      |     |  |
| Restrictions        | Absolute value modifiers, negated result, and wrapped numbers are only permitted with floating-point operations.         |             |                                        |         |     |      |     |      |     |  |
| Example             | div ONE                                                                                                                  | .d, CT.f    | , RA0.e                                |         |     |      |     |      |     |  |

| Syntax              | dtof ra[.modifier], rd[.modifier]                                                                                                                              |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Execution           | ra (double-precision) $\rightarrow$ rd (single-precision)                                                                                                      |
| Instruction Words   | 31     30     29     28     27     24     23     22     21     20     19     15       0     0     e     h     ra     0     0     0     rd                      |
|                     | 14     11     10     9     8     7     6     5     4     .3     2     1     0       sel_op     0     0     1     1     0     1     va     0     1     1     0  |
| Description         | This instruction takes the double-precision floating-point formatted number in ra and converts it to a single-precision floating-point formatted number in rd. |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>ONE (the value one)                                                                              |
| Types for ra        | type is implicit in the opcode                                                                                                                                 |
| Modifiers for ra    | v (absolute value)                                                                                                                                             |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT                                            |
| Modifiers for rd    | e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe)                                                                              |
| Example             | dtof RA5.v, C.e                                                                                                                                                |

| Syntax              | dtoi ra[.modifier], rd[.modifier]                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Execution           | ra (double-precision) $\rightarrow$ rd (integer)                                                                                                                                                                                                                                                                                                                                                               |
| Instruction Words   | 31       30       29       28       27       24       23       22       21       20       19       15         0       0       e       h       ra       0       0       0       0       rd         14       11       10       9       8       7       6       5       4       3       2       1       0         sel_op       0       0       1       1       0       1       va       0       0       1       1 |
| Description         | This instruction converts the value in ra from double-precision floating-point format to its integer form and places the result in rd.                                                                                                                                                                                                                                                                         |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>ONE (the value one)                                                                                                                                                                                                                                                                                                                              |
| Types for ra        | type is implicit in the opcode                                                                                                                                                                                                                                                                                                                                                                                 |
| Modifiers for ra    | v (absolute value)                                                                                                                                                                                                                                                                                                                                                                                             |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT                                                                                                                                                                                                                                                                                            |
| Modifiers for rd    | e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe)                                                                                                                                                                                                                                                                                                                              |
| Example             | dtoi RA4. v, RA2                                                                                                                                                                                                                                                                                                                                                                                               |

| Syntax              | dtou ra[.modifier], rd[.modifier]                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Execution           | ra (double-precision $\rightarrow$ rd (unsigned integer)                                                                                                                                                                                                                                                                                                                                                       |
| Instruction Words   | 31       30       29       28       27       24       23       22       21       20       19       15         0       0       e       h       ra       0       0       0       0       rd         14       11       10       9       8       7       6       5       4       3       2       1       0         sel_op       0       0       1       1       0       1       va       0       1       1       1 |
| Description         | This instruction takes a double-precision floating-point formatted value in ra and converts it to an unsigned integer.                                                                                                                                                                                                                                                                                         |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>ONE (the value one)                                                                                                                                                                                                                                                                                                                              |
| Types for ra        | type is implicit in the opcode                                                                                                                                                                                                                                                                                                                                                                                 |
| Modifiers for ra    | v (absolute value)                                                                                                                                                                                                                                                                                                                                                                                             |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT                                                                                                                                                                                                                                                                                            |
| Modifiers for rd    | e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe)                                                                                                                                                                                                                                                                                                                              |
| Example             | dtou RA7.v, C                                                                                                                                                                                                                                                                                                                                                                                                  |

-----

| Syntax              | ftod ra[.modifie                                             | er], rd[.modifi          | er]       |         |        |        |                       |
|---------------------|--------------------------------------------------------------|--------------------------|-----------|---------|--------|--------|-----------------------|
| Execution           | ra (single-preci                                             | sion) $ ightarrow$ rd (d | ouble-pre | cision) |        |        |                       |
| Instruction Words   | 31 30                                                        | 29 28                    | 27 24     | 23      | 22     | 21     | 20 19 15              |
|                     | 0 0                                                          | e h                      | ra        | 0       | 0      | 0      | 0 rd                  |
|                     | 14 11 10                                                     | 9 8                      | 76        | 5       | 4      | 3      | 2 1 0                 |
|                     | sel_op 0                                                     | 0 0                      | 0 0       | 1       | va     | 0      | 1 1 0                 |
| Description         | This instruction double-precisio                             |                          |           |         |        | precis | ion floating-point to |
| Sources for ra      | RA9-RA0<br>C or CT Regist<br>MULFB (Multip<br>ONE (the value | lier feedback            | )         |         |        |        |                       |
| Types for ra        | type is implicit i                                           | in the opcode            | )         |         |        |        |                       |
| Modifiers for ra    | v (absolute valu                                             | ne)                      |           |         |        |        |                       |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CON<br>VECTOR, MCA  | •                        | •         |         | , IRAR | EG, L  | OOPCT                 |
| Modifiers for rd    | e (send output<br>h (send output                             |                          |           |         |        |        |                       |
| Example             | ftod LAD, C                                                  | T.h                      |           |         |        |        |                       |

| Syntax              | ftoi ra[.modifier], rd[.modifier]                                                                                                                                                                                                                                                              |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Execution           | ra (single-precision) $\rightarrow$ rd (integer)                                                                                                                                                                                                                                               |
| Instruction Words   | 31       30       29       28       27       24       23       22       21       20       19       15         0       0       e       h       ra       0       0       0       rd         14       11       10       9       8       7       6       5       4       3       2       1       0 |
|                     | sel_op 0 0 0 0 0 1 va 0 0 1 1                                                                                                                                                                                                                                                                  |
| Description         | This instruction converts from a single-precision floating-point format in ra into the integer format and places the result in rd.                                                                                                                                                             |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>ONE (the value one)                                                                                                                                                                                                              |
| Types for ra        | type is implicit in the opcode                                                                                                                                                                                                                                                                 |
| Modifiers for ra    | v (absolute value)                                                                                                                                                                                                                                                                             |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS,CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT                                                                                                                                                                             |
| Modifiers for rd    | e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe)                                                                                                                                                                                                              |
| Example             | ftoi MULFB, C.h                                                                                                                                                                                                                                                                                |

| Syntax              | ftou ra[.modifier], rd[.modifier]                                                                                                 |  |  |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Execution           | ra (single-precision) $\rightarrow$ rd (unsigned integer)                                                                         |  |  |  |  |  |  |
| Instruction Words   | 31 30 29 28 27 24 23 22 21 20 19 15<br>0 0 e h ra 0 0 0 0 rd                                                                      |  |  |  |  |  |  |
|                     |                                                                                                                                   |  |  |  |  |  |  |
|                     | 14 11 10 9 8 7 6 5 4 3 2 1 0                                                                                                      |  |  |  |  |  |  |
|                     | sel_op 0 0 0 0 0 1 va 0 1 1 1                                                                                                     |  |  |  |  |  |  |
| Description         | This instruction take a value in single-precision floating-point format and converts it to an unsigned integer, placing it in rd. |  |  |  |  |  |  |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>ONE (the value one)                                                 |  |  |  |  |  |  |
| Types for ra        | type is implicit in the opcode                                                                                                    |  |  |  |  |  |  |
| Modifiers for ra    | v (absolute value)                                                                                                                |  |  |  |  |  |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT               |  |  |  |  |  |  |
| Modifiers for rd    | e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe)                                                 |  |  |  |  |  |  |
| Example             | ftou CT, RB5.h                                                                                                                    |  |  |  |  |  |  |

| Syntax              | itod ra, rd[.modifier]                                                                                                                                |  |  |  |  |  |  |  |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Execution           | ra (integer) $\rightarrow$ rd (double-precision)                                                                                                      |  |  |  |  |  |  |  |  |  |  |
| Instruction Words   | 31 30 29 28 27 24 23 22 21 20 19 15<br>0 0 e h ra 0 0 0 0 rd                                                                                          |  |  |  |  |  |  |  |  |  |  |
|                     | 14     11     10     9     8     7     6     5     4     3     2     1     0       sel_op     0     0     1     1     0     1     0     0     1     0 |  |  |  |  |  |  |  |  |  |  |
| Description         | This instruction takes the integer value in ra and places it in rd in double-precision floating-point format.                                         |  |  |  |  |  |  |  |  |  |  |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>ONE (the value one)                                                                     |  |  |  |  |  |  |  |  |  |  |
| Types for ra        | type is implicit in the opcode                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
| Modifiers for ra    | none                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT                                   |  |  |  |  |  |  |  |  |  |  |
| Modifiers for rd    | e (send output to LAD bus, $\overline{\text{WE}}$ strobe)<br>h (send output to LAD bus, ALTCH strobe)                                                 |  |  |  |  |  |  |  |  |  |  |
| Example             | itod RA2, RA6.e                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |

and a second decision index of

| Syntax              | itof ra, rd[.mod                                                                  | lifier]       |       |    |             |                       |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------------|---------------|-------|----|-------------|-----------------------|--|--|--|--|
| Execution           | ra (integer) $\rightarrow$ rd (single-precision)                                  |               |       |    |             |                       |  |  |  |  |
| Instruction Words   | 31 30                                                                             | 29 28         | 27 24 | 23 | 22 21       |                       |  |  |  |  |
|                     | 0 0                                                                               | e h           | ra    | 0  | 0 0         | 0 rd                  |  |  |  |  |
|                     | 14 11 10                                                                          | 98            | 76    | 5  | 4 3         | 2 1 0                 |  |  |  |  |
|                     | sel_op 0                                                                          | 0 0           | 0 0   | 1  | 0 0         | 0 1 0                 |  |  |  |  |
| Description         | This instruction floating-integer                                                 |               |       |    | nteger forr | n to single-precision |  |  |  |  |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>ONE (the value one) |               |       |    |             |                       |  |  |  |  |
| Types for ra        | type is implicit i                                                                | in the opcode | Э     |    |             |                       |  |  |  |  |
| Modifiers for ra    | none                                                                              |               |       |    |             |                       |  |  |  |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONI<br>VECTOR, MCA                      | -             |       |    | IRAREG,     | LOOPCT                |  |  |  |  |
| Modifiers for rd    | e (send output<br>h (send output                                                  |               |       |    |             |                       |  |  |  |  |
| Example             | itof ONE, R                                                                       | B0.h          |       |    |             |                       |  |  |  |  |

| Syntax               | ld reg.ty                                      | pe, add                                            | lress, c                                              | count                                            |                                               |                                          |                           |                                                 |                                                                                     |
|----------------------|------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------------------|---------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------|
| Instruction Words    | 31                                             | 30                                                 | 29                                                    | 28                                               | 27                                            | 26                                       | 25                        | 21 20                                           | 16                                                                                  |
|                      | L                                              | 1                                                  | М                                                     | 0                                                | Т                                             | S                                        | word cou                  | nt re                                           | ogister                                                                             |
|                      | 15                                             |                                                    |                                                       |                                                  |                                               |                                          |                           | 2 1                                             | 0                                                                                   |
|                      | t ( ) AD                                       | <u></u>                                            |                                                       | start add                                        | ress                                          |                                          |                           | C†                                              |                                                                                     |
| Description          | logic for<br>address<br>count. T<br>The C a    | a move<br>move<br>, with th<br>he entir<br>nd CT r | instruc<br>instruct<br>le exce<br>e regist<br>egister | tions co<br>ption tha<br>er file ac<br>s are no  | unts sea<br>at the C<br>ts like a<br>t access | quentia<br>and C1<br>ring bu<br>sible to | Ily from the<br>registers | e beginn<br>are omitt<br>he move<br>s illegal t | ster control<br>ing register<br>ed from the<br>instruction.<br>o use the C<br>tion. |
|                      | S                                              | 0 = inte<br>0 = 32 l                               | ger, 1<br>bits 1                                      | give the<br>I = floati<br>I = 64 bi<br>S = 01 is | ng point<br>ts                                | t                                        | umbers                    |                                                 |                                                                                     |
|                      | 256 item                                       | is. The                                            | beginn                                                | ing regi                                         | ster add                                      | ress is                                  |                           | ne registe                                      | 0 will move<br>er field, and<br>0).                                                 |
|                      | bit will b                                     | e set lov                                          | w and t                                               | he 16 lov                                        | w-order                                       | bits are                                 |                           |                                                 | ress. The M<br>The starting                                                         |
|                      | be set h<br>load dat                           | igh, and<br>ta from<br>1g. (C w                    | i the lov<br>the LA<br>vill be s                      | w-order<br>\D bus a<br>et high i                 | 16 bits a<br>and set                          | are set<br>COINT                         | to 0. An ad               | dress of '<br>e cycles                          | The L bit will<br>COINT' will<br>the load is<br>the valid for                       |
| Destinations for reg | RA9-RA<br>RB9-RB<br>STATUS<br>VECTO            | 10<br>6, CONI                                      |                                                       |                                                  |                                               |                                          | IRAREG,                   | LOOPCT                                          | Ē                                                                                   |
| Types for reg        | f (single<br>d (doubl<br>i (signec<br>u (unsig | e-precis<br>intege                                 | sion flo<br>r)                                        |                                                  |                                               |                                          |                           |                                                 |                                                                                     |
| Sources for address  | 0x0-0xF<br>MCADD                               |                                                    | , COIN                                                | IT                                               |                                               |                                          |                           |                                                 |                                                                                     |
| Range for count      | 0-31                                           |                                                    |                                                       |                                                  |                                               |                                          |                           |                                                 |                                                                                     |
| Example              | ld CON<br>ld RAO<br>ld RB1                     | .i, M                                              | CADDR                                                 |                                                  |                                               |                                          |                           |                                                 |                                                                                     |

000000000

| Syntax            | Idict          | coui   | nt   |      |       |     |                  |     |       |      |      |      |      |    |    |        |
|-------------------|----------------|--------|------|------|-------|-----|------------------|-----|-------|------|------|------|------|----|----|--------|
| Execution         | coun           | nt → I | _00  | РСТ  |       |     |                  |     |       |      |      |      |      |    |    |        |
| Instruction Words | 31             | 30     | 29   | 28   | 27    | 26  | 25               | 24  | 23    | 22   | 21   | 20   | 19   | 18 | 17 | 16     |
|                   | 1              | 0      | 1    | 0    | 0     | 0   | 0                | 0   | 0     | 0    | 0    | 0    | 0    | 0  | 0  | 0      |
|                   | 15             |        |      |      |       |     |                  |     |       |      |      |      |      |    |    | 0      |
|                   |                |        |      |      |       |     |                  | COL | int   |      |      |      |      |    |    |        |
| Description       | This<br>If the |        |      |      |       |     |                  |     | •     |      |      |      | •    |    | -  | count. |
| Range for count   | 0x0-(          | 0xFF   | FF   |      |       |     |                  |     |       |      |      | -    |      |    |    |        |
| Example           | ldlo           | ct O   | x0A  |      |       |     |                  |     |       |      |      |      |      |    |    |        |
|                   | This           | exan   | nple | load | s the | LOC | OPC <sup>-</sup> | rec | ister | with | 10 ( | A he | ex). |    |    |        |

# Idmcaddr Load Indirect Address Register with Value

| Syntax            | Idmcaddr address                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Execution         | address $\rightarrow$ MCADDR                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |
| Instruction Words | 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |
|                   | 1 0 1 0 0 1 0 0 0 0 0 0 0 0                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |
|                   | 16 0                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |
|                   | address                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |
| Description       | This instruction loads the indirect address (MCADDR) register with the value specified by <i>count</i> . This is a 17-bit value; the most significant bit selects between code and data space. |  |  |  |  |  |  |  |  |  |  |  |
| Range for address | 0x0-0x1FFFF                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |
| Example           | ldmcaddr 0x0A                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |
|                   | This example loads the MCADDR register with 10 (A hex).                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |

and a base of the second s

| Syntax                     | mask prog_mask                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Execution                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Instruction Words          | 31       28       27       26       25       24       23       22       21       20       19       18       17       16       15       14         0       0       1       1       0       E       D       S       C       H       L       1       EH       DH       ES       DS       EE       DE         13       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th< th=""></th<> |
| Description                | This instruction enables/disables interrupts, sets/clears programmable bits, and forces software interrupts. Multiple bits may be set by placing a vertical bar 'l' between each symbol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Functions for<br>prog_mask | When high, the bits below perform the functions described:ERestore interrupt mask (INTENED, INTENSW, INTENHW)DSave interrupt mask and disable interruptsSSet COINT high (set interrupt output to host)CSet COINT low (clear interrupt output to host)HSet CORDY high (host-independent mode only)LSet CORDY low (host-independent mode only)IForce software interruptEHEnable hardware interrupt (INTR input)DHDisable hardware interruptESEnable software interruptEEEnable software interruptDESDisable software interruptDEDisable ED interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Restrictions               | E and D, S and C, H and L, EH and DH, ES and DS, EE and DE may not be used in pairs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            | E and D may not be used with I, EH, DH, ES, DS, EE, and DE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                            | I may not be used with EH, DH, ES, DS, EE and DE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Example                    | mask EH   ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Syntax              | mova ra.[modifier]type, rd[.modifier]              |                                                                                                                                                   |      |      |    |  |   |        |      |       |      |    |   |
|---------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----|--|---|--------|------|-------|------|----|---|
| Execution           | $ra \rightarrow rd$ (                              | $ra \rightarrow rd$ (no status flag set)                                                                                                          |      |      |    |  |   |        |      |       |      |    |   |
| Instruction Words   | 31                                                 |                                                                                                                                                   |      |      |    |  |   |        |      |       |      |    |   |
|                     | 0                                                  | 0                                                                                                                                                 | е    | h    | ra |  | 0 |        |      | 0     | 0    | rc | 1 |
|                     | 14 11                                              | 10                                                                                                                                                | 9    | 87   | 6  |  | 5 | 4      | 3    | 2     | 1    | (  | ) |
|                     | sel_op                                             | 0                                                                                                                                                 | 0    | type | 0  |  | 1 | va     | 0    | 1     | 0    |    | 2 |
| Description         |                                                    | This instruction copies the value in ra and places it in rd without setting status lags. NANs are not detected or changed to the standard format. |      |      |    |  |   |        |      |       |      |    |   |
| Sources for ra      | C or CT F<br>MULFB (<br>LAD (Imn                   | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                            |      |      |    |  |   |        |      |       |      |    |   |
| Types for ra        | f (single-p<br>d (double                           |                                                                                                                                                   |      | ÷.   |    |  |   |        |      |       |      |    |   |
| Modifiers for ra    | v (absolu                                          | te valı                                                                                                                                           | ne)  |      |    |  |   |        |      |       |      |    |   |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS,<br>VECTOR | CON                                                                                                                                               |      |      | •  |  |   | D1, IF | RARE | G, LC | OPCT |    |   |
| Modifiers for rd    | e (send o<br>h (send o                             | •                                                                                                                                                 |      |      |    |  | , | :)     |      |       |      |    |   |
| Example             | mova CI                                            | .vf,                                                                                                                                              | RA7. | e    |    |  |   |        |      |       |      |    |   |

| Syntax                   | movim                                        | addres                                               | s.type,                                               | count[,                                                  | memor                          | y_type                                    | 1                                                     |                                         |                                        |                                                                                       |
|--------------------------|----------------------------------------------|------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--------------------------------|-------------------------------------------|-------------------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------|
| Instruction Words        | 31                                           | 30                                                   | 29                                                    | 28                                                       | 27                             | 26                                        | 25                                                    | 18                                      | 17                                     | 16                                                                                    |
|                          | 1                                            | 1                                                    | 0                                                     | 0                                                        | Т                              | S                                         | word co                                               | unt                                     | М                                      | D                                                                                     |
|                          | 15                                           |                                                      |                                                       |                                                          |                                |                                           |                                                       | 2                                       | 1                                      | 0                                                                                     |
|                          |                                              |                                                      |                                                       | start ad                                                 | dress                          |                                           |                                                       |                                         | C†                                     |                                                                                       |
|                          | † for indir                                  | ect move                                             | es only.                                              |                                                          |                                |                                           |                                                       |                                         |                                        |                                                                                       |
| Description              | Each in<br>a move                            |                                                      |                                                       |                                                          | •                              |                                           |                                                       | or2w                                    | ords lo                                | ng. During                                                                            |
|                          | T<br>S                                       | 0 = int 0 = 32                                       | i (Size)<br>eger,<br>bits,<br>tting TS                | 1 = float<br>1 = 64 b                                    | ting poii<br>bits              | nt                                        | r format.                                             |                                         |                                        |                                                                                       |
|                          | move 2                                       | 56 item<br>ng doul                                   | ns. 512<br>ble-prec                                   | 32-bit v                                                 | alues r                        | nay be                                    | moved b                                               | y set                                   | ting co                                | unt of 0 will<br>unt=0 and<br>s (for MSD)                                             |
|                          | will be s<br>(MCAD<br>exception<br>COINT     | set high<br>DR). W<br>on of bit<br>output<br>DR regi | . The st<br>hen M<br>t 1. Choo<br>will be<br>ster sto | tarting a<br>is high,<br>osing 'C<br>e low de<br>res the | the 16<br>COINT' a<br>Uning th | is foun<br>low-orc<br>as the a<br>le cycl | d in the in<br>der bits are<br>ddress wi<br>es the me | direct<br>e disre<br>Il set t<br>ove is | t addre<br>egarde<br>he C bi<br>s exec | Bit 17 (M)<br>ss register<br>d, with the<br>t high. The<br>uting. The<br>ly valid for |
|                          | lf bit 16<br>space is                        | •••                                                  | <b>-</b>                                              | a space                                                  | is usec                        | l as the                                  | destinatio                                            | on. lft                                 | he bit is                              | s low, code                                                                           |
|                          | none is                                      | specif<br>y type n                                   | ied, is<br>nust NC                                    | CODE.                                                    | If 'MC                         | ADDR'                                     | or 'COIN                                              | T' is                                   | the ad                                 | ult value, if<br>dress, the<br>ter selects                                            |
| Destination addresses    | 0x0-0xF<br>MCADE                             |                                                      | INT                                                   |                                                          |                                |                                           |                                                       |                                         |                                        |                                                                                       |
| Types for reg            | f (single<br>d (doub<br>i (signe<br>u (unsig | le-prec<br>d integ                                   | ision flo<br>er)                                      |                                                          |                                |                                           |                                                       |                                         |                                        |                                                                                       |
| Range for count          | 0-255                                        |                                                      |                                                       |                                                          |                                |                                           |                                                       |                                         |                                        |                                                                                       |
| Types for<br>memory_type | CODE<br>DATA                                 |                                                      |                                                       |                                                          |                                |                                           |                                                       |                                         |                                        |                                                                                       |

Example

movlm \_vec1.i, 2, DATA
movlm MCADDR.f, 2
movlm COINT.i, 2

\*\*\*\*\*

| Syntax              | movm                                         | addres                                              | ss.type,                                      | count[,                                               | count[.                                   | memory                                      | v type]                                                      |                                                        |                                                                                             |
|---------------------|----------------------------------------------|-----------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Instruction Word    | 31                                           | 30                                                  | 29                                            | 28                                                    | 27                                        | 26                                          | 25                                                           | 21 20                                                  | 16                                                                                          |
|                     | 1                                            | 1                                                   | 0                                             | 0                                                     | Т                                         | S                                           | word coun                                                    | t M                                                    | D                                                                                           |
|                     | 15                                           |                                                     |                                               |                                                       |                                           |                                             |                                                              | 2 1                                                    | 0                                                                                           |
|                     |                                              |                                                     |                                               | start add                                             | dress                                     |                                             |                                                              | c†                                                     |                                                                                             |
|                     | † for indi                                   | rect move                                           | es only.                                      |                                                       |                                           |                                             |                                                              |                                                        |                                                                                             |
| Description         |                                              |                                                     |                                               |                                                       |                                           |                                             | that are 1 o<br>is perform                                   |                                                        | words long.                                                                                 |
|                     | Valid so<br>MSD to                           |                                                     | er opcoo                                      | de for th                                             | nis instri                                | uction f                                    | ormat 1101                                                   | l move n                                               | words from                                                                                  |
|                     | T<br>S                                       | 0 = int<br>0 = 32                                   | S (Size)<br>eger,<br>bits,<br>etting TS       | 1 = float<br>1 = 64 b                                 | ting poir<br>bits                         | nt                                          | format                                                       |                                                        |                                                                                             |
|                     | move 2<br>specify                            | 256 iten<br>ing dou                                 | ns. 512                                       | 32-bit v                                              | values n                                  | nay be                                      | moved by                                                     | setting co                                             | unt of 0 will<br>ount=0 and<br>s (for MSD)                                                  |
|                     | will be<br>(MCAD<br>excepti<br>COINT<br>MCAD | set high<br>DR). W<br>on of bi<br>output<br>DR regi | i. The st<br>/hen M i<br>t 1. Choo<br>will be | arting a<br>is high,<br>osing 'C<br>low di<br>res the | ddress<br>the 16 I<br>OINT' a<br>uring th | is found<br>ow-orde<br>is the ac<br>e cycle | l in the indi<br>er bits are o<br>Idress will s<br>s the mov | irect addre<br>disregarde<br>set the C b<br>ve is exec | . Bit 17 (M)<br>ess register<br>ed, with the<br>it high. The<br>cuting. The<br>ly valid for |
|                     | lf bit 16<br>is used                         | • •                                                 | gh, data                                      | spacei                                                | s used a                                  | as the so                                   | ource. If the                                                | bit is low, (                                          | codespace                                                                                   |
|                     | none is                                      | s specif<br>y type r                                | ied, is (<br>nust NC                          | CODE.                                                 | If 'MCA                                   | DDR'                                        | or 'COINT'                                                   | is the ac                                              | ult value, if<br>Idress, the<br>ster selects                                                |
| Sources for address | 0x0-0x<br>MCAD                               |                                                     | INT                                           |                                                       |                                           |                                             |                                                              |                                                        |                                                                                             |
| Types for reg       |                                              | le-prec<br>d integ                                  |                                               | •••                                                   | •                                         |                                             |                                                              |                                                        |                                                                                             |
| Range for count     | 0-255                                        |                                                     |                                               |                                                       |                                           |                                             |                                                              |                                                        |                                                                                             |

| Types for<br>memory_type | CODE<br>DATA           |  |
|--------------------------|------------------------|--|
| Example                  | movml _vec2.f, 3, DATA |  |
|                          | movml MCADDR.f, 3      |  |
|                          | movml COINT.i, 3       |  |

| Syntax                  | movrr                                     | srscreg.                                       | type, ds                                        | streg, co                                    | ount                                         |                                             |                                |                                            |                                                                            |                            |
|-------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------------|--------------------------------|--------------------------------------------|----------------------------------------------------------------------------|----------------------------|
| Instruction Word        | 31                                        | 30                                             | 29                                              | 28                                           | 27                                           | 26                                          | 25                             | 21                                         | 20                                                                         | 16                         |
|                         | 1                                         | 0                                              | 1                                               | 1                                            | Т                                            | S                                           | word                           | count                                      | source                                                                     |                            |
|                         | 15                                        |                                                |                                                 |                                              |                                              |                                             |                                | 5                                          | 0                                                                          |                            |
|                         | 0                                         | 0 0                                            | 0                                               | 0 0                                          | 0                                            | 0                                           | 0 0                            | 0                                          | destination                                                                | n                          |
| Description             | move i<br>with the<br>entire r<br>CT regi | nstructio<br>except<br>egister fi<br>sters are | ons cour<br>ion that<br>ile acts l<br>e not acc | nts seq<br>the C ar<br>ike a rin<br>cessible | uentially<br>nd CT re<br>g buffer<br>to move | y from t<br>egisters<br>during<br>es. It is | the begi<br>are omi<br>the mov | nning r<br>tted fro<br>e instru<br>use the | r control log<br>register add<br>m the coun<br>action. The<br>e C or CT re | dress,<br>it. The<br>C and |
|                         | T                                         | e) and S<br>0 = inte<br>0 = 32<br>ote: Se      | eger, 1<br>bits, 1                              | = floati<br>= 64 b                           | ng poin<br>its                               | t                                           | numbers                        | 5                                          |                                                                            |                            |
|                         | 256 reg<br>addres                         | gisters.                                       | The source                                      | urce and<br>e is the                         | d destin                                     | ation fi                                    | ields are                      | the be                                     | unt of 0 will<br>eginning re<br>lestination                                | gister                     |
| Sources for srcreg      |                                           | 30<br>S,CONF                                   |                                                 |                                              |                                              |                                             | , IRARE                        | G, LOC                                     | OPCT                                                                       |                            |
| Types for srcreg        | d (dout<br>i (signe                       | e-precisi<br>ile-preci<br>d intege<br>gned int | sion floa<br>er)                                |                                              |                                              |                                             |                                |                                            |                                                                            |                            |
| Destinations for dstreg |                                           | 30<br>S, CON                                   |                                                 |                                              |                                              |                                             | , IRARE                        | G, LOC                                     | OPCT                                                                       |                            |
| Range for count         | 0-31                                      |                                                |                                                 |                                              |                                              |                                             |                                |                                            |                                                                            |                            |
| Example                 | movrr                                     | RA3.f                                          | , RB0,                                          | 3                                            |                                              |                                             |                                |                                            |                                                                            |                            |

## mult Multiply A x B

| Syntax              | mult ra.[n                                               | nodifier]                                                                                                              | type, rb.  | [modif | ier]type | e, rd[. | modif  | ier]    |          |       |           |  |
|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------|--------|----------|---------|--------|---------|----------|-------|-----------|--|
| Execution           | $ra \times rb \rightarrow$                               | rd                                                                                                                     |            |        |          |         |        |         |          |       |           |  |
| Instruction Words   | 31 30 29 28 27 24 23 20 19                               |                                                                                                                        |            |        |          |         |        |         |          | 15    |           |  |
|                     | 0                                                        | 0                                                                                                                      |            | e      | h        |         | ra     | rb      |          |       | rd        |  |
|                     | 14 11                                                    | 10                                                                                                                     | 98         | 7      | 6        | 5       | 4      | 3       | 2        | 1     | 0         |  |
|                     | sel_op                                                   | 0                                                                                                                      | t pa       | pb     | 1        | 0       | va     | vb      | ny       | wa    | wb        |  |
| Description         | This instru                                              | uction ta                                                                                                              | kes the    | produc | t of ra  | and I   | b and  | l place | es it in | rd.   |           |  |
| Sources for ra      | RA9-RA0<br>C or CT R<br>ALUFB (A<br>LAD (Imm<br>ONE (the | LU feed                                                                                                                | data fror  | n LAD  | bus)     |         |        |         |          |       |           |  |
| Sources for rb      | MULFB (N<br>LAD (Imm                                     | RB9-RB0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |            |        |          |         |        |         |          |       |           |  |
| Types for ra and rb | f (single-p<br>d (double-<br>i (signed i<br>u (unsigne   | -precisio<br>nteger)                                                                                                   | on floatir |        |          |         |        |         |          |       |           |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS,<br>VECTOR,      |                                                                                                                        |            |        |          |         | 1, IRA | REG,    | LOOF     | РСТ   |           |  |
| Modifiers for rd    | n (negate<br>e (send of<br>h (send of                    | utput to                                                                                                               | LAD bu     | s, WE  | strobe)  |         |        |         |          |       |           |  |
| Restrictions        | Feedback<br>double-pr                                    |                                                                                                                        |            |        | MULFI    | B) m    | ay not | t be u  | sed a    | s ope | rands for |  |
| Example             | mult RA                                                  | 0.f,C.                                                                                                                 | f, CT      |        |          |         |        |         |          |       |           |  |

| Syntax                  | mult.add                                                                                                                                                                               | ra.type, ra                                                                                                     | 2, rb.type,         | rb2, rd[.ı | modifierj | l, outpu | ıt_source | 9        |    |  |  |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|------------|-----------|----------|-----------|----------|----|--|--|--|--|
| Execution               | ra × rb $\rightarrow$ rd or MULFB; ra2 + rb2 $\rightarrow$ rd or ALUFB                                                                                                                 |                                                                                                                 |                     |            |           |          |           |          |    |  |  |  |  |
| Instruction Words       | 31                                                                                                                                                                                     | 30                                                                                                              | 29                  | 28         | 27        | 24 23    | 3 20      | 19       | 15 |  |  |  |  |
|                         | 0                                                                                                                                                                                      | 0                                                                                                               | e                   | h          | ra or     | ra2      | rb or rb2 | <u> </u> | rd |  |  |  |  |
|                         | 14 11 <sup>.</sup>                                                                                                                                                                     | 10 9                                                                                                            | 8 7                 | 6          | 5 4       | 3        | 2         | 1        | 0  |  |  |  |  |
|                         | sel_op                                                                                                                                                                                 | 1 t                                                                                                             | pa pb               | S          | 0 0       | a        | m         | 0        | 0  |  |  |  |  |
| Description             | This chained-mode instruction places the product of the values of ra and rb in either rd or MULFB, and concurrently places the sum of the next values from ra and rb into rd or ALUFB. |                                                                                                                 |                     |            |           |          |           |          |    |  |  |  |  |
| Sources for ra          | ALUFB (A<br>LAD (Imm                                                                                                                                                                   | RA9-RA0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |                     |            |           |          |           |          |    |  |  |  |  |
| Sources for rb          | RB9-RB0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                                                                 |                                                                                                                 |                     |            |           |          |           |          |    |  |  |  |  |
| Types for ra and rb     | f (single-precision floating-point)<br>d (double-precision floating-point)<br>i (signed integer)<br>u (unsigned integer)                                                               |                                                                                                                 |                     |            |           |          |           |          |    |  |  |  |  |
| Modifiers for ra and rb | none                                                                                                                                                                                   |                                                                                                                 |                     |            |           |          |           |          |    |  |  |  |  |
| Sources for ra2         | RA9-RA0<br>C or CT re<br>MULFB (N<br>LAD (imm<br>ONE (the                                                                                                                              | Aultiplier fe<br>ediate data                                                                                    | a from LAD          | bus)       |           |          |           |          |    |  |  |  |  |
| Sources for rb2         | RB9-RB0<br>C or CT re<br>ALUFB (A<br>LAD (imm<br>ONE (the                                                                                                                              | LU feedba<br>ediate)                                                                                            |                     |            |           |          |           |          |    |  |  |  |  |
| Destinations for rd     | -                                                                                                                                                                                      | -                                                                                                               | COUNTX,<br>, SUBADD |            |           | AREG     | , LOOP(   | ст       |    |  |  |  |  |

| Modifiers for rd | a (negate ALU result, valid only for chained mode noninteger types)<br>m (negate multiplier result, valid only for chained mode noninteger types)<br>e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe) |  |  |  |  |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Output_sources   | ALU<br>MULT                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Restrictions     | If ra2 is specified, then at least one feedback source must be used (either ra or ra2). If rb2 is specified, then at least one feedback source must be used (either rb or rb2).                                                        |  |  |  |  |  |  |  |  |  |
|                  | Feedback registers (ALUFB or MULFB) may not be used as operands for double-precision multiplies.                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| Example          | mult.add RA2.f, lad2, RB7.u. ALUFB2, CT.a, ALU                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |

| Syntax                  | mult.neg                                                                                                               | ra.type, r                          | a2. rb.tj | ype, r  | rd[.moa | lifieı | r],outp | out_s | ourc  | e      |      |    |   |
|-------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|---------|---------|--------|---------|-------|-------|--------|------|----|---|
| Execution               | ra × rb $\rightarrow$ rd or MULFB; 0 – ra2 $\rightarrow$ rd or ALUFB                                                   |                                     |           |         |         |        |         |       |       |        |      |    |   |
| Instruction Words       | 31                                                                                                                     | 30                                  | 29        | Э       | 28      |        | 27      | 24    | 23    | 20     | ) 19 | 1  | 5 |
|                         | 0                                                                                                                      | 0                                   | e         | ,       | h       |        | ra or   | ra2   |       | rb     |      | rd |   |
|                         | 14 11                                                                                                                  | 10 9                                | 8         | 7       | 6       | 5      | 4       | l     | 3     | 2      |      | 0  |   |
|                         | sel_op                                                                                                                 | 10 5                                | ра        | ,<br>bp | s       | 1      |         |       | a     | m      | 1    |    |   |
| Description             | The chain<br>rd or the n<br>0 and plac                                                                                 | nultiplier f                        | eedbac    | k, and  | d concu | urre   | ntly s  | ubtra | cts t | he val |      |    |   |
| Sources for ra          | RA9-RA0<br>C or CT F<br>ALUFB (A<br>LAD (Imm<br>ONE (the                                                               | LU feedb<br>nediate da              | ita from  | LAD     | bus)    |        |         |       |       |        |      | •  |   |
| Sources for rb          | RB9-RB0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |                                     |           |         |         |        |         |       |       |        |      |    |   |
| Types for ra and rb     | f (single-p<br>d (double<br>i (signed i<br>u (unsigne                                                                  | -precision<br>nteger)               | floating  | •       |         |        |         |       |       |        |      |    |   |
| Modifiers for ra and rb | none                                                                                                                   |                                     |           |         |         |        |         |       |       |        |      |    |   |
| Sources for ra2         | RA9-RA0<br>C or CT r<br>MULFB (I<br>LAD (imm<br>ONE (the                                                               | egister<br>Multiplier<br>rediate da | ta from   |         | bus)    |        |         |       |       |        |      |    |   |
| Sources for rb2         | RB9-RB0<br>C or CT r<br>ALUFB (A<br>LAD (imm<br>ONE (the                                                               | egister<br>\LU feedb<br>iediate)    | •         |         |         |        |         |       |       |        |      |    |   |
| Destinations for rd     | RA9-RA0<br>RB9-RB0<br>C or CT                                                                                          |                                     |           |         |         |        |         |       |       |        |      |    |   |

| Modifiers for rd | a (negate ALU result, valid only for chained mode noninteger types)<br>m (negate multiplier result, valid only for chained mode noninteger types)<br>e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe) |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output_sources   | ALU<br>MULT                                                                                                                                                                                                                            |
| Restrictions     | If ra2 is specified then at least one feedback source must be used (either ra or ra2). If rb2 is specified then at least one feedback source must be used (either rb or rb2).                                                          |
|                  | Feedback registers (ALUFB or MULFB) may not be used as operands for double-precision multiplies.                                                                                                                                       |
| Example          | mult.neg RA1.f, LAD2, RB6d, RB0, MULT                                                                                                                                                                                                  |

| Syntax                  | mult.pass                                                                   | s ra.type,                                                                                                             | ra2, rb.typ             | oe, rd | l[.mod          | ifier], | outp     | ut_s  | ource |      |    |  |  |
|-------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------|--------|-----------------|---------|----------|-------|-------|------|----|--|--|
| Execution               | ra $\times$ rb $\rightarrow$ rd or MULFB; ra2 + 0 $\rightarrow$ rd or ALUFB |                                                                                                                        |                         |        |                 |         |          |       |       |      |    |  |  |
| Instruction Words       | 31                                                                          | 30                                                                                                                     | 29                      |        | 28              | 27      |          | 24 23 | 3 20  | ) 19 | 15 |  |  |
|                         | 0                                                                           | 0                                                                                                                      | 0                       |        | 0               | ra      | a or ra2 | 2     | rb    |      | rd |  |  |
|                         | 14 11                                                                       | 10 9                                                                                                                   |                         | 7      | 6               | 5       | 4        | 3     | 2     | 1    | 0  |  |  |
|                         | sel_op                                                                      | 1 t                                                                                                                    |                         | b      | s               | 1       | 0        | а     | m     | 0    | 0  |  |  |
| Description             | This chair<br>or the mul<br>and 0 into                                      | tiplier feed                                                                                                           | back, and               | lcon   | curren          | itly pl |          |       |       |      |    |  |  |
| Sources for ra          | RA9-RA0<br>C or CT R<br>ALUFB (A<br>LAD (Imm<br>ONE (the                    | LU feedb<br>lediate da                                                                                                 | ta from L               | AD bi  | us)             |         |          |       |       |      |    |  |  |
| Sources for rb          | MULFB (N<br>LAD (Imm                                                        | RB9-RB0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |                         |        |                 |         |          |       |       |      |    |  |  |
| Modifiers for ra and rb | none                                                                        |                                                                                                                        |                         |        |                 |         |          |       |       |      |    |  |  |
| Sources for ra2         | RA9-RA0<br>C or CT re<br>MULFB (N<br>LAD (imm<br>ONE (the                   | Multiplier f                                                                                                           | ta from LA              | ND bu  | JS)             |         |          |       |       |      |    |  |  |
| Sources for rb2         | RB9-RB0<br>C or CT re<br>ALUFB (A<br>LAD (imm<br>ONE (the                   | LU feedb<br>ediate)                                                                                                    | -                       |        |                 |         |          |       |       |      |    |  |  |
| Destinations for rd     | RA9-RA0<br>RB9-RB0<br>C or CT                                               |                                                                                                                        |                         |        |                 |         |          |       |       |      |    |  |  |
| Modifiers for rd        | a (negate<br>m (negate<br>e (send ou<br>h (send ou                          | e multiplier<br>utput to LA                                                                                            | result, va<br>AD bus, W | lid or | nly for<br>obe) | chai    |          |       |       |      |    |  |  |
| Output_sources          | ALU<br>MULT                                                                 |                                                                                                                        |                         |        |                 |         |          |       |       |      |    |  |  |

**Restrictions** If ra2 is specified then at least one feedback source must be used (either ra or ra2). If rb2 is specified then at least one feedback source must be used (either rb or rb2).

Feedback registers (ALUFB or MULFB) may not be used as operands for double-precision multiplies.

Example mult.pass RA4.f, C2, RB6.d, CT.a, ALU

Multiply A1 x B1, Subtract A2 – B2 mutl.sub

| <b>.</b> .              |                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Syntax                  | mult.sub ra.type, ra2, rb.type, rb2, rd[.modifier], output_source                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |
| Execution               | ra $\times$ rb $\rightarrow$ rd or MULFB; ra2 – rb2 $\rightarrow$ rd or ALUFB                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |
| Instruction Words       | 31 30 29 28 27 24 23 20 19 15                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |
|                         | 0 0 e h raorra2 rborrb2 rd                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |
|                         | 14 11 10 9 8 7 6 5 4 3 2 1 0<br>sel_op 1 t pa pb s 0 0 a m 0 1                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  |
| Description             | This chained-mode instruction places the product of the values of ra and rb in either rd or MULFB, and concurrently places the difference of the values from ra2 and rb2 into rd or ALUFB. |  |  |  |  |  |  |  |  |  |  |  |
| Sources for ra          | RA9-RA0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                                                                            |  |  |  |  |  |  |  |  |  |  |  |
| Sources for rb          | RB9-RB0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                                                                     |  |  |  |  |  |  |  |  |  |  |  |
| Types for ra and rb     | f (single-precision floating-point)<br>d (double-precision floating-point)<br>i (signed integer)<br>u (unsigned integer)                                                                   |  |  |  |  |  |  |  |  |  |  |  |
| Modifiers for ra and rb | none                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |
| Sources for ra2         | RA9-RA0<br>C or CT register<br>MULFB (Multiplier feedback)<br>LAD (immediate data from LAD bus)<br>ONE (the value one)                                                                     |  |  |  |  |  |  |  |  |  |  |  |
| Sources for rb2         | RB9-RB0<br>C or CT register<br>ALUFB (ALU feedback)<br>LAD (immediate)<br>ONE (the value one)                                                                                              |  |  |  |  |  |  |  |  |  |  |  |
| Destinations for rd     | RA9-RA0<br>RB9-RB0<br>C or CT                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |

| Modifiers for rd | a (negate ALU result, valid only for chained mode noninteger types)<br>m (negate multiplier result, valid only for chained mode non-nteger types)<br>e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe) |  |  |  |  |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Output_sources   | ALU<br>MULT                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Restrictions     | If ra2 is specified then at least one feedback source must be used (either ra or ra2). If rb2 is specified then at least one feedback source must be used (either rb or rb2).                                                          |  |  |  |  |  |  |  |  |  |
|                  | Feedback registers (ALUFB or MULFB) may not be used as operands for double-precision multiplies.                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| Example          | mult.sub RA8.d, MULFB2, RB4.d, ALUFB2, RA9.m, MULT                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |

| Syntax                  | mult.2sul                                                                                                              | ba ra.type,                                            | ra2. rb.t  | /pe, rd | [.moa | lifier] | , outj | out_s | source |    |    |
|-------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------|---------|-------|---------|--------|-------|--------|----|----|
| Execution               | ra × rb $\rightarrow$ rd or MULFB; 2 – ra2 $\rightarrow$ rd or ALUFB                                                   |                                                        |            |         |       |         |        |       |        |    |    |
| Instruction Words       | 31                                                                                                                     | 30                                                     | 29         |         | 28    | 27      | :      | 24 23 | 20     | 19 | 15 |
|                         | 0                                                                                                                      | 0                                                      | e          |         | h     | ra      | or ra2 |       | rb     |    | rd |
|                         | 14 11                                                                                                                  | 10 9                                                   | 8          | 76      |       | 5       | 4      | 3     | 2      | 1  | 0  |
|                         | sel_op                                                                                                                 | 0 t                                                    | ······     | b s     |       | 0       | 0      | a     | m      | 1  | 0  |
| Description             | feedback,                                                                                                              | ned-mode i<br>and concu<br>d or in the J               | urrently s | ubtract |       |         |        |       |        |    |    |
| Sources for ra          | LAD (Imm                                                                                                               | Register<br>NLU feedba<br>nediate dat<br>value one)    | a from L/  | AD bus  | ·)    |         |        |       |        |    |    |
| Sources for rb          | RB9-RB0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |                                                        |            |         |       |         |        |       |        |    |    |
| Types for ra and rb     | d (double<br>i (signed i                                                                                               | recision flo<br>-precision f<br>nteger)<br>ed integer) |            |         |       |         |        |       |        |    |    |
| Modifiers for ra and rb | none                                                                                                                   |                                                        |            |         |       |         |        |       |        |    |    |
| Sources for ra2         | LAD (imm                                                                                                               |                                                        | a from L/  | ND bus  | )     |         |        |       |        |    |    |
| Sources for rb2         | LAD (imm                                                                                                               | egister<br>\LU feedba                                  | -          |         |       |         |        |       |        |    |    |
| Destinations for rd     | RA9-RA0<br>RB9-RB0<br>C or CT                                                                                          |                                                        |            |         |       |         |        |       |        |    |    |

| Modifiers for rd | a (negate ALU result, valid only for chained mode noninteger types)<br>m (negate multiplier result, valid only for chained mode noninteger types)<br>e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe) |  |  |  |  |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Output_sources   | ALU<br>MULT                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Restrictions     | If ra2 is specified then at least one feedback source must be used (either ra or ra2). If rb2 is specified then at least one feedback source must be used (either rb or rb2).                                                          |  |  |  |  |  |  |  |  |  |
|                  | Feedback registers (ALUFB or MULFB) may not be used as operands for double-precision multiplies.                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| Example          | mult.2suba RA3.i, LAD2, RB1.u, RA0.e, ALU                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |

| Syntax                  | mult.sub                                                               | rl <i>ra.type,</i>                                   | ra2. rb. | type,   | rb2, rd  | [. <i>m</i> c | odifier] | , outp | out_sour  | ce |    |   |
|-------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------|---------|----------|---------------|----------|--------|-----------|----|----|---|
| Execution               | ra × rb $\rightarrow$ rd or MULFB; rb2 – ra2 $\rightarrow$ rd or ALUFB |                                                      |          |         |          |               |          |        |           |    |    |   |
| Instruction Words       | 31                                                                     | 30                                                   | 29       | )       | 28       | 2             | 7        | 24 23  | 3 20      | 19 | 1  | 5 |
|                         | 0                                                                      | 0                                                    | e        |         | h        |               | ra or ra | 2 1    | rb or rb2 |    | rd |   |
|                         | 14 11                                                                  | 10 9                                                 | 8        | 7       | 6        | 5             | 4        | 3      | 2         | 1  | 0  |   |
|                         | sel_op                                                                 | 10 g                                                 | pa       | ,<br>pb | s        | 0             | 0        | a      |           | 1  | 1  |   |
| Description             | feedback                                                               | uction plac<br>and concu<br>either rd or             | irrently | subtr   | acts the |               |          |        |           |    |    |   |
| Sources for ra          | LAD (Imn                                                               |                                                      | ta from  | LAD     | bus)     |               |          |        |           |    |    |   |
| Sources for rb          | LAD (Imn                                                               |                                                      | ta from  |         | bus)     |               |          |        |           |    |    |   |
| Types for ra and rb     | d (double<br>i (signed                                                 | precision fl<br>-precision<br>integer)<br>ed integer | floating |         | t)       |               |          |        |           |    |    |   |
| Modifiers for ra and rb | none                                                                   |                                                      |          |         |          |               |          |        |           |    |    |   |
| Sources for ra2         | LAD (imm                                                               |                                                      | ta from  |         | bus)     |               |          |        |           |    |    |   |
| Sources for rb2         | LAD (imm                                                               | egister<br>ALU feedba                                | ,        |         |          |               |          |        |           |    |    |   |
| Destinations for rd     | RA9-RA0<br>RB9-RB0<br>C or CT                                          |                                                      |          |         |          |               |          |        |           |    | ·  |   |

| Modifiers for rd | a (negate ALU result, valid only for chained mode noninteger types)<br>m (negate multiplier result, valid only for chained mode noninteger types)<br>e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe) |  |  |  |  |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Output_sources   | ALU<br>MULT                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Restrictions     | If ra2 is specified then at least one feedback source must be used (either ra or ra2). If rb2 is specified then at least one feedback source must be used (either rb or rb2).                                                          |  |  |  |  |  |  |  |  |  |
|                  | Feedback registers (ALUFB or MULFB) may not be used as operands for double-precision multiplies.                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| Example          | mult.subrl MULFB.d, LAD2, R6.d, ONE2, C.a, MULT                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |

0000

| Syntax              | neg ra.[modifier]type, rd[.modifier]                                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Execution           | $-ra \rightarrow rd$                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |
| Instruction Words   | 31 30 29 28 27 24 23 22 21 20 19 15                                                                                      |  |  |  |  |  |  |  |  |  |  |  |
|                     | 0 0 e h ra 0 0 0 rd                                                                                                      |  |  |  |  |  |  |  |  |  |  |  |
|                     | 14 11 10 9 7 6 5 4 3 2 1 0                                                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                     | sel_op 0 type 0 1 va 0 0 0 1                                                                                             |  |  |  |  |  |  |  |  |  |  |  |
| Description         | This instruction negates the value in ra and places it in rd.                                                            |  |  |  |  |  |  |  |  |  |  |  |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)   |  |  |  |  |  |  |  |  |  |  |  |
| Types for ra        | f (single-precision floating-point)<br>d (double-precision floating-point)<br>i (signed integer)<br>u (unsigned integer) |  |  |  |  |  |  |  |  |  |  |  |
| Modifiers for ra    | v (absolute value, not valid for integer types)                                                                          |  |  |  |  |  |  |  |  |  |  |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT      |  |  |  |  |  |  |  |  |  |  |  |
| Modifiers for rd    | e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe)                                        |  |  |  |  |  |  |  |  |  |  |  |
| Example             | neg RA4.vd, CT.e                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |

.....

| Syntax            | nop          |    |    |    |    |    |    |    |    |    |    |    |    |    |    |       |    |
|-------------------|--------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-------|----|
| Instruction Words | 31           | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16    |    |
|                   | 0            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     |    |
|                   | 15           | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0     |    |
|                   | 0            | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     |    |
| Description       | This<br>enat |    |    |    |    |    |    |    |    |    |    |    |    |    |    | ers a | re |

This instruction may be used if the TMS34082 is idle, or to wait for a previous instruction to finish.

External Instructions

| Syntax                  | nor ra.type, rb.type, rd[.modifier]                                                                                    |            |                                    |         |     |       |       |    |  |  |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------|---------|-----|-------|-------|----|--|--|--|--|
| Execution               | ra NOR rb $\rightarrow$ rd                                                                                             |            |                                    |         |     |       |       |    |  |  |  |  |
| Instruction Words       | 31                                                                                                                     | 30         | 29                                 | 28      | 27  | 24 23 | 20 19 | 15 |  |  |  |  |
|                         | 0                                                                                                                      | 0          | е                                  | h       | ra  |       | rb    | rd |  |  |  |  |
|                         | 14 11                                                                                                                  | 10 9       | 8 7                                | 6       | 5 4 | 3     | 2 1   | 0  |  |  |  |  |
|                         | sel_op                                                                                                                 | 0 1        | 0 t                                | 0       | 0 0 | 1     | 0 1   |    |  |  |  |  |
| Description             | This instruction takes the logical NOR of ra with rb and places the result in rd.                                      |            |                                    |         |     |       |       |    |  |  |  |  |
| Sources for ra          | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |            |                                    |         |     |       |       |    |  |  |  |  |
| Sources for rb          | RB9-RB0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)        |            |                                    |         |     |       |       |    |  |  |  |  |
| Types for ra and rb     | i (signed i<br>u (unsigne                                                                                              |            |                                    |         |     |       |       |    |  |  |  |  |
| Modifiers for ra and rb | none                                                                                                                   |            |                                    |         |     |       |       |    |  |  |  |  |
| Destinations for rd     | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT    |            |                                    |         |     |       |       |    |  |  |  |  |
| Modifiers for rd        |                                                                                                                        |            | D bus, <del>WE</del><br>D bus, ALT |         | e)  |       |       |    |  |  |  |  |
| Restrictions            | The types                                                                                                              | for ra and | rb must be                         | the sam | e.  |       |       |    |  |  |  |  |
| Example                 | nor CT.                                                                                                                | u, LAD.u   | , RB9.e                            |         |     |       |       |    |  |  |  |  |

| Syntax                  | or ra.type, rb.type, rd[.modifier]                                                                              |                                                                                                                        |                         |         |     |      |       |       |    |    |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|-----|------|-------|-------|----|----|--|--|
| Execution               | ra OR rb $\rightarrow$ rd                                                                                       |                                                                                                                        |                         |         |     |      |       |       |    |    |  |  |
| Instruction Words       | 31                                                                                                              | 30                                                                                                                     | 29                      | 28      | 27  | 2    | 24 23 | 20 19 |    | 15 |  |  |
|                         | 0                                                                                                               | 0                                                                                                                      | e                       | h       |     | ra   |       | rb    |    | rd |  |  |
|                         | 14 11                                                                                                           | 10 9                                                                                                                   | 87                      | 6       | 5   | 4    | 3     | 2     | 1  | 0  |  |  |
|                         | sel_op                                                                                                          | 0 1                                                                                                                    | 0 t                     | 0       | 0   | 0    | 1     | 1     | 0  | 0  |  |  |
| Description             | This instru                                                                                                     | This instruction takes the logical OR of ra with rb and places the result in rd.                                       |                         |         |     |      |       |       |    |    |  |  |
| Sources for ra          | C or CT F<br>MULFB (I<br>LAD (Imm                                                                               | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |                         |         |     |      |       |       |    |    |  |  |
| Sources for rb          | RB9-RB0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |                                                                                                                        |                         |         |     |      |       |       |    |    |  |  |
| Types for ra and rb     | i (signed i<br>u (unsign                                                                                        | nteger)<br>ed integer)                                                                                                 |                         |         |     |      |       |       |    |    |  |  |
| Modifiers for ra and rb | none                                                                                                            |                                                                                                                        |                         |         |     |      |       |       |    |    |  |  |
| Destinations for rd     |                                                                                                                 |                                                                                                                        | COUNTX, (<br>, SUBADD   |         |     | IRAF | REG,  | LOOP( | ст |    |  |  |
| Modifiers for rd        |                                                                                                                 |                                                                                                                        | D bus, WE<br>D bus, ALT |         |     |      |       |       |    |    |  |  |
| Restrictions            | The types                                                                                                       | for ra and                                                                                                             | rb must be              | the sar | ne. |      |       |       |    |    |  |  |
| Example                 | or MULF                                                                                                         | B.i, LAD                                                                                                               | .i, CT.e                |         |     |      |       |       |    |    |  |  |

\*\*\*\*

| Syntax              | pass ra.[modifier]type, rd[.modifier]                                                                                    |  |  |  |  |  |  |  |  |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Execution           | $ra \rightarrow rd$                                                                                                      |  |  |  |  |  |  |  |  |  |  |  |
| Instruction Words   | 31 30 29 28 27 24 23 22 21 20 19 15                                                                                      |  |  |  |  |  |  |  |  |  |  |  |
|                     | 0 0 e h ra 0 0 0 rd                                                                                                      |  |  |  |  |  |  |  |  |  |  |  |
|                     | 14 11 10 9 7 6 5 4 3 2 1 0                                                                                               |  |  |  |  |  |  |  |  |  |  |  |
|                     | sel_op 0 type 0 1 va 0 0 0 0                                                                                             |  |  |  |  |  |  |  |  |  |  |  |
| Description         | This instruction copies the value in ra to rd.                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)   |  |  |  |  |  |  |  |  |  |  |  |
| Types for ra        | f (single-precision floating-point)<br>d (double-precision floating-point)<br>i (signed integer)<br>u (unsigned integer) |  |  |  |  |  |  |  |  |  |  |  |
| Modifiers for ra    | v (absolute value, not valid for integer types)                                                                          |  |  |  |  |  |  |  |  |  |  |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT      |  |  |  |  |  |  |  |  |  |  |  |
| Modifiers for rd    | e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe)                                        |  |  |  |  |  |  |  |  |  |  |  |
| Example             | pass RA5.vf, CT                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |

### pass Pass B

| Syntax              | pass rb.[modifier]type, rd[.modifier]                                                                                    |  |  |  |  |  |  |  |  |  |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| Execution           | $rb \rightarrow rd$                                                                                                      |  |  |  |  |  |  |  |  |  |  |  |  |
| Instruction Words   | 31 30 29 28 27 26 25 24 23 20 19 15                                                                                      |  |  |  |  |  |  |  |  |  |  |  |  |
|                     | 0 0 e h 0 0 0 rb rd                                                                                                      |  |  |  |  |  |  |  |  |  |  |  |  |
|                     | 14 11 10 9 7 6 5 4 3 2 1 0                                                                                               |  |  |  |  |  |  |  |  |  |  |  |  |
|                     | sel_op         0         type         0         1         va         0         1         0         1                     |  |  |  |  |  |  |  |  |  |  |  |  |
| Description         | This instruction copies the value in rb to rd.                                                                           |  |  |  |  |  |  |  |  |  |  |  |  |
| Sources for rb      | RB9-RB0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)          |  |  |  |  |  |  |  |  |  |  |  |  |
| Types for rb        | f (single-precision floating-point)<br>d (double-precision floating-point)<br>i (signed integer)<br>u (unsigned integer) |  |  |  |  |  |  |  |  |  |  |  |  |
| Modifiers for rb    | v (absolute value, not valid for integer types)                                                                          |  |  |  |  |  |  |  |  |  |  |  |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT      |  |  |  |  |  |  |  |  |  |  |  |  |
| Modifiers for rd    | e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe)                                        |  |  |  |  |  |  |  |  |  |  |  |  |
| Execution           | pass RB2.i, CT                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |  |

| Syntax                  | pass.add ra.type, ra2. rb.type, rd[.modifier], output_source                                                                                                                      |                                                                                                  |      |          |          |       |    |  |  |  |  |  |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------|----------|----------|-------|----|--|--|--|--|--|--|--|
| Execution               | ra $\times$ 1 $\rightarrow$ rd or MULFB; ra2 + rb $\rightarrow$ rd or ALUFB                                                                                                       |                                                                                                  |      |          |          |       |    |  |  |  |  |  |  |  |
| Instruction Words       | 31 30                                                                                                                                                                             | 30 29                                                                                            |      | 28 27    |          | 20 19 | 15 |  |  |  |  |  |  |  |
|                         | 0 0                                                                                                                                                                               | е                                                                                                | h    | ra or ra | a2 rt    | o rd  |    |  |  |  |  |  |  |  |
|                         | 14 11 10 9                                                                                                                                                                        | · <b>8</b> 7                                                                                     | 6    | 54       | 3        | 2 1   | 0  |  |  |  |  |  |  |  |
|                         | _sel_op 1 t                                                                                                                                                                       | pa pb                                                                                            | S    | 0 1      | а        | m 0   | 0  |  |  |  |  |  |  |  |
| <b>Description</b>      | This chained-mode instruction places the product of the values of ra and 1 in either rd or MULFB, and concurrently places the sum of the values from ra2 and rb into rd or ALUFB. |                                                                                                  |      |          |          |       |    |  |  |  |  |  |  |  |
| Sources for ra          | LAD (Immediate da                                                                                                                                                                 |                                                                                                  |      |          |          |       |    |  |  |  |  |  |  |  |
| Sources for rb          | LAD (Immediate da                                                                                                                                                                 |                                                                                                  |      |          |          |       |    |  |  |  |  |  |  |  |
| Types for ra and rb     |                                                                                                                                                                                   | f (single-precision floating-point)<br>d (double-precision floating-point)<br>i (signed integer) |      |          |          |       |    |  |  |  |  |  |  |  |
| Modifiers for ra and rb | none                                                                                                                                                                              |                                                                                                  |      |          |          |       |    |  |  |  |  |  |  |  |
| Sources for ra2         | RA9-RA0<br>C or CT register<br>MULFB (Multiplier f<br>LAD (immediate da<br>ONE (the value one                                                                                     | ta from LAD                                                                                      | bus) |          |          |       |    |  |  |  |  |  |  |  |
| Sources for rb2         | RB9-RB0<br>C or CT register<br>ALUFB (ALU feedb<br>LAD (immediate)<br>ONE (the value one                                                                                          |                                                                                                  |      |          |          |       |    |  |  |  |  |  |  |  |
| Destinations for rd     | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG,<br>VECTOR, MCADD                                                                                                                 |                                                                                                  |      |          | AREG, LO | DOPCT |    |  |  |  |  |  |  |  |

| Modifiers for rd    | a (negate ALU result, valid only for chained mode noninteger types)<br>m (negate multiplier result, valid only for chained mode noninteger types)<br>e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe) |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output_sources      | ALU<br>MULT                                                                                                                                                                                                                            |
| <b>Restrictions</b> | If ra2 is specified then at least one feedback source must be used (either ra or ra2).                                                                                                                                                 |
|                     | If rb2 is specified then at least one feedback source must be used (either rb or rb2).                                                                                                                                                 |
| Example             | pass.add RA.d, MULFB2, RB9.f, CT,ALU                                                                                                                                                                                                   |

| Syntax              | pass.neg ra.type, ra2. rd[.modifier], output_source                                                                                                                                                                          |                                 |                     |                   |               |                 |         |       |         |          |      |        |         |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------|-------------------|---------------|-----------------|---------|-------|---------|----------|------|--------|---------|
| Execution           | ra $\times$ 1 $\rightarrow$ rd or MULFB; 0 – ra2 $\rightarrow$ rd or ALUFB                                                                                                                                                   |                                 |                     |                   |               |                 |         |       |         |          |      |        |         |
| Instruction Words   | 31                                                                                                                                                                                                                           | 30                              | 29                  | 28                | 27            | 24              | 23      | 22    | 21      | 21 20 19 |      |        | 15      |
|                     | 0                                                                                                                                                                                                                            | 0                               | е                   | h                 | ra o          | rra2            | 0       | 0     | 0       |          | 0    | r      | d       |
|                     | ······                                                                                                                                                                                                                       | 11 10                           | 9                   | 8                 | 7             | 6               | 5       | 4     | 3       | 2        | 1    |        | 0       |
|                     | sel_op                                                                                                                                                                                                                       | ) 1                             | t                   | ра                | pb            | S               | 1       | 1     | а       | m        | 1    |        | 1       |
| Description         | This chained-mode instruction places the product of values of ra and 1 in either rd or the multiplier feedback, and concurrently subtracts the value of ra2 from 0 and places the result into either rd or the ALU feedback. |                                 |                     |                   |               |                 |         |       |         |          |      |        |         |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                                                                                                              |                                 |                     |                   |               |                 |         |       |         |          |      |        |         |
| Types for ra        | f (single-precision floating-point)<br>d (double-precision floating-point)<br>i (signed integer)<br>u (unsigned integer)                                                                                                     |                                 |                     |                   |               |                 |         |       |         |          |      |        |         |
| Modifiers for ra    | none                                                                                                                                                                                                                         |                                 |                     |                   |               |                 |         |       |         |          |      |        |         |
| Sources for ra2     | RA9-R<br>C or C<br>MULFE<br>LAD (ir<br>ONE (t                                                                                                                                                                                | Fregisto<br>3 (Multip<br>nmedia | olier fe<br>te data | a from            |               | ous)            |         |       |         |          |      |        |         |
| Destinations for rd | RA9-R<br>RB9-R<br>C or C                                                                                                                                                                                                     | B0                              |                     |                   |               |                 |         |       |         |          |      |        |         |
| Modifiers for rd    | a (nega<br>m (neg<br>e (send<br>h (send                                                                                                                                                                                      | ate mul<br>I output             | tiplier<br>to LA    | result,<br>D bus, | valid<br>WE s | only f<br>trobe | or chai |       |         | ~        |      |        | es)     |
| Output_sources      | ALU<br>MULT                                                                                                                                                                                                                  |                                 |                     |                   |               |                 |         |       |         |          |      |        |         |
| Restrictions        | If ra2 is<br>or ra2).                                                                                                                                                                                                        | •                               | ed the              | en at le          | ast or        | ne fee          | edback  | sourc | ce must | be       | useo | d (eit | ther ra |
| Example             | pass.                                                                                                                                                                                                                        | neg Cl                          | 2,d, 1              | LAD2,             | RB1           | ,a,             | MULT    |       |         |          |      |        |         |

| Syntax              | pass.pass ra.type, ra2. rd[.modifier], output_source                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| Execution           | ra $\times$ 1 $\rightarrow$ rd or MULFB; ra2 + 0 $\rightarrow$ rd or ALUFB                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  |  |
| Instruction Words   | 31 30 29 28 27 24 23 22 21 20 19 15                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |  |
|                     | 0 0 e h raor ra2 0 0 0 0 rd                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |  |
|                     | 14 11 10 9 8 7 6 5 4 3 2 1 0                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |  |
|                     | sel_op 1 t pa pb s 1 1 a m 0 0                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |  |
| Description         | This chained-mode instruction places the product of a value of ra and 1 in rd<br>or the multiplier feedback, and concurrently places the sum of the value of ra2<br>and 0 into either rd of the ALU feedback.                          |  |  |  |  |  |  |  |  |  |  |  |  |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |  |
| Types for ra        | f (single-precision floating-point)<br>d (double-precision floating-point)<br>i (signed integer)<br>u (unsigned integer)                                                                                                               |  |  |  |  |  |  |  |  |  |  |  |  |
| Modifiers for ra    | none                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |
| Sources for ra2     | RA9-RA0<br>C or CT register<br>MULFB (Multiplier feedback)<br>LAD (immediate data from LAD bus)<br>ONE (the value one)                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |  |
| Modifiers for rd    | a (negate ALU result, valid only for chained mode noninteger types)<br>m (negate multiplier result, valid only for chained mode noninteger types)<br>e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe) |  |  |  |  |  |  |  |  |  |  |  |  |
| Output_sources      | ALU<br>MULT                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |  |
| Restrictions        | If rb2 is specified then at least one feedback source must be used (either rb or rb2).                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |
| Example             | pass.pass RA7.f, C2, RB0, ALU                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |  |

A second data and the second s

| Syntax              | pass.sub ra.type, ra2. rb.type, rd[.modifier], output_source                                                                                                                             |                    |                |                  |             |                  |           |           |       |   |    |      |    |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|------------------|-------------|------------------|-----------|-----------|-------|---|----|------|----|
| Execution           | ra $\times$ 1 $\rightarrow$ rd or MULFB; ra2 – rb $\rightarrow$ rd or ALUFB                                                                                                              |                    |                |                  |             |                  |           |           |       |   |    |      |    |
| Instruction Words   | 31                                                                                                                                                                                       |                    | )              | 29               |             | 28               |           | 27        | 24 23 |   | 20 | ) 19 | 15 |
|                     | 0                                                                                                                                                                                        | 0                  |                | 0                |             | 0                |           | ra or ra2 |       | 2 | rb |      | rd |
|                     | 14 11 10 9                                                                                                                                                                               |                    | 8              | 7                | 6           | 5                |           | 4         | 3     | 2 | 1  | 0    |    |
|                     | sel_op                                                                                                                                                                                   | 1                  | t              | ра               | pb          | s                | 0         |           | 1     | а | m  | 0    |    |
| Description         | This chained-mode instruction places the product of the values of ra and 1 in either rd or MULFB, and concurrently places the difference of the values from ra2 and rb into rd or ALUFB. |                    |                |                  |             |                  |           |           |       |   |    |      |    |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                                                                          |                    |                |                  |             |                  |           |           |       |   |    |      |    |
| Sources for rb      | RB9-RB0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                                                                   |                    |                |                  |             |                  |           |           |       |   |    |      |    |
| Types for ra and rb | f (single-p<br>d (double-<br>i (signed ir<br>u (unsigne                                                                                                                                  | precis<br>nteger)  | ion fl<br>)    |                  |             |                  |           |           |       |   |    |      |    |
| Types for ra and rb | none                                                                                                                                                                                     |                    |                |                  |             |                  |           |           |       |   |    |      |    |
| Sources for ra2     | RA9-RA0<br>C or CT re<br>MULFB (N<br>LAD (imm<br>ONE (the                                                                                                                                | lultipli<br>ediate | er fee<br>data |                  |             | bus)             |           |           |       |   |    |      |    |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT                                                                                                                                                            |                    |                |                  |             |                  |           |           |       |   |    |      |    |
| Modifiers for rd    | a (negate<br>m (negate<br>e (send ou<br>h (send ou                                                                                                                                       | multip<br>Itput to | blier r        | esult,<br>D bus, | valid<br>WE | only f<br>strobe | or c<br>) | hair      |       |   |    |      |    |

| Output_sources | ALU<br>MULT                                                                            |
|----------------|----------------------------------------------------------------------------------------|
| Restrictions   | If ra2 is specified then at least one feedback source must be used (either ra or ra2). |
| Example        | pass.sub RA1.i, LAD2, RB7.u, CT, ALU                                                   |

\*\*\*\*

| Syntax                  | pass.subrl ra2. rb.type, rd[.modifier], output_source                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Execution               | ra $\times$ 1 $\rightarrow$ rd or MULFB; rb – ra2 $\rightarrow$ rd or ALUFB                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |
| Instruction Words       | 31 30 29 28 27 24 23 20 19 15                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |
|                         | 0 0 e h ra or ra2 rb rd                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |
|                         | 14 11 10 9 8 7 6 5 4 3 2 1 0<br>sel_op 1 t pa pb s 0 1 a m 1 1                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |
| Description             | This instruction places the product of a value in ra and 1 in either rd or multiplier feedback and concurrently the value of ra2 and rb and places the result in either rd or the ALU feedback.                                        |  |  |  |  |  |  |  |  |  |  |  |
| Sources for ra          | RA9-RA0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |
| Sources for rb          | RB9-RB0<br>C or CT Register<br>AULFB (Multiplier feedback)<br>AD (Immediate data from LAD bus)<br>DNE (the value one)                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |
| Types for ra and rb     | f (single-precision floating-point)<br>d (double-precision floating-point)<br>i (signed integer)<br>u (unsigned integer)                                                                                                               |  |  |  |  |  |  |  |  |  |  |  |
| Modifiers for ra and rb | none                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |
| Sources for ra2         | RA9-RA0<br>C or CT register<br>MULFB (Multiplier feedback)<br>LAD (immediate data from LAD bus)<br>ONE (the value one)                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |
| Destinations for rd     | RA9-RA0<br>RB9-RB0<br>C or CT                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |
| Modifiers for rd        | a (negate ALU result, valid only for chained mode noninteger types)<br>m (negate multiplier result, valid only for chained mode noninteger types)<br>e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe) |  |  |  |  |  |  |  |  |  |  |  |
| Output_sources          | ALU<br>MULT                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |

*Restrictions* If ra2 is specified then at least one feedback source must be used (either ra or ra2).

If rb2 is specified then at least one feedback source must be used (either rb or rb2).

Example pass.subrl C.d, MULFB2, RB9.d, RA0.m, ALU

| Syntax              | pass.2suba ra.type, ra2, rd[.modifier], output_source                                                                    |                                                                                                                                                                                               |                    |                    |                    |        |          |      |          |        |           |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------|----------|------|----------|--------|-----------|--|--|--|
| Execution           | ra 	imes 1  ightarrow r                                                                                                  | d or Ml                                                                                                                                                                                       | JLFB; 2            | – ra2 -            | → rd or            | ALU    | FB       |      |          |        |           |  |  |  |
| Instruction Words   | 31 30 29 28 27 24 2                                                                                                      |                                                                                                                                                                                               |                    |                    |                    |        |          |      |          | ) 19   | 15        |  |  |  |
|                     | 0                                                                                                                        | 0                                                                                                                                                                                             |                    | е                  | h                  | r      | a or ra2 |      | rb       | r      | d         |  |  |  |
|                     | 14 11                                                                                                                    | 10                                                                                                                                                                                            | 98                 | 7                  | 6                  | 5      | 4        | 3    | 2        | 1      | 0         |  |  |  |
|                     | sel_op                                                                                                                   | 1                                                                                                                                                                                             | t pa               | pb                 | s                  | 0      |          | а    | m        | 1      | 0         |  |  |  |
| Description         | feedback,                                                                                                                | This chained-mode instruction places the product of ra and 1 in rd or in MUL feedback, and concurrently subtracts the value of ra2 from 2 and places the result in rd or in the ALU feedback. |                    |                    |                    |        |          |      |          |        |           |  |  |  |
| Sources for ra      | RA9-RA0<br>C or CT F<br>ALUFB (A<br>LAD (Imm<br>ONE (the                                                                 | LU feed                                                                                                                                                                                       | data froi          | n LAD              | bus)               |        |          |      |          |        |           |  |  |  |
| Types for ra        | f (single-precision floating-point)<br>d (double-precision floating-point)<br>i (signed integer)<br>u (unsigned integer) |                                                                                                                                                                                               |                    |                    |                    |        |          |      |          |        |           |  |  |  |
| Modifiers for ra    | none                                                                                                                     |                                                                                                                                                                                               |                    |                    |                    |        |          |      |          |        |           |  |  |  |
| Sources for ra2     | RA9-RA0<br>C or CT re<br>MULFB (M<br>LAD (imm<br>ONE (the                                                                | Aultiplie<br>ediate                                                                                                                                                                           | lata froi          |                    | bus)               |        |          |      |          |        |           |  |  |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT                                                                                            |                                                                                                                                                                                               |                    |                    |                    |        |          |      |          |        |           |  |  |  |
| Modifiers for rd    | a (negate<br>m (negate<br>e (send of<br>h (send of                                                                       | e multipl<br>utput to                                                                                                                                                                         | ier resu<br>LAD bu | lt, valid<br>s, WE | only fo<br>strobe) | or cha |          |      |          |        | ypes)     |  |  |  |
| Output_sources      | ALU<br>MULT                                                                                                              |                                                                                                                                                                                               |                    |                    |                    |        |          |      |          |        | ·         |  |  |  |
| Restrictions        | lf ra2 is sp<br>or ra2).                                                                                                 | pecified                                                                                                                                                                                      | then at            | least o            | ne fee             | dback  | sourc    | e mu | ist be ı | used ( | either ra |  |  |  |
| Example             | pass.2s                                                                                                                  | uba RA                                                                                                                                                                                        | 2.f, (             | ONE2,              | RB9.:              | E, C:  | Γa, Μ    | JLT  |          |        |           |  |  |  |

### rti Return from Interrupt

and the second 
| Syntax            | rti                                  |        |      |       |         |      |       |        |       |        |           |    |    |    |    |                      |
|-------------------|--------------------------------------|--------|------|-------|---------|------|-------|--------|-------|--------|-----------|----|----|----|----|----------------------|
| Execution         | IRAREG $\rightarrow$ Program Counter |        |      |       |         |      |       |        |       |        |           |    |    |    |    |                      |
| Instruction Words | 31                                   | 30     | 29   | 28    | 27      | 26   | 25    | 24     | 23    | 22     | 21        | 20 | 19 | 18 | 17 | 16                   |
|                   | 0                                    | 0      | 1    | 1     | 1       | 1    | 0     | 0      | 0     | 0      | 0         | 0  | 0  | 0  | 0  | 0                    |
|                   | 15                                   | 14     | 13   | 12    | 11      | 10   | 9     | 8      | 7     | 6      | 5         | 4  | 3  | 2  | 1  | 0                    |
|                   | 0                                    | 0      | 0    | 0     | 0       | 0    | 0     | 0      | 0     | 0      | 0         | 0  | 0  | 0  | 0  | 0                    |
| Description       |                                      | ster ( | IRAF | REG)  | ). It c | loes | not a |        |       |        |           |    |    |    |    | t return<br>s active |
| Alternate Opcodes | reti                                 | is an  | equ  | ivale | nt op   | code | e for | this i | nstru | uctior | <b>).</b> |    |    |    |    |                      |

| Syntax            | rts                                                                                                      |      |       |       |       |      |       |        |        |       |    |    |    |    |    |    |
|-------------------|----------------------------------------------------------------------------------------------------------|------|-------|-------|-------|------|-------|--------|--------|-------|----|----|----|----|----|----|
| Execution         | SUBADDR0 or SUBADDR1 $\rightarrow$ Program Counter                                                       |      |       |       |       |      |       |        |        |       |    |    |    |    |    |    |
| Instruction Words | 31                                                                                                       | 30   | 29    | 28    | 27    | 26   | 25    | 24     | 23     | 22    | 21 | 20 | 19 | 18 | 17 | 16 |
|                   | 0                                                                                                        | 0    | 1     | 1     | 1     | 0    | 0     | 0      | 0      | 0     | 0  | 0  | 0  | 0  | 0  | 0  |
|                   | 15                                                                                                       | 14   | 13    | 12    | 11    | 10   | 9     | 8      | 7      | 6     | 5  | 4  | 3  | 2  | 1  | 0  |
| ·                 | 0                                                                                                        | 0    | 0     | 0     | 0     | 0    | 0     | 0      | 0      | 0     | 0  | 0  | 0  | 0  | 0  | 0  |
| Description       | This instruction causes a jump to the address stored in the top of the stack.<br>Note: ret is also valid |      |       |       |       |      |       |        |        |       |    |    |    |    |    |    |
| Alternate Opcodes | ret is                                                                                                   | s an | equiv | valer | nt op | code | for t | his ir | nstruc | ction | •  |    |    |    |    |    |

| Syntax                            | sll ra.type, rb.type, rd[.modifier]          |               |                                            |           |                   |            |                            |             |  |  |  |
|-----------------------------------|----------------------------------------------|---------------|--------------------------------------------|-----------|-------------------|------------|----------------------------|-------------|--|--|--|
| Instruction Words                 | 31                                           | 30            | 29                                         | 28        | 27                | 24 23      | 20 19                      | 15          |  |  |  |
|                                   | 0                                            | 0             | е                                          | h         | ra                |            | rb                         | rd          |  |  |  |
|                                   | 14 11                                        | 10 9          | 8 7                                        | 6         | 54                | 3          | 2 1                        | 0           |  |  |  |
|                                   | sel_op                                       | 0 1           | type                                       | 0         | 1 0               | 1          | 0 0                        | 0           |  |  |  |
| Description                       |                                              |               | s the value<br>s are shifte                |           |                   |            |                            |             |  |  |  |
| Sources for ra                    | RA9-RA0<br>C or CT R<br>MULFB (N<br>ONE (the | Aultiplier fe | •                                          |           |                   |            |                            |             |  |  |  |
| Sources for rb (see restrictions) | RB9-RB0                                      |               |                                            |           |                   |            |                            |             |  |  |  |
| Types for ra and rb               | i (signed in<br>u (unsigne                   | <b>-</b> ·    |                                            |           |                   |            |                            |             |  |  |  |
| Modifiers for ra and rb           | none                                         |               |                                            |           |                   |            |                            |             |  |  |  |
| Destinations for rd               |                                              | -             | COUNTX, 1<br>R, SUBADD                     |           |                   | AREG,      | LOOPCT                     |             |  |  |  |
| Modifiers for rd                  |                                              |               | D bus, WE                                  |           |                   |            |                            |             |  |  |  |
| Restrictions                      | exponent                                     | field of a s  | nput as a<br>ingle-precis<br>le set to zei | sion floa | ting point        | numbe      | r. All other               | bits in the |  |  |  |
| Example                           |                                              | •             | how to shif<br>hifted in RA                | -         | variable          | shift valı | ue stored i                | n RA0 and   |  |  |  |
|                                   | ld RB0                                       | .u, shif      | t_const,                                   |           | oad RBO<br>£ 23   | with       | shift c                    | ount        |  |  |  |
|                                   | sll RAO                                      | .u, RB0.      | u, RB1                                     |           | repare<br>alue (i |            | lme shif                   | t           |  |  |  |
|                                   | sll RA1                                      | .u, RB1.      | u, C                                       | ; a       | ctual s           | hift c     | ).<br>of RA1 w<br>le in RA |             |  |  |  |
|                                   | shift_co                                     | onst: da      | ta 0x0b                                    | 8000 0    | 00                |            |                            | it of 23    |  |  |  |

External Instructions

| Syntax              | sqrt ra.[modifier]type, rd[.modifier]                                                                                         |  |  |  |  |  |  |  |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Execution           | $\sqrt{ra} \rightarrow rd$                                                                                                    |  |  |  |  |  |  |  |  |  |  |
| Instruction Words   | 31 30 29 28 27 24 23 22 21 20 19 15                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                     | 0 0 e h ra 0 0 0 rd                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                     | 14 11 10 9 7 6 5 4 3 2 1 0                                                                                                    |  |  |  |  |  |  |  |  |  |  |
|                     | sel_op 0 type 1 1 va 1 ny wa wb                                                                                               |  |  |  |  |  |  |  |  |  |  |
| Description         | This instruction takes the square root of the value in ra and places it in rd.                                                |  |  |  |  |  |  |  |  |  |  |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>ALUFB (ALU feedback)<br>ONE (the value one)                                                    |  |  |  |  |  |  |  |  |  |  |
| Types for ra        | f (single-precision floating-point)<br>d (double-precision floating-point)<br>i (signed integer)<br>u (unsigned integer)      |  |  |  |  |  |  |  |  |  |  |
| Modifiers for ra    | v (absolute value, not valid for integer types)<br>w (wrapped, not valid for integer types)                                   |  |  |  |  |  |  |  |  |  |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT           |  |  |  |  |  |  |  |  |  |  |
| Modifiers for rd    | n (negated, not valid for integer types)<br>e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe) |  |  |  |  |  |  |  |  |  |  |
| Restrictions        | Absolute value modifiers, negated result and wrapped numbers are only permitted with floating-point operations.               |  |  |  |  |  |  |  |  |  |  |
| Example             | sqrt RA7.u, C.n                                                                                                               |  |  |  |  |  |  |  |  |  |  |

| Syntax                            | sra ra.type, rb.type, rd[.modifier] |                                            |          |                                   |      |         |     |         |         |         |       |       |         |
|-----------------------------------|-------------------------------------|--------------------------------------------|----------|-----------------------------------|------|---------|-----|---------|---------|---------|-------|-------|---------|
| Instruction Words                 | 31                                  |                                            | 30       | 29                                |      | 28      | ;   | 27      | 24 2    | 3 20    | 0 19  |       | 15      |
|                                   | 0                                   |                                            | 0        | е                                 |      | h       |     | ra      |         | rb      |       | rd    |         |
|                                   | 14                                  | 11 10                                      | ) 9      | 8                                 | 7    | 6       | 5   | 4       | 3       | 2       | 1     | (     | )       |
|                                   | o                                   | p (                                        | 1        | type                              |      | 0       | 1   | 0       | 1       | 1       | 0     |       | 1       |
| Description                       |                                     |                                            |          | s the valu<br>sign bit is         |      |         |     |         | / the i | number  | of bi | t pos | sitions |
| Sources for ra                    |                                     | T Reg<br>B (Mul                            |          | edback)                           |      |         |     |         |         |         |       |       |         |
| Sources for rb (see restrictions) | RB9-F                               | RB0                                        |          |                                   |      |         |     |         |         |         |       |       |         |
| Types for ra and rb               |                                     | i (signed integer)<br>u (unsigned integer) |          |                                   |      |         |     |         |         |         |       |       |         |
| Modifiers for ra and rb           | none                                | ·                                          |          |                                   |      |         |     |         |         |         |       |       |         |
| Destinations for rd               |                                     | RBO<br>FT<br>JS, CC                        |          | COUNT)<br>R, SUBAI                |      |         |     | D1, IR/ | AREG    | i, LOOF | ост   |       |         |
| Modifiers for rd                  |                                     |                                            |          | ND bus, V<br>ND bus, A            |      |         |     | )       |         |         |       |       |         |
| Restrictions                      | expon                               | ent fie                                    | d of a s | nput as<br>ingle-pre<br>be set to | ecis | ion flo |     |         |         |         |       |       |         |
|                                   | The ty                              | pes fo                                     | r ra anc | l rb must                         | be   | the s   | ame | •       |         |         |       |       |         |
| Example                           | sra M                               | IULFB                                      | .i, LA   | AD.i, C                           | .e   |         |     |         |         |         |       |       |         |

| Syntax                            | srl ra.type | e, rb,type, i                              | rd[.modifie | er]         |     |       |      |    |    |  |  |  |  |
|-----------------------------------|-------------|--------------------------------------------|-------------|-------------|-----|-------|------|----|----|--|--|--|--|
| Instruction Words                 | 31          | 30                                         | 29          | 28          | 27  | 24 23 | 20   | 19 | 15 |  |  |  |  |
|                                   | 0           | 0                                          | e           | h           | ra  |       | rb   |    | rd |  |  |  |  |
|                                   | 14 11       | 10 9                                       | 8           | 76          | 5 4 | 3     | 2    | 1  | 0  |  |  |  |  |
|                                   | sel_op      | 0 1                                        | type        | 0           | 1 0 | 1     | 0    | 0  | 1  |  |  |  |  |
| Description                       |             | iction shifts<br>in rb. Zeros              |             |             |     |       |      |    |    |  |  |  |  |
| Sources for ra                    | •           | egister<br>Aultiplier fe<br>value one)     |             |             |     |       |      |    |    |  |  |  |  |
| Sources for rb (see restrictions) | RB9-RB0     |                                            |             |             |     |       |      |    |    |  |  |  |  |
| Types for ra and rb               |             | i (signed integer)<br>u (unsigned integer) |             |             |     |       |      |    |    |  |  |  |  |
| Modifiers for ra and rb           | none        |                                            |             |             |     |       |      |    |    |  |  |  |  |
| Destinations for rd               | •           | Config, (<br>Mcaddr                        |             |             |     | AREG, | LOOP | ст |    |  |  |  |  |
| Modifiers for rd                  |             | utput to LA<br>utput to LA                 |             |             | be) |       |      |    |    |  |  |  |  |
| Restrictions                      | exponent    | count is in<br>field of a si<br>d should b | ingle-prec  | ision float |     |       | -    | •  |    |  |  |  |  |
|                                   | The types   | for ra and                                 | rb must b   | e the san   | ne. |       |      |    |    |  |  |  |  |
| Example                           | srl CT.     | i, LAD.i                                   | , RA3       |             |     |       |      |    |    |  |  |  |  |

| Syntax           | st reg.ty                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /pe, add                                      | lress, c                                   | ount                                             |                                               |                                                      |                                                                       |                                      |                                      |                                          |                              |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------|------------------------------|
| Instruction Word | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30                                            | 29                                         | 28                                               | 27                                            | 26                                                   | 25                                                                    | 2                                    | 21 20                                |                                          | 16                           |
|                  | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                             | М                                          | 1                                                | Т                                             | S                                                    | word                                                                  | count                                | r                                    | egister                                  |                              |
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                                            |                                                  |                                               |                                                      |                                                                       | 2                                    | 1                                    | 0                                        |                              |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               | ·                                          | start add                                        | ress                                          |                                                      |                                                                       |                                      | C1                                   | A                                        |                              |
|                  | <sup>†</sup> For LAD                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) moves o                                     | nly.                                       |                                                  |                                               |                                                      |                                                                       |                                      |                                      |                                          |                              |
| Description      | logic for<br>address<br>count. T<br>The C a                                                                                                                                                                                                                                                                                                                                                                                                                           | r move<br>s, with th<br>The entir<br>and CT r | instruc<br>le exce<br>e regist<br>register | tions co<br>ption that<br>er file ac<br>s are no | unts sea<br>at the C<br>ts like a<br>t access | quentia<br>and C <sup>-</sup><br>ring bu<br>sible to | is perfo<br>Ily from<br>Fregiste<br>ffer durir<br>moves.<br>s for a m | the l<br>rs are<br>ng the<br>It is i | beginr<br>e omit<br>e move<br>llegal | ning re<br>ted fro<br>e instru<br>to use | egister<br>om the<br>uction. |
|                  | T<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 = inte<br>0 = 32                            | ger<br>bits                                | give the<br>I = floati<br>I = 64 bi<br>is reser  | ng point<br>ts                                |                                                      | lumbers                                                               |                                      |                                      |                                          |                              |
|                  | Word count is the number of operands to be moved (n). A count of 0 will r<br>256 items 1 or 2 32-bit words long. The beginning register address is st<br>in the register field, and the beginning memory address is the start add<br>field (bits 15-0).<br>An indirect move is designated by selecting MCADDR as the address. T<br>bit will be set low, and the 16 low-order bits are then disregarded. The star<br>address in memory comes from the MCADDR register. |                                               |                                            |                                                  |                                               |                                                      |                                                                       |                                      |                                      |                                          |                              |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                                            |                                                  |                                               |                                                      |                                                                       |                                      |                                      |                                          |                              |
|                  | be set<br>LAD_A                                                                                                                                                                                                                                                                                                                                                                                                                                                       | high, a<br>will writ                          | and the                                    | e low-o<br>to the L                              | rder 16<br>AD bus                             | bits a with an                                       | ed as the<br>are set<br>n ALTCH<br>instructio                         | to 0<br>Īstro                        | ). An<br>be (in                      | addre                                    | ess of                       |
|                  | the cycl<br>address<br>ALTCH<br>instruct                                                                                                                                                                                                                                                                                                                                                                                                                              | es the s<br>s of 'CO<br>strobe                | tore is e<br>INT_A'<br>(instea<br>d. The   | executing<br>will stor<br>d of the<br>COINT      | g. (C will<br>e to the<br>normal              | be set<br>LAD b<br>WE).                              | AD bus<br>high in ti<br>us with (<br>C and A<br>_A optic              | ne ins<br>COIN<br>will               | structi<br>T ena<br>be se            | on woi<br>bled a<br>t high               | rd.) An<br>and an<br>in the  |
| Sources for reg  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30<br>S, CON                                  |                                            | OUNTX,<br>SUBADI                                 |                                               |                                                      | , IRARE                                                               | G, LC                                | DOPC                                 | T ,                                      |                              |

| Types for reg         | f (single-precision floating-point)<br>d (double-precision floating-point)<br>i (signed integer)<br>u (unsigned integer) |  |  |  |  |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Destination addresses | 0x0-0xFFFF<br>MCADDR, LAD, COINT, COINT_A, LAD_A                                                                         |  |  |  |  |  |  |  |  |
| Range for count       | 0-31                                                                                                                     |  |  |  |  |  |  |  |  |
| Example               | st RA0.f, MCADDR, 3<br>st RB1.i, LAD, 5                                                                                  |  |  |  |  |  |  |  |  |

| Syntax                  | sub ra.[m                                               | odifier]type                                                                                                           | e, rb.[n | nodifi  | er]type  | , rd[.n | nodifie | er]     |        |        |    |  |  |
|-------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------|---------|----------|---------|---------|---------|--------|--------|----|--|--|
| Execution               | $ra - rb \rightarrow$                                   | rd                                                                                                                     |          |         |          |         |         |         |        |        |    |  |  |
| Instruction Words       | 31                                                      | 30                                                                                                                     | 29       | )       | 28       | 27      |         | 24 23   | 20     | 0 19   | 15 |  |  |
|                         | 0                                                       | 0                                                                                                                      | е        |         | h        |         | ra      |         | rb     |        | rd |  |  |
|                         | 14 11                                                   | 10 9                                                                                                                   | 8        | 7       | 6        | 5       | 4       | 3       | 2      | 1      | 0  |  |  |
|                         | sel_op                                                  | 0 t                                                                                                                    | pa       | pb      | 0        | 0       | va      | vb      | vy     | 0      | 1  |  |  |
| Description             | This instru                                             | ction place                                                                                                            | es the   | differ  | ence ir  | n the v | alues   | s in ra | and rb | o in r | d. |  |  |
| Sources for ra          | MULFB (N<br>LAD (Imm                                    | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |          |         |          |         |         |         |        |        |    |  |  |
| Sources for rb          | ALUFB (A<br>LAD (Imm                                    | RB9-RB0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)        |          |         |          |         |         |         |        |        |    |  |  |
| Types for ra and rb     | f (single-p<br>d (double-<br>i (signed in<br>u (unsigne | precision f<br>nteger)                                                                                                 |          |         |          |         |         |         |        |        |    |  |  |
| Modifiers for ra and rb | v (abslute                                              | value, not                                                                                                             | valid f  | ior int | teger ty | rpes)   |         |         |        |        |    |  |  |
| Destinations for rd     | RA-9RA0<br>RB9-RB0<br>C or CT<br>STATUS,<br>VECTOR,     |                                                                                                                        |          | -       |          |         | , IRA   | REG,    | LOOP   | ест    |    |  |  |
| Modifiers for rd        | v (absolut<br>e (send ou<br>h (send ou                  | tput to LA                                                                                                             | D bus    | WE      | strobe)  | )       |         |         |        |        |    |  |  |
| Example                 | sub LAD                                                 | vd, ONE                                                                                                                | .vf,     | RA0     | .h       |         |         |         |        |        |    |  |  |

a construction and the second second second behavior

.....

| Syntax                  | subrl ra.[modifier]type, rb.[modifier]type, rd[.modifier]                                                           |                                                                                                                        |           |         |        |      |     |             |    |   |    |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------|---------|--------|------|-----|-------------|----|---|----|--|--|
| Execution               | $rb - ra \rightarrow rd$                                                                                            |                                                                                                                        |           |         |        |      |     |             |    |   |    |  |  |
| Instruction Words       | 31                                                                                                                  | 30                                                                                                                     | 2         | 9       | 28     | 1    | 27  | 24 23 20 19 |    |   | 15 |  |  |
|                         | 0                                                                                                                   | 0                                                                                                                      | e         | )       | h ra   |      |     |             | rb |   | rd |  |  |
|                         | 14 11                                                                                                               | 10 9                                                                                                                   | 8         | 7       | 654    |      | 3   | 2           | 1  | 0 |    |  |  |
|                         | sel_op                                                                                                              | 0 t                                                                                                                    | ра        | pb      | 0      | 0    | va  | vb          | vy | 1 | 1  |  |  |
| Description             |                                                                                                                     | This instruction takes the difference in the value in rb from the value in ra and places it in rd.                     |           |         |        |      |     |             |    |   |    |  |  |
| Sources for ra          | C or CT F<br>MULFB (I<br>LAD (Imn                                                                                   | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |           |         |        |      |     |             |    |   |    |  |  |
| Sources for rb          | RB9-RB0<br>C or CT Register<br>ALUFB (ALU feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one)     |                                                                                                                        |           |         |        |      |     |             |    |   |    |  |  |
| Types for ra and rb     | f (single-p<br>d (double<br>i (signed i<br>u (unsign                                                                | -precisio<br>integer)                                                                                                  | floating  |         |        |      |     |             |    |   |    |  |  |
| Modifiers for ra and rb | v (absolu                                                                                                           | te value,                                                                                                              | not valio | l for i | nteger | type | es) |             |    |   |    |  |  |
| Destinations for rd     | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT |                                                                                                                        |           |         |        |      |     |             |    |   |    |  |  |
| Example                 | subrl RA.f, RB2.vf, RA0                                                                                             |                                                                                                                        |           |         |        |      |     |             |    |   |    |  |  |

| Syntax              | utod ra, rd[.modifier]                                                                                                                          |  |  |  |  |  |  |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Execution           | ra (unsigned integer) $\rightarrow$ rd (double-precision)                                                                                       |  |  |  |  |  |  |  |  |  |
| Instruction Words   | 31 30 29 28 27 24 23 22 21 20 19 15<br>0 0 e h ra 0 0 0 0 rd                                                                                    |  |  |  |  |  |  |  |  |  |
|                     | 14     11     10     9     8     7     6     5     4     3     2     1     0       sel_op     0     0     1     1     0     1     0     1     0 |  |  |  |  |  |  |  |  |  |
| Description         | This instruction converts an unsigned integer value in ra to a double-precision floating-point format and places the result in rd.              |  |  |  |  |  |  |  |  |  |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>ONE (the value one)                                                               |  |  |  |  |  |  |  |  |  |
| Types for ra        | type is implicit in the opcode                                                                                                                  |  |  |  |  |  |  |  |  |  |
| Modifiers for ra    | none                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT                             |  |  |  |  |  |  |  |  |  |
| Modifiers for rd    | e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe)                                                               |  |  |  |  |  |  |  |  |  |
| Example             | utod MULFB, CT.e                                                                                                                                |  |  |  |  |  |  |  |  |  |

| Syntax              | utof ra                                                                                                                | rd[.mc   | odifier] |        |    |    |    |    |    |   |    |       |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------|----------|----------|--------|----|----|----|----|----|---|----|-------|--|
| Execution           | ra (unsigned integer) $\rightarrow$ rd (single-precision)                                                              |          |          |        |    |    |    |    |    |   |    |       |  |
| Instruction Words   | 31                                                                                                                     | 30       | 29       | 28     | 27 | 24 | 23 | 22 | 21 |   | 20 | 19 15 |  |
|                     | 0                                                                                                                      | 0        | е        | h      |    | a  | 0  | 0  | 0  |   | 0  | rd    |  |
|                     | 14                                                                                                                     | 11 10    | 9        | 8      | 7  | 6  | 5  | 4  | 3  | 2 | 1  | 0     |  |
|                     | selop                                                                                                                  | 0        | 0        | 0      | 0  | 0  | 1  | 0  | 1  | 0 | 1  | 0     |  |
| Description         | This instruction converts an unsigned integer in ra to single-precision floating-point format and places it in rd.     |          |          |        |    |    |    |    |    |   |    |       |  |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |          |          |        |    |    |    |    |    |   |    |       |  |
| Types for ra        | type is                                                                                                                | implicit | in the o | opcode | Э  |    |    |    |    |   |    |       |  |
| Modifiers for ra    | none                                                                                                                   |          |          |        |    |    |    |    |    |   |    |       |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT    |          |          |        |    |    |    |    |    |   |    |       |  |
| Modifiers for rd    | e (seno<br>h (seno                                                                                                     |          |          |        |    |    |    |    |    |   |    |       |  |
| Example             | utof                                                                                                                   | LAD, I   | RA9.e    |        |    |    |    |    |    |   |    |       |  |

| Syntax              | uwrapi ra.[modifier]type, rd[.modifier]                                                                                |                                                                                                  |      |      |   |    |   |    |   |   |   |    |   |
|---------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------|------|---|----|---|----|---|---|---|----|---|
| Execution           | wrapped in ra $\rightarrow$ denormal in rd                                                                             |                                                                                                  |      |      |   |    |   |    |   |   |   |    |   |
| Instruction Words   | 31 30 29 28 27 24 23 22 21 20 19 15                                                                                    |                                                                                                  |      |      |   |    |   |    |   |   |   |    |   |
|                     | 0                                                                                                                      | 0                                                                                                | е    | h    |   | ra | 0 | 0  | 0 | ) | 0 | rd |   |
|                     | 14 1                                                                                                                   | 1 10                                                                                             | 9    | 8    | 7 | 6  | 5 | 4  | 3 | 2 | 1 | C  | ) |
|                     | sel_op                                                                                                                 | 0                                                                                                | 0    | type |   | 0  | 1 | va | 1 | 1 | 0 |    | 1 |
| Description         |                                                                                                                        | This instruction unwraps the inexact operand in ra and places it in rd as a denormalized number. |      |      |   |    |   |    |   |   |   |    |   |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |                                                                                                  |      |      |   |    |   |    |   |   |   |    |   |
| Types for ra        | f (single<br>d (doub                                                                                                   |                                                                                                  |      |      |   |    |   |    |   |   |   |    |   |
| Modifiers for ra    | v (absol                                                                                                               | ute val                                                                                          | ue)  |      |   |    |   |    |   |   |   |    |   |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT    |                                                                                                  |      |      |   |    |   |    |   |   |   |    |   |
| Modifiers for rd    | e (send<br>h (send                                                                                                     |                                                                                                  |      |      |   |    |   |    |   |   |   |    |   |
| Example             | unwrap                                                                                                                 | i RA9                                                                                            | .vf, | C.h  |   |    |   |    |   |   |   |    |   |

| Syntax              | uwrapr ra.[modifier]type, rd[.modifier]                                                                                |         |                |      |   |    |   |    |   |   |   |   |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------|---------|----------------|------|---|----|---|----|---|---|---|---|--|
| Execution           | wrapped in ra $\rightarrow$ denormal in rd                                                                             |         |                |      |   |    |   |    |   |   |   |   |  |
| Instruction Words   | 31 30 29 28 27 24 23 22 21 20 19 15                                                                                    |         |                |      |   |    |   |    |   |   |   |   |  |
|                     | 0 0 e h ra 0 0 0 rd                                                                                                    |         |                |      |   |    |   |    |   |   |   |   |  |
|                     | 14 11                                                                                                                  | 10      | 9              | 8    | 7 | 6  | 5 | 4  | 3 | 2 | 1 | 0 |  |
|                     | sel_op                                                                                                                 | 0       | 0              | type |   | 0  | 1 | va | 1 | 1 | 1 | 0 |  |
| Description         | This instruction converts a wrapped rounded number in ra to a denormalized number in rd.                               |         |                |      |   |    |   |    |   |   |   |   |  |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |         |                |      |   |    |   |    |   |   |   |   |  |
| Types for ra        | f (single-p<br>d (double-                                                                                              |         |                | w .  |   | t) |   |    |   |   |   |   |  |
| Modifiers for ra    | v (absolut                                                                                                             | e value | <del>)</del> ) |      |   |    |   |    |   |   |   |   |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, CONTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG,LOOPCT      |         |                |      |   |    |   |    |   |   |   |   |  |
| Modifiers for rd    | e (send output to LAD bus, WE strobe)<br>h (send output to LAD bus, ALTCH strobe)                                      |         |                |      |   |    |   |    |   |   |   |   |  |
| Example             | uwrapr 1                                                                                                               | RA3.d   | , CT           | .h   |   |    |   |    |   |   |   |   |  |

\*\*\*\*\*

......

| Syntax              | uwrapx ra.[modifier]type, rd[.modifier]                                                                                |                                                                                                         |        |                      |   |    |   |    |   |   |     |    |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------|----------------------|---|----|---|----|---|---|-----|----|--|
| Execution           | wrapped in ra $\rightarrow$ denormal in rd                                                                             |                                                                                                         |        |                      |   |    |   |    |   |   |     |    |  |
| Instruction Words   | <u>31 30 29 28 27 24 23 22 21 20 19 15</u>                                                                             |                                                                                                         |        |                      |   |    |   |    |   |   |     | 15 |  |
|                     | 0                                                                                                                      | 0                                                                                                       | е      | h                    |   | ra | 0 | 0  | C |   | 0   | rd |  |
|                     | 14                                                                                                                     | 1 10                                                                                                    | 9      | 8                    | 7 | 6  | 5 | 4  | 3 | 2 | 1 0 |    |  |
|                     | op                                                                                                                     | 0                                                                                                       | 0      | type                 |   | 0  | 1 | va | 1 | 1 | 0   | 0  |  |
| Description         |                                                                                                                        | This instruction takes the exact, wrapped operand in ra and converts it to a denormalized number in rd. |        |                      |   |    |   |    |   |   |     |    |  |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |                                                                                                         |        |                      |   |    |   |    |   |   |     |    |  |
| Types for ra        | f (single<br>d (doub                                                                                                   | •                                                                                                       |        | •••                  |   |    |   |    |   |   |     |    |  |
| Modifiers for ra    | v (abso                                                                                                                | lute val                                                                                                | ue)    |                      |   |    |   |    |   |   |     |    |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT    |                                                                                                         |        |                      |   |    |   |    |   |   |     |    |  |
| Modifiers for rd    | e (send<br>h (send                                                                                                     |                                                                                                         |        | D bus, V<br>D bus, A |   |    |   |    |   |   |     |    |  |
| Example             | uwrap                                                                                                                  | c.ví                                                                                                    | ., RA8 | 3.e                  |   |    |   |    |   |   |     |    |  |

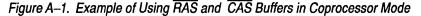
| Syntax              | wrap ra.[modifier]type, rd[.modifier]                                                                                  |                                                                                               |     |      |          |    |   |    |   |   |   |    |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----|------|----------|----|---|----|---|---|---|----|--|
| Execution           | denormal in ra $\rightarrow$ wrapped in rd                                                                             |                                                                                               |     |      |          |    |   |    |   |   |   |    |  |
| Instruction Words   | 31 30 29 28 27 24 23 22 21 20 19 15                                                                                    |                                                                                               |     |      |          |    |   |    |   |   |   |    |  |
|                     | 0                                                                                                                      | 0                                                                                             | е   | h    | <u> </u> | ra | 0 | 0  |   |   | 0 | rd |  |
|                     | 14 11                                                                                                                  | 10                                                                                            | 9   | 8    | 7        | 6  | 5 | 4  | 3 | 2 | 1 | 0  |  |
|                     | sel_op                                                                                                                 | 0                                                                                             | 0   | type |          | 0  | 1 | va | 1 | 0 | 0 | 0  |  |
| Description         |                                                                                                                        | This instruction takes a denormalized number in ra and converts it to a wrapped number in rd. |     |      |          |    |   |    |   |   |   |    |  |
| Sources for ra      | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |                                                                                               |     |      |          |    |   |    |   |   |   |    |  |
| Types for ra        | f (single-p<br>d (double                                                                                               |                                                                                               |     |      |          |    |   |    |   |   |   |    |  |
| Modifiers for ra    | v (absolut                                                                                                             | te valu                                                                                       | le) |      |          |    |   |    |   |   |   |    |  |
| Destinations for rd | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG, COUNTX, COUNTY<br>VECTOR, MCADDR, SUBADD0, SUBADD1, IRAREG, LOOPCT    |                                                                                               |     |      |          |    |   |    |   |   |   |    |  |
| Modifiers for rd    | e (send o<br>h (send o                                                                                                 |                                                                                               |     |      |          |    |   |    |   |   |   |    |  |
| Example             | wrap RA0.d, RB1.h                                                                                                      |                                                                                               |     |      |          |    |   |    |   |   |   |    |  |

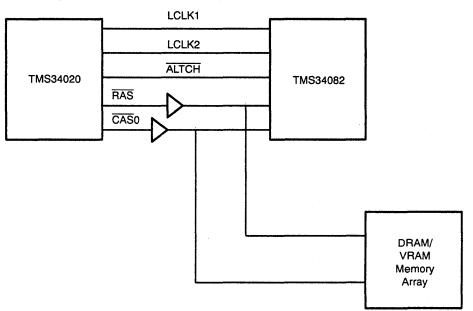
| Syntax                  | xor ra.type, rb.tpye, rd[.modifier]                                                                                    |                  |              |                               |  |  |  |  |  |  |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-------------------------------|--|--|--|--|--|--|--|--|
| Execution               | ra XOR rb $\rightarrow$ rd                                                                                             |                  |              |                               |  |  |  |  |  |  |  |  |
| Instruction Words       | 31 30                                                                                                                  | 29               | 28 27        | 24 23 20 19 15                |  |  |  |  |  |  |  |  |
|                         | 0 0                                                                                                                    | е                | h ra         | rb rd                         |  |  |  |  |  |  |  |  |
|                         | 14 11 10 9                                                                                                             | 8 7              | 654          | 3 2 1 0                       |  |  |  |  |  |  |  |  |
|                         | sel_op 0 1                                                                                                             | 0 t              | 0 0 0        | 1 1 0 1                       |  |  |  |  |  |  |  |  |
| Description             | This instruction takes in rd.                                                                                          | the logical excl | lusiveORofra | with rb and places the result |  |  |  |  |  |  |  |  |
| Sources for ra          | RA9-RA0<br>C or CT Register<br>MULFB (Multiplier feedback)<br>LAD (Immediate data from LAD bus)<br>ONE (the value one) |                  |              |                               |  |  |  |  |  |  |  |  |
| Types for ra and rb     | i (signed integer)<br>u (unsigned integer)                                                                             |                  |              |                               |  |  |  |  |  |  |  |  |
| Modifiers for ra and rb | none                                                                                                                   |                  |              |                               |  |  |  |  |  |  |  |  |
| Destinations for rd     | RA9-RA0<br>RB9-RB0<br>C or CT<br>STATUS, CONFIG,<br>VECTOR, MCADDF                                                     |                  |              | AREG, LOOPCT                  |  |  |  |  |  |  |  |  |
| Modifiers for rd        | e (send output to LA<br>h (send output to LA                                                                           |                  | •            |                               |  |  |  |  |  |  |  |  |
| Restrictions            | The types for ra and                                                                                                   | rb must be the   | e same.      |                               |  |  |  |  |  |  |  |  |
| Example                 | xor RA7.u, RB2.u, CT.h                                                                                                 |                  |              |                               |  |  |  |  |  |  |  |  |

## **Appendix A**

# **System Design Considerations**

Using high-performance CMOS logic devices, such as the TMS34082, requires careful attention to high-speed logic design and PWB design practices. A few simple design techniques can reduce check-out time during the development phase and, more importantly, improve system reliability as your product enters production. The following sections are general recommendations to reduce your chances of intermittent problems.


#### A.1 Logic Design

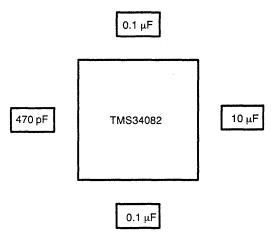

Check to make sure that the drive capability of each TMS34082 output driver is not exceeded, particularly with the clock drivers. This can affect the output signal quality as well as driver supply demands.

When operating in coprocessor mode, do not use buffers on the following signals between the TMS34020 and TMS34082 (unless a critical path timing analysis between the two devices has been completed):

- LCLK1 and LCLK2 (local clocks)
- ALTCH (address latch)
- **CAS** (column address strobe)
- SF (special function)

Figure A-1 shows how  $\overline{RAS}$  and  $\overline{CAS}$  buffers can be added for DRAM/VRAM memory. These buffers effectively isolate the DRAM/VRAM devices from the TMS34020.






### A.2 Bypass Capacitors

The TMS34082 is a high-speed CMOS device containing two 32-bit data buses and one 16-bit address bus. As a result, a constant voltage source must be maintained for the device during signal transitions. The TMS34082 contains 10  $V_{CC}$  pins and 14 GND pins for internal power requirements.

External bypass capacitors must also be used for decoupling the switching transitions. Use two or more 0.1- $\mu$ F low-leakage high-quality capacitors around the perimeter of the TMS34082 package or under the device. Place the capacitors as close to the TMS34082 as possible. These are used to filter out unwanted switching noise caused by the CMOS output drivers, one of the major sources of noise. Also, use one 470-pF low-leakage high-quality capacitor to reduce the very high frequency noise (such as clock frequencies) and at least one 10- $\mu$ F solid tantalum filter capacitor to take care of low frequency noise (such as power supply surges). The 10- $\mu$ F filter capacitor smooths out voltage spikes during switching transitions. The capacitance values are approximate and should have a working voltage of at least 10 V. By using three capacitor sizes, three different frequency bands of noise are filtered as opposed to just one narrow band for one bypass capacitor size.

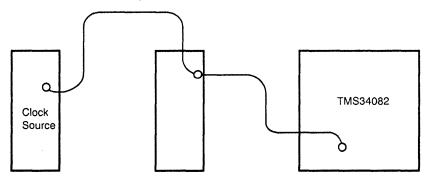
Figure A-2. Recommended Bypass Capacitor Placement



## A.3 PWB Design

The TMS34082 should be designed into a PC board environment with an embedded  $V_{CC}$  or GND plane. For any production high-speed logic board, power planes are an absolute necessity. Each  $V_{CC}$  and GND pin on the TMS34082 must be connected to the appropriate supply pin. Use the shortest amount of PWB etch possible. This effectively forms a common reference point throughout the PC board as well as the device substrate.

As with most complex CMOS devices, extra care must be used when distributing CMOS logic over more than one GND plane. An example of this is when a TMS34020 is on one board and multiple TMS34082s (running in coprocessor mode) are located on a daughtercard. The common ground connection between the two power planes behaves like an inductor according to transmission line theory. The greater the current, the greater the inductance. Here, the solution is to use many GND connections and to make them as short as possible. In addition, even more bypass capacitors should be used.


When using a PGA socket, use gold-plated contacts where the TMS34082 pins mate into the socket to lower the inductance and resistance. A gold plating thickness of 10 microinches is sufficient.

## A.4 Clock Routing

Clocks are the heart of a high-performance system, so a little extra care will pay off many times over. Many of these ideas not only apply to the TMS34082, but to most high-speed CMOS logic devices.

PC board layout must take into account transmission-line theory. It is generally accepted that any clock line over 7 inches long should be considered as a transmission line. Use a daisy-chained clock distribution system and avoid using a 'T' (where three lines of etch come into a common vertex) or stubs. Avoid the use of 90° angles within the clock trace; use arcs or smooth lines instead, as shown in Figure A–3. This reduces the number of signal reflections within the clock trace.

## Figure A–3. Recommended Clock Routing Techniques



When routing your PC board, route the clock signals first (they may even be hand routed). To help reduce cross talk and radiated RF interference, keep the length of clock interconnections as short as possible and place the majority of clock routing next to one of the  $V_{CC}$  or GND power planes. Cross talk is where one signal gets coupled onto another signal; one trace behaves like a transmitter antenna and the other trace acts as a receiver. To further reduce cross talk, make certain that the clock trace does not run parallel to data or control lines for more than three inches if they are spaced within 100 mils of each other. Traces adjacent to the clock lines that are connected to GND also may be used.

Since many clock interconnections behave like transmission lines, impedance mismatches can generate reflections. From a time-domain point of view, these can result in ringing, undershoot, and overshoot. If the clock drivers generate excessive amounts of ringing and undershoot at their destinations, it will be necessary to put either an impedance matching termination network at the farthest signal point from the driver or a series resistor (22  $\Omega$  to 39  $\Omega$ ) between the clock driver output and the receiving input. Using a series resistor also slows down the signal response times slightly. The amount of undershoot or ringing may be difficult to predict before hand, but there are many good articles on transmission line theory for PC board design.

## A.5 Thermal Considerations

Because the TMS34082 is implemented in CMOS, its power consumption requirements are low and generate little heat. You must make certain that the operating temperature of the surrounding environments is within TMS34082 operating specifications.

-----

## Appendix B

# TMS34082A Data Sheet

The pinout, electrical specifications, timing diagrams, and mechanical specifications are contained within the TMS34082 Data Sheet and appear in this appendix.

### TMS34082A Data Sheet

......

SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

- High-Performance Floating-Point RISC Processor Optimized for Graphics
- Two Operating Modes
  - Floating-Point Coprocessor for TMS34020 Graphics System Processor
     Independent Floating-Point Processor
  - independent Floating-Font Floces
- Direct Connection to TMS34020 Coprocessor Interface
  - Direct Extension to the TMS34020 Instruction Set
  - Multiple TMS34082A Capability
- Fast Pipeline Instruction Cycle Time
  - TMS34082A-40...50-ns Coprocessor Mode ... 50-ns Host-Independent Mode
  - TMS34082A-32...62.5-ns Coprocessor Mode ...60-ns Host-Independent Mode
- Sustained Data Transfer Rates of 160 MBytes/s (TMS34082-40)
- Sequencer Executes Internal or User-Programmed Instructions

- 22 64-Bit Data Registers
- Comprehensive Floating-Point and Integer Instruction Set
- Internal Programs for Vector, Matrix, and 3-D Graphics Operations
- Full IEEE Standard 754-1985 Compatibility
   Addition, Subtraction, Multiplication, and Comparison
  - Division and Square Root
- Selectable Data Formats
  - 32-Bit Integer
  - 32-Bit Single-Precision Floating-Point
  - 64-Bit Double-Precision Floating-Point
- External Memory Addressing Capability
  - Program Storage (up to 64K Words)
  - Data Storage (up to 64K Words)
- 0.8-μm EPIC<sup>™</sup> CMOS Technology
  - High-Performance
  - Low Power (< 1.5 W)

#### description

The TMS34082A is a high-speed graphics floating-point processor implemented in Texas Instruments advanced 0.8-μm CMOS technology. The TMS34082A combines a 16-bit sequencer and a 3-operand (source A, source B, and destination) 64-bit Floating-Point Unit (FPU) with 22 64-bit data registers on a single chip. The data registers are organized into two files of ten registers each, with two registers for internal feedback. In addition, it provides an instruction register to control FPU execution, a status register to retain the most recent FPU status outputs, eight control registers, and a two-deep stack (see functional block diagram).

The TMS34082A is fully compatible with IEEE Standard 754-1985 for binary floating-point addition, subtraction, multiplication, division, square root, and comparison. Floating-point operands can be either in single- or double-precision IEEE format.

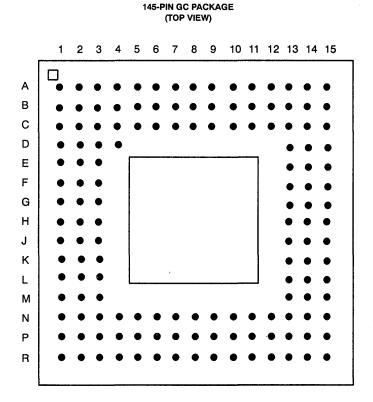
In addition to floating-point operations, the TMS34082A performs 32-bit integer arithmetic, logical comparisons, and shifts. Integer operations may be performed on 32-bit 2s complement or unsigned operands. Integer results are 32-bits long (even for 32 x 32 integer multiplication). Absolute value conversions, floating-point to integer conversions, and integer to floating-point conversions are available.

The ALU and the multiplier are closely coupled and can be operated in parallel to perform sums of products or products of sums. During multiply/accumulate operations, both the ALU and the multiplier are active and the registers in the FPU core can be used to feedback products and accumulate sums without tying up locations in register files A and B.

When used with the TMS34020, the TMS34082A operates in the coprocessor mode. The TMS34020 can control multiple TMS34082A coprocessors. When used as a stand-alone or with processors other than the TMS34020, the TMS34082A operates in the host-independent mode. The TMS34082A is fully programmable by the user and can interface to other processors or floating-point subsystems through its two 32-bit bidirectional buses. In

EPIC is a trademark of Texas Instruments Incorporated.




D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

the coprocessor mode, the TMS340 family tools may be used to develop code for the TMS34082A. The TMS34082A software tool kit is used to develop code for host-independent mode applications or for external routines in the coprocessor mode.

server and the server states and the

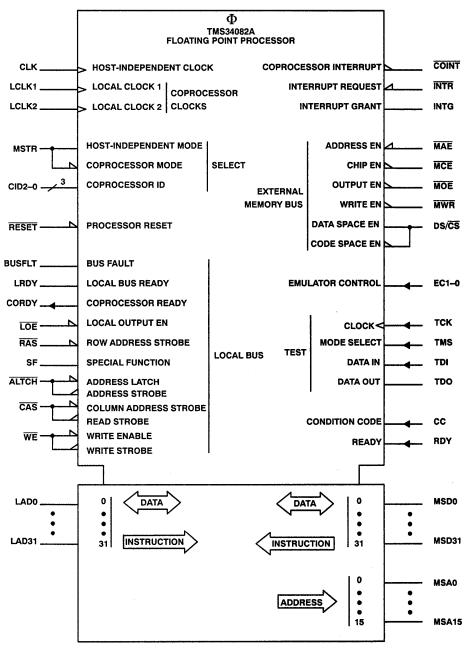
#### pin descriptions

Pin descriptions and grid assignments for the TMS34082A are given on the following pages. The pin at location D4 has been added for indexing purposes.





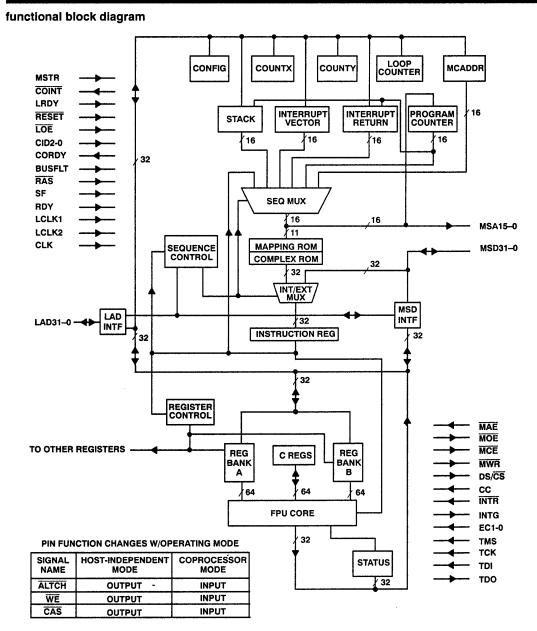
SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991


|     |       |      |       | FIN Gh | ID ASSIGN |     | •     |     |        |
|-----|-------|------|-------|--------|-----------|-----|-------|-----|--------|
|     | PIN   |      | PIN   |        | PIN       |     | PIN   | T   | PIN    |
| NO. | NAME  | NO.  | NAME  | NO.    | NAME      | NO. | NAME  | NO. | NAME   |
| A1  | NC    | B15  | LAD27 | F1     | MSD10     | K15 | RDY   | P2  | NC     |
| A2  | LAD1  | C1 . | MSD4  | F2     | MSD9      | L1  | MSD18 | P3  | MSD29  |
| A3  | LAD3  | C2   | MSD3  | F3     | Vcc       | L2  | MSD21 | P4  | MSD31  |
| A4  | LAD5  | СЗ   | MSD0  | F13    | CORDY     | L3  | MSD23 | P5  | MSA1   |
| A5  | LAD8  | C4   | VSS   | F14    | ALTCH     | L13 | VSS   | P6  | MSA3   |
| A6  | LAD9  | C5   | Vcc   | F15    | CAS       | L14 | CIDO  | P7  | MSA6   |
| A7  | LAD11 | C6   | LAD6  | G1     | MSD13     | L15 | CID2  | P8  | MSA8   |
| A8  | LAD12 | C7   | VSS   | G2     | MSD12     | M1  | MSD20 | P9  | MSA10  |
| A9  | LAD13 | C8   | Vcc   | G3     | MSD11     | M2  | MSD24 | P10 | MSA13  |
| A10 | LAD15 | C9   | VSS   | G13    | WE        | МЗ  | VSS   | P11 | MWR    |
| A11 | LAD17 | C10  | Vcc   | G14    | EC1       | M13 | Vcc   | P12 | MOE    |
| A12 | LAD19 | C11  | LAD21 | G15    | EC0       | M14 | LCLK1 | P13 | INTG   |
| A13 | LAD22 | C12  | VSS   | H1     | MSD14     | M15 | LCLK2 | P14 | BUSFLT |
| A14 | LAD24 | C13  | LAD25 | H2     | TDO       | N1  | MSD22 | P15 | RAS    |
| A15 | NC    | C14  | LAD26 | нз     | VSS       | N2  | MSD26 | R1  | NC     |
| B1  | MSD1  | C15  | LAD29 | H13    | VSS       | N3  | Vcc   | R2  | MSD27  |
| B2  | NC    | D1   | MSD6  | H14    | LOE       | N4  | MSD28 | R3  | MSD30  |
| B3  | LADO  | D2   | MSD5  | H15    | TDI       | N5  | VSS   | R4  | MSA0   |
| B4  | LAD2  | D3   | MSD2  | J1     | MSD15     | N6  | Vcc   | R5  | MSA2   |
| B5  | LAD4  | D4   | NC    | J2     | MSD16     | N7  | MSA5  | R6  | MSA4   |
| B6  | LAD7  | D13  | Vcc   | J3     | Vcc       | N8  | VSS   | R7  | MSA7   |
| B7  | LAD10 | D14  | LAD28 | J13    | CC        | N9  | Vcc   | R8  | тск    |
| B8  | TMS   | D15  | LAD31 | J14    | MSTR      | N10 | MSA14 | R9  | MSA9   |
| B9  | LAD14 | E1   | MSD8  | J15    | CLK       | N11 | VSS   | R10 | MSA11  |
| B10 | LAD16 | E2   | MSD7  | K1     | MSD17     | N12 | MAE   | R11 | MSA12  |
| B11 | LAD18 | E3   | VSS   | K2     | MSD19     | N13 | LRDY  | R12 | MSA15  |
| B12 | LAD20 | E13  | VSS   | кз     | VSS       | N14 | SF    | R13 | DS/CS  |
| B13 | LAD23 | E14  | LAD30 | K13    | CID1      | N15 | RESET | R14 | MCE    |
| B14 | NC    | E15  | COINT | K14    | INTR      | P1  | MSD25 | R15 | NC     |

PIN GRID ASSIGNMENTS



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001


#### logic symbol<sup>†</sup>



<sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984.



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991





D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

#### PIN 1/0† DESCRIPTION NAME NO. Address Latch, active low. In the coprocessor mode, falling edge of ALTCH latches instruction and status ALTCH present on the LAD bidirectional bus (LAD31-0). In the host-independent mode, ALTCH is address F14 [0] output strobe for memory accesses on LAD31-0. Bus Fault. In the coprocessor mode, BUSFLT high indicates a data fault on the LAD bus (LAD31-0) during current bus cycle, which in turn causes TMS34082A not to capture current data on LAD bus. Tied low BUSFLT P14 1 if not used or in the host-independent mode. Column Address Strobe, active low. In the coprocessor mode, causes TMS34082A to latch LAD bus data CAS when CAS has a low-to-high transition if LRDY was high and BUSFLT was low at the previous LCLK2 F15 [0] rising edge. In the host-independent mode, this signal is the read strobe output. CC J13 I Condition Code Input. In both modes, may be used as an external conditional input for branch conditions. CIDO Coprocessor ID. In the coprocessor mode, used to set a coprocessor ID so that a TMS34020 Graphics L14 CID1 K13 I System Processor controlling multiple TMS34082A coprocessors can designate which coprocessor is CID2 L15 being selected by the current instruction. Tied low in the host-independent mode. System Clock. In the coprocessor mode, tied low. In the host-independent mode, input is the system CLK 1 .115 clock Coprocessor Interrupt Request, active low. In the coprocessor mode, signals an exception not masked out in the configuration register. Remains low until the status register is read. In the host-independent COINT E15 ο mode, user programmable I/O when LADCFG is low. When LADCFG is high, designates bus cycle boundaries on LAD31-0. Coprocessor Ready. In the coprocessor mode, if the TMS34020 sends an instruction before the TMS34082A has completed a previous instruction, this signal goes low to indicate that the TMS34020 CORDY 0 F13 should wait. In the host-independent mode, user programmable. Data Space/Code Space. In both modes, when MEMCFG is low and DS/CS is low, selects program memory on MSD port. When MEMCFG is low and DS/CS is high, selects data memory on MSD DS/CS R13 0 port. When MEMCFG is high, DS/CS is memory chip select, active low. EC0 G15 1 Emulator Mode Control and Test. In both modes, tied high for normal operation. EC1 G14 Interrupt Grant Output. In the coprocessor mode, INTG is low. In the host-independent mode, this signal INTG P13 0 is set high to acknowledge an interrupt request input. Interrupt Request Input, active low. In the coprocessor mode, INTR is tied high. In the host-independent INTR K14 I mode, causes call to subroutine address in interrupt vector register.

#### **TERMINAL FUNCTIONS**

<sup>†</sup> The []'s denote the type of buffer utilized in the host-independent mode. If no []'s appear, the buffer type is identical for both modes of operation.



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

| PI             | IN                                    | 1/0 | DESCRIPTION                                                                                                                                                                   |
|----------------|---------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME           | NO.                                   |     |                                                                                                                                                                               |
| LAD0           | B3                                    |     |                                                                                                                                                                               |
| LAD1           | A2                                    |     |                                                                                                                                                                               |
| LAD2           | B4                                    |     |                                                                                                                                                                               |
| LAD3           | A3                                    |     |                                                                                                                                                                               |
| LAD4           | B5                                    |     |                                                                                                                                                                               |
| LAD5           | A4                                    |     |                                                                                                                                                                               |
| LAD6           | C6                                    |     |                                                                                                                                                                               |
| LAD7           | B6                                    |     |                                                                                                                                                                               |
| LAD8           | A5                                    |     |                                                                                                                                                                               |
| LAD9           | A6                                    |     |                                                                                                                                                                               |
| LAD10          | B7                                    |     |                                                                                                                                                                               |
| LAD10          | A7                                    |     |                                                                                                                                                                               |
| LAD12          | A8                                    |     |                                                                                                                                                                               |
|                |                                       |     |                                                                                                                                                                               |
| LAD13<br>LAD14 | A9<br>B9                              |     |                                                                                                                                                                               |
|                |                                       |     | Local Address and Data Bus. In the coprocessor mode, used by TMS34020 to input instructions and                                                                               |
| LAD15          | A10                                   | 1/0 | data operands to TMS34082A, and used by TMS34082A to output results. In the host-independer                                                                                   |
| LAD16          | B10                                   |     | mode, used by the TMS34082A for address output and data I/O.                                                                                                                  |
| LAD17          | A11                                   |     |                                                                                                                                                                               |
| LAD18          | B11                                   |     |                                                                                                                                                                               |
| LAD19          | A12                                   |     |                                                                                                                                                                               |
| LAD20          | B12                                   |     |                                                                                                                                                                               |
| LAD21          | C11                                   |     |                                                                                                                                                                               |
| LAD22          | A13                                   |     |                                                                                                                                                                               |
| LAD23          | B13                                   |     |                                                                                                                                                                               |
| LAD24          | A14                                   |     |                                                                                                                                                                               |
| LAD25          | C13                                   |     |                                                                                                                                                                               |
| LAD26          | C14                                   |     |                                                                                                                                                                               |
| LAD27          | B15                                   |     |                                                                                                                                                                               |
| LAD28          | D14                                   | 1   |                                                                                                                                                                               |
| LAD29          | C15                                   |     |                                                                                                                                                                               |
| LAD30          | E14                                   |     |                                                                                                                                                                               |
| LAD31          | D15                                   |     |                                                                                                                                                                               |
| LCLK1          | M14                                   |     | Local Clocks 1 and 2. In the coprocessor mode, two local clocks generated by the TMS34020, 90 degrees                                                                         |
| LCLK2          | M15                                   | 1   | out of phase, to provide timing inputs to TMS34082A. In the host-independent mode, tied low.                                                                                  |
|                | · · · · · · · · · · · · · · · · · · · |     | Local Bus Output Enable, active low. In both modes, enables the local bus (LAD31-0) to be driven at the                                                                       |
|                |                                       |     | proper times when low. In addition during the host-independent mode when LADCFG is low, does not                                                                              |
| LOE            | H14                                   |     | affect ALTCH, CAS, WE, CORDY, or COINT. When LADCFG is high, ALTCH, COINT, and CORDY are                                                                                      |
|                |                                       |     | not disabled by LOE high; CAS and WE are disabled.                                                                                                                            |
|                |                                       |     | Local Bus Data Ready. In the coprocessor mode, when LRDY is high, indicates that data is available                                                                            |
|                |                                       | 1   | on LAD bus. When LRDY is low, indicates that the TMS34082A should not load data from LAD31-0 and                                                                              |
| LRDY           | N13                                   | 1   | may also be used in conjunction with BUSFLT. In the host-independent mode, when LRDY is low, the                                                                              |
|                |                                       |     | device is stalled until LRDY is set high again and tied high if not used.                                                                                                     |
|                |                                       |     |                                                                                                                                                                               |
| MAE            | NILO                                  | 1   | Memory Address and Data Output Enable, active low. In both modes, with MAE low, the TMS34082A can output an address on MSA15-0 and data on MSD31-0. MAE high does not disable |
|                | N12                                   | '   | DS/CS, MCE, MWR, or MOE.                                                                                                                                                      |
|                |                                       |     | Memory Chip Enable. In both modes, when MEMCFG low, active (low) indicates access to external                                                                                 |
| MCE            | R14                                   | 0   | memory on MSD31-0. When MEMCFG is high, MCE low is external code memory chip select.                                                                                          |
|                |                                       | +   |                                                                                                                                                                               |
| MOE            | P12                                   | 0   | Memory Output Enable, active low. In both modes when low, enables output from external memory<br>on to MSD port.                                                              |

## **TERMINAL FUNCTIONS (Continued)**



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

| PI             | N         |     |                                                                                                                                                                                            |
|----------------|-----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME           | NO.       | 1/0 | DESCRIPTION                                                                                                                                                                                |
| MSA0           | R4        |     |                                                                                                                                                                                            |
| MSA1           | P5        |     |                                                                                                                                                                                            |
| MSA2           | R5        |     |                                                                                                                                                                                            |
| MSA3           | P6        |     |                                                                                                                                                                                            |
| MSA4           | R6        |     |                                                                                                                                                                                            |
| MSA5           | N7        |     |                                                                                                                                                                                            |
| MSA6           | P7        | 1   |                                                                                                                                                                                            |
| MSA7           | 87        |     | Memory Address output. In both modes, addresses up to 64K words of external program memory and/or                                                                                          |
| MSA8           | P8        | 0   | up to 64K words of data memory on the MSD port, depending on setting of DS/CS select.                                                                                                      |
| MSA9           | R9        |     | up to bark words of data memory on the wish port, depending on setting of DS/CS select.                                                                                                    |
|                |           |     |                                                                                                                                                                                            |
| MSA10          | P9<br>R10 |     |                                                                                                                                                                                            |
| MSA11          |           |     | · · ·                                                                                                                                                                                      |
| MSA12          | R11       |     |                                                                                                                                                                                            |
| MSA13          | P10       |     |                                                                                                                                                                                            |
| MSA14          | N10       |     |                                                                                                                                                                                            |
| MSA15          | R12       |     |                                                                                                                                                                                            |
| MSD0           | C3        |     |                                                                                                                                                                                            |
| MSD1           | B1        |     |                                                                                                                                                                                            |
| MSD2           | D3        |     |                                                                                                                                                                                            |
| MSD3           | C2        |     |                                                                                                                                                                                            |
| MSD4           | C1        |     |                                                                                                                                                                                            |
| MSD5           | D2        |     |                                                                                                                                                                                            |
| MSD6           | D1        |     |                                                                                                                                                                                            |
| MSD7           | E2        |     |                                                                                                                                                                                            |
| MSD8           | E1        |     |                                                                                                                                                                                            |
| MSD9           | F2        |     |                                                                                                                                                                                            |
| MSD10          | F1        |     |                                                                                                                                                                                            |
| MSD11          | G3        |     |                                                                                                                                                                                            |
| MSD12          | G2        |     |                                                                                                                                                                                            |
| MSD12<br>MSD13 | G1        |     |                                                                                                                                                                                            |
| MSD14          | H1        |     |                                                                                                                                                                                            |
| MSD14<br>MSD15 | J1        |     | External Memory Data. In both modes, I/Os to external memory. Used to read from or write to external                                                                                       |
| MSD15<br>MSD16 | J2        | 1/0 | data or program memory on the MSD port.                                                                                                                                                    |
|                | J2<br>K1  |     | data of program memory of the MSD port.                                                                                                                                                    |
| MSD17          |           |     |                                                                                                                                                                                            |
| MSD18          | L1        |     |                                                                                                                                                                                            |
| MSD19          | K2        |     |                                                                                                                                                                                            |
| MSD20          | M1        |     |                                                                                                                                                                                            |
| MSD21          | L2        |     |                                                                                                                                                                                            |
| MSD22          | N1        | 1   |                                                                                                                                                                                            |
| MSD23          | L3        |     |                                                                                                                                                                                            |
| MSD24          | M2        |     |                                                                                                                                                                                            |
| MSD25          | P1        |     |                                                                                                                                                                                            |
| MSD26          | N2        | 1   |                                                                                                                                                                                            |
| MSD27          | R2        |     |                                                                                                                                                                                            |
| MSD28          | N4        | 1   |                                                                                                                                                                                            |
| MSD29          | P3        |     |                                                                                                                                                                                            |
| MSD30          | R3        |     |                                                                                                                                                                                            |
| MSD31          | P4        |     |                                                                                                                                                                                            |
| MSTR           | J14       | 1   | Host-Independent/Coprocessor Mode Select. In the coprocessor mode, MSTR must be tied low to<br>operate properly. In the host-independent mode, MSTR must be tied high to operate properly. |
| MWR            | P11       | 0   | Memory Write Enable. In both modes, when low, data on MSD31-0 can be written to external program<br>or data memory.                                                                        |

## **TERMINAL FUNCTIONS (Continued)**



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

| PI    | N                                                                                   | L'At     | DECODIDITION                                                                                                                                                                                                                                                   |
|-------|-------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME  | NO.                                                                                 | I/O†     | DESCRIPTION                                                                                                                                                                                                                                                    |
| NC    | A1<br>A15<br>B2<br>B14<br>D4<br>P2<br>R1<br>R15                                     |          | No Internal Connection. These pins should be left floating.                                                                                                                                                                                                    |
| RAS   | P15                                                                                 | 1        | Row Address Strobe, active low. In the coprocessor mode, RAS is high during all of coprocessor<br>instruction cycle. In the host-independent mode, it is not used.                                                                                             |
| RDY   | K15                                                                                 | 1        | Ready. In both modes, when RDY is low, it causes a nondestructive stall of sequencer and floating-point operations. All internal registers and status in the FPU core are preserved. Also, no output lines will change state.                                  |
| RESET | N15                                                                                 | I        | Reset, active low. In both modes, resets sequencer output and clears pipeline registers, internal states, status, and exception disable registers in FPU core. Other registers are unaffected.                                                                 |
| SF    | N14                                                                                 | 1        | Special Function Input. In the coprocessor mode when SF is high, indicates the LAD bus input is an instruction or data from TMS34020 registers. When SF is low, indicates the LAD input is a data operand from memory. In the host-independent mode, not used. |
| тск   | R8                                                                                  | 1        | Test Clock for JTAG four-wire boundary scan. In both modes, TCK is low for normal operation.                                                                                                                                                                   |
| TDI   | H15                                                                                 | 1        | Test Data Input for JTAG four-wire boundary scan. In both modes, TDI may be left floating.                                                                                                                                                                     |
| TDO   | H2                                                                                  | 0        | Test Data Output for JTAG four-wire boundary scan                                                                                                                                                                                                              |
| TMS   | B8                                                                                  | 1        | Test Mode Select for JTAG four-wire boundary scan. In both modes, TMS may be left floating.                                                                                                                                                                    |
| Vcc   | C5<br>C8<br>C10<br>D13<br>F3<br>J3<br>M13<br>N3<br>N6<br>N9                         | 1        | 5-V Power Supply. All pins must be connected and used.                                                                                                                                                                                                         |
| Vss   | C4<br>C7<br>C9<br>C12<br>E3<br>H3<br>H3<br>K3<br>L13<br>M3<br>N5<br>N5<br>N8<br>N11 | 1        | Ground Pins. All pins must be connected and used.                                                                                                                                                                                                              |
| WE    | G13                                                                                 | 1<br>[O] | Write Enable, active low. In the coprocessor mode, the write strobe from the TMS34020 to enable a write to or from the TMS34082A LAD bus. In the host-independent mode, the TMS34082A write strobe output.                                                     |

### **TERMINAL FUNCTIONS (Continued)**

<sup>†</sup> The []'s denote the type of buffer utilized in the host-independent mode. If no []'s appear, the buffer type is identical for both modes of operation.



D3150, SEPTEMBER 1988 - REVISED MAY 1991 ~ SCGS001

#### data flow

The TMS34082A has two bidirectional 32-bit buses, LAD31-0 and MSD31-0. Each bus can be used to pass instructions and data operands to the FPU core and to output results. A separate 16-bit bus, MSA15-0, provides memory addressing capability on the MSD bus.

When the TMS34082A is used as a coprocessor for the TMS34020 Graphics System Processor (GSP), data for the TMS34082A can be transferred through the 32-bit bidirectional data bus (LAD31-0) and may be passed to any internal registers or to external memory on the memory expansion interface (MSD31-0). When the TMS34082A is used as a standalone FPU, it can use both the LAD bus (LAD31-0) and the MSD bus (MSD31-0) to interface with external data memory or system buses.

In the host-independent mode, the TMS34082A can be operated with the LAD bus as its single data bus and the MSD bus as the instruction source, or with data storage on either port and the program memory on the MSD bus.

The data space/code space ( $DS/\overline{CS}$ ) output can be used to control access either to data memory or program memory on the MSD port. Up to 64K words of code space and 64K words of data space are directly supported. In the coprocessor mode, both instructions and data are transferred on the LAD bus with the option of accessing external user-generated programs on the MSD port.

One 32-bit operand can be input to the data registers each clock cycle. A 64-bit double-precision floating-point operand is input in two cycles. Transfers to or from the data registers can normally be programmed as block moves, loading one or more sets of operands with a single move instruction to minimize I/O overhead. Several modes for moving operands and instructions are available. Block transfers up to 512 words between the LAD and MSD buses can be programmed in either direction.

To permit direct input to or output from the LAD bus in the host-independent mode, other options for controlling the LAD bus have been implemented. When two 32-bit operands are being selected for input to the FPU core, one operand may be selected from LAD. On output from the FPU, a result may simultaneously be written to a register and to the LAD bus.

During initialization in the host-independent mode, a bootstrap loader can bring 65 32-bit words from the LAD bus and write them out to external program memory on the MSD bus, after which the device begins executing from the first memory location (zero). The first word is loaded into the configuration register. This option facilitates the initial loading of program memory on the MSD port upon power-up.

#### architecture

Because the sequencer, control and data registers, and FPU core are closely coupled, the TMS34082A can execute a variety of complex floating-point or integer calculations rapidly, with a minimum of external data transfers. The internal architecture of the FPU core supports concurrent operation of the multiplier and the ALU, providing several options for storing or feeding back intermediate results. Also, several special registers are available to support specific calculations for graphics algorithms. Each of the main architectural elements of the TMS34082A is discussed below.

The control functions of the TMS34082A are provided by sequence control logic, register control logic, and bus interface control logic, together with user-programmed configuration settings stored in the configuration register. The on-board sequencer selects the next program execution address, either from internal code or from external program memory. Next-address sources include the program counter, stack, interrupt vector register, interrupt return register, or address register (for indirect jumps).

COUNTX, COUNTY, and MIN-MAX/LOOPCT registers are used for temporary storage by internal graphics routines. They may also serve as temporary storage for the user.



#### SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

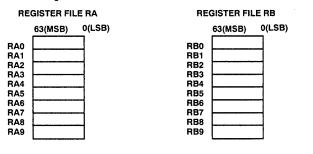
A separate FPU status register is provided, which can be used by test-and-branch instructions to control program execution. Because of the large number of status outputs, branches on status can be easily programmed. The status register contents are also important when dealing with status exceptions including such conditions as overflow, underflow, invalid operations (divide by zero), or illegal data formats such as infinity, Not a Number (NaN), or denormalized operands.

Register control logic permits all data and control registers to be accessed in accordance with applicable architectural restrictions. Register files A and B can be written to or read from the external buses, as can the control registers. Internal registers C and CT are embedded in the FPU core and can only be accessed by the FPU internal buses. The C and CT registers cannot be used as sources or destinations for MOVE instructions, and several registers (listed in Table 1) are not available as sources for FPU operations.

| REGISTER ADDRESS | REGISTER NAME  | RESTRICTIONS ON USE                   |
|------------------|----------------|---------------------------------------|
| 00000            | RA0            |                                       |
| 00001            | RA1            |                                       |
| 00010            | RA2            |                                       |
| 00011            | RA3            |                                       |
| 00100            | RA4            |                                       |
| 00101            | RA5            |                                       |
| 00110            | RA6            |                                       |
| 00111            | RA7            |                                       |
| 01000            | RA8            |                                       |
| 01001            | RA9            |                                       |
| 01010            | ct             | Not a source or destination for move  |
| 01011            | Ст†            | Not a source or destination for move  |
| 01100            | STATUS         | Not a source for FPU instructions     |
| 01101            | CONFIG         | Not a source for FPU instructions     |
| 01110            | COUNTX         | Not a source for FPU instructions     |
| 01111            | COUNTY         | Not a source for FPU instructions     |
| 10000            | RB0            | · · · · · · · · · · · · · · · · · · · |
| 10001            | RB1            |                                       |
| 10010            | RB2            |                                       |
| 10011            | RB3            |                                       |
| 10100            | RB4            |                                       |
| 10101            | RB5            |                                       |
| 10110            | RB6            |                                       |
| 10111            | RB7            |                                       |
| 11000            | RB8            |                                       |
| 11001            | RB9            |                                       |
| 11010            | VECTOR         | Not a source for FPU instructions     |
| 11011            | MCADDR         | Not a source for FPU instructions     |
| 11100            | SUBADD0        | Not a source for FPU instructions     |
| 11101            | SUBADD1        | Not a source for FPU instructions     |
| 11110            | IRAREG         | Not a source for FPU instructions     |
| 11111            | MIN-MAX/LOOPCT | Not a source for FPU instructions     |

#### **TABLE 1. INTERNAL REGISTERS**

<sup>†</sup>C and CT registers cannot both be used for FPU operand sources in the same instruction.




D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

#### register files A and B, feedback registers C and CT

TMS34082A contains two register files, each with ten 64-bit registers and two 64-bit feedback registers. Most instructions will operate on one value from each of the RA and RB register files and return the result to either the RA or RB files or one of the feedback registers.

When the ONEFILE control bit is high in the configuration register, data written to a register in file RA is simultaneously written to the corresponding location in file RB. In this mode, the two register files act as a ten-word, two-read/one-write register file.



FEEDBACK REGISTERS





Two 64-bit feedback registers, C and CT, are embedded in the FPU core. FPU instructions may use the feedback registers as one of the operands, but the registers cannot be accessed for external moves. The C and CT registers can be used as either the A or B operand, but both cannot be used as operands during the same instruction. However, C (or CT) may be used for more than one operand in the same instruction. For example, C + CT is not a valid instruction, but C + C is.

The CT feedback register is used in integer divide operations as a temporary holding register. Any data stored in CT will be lost during an integer divide.

#### internal control/status register definitions

#### configuration register definition

The configuration register (CONFIG) is a special 32-bit register that the user loads to configure the TMS34082A for exception handling, IEEE mode (vs. fast mode), rounding modes, and data-fetch operations. The configuration register is initialized to 'FFE00420' hex.



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

#### TABLE 2. CONFIGURATION REGISTER DEFINITION

| BIT NO. | NAME     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31      | MIVAL    | Multiplier invalid operation (I) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                       |
| 30      | MOVER    | Multiplier overflow (V) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                                |
| 29      | MUNDER   | Multiplier underflow (U) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                               |
| 28      | MINEX    | Multiplier inexact (X) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 27      | MDIV0    | Divide by zero (DIV0) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 26      | MDENORM  | Multiplier denormal (DENORM) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                           |
| 25      | AIVAL    | ALU invalid operation (I) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                              |
| 24      | AOVER    | ALU overflow (V) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 23      | AUNDER   | ALU underflow (U) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 22      | AINEX    | ALU inexact (X) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21      | ADENORM  | ALU denormal (DENORM) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11-20   | N/A      | Reserved, set to all 0s.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10      | REVISION | Revision number, read only. Set to 1.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9       | LADCFG   | When low, CAS, WE, CORDY, COINT, and ALTCH are active signals not affected by LOE. When high, LOE high places CAS and WE in high impedance, as well as the LAD bus. COINT, which defines the LAD cycle boundaries, is controlled by bit 1 of the LAD move instruction instead of the set mask instruction. COINT will remain high unless a LAD move instruction (with bit 1 high) is in progress. The setting of this bit has no effect in the coprocessor mode. Initialized to 0. |
| 8       | MEMCFG   | When high, MCE becomes code space chip enable and DS/CS becomes data space chip enable (eliminates need for external inverter). When low, MCE is chip select for external code and data space. DS/CS functions as an address bit which selects code space (when low) or data space (when high). Initialized to 0.                                                                                                                                                                  |
| 7       | N/A      | Reserved for later use. Initialized to 0. Must be loaded with 0.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6       | ONEFILE  | When high, causes simultaneous write to both register files (for example, to both RA0 and RB0 at once). The<br>register files act as a single two-read, one-write register file. Initialized to 0.                                                                                                                                                                                                                                                                                 |
| 5       | PIPES2   | When high, makes FPU output registers transparent. When low, registers are enabled. Initialized to 1.                                                                                                                                                                                                                                                                                                                                                                              |
| 4       | PIPES1   | When high, makes FPU internal pipeline registers transparent. When low, registers are enabled. Initialized to 0.                                                                                                                                                                                                                                                                                                                                                                   |
| 3       | FAST     | When high, fast mode is selected (all denormalized inputs and outputs are 0). When low, IEEE mode is selected.<br>Initialized to 0.                                                                                                                                                                                                                                                                                                                                                |
| 2       | LOAD     | Load order. 0 = MSH, then LSH; 1 = LSH, then MSH. Initialized to 0.                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1       | RND1     | Rounding mode select 1. Initialized to 0.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0       | RND0     | Rounding mode select 0. Initialized to 0.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

LSH denotes least-significant half of a 64-bit word, MSH denotes most-significant half of a 64-bit word.

The mask bits serve as exception detect enables for the exception masks listed above. Setting the bit high (logic '1') enables the detection of the specific exception. When an enabled exception occurs, the ED bit in the status register will be set high and can be used to generate interrupts. The fast bit allows the TMS34082A to control the handling of denormalized numbers. When the fast bit is set high, all denormalized numbers input to the device are flushed to zero, and all denormalized results are also flushed to zero (this is also called 'sudden underflow'). When the fast bit is low, IEEE mode is selected. Denormalized numbers may be generated by (or input to) the ALU. Denormalized numbers must first be wrapped before being used as operands for multiply or divide instructions.

The LOAD bit defines the expected order of double-precision operands. At reset, this bit will default to 0 indicating that the most significant 32 bits are transferred first. If the bit is set to a 1, then the expected order of 64-bit data transfers starts with the least significant 32 bits.

The RND0 and RND1 bits select the IEEE rounding mode, as shown in Table 3.



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

| RND1 - RND0 | ROUNDING MODES                               |
|-------------|----------------------------------------------|
| 0.0         | Round towards nearest                        |
| 0 1         | Round toward zero (truncated)                |
| 1 0         | Round towards infinity (round up)            |
| 1 1         | Round towards negative infinity (round down) |

#### TABLE 3. ROUNDING MODE

#### status register definition

The floating-point status register (STATUS) is a 32-bit register used for reporting the exceptions that occur during TMS34082A operations and status codes set by the results of implicit and explicit compare operations. The status register is cleared upon reset, except for the INTENED flag, which is set to 1 in the coprocessor mode.

| BIT NO. | NAME    | DESCRPTION                                                                                                                                                                                                                                                                                                                                                |
|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31      | N       | Sign bit (A < B flag for compare)                                                                                                                                                                                                                                                                                                                         |
| 30      | GT      | A > B (valid on compare)                                                                                                                                                                                                                                                                                                                                  |
| 29      | Z       | Zero flag (A = B for compare)                                                                                                                                                                                                                                                                                                                             |
| 28      | V       | IEEE overflow flag. The result is greater than the largest allowable value for the specified format.                                                                                                                                                                                                                                                      |
| 27      | 1       | IEEE invalid operation flag. A NaN has been input to the multiplier or the ALU, or an invalid operation [( $0 * 1$ ) or ( $\infty - \infty$ ) or ( $-\infty + \infty$ )] has been requested. This signal also goes high if an operation involves the square root of a negative number. When IVAL hoes high, the STX pins indicate which port had the NaN. |
| 26      | U       | IEEE underflow flag. The result is inexact and less than the minimum allowable value for the specified format.<br>In fast mode, this condition causes the result to go to zero.                                                                                                                                                                           |
| 25      | ×       | IEEE inexact flag. The result of an operation is inexact.                                                                                                                                                                                                                                                                                                 |
| 24      | DIVO    | Divide by zero. An invalid operation involving a zero divisor has been detected by the multiplier.                                                                                                                                                                                                                                                        |
| 23      | RND     | The mantissa of a number has been increased in magnitude by rounding. If the number generated was wrapped, then the 'unwrap rounded' instruction must be used to properly unwrap the wrapped number.                                                                                                                                                      |
| 22      | DENIN   | Input to the multiplier is a denormalized number. When DENIN goes high, the STX pins indicate which port has<br>the denormal input.                                                                                                                                                                                                                       |
| 21      | DENORM  | The multiplier output is wrapped number or the ALU output is a denormalized number. In fast mode, this condition causes the result to go to zero. It also indicates an invalid integer operation with a negative unsigned integer result.                                                                                                                 |
| 20      | STX1    | A NaN or a denormalized number has been input on the A port.                                                                                                                                                                                                                                                                                              |
| 19      | STX0    | A NaN or a denormalized number has been input on the B port.                                                                                                                                                                                                                                                                                              |
| 18      | ED      | Exception detect status signal representing logical OR of all enabled exceptions in the configuration register.                                                                                                                                                                                                                                           |
| 17      | UNORD   | The two inputs of a comparison operation are unordered, i.e.; one or both of the inputs is an NaN.                                                                                                                                                                                                                                                        |
| 16      | INTFLG  | Software interrupt flag. Set by external code to signal a software interrupt.                                                                                                                                                                                                                                                                             |
| 15      | INTENHW | Hardware interrupt (INTR) enable, active high (initialized to zero)                                                                                                                                                                                                                                                                                       |
| 14      | NXOROV  | N (negative) XOR V (overflow)                                                                                                                                                                                                                                                                                                                             |
| 13      | VANDZB  | V (overflow) AND Z (NOT zero)                                                                                                                                                                                                                                                                                                                             |
| 12      | INTENED | ED interrrupt enable, active high (initialized to zero in the host-independent mode, one in the coprocessor mode)                                                                                                                                                                                                                                         |
| 11      | INTENSW | Software interrupt (INTFLG) enable, active high (initialized to zero)                                                                                                                                                                                                                                                                                     |
| 10      | ZGT     | Zn > Zmax (valid for 2-D MIN-MAX instruction)                                                                                                                                                                                                                                                                                                             |
| 9       | ZLT     | Zn < Zmin (valid for 2-D MIN-MAX instruction)                                                                                                                                                                                                                                                                                                             |
| 8       | YGT     | Yn > Ymax (valid for 1-D or 2-D MIN-MAX instruction)                                                                                                                                                                                                                                                                                                      |
| 7       | YLT     | Yn < Ymin (valid for 1-D or 2-D MIN-MAX instruction)                                                                                                                                                                                                                                                                                                      |
| 6       | XGT     | Xn > Xmax (valid for 1-D or 2-D MIN-MAX instruction)                                                                                                                                                                                                                                                                                                      |
| 5       | XLT     | Xn < Xmin (valid for 1-D or 2-D MIN-MAX instruction)                                                                                                                                                                                                                                                                                                      |
| 4       | HINT    | Hardware interrupt flag                                                                                                                                                                                                                                                                                                                                   |
| 3-0     | N/A     | Reserved                                                                                                                                                                                                                                                                                                                                                  |

#### **TABLE 4. STATUS REGISTER DEFINITION**



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

#### indirect address register (MCADDR) definition

The indirect address register (MCADDR) can be set to point to a memory location for indirect move or jump operations through the MSD port. MCADDR is cleared upon reset.

| 31 |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 16 | 0                |
|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|------------------|
| X  | X | X | Х | X | х | Х | Х | X | Х | х | Х | Х | Х | Х | ۷  | INDIRECT ADDRESS |

#### FIGURE 2. INDIRECT ADDRESS DEFINITION

The function of bit 16 varies, depending on whether the instruction is a MOVE or JUMP. During a MOVE instruction, bit 16 selects data space when set high, or code space when low. During a JUMP instruction, bit 16 selects an internal instruction when set high, or an external instruction when low.

#### stack registers (SUBADD1-SUBADD0) definition

The stack contains two subroutine return address registers, SUBADD0 and SUBADD1, which serves as a two-deep LIFO (last-in, first-out) stack. A subroutine jump causes the program counter to be pushed onto the stack, and a return from subroutine pops the last address pushed on the stack. More than two pushes will overwrite the contents of SUBADD1.

Bit 31 (Pointer) is set high in the stack location that was written last and reset to zero in the other stack location. Setting bit 30 (Enable) high enables a write into bit 31 (set or reset the pointer) in either stack location. If bit 31 is zero in both SUBADD0 and SUBADD1 (as when the stack has been saved externally and later restored), SUBADD0 can be designated as top of stack by setting bit 31. The stack pointers (bit 31) are cleared upon reset.

Bit 16 (I) is set high when the address in a stack location points to an internal routine, or set low when the address is for an external instruction.

| 31 | _ |   |   |   |   |   |   |   |   |   |   |   |   |   | 16 | 0       |
|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|---------|
| P  | E | X | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | 1  | SUBADD0 |
| Ρ  | Ε | X | Х | Х | Х | Х | Х | Х | Х | Х | X | Х | Х | Х | 1  | SUBADD1 |

#### FIGURE 3. STACK DEFINITION

#### interrupt vector register (VECTOR) definition

The interrupt vector register (VECTOR) serves as a pointer to an external program to be executed upon receipt of an interrupt. Bit 16 (I) is always set low to point to a routine in external code space. The interrupt vector is cleared on reset.

| 31 |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 16 | . 0               |  |
|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|-------------------|--|
| X  | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | 1  | INTERRUPT ADDRESS |  |

#### FIGURE 4. INTERRUPT VECTOR DEFINITION

#### interrupt return register (IRAREG) definition

The interrupt return register (IRAREG) retains a copy of the program counter at the time of an external interrupt. This address is used as the next execution address upon returning from the interrupt. Bit 16 (I) is set high when the address in the stack location points to an internal instruction, or set low when the address is for an external instruction. This register is not affected by the reset signal.

| 31 |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 16 | 0                        |
|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|--------------------------|
| Х  | Х | Х | X | Х | Х | Х | Х | Х | Х | X | Х | Х | Х | X | 1  | INTERRUPT RETURN ADDRESS |

#### FIGURE 5. INTERRUPT RETURN DEFINITION



#### D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

#### **COUNTX and COUNTY registers definition**

The counter registers (COUNTX, COUNTY) are used to store the current counts of the minimum and maximum values when executing MIN-MAX instructions. COUNTX and COUNTY are cleared on reset.

| 31 16               | 0                   |
|---------------------|---------------------|
| COUNT FOR MAX VALUE | COUNT FOR MIN VALUE |

#### FIGURE 6. COUNTY AND COUNTX REGISTER DEFINITION

The COUNTX register is updated on both the 1-D and 2-D MIN-MAX instruction such that the count of the current minimum value is in the lower 16 bits of the register and the count of the current maximum value is in the upper 16 bits. The COUNTY register is used only in the 2-D MIN-MAX instruction to keep track of the counts of the minimum and maximum for the second value of a pair. The COUNTX and COUNTY registers may also be used for temporary storage when not using the MIN-MAX instructions.

#### MIN-MAX/LOOPCT register

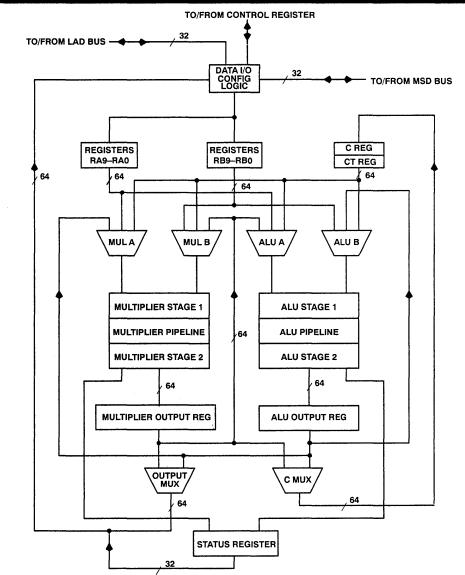
The MIN-MAX/LOOPCT register stores the current values of two separate counters. The LSH contains the current loop counter, and the MSH is used to hold the current minimum or maximum value of a MIN-MAX operation. The MIN-MAX/LOOPCT register is cleared upon reset. The MIN-MAX/LOOPCT register may also be used for temporary storage when not using the MIN-MAX instructions.

| 31 16                   | 0          |
|-------------------------|------------|
| COUNT FOR MIN-MAX VALUE | LOOP COUNT |

#### FIGURE 7. MIN-MAX/LOOPCT REGISTER DEFINITION

#### **FPU** core

The FPU core itself consists of a multiplier and an ALU, each with an intermediate pipeline register and an output register (see Figure 8, FPU core functional block diagram). Four multiplexers select the multiplier and ALU operands from the data registers, feedback registers, or previous multiplier or ALU result. Results are directed either to the internal feedback registers (C or CT), the 20 data registers in register files RA and RB, or the ten other miscellaneous registers.


Both the internal pipeline registers and the output registers can be enabled or made transparent (disabled) by setting the PIPES2-PIPES1 bits in the configuration register. When the device is powered up, the default settings of the internal registers are PIPES2 high (output registers transparent) and PIPES1 low (internal pipeline registers enabled).

When the FPU core is used for chained operations, the multiplier and ALU operate in parallel. Two data inputs are provided from the RA and RB input registers, while multiplier and ALU feedback are used as the other two operands. While in the chained mode, the output registers of the FPU must be enabled to latch feedback operands. The appropriate registers must be enabled by setting the PIPES2-PIPES1 controls in the configuration register at the beginning of chained operations, and the PIPES2-PIPES1 control should then be reinitialized upon termination.

Fully pipelined operation (both pipeline and output registers enabled) affects timing when writing results back to the RA and RB register files. To adjust writeback timing, it is possible to issue the NOP (no operation) instruction to the FPU core when the results are to be retained in the output registers for one or more additional cycles. The NOP instruction is only effective when the output registers are enabled, as each NOP causes the output register contents to be retained for one additional cycle.



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991







D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

#### TMS34082A operating modes

The TMS34082A can operate as a stand-alone floating-point processor or a graphics coprocessor to the TMS34020 Graphics System Processor. Control of FPU operation is provided either from external program memory or from the TMS34020. External instructions are addressed by address lines MSA15-0 and are input on MSD31-0. TMS34020 instructions are input on LAD31-0.

Both the MSD and LAD buses can be used for data transfers as well. Combinations of control signals distinguish instruction fetches from data transfers. A single instruction may be used to transfer data and to perform an operation within the FPU.

The TMS34082A supports external code and data storage with the memory expansion interface, MSD31-0. Up to 64K 32-bit data operands and 64K instructions may be added externally to the TMS34082A. The signal DS/CS controls whether data space or code space is being accessed, and read/write control is provided with the chip enable (MCE), output enable (MOE), address enable (MAE), write enable (MWR), and address lines (MSA15-0).

The TMS34082A also provides instructions that allow the TMS34020 to read/write directly from/to external memory. The external code support permits full utilization of the TMS34082A features and instruction set.

#### coprocessor-mode operation

Operation in the coprocessor mode assumes MSTR is low. In this mode, the TMS34082A acts as a closely coupled coprocessor to the TMS34020. The interface between the two devices consists of direct connections between pins. More than one coprocessor may be connected to the TMS34020 by setting the appropriate coprocessor ID (CID2-CID0). Up to four coprocessors executing in parallel may be used with a single TMS34020.

In the coprocessor mode, clock signals are provided by LCLK1 and LCLK2 from the TMS34020. Internally, the FPU generates a rising clock edge from each LCLK1 edge (rising or falling). Thus, the TMS34082A actually operates at twice the LCLK1 input clock frequency.

#### initialization (coprocessor mode)

On reset, the TMS34082A clears all pipeline registers and internal states. The configuration register and status register return to their initialization values. When RESET returns high in the coprocessor mode, the TMS34082A is in an idle state waiting for the next instruction from the TMS34020.

#### LAD bus control (coprocessor mode)

Both data and instructions are transferred over the bidirectional LAD bus in the coprocessor mode. A unique combination of signal inputs distinguishes an instruction from data. SF, ALTCH, CAS, RAS, and WE are used to designate coprocessor functions from other operations on the LAD bus.

Data may be transferred to or from TMS34020 registers or memory via LAD31-0. Transfers between the LAD and MSD buses can also be programmed. A single coprocessor instruction may be used to transfer data to the TMS34082A and then perform an FPU operation.

#### MSD bus control (coprocessor mode)

Use of the MSD bus in the coprocessor mode is optional. External memory on MSD31-0 can be used to store data, user-programmed subroutines, or both. Different combinations of control signals distinguish between data memory and code memory. Control signals for MSD and MSA buses operate the same in the host-independent and coprocessor modes.

#### interrupt handling (coprocessor mode)

A software interrupt to the TMS34082A is generated by the set mask external instruction. When the interrupt is granted, the current program counter is stored in the interrupt return register, and a branch to the interrupt vector address is executed. Software interrupts may be disabled.



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

If the exception detect interrupt (ED) is enabled, a TMS34082A exception causes COINT to go low, signalling the exception to the TMS34020. This exception does *not* cause a branch to the interrupt vector. If its interrupts are enabled, the TMS34020 will branch to an interrupt vector to service the TMS34082A request. Interrupts are cleared by reading the TMS34082A status register.

#### host-independent mode operation

Operation in the host-independent mode assumes MSTR high. The TMS34082A has several hardware control signals, as well as programmable features, which support system functions such as initialization, data transfer, or interrupts in the host-independent mode. CLK provides the input clock to the TMS34082A. Details of initialization, LAD and MSD bus interface control, and interrupt handling are provided in the following sections.

#### initialization (host-independent mode)

To simplify initialization of external program memory, the TMS34082A provides a bootstrap loader to perform an initial program load of 64 instructions. Once invoked, the loader causes the TMS34082A to read 65 words from the LAD bus and write 64 words out to the external program memory on the MSD bus, beginning with location 0. The first word read is used to initialize the configuration register.

This loader is invoked by first setting RESET low, and then INTR low. A separate timing diagram for using the bootstrap loader is provided (see Figure 34). INTR should be taken low after RESET is already low, as shown in the diagram. When the bootstrap loader is started, the FPU core is reset (internal states and status are cleared, but not data registers) and the stack pointer, program counter, and interrupt vector register are all set to zero.

RESET must be set high again before the loader operation can start (see Figure 34). Once the loader is active, an external interrupt (signalled by INTR low) will not be granted until the load sequence is finished. However, RESET going low terminates the load sequence, regardless of whether the sequence is complete. When the load sequence is finished, the device begins program execution at external address 0.

#### LAD bus control (host-independent mode)

Data transfer from the LAD bus (LAD31-0) is controlled primarily by output signals,  $\overline{\text{ALTCH}}$ ,  $\overline{\text{WE}}$ , and  $\overline{\text{CAS}}$ . ALTCH is the address write strobe that signals an address is being output on the LAD bus. The  $\overline{\text{CAS}}$  signal is the read strobe, and  $\overline{\text{WE}}$  is the write enable output to memory.

If a bidirectional FIFO is used instead of memory,  $\overline{CAS}$  can be directly connected to the read clock and  $\overline{WE}$  to the write clock. The CC input can be used to signal the TMS34082A when data is ready for input from the FIFO stack.

Data input on the LAD bus can be written to data registers, control registers, or passed through for output on the MSD bus. Alternatively, the LAD bus input can be selected directly as an FPU source operand without writing to a register.

An FPU result can be written to a data register and at the same time be passed out on the LAD bus. When this is done, the clock period may need to be extended up to 15 ns (TMS34082A-40) to allow for the propagation delay from the FPU core to the outputs.

Depending on the specific system implementation, transferring data to and from the LAD bus without intervening register operations may significantly improve throughput. In the host-independent mode, data moves to and from internal registers can be minimized at the cost of adjusting the clock period to assure integrity of FPU inputs to and output from the LAD bus.



#### D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

#### MSD bus control (host-independent mode)

The MSD bus can be used to access either external data memory or external code memory, depending on the combination of control signals required. If the memory on the MSD port is shared with a host processor, the MAE and RDY signals can be used to prevent conflicts between the host and the TMS34082A. When memory on the MSD port is shared, the host processor can monitor the state of the TMS34082A memory chip enable (MCE) to determine when the TMS34082A is not accessing the memory.

Otherwise, the  $\overline{MAE}$  signal may be tied low (if unused), and the TMS34082A can use  $\overline{MOE}$ ,  $\overline{MCE}$ ,  $\overline{MWR}$ , and DS/ $\overline{CS}$  to control external memory operations into either data space or code space, as selected by DS/ $\overline{CS}$ .

#### interrupt handling (host-independent mode)

Interrupts to the TMS34082A can be signalled by setting the interrupt request input (INTR) low. INTR is associated with the vector in the interrupt vector register. Software interrupts are signalled by setting the software interrupt flag in the status register.

In the event of an FPU status exception in the host-independent mode, an interrupt is generated that causes a branch to an exception handler routine. The address of the exception handler is stored in the interrupt vector register by the user prior to execution of the FPU program. Interrupts may be disabled by setting the appropriate bits in the status register.



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage, V <sub>CC</sub> (see Note 1) | . 6V     |
|----------------------------------------------|----------|
| Input voltage range, V <sub>1</sub>          | / to 6 V |
| Off-state output voltage range               | / to 6 V |
| Operating free-air temperature range – 0°C   | o 70°C   |
| Storage temperature range                    | 150°C    |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage levels are with respect to ground (VSS).

#### recommended operating conditions

|                 |                                |                                                                                                                |              | MIN   | NOM | MAX    | UNIT |
|-----------------|--------------------------------|----------------------------------------------------------------------------------------------------------------|--------------|-------|-----|--------|------|
| Vcc             | Supply voltage                 | ·····                                                                                                          |              | 4.75  | 5   | 5.25   | v    |
| VSS             | Supply voltage (see Note 2)    |                                                                                                                | n.,          | .0    | 0   | 0      | V    |
| ۷н              | High-level input voltage       | the second s |              | 2     | V   | CC+0.3 | V    |
| VIL             | Low-level input voltage        |                                                                                                                |              | - 0.3 |     | 0.8    | V    |
| юн              | High-level output current      | ph-level output current                                                                                        |              |       |     | - 8    | mA   |
| <sup>I</sup> OL | Low-level output current       |                                                                                                                |              |       |     | 8      | mA   |
|                 |                                |                                                                                                                | TMS34082A-32 |       | 8   |        |      |
| 4               | Clask framerou                 | Coprocessor mode                                                                                               | TMS34082A-40 |       |     | 10     | MHz  |
| fclock          | Coprocessor mode               |                                                                                                                | TMS34082A-32 |       |     | 16.7   | WITZ |
|                 |                                | Host-Independent mode                                                                                          | TMS34082A-40 |       |     | 20     |      |
| TA              | Operating free-air temperature |                                                                                                                |              | 0     |     | 70     | °C   |

NOTE 2: In order to minimize noise on VSS, care should be taken to provide a minimum-inductance path between the VSS pins and system ground.

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|      | PARAMETER                                        |                                                                | TEST CONDIT               | MIN TY                 | P‡ MAX | UNIT |    |
|------|--------------------------------------------------|----------------------------------------------------------------|---------------------------|------------------------|--------|------|----|
| Vон  | High-level output voltage                        |                                                                | V <sub>CC</sub> = 4.75 V, | IOH = - 8 mA           | 2.6    |      | V  |
| VOL  | Low-level output voltage                         |                                                                | V <sub>CC</sub> = 4.75 V, | IOL = 8 mA             |        | 0.6  | V  |
| 10   | High-impedance bidirectional pins output current |                                                                | V <sub>CC</sub> = 4.75 V, | V <sub>O</sub> = 2.8 V |        | 10   | μA |
| 10   |                                                  |                                                                | V <sub>CC</sub> = 4.75 V, | V <sub>O</sub> = 0.6 V |        | - 10 | μΛ |
| lj – | Input current                                    |                                                                | VI = VSS to VCC           |                        |        | ±5   | μA |
|      |                                                  | Dynamic                                                        | V <sub>CC</sub> = 5.25 V  |                        |        | 300  | mA |
| lcc§ | Supply current                                   | Quiescent                                                      | VI = VILmax or VIHmin,    | IOH = IOL = 0          |        | 50   | mA |
|      | Guiescent                                        | $V_{\rm I} = 0.2  {\rm Vor}  {\rm V_{\rm CC}} - 0.2  {\rm V},$ | IOH = IOL = 0             |                        | 50     |      |    |
| Ci   | Input capacitance                                |                                                                |                           |                        |        | 10   | pF |

<sup>‡</sup> All typical values are at V<sub>CC</sub> = 5 V and T<sub>A</sub> = 25°C.

\$ ICC is measured at maximum clock frequency. Inputs are presented with random logic highs and lows to assure the toggling of internal nodes.



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

#### coprocessor mode (MSTR low)

# switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)<sup>†</sup>

propagation delay times

|                             | PARAMETER                                                                                | FIGURE                      | TMS34082A-32 |     | TMS34082A-40 |     | UNIT |  |
|-----------------------------|------------------------------------------------------------------------------------------|-----------------------------|--------------|-----|--------------|-----|------|--|
|                             | PARAMETER                                                                                | FIGURE                      | MIN          | MAX | MIN          | MAX | UNI  |  |
| tp(ATCL-CORV)               | Propagation delay time, ALTCH low to CORDY valid                                         | 11                          |              | 40  |              | 35  |      |  |
| tp(ATCH-LADV)               | Propagation delay time, ALTCH high to LAD data valid                                     | 16                          |              | 35  |              | 30  |      |  |
| tp(CASL-LADV)               | Propagation delay time, CAS low to LAD data valid                                        | 14                          |              | 30  |              | 25  |      |  |
| tp(CASH-LADZ)               | Propagation delay time, CAS high to LAD disabled                                         | 14                          |              | 30  |              | 25  |      |  |
| t <sub>p</sub> (LC1-DCSL)ML | Propagation delay time, LCLK1 ↑ or ↓ to DS/CS low with<br>MEMCFG low                     | 17, 21, 23                  |              | 21  |              | 18  |      |  |
| t <sub>p</sub> (LC1-DCSH)ML | Propagation delay time, LCLK1 ↑ or ↓ to DS/CS high with<br>MEMCFG low                    | 17, 19, 21,<br>23, 24, 26   |              | 21  |              | 18  |      |  |
| t <sub>p</sub> (LC1-DCSL)MH | Propagation delay time, LCLK1 ↑ or ↓ to DS/CS low with<br>MEMCFG high                    | 18, 20, 22,<br>25, 27       | 3            | 26  | 3            | 18  |      |  |
| tp(LC1-DCSH)ML              | Propagation delay time, LCLK1 ↑ or ↓ to DS/CS high with<br>MEMCFG high                   | 18, 20, 22,<br>25, 27       | 3            | 13  | 3            | 11  |      |  |
| t <sub>p</sub> (LC1-DCSH)ML | Propagation delay time, LCK1 $\uparrow$ or $\downarrow$ to $\overline{MCE}$ low          | 17-19,<br>21-27             | 3            | 21  | 3            | 18  |      |  |
| t <sub>p</sub> (LC1-DCSH)ML | Propagation delay time, LCLK1 ↑ or ↓ to MCE high with<br>MEMCFG low                      | 17, 19, 21,<br>23           | 3            | 23  | 3            | 18  |      |  |
| t <sub>p</sub> (LC1-MCEH)MH | Propagation delay time, LCLK1 ↑ or ↓ to MCE high with<br>MEMCFG high                     | 18, 22, 25,<br>27           | 3            | 13  |              | 11  |      |  |
| <sup>t</sup> p(LC1-MOEL)    | Propagation delay time, LCLK1 $\uparrow$ or $\downarrow$ to $\overline{\text{MOE}}$ low  | 17, 18,<br>21-23, 26,<br>27 | 10           | 30  |              | 25  | ns   |  |
| <sup>t</sup> p(LC1-MOEH)    | Propagation delay time, LCLK1 $\uparrow$ or $\downarrow$ to $\overline{\text{MOE}}$ high | 17, 18,<br>21-23, 26,<br>27 | 3            | 13  |              | 11  |      |  |
| <sup>t</sup> p(LC1-MSDV)    | Propagation delay time, LCLK1 ↑ or ↓ to MSA address valid                                | 17-27                       |              | 20  |              | 18  |      |  |
| <sup>t</sup> p(LC1-MSD∨)    | Propagation delay time, LCLK1 $\uparrow$ or $\downarrow$ to MSD data valid               | 19, 20-22,<br>24, 25        |              | 38  |              | 36  |      |  |
| <sup>t</sup> p(LC1-MWRL)    | Propagation delay time, LCLK1 $\uparrow$ or $\downarrow$ to $\overline{\text{MWR}}$ low  | 19-22, 24,<br>25            | 10           | 30  | 10           | 25  |      |  |
| <sup>t</sup> p(LC1-MWRH)    | Propagation delay time, LCLK1 $\uparrow$ or $\downarrow$ to $\overline{\text{MWR}}$ high | 20-22, 24,<br>25            | 3            | 13  | 3            | 11  |      |  |
| <sup>t</sup> p(LC1H-COIL)   | Propagation delay time, LCLK1 † to COINT low                                             | 12                          |              | 23  |              | 15  |      |  |
| tp(LC1H-COIH)               | Propagation delay time, LCLK1 † to COINT high                                            | 12                          |              | 23  |              | 15  |      |  |
| tp(LC1H-LADV)               | Propagation delay time, LCLK1 † to LAD data valid                                        | 16                          |              | 28  |              | 23  |      |  |
| tp(MSDV-LADV)               | Propagation delay time, MSD data valid to LAD data valid                                 | 26, 27                      |              | 30  |              | 25  |      |  |
| tp(RASH-LADXZ)              | Propagation delay time, RAS high to LAD disabled                                         | 16                          |              | 30  |              | 25  |      |  |



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

#### coprocessor mode (MSTR low)

# switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)<sup>†</sup>

#### enable and disable times

|                              |                                        |        | TMS340 | 82A-32 | TMS340 | 82A-40 |      |
|------------------------------|----------------------------------------|--------|--------|--------|--------|--------|------|
|                              | PARAMETER                              | FIGURE | MIN    | MAX    | MIN    | MAX    | UNIT |
| ten(LOEL-LADZX)              | Enable time, LOE low to LAD enabled    | 16     | 3      | 15     | 3      | 14     |      |
| ten(MAEL-MSAZX)              | Enable time, MAE low to MSA enabled    | 21, 22 | 3      | 15     | 3      | 12     | ns   |
| ten(MAEL-MSDZX)              | Enable time, MAE low to MSD enabled    | 22     | 3      | 15     | 3      | 12     |      |
| <sup>t</sup> dis(LOEH-LADXZ) | Disable time, LOE high to LAD disabled | 16     | 3      | 15     | 3      | 12     |      |
| tdis(MAEH-MSAXZ)             | Disable time, MAE high to MSA disabled | 21, 22 | 3      | 15     | 3      | 12     | ns   |
| tdis(MAEH-MSDXZ)             | Disable time, MAE high to MSD disabled | 21     | 3      | 15     | 3      | 12     |      |

#### valid times

|              |                                                |               | TMS34082A-32 |     | TMS34082A-40 |     |      |
|--------------|------------------------------------------------|---------------|--------------|-----|--------------|-----|------|
|              | PARAMETER                                      | FIGURE        |              | MAX | MIN          | MAX | UNIT |
| tv(MWRH-MSA) | Valid time, MSA address after MWR high         | 20-22, 24, 25 | 1            |     | 1            |     |      |
| tv(MWRH-MSD) | Valid time, MSD output data after MWR high     | 20-22, 24, 25 | 1            |     | 1            |     | ns   |
| tv(LC1-MSA)  | Valid time, MSA address valid after LCK † or ↓ | 17-22, 24-27  | 3            |     | 3            |     |      |
| tv(LC1L-COR) | Valid time, CORDY valid after LCLK1 low        | 11            | 0            |     | 0            |     |      |

## timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) $^{\dagger}$

#### clock period and pulse duration

|                        | PARAMETER                                      |                    | PIPELINE<br>CONTROLS | TMS340 | 82A-32 | TMS340 | 82A-40 | UNIT |
|------------------------|------------------------------------------------|--------------------|----------------------|--------|--------|--------|--------|------|
|                        |                                                | FIGURE             | PIPES2-PIPES1        | MIN    | MAX    | MIN    | MAX    |      |
| t                      | Clock period, LCLK1 (1/fclock)                 | 10, 17-22, 24-27   | X0                   | 125    |        | 100    |        |      |
| <sup>t</sup> c(LC1)    | Clock period, LCLKT (T/Iclock)                 | 10, 17-22, 24-27   | 11                   | 152    |        | 136    |        | ns   |
| 1 4 20                 | Clock period, LCLK2 (1/fclock)                 | 10                 | X0                   | 125    |        | 100    |        | 115  |
| <sup>t</sup> c(LC2)    | Clock period, LCLK2 (1/Iclock)                 | 10                 | 11                   | 152    |        | 136    |        |      |
| t # 0.4.5              | Pulse duration, LCLK1 high                     | 10                 | X0                   | 52.5   |        | 42.5   |        |      |
| <sup>t</sup> w(LC1H)   | Fulse duration, ECERT flight                   | 10                 | 11                   | 66     |        | 61     |        |      |
| t a cui                | Pulse duration, LCLK1 low                      | 10                 | X0                   | 52.5   |        | 42.5   |        |      |
| <sup>t</sup> w(LC1L)   | Fulse duration, EOERT IOW                      |                    | 11                   | 66     |        | 61     |        |      |
| t # 00010              | Pulse duration, LCLK2 high                     | 10                 | X0                   | 52.5   |        | 42.5   |        |      |
| <sup>t</sup> w(LC2H)   | Puise duration, LOEKZ high                     | 10                 | 11                   | 66     |        | 61     |        |      |
| +                      | Bulas duration I CI K2 low                     | 10                 | X0                   | 52.5   |        | 42.5   |        | ns   |
| <sup>t</sup> w(LC2L)   | Pulse duration, LCLK2 low                      | 10                 | 11                   | 66     |        | 61     |        |      |
| <sup>t</sup> w(DCSH)MH | Pulse duration, DS/CS high with<br>MEMCFG high | 20, 25, 27         | xx                   | 5      |        | 7      |        |      |
| tw(RSTL)               | Pulse duration, RESET low                      | 12                 | XX                   | 30     |        | 30     |        |      |
| tw(MCEH)               | Pulse duration, MCE high                       | 18, 25, 27         | XX                   | 5      |        | 7      |        |      |
| tw(MOEH)               | Pulse duration, MOE high                       | 17, 18, 23, 26, 27 | XX                   | 8      |        | 8      |        |      |
| tw(MWRH)               | Pulse duration, MWR high                       | 20, 24, 25         | XX                   | 8      |        | 8      |        |      |



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

#### coprocessor mode (MSTR low)

## timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) $^{\dagger}$

#### transition times

|         |                        |        | TMS340 | 82A-32 | TMS340 | 82A-40 |      |
|---------|------------------------|--------|--------|--------|--------|--------|------|
|         | PARAMETER              | FIGURE | MIN    | MAX    | MIN    | MAX    | UNIT |
| tt(LC1) | Transition time, LCLK1 | 10     |        | 15     |        | 13.5   |      |
| tt(LC2) | Transition time, LCLK2 | 10     |        | 15     |        | 13.5   | ns   |

#### setup and hold times

|                |                                                    | 1              |     |     | TMS340 | 82A-40 |      |
|----------------|----------------------------------------------------|----------------|-----|-----|--------|--------|------|
|                | PARAMETER                                          | FIGURE         | MIN | MAX | MIN    | MAX    | UNIT |
| tsu(BUS-LC2H)  | Setup time, BUSFLT valid before LCLK2 ↑            | 11             | 20  |     | 13     |        |      |
| tsu(CC-LC1)    | Setup time, CC valid before LCLK1 ↑ or ↓           | 12             | 7   |     | 5      |        |      |
| tsu(LAD-ATCL)  | Setup time, LAD address valid before ALTCH low     | 13-16, 23      | 15  |     | 12     |        |      |
| tsu(LAD-CASH)  | Setup time, LAD address valid before cas high      | 13, 15, 24, 25 | 13  |     | 10     |        |      |
| tsu(LRD-LC2H)  | Setup time, LRDY valid before LCLK2 †              | 11             | 20  |     | 13     |        |      |
| tsu(MSD-LC1)   | Setup time, MSD data valid before LCLK1 ↑ or ↓     | 17, 18, 23     | 11  |     | 7      |        | ns   |
| tsu(RASH-ATCL) | Setup time, RAS high before ALTCH low              | 13-15, 23      | 35  |     | 30     |        |      |
| tsu(RDYL-LC1)  | Setup time, RDY low before LCLK1 ↑ or ↓            | 12             | 20  |     | 10     |        |      |
| tsu(RSTH-LC1)  | Setup time, RESET high before LCLK1 ↑ or ↓         | 12             | 40  |     | 40     |        |      |
| tsu(SF-ATCL)   | Setup time, SF valid before ALTCH low              | 13-16, 23      | 15  |     | 10     |        |      |
| tsu(WEL-CASL)  | Setup time, WE low for data write before CAS low   | 13, 16         | 15  |     | 12     |        |      |
| th(ATCH-SF)    | Hold time, SF valid after ALTCH high               | 13-15, 23      | 15  |     | 12     |        |      |
| th(ATCL-LAD)   | Hold time, LAD address valid after ALTCH low       | 13-16, 23      | 21  |     | 13     |        |      |
| th(CASH-LAD)   | Hold time, LAD data valid after CAS high           | 13, 15, 24, 25 | 0   |     | 0      |        |      |
| th(CASH-SF)    | Hold time, SF valid after CAS high                 | 13-15, 23      | 15  |     | 12     |        |      |
| th(LC1-CC)     | Hold time, CC valid after LCLK1 ↑ or ↓             | 12             | 3   |     | 3      |        |      |
| th(LC1-MSD)    | Hold time, MSD input data valid after LCLK1 ↑ or ↓ | 17, 18, 23     | 5   |     | 5      |        | ns   |
| th(LC1-RDY)    | Hold time, RDY valid after LCLK1 ↑ or ↓            | 12             | 3   |     | 3      |        |      |
| th(LC1H-LC2L)  | Hold time, LCLK2 low after LCLK1 high              | 10             | 16  |     | 12     |        |      |
| th(LC2H-BUS)   | Hold time, BUSFLT valid after LCLK2 high           | 11             | 0   |     | 0      |        |      |
| th(LC2H-LC1H)  | Hold time, LCLK1 high after LCLK2 high             | 10             | 16  |     | 12     |        |      |
| th(LC2H-LRD)   | Hold time, LRDY valid after LCLK2 high             | 11             | 0   |     | 0      |        |      |
| th(WEH-SF)     | Hold time, SF valid after WE high                  | 13             | 15  |     | 12     |        |      |



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

#### coprocessor mode (MSTR low)

## timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) $^{\dagger}$

#### delay times

|                             |                                                       |                  | TMS340 | 82A-32 | TMS340 | 32A-40 |      |
|-----------------------------|-------------------------------------------------------|------------------|--------|--------|--------|--------|------|
|                             | PARAMETER                                             | FIGURE           | MIN    | MAX    | MIN    | MAX    | UNIT |
| <sup>t</sup> d(DCSL-MCEL)MH | Delay time, DS/CS high to MCE low with MEMCFG<br>high | 18, 22           | 4      |        | 4      |        |      |
| td(DCSH-MWRL)               | Delay time, DS/CS high to MWR low                     | 19, 24           | 6      |        | 6      |        |      |
| <sup>t</sup> d(MCEH-DCSL)MH | Delay time, MCE high to DS/CS low with MEMCFG<br>high | 20               | 4      |        | 4      |        |      |
| td(MCEH-MWRL)               | Delay time, MCE high to MWR low                       | 25               | 7      |        | 7      |        |      |
| td(MOEH-MWRL)               | Delay time, MOE high to MWR low                       | 19               | 7      |        | 7      |        |      |
| <sup>t</sup> d(MSAV-MWRL)   | Delay time, MSA valid to MWR low                      | 20-22, 24,<br>25 | 5      |        | 5      |        | ns   |
| td(MSDZ-MOEL)               | Delay time, MSD disabled to MOE low                   | 21, 22           | 3      |        | 3      |        |      |
| td(MWRH-MCEL)MH             | Delay time, MWR high to MCE low with MEMCFG high      | 25               | 4      |        | .4     |        |      |
| td(MWRH-MOEL)               | Delay time, MWR high to MOE low                       | 19, 21, 22       | 7      |        | 7      |        |      |
| td(MWRH-MSDVZ)              | Delay time, MWR high to MSD disabled                  | 21               | 1      | 9      | 1      | 9      |      |
| td(MWRL-MSDZX)              | Delay time, MWR low to MSD enabled                    | 21, 22           | 0      | 7      | 0      | 7      |      |



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

#### host-independent mode (MSTR high)

# switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) $^{\dagger}$

#### propagation delay times

|                             |                                                                         |                           | TMS340 | 32A-32 | TMS340 |     |      |
|-----------------------------|-------------------------------------------------------------------------|---------------------------|--------|--------|--------|-----|------|
|                             | PARAMETER                                                               | FIGURE                    | MIN    | MAX    | MIN    | MAX | UNIT |
| tp(CLKH-ATCH)               | Propagation delay time, CLK † to ALTCH high                             | 29, 30                    |        | 10     |        | 8   |      |
| <sup>t</sup> p(CLKH-ATCL)   | Propagation delay time, CLK ↑ to ALTCH low                              | 29, 30                    |        | 23     |        | 20  |      |
| <sup>t</sup> p(CLKH-CASH)   | Propagation delay time, CLK ↑ to CAS high                               | 29, 31, 32,<br>34-36      |        | 10     |        | 8   |      |
| <sup>t</sup> p(CLKH-CASL)   | Propagation delay time, CLK † to CAS low                                | 29, 31, 32,<br>34-36      |        | 23     |        | 20  |      |
| <sup>t</sup> p(CLKH-COIH)   | Propagation delay time, CLK ↑ to COINT high                             | 29-31, 33, 35,<br>36, 46  |        | 20     |        | 15  |      |
| <sup>t</sup> p(CLKH-COIL)   | Propagation delay time, CLK $\uparrow$ to $\overline{\text{COINT}}$ low | 29-31, 33, 35,<br>36, 46  |        | 20     |        | 15  |      |
| <sup>t</sup> p(CLKH-CORH)   | Propagation delay time, CLK † to CORDY high                             | 46                        |        | 20     |        | 15  |      |
| tp(CLKH-CORL)               | Propagation delay time, CLK † to CORDY low                              | 46                        |        | 20     |        | 15  |      |
| <sup>t</sup> p(CLKH-DCSH)MH | Propagation delay time, CLK † to DS/CS high with<br>MEMCFG high         | 36, 38, 40,<br>42-44      | 1      | 10     | 1      | 10  |      |
| <sup>t</sup> p(CLKH-DCSH)ML | Propagation delay time, CLK ↑ to DS/CS high with<br>MEMCFG low          | 35, 37, 39, 41,<br>45, 46 |        | 20     |        | 17  |      |
| <sup>t</sup> p(CLKH-DCSL)MH | Propagation delay time, CLK ↑ to DS/CS low with<br>MEMCFG high          | 36, 38, 40,<br>42-44      | 3      | 20     | 3      | 17  |      |
| <sup>t</sup> p(CLKH-DCSL)ML | Propagation delay time, CLK † to DS/CS low with<br>MEMCFG low           | 37, 41, 45-47             |        | 20     |        | 17  | ns   |
| tp(CLKH-ITGH)               | Propagation delay time, CLK † to INTG high <sup>‡</sup>                 | 47                        |        | 20     |        | 15  |      |
| <sup>t</sup> p(CLKH-ITGL)   | Propagation delay time, CLK † to INTG low                               | 47                        |        | 25     |        | 15  |      |
| <sup>t</sup> p(CLKH-LADV)   | Propagation delay time, CLK † to LAD valid                              | 29, 30, 33-35,<br>43, 44  |        | 30     |        | 25  |      |
| <sup>t</sup> p(CLKH-MCEH)MH | Propagation delay time, CLK ↑ to MCE high with<br>MEMCFG high           | 36, 38, 42-46             | 1      | 10     | 1      | 10  |      |
| <sup>t</sup> p(CLKH-MCEH)ML | Propagation delay time, CLK ↑ to MCE high with<br>MEMCFG low            | 37, 39, 41,<br>45-47      | 2      | 20     | 2      | 17  |      |
| tp(CLKH-MCEL)               | Propagation delay time, CLK † to MCE low                                | 35-39, 41-47              | 3      | 20     | 3      | 17  |      |
| <sup>t</sup> p(CLKH-MOEH)   | Propagation delay time, CLK † to MOE high                               | 37, 38, 41-47             | 1      | 10     | 1      | 10  |      |
| <sup>t</sup> p(CLKH-MOEL)   | Propagation delay time, CLK † to MOE low                                | 37, 38, 41-47             | 10     | 28     | 10     | 25  |      |
| <sup>t</sup> p(CLKH-MSAV)   | Propagation delay time, CLK † to MSA address<br>valid                   | 35-47                     |        | 20     |        | 17  |      |
| tp(CLKH-MSDV)               | Propagation delay time, CLK † to MSD data valid                         | 35, 36, 39-42             |        | 35     |        | 33  |      |
| tp(CLKH-MWRH)               | Propagation delay time, CLK † to MWR high                               | 35, 36, 40-42             | 1      | 10     | 1      | 10  |      |
| <sup>t</sup> p(CLKH-MWRL)   | Propagation delay time, CLK † to MWR low                                | 35, 36, 39-42             | 10     | 28     | 10     | 25  |      |
| <sup>t</sup> p(CLKH-WEH)    | Propagation delay time, CLK † to WE high                                | 30, 33, 43, 44            |        | 10     |        | 8   |      |
| <sup>t</sup> p(CLKH-WEL)    | Propagation delay time, CLK ↑ to WE low                                 | 30, 33, 43, 44            |        | 23     |        | 20  |      |

<sup>†</sup> See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for PIPES2 high and PIPES1 low. No other pipeline settings are specified.

‡ Interrupts are not granted during multicycle instructions.



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

#### host-independent mode (MSTR high)

## switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) $^{\dagger}$

#### enable and disable times

|                  |                                                     | TMS34082A-32 |     | TMS34082A-40 |     |      |    |
|------------------|-----------------------------------------------------|--------------|-----|--------------|-----|------|----|
|                  | FIGURE                                              | MIN          | MAX | MIN          | MAX | UNIT |    |
| ten(CLKH-LADZX)  | Enable time, CLK high to LAD enabled                | 29, 30       | 5   |              | 5   |      |    |
| ten(LOEL-LADZX)  | Enable time, LOE low to LAD enabled                 | 33           | 5   | 18           | 5   | 14   |    |
| ten(MAEL-MSAZX)  | Enable time, MAE low to MSA enabled                 | 41, 42       | 3   | 15           | 3   | 12   | ns |
| ten(MAEL-MSDZX)  | Enable time, MAE low to MSD enabled                 | 42           | 3   | 15           | 3   | 12   |    |
| tdis(CLKH-LADXZ) | Disable time, CLK high to LAD disabled <sup>‡</sup> | 29, 30       |     | 25           |     | 23   |    |
| tdis(LOEH-LADXZ) | Disable time, LOE high to LAD disabled              | 33           | 5   | 15           | 5   | 12   |    |
| tdis(MAEH-MSAXZ) | Disable time, MAE high to MSA disabled              | 41, 42       | 3   | 15           | 3   | 12   | ns |
| tdis(MAEH-MSDXZ) | Disable time, MAE high to MSD disabled              | 42           | 3   | 15           | 3   | 12   |    |

#### valid times

|              |                                              |                | TMS34082A-32 |     | TMS34082A-40 |     |      |
|--------------|----------------------------------------------|----------------|--------------|-----|--------------|-----|------|
|              | PARAMETER                                    | FIGURE         | MIN          | MAX | MIN          | MAX | UNIT |
| tv(ATCH-LAD) | Valid time, LAD output data after ALTCH high | 29, 30         | 2            |     | 2            |     |      |
| tv(CLKH-MSA) | Valid time, MSA address valid after CLK high | 35-47          | 3            |     | 3            |     |      |
| tv(MWRH-MSD) | Valid time, MSD data valid after MWR high    | 35, 36, 40-42  | 1            |     | 1            |     | ns   |
| tv(MWRH-MSA) | Valid time, MSA address valid after MWR high | 35, 36, 40-41  | 1            |     | 1            |     |      |
| tv(WEH-LAD)  | Valid time, LAD data valid after WE          | 30, 33, 43, 44 | 2            |     | 2            |     |      |

<sup>†</sup> See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for PIPES2 high and PIPES1 low. No other pipeline settings are specified.

<sup>‡</sup> Valid only for last write in sesries. The LAD bus is not placed in high-impedance state between consecutive outputs.



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

#### host-independent mode (MSTR high)

# timing requirements over recommended ranges of supply voltage and operating free-air temperatre (unless otherwise noted)<sup>†</sup>

clock period and pulse duration

| PARAMETER            |                                   | FIGURE             | PIPELINE<br>CONTROLS | TMS34082A-32<br>MIN MAX |  |          |  | UNIT |
|----------------------|-----------------------------------|--------------------|----------------------|-------------------------|--|----------|--|------|
|                      |                                   |                    | PIPES2-PIPES1        |                         |  |          |  |      |
| <sup>t</sup> c(CLK)  | Clock period time, CLK (1/fclock) | 28-31, 33-48       | X0<br>11             | 60<br>66                |  | 50<br>61 |  | ns   |
| tw(ATCH)             | Pulse duration, ALTCH high        | 30                 | XX                   | 7                       |  | 7        |  |      |
| tw(CASH)             | Pulse duration, CAS high          | 29, 31, 32, 35, 36 | XX                   | 7                       |  | 7        |  |      |
| tw(CLKH)             | Pulse duration, CLK high          | 28                 | XX                   | 15                      |  | 15       |  |      |
| tw(CLKL)             | Pulse duration, CLK low           | 28                 | XX                   | 15                      |  | 15       |  |      |
| tw(DCSH)             | Pulse duration, DS/CS high        | 36, 40, 44         | XX                   | 5                       |  | 5        |  |      |
| <sup>t</sup> w(ITRL) | Pulse duration, INTR low          | 34, 47             | XX                   | 20                      |  | 15       |  | ns   |
| tw(MCEH)             | Pulse duration, MCE high          | 36, 38, 44-46      | XX                   | 5                       |  | 5        |  |      |
| <sup>t</sup> w(MOEH) | Pulse duration, MOE high          | 37, 38, 43-46      | XX                   | 8                       |  | 8        |  |      |
| <sup>t</sup> w(MWRH) | Pulse duration, MWR high          | 35, 36, 40         | XX                   | 8                       |  | 8        |  |      |
| tw(RSTL)             | Pulse duration, RESET low         | 34                 | XX                   | 30                      |  | 20       |  |      |
| <sup>t</sup> w(WEH)  | Pulse duration, WE high           | 30, 33, 43, 44     | XX                   | 7                       |  | 7        |  |      |

#### transition time

|                              | FIGURE | TMS3408 | 2A-32 | TMS3408 |     |      |
|------------------------------|--------|---------|-------|---------|-----|------|
| PARAMETER                    |        | MIN     | MAX   | MIN     | MAX | UNIT |
| tt(CLK) Transition time, CLK | 28     |         | 15    |         | 15  | ns   |



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

#### host-independent mode (MSTR high)

# timing requirements over recommended ranges of supply voltage and operating free-air temperatre (unless otherwise noted) (continued)<sup>†</sup>

#### setup and hold times

|                            | FIGURE                                                                                | TMS34082A-32      |    | TMS34082A-40 |     |     |      |
|----------------------------|---------------------------------------------------------------------------------------|-------------------|----|--------------|-----|-----|------|
|                            |                                                                                       |                   |    |              | MIN | MAX | UNIT |
| tsu(CC-CLKH)               | Setup time, CC before CLK high                                                        | 45                | 7  |              | 5   |     |      |
| <sup>t</sup> su(LADV-CLKL) | Setup time, LAD data valid before CLK low for<br>immediate data input <sup>‡</sup>    | 32                | 10 |              | 10  |     |      |
| <sup>t</sup> su(ITRL-CLKH) | Setup time, INTR before CLK high                                                      | 47                | 20 |              | 10  |     |      |
| <sup>t</sup> su(LAD-CLKH)  | · · · · · · · · · · · · · · · · · · ·                                                 |                   | 9  |              | 9   |     | ns   |
| <sup>t</sup> su(LRD-CLKH)  | Setup time, LRDY before CLK high                                                      | 48                | 20 |              | 15  |     |      |
| <sup>t</sup> su(MSD-CLKH)  |                                                                                       |                   | 10 |              | 8   |     |      |
| tsu(RDYV-CLKH)             | SU(RDYV-CLKH) Setup time, RDY valid before CLK high                                   |                   | 20 |              | 10  |     |      |
| tsu(RSTH-CLKH)             | Setup time, RESET high before CLK high                                                | 34                | 40 |              | 40  |     |      |
| <sup>t</sup> su(RSTL-ITRL) | Setup time, RESET low before INTR low for bootstrap<br>loader                         | 34                | 10 |              | 10  |     |      |
| th(CLKH-CC)                | Hold time, CC after CLK high                                                          | 45                | 0  |              | 0   |     |      |
| <sup>t</sup> h(CLKH-ITR)   | Hold time, INTR after CLK high                                                        | 47                | 0  |              | 0   |     |      |
| <sup>t</sup> h(CLKH-LAD)   | Hold time, LAD input data valid after CLK high                                        | 29, 31, 35,<br>36 | 3  |              | 3   |     |      |
| th(CLKH-LRD)               | Hold time, LRDY after CLK high                                                        | 48                | 0  |              | 0   |     |      |
| <sup>t</sup> h(CLKH-MSD)   | Hold time, MSD data valid after CLK high                                              | 37, 38,<br>43-47  | 2  |              | 2   |     | ns   |
| <sup>t</sup> h(CLKH-RDY)   | Hold time, RDY after CLK high                                                         | 48                | 0  |              | 0   |     |      |
| <sup>t</sup> h(CLKL-LAD)   | Hold time, LAD data after CLK low for immediate data<br>(CLKL-LAD) input <sup>‡</sup> |                   | 5  |              | 5   |     |      |
| <sup>t</sup> h(ITRL-RSTH)  | Hold time, RESET low after INTR low for bootstrap loader                              | 34                | 10 |              | 10  |     |      |

<sup>†</sup> See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for PIPES2 high and PIPES1 low. No other pipeline settings are specified.

<sup>+</sup> This mode permits data input that does not meet the minimum setup before CLK high. The clock period for this mode must be extended according to the equation:

Adjusted clock period = Normal clock period + Data delay + 5 ns

The data delay is the delay from CLK high to valid data. This mode may not be used to input data for divides or square roots.



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

#### host-independent mode (MSTR high)

## timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) $^{\dagger}$

#### delay times

|                             |                                                       | FIGURE           | TMS3408 | 2A-32 | TMS340 |     |      |
|-----------------------------|-------------------------------------------------------|------------------|---------|-------|--------|-----|------|
|                             | PARAMETER                                             |                  | MIN     | MAX   | MIN    | MAX | UNIT |
| td(ATCH-CASL)               | Delay time, ALTCH high to CAS low                     | 29               | 6       |       | 6      |     |      |
| td(ATCH-WEL)                | Delay time, ALTCH high to WE low                      | 30               | 5       |       | 5      |     |      |
| td(CASH-ATCL)               | Delay time, CAS high to ALTCH low                     | 29               | 5       |       | 5      |     |      |
| td(CASH-WEL)                | Delay time, CAS high to WE low                        | 33               | 5       |       | 5      |     |      |
| td(COIL-ATCL)               | Delay time, COINT low to ALTCH low                    | 29, 30           | 0       |       | 0      |     |      |
| td(COIL-CASL)               | Delay time, COINT low to CAS low                      | 31, 35, 36       | 2       |       | 2      |     |      |
| td(COIL-WEL)                | Delay time, COINT low to WE low                       | 33               | 0       |       | 0      |     |      |
| <sup>t</sup> d(DCSH-MCEL)MH | Delay time, DS/CS high to MCE low with MEMCFG<br>high | 38, 42           | 4       |       | 4      |     |      |
| td(DCSH-MWRL)               | Delay time, DS/CS high to MWR low                     | 35, 39           | 6       |       | 6      |     |      |
| <sup>t</sup> d(MCEH-DCSL)MH | Delay time, MCE high to DC/CS low with MEMCFG<br>high | 40               | 4       |       | 4      |     |      |
| td(MCEH-MWRL)               | Delay time, MCE high to MWR low                       | 36               | 7       |       | 7      |     | ns   |
| td(MOEH-MWRL)               | Delay time, MOE high to MWR low                       | 39               | 7       |       | 7      |     |      |
| <sup>t</sup> d(MSAV-MWRL)   | Delay time, MSA valid to MWR low                      | 35, 36,<br>40-42 | 5       |       | 5      |     |      |
| td(MSDZ-MOEL)               | Delay time, MSD disabled to MOE low                   | 41, 42           | 3       |       | 3      |     |      |
| td(MWRH-MCEL)MH             | Delay time, MWR high to MCE low with MEMCFG high      | 36               | 4       |       | 4      |     |      |
| td(MWRH-MOEL)               | Delay time, MWR high to MOE low                       | 41, 42           | 7       |       | 7      |     |      |
| td(MWRH-MSDXZ)              | Delay time, MWR high to MSD disabled                  | 42               | 1       | 9     | 1      | 9   |      |
| td(MWRL-MSDZX)              | Delay time, MWR low to MSD enabled                    | 41, 42           | 0       | 7     | 0      | 7   |      |
| td(WEH-ATCL)                | Delay time, WE high to ALTCH low                      | 29               | 5       |       | 5      |     |      |
| td(WEH-CASL)                | Delay time, WE high to CAS low                        | 31               | 5       |       | 5      |     |      |



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

#### **EXPLANATION OF LETTER SYMBOLS**

This data sheet uses a type of letter symbol based on JEDEC Std-100 and IEC Publication 748-2, 1985, to describe time intervals. The format is:

#### <sup>t</sup>A(BC-DE)F

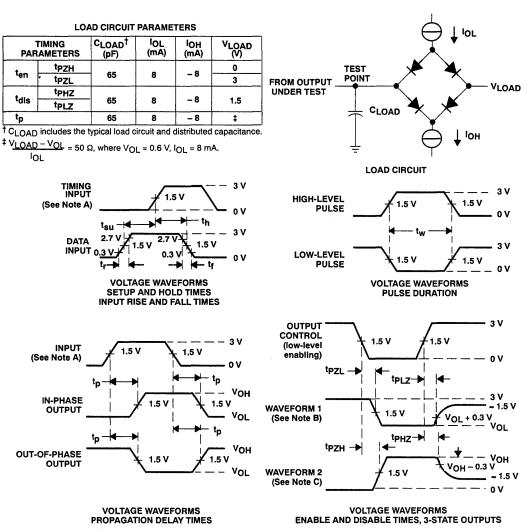
Where:

Subscript A indicates the type of dynamic parameter being represented. One of the following is used:

#### Switching Characteristics:

- p = Propagation delay time
- en = Enable time
- dis = Disable time

Timing Requirements:


- c = Clock period
- w = Pulse duration
- t = Transition time
- d = Delay time
- su = Setup time
- h = Hold time
- / = Valid time
- Subscript B indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur first, that is, at the beginning of the time interval.
- Subscript C indicates the direction of the transistion and/or the final state or level of the signal represented by B. One or two of the following are used:
  - H = High or transition to high
  - L = Low or transition to low
  - V = A valid steady-state level
  - X = Unknown, changing, or "don't care" level
  - Z = High-impedance (off) state
- Subscript D indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur last, that is, at the end of the time interval.
- Subscript E indicates the direction of the transition and/or the final state or level of the signal represented by D. One or two of the symbols described in Subscript C are used.
- Subscript F indicates additional information such as mode of operation, test conditions, etc.

The hyphen between the C and D subscripts is omitted when no confusion is likely to occur. For these letter symbols on this data sheet, the signal names are further abbreviated as follows:

| SIGNAL<br>NAME | B & D<br>SUBSCRIPT | SIGNAL<br>NAME | B & D<br>SUBSCRIPT | SIGNAL<br>NAME | B & D<br>SUBSCRIPT | SIGNAL    | B & D<br>SUBSCRIPT | SIGNAL<br>NAME | B & D<br>SUBSCRIPT |
|----------------|--------------------|----------------|--------------------|----------------|--------------------|-----------|--------------------|----------------|--------------------|
|                |                    |                |                    |                |                    |           |                    |                |                    |
| ALTCH          | ATC                | CORDY          | COR                | LCLK2          | LC2                | MSA(0:15) | MSA                | тск            | TCK                |
| BUSFLT         | BFT                | DC/CS          | DCS                | LOE            | LOE                | MSD(0:31) | MSD                | TDI            | TDI                |
| CAS            | CAS                | EC(0:1)        | EC                 | LRDY           | LRD                | MWR       | MWR                | TDO            | TDO                |
| cc             | cc                 | INTG           | INT                | MAE            | MAE                | RAS       | RAS                | TMS            | TMS                |
| CID(0:2)       | CID                | INTR           | ITR                | MSTR           | MST                | RDY       | RDY                | Vcc/Vss        |                    |
| CLK            | CLK                | LAD(0:31)      | LAD                | MCE            | MCE                | RESET     | RST                | WE             | WE                 |
| COINT          | COI                | LCLK1          | LC1                | MOE            | MOE                | SF        | SF                 | MEMCFG         | М                  |

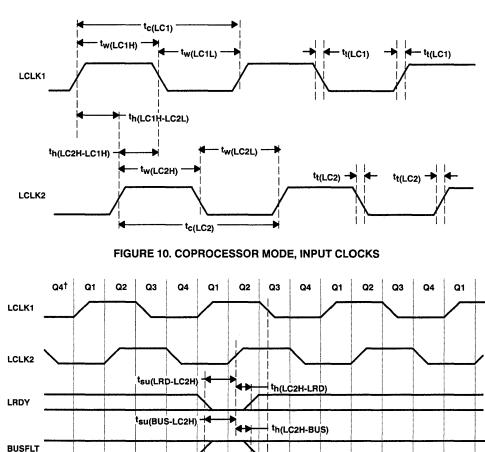


D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001



PARAMETER MEASUREMENT INFORMATION

NOTES: A. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by pulse generators having the following characteristics: PRR = 1 MHz, Z<sub>0</sub> = 50 Ω, t<sub>f</sub> ≤ 6 ns, t<sub>f</sub> ≤ 6 ns.


B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

C. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. For tPLZ and tPHZ, VOL and VOH are measured values.

**FIGURE 9** 



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991



### PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> Q1, Q2, Q3, and Q4 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

tp(ATCL-CORV)

ALTCH

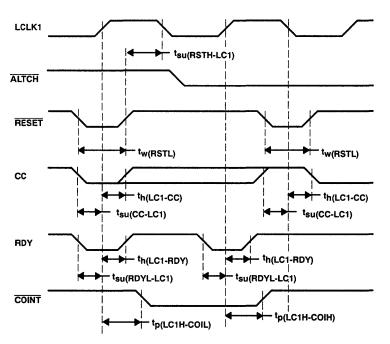
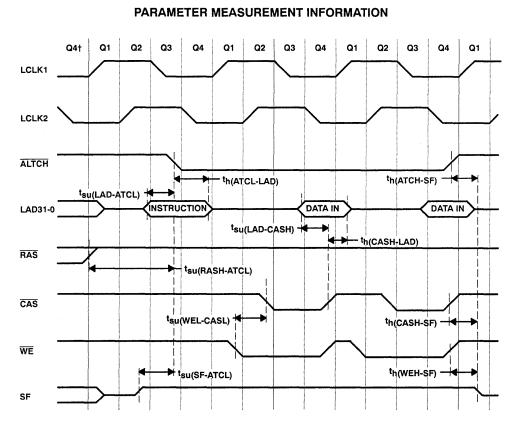

CORDY

FIGURE 11. COPROCESSOR MODE, BUS CONTROL SIGNALS

tv(LC1L-COR)



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

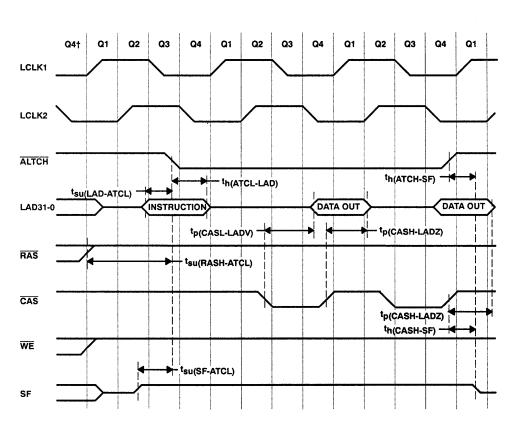



### PARAMETER MEASUREMENT INFORMATION

FIGURE 12. COPROCESSOR MODE, CONTROL SIGNALS



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991



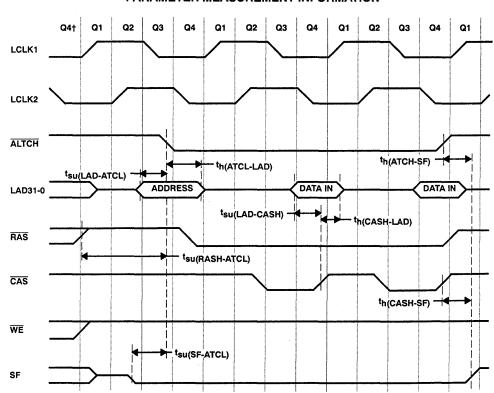

<sup>†</sup>Q1, Q2, Q3, and Q4 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

#### FIGURE 13. COPROCESSOR MODE, TMS34020 GSP TO TMS34082A



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001




### PARAMETER MEASUREMENT INFORMATION

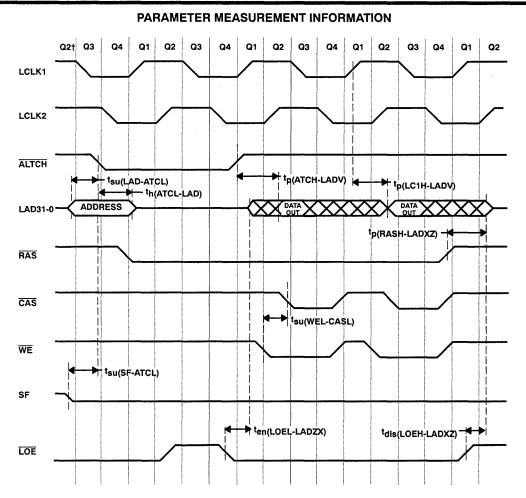
<sup>†</sup>Q1, Q2, Q3, and Q4 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

FIGURE 14. COPROCESSOR MODE, TMS34082A TO TMS34020 GSP INCLUDING COPROCESSOR INTERNAL CYCLE



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991




### PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> Q1, Q2, Q3, and Q4 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

### FIGURE 15. COPROCESSOR MODE, DRAM/VRAM MEMORY TO TMS34082A



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001



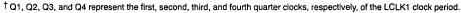
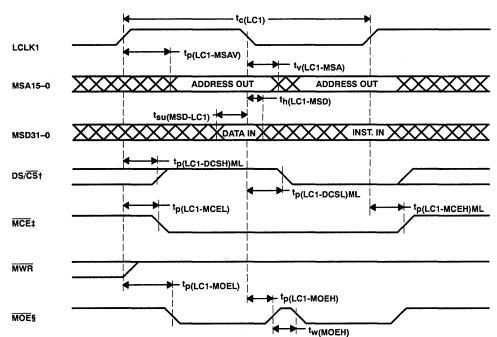




FIGURE 16. COPROCESSOR MODE, TMS34082A TO DRAM/VRAM MEMORY



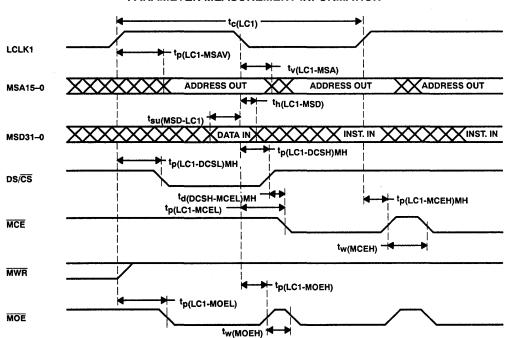
SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991



PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.

<sup>‡</sup> MCE dos not toggle at each clock edge.


§ MOE goes high at each clock edge.

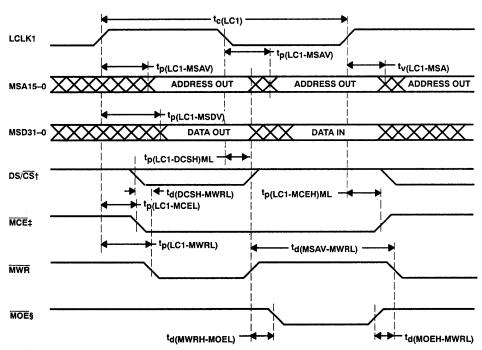
NOTE: This example shows a data read followed by an instruction read.

FIGURE 17. COPROCESSOR MODE MSD BUS TIMING, MEMORY TO TMS34082A WITH MEMCFG LOW



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001




PARAMETER MEASUREMENT INFORMATION

NOTE: This example shows a data read followed by an instruction read followed by an instruction read. This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is high, DS/CS and MCE rise after every clock edge. In this mode, DS/CS and MCE may not both be active (low) at the same time.

FIGURE 18. COPROCESSOR MODE MSD BUS TIMING, MEMORY TO TMS34082A WITH MEMCFG HIGH



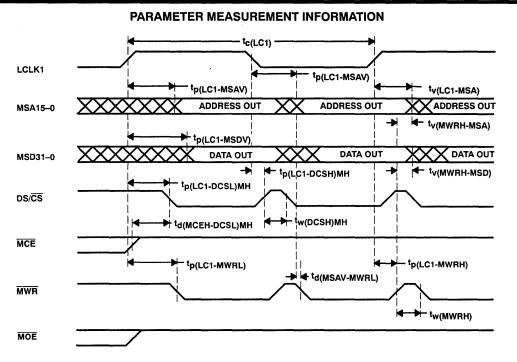
SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991



#### PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.

<sup>‡</sup> MCE does not toggle at each clock edge.

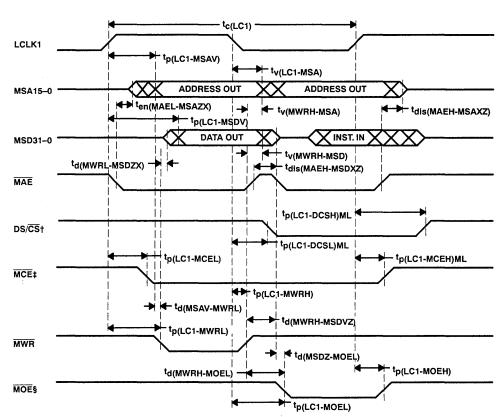

§ MWR goes high at each clock edge.

NOTE: This example shows a data write followed by a code read.

#### FIGURE 19. COPROCESSOR MODE MSD BUS TIMING, TMS34082A TO MEMORY WITH MEMCFG LOW



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001




NOTE: This example shows multiple data writes. Timing for multiple code writes would be similar. This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is high, DS/CS and MCE rise after every clock edge. In this mode, DS/CS and MCE may not both be active (low) at the same time.

FIGURE 20. COPROCESSOR MODE MSD BUS TIMING, TMS34082A TO MEMORY WITH MEMCFG HIGH



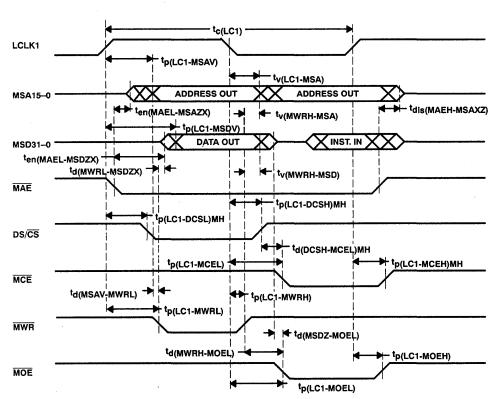
SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991



PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.

<sup>‡</sup> MCE does not toggle at each clock edge.


§ MOE goes high at each clock edge.

NOTE: This example shows a data write followed by an instruction read.

#### FIGURE 1. COPROCESSOR MODE, MSD ENABLE/DISABLE TIMING WITH MEMCFG LOW



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001



#### PARAMETER MEASUREMENT INFORMATION

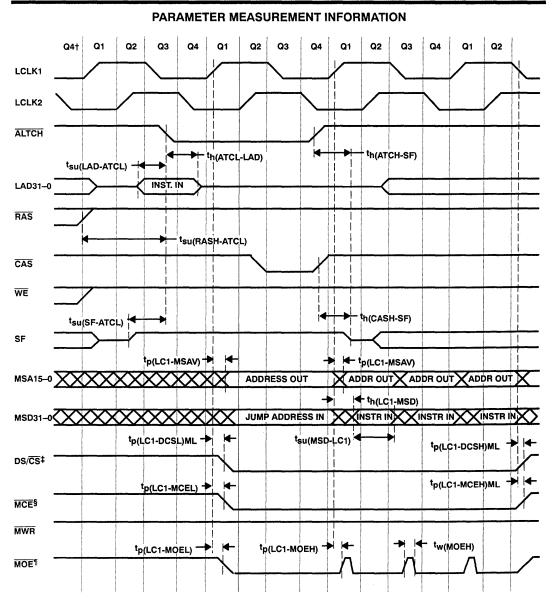

NOTE: This example shows a data write followed by an instruction read. Timing for multiple code writes would be similar. This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is high, DS/CS and MCE rise after every clock edge. In this mode, DS/CS and MCE may not both be active (low) at the same time.

FIGURE 2. COPROCESSOR MODE, MSD BUS ENABLE/DISABLE TIMING WITH MEMCFG HIGH



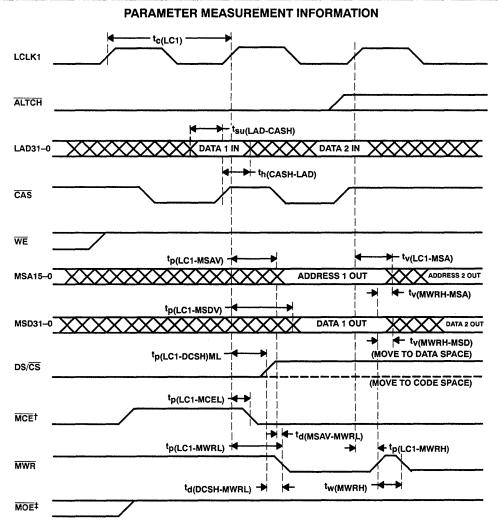
B-46

SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991



<sup>†</sup>Q1, Q2, Q3, and Q4 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

<sup>‡</sup> The setting of DS/CS determines whether the value on the MSD bus in an instruction or data.


§ MCE does not toggle at each rising clock edge.

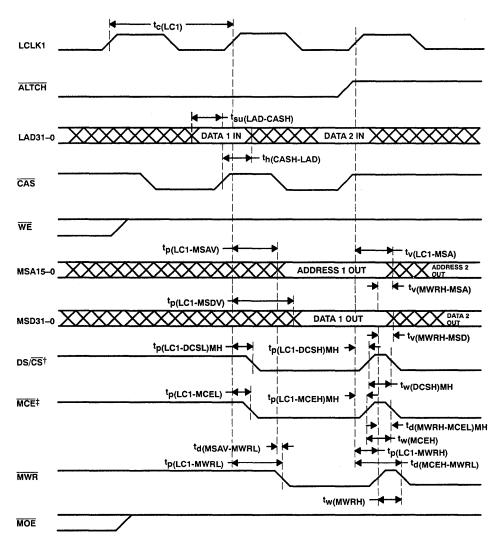
<sup>¶</sup> MOE goes hiigh at each rising clock edge.

#### FIGURE 3. COPROCESSOR MODE, JUMP TO EXTERNAL MEMORY SUBROUTINE WITH MEMCFG LOW



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001




 $\frac{1}{MCE}$  does not toggle at each clock edge.

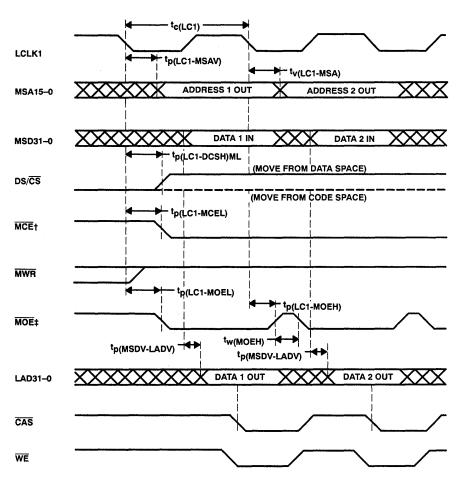
<sup>‡</sup> MOE goes high at each clock edge.

FIGURE 4. COPROCESSOR MODE, LAD TO MSD BUS TRANSFER TIMING WITH MEMCFG LOW



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991




PARAMETER MEASUREMENT INFORMATION

DS/CS valid for moves to data space; MCE valid for moves to code space. Only one of these would be valid for each move instruction.
 This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register.

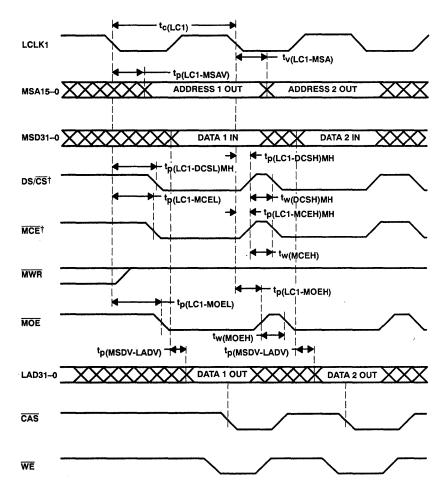
FIGURE 5. COPROCESSOR MODE, LAD TO MSD BUS TRANSFER TIMING WITH MEMCFG HIGH



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001



#### PARAMETER MEASUREMENT INFORMATION


† MCE does not toggle at each clock edge.

<sup>‡</sup> MOE goes high at each clock edge.

FIGURE 6. COPROCESSOR MODE, MSD TO LAD BUS TRANSFER TIMING WITH MEMCFG LOW



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991



PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> DS/CS valid for moves to data space; MCE valid for moves to code space. Only one would be valid for each move instruction. NOTE: This option for using DS/CS as data space chip enable and MCE as code space chip enable is involved by setting the MEMCFG bit high in the configuration register.

FIGURE 7. COPROCESSOR MODE, MSD TO LAD BUS TRANSFER TIMING WITH MEMCFG HIGH



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

### PARAMETER MEASUREMENT INFORMATION

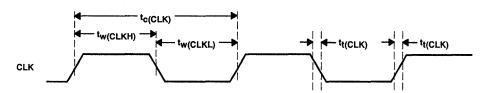
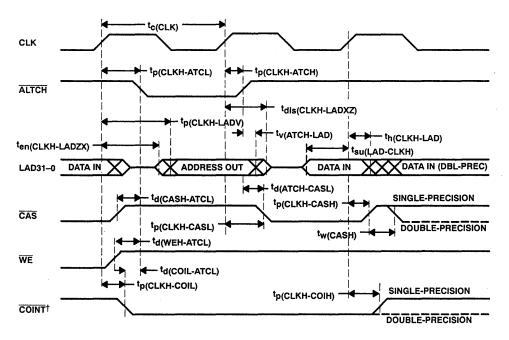
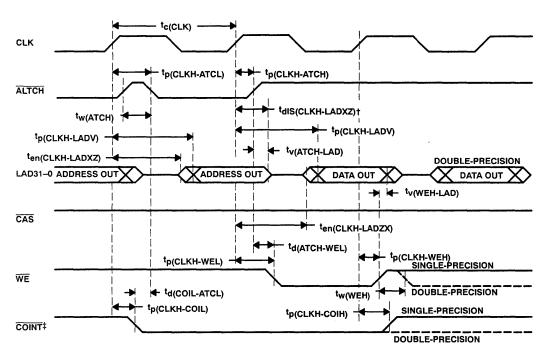




FIGURE 8. HOST-INDEPENDENT MODE, LAD BUS TIMING FOR MEMORY TO TMS34082A




<sup>†</sup> COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuratin register, COINT is controlled by bit 1 of the LAD move instruction instead of the set mask instruction.

NOTE: This timing diagram assumes an external address latch to store address for external memory reads. Data input hold time on the latch is zero; data (or address) output hold time is nonzero.

FIGURE 9. HOST-INDEPENDENT MODE, LAD BUS TIMING FOR MEMORY TO TMS34082A

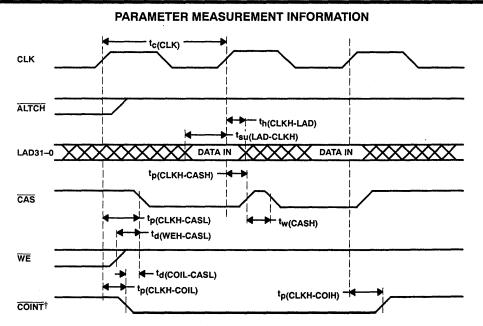


SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991



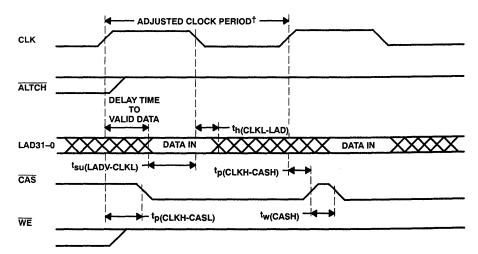
PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> Valid only for last write in series. The LAD bus is not placed in high-impedance state between consecutive outputs.


<sup>+</sup> COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuration register, COINT is controlled by bit 1 of the LAD move instruction instead of the set mask instruction.

NOTE: This timing diagram assumes an external address latch to store address for external memory reads. Data input hold time is zero. Data (or address) output hold time is nonzero. Valid only for last write in series. The LAD bus is not placed in high impedance between consecutive outputs.

FIGURE 10. HOST-INDEPENDENT MODE, LAD BUS TIMING FOR TMS34082A TO MEMORY



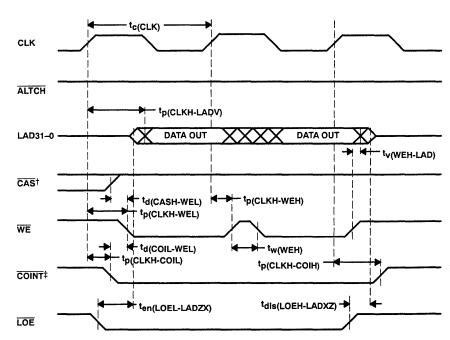

D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001



<sup>†</sup> COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuration register, COINT is controlled by bit 1 of the LAD move instruction instead of the set mask instruction.

#### FIGURE 11. HOST-INDEPENDENT MODE, LAD BUS TIMING INPUT TO TMS34082A




<sup>†</sup> This mode permits data input which does not meet the minimum setup before CLK high. For immediate data input, CLK must be high for more than 20 ns. This input mode cannot be used to input data for divides and square roots.

Adjusted clock period = Normal clock period + Data delay + 5 ns

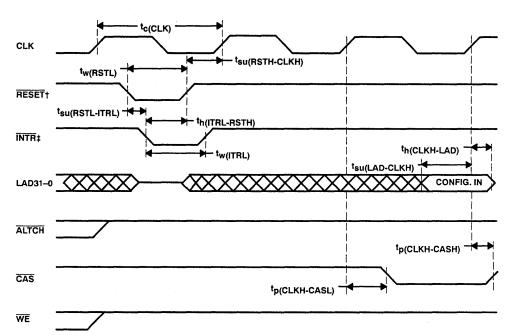
### FIGURE 12. HOST-INDEPENDENT MODE, LAD BUS TIMING INPUT OF IMMEDIATE DATA TO TMS34082A



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991



### PARAMETER MEASUREMENT INFORMATION


<sup>†</sup> When the LADCFG bit is high, LOE high places CAS and WE (as well as the LAD bus) in high impedance. <sup>‡</sup> Valid only for LADCFG high. When the LADCFG bit is high in the configuration register, COINT is controlled by bit 1 of the LAD move instruction instead of the set mask instruction.

NOTE: If the instruction writes the result of an FPU operation to a register and outputs the result to the LAD bus, in the same cycle, the minimum clock period must be extended.

#### FIGURE 13. HOST-INDEPENDENT MODE, LAD BUS TIMING OUTPUT FROM TMS34082A

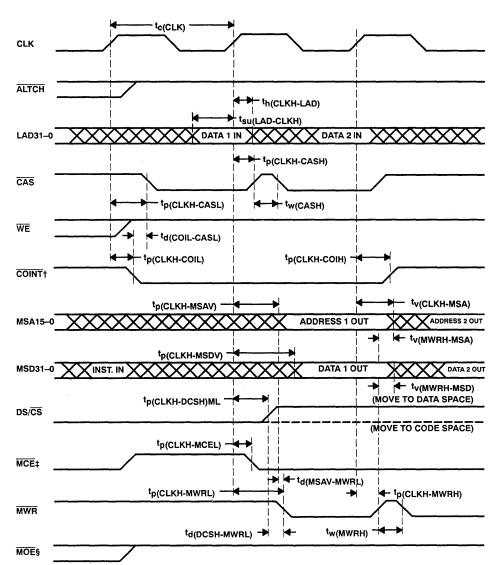


D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001



#### PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> RESET is level sensitive. When RESET is set low, both LAD and MSD buses are placed in high-impedance state. When RESET is released, the sequencer forces a jump to address 0. If INTR goes low while RESET is low, the loader moves 64 words through to the external memory on MSD. Timing for the LAD to MSD move is shown in a later diagram, with the exception that the first word on LAD loads the configuration register and does not pass to the MSD bus.


<sup>‡</sup> INTR may be low one or more cycles after RESET goes low. RESET is held low, and then INTR is taken low. The bootstrap loader starts when RESET is set high, which may involve a delay of one or more cycles after INTR goes low.

NOTE: When the bootstrap loader is invoked, the first data word input on the LAD bus should be the configuration register settings, which will be written into the configuration register. This allows the user to select the MEMCFG setting, for reading or writing memory on the MSD port, as well as the LADCFG setting for the LAD bus interface.

FIGURE 14. HOST-INDEPENDENT MODE LAD BUS TIMING, BOOTSTRAP LOADER OPERATION

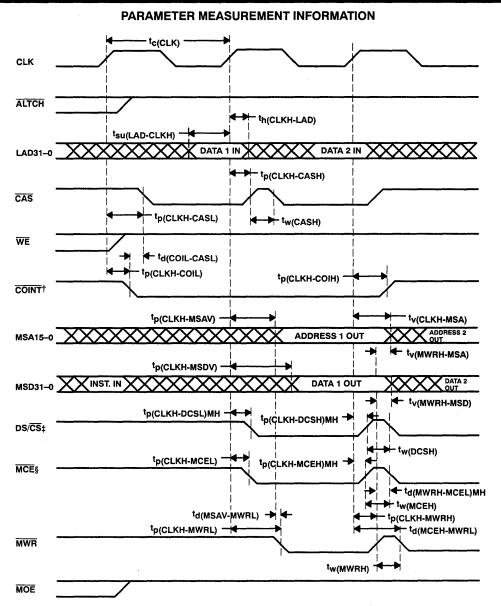


SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991



PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuration register, COINT is controlled by bit 1 of the LAD move instruction instead of the set mask instruction.


<sup>‡</sup> MCE does not toggle at each rising clock edge.

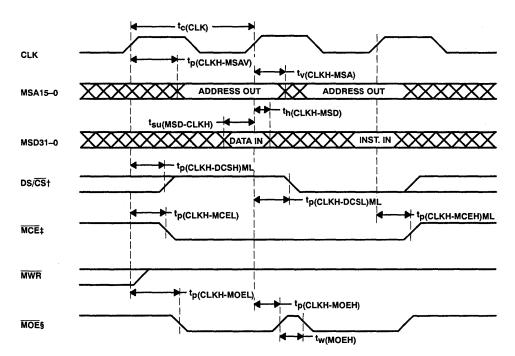
§ MOE goes high at each rising clock edge.

FIGURE 15. HOST-INDEPENDENT MODE, LAD TO MSD BUS TRANSFER TIMING WITH MEMCFG LOW



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001




<sup>†</sup> COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuration register, COINT is controlled by bit 1 of the LAD move instruction instead of the set mask instruction.

<sup>‡</sup> DS/CS valid for moves to data space; MCE valid for moves to code space. Only one of these would be valid for each move instruction. <sup>§</sup> This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register.

#### FIGURE 16. HOST-INDEPENDENT MODE, LAD TO MSD BUS TRANSFER TIMING WITH MEMCFG HIGH



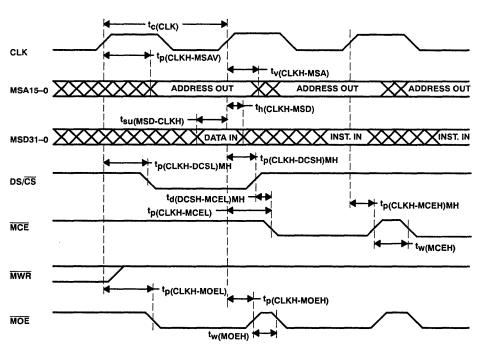
SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991



PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.

<sup>‡</sup> MCE does not toggle at each rising clock edge.


§ MOE goes high at each rising clock edge.

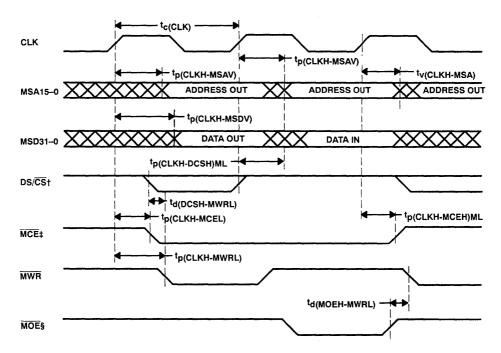
NOTE; This example shows a data read followed by an instruction read.

#### FIGURE 17. HOST-INDEPENDENT MODE MSD BUS TIMING, MEMORY TO TMS34082A WITH MEMCFG LOW



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001




PARAMETER MEASUREMENT INFORMATION

NOTE: This example shows a data read followed by an instruction read followed by an instruction read. This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is high, DS/CS and MCE rise after every rising clock edge. In this mode, DS/CS and MCE may not both be active (low) at the same time.

#### FIGURE 18. HOST-INDEPENDENT MODE MSD BUS TIMING, MEMORY TO TMS34082A WITH MEMCFG HIGH



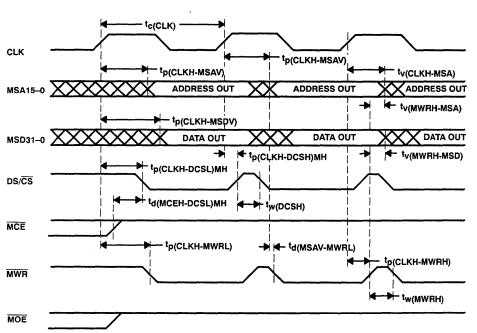
SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991



PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.

<sup>‡</sup> MCE does not toggle at each rising clock edge.


§ MWR goes high at each rising clock edge.

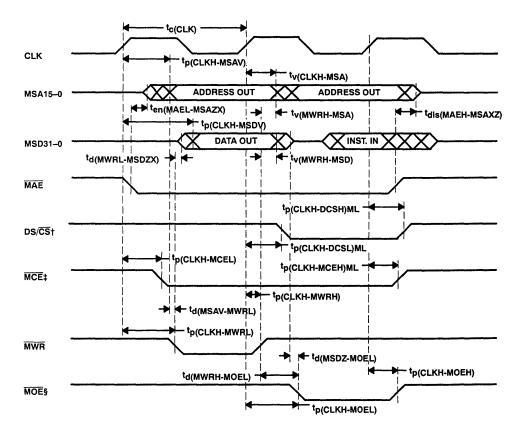
NOTE: This example shows a data write followed by a code read.

#### FIGURE 19. HOST-INDEPENDENT MODE MSD BUS TIMING, TMS34082A TO MEMORY WITH MEMCFG LOW



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001




### PARAMETER MEASUREMENT INFORMATION

NOTE: This example shows multiple data writes. Timing for multiple code writes would be similar. This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is high, DS/CS and MCE rise after every rising clock edge. In this mode, DS/CS and MCE may not both be active (low) at the same time.

#### FIGURE 20. HOST-INDEPENDENT MODE MSD BUS TIMING, TMS34082A TO MEMORY WITH MEMCFG HIGH



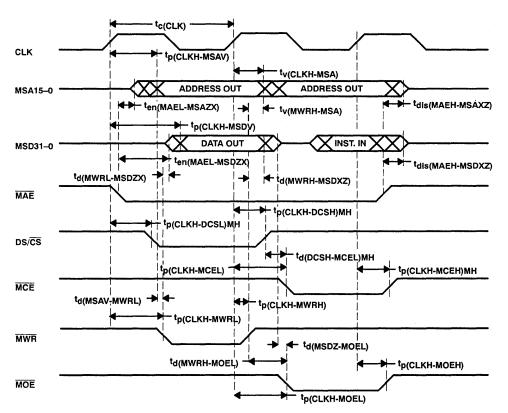
SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991



PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.

<sup>‡</sup> MCE does not toggle at each rising clock edge.


§ MOE goes high at each rising clock edge.

NOTE: This example shows a data write followed by an instruction read.

FIGURE 21. HOST-INDEPENDENT MODE, MSD ENABLE/DISABLE TIMING WITH MEMCFG LOW



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001




### PARAMETER MEASUREMENT INFORMATION

NOTE: This example shows a data write followed by an instruction read. Timing for multiple code writes would be similar. This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is high, DS/CS and MCE rise after every rising clock edge. In this mode, DS/CS and MCE may not both be low at the same time.

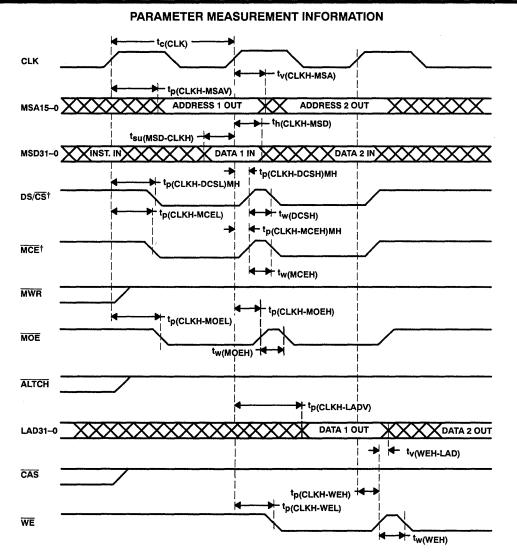
FIGURE 22. HOST-INDEPENDENT MODE, MSD BUS ENABLE/DISABLE TIMING WITH MEMCFG HIGH



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991



PARAMETER MEASUREMENT INFORMATION

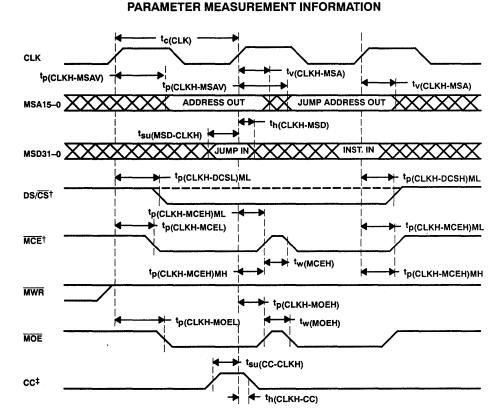

<sup>†</sup> MCE does not toggle at each rising clock edge.

<sup>‡</sup> MOE goes high at each rising clock edge.

FIGURE 23. HOST-INDEPENDENT MODE, MSD TO LAD BUS TRANSFER TIMING WITH MEMCFG HIGH



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001



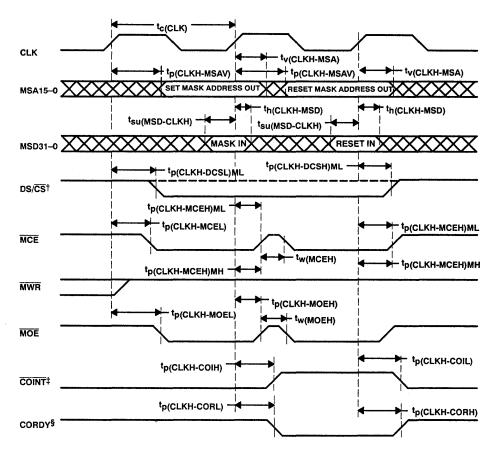

<sup>†</sup> DS/CS valid for moves to data space; MCE valid for moves to code space. Only one would be valid for each move instruction. NOTE: This option for using DS/CS as data space chip enable and MCE as code space chip enable is involved by setting the MEMCFG bit high in the configuration register.

FIGURE 24. HOST-INDEPENDENT MODE, MSD TO LAD BUS TRANSFER TIMING WITH MEMCF HIGH



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991




<sup>†</sup> Dotted line shows DS/CS for MEMCFG high.

<sup>‡</sup> The CC input is registered on each rising edge of the clock, so the CC bit can be latched one cycle and tested during the next cycle.

#### FIGURE 25. HOST-INDEPENDENT MODE, MSD BUS TIMING TEST CONDITION (CC) AND BRANCH

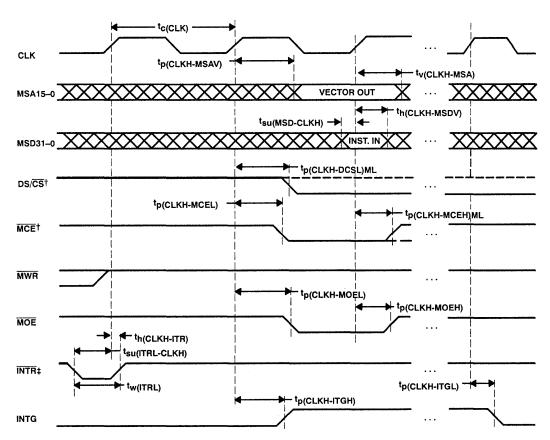


D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001



PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> Dotted line shows DS/CS for MEMCFG high.


\* Valid for MEMCFG low only. When MEMCFG low, COINT is set high by the set mask instruction, and it remains high until reset with another set mask instruction.

§ The CORDY output is set low by the set mask instruction, and it remains low until reset with another set mask instruction.

### FIGURE 26. HOST-INDEPENDENT MODE MSD BUS TIMING, SET/RESET COINT AND CORDY



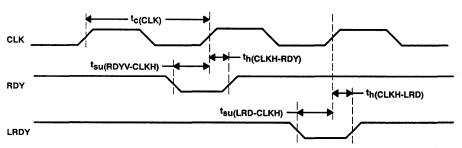
SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991



PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> Dotted lines show DS/CS and MCE for MEMCFG high.

<sup>‡</sup> INTR is negative-edged triggered.


NOTE: Interrupts are not granted during multi-cycle instructions. This example shows two interrupt requests. The first is granted immediately; the second, after the first is finished. INTG remains high after an interrupt is granted until interrupts are reenabled or a return from interrupt instruction is executed.

### FIGURE 27. HOST-INDEPENDENT MODE, MSD BUS TIMING EXTERNAL INTERRUPT TO TMS34082A



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

#### PARAMETER MEASUREMENT INFORMATION



NOTE: When either RDY or LRDY is set low and the setup time before CLK high is observed, the device is stalled for one or more clock cycles, until RDY or LRDY is set high again. During a wait state, internal states and status are preserved and output signals do not change. LRDY can be used in this manner only in the host-independent mode.

#### FIGURE 28. HOST-INDEPENDENT MODE, MSD BUS TIMING WAIT STATE TIMING

#### **PROGRAMMING INFORMATION**

#### programming the TMS34082A

The TMS34082A is supported by a software development tool kit, including a C compiler and an assembler. Program development using the tools is described in the TMS34082A tool kit documentation. Information on internal instructions and listing of the external instructions are provided in the following sections.

In both the coprocessor and host-independent modes, the TMS34082A instruction word is 32 bits long. The number, length, and arrangement of fields in the 32-bit word depends on the operating mode and operation selected. Internal microcode to the TMS34082A is not restricted to the same 32-bit instruction formats so certain internal programs may execute faster than the same operations written with external code can achieve.

In the coprocessor mode, the TMS34082A can execute instructions both from the TMS34020 and from the program memory on the MSD bus (MSD31-0). In the host-independent mode the TMS34082A is controlled from code input on the MSD bus. Internal instructions may be executed in the host-independent mode by performing a jump to the internal address.



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

#### **PROGRAMMING INFORMATION**

#### internal instructions

The TMS34082A FPU performs a wide range of internal arithmetic and logical operations, as well as complex operations (flagged '†'), summarized below. Complex instructions are multi-cycle routines stored in the internal program ROM.

**One-Operand Operations:** Absolute Value 1s Complement Square Root 2s Complement Reciprocal<sup>†</sup> Conversions: Integer to Single Single to Integer Integer to Double Double to Integer Single to Double **Double to Single Two-Operand Operations:** Add Multiply Subtract Divide Compare Matrix Operations: 4x4, 4x4 Multiply<sup>†</sup> 3x3, 3x3 Multiply<sup>†</sup> 1x4, 4x4 Multiply<sup>†</sup> 1x3, 3x3 Multiply<sup>†</sup> Graphics Operations: Polygon Elimination<sup>†</sup> Backface Testing<sup>†</sup> Polygon Clipping<sup>†</sup> Viewport Scaling and Conversion<sup>†</sup> 2-D Linear Interpolation<sup>†</sup> 3-D Linear Interpolation<sup>†</sup> 2-D Window Compare<sup>†</sup> 3-D Volume Compare<sup>†</sup> 2-Plane Clipping (X,Y,Z)<sup>†</sup> 2-Plane Color Clipping (R,B,G,I)<sup>†</sup> 2-D Cubic Spline<sup>†</sup> 3-D Cubic Spline<sup>†</sup> Image Processing: 3x3 Convolution<sup>†</sup> Chained Operations : Polynomial Expansion<sup>†</sup> Multiply/Accumulate<sup>†</sup> 1-D Min/Max<sup>†</sup> 2-D Min/Max<sup>†</sup> Vector Operations: Add<sup>†</sup> Dot Product<sup>†</sup> Subtract<sup>†</sup> Cross Product<sup>†</sup> Magnitude<sup>†</sup> Normalization<sup>†</sup> Scaling<sup>†</sup> Reflection<sup>†</sup>

The internal ROM routines may be used in either the coprocessor or host-independent mode. In the coprocessor mode, the internal routines are invoked by TMS34020 instructions to its coprocessor(s).

In the host-independent mode, the internal programs can be called as subroutines by the externally stored code. External programs can call internal routines by executing a jump to subroutine with bit 16 (internal code select) set high and the address of the internal routine as the jump address.

The format of the TMS34082A instruction in the coprocessor mode is shown in Figure 49. The instruction is issued by the TMS34020 via the LAD bus.

<sup>†</sup> Indicates a complex instruction.



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

|    | PROGRAMMING INFORMATION |    |    |    |       |      |      |   |   |   |   |   |   |   |
|----|-------------------------|----|----|----|-------|------|------|---|---|---|---|---|---|---|
| 31 | 28                      | 24 | 20 | 15 | 13    | 8    | 7    | 6 | 5 |   |   |   |   | 0 |
| ID | ra                      | rb | rd | md | fpuop | type | size | 0 | 1 | 0 | 0 | 0 | 0 | 0 |

#### FIGURE 29. TMS34082A INSTRUCTION

The 3-bit ID field identifies the coprocessor for which the instruction is intended. This coprocessor ID corresponds to the settings of the CID2-CID0 pins. To broadcast an instruction to all coprocessors, the ID is set to 4h.

#### TABLE 5. COPROCESSOR ID

| ID  | COPROCESSOR   |
|-----|---------------|
| 000 | FPU0          |
| 001 | FPU1          |
| 010 | FPU2          |
| 011 | FPU3          |
| 100 | FPU broadcast |
| 101 | Reserved      |
| 110 | Reserved      |
| 111 | User defined  |

Four coprocessor addressing modes are defined for the TMS34082A. The md field indicates the addressing mode.

#### TABLE 6. ADDRESSING MODES

| MODE | MD FIELD | OPERATION                                              |
|------|----------|--------------------------------------------------------|
| 0    | 00       | FPU internal operations with no jump or external moves |
| 1    | 01       | Transfer data to/from TMS34020 registers               |
| 2    | 10       | Transfer data to/from memory (controlled by TMS34020)  |
| 3    | 11       | External instructions                                  |

The type and size bits identify the type of operand; as shown below in Table 7. The I bit is used to indicate to the TMS34082A that this is a reissue of a coprocessor instruction due to a bus interruption. The least significant four bits are the bus status bits, which will all be zero to indicate a coprocessor cycle.

#### TABLE 7. OPERAND TYPES

| TYPE | SIZE | OPERAND TYPE                             |  |  |  |
|------|------|------------------------------------------|--|--|--|
| 0    | 0    | 32-bit integer                           |  |  |  |
| 0    | 1    | Reserved                                 |  |  |  |
| 1    | 0    | Single-precision floating-point (32-bit) |  |  |  |
| 1    | 1    | Double-precision floating-point (64-bit) |  |  |  |

The ra, rb, and rd fields are for the two sources and destination within the FPU. Register addresses are listed in Table 1. For the ra and rb fields, only the four least significant bits of the register address are used. The ra field may only use the RA register file, C, and CT. The RB field may only use the RB register file, C and CT.

The Floating-Point Unit Operation (fpuop) field is the FPU opcode (5 bits) described in Tables 8, 9, and 10.

In the coprocessor mode, the TMS34082A executes user-defined routines (stored in external memory on the MSD bus) by executing a jump to external code. For this instruction, the md field (bits 15-13) is set high and the fpuop field gives the routine number (0-31). The TMS34082A multiplies the routine number by two to get the jump address. For example, routine number 14 would have a jump address of 28 decimal or 1C hex.



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

## **PROGRAMMING INFORMATION**

The routines are coded using the external instruction format discussed in the next section. The last instruction should be a jump to internal instruction address 0FFFh with the I-bit(internal) set or a return from subroutine instruction. This puts the FPU in an idle state, waiting for the next instruction from the TMS34020.

| FPUOP | TMS34020 ASSEMBLER OPCODE | DESCRIPTION                                                      |
|-------|---------------------------|------------------------------------------------------------------|
| 00000 | ADDx                      | Sum of ra and rb, place in rd                                    |
| 00001 | SUBx                      | Subtract rb from ra, place result in rd                          |
| 00010 | CMPx                      | Set status bits on result of ra minus rb                         |
| 00011 | SUBx                      | Subtract ra from rb, place result in rd                          |
| 00100 | ADDAx                     | Absolute value of sum of ra and rb, place result in rd           |
| 00101 | SUBAx                     | Absolute value of (ra minus rb), place result in rd              |
| 00110 | MOVE or MOVx              | Load multiple FPU registers from TMS34020 GSP or its memory      |
| 00111 | MOVE or MOVx              | Save multiple FPU registers to TMS34020 GSP or its memory        |
| 01000 | MPYx                      | Multiply ra and rb, place result in rd                           |
| 01001 | DIVx                      | Divide ra by rb, place result in rd                              |
| 01010 | INVx                      | Divide 1 by rb, place result in rd                               |
| 01011 | ASUBAx                    | Absolute value of ra minus absolute value of rb, place in rd     |
| 01100 | reserved                  |                                                                  |
| 01101 | MOVEx                     | Move ra to rd, multiple, for n registers                         |
| 01110 | MOVEx                     | Move rb to rd, multiple, for n registers                         |
| 01111 | (see Table 10)            | Single operand instructions, rb field redefined                  |
| 10000 | CPWx                      | Compare point to window (set XLT, XGT, YLT, TGT)                 |
| 10001 | CPVx                      | Compare point to volume (set XLT, XGT, YLT, YGT, ZLT, ZGT)       |
| 10010 | BACKFx                    | Test polygon for facing direction (backface test)                |
| 10011 | INMNMXx                   | Setup FPU registers for MNMX1 or MNMX2 instruction               |
| 10100 | LINTx                     | Given [X1, Y1, Z1], [X2, Y2, Z2], and a plane, find [X3, Y3, Z3] |
| 10101 | CLIPFx                    | Clip a line to a plane pair boundary (start with point 1)        |
| 10110 | CLIPRx                    | Clip a line to a plane pair boundary (start with point 2)        |
| 10111 | CLIPCFx                   | Clip color values to a plane pair boundary (start with point 1)  |
| 11000 | SCALEx                    | Scale and convert coordinates for viewpoint                      |
| 11001 | MTRANx                    | Transpose a matrix                                               |
| 11010 | CKVTXx                    | Compare a polygon vertex to a clipping volume                    |
| 11011 | CONVx                     | 3x3 convolution                                                  |
| 11100 | CLIPCRx                   | Clip color values to a plane pair boundary (start with point 2)  |
| 11101 | OUTC3x                    | Compare a line to a clipping value                               |
| 11110 | CSPLNx                    | Calculate cubic spline for given coefficients                    |
| 11111 | (see Table 11)            | Vector and matrix instructions, rb field redefined               |

## TABLE 8. COPROCESSOR MODE INSTRUCTIONS

F denotes single-precision, D denotes double-precision floating-point, x denotes operand type, and a blank designates signed integer



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

## **PROGRAMMING INFORMATION**

#### TABLE 9. COPROCESSOR MODE INSTRUCTIONS, FPUOP = 011112

| RB   | TMS34020 ASSEMBLER OPCODE | DESCRIPTION                                               |
|------|---------------------------|-----------------------------------------------------------|
| 0000 | PASS                      | Copy ra to rd                                             |
| 0001 | NOT                       | Place 1s complement of ra in rd                           |
| 0010 | ABS                       | Place absolute value of ra in rd                          |
| 0011 | NEG                       | Place negated value of ra in rd                           |
| 0100 | CVDF                      | Convert double in ra to single in rd (T and S define ra)  |
| 0100 | CVFD                      | Convert single in ra to double in rd (T and S define ra)  |
| 0101 | CVDI                      | Convert double in ra to integer in rd (T and S define ra) |
| 0101 | CVFI                      | Convert single in ra to integer in rd (T and S define ra) |
| 0110 | CVID                      | Convert integer in ra to double in rd (T and S define ra) |
| 0110 | CVIF                      | Convert integer in ra to single in rd (T and S define ra) |
| 0111 | VSCLx                     | Multiply each component of a velocity by a scaling factor |
| 1000 | SQARx                     | Place (ra * ra) in rd                                     |
| 1001 | SQRTx                     | Extract square root or ra, place in rd                    |
| 1010 | SQRTAx                    | Extract square root of absolute value of ra, place in rd  |
| 1011 | ABORT                     | Stop execution of any FPU instruction                     |
| 1100 | СКУТХІ                    | Initialize check vertex instruction                       |
| 1101 | CHECK                     | Check for previous instruction completion                 |
| 1110 | MOVMEM                    | Move data from system memory to external memory @ MCADDR  |
| 1111 | MOVMEM                    | Move data to system memory from external memory @ MCADDR  |

#### TABLE 10. COPROCESSOR MODE INSTRUCTIONS, FPUOP = 111112

| RB   | TMS34020 ASSEMBLER OPCODE | DESCRIPTION                                                 |
|------|---------------------------|-------------------------------------------------------------|
| 0000 | POLYx                     | Polynomial expansion                                        |
| 0001 | MACx                      | Multiply and accumulate                                     |
| 0010 | MNMX1x                    | Determine 1-D minimum and maximum of a series               |
| 0011 | MNMX2x                    | Determine 2-D minimum and maximum of a series of pairs      |
| 0100 | MMPY0x                    | Multiply matrix elements 0, 1, 2, 3 by vector element 0     |
| 0101 | MMPY1x                    | Multiply matrix elements 4, 5, 6, 7 by vector element 1     |
| 0110 | MMPY2x                    | Multiply matrix elements 8, 9, 10, 11 by vector element 2   |
| 0111 | MMPY3x                    | Multiply matrix elements 12, 13, 14, 15 by vector element 3 |
| 1000 | MADDx                     | Add matrix elements 12, 13, 14, 15 to vector                |
| 1001 | VADDx                     | Add two vectors                                             |
| 1010 | VSUBx                     | Subtract a vector from a vector                             |
| 1011 | VDOTx                     | Compute scalar dot product of two vectors                   |
| 1100 | VCROSx                    | Compute cross product of two vectors                        |
| 1101 | VMAGx                     | Determine the magnitude of a vector                         |
| 1110 | VNORMx                    | Normalize a vector to unit magnitude                        |
| 1111 | VRFLCTx                   | Given normal and incident vectors, find the reflection      |

F denotes single-precision, D denotes double-precision floating-point, x denotes operand type, and a blank designates signed integer



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

#### **PROGRAMMING INFORMATION**

#### external instructions

External instructions are 32 bits long, and their formats (number, length, and function of fields) depend on the operations being selected. Separate formats are provided for data transfers, FPU processing, test and branch operations, and subroutine calls.

Instructions that control FPU operations can select operands from input registers, internal feedback, or from the LAD bus (32-bit operations only). The format for an FPU processing instruction is shown in Figure 50.

| 31 | 28 | 24 | 20 | 15     | 11 0        |
|----|----|----|----|--------|-------------|
| OP | RA | RB | RD | SEL_OP | INSTRUCTION |

#### FIGURE 30. FPU PROCESSING EXTERNAL INSTRUCTION FORMAT

The op field selects the sequencer operation. Three continue instructions are available to permit control of the WE and ALTCH strobe outputs, which enable LAD output in the host-independent mode. The ra, rb, and rd fields are for the two sources and destination in the TMS34082A register file. The sel\_op field selects the source of the operands: register file or feedback registers. The instruction field designates the operation to be performed.

External instructions and cycle counts are listed in Table 11. Absolute values of operands or results, negated results, and wrapped number inputs are selectable options. Chained operations, using the multiplier and ALU in parallel, and other instructions to control program flow and move data are included.

External instruction timing depends on the pipeline registers setting, controlled by the PIPES2-1 bits in the configuration register. Most FPU processing instructions (with the exception of divide, square root, and double-precision multiply) execute in one cycle per pipeline stage.



D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

## **PROGRAMMING INFORMATION**

### TABLE 11. EXTERNAL INSTRUCTIONS AND TIMING

| TMS34082A DESCRIPTION<br>ASSEMBLER OPCODE OF ROUTINE |                                                                                                       | PIPES21<br>11            | PIPES2-1<br>10           | PIPES2-1<br>01           | PIPES2-1<br>00           |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| ADD                                                  | Add A + B                                                                                             | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |
| AND                                                  | Logical AND A, B                                                                                      | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |
| ANDNA                                                | Logical AND NOT A, B                                                                                  | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |
| ANDNB                                                | Logical AND A, NOT B                                                                                  | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |
| CJMP                                                 | Conditional jump                                                                                      | 1(1)                     | 1(1)                     | 1(1)                     | 1(1)                     |
| CSJR                                                 | Conditional jump to subroutine                                                                        | 1(1)                     | 1(1)                     | 1(1)                     | 1(1)                     |
| CMP                                                  | Compare A, B                                                                                          | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |
| COMPL                                                | Pass 1s complement of A                                                                               | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |
| DIV                                                  | Divide A / B<br>SP<br>DP<br>integer                                                                   | 8(8)<br>13(13)<br>16(16) | 8(7)<br>13(12)<br>16(15) | 9(7)<br>15(12)<br>17(15) | 9(7)<br>15(12)<br>17(15) |
| DTOF                                                 | Convert from DP to SP                                                                                 | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |
| DTOI                                                 | Convert from DP to integer                                                                            | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |
| DTOU                                                 | Convert from DP to unsigned integer                                                                   | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |
| FTOD                                                 | Convert from SP to DP                                                                                 | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |
| FTOI                                                 | Convert from SP to integer                                                                            | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |
| FTOU                                                 | Convert from SP to unsigned integer                                                                   | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |
|                                                      | · · · · · · · · · · · · · · · · · · ·                                                                 |                          |                          |                          | <u></u>                  |
| ITOD                                                 | Convert from integer to DP                                                                            | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |
| ITOF                                                 | Convert from integer to SP                                                                            | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |
| LD                                                   | Load n words into register<br>SP<br>DP<br>integer                                                     | n + 1<br>2n + 1<br>n + 1 |
| LDLCT                                                | Load loop counter with value                                                                          | 1(1)                     | 1(1)                     | 1(1)                     | 1(1)                     |
| LDMCADDR                                             | Load MCADDR with value                                                                                | 1(1)                     | 1(1)                     | 1(1)                     | 1(1)                     |
| MASK                                                 | Set programmable mask                                                                                 | 1(1)                     | 1(1)                     | 1(1)                     | 1(1)                     |
| MOVA                                                 | Move A (no status flags active)                                                                       | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |
| MOVLM                                                | Move n words from LAD bus to MSD bus<br>SP<br>DP<br>integer                                           | n + 1<br>2n + 1<br>n + 1 |
| MOVML                                                | Move n words from MSD bus to LAD bus<br>SP<br>DP<br>integer                                           | n + 1<br>2n + 1<br>n + 1 |
| MOVRR                                                | Multiple move, register to register<br>SP<br>DP<br>integer                                            | n + 1<br>2n + 1<br>n + 1 |
| MULT.ADD                                             | Multiply A <sub>1</sub> * B <sub>1</sub> , Add A <sub>2</sub> + B <sub>2</sub><br>SP<br>DP<br>integer | 1(1)<br>2(2)<br>1(1)     | 2(1)<br>3(2)<br>2(1)     | 2(1)<br>3(2)<br>2(1)     | 3(1)<br>4(2)<br>3(1)     |

DP denotes double-precision, and SP denotes single-precision.



SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

## **PROGRAMMING INFORMATION**

#### TABLE 11. EXTERNAL INSTRUCTIONS AND TIMING (Continued)

| TMS34082A<br>ASSEMBLER OPCODE         | DESCRIPTION<br>OF ROUTINE                                              | PIPES2-1<br>11 | PIPES2-1<br>10 | PIPES2-1<br>01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PIPES2-<br>00 |
|---------------------------------------|------------------------------------------------------------------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| MULT.NEG                              | Multiply A1 * B1, Subtract 0 – A2                                      |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| MOLINEO                               | SP                                                                     | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
|                                       | DP                                                                     | 2(2)           | 3(2)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4(2)          |
|                                       | integer                                                                | 1(1)           | 2(1)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3(1)          |
| MULT                                  | Multiply A * B                                                         |                | 2(1)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| MOLI                                  | SP                                                                     | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
|                                       | DP                                                                     | 2(2)           | 3(2)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4(2)          |
|                                       | integer                                                                | 1(1)           | 2(1)           | 1 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
| MULT.PASS                             | Multiply A <sub>1</sub> * B <sub>1</sub> , Add A <sub>2</sub> + 0      |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
|                                       | SP                                                                     | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
|                                       | DP                                                                     | 2(2)           | 3(2)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4(2)          |
|                                       | integer                                                                | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
| MULT.SUB                              | Multiply A1 * B1, Subtract A2 - B2                                     |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
|                                       | SP                                                                     | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
|                                       | DP                                                                     | 2(2)           | 3(2)           | 3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4(2)          |
|                                       | integer                                                                | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
| MULT.2SUBA                            | Multiply A <sub>1</sub> * B <sub>1</sub> , Subtract 2 – A <sub>2</sub> |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
|                                       | , SP                                                                   | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
|                                       | DP                                                                     | 2(2)           | 3(2)           | 3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4(2)          |
|                                       | integer                                                                | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
| MULT.SUBRL                            | Multiply A1 * B1, Subtract B2 - A2                                     |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
|                                       | SP                                                                     | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
|                                       | DP                                                                     | 2(2)           | 3(2)           | 3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4(2)          |
|                                       | integer                                                                | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
| NEG                                   | Pass –A (2s Complement)                                                | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
| NOR                                   | Logical NOR A, B                                                       | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
| OR                                    | Logical OR A, B                                                        | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
| PASS                                  | Pass A                                                                 | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
| PASS                                  | Pass B                                                                 | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
| PASS.ADD                              | Multiply A1 * 1, Add A2 + B2                                           |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · ·   |
|                                       | SP                                                                     | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
|                                       | DP                                                                     | 2(2)           | 3(2)           | 3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4(2)          |
|                                       | integer                                                                | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
| PASS.NEG                              | Multiply A1 * 1, Subtract 0 - A2                                       |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
|                                       | SP                                                                     | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
|                                       | DP                                                                     | 2(2)           | 3(2)           | 3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4(2)          |
| · · · · · · · · · · · · · · · · · · · | integer                                                                | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
| PASS.PASS                             | Multiply A <sub>1</sub> * 1, Add A <sub>2</sub> + 0                    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
|                                       | SP                                                                     | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
|                                       | DP                                                                     | 2(2)           | 3(2)           | 3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4(2)          |
|                                       | integer                                                                | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
| PASS.SUB                              | Multiply A <sub>1</sub> * 1, Subtract A <sub>2</sub> - B <sub>2</sub>  |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
|                                       | SP                                                                     | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
|                                       | DP                                                                     | 2(2)           | 3(2)           | 3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4(2)          |
|                                       | integer                                                                | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |
| PASS.2SUBA                            | Multiply A1 * 1, Subtract 2 – A2                                       |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1             |
|                                       | SP                                                                     | 1(1)           | 2(1)           | 2(1)<br>3(2)<br>2(1)<br>2(1)<br>3(2)<br>2(1)<br>2(1)<br>3(2)<br>2(1)<br>2(1)<br>3(2)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>3(2)<br>2(1)<br>2(1)<br>3(2)<br>2(1)<br>2(1)<br>3(2)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1)<br>2(1) | 3(1)          |
|                                       | DP                                                                     | 2(2)           | 3(2)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4(2)          |
|                                       | integer                                                                | 1(1)           | 2(1)           | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3(1)          |

DP denotes double-precision, and SP denotes single-precision.



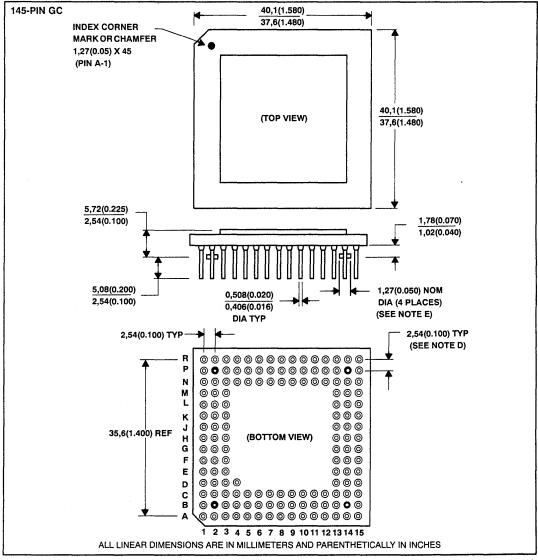
D3150, SEPTEMBER 1988 - REVISED MAY 1991 - SCGS001

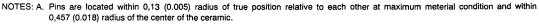
## **PROGRAMMING INFORMATION**

#### TABLE 11. EXTERNAL INSTRUCTIONS AND TIMING (Continued)

|                               |                                                                       |          | CYCLE (  | COUNTS   |          |
|-------------------------------|-----------------------------------------------------------------------|----------|----------|----------|----------|
| TMS34082A<br>ASSEMBLER OPCODE | DESCRIPTION<br>OF ROUTINE                                             | PIPES2-1 | PIPES2-1 | PIPES2-1 | PIPES2-1 |
| ASSEMBLER OPCODE              | OF ROUTINE                                                            | 11       | 10       | 01       | 00       |
| RTS                           | Return from subroutine                                                | 1(1)     | 1(1)     | 1(1)     | 1(1)     |
| SLL                           | Logical shift left A by B bits                                        | 1(1)     | 2(1)     | 2(1)     | 3(1)     |
| SQRT                          | Square root of A                                                      |          |          |          | 1        |
|                               | SP                                                                    | 11(11)   | 11(10)   | 12(10)   | 12(10)   |
|                               | DP                                                                    | 16(16)   | 16(15)   | 17(15)   | 17(15)   |
|                               | integer                                                               | 20(20)   | 20(19)   | 21(19    | 21(19)   |
| PASS.SUBRL                    | Multiply A <sub>1</sub> * 1, Subtract B <sub>2</sub> – A <sub>2</sub> |          |          |          |          |
|                               | SP                                                                    | 1(1)     | 2(1)     | 2(1)     | 3(1)     |
|                               | DP                                                                    | 2(2)     | 3(2)     | 3(2)     | 4(2)     |
|                               | integer                                                               | 1(1)     | 2(1)     | 2(1)     | 3(1)     |
| SRA                           | Arithmetic shift right A by B bits                                    | 1(1)     | 2(1)     | 2(1)     | 3(1)     |
| SRL                           | Logical shift right A by B bits                                       | 1(1)     | 2(1)     | 2(1)     | 3(1)     |
| ST                            | Store n words from register                                           | 1        |          |          |          |
|                               | SP                                                                    | n + 1    | n+1      | n + 1    | n+1      |
|                               | DP                                                                    | 2n + 1   | 2n + 1   | 2n + 1   | 2n + 1   |
|                               | integer                                                               | n + 1    | n+1      | n + 1    | n+1      |
| SUB                           | Subtract A – B                                                        | 1(1)     | 2(1)     | 2(1)     | 3(1)     |
| SUBRL                         | Subtract B – A                                                        | 1(1)     | 2(1)     | 2(1)     | 3(1)     |
| UTOD                          | Convert from unsigned integer to DP                                   | 1(1)     | 2(1)     | 2(1)     | 3(1)     |
| UTOF                          | Convert from unsigned integer to SP                                   | 1(1)     | 2(1)     | 2(1)     | 3(1)     |
| UWRAPI                        | Unwrap inexact operand                                                | 1(1)     | 2(1)     | 2(1)     | 3(1)     |
| UWRAPR                        | Unwrap rounded operand                                                | 1(1)     | 2(1)     | 2(1)     | 3(1)     |
| UWRAPX                        | Unwrap exact operand                                                  | 1(1)     | 2(1)     | 2(1)     | 3(1)     |
| WRAP                          | Wrap denormalized operand                                             | 1(1)     | 2(1)     | 2(1)     | 3(1)     |
| XOR                           | Logical exclusive OR A, B                                             | 1(1)     | 2(1)     | 2(1)     | 3(1)     |

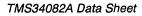
DP denotes double-precision, and SP denotes single-precision.





SCGS001 - D3150, SEPTEMBER 1988 - REVISED MAY 1991

#### **MECHANICAL DATA**

#### GC pin-grid-array ceramic package


This is a hermetically sealed package.





B. Dimensions do not include solder finish.





## Appendix C

## SMJ34082A Data Sheet

The pinout, electrical specifications timing diagrams, and mechanical specifications are contained within the SMJ34082A Data Sheet and appear in this appendix.

The SMJ34082A is fully characterized over military temperature range.

SMJ34082 Data Sheet

SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

- Military Temperature Range (-55°C to 125°C)
- Class B, High-Reliability Processing
- High-Performance Floating-Point RISC
   Processor Optimized for Graphics
- Two Operating Modes
  - Floating-Point Coprocessor for SMJ34020 Graphics System Processor
     Independent Floating-Point Processor
- Direct Connection to SMJ34020
  - Coprocessor Interface - Direct Extension to the SMJ34020 Instruction Set
  - Multiple SMJ34082A Capability
- Fast Pipelined Instruction Cycle Time
   SMJ34082A-30...66-ns Coprocessor
  - Mode ... 65-ns Host-Independent Mode
     SMJ34082A-28 ... 70-ns Coprocessor
  - Mode . . . 70-ns Host-Independent Mode
- Sustained Data Transfer Rates of 120 Mbytes/s (SMJ34082A-30)

- Sequencer Executes Internal or User-Programmed Instructions
- 22 64-Bit Data Registers
- Comprehensive Floating-Point and Integer
  Instruction Set
- Internal Programs for Vector, Matrix, and 3-D Graphics Operations
  - Full IEEE Standard 754-1985 Compatibility – Addition, Subtration, Multiplication, and Comparison
    - Division and Square Root
- Selectable Data Formats
  - 32-Bit Integer
  - 32-Bit Single-Precision Floating-Point
  - 64-Bit Double-Precision Floating-Point
- External Memory Addressing Capability - Program Storage (up to 64K Words)
  - Data Storage (up to 64K Words)
- 0.8-µm EPIC™ CMOS Technology
  - High-Performance
  - Low Power (< 2 W)

#### description

The SMJ34082A is a high-speed graphics floating-point processor implemented in Texas Instruments advanced 0.8-μm CMOS technology. The SMJ34082A combines a 16-bit sequencer and a 3-operand (source A, source B, and destination) 64-bit Floating-Point Unit (FPU) with 22 64-bit data registers on a single chip. The data registers are organized into two files of ten registers each, with two registers for internal feedback. In addition, it provides an instruction register to control FPU execution, a status register to retain the most recent FPU status outputs, eight control registers, and a two-deep stack (see functional block diagram).

•

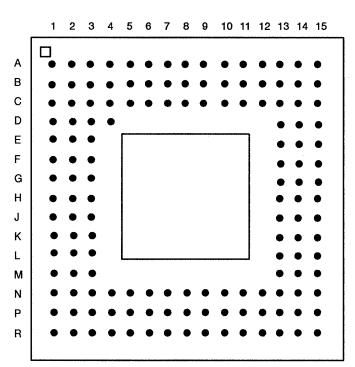
The SMJ34082A is fully compatible with IEEE Standard 754-1985 for binary floating-point addition, subtraction, multiplication, division, square root, and comparison. Floating-point operands can be either in single- or double-precision IEEE format.

In addition to floating-point operations, the SMJ34082A performs 32-bit integer arithmetic, logical comparisons, and shifts. Integer operations may be performed on 32-bit 2s complement or unsigned operands. Integer results are 32-bits long (even for 32 x 32 integer multiplication). Absolute value conversions, floating-point to integer conversions, and integer to floating-point conversions are available.

The ALU and the multiplier are closely coupled and can be operated in parallel to perform sums of products or products of sums. During multiply/accumulate operations, both the ALU and the multiplier are active and the registers in the FPU core can be used to feedback products and accumulate sums without tying up locations in register files A and B.

When used with the SMJ34020, the SMJ34082A operates in the coprocessor mode. The SMJ34020 can control multiple SMJ34082A coprocessors. When used as a stand-alone or with processors other than the SMJ34020, the SMJ34082A operates in the host-independent mode. The SMJ34082A is fully programmable by the user

EPIC is a trademark of Texas Instruments Incorporated.




#### D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

and can interface to other processors or floating-point subsystems through its two 32-bit bidirectional buses. In the coprocessor mode, the TMS340 family tools may be used to develop code for the SMJ34082A. The TMS34082A Software Tool Kit is used to develop code for host-independent mode applications or for external routines in the coprocessor mode.

#### pin descriptions

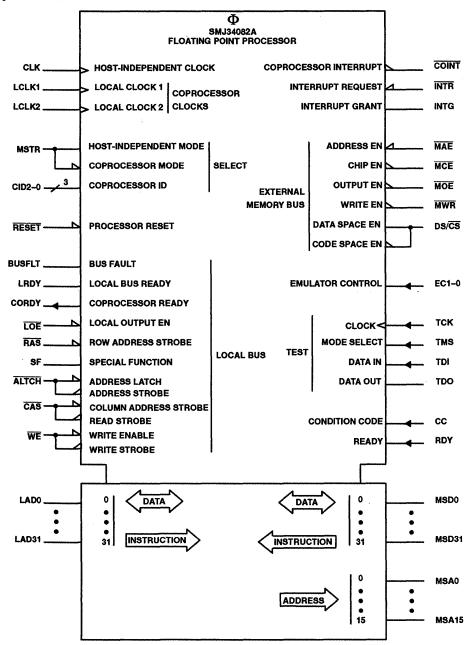
Pin descriptions and grid assignments for the SMJ34082A are given on the following pages. The pin at location D4 has been added for indexing purposes.



145-PIN GB PACKAGE (TOP VIEW)



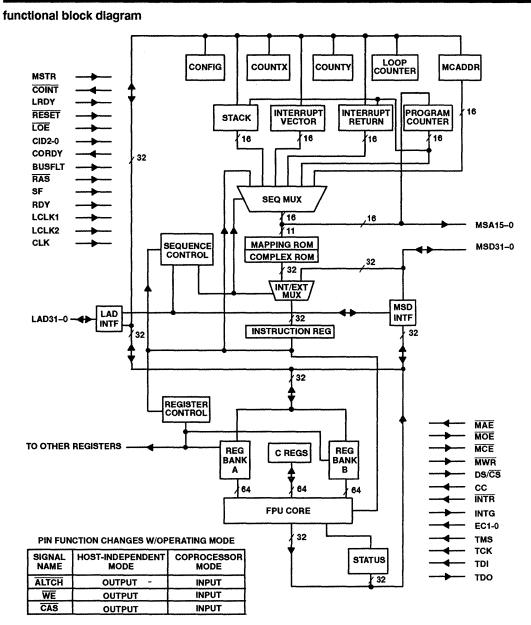
SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991


|     | Pin Grid Assignments |     |                 |     |                 |     |                 |     |        |
|-----|----------------------|-----|-----------------|-----|-----------------|-----|-----------------|-----|--------|
|     | PIN                  | T   | PIN             | T   | PIN             |     | PIN             | T   | PIN    |
| NO. | NAME                 | NO. | NAME            | NO. | NAME            | NO. | NAME            | NO. | NAME   |
| A1  | NC                   | B15 | LAD27           | F1  | MSD10           | K15 | RDY             | P2  | NC     |
| A2  | LAD1                 | C1  | MSD4            | F2  | MSD9            | L1  | MSD18           | P3  | MSD29  |
| A3  | LAD3                 | C2  | MSD3            | F3  | Vcc             | 12  | MSD21           | P4  | MSD31  |
| A4  | LAD5                 | C3  | MSD0            | F13 | CORDY           | L3  | MSD23           | P5  | MSA1   |
| A5  | LAD8                 | C4  | V <sub>SS</sub> | F14 | ALTCH           | L13 | V <sub>SS</sub> | P6  | MSA3   |
| A6  | LAD9                 | C5  | Vcc             | F15 | CAS             | L14 | CID0            | P7  | MSA6   |
| A7  | LAD11                | C6  | LAD6            | G1  | MSD13           | L15 | CID2            | P8  | MSA8   |
| A8  | LAD12                | C7  | VSS             | G2  | MSD12           | M1  | MSD20           | P9  | MSA10  |
| A9  | LAD13                | C8  | Vcc             | G3  | MSD11           | M2  | MSD24           | P10 | MSA13  |
| A10 | LAD15                | C9  | VSS             | G13 | WE              | мз  | V <sub>SS</sub> | P11 | MWR    |
| A11 | LAD17                | C10 | VCC             | G14 | EC1             | M13 | Vcc             | P12 | MOE    |
| A12 | LAD19                | C11 | LAD21           | G15 | EC0             | M14 | LCLK1           | P13 | INTG   |
| A13 | LAD22                | C12 | V <sub>SS</sub> | H1  | MSD14           | M15 | LCLK2           | P14 | BUSFLT |
| A14 | LAD24                | C13 | LAD25           | H2  | TDO             | N1  | MSD22           | P15 | RAS    |
| A15 | NC                   | C14 | LAD26           | нз  | V <sub>SS</sub> | N2  | MSD26           | R1  | NC     |
| B1  | MSD1                 | C15 | LAD29           | H13 | Vss             | N3  | Vcc             | R2  | MSD27  |
| B2  | NC                   | D1  | MSD6            | H14 | LOE             | N4  | MSD28           | R3  | MSD30  |
| B3  | LAD0                 | D2  | MSD5            | H15 | TDI             | N5  | V <sub>SS</sub> | R4  | MSA0   |
| B4  | LAD2                 | D3  | MSD2            | J1  | MSD15           | N6  | Vcc             | R5  | MSA2   |
| B5  | LAD4                 | D4  | NC              | J2  | MSD16           | N7  | MSA5            | R6  | MSA4   |
| B6  | LAD7                 | D13 | VCC             | J3  | Vcc             | N8  | V <sub>SS</sub> | R7  | MSA7   |
| B7  | LAD10                | D14 | LAD28           | J13 | CC              | N9  | Vcc             | R8  | тск    |
| B8  | TMS                  | D15 | LAD31           | J14 | MSTR            | N10 | MSA14           | R9  | MSA9   |
| B9  | LAD14                | E1  | MSD8            | J15 | CLK             | N11 | VSS             | R10 | MSA11  |
| B10 | LAD16                | E2  | MSD7            | К1  | MSD17           | N12 | MAE             | R11 | MSA12  |
| B11 | LAD18                | E3  | V <sub>SS</sub> | к2  | MSD19           | N13 | LRDY            | R12 | MSA15  |
| B12 | LAD20                | E13 | VSS             | КЗ  | VSS             | N14 | SF              | R13 | DS/CS  |
| B13 | LAD23                | E14 | LAD30           | K13 | CID1            | N15 | RESET           | R14 | MCE    |
| B14 | NC                   | E15 | COINT           | K14 | INTR            | P1  | MSD25           | R15 | NC     |

**Pin Grid Assignments** 



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A


#### logic symbol<sup>†</sup>



<sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984.



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991





D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

| PI                   | N                 | I/ot     | DESCRIPTION                                                                                                                                                                                                                                                                                                                             |
|----------------------|-------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME                 | NO.               |          |                                                                                                                                                                                                                                                                                                                                         |
| ALTCH                | F14               | і<br>[О] | Address Latch, active low. In the coprocessor mode, falling edge of ALTCH latches instruction and status<br>present on the LAD bidirectional bus (LAD31-0). In the host-independent mode, ALTCH is address<br>output strobe for memory accesses on LAD31-0.                                                                             |
| BUSFLT               | P14               | I        | Bus Fault. In the coprocessor mode, BUSFLT high indicates a data fault on the LAD bus (LAD31-0) during<br>current bus cycle, which in turn causes SMJ34082A not to capture current data on LAD bus. Tied low<br>if not used or in the host-independent mode.                                                                            |
| CAS                  | F15               | ।<br>[O] | Column Address Strobe, active low. In the coprocessor mode, causes SMJ34082A to latch LAD bus data when CAS has a low-to-high transition if LRDY was high and BUSFLT was low at the previous LCLK2 rising edge. In the host-independent mode, this signal is the read strobe output.                                                    |
| CC                   | J13               | 1        | Condition Code Input. In both modes, may be used as an external conditional input for branch conditions.                                                                                                                                                                                                                                |
| CID0<br>CID1<br>CID2 | L14<br>K13<br>L15 | 1        | Coprocessor ID. In the coprocessor mode, used to set a coprocessor ID so that a SMJ34020 Graphics<br>System Processor controlling multiple SMJ34082A coprocessors can designate which coprocessor is<br>being selected by the current instruction. Tied low in the host-independent mode.                                               |
| CLK                  | J15               | 1        | System Clock. In the coprocessor mode, tied low. In the host-independent mode, input is the system clock.                                                                                                                                                                                                                               |
| COINT                | E15               | 0        | Coprocessor Interrupt Request, active low. In the coprocessor mode, signals an exception not masked<br>out in the configuration register. Remains low until the status register is read. In the host-independent<br>mode, user programmable I/O when LADCFG is low. When LADCFG is high, designates bus cycle<br>boundaries on LAD31-0. |
| CORDY                | F13               | 0        | Coprocessor Ready. In the coprocessor mode, if the SMJ34020 sends an instruction before the SMJ34082A has completed a previous instruction, this signal goes low to indicate that the SMJ34020 should wait. In the host-independent mode, user programmable.                                                                            |
| DS/CS                | R13               | 0        | Data Space/Code Space. In both modes, when MEMCFG is low and DS/CS is low, selects program<br>memory on MSD port. When MEMCFG is low and DS/CS is high, selects data memory on MSD<br>port. When MEMCFG is high, DS/CS is memory chip select, active low.                                                                               |
| EC0<br>EC1           | G15<br>G14        |          | Emulator Mode Control and Test. In both modes, tied high for normal operation,                                                                                                                                                                                                                                                          |
| INTG                 | P13               | 0        | Interrupt Grant Output. In the coprocessor mode, INTG is low. In the host-independent mode, this signal<br>is set high to acknowledge an interrupt request input.                                                                                                                                                                       |
| INTR                 | K14               | 1        | Interrupt Request Input, active low. In the coprocessor mode, INTR is tied high. In the host-independent<br>mode, causes call to subroutine address in interrupt vector register.                                                                                                                                                       |

**Terminal Functions** 

The []'s denote the type of buffer ut ilized in the host-independent mode. If no []'s appear, the buffer type is identical for both modes of operation.



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

| PI             | PIN<br>NAME NO.<br>ADO B3 |      | DESCRIPTION                                                                                             |
|----------------|---------------------------|------|---------------------------------------------------------------------------------------------------------|
| NAME           | NO.                       | 1/0† | DESCRIPTION                                                                                             |
| LAD0           | B3                        |      |                                                                                                         |
| LAD1           | A2                        |      |                                                                                                         |
| LAD2           | B4                        |      |                                                                                                         |
| LAD3           | A3                        |      |                                                                                                         |
| LAD4           | B5                        |      |                                                                                                         |
| LAD5           | A4                        |      |                                                                                                         |
| LAD6           | C6                        |      |                                                                                                         |
| LAD7           | B6                        | 1    |                                                                                                         |
| LAD8           | A5                        |      |                                                                                                         |
| LAD9           | A6                        | 1    |                                                                                                         |
| LAD10          | B7                        |      |                                                                                                         |
| LAD11          | A7                        |      |                                                                                                         |
| LAD12          | A8                        | 1    |                                                                                                         |
| LAD13          | A9                        | 1    |                                                                                                         |
| LAD14          | B9                        |      |                                                                                                         |
| LAD15          | A10                       |      | Local Address and Data Bus. In the coprocessor mode, used by SMJ34020 to input instructions and         |
| LAD15<br>LAD16 | B10                       | I/O  | data operands to SMJ34082, and used by SMJ34082A to output results. In the host-independent mode        |
|                |                           |      | used by the SMJ34082A for address output and data I/O.                                                  |
| LAD17          | A11                       | {    |                                                                                                         |
| LAD18          | B11                       |      |                                                                                                         |
| LAD19          | A12                       |      |                                                                                                         |
| LAD20          | B12                       | 1    |                                                                                                         |
| LAD21          | C11                       |      |                                                                                                         |
| LAD22          | A13                       |      |                                                                                                         |
| LAD23          | B13                       |      |                                                                                                         |
| LAD24          | A14                       |      |                                                                                                         |
| LAD25          | C13                       |      |                                                                                                         |
| LAD26          | C14                       |      |                                                                                                         |
| LAD27          | B15                       |      |                                                                                                         |
| LAD28          | D14                       | 1    |                                                                                                         |
| LAD29          | C15                       |      |                                                                                                         |
| LAD30          | E14                       |      |                                                                                                         |
| LAD31          | D15                       |      |                                                                                                         |
| LCLK1          | M14                       | 1    | Local Clocks 1 and 2. In the coprocessor mode, two local clocks generated by the SMJ34020, 90 degree    |
| LCLK2          | M15                       |      | out of phase, to provide timing inputs to SMJ34082A. In the host-independent mode, tied low.            |
| 1              |                           |      | Local Bus Output Enable, active low. In both modes, enables the local bus (LAD31-0) to be driven at the |
| LOE            | H14                       | 1    | proper times when low. In addition during the host-independent mode when LADCFG is low, does not        |
| LOE            | <b>D14</b>                | 1 1  | affect ALTCH, CAS, WE, CORDY, or COINT. When LADCFG is high, ALTCH, COINT, and CORDY and                |
|                |                           |      | not disabled by LOE high; CAS and WE are disabled.                                                      |
|                |                           | 1    | Local Bus Data Ready. In the coprocessor mode, when LRDY is high, indicates that data is available      |
|                | 140                       | 1.   | on LAD bus. When LRDY is low, indicates that the SMJ34082A should not load data from LAD31-0 and        |
| LRDY           | N13                       | 1    | may also be used in conjunction with BUSFLT. In the host-independent mode, when LRDY is low, the        |
|                |                           |      | device is stalled until LRDY is set high again and tied high if not used.                               |
|                |                           | 1    | Memory Address and Data Output Enable, active low. In both modes, with MAE low, the SMJ34082/           |
| MAE            | N12                       | 1    | can output an address on MSA15-0 and data on MSD31-0. MAE high does not disable DS/CS,                  |
|                |                           |      | MCE, MWR, or MOE.                                                                                       |
| MCE            | D14                       |      | Memory Chip Enable. In both modes, when MEMCFG low, active (low) indicates access to external           |
| MCE            | R14                       | 0    | memory on MSD31-0. When MEMCFG is high, MCE low is external code memory chip select.                    |
| MOE            | P12                       | 0    | Memory Output Enable, active low. In both modes when low, enables output from external memory           |
| NUCE           | FIZ                       |      | on to MSD port.                                                                                         |

## **Terminal Functions (Continued)**



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

| D              | IN       |              |                                                                                                                                                                                         |
|----------------|----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME           | NO.      | <i>ı</i> ∕o† | DESCRIPTION                                                                                                                                                                             |
|                |          |              |                                                                                                                                                                                         |
| MSA0           | R4       |              |                                                                                                                                                                                         |
| MSA1           | P5       | 1            |                                                                                                                                                                                         |
| MSA2           | R5       | 1            |                                                                                                                                                                                         |
| MSA3           | P6       |              |                                                                                                                                                                                         |
| MSA4           | R6       |              |                                                                                                                                                                                         |
| MSA5           | N7       |              |                                                                                                                                                                                         |
| MSA6           | P7       |              |                                                                                                                                                                                         |
| MSA7           | R7       | 0            | Memory Address output. In both modes, addresses up to 64K words of external program memory and/or                                                                                       |
| MSA8           | P8       | Ŭ            | up to 64K words of data memory on the MSD port, depending on setting of DS/CS select.                                                                                                   |
| MSA9           | R9       | 1            |                                                                                                                                                                                         |
| MSA10          | P9       |              |                                                                                                                                                                                         |
| MSA11          | R10      |              |                                                                                                                                                                                         |
| MSA12          | R11      |              |                                                                                                                                                                                         |
| MSA13          | P10      |              |                                                                                                                                                                                         |
| MSA14          | N10      |              |                                                                                                                                                                                         |
| MSA15          | R12      |              |                                                                                                                                                                                         |
| MSD0           | C3       |              |                                                                                                                                                                                         |
| MSD1           | B1       |              |                                                                                                                                                                                         |
| MSD1<br>MSD2   | D3       | 1            |                                                                                                                                                                                         |
| MSD2<br>MSD3   | C2       |              |                                                                                                                                                                                         |
| MSD4           | C1       | Ţ            |                                                                                                                                                                                         |
| MSD4<br>MSD5   | D2       |              |                                                                                                                                                                                         |
|                |          |              |                                                                                                                                                                                         |
| MSD6           | D1       |              |                                                                                                                                                                                         |
| MSD7           | E2       |              |                                                                                                                                                                                         |
| MSD8           | E1       | 1            |                                                                                                                                                                                         |
| MSD9           | F2       |              |                                                                                                                                                                                         |
| MSD10          | F1       | 1            |                                                                                                                                                                                         |
| MSD11          | G3       |              |                                                                                                                                                                                         |
| MSD12          | G2       | ł            |                                                                                                                                                                                         |
| MSD13          | G1       |              |                                                                                                                                                                                         |
| MSD14          | H1       |              |                                                                                                                                                                                         |
| MSD15          | J1       | 1/0          | External Memory Data. In both modes, I/Os to external memory. Used to read from or write to external                                                                                    |
| MSD16          | J2       | "0           | data or program memory on the MSD port.                                                                                                                                                 |
| MSD17          | K1       |              | ,                                                                                                                                                                                       |
| MSD18          | L1       |              |                                                                                                                                                                                         |
| MSD19          | K2       |              |                                                                                                                                                                                         |
| MSD20          | M1       |              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                   |
| MSD21          | L2       |              |                                                                                                                                                                                         |
| MSD22          | N1       |              |                                                                                                                                                                                         |
| MSD23          | L3       |              |                                                                                                                                                                                         |
| MSD24          | M2       |              |                                                                                                                                                                                         |
| MSD25          | P1       |              |                                                                                                                                                                                         |
| MSD26          | N2       |              |                                                                                                                                                                                         |
| MSD27          | R2       |              |                                                                                                                                                                                         |
| MSD27<br>MSD28 | N4       |              |                                                                                                                                                                                         |
| MSD28<br>MSD29 | P3       |              |                                                                                                                                                                                         |
| MSD29<br>MSD30 | P3<br>R3 |              |                                                                                                                                                                                         |
|                |          | 1            |                                                                                                                                                                                         |
| MSD31          | P4       |              |                                                                                                                                                                                         |
| MSTR           | J14      | 1            | Host-Independent/Coprocessor Mode Select. In the coprocessor mode, MSTR must be tied low to operate properly. In the host-independent mode, MSTR must be tied high to operate properly. |
|                |          |              | Memory Write Enable. In both modes, when low, data on MSD31-0 can be written to external program                                                                                        |
| MWR            | P11      | 0            | or data memory.                                                                                                                                                                         |

## **Terminal Functions (Continued)**



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

|            |                                                                                      | <b></b> | Terminal Functions (Continued)                                                                                                                                                                                                                                       |
|------------|--------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PI<br>NAME | N<br>NO.                                                                             | 1/ot    | DESCRIPTION                                                                                                                                                                                                                                                          |
| NC         | A1<br>A15<br>B2<br>B14<br>D4<br>P2<br>R1<br>R15                                      |         | No Internal Connection. These pins should be left floating.                                                                                                                                                                                                          |
| RAS        | P15                                                                                  | 1       | Row Address Strobe, active low. In the coprocessor mode, RAS is high during all of coprocesso<br>instruction cycle. In the host-independent mode, it is not used.                                                                                                    |
| RDY        | K15                                                                                  | I       | Ready. In both modes, when RDY is low, it causes a nondestructive stall of sequencer and floating-poin<br>operations. All internal registers and status in the FPU core are preserved. Also, no output lines will<br>change state.                                   |
| RESET      | N15                                                                                  | 1       | Reset, active low. In both modes, resets sequencer output and clears pipeline registers, internal states status, and exception disable registers in FPU core. Other registers are unaffected.                                                                        |
| SF         | N14                                                                                  | - 1     | Special Function Input. In the coprocessor mode when SF is high, indicates the LAD bus input is ar<br>instruction or data from SMJ34020 registers. When SF is low, indicates the LAD input is a data operand<br>from memory. In the host-independent mode, not used. |
| TCK        | R8                                                                                   | 1       | Test Clock for JTAG four-wire boundary scan. In both modes, TCK is low for normal operation.                                                                                                                                                                         |
| TDI        | H15                                                                                  | 1       | Test Data Input for JTAG four-wire boundary scan. In both modes, TDI may be left floating.                                                                                                                                                                           |
| TDO        | H2                                                                                   | 0       | Test Data Output for JTAG four-wire boundary scan                                                                                                                                                                                                                    |
| TMS        | B8                                                                                   | 1       | Test Mode Select for JTAG four-wire boundary scan. In both modes, SMJ may be left floating.                                                                                                                                                                          |
| Vcc        | C5<br>C8<br>C10<br>D13<br>F3<br>J3<br>M13<br>N3<br>N6<br>N9                          | 1 .     | 5-V Power Supply. All pins must be connected and used.                                                                                                                                                                                                               |
| Vss        | C4<br>C7<br>C9<br>C12<br>E3<br>H3<br>H13<br>K3<br>L13<br>M3<br>N5<br>N5<br>N8<br>N11 | 1       | Ground Pins. All pions must be connected and used.                                                                                                                                                                                                                   |
| WE         | G13                                                                                  | [0]     | Write Enable, active low. In the coprocessor mode, the write strobe from the SMJ34020 to enable a write<br>to or from the SMJ34082A LAD bus. In the host-independent mode, the SMJ34082A write strobe output                                                         |

The []'s denote the type of buffer utilized in the host-independent mode. If no []'s appear, the buffer type is identical for both modes of operation.



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

#### data flow

The SMJ34082A has two bidirectional 32-bit buses, LAD31-0 and MSD31-0. Each bus can be used to pass instructions and data operands to the FPU core and to output results. A separate 16-bit bus, MSA15-0, provides memory addressing capability on the MSD bus.

When the SMJ34082A is used as a coprocessor for the SMJ34020 Graphics System Processor (GSP), data for the SMJ34082A can be transferred through the 32-bit bidirectional data bus (LAD31-0) and may be passed to any internal registers or to external memory on the memory expansion interface (MSD31-0). When the SMJ34082A is used as a standalone FPU, it can use both the LAD bus (LAD31-0) and the MSD bus (MSD31-0) to interface with external data memory or system buses.

In the host-independent mode, the SMJ34082A can be operated with the LAD bus as its single data bus and the MSD bus as the instruction source, or with data storage on either port and the program memory on the MSD bus.

The data space/code space (DS/CS) output can be used to control access either to data memory or program memory on the MSD port. Up to 64K words of code space and 64K words of data space are directly supported. In the coprocessor mode, both instructions and data are transferred on the LAD bus with the option of accessing external user-generated programs on the MSD port.

One 32-bit operand can be input to the data registers each clock cycle. A 64-bit double-precision floating-point operand is input in two cycles. Transfers to or from the data registers can normally be programmed as block moves, loading one or more sets of operands with a single move instruction to minimize I/O overhead. Several modes for moving operands and instructions are available. Block transfers up to 512 words between the LAD and MSD buses can be programmed in either direction.

To permit direct input to or output from the LAD bus in the host-independent mode, other options for controlling the LAD bus have been implemented. When two 32-bit operands are being selected for input to the FPU core, one operand may be selected from LAD. On output from the FPU, a result may simultaneously be written to a register and to the LAD bus.

During initialization in the host-independent mode, a bootstrap loader can bring 65 32-bit words from the LAD bus and write them out to external program memory on the MSD bus, after which the device begins executing from the first memory location (zero). The first word is loaded into the configuration register. This option facilitates the initial loading of program memory on the MSD port upon power-up.

#### architecture

Because the sequencer, control and data registers, and FPU core are closely coupled, the SMJ34082A can execute a variety of complex floating-point or integer calculations rapidly, with a minimum of external data transfers. The internal architecture of the FPU core supports concurrent operation of the multiplier and the ALU, providing several options for storing or feeding back intermediate results. Also, several special registers are available to support specific calculations for graphics algorithms. Each of the main architectural elements of the SMJ34082A is discussed below.

The control functions of the SMJ34082A are provided by sequence control logic, register control logic, and bus interface control logic, together with user-programmed configuration settings stored in the configuration register. The on-board sequencer selects the next program execution address, either from internal code or from external program memory. Next-address sources include the program counter, stack, interrupt vector register, interrupt return register, or address register (for indirect jumps).

COUNTX, COUNTY, and MIN-MAX/LOOPCT registers are used for temporary storage by internal graphics routines. They may also serve as temporary storage for the user.



#### SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

A separate FPU status register is provided, which can be used by test-and-branch instructions to control program execution. Because of the large number of status outputs, branches on status can be easily programmed. The status register contents are also important when dealing with status exceptions including such conditions as overflow, underflow, invalid operations (divide by zero), or illegal data formats such as infinity, Not a Number (NaN), or denormalized operands.

Register control logic permits all data and control registers to be accessed in accordance with applicable architectural restrictions. Register files A and B can be written to or read from the external buses, as can the control registers. Internal registers C and CT are embedded in the FPU core and can only be accessed by the FPU internal buses. The C and CT registers cannot be used as sources or destinations for MOVE instructions, and several registers (listed in Table 1) are not available as sources for FPU operations.

| REGISTER ADDRESS | REGISTER NAME  | RESTRICTIONS ON USE                   |
|------------------|----------------|---------------------------------------|
| 00000            | RA0            |                                       |
| 00001            | RA1            |                                       |
| 00010            | RA2            |                                       |
| 00011            | RA3            |                                       |
| 00100            | RA4            |                                       |
| 00101            | RA5            |                                       |
| 00110            | RA6            |                                       |
| 00111            | RA7            |                                       |
| 01000            | RA8            |                                       |
| 01001            | RA9            |                                       |
| 01010            | ct             | Not a source or destination for moves |
| 01011            | CTT            | Not a source or destination for moves |
| 01100            | STATUS         | Not a source for FPU instructions     |
| 01101            | CONFIG         | Not a source for FPU instructions     |
| 01110            | COUNTX         | Not a source for FPU instructions     |
| 01111            | COUNTY         | Not a source for FPU instructions     |
| 10000            | RB0            |                                       |
| 10001            | RB1            |                                       |
| 10010            | RB2            |                                       |
| 10011            | RB3            |                                       |
| 10100            | RB4            |                                       |
| 10101            | RB5            |                                       |
| 10110            | RB6            |                                       |
| 10111            | RB7            |                                       |
| 11000            | RB8            |                                       |
| 11001            | RB9            |                                       |
| 11010            | VECTOR         | Not a source for FPU instructions     |
| 11011            | MCADDR         | Not a source for FPU instructions     |
| 11100            | SUBADDO        | Not a source for FPU instructions     |
| 11101            | SUBADD1        | Not a source for FPU instructions     |
| 11110            | IRAREG         | Not a source for FPU instructions     |
| 11111            | MIN-MAX/LOOPCT | Not a source for FPU instructions     |

#### **Table 1. linternal Registers**

TC and CT registers cannot both be used for FPU operand sources in the same instruction.



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

#### register files A and B, feedback registers C and CT

SMJ34082A contains two register files, each with ten 64-bit registers and two 64-bit feedback registers. Most instructions will operate on one value from each of the RA and RB register files and return the result to either the RA or RB files or one of the feedback registers.

When the ONEFILE control bit is high in the configuration register, data written to a register in file RA is simultaneously written to the corresponding location in file RB. In this mode, the two register files act as a ten-word, two-read/one-write register file.

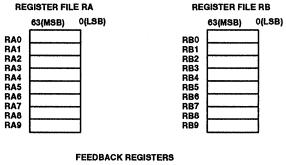





Figure 1. Data Registers

Two 64-bit feedback registers. C and CT, are embedded in the FPU core. FPU instructions may use the feedback registers as one of the operands, but the registers cannot be accessed for external moves. The C and CT registers can be used as either the A or B operand, but both cannot be used as operands during the same instruction. However, C (or CT) may be used for more than one operand in the same instruction. For example, C + CT is not a valid instruction, but C + C is.

The CT feedback register is used in integer divide operations as a temporary holding register. Any data stored in CT will be lost during an integer divide.

#### internal control/status register definitions

#### configuration register definition

The configuration register (CONFIG) is a special 32-bit register that the user loads to configure the SMJ34082A for exception handling, IEEE mode (vs. fast mode), rounding modes, and data-fetch operations. The configuration register is initialized to 'FFE00420' hex.



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

#### **Table 2. Configuration Register Definition**

| BIT NO. | NAME     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31      | MIVAL    | Multiplier invalid operation (I) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                       |
| 30      | MOVER    | Multiplier overflow (V) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                                |
| 29      | MUNDER   | Multiplier underflow (U) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                               |
| 28      | MINEX    | Multiplier inexact (X) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 27      | MDIV0    | Divide by zero (DIV0) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 26      | MDENORM  | Multiplier denormal (DENORM) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                           |
| 25      | AIVAL    | ALU invalid operation (I) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                              |
| 24      | AOVER    | ALU overflow (V) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 23      | AUNDER   | ALU underflow (U) exception mask, initialized to 1 (enabled),                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 22      | AINEX    | ALU inexact (X) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21      | ADENORM  | ALU denormal (DENORM) exception mask. Initialized to 1 (enabled).                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11-20   | N/A      | Reserved, set to all 0s.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10      | REVISION | Revision number, read only. Set to 1.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9       | LADCFG   | When low, CAS, WE, CORDY, COINT, and ALTCH are active signals not affected by LOE. When high, LOE high places CAS and WE in high impedance, as well as the LAD bus. COINT, which defines the LAD cycle boundaries, is controlled by bit 1 of the LAD move instruction instead of the set mask instruction. COINT will remain high unless a LAD move instruction (with bit 1 high) is in progress. The setting of this bit has no effect in the coprocessor mode. Initialized to 0. |
| 8       | MEMCFG   | When high, MCE becomes code space chip enable and DS/CS becomes data space chip enable (eliminates need for external inverter). When low, MCE is chip select for external code and data space. DS/CS functions as an address bit which selects code space (when low) or data space (when high). Initialized to 0.                                                                                                                                                                  |
| 7       | N/A      | Reserved for later use. Initialized to 0. Must be loaded with 0.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6       | ONEFILE  | When high, causes simultaneous write to both register files (for example, to both RA0 and RB0 at once). The register files act as a single two-read, one-write register file. Initialized to 0.                                                                                                                                                                                                                                                                                    |
| 5       | PIPES2   | When high, makes FPU output registers transparent. When low, registers are enabled. Initialized to 1.                                                                                                                                                                                                                                                                                                                                                                              |
| 4       | PIPES1   | When high, makes FPU internal pipeline registers transparent. When low, registers are enabled. Initialized to 0.                                                                                                                                                                                                                                                                                                                                                                   |
| 3       | FAST     | When high,fast mode is selected (all denormalized inputs and outputs are 0). When low, IEEE mode is selected. Initialized to 0.                                                                                                                                                                                                                                                                                                                                                    |
| 2       | LOAD     | Load order. 0 = MSH, then LSH; 1 = LSH, then MSH. Initialized to 0.                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | ******   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1       | RND1     | Rounding mode select 1. Initialized to 0.                                                                                                                                                                                                                                                                                                                                                                                                                                          |

LSH denotes least-significant half of a 64-bit word, MSH denotes most-significant half of a 64-bit word.

The mask bits serve as exception detect enables for the exception masks listed above. Setting the bit high (logic '1') enables the detection of the specific exception. When an enabled exception occurs, the ED bit in the status register will be set high and can be used to generate interrupts. The fast bit allows the SMJ34082A to control the handling of denormalized numbers. When the fast bit is set high, all denormalized numbers input to the device are flushed to zero, and all denormalized results are also flushed to zero (this is also called 'sudden underflow'). When the fast bit is low, IEEE mode is selected. Denormalized numbers may be generated by (or input to) the ALU. Denormalized numbers must first be wrapped before being used as operands for multiply or divide instructions.

The LOAD bit defines the expected order of double-precision operands. At reset, this bit will default to 0 indicating that the most significant 32 bits are transferred first. If the bit is set to a 1, then the expected order of 64-bit data transfers starts with the least significant 32 bits.

The RND0 and RND1 bits select the IEEE rounding mode, as shown in Table 3.



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

| RND1 - RND0 | ROUNDING MODES                               |
|-------------|----------------------------------------------|
| .00         | Round towards nearest                        |
| 0 1         | Round toward zero (truncated)                |
| 10          | Round towards infinity (round up)            |
| 1 1         | Round towards negative infinity (round down) |

#### Table 3. Rounding Mode

#### status register definition

The floating-point status register (STATUS) is a 32-bit register used for reporting the exceptions that occur during SMJ34082A operations and status codes set by the results of implicit and explicit compare operations. The status register is cleared upon reset, except for the INTENED flag, which is set to 1 in the coprocessor mode.

| BIT NO. | NAME    | DESCRPTION                                                                                                                                                                                                                                                                                                                                              |
|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31      | N       | Sign bit (A < B flag for compare)                                                                                                                                                                                                                                                                                                                       |
| 30      | GT      | A > B (valid on compare)                                                                                                                                                                                                                                                                                                                                |
| 29      | Z       | Zero flag (A = B for compare)                                                                                                                                                                                                                                                                                                                           |
| 28      | V       | IEEE overflow flag. The result is greater than the largest allowable value for the specified format.                                                                                                                                                                                                                                                    |
| 27      | I       | IEEE invalid operation flag. A NaN has been input to the multiplier or the ALU, or an invalid operation [(0 $*$ 1) or ( $\infty - \infty$ ) or ( $-\infty + \infty$ )] has been requested. This signal also goes high if an operation involves the square root of a negative number. When IVAL hoes high, the STX pins indicate which port had the NaN. |
| 26      | U       | IEEE underflow flag. The result is inexact and less than the minimum allowable value for the specified format.<br>In fast mode, this condition causes the result to go to zero.                                                                                                                                                                         |
| 25      | X       | IEEE inexact flag. The result of an operation is inexact.                                                                                                                                                                                                                                                                                               |
| 24      | DIVO    | Divide by zero. An invalid operation involving a zero divisor has been detected by the multiplier.                                                                                                                                                                                                                                                      |
| 23      | RND     | The mantissa of a number has been increased in magnitude by rounding. If the number generated was wrapped, then the 'unwrap rounded' instruction must be used to properly unwrap the wrapped number.                                                                                                                                                    |
| 22      | DENIN   | Input to the multiplier is a denormalized number. When DENIN goes high, the STX pins indicate which port has the denormal input.                                                                                                                                                                                                                        |
| 21      | DENORM  | The multiplier output is wrapped number or the ALU output is a denormalized number. In fast mode, this condition<br>causes the result to go to zero. It also indicates an invalid integer operation with a negative unsigned integer<br>result.                                                                                                         |
| 20      | STX1    | A NaN or a denormalized number has been input on the A port.                                                                                                                                                                                                                                                                                            |
| 19      | STX0    | A NaN or a denormalized number has been input on the B port.                                                                                                                                                                                                                                                                                            |
| 18      | ED      | Exception detect status signal representing logical OR of all enabled exceptions in the configuration register.                                                                                                                                                                                                                                         |
| 17      | UNORD   | The two inputs of a comparison operation are unordered, i.e.; one or both of the inputs is an NaN.                                                                                                                                                                                                                                                      |
| 16      | INTFLG  | Software interrupt flag. Set by external code to signal a software interrupt.                                                                                                                                                                                                                                                                           |
| 15      | INTENHW | Hardware interrupt (INTR) enable, active high (initialized to zero)                                                                                                                                                                                                                                                                                     |
| 14      | NXOROV  | N (negative) XOR V (overflow)                                                                                                                                                                                                                                                                                                                           |
| 13      | VANDZB  | V (overflow) AND Z (NOT zero)                                                                                                                                                                                                                                                                                                                           |
| 12      | INTENED | ED interrrupt enable, active high (initialized to zero in the host-independent mode, one in the coprocessor mode)                                                                                                                                                                                                                                       |
| 11      | INTENSW | Software interrupt (INTFLG) enable, active high (initialized to zero)                                                                                                                                                                                                                                                                                   |
| 10      | ZGT     | Zn > Zmax (valid for 2-D MIN-MAX instruction)                                                                                                                                                                                                                                                                                                           |
| 9       | ZLT     | Zn < Zmin (valid for 2-D MIN-MAX instruction)                                                                                                                                                                                                                                                                                                           |
| 8       | YGT     | Yn > Ymax (valid for 1-D or 2-D MIN-MAX instruction)                                                                                                                                                                                                                                                                                                    |
| 7       | YLT     | Yn < Ymin (valid for 1-D or 2-D MIN-MAX instruction)                                                                                                                                                                                                                                                                                                    |
| 6       | XGT     | Xn > Xmax (valid for 1-D or 2-D MIN-MAX instruction)                                                                                                                                                                                                                                                                                                    |
| 5       | XLT     | Xn < Xmin (valid for 1-D or 2-D MIN-MAX instruction)                                                                                                                                                                                                                                                                                                    |
| 4       | HINT    | Hardware interrupt flag                                                                                                                                                                                                                                                                                                                                 |
| 3-0     | N/A     | Reserved                                                                                                                                                                                                                                                                                                                                                |

#### Table 4. Status Register Definition



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

#### indirect address register (MCADDR) definition

The indirect address register (MCADDR) can be set to point to a memory location for indirect move or jump operations through the MSD port. MCADDR is cleared upon reset.

| 31 |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 16 | . 0              |
|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|------------------|
| X  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | V  | INDIRECT ADDRESS |

#### Figure 2. Indirect Address Definition

The function of bit 16 varies, depending on whether the instruction is a MOVE or JUMP. During a MOVE instruction, bit 16 selects data space when set high, or code space when low. During a JUMP instruction, bit 16 selects an internal instruction when set high, or an external instruction when low.

#### stack registers (SUBADD1-SUBADD0) definition

The stack contains two subroutine return address registers, SUBADD0 and SUBADD1, which serves as a two-deep LIFO (last-in, first-out) stack. A subroutine jump causes the program counter to be pushed onto the stack, and a return from subroutine pops the last address pushed on the stack. More than two pushes will overwrite the contents of SUBADD1.

Bit 31 (Pointer) is set high in the stack location that was written last and reset to zero in the other stack location. Setting bit 30 (Enable) high enables a write into bit 31 (set or reset the pointer) in either stack location. If bit 31 is zero in both SUBADD0 and SUBADD1 (as when the stack has been saved externally and later restored), SUBADD0 can be designated as top of stack by setting bit 31. The stack pointers (bit 31) are cleared upon reset.

Bit 16 (I) is set high when the address in a stack location points to an internal routine, or set low when the address is for an external instruction.

| 31 |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 16 | 0       |
|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|---------|
| P  | E | X | Х | X | X | X | X | Х | X | X | X | X | X | X | 1  | SUBADDO |
| Ρ  | E |   |   | X |   |   |   |   | X |   |   | X | Х | X | 1  | SUBADD1 |

#### Figure 3. Stack Definition

#### interrupt vector register (VECTOR) definition

The interrupt vector register (VECTOR) serves as a pointer to an external program to be executed upon receipt of an interrupt. Bit 16 (I) is always set low to point to a routine in external code space. The interrupt vector is cleared on reset.

| 31 |   |   |   |   |   | _ |   |   |   |   |   |   |   |   | 16 | . 0               |
|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|-------------------|
| X  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 1  | INTERRUPT ADDRESS |

#### **Figure 4. Interrupt Vector Definition**

#### interrupt return register (IRAREG) definition

The interrupt return register (IRAREG) retains a copy of the program counter at the time of an external interrupt. This address is used as the next execution address upon returning from the interrupt. Bit 16 (I) is set high when the address in the stack location points to an internal instruction, or set low when the address is for an external instruction. This register is not affected by the reset signal.

| X  | X | X | Х | Х | X | X | X | X | X | X | X | X | X | X | 1  | Τ | INTERRUPT RETURN ADDRESS |  |
|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|---|--------------------------|--|
| 31 |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 16 |   | 0                        |  |
|    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |   |                          |  |

#### Figure 5. Interrupt Return Definition



#### D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

#### **COUNTX and COUNTY registers definition**

The counter registers (COUNTX, COUNTY) are used to store the current counts of the minimum and maximum values when executing MIN-MAX instructions. COUNTX and COUNTY are cleared on reset.

| 31           | 16      | 0                   |  |
|--------------|---------|---------------------|--|
| COUNT FOR MA | X VALUE | COUNT FOR MIN VALUE |  |

#### Figure 6. COUNTY and COUNTX Register Definition

The COUNTX register is updated on both the 1-D and 2-D MIN-MAX instruction such that the count of the current minimum value is in the lower 16 bits of the register and the count of the current maximum value is in the upper 16 bits. The COUNTY register is used only in the 2-D MIN-MAX instruction to keep track of the counts of the minimum and maximum for the second value of a pair. The COUNTX and COUNTY registers may also be used for temporary storage when not using the MIN-MAX instructions.

#### MIN-MAX/LOOPCT register

The MIN-MAX/LOOPCT register stores the current values of two separate counters. The LSH contains the current loop counter, and the MSH is used to hold the current minimum or maximum value of a MIN-MAX operation. The MIN-MAX/LOOPCT register is cleared upon reset. The MIN-MAX/LOOPCT register may also be used for temporary storage when not using the MIN-MAX instructions.

| 31 16                   | 0          |
|-------------------------|------------|
| COUNT FOR MIN-MAX VALUE | LOOP COUNT |

#### Figure 7. MIN-MAX/LOOPCT Register Definition

#### **FPU core**

The FPU core itself consists of a multiplier and an ALU, each with an intermediate pipeline register and an output register (see Figure 8, FPU core functional block diagram). Four multiplexers select the multiplier and ALU operands from the data registers, feedback registers, or previous multiplier or ALU result. Results are directed either to the internal feedback registers (C or CT), the 20 data registers in register files RA and RB, or the ten other miscellaneous registers.

Both the internal pipeline registers and the output registers can be enabled or made transparent (disabled) by setting the PIPES2-PIPES1 bits in the configuration register. When the device is powered up, the default settings of the internal registers are PIPES2 high (output registers transparent) and PIPES1 low (internal pipeline registers enabled).

When the FPU core is used for chained operations, the multiplier and ALU operate in parallel. Two data inputs are provided from the RA and RB input registers, while multiplier and ALU feedback are used as the other two operands. While in the chained mode, the output registers of the FPU must be enabled to latch feedback operands. The appropriate registers must be enabled by setting the PIPES2-PIPES1 controls in the configuration register at the beginning of chained operations, and the PIPES2-PIPES1 control should then be reinitialized upon termination.

Fully pipelined operation (both pipeline and output registers enabled) affects timing when writing results back to the RA and RB register files. To adjust writeback timing, it is possible to issue the NOP (no operation) instruction to the FPU core when the results are to be retained in the output registers for one or more additional cycles. The NOP instruction is only effective when the output registers are enabled, as each NOP causes the output register contents to be retained for one additional cycle.



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

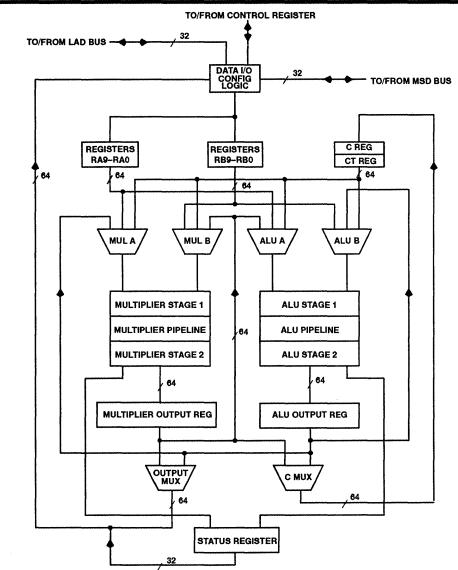



Figure 8. FPU Core Functional Block Diagram



#### D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

#### SMJ34082A operating modes

The SMJ34082A can operate as a stand-alone floating-point processor or a graphics coprocessor to the SMJ34020 Graphics System Processor. Control of FPU operation is provided either from external program memory or from the SMJ34020. External instructions are addressed by address lines MSA15-0 and are input on MSD31-0. SMJ34020 instructions are input on LAD31-0.

Both the MSD and LAD buses can be used for data transfers as well. Combinations of control signals distinguish instruction fetches from data transfers. A single instruction may be used to transfer data and to perform an operation within the FPU.

The SMJ34082A supports external code and data storage with the memory expansion interface, MSD31-0. Up to 64K 32-bit data operands and 64K instructions may be added externally to the SMJ34082A. The signal DS/CS controls whether data space or code space is being accessed, and read/write control is provided with the chip enable (MCE), output enable (MOE), address enable (MAE), write enable (MWR), and address lines (MSA15-0).

The SMJ34082A also provides instructions that allow the SMJ34020 to read/write directly from/to external memory. The external code support permits full utilization of the SMJ34082A features and instruction set.

#### coprocessor-mode operation

Operation in the coprocessor mode assumes MSTR is low. In this mode, the SMJ34082A acts as a closely coupled coprocessor to the SMJ34020. The interface between the two devices consists of direct connections between pins. More than one coprocessor may be connected to the SMJ34020 by setting the appropriate coprocessor ID (CID2-CID0). Up to four coprocessors executing in parallel may be used with a single SMJ34020.

In the coprocessor mode, clock signals are provided by LCLK1 and LCLK2 from the SMJ34020. Internally, the FPU generates a rising clock edge from each LCLK1 edge (rising or falling). Thus, the SMJ34082A actually operates at twice the LCLK1 input clock frequency.

#### initialization (coprocessor mode)

On reset, the SMJ34082A clears all pipeline registers and internal states. The configuration register and status register return to their initialization values. When RESET returns high in the coprocessor mode, the SMJ34082A is in an idle state waiting for the next instruction from the SMJ34020.

#### LAD bus control (coprocessor mode)

Both data and instructions are transferred over the bidirectional LAD bus in the coprocessor mode. A unique combination of signal inputs distinguishes an instruction from data. SF, ALTCH, CAS, RAS, and WE are used to designate coprocessor functions from other operations on the LAD bus.

Data may be transferred to or from SMJ34020 registers or memory via LAD31-0. Transfers between the LAD and MSD buses can also be programmed. A single coprocessor instruction may be used to transfer data to the SMJ34082A and then perform an FPU operation.

#### MSD bus control (coprocessor mode)

Use of the MSD bus in the coprocessor mode is optional. External memory on MSD31-0 can be used to store data, user-programmed subroutines, or both. Different combinations of control signals distinguish between data memory and code memory. Control signals for MSD and MSA buses operate the same in the host-independent and coprocessor modes.

#### interrupt handling (coprocessor mode)

A software interrupt to the SMJ34082A is generated by the set mask external instruction. When the interrupt is granted, the current program counter is stored in the interrupt return register, and a branch to the interrupt vector address is executed. Software interrupts may be disabled.



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

If the exception detect interrupt (ED) is enabled, a SMJ34082A exception causes COINT to go low, signalling the exception to the SMJ34020. This exception does *not* cause a branch to the interrupt vector. If its interrupts are enabled, the SMJ34020 will branch to an interrupt vector to service the SMJ34082A request. Interrupts are cleared by reading the SMJ34082A status register.

#### host-independent mode operation

Operation in the host-independent mode assumes MSTR high. The SMJ34082A has several hardware control signals, as well as programmable features, which support system functions such as initialization, data transfer, or interrupts in the host-independent mode. CLK provides the input clock to the SMJ34082A. Details of initialization, LAD and MSD bus interface control, and interrupt handling are provided in the following sections.

#### initialization (host-independent mode)

To simplify initialization of external program memory, the SMJ34082A provides a bootstrap loader to perform an initial program load of 64 instructions. Once invoked, the loader causes the SMJ34082A to read 65 words from the LAD bus and write 64 words out to the external program memory on the MSD bus, beginning with location 0. The first word read is used to initialize the configuration register.

This loader is invoked by first setting RESET low, and then INTR low. A separate timing diagram for using the bootstrap loader is provided (see Figure 34). INTR should be taken low after RESET is already low, as shown in the diagram. When the bootstrap loader is started, the FPU core is reset (internal states and status are cleared, but not data registers) and the stack pointer, program counter, and interrupt vector register are all set to zero.

RESET must be set high again before the loader operation can start (see Figure 34). Once the loader is active, an external interrupt (signalled by INTR low) will not be granted until the load sequence is finished. However, RESET going low terminates the load sequence, regardless of whether the sequence is complete. When the load sequence is finished, the device begins program execution at external address 0.

#### LAD bus control (host-independent mode)

Data transfer from the LAD bus (LAD31-0) is controlled primarily by output signals,  $\overline{ALTCH}$ ,  $\overline{WE}$ , and  $\overline{CAS}$ . ALTCH is the address write strobe that signals an address is being output on the LAD bus. The  $\overline{CAS}$  signal is the read strobe, and  $\overline{WE}$  is the write enable output to memory.

If a bidirectional FIFO is used instead of memory,  $\overline{CAS}$  can be directly connected to the read clock and  $\overline{WE}$  to the write clock. The CC input can be used to signal the SMJ34082A when data is ready for input from the FIFO stack.

Data input on the LAD bus can be written to data registers, control registers, or passed through for output on the MSD bus. Alternatively, the LAD bus input can be selected directly as an FPU source operand without writing to a register.

An FPU result can be written to a data register and at the same time be passed out on the LAD bus. When this is done, the clock period may need to be extended up to 15 ns (SMJ34082-30) to allow for the propagation delay from the FPU core to the outputs.

Depending on the specific system implementation, transferring data to and from the LAD bus without intervening register operations may significantly improve throughput. In the host-independent mode, data moves to and from internal registers can be minimized at the cost of adjusting the clock period to assure integrity of FPU inputs to and output from the LAD bus.



#### D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

#### MSD bus control (host-independent mode)

The MSD bus can be used to access either external data memory or external code memory, depending on the combination of control signals required. If the memory on the MSD port is shared with a host processor, the MAE and RDY signals can be used to prevent conflicts between the host and the SMJ34082A. When memory on the MSD port is shared, the host processor can monitor the state of the SMJ34082A memory chip enable (MCE) to determine when the SMJ34082A is not accessing the memory.

Otherwise, the  $\overline{MAE}$  signal may be tied low (if unused), and the SMJ34082A can use  $\overline{MOE}$ ,  $\overline{MCE}$ ,  $\overline{MWR}$ , and DS/CS to control external memory operations into either data space or code space, as selected by DS/CS.

#### interrupt handling (host-independent mode)

Interrupts to the SMJ34082A can be signalled by setting the interrupt request input (INTR) low. INTR is associated with the vector in the interrupt vector register. Software interrupts are signalled by setting the software interrupt flag in the status register.

In the event of an FPU status exception in the host-independent mode, an interrupt is generated that causes a branch to an exception handler routine. The address of the exception handler is stored in the interrupt vector register by the user prior to execution of the FPU program. Interrupts may be disabled by setting the appropriate bits in the status register.



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage, V <sub>CC</sub> (see Note 1)                      | 6 V            |
|-------------------------------------------------------------------|----------------|
| Input voltage range, V <sub>1</sub>                               |                |
| Off-state output voltage range                                    |                |
| Operating free-air (minimum) and case (maximum) temperature range | -55°C to 125°C |
| Storage temperature range                                         | -65°C to 150°C |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage levels are with respect to ground (VSS).

#### recommended operating conditions

|                    |                                | PARAMETER                                               |              | MIN  | NOM | MAX                  | UNIT |
|--------------------|--------------------------------|---------------------------------------------------------|--------------|------|-----|----------------------|------|
| Vcc                | Supply voltage                 |                                                         |              | 4.5  | 5   | 5.5                  | v    |
| VSS                | Supply voltage (see Note 2)    |                                                         |              |      | 0   |                      | v    |
| νн                 | High-level input voltage       |                                                         |              | 2.4  |     | V <sub>CC</sub> +0.3 | v    |
| VIL                | Low-level input voltage        |                                                         |              | -0.3 |     | 0.6                  | V    |
| ЮН                 | High-level output current      |                                                         |              |      |     | -8                   | mA   |
| IOL                | Low-level output current       |                                                         |              |      |     | 8                    | mA   |
|                    |                                |                                                         | SMJ34082A-28 |      |     | 7.1                  |      |
| £                  | Clask framenan                 | Coprocessor mode SMJ340<br>Host-independent Mode SMJ340 | SMJ34082A-30 |      |     | 7.6                  | MHz  |
| <sup>†</sup> clock | Clock frequency                | Heat independent Mode                                   | SMJ34082A-28 |      |     | 14.3                 |      |
|                    |                                | Host-independent wode                                   | SMJ34082A-30 |      |     | 15.4                 |      |
| TA                 | Operating free-air temperature |                                                         |              | -55  |     |                      | °C   |
| TC                 | Operating case temperature     |                                                         |              |      |     | 125                  | °C   |

NOTE 2: In order to minimize noise on VSS, care should be taken to provide a minimum-inductance path between the VSS pins and system ground.

## electrical characteristics over recommended operating free-air (minimum) and case (maximum) temperature range (unless otherwise noted)

| PARAMETER  |                                                    | TEST CONDIT | MIN TYP <sup>‡</sup>                        | MAX                     | UNIT |     |    |
|------------|----------------------------------------------------|-------------|---------------------------------------------|-------------------------|------|-----|----|
| VOH        | High-level output voltage                          |             | V <sub>CC</sub> = 4.5 V,                    | I <sub>OH</sub> = -8 mA | 2.6  |     | v  |
| VOL        | Low-level output voltage                           |             | V <sub>CC</sub> = 4.5 V,                    | IOL = 8 mA              |      | 0.6 | V  |
| 1-         | D High-impedance bidirectional pins output current |             | V <sub>CC</sub> = 4.5 V,                    | V <sub>O</sub> = 2.8 V  |      | 10  |    |
| ю          |                                                    |             | $V_{CC} = 4.5 V,$                           | V <sub>O</sub> = 0.6 V  |      | -10 | μA |
| l <u>ı</u> | Input current                                      |             | VI = VSS to VCC                             |                         |      | ±10 | μA |
|            |                                                    | Dynamic     | V <sub>CC</sub> = 5.5 V                     |                         |      | 325 | mA |
| lcc§       | Supply current                                     | Quiescent   | VI = VILmax or VIHmin,                      | IOH = IOL = 0           |      | 50  |    |
|            | Quies                                              |             | $V_{I} = 0.2 V \text{ or } V_{CC} - 0.2 V,$ | IOH = IOL = 0           |      | 50  | mA |
| Ci         | Input capacitance                                  |             |                                             |                         | 10   |     | pF |

<sup>‡</sup> All typical values are at V<sub>CC</sub> = 5 V and T<sub>A</sub> = 25°C.

\$ ICC is measured at maximum clock frequency. Inputs are presented with random logic highs and lows to assure the toggling of internal nodes.



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

#### coprocessor mode (MSTR low)

# switching characteristics over recommended ranges of supply voltage and operating free-air (minimum) and case (maximum) temperature range (unless otherwise noted)<sup>†</sup> propagation delay times

|                            |                                                                                                              |                             | SMJ34082A-28 | SMJ3408 |     |      |
|----------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|---------|-----|------|
|                            | PARAMETER                                                                                                    | FIGURE                      | MIN MAX      | MIN     | MAX | UNIT |
| tp(ATCL-CORV)              | Propagation delay time, ALTCH low to CORDY valid                                                             | 11                          | 40           |         | 40  |      |
| tp(ATCH-LADV)              | Propagation delay time, ALTCH high to LAD data valid                                                         | 16                          | 35           |         | 35  |      |
| tp(CASL-LADV)              | Propagation delay time, CAS low to LAD data valid                                                            | 14                          | 30           |         | 25  |      |
| tp(CASH-LADZ)              | Propagation delay time, CAS high to LAD disabled                                                             | 14                          | 30           |         | 25  |      |
| <sup>t</sup> p(LC1-DCSL)ML | Propagation delay time, LCLK1 $\uparrow$ or $\downarrow$ to DS/ $\overline{\text{CS}}$ low with MEMCFG low   | 17, 21, 23                  | 25           |         | 25  |      |
| <sup>t</sup> p(LC1-DCSH)ML | Propagation delay time, LCLK1 $\uparrow$ or $\downarrow$ to DS/ <del>CS</del> high with MEMCFG low           | 17, 19, 21,<br>23, 24, 26   | 25           |         | 25  |      |
| <sup>t</sup> p(LC1-DCSL)MH | Propagation delay time, LCLK1 $\uparrow$ or $\downarrow$ to DS/ <del>CS</del> low with MEMCFG high           | 18, 20, 22,<br>25, 27       | 30           | 2       | 22  |      |
| <sup>t</sup> p(LC1-DCSH)MH | Propagation delay time, LCLK1 $\uparrow$ or $\downarrow$ to DS/ $\overline{\text{CS}}$ high with MEMCFG high | 18, 20, 22,<br>25, 27       | 21           | 2       | 21  |      |
| <sup>t</sup> p(LC1-MCEL)   | Propagation delay time, LCK1 $\uparrow$ or $\downarrow$ to $\overrightarrow{MCE}$ low                        | 17-19,<br>21-27             | 21           | 2       | 21  |      |
| <sup>t</sup> p(LC1-MCEH)ML | Propagation delay time, LCLK1 ↑ or ↓ to MCE high with MEMCFG low                                             | 17, 19, 21,<br>23           | 23           | 2       | 23  |      |
| <sup>t</sup> p(LC1-MCEH)MH | Propagation delay time, LCLK1 ↑ or ↓ to MCE high<br>with MEMCFG high                                         | 18, 22, 25,<br>27           | 15           | 2       | 15  |      |
| <sup>t</sup> p(LC1-MOEL)   | Propagation delay time, LCLK1 $\uparrow$ or $\downarrow$ to $\overline{MOE}$ low                             | 17, 18,<br>21-23, 26,<br>27 | 10 35        | 10      | 35  | ns   |
| <sup>t</sup> p(LC1-MOEH)   | Propagation delay time, LCLK1 $\uparrow$ or $\downarrow$ to $\overline{MOE}$ high                            | 17, 18,<br>21-23, 26,<br>27 | 3 13         | 3       | 13  |      |
| <sup>t</sup> p(LC1-MSAV)   | Propagation delay time, LCLK1 $\uparrow$ or $\downarrow$ to MSA address valid                                | 17-27                       | 25           |         | 25  |      |
| <sup>t</sup> p(LC1-MSDV)   | Propagation delay time, LCLK1 $\uparrow$ or $\downarrow$ to MSD data valid                                   | 19, 20-22,<br>24, 25        | 40           |         | 40  |      |
| <sup>t</sup> p(LC1-MWRL)   | Propagation delay time, LCLK1 $\uparrow$ or $\downarrow$ to $\overline{MWR}$ low                             | 19-22, 24,<br>25            | 10 35        | 10      | 35  |      |
| <sup>t</sup> p(LC1-MWRH)   | Propagation delay time, LCLK1 $\uparrow$ or $\downarrow$ to $\overline{MWR}$ high                            | 20-22, 24,<br>25            | 3 13         | 3       | 13  |      |
| tp(LC1H-COIL)              | Propagation delay time, LCLK1 ↑ to COINT low                                                                 | 12                          | 23           |         | 20  |      |
| tp(LC1H-COIH)              | Propagation delay time, LCLK1 ↑ to COINT high                                                                | 12                          | 23           |         | 20  |      |
| tp(LC1H-LADV)              | Propagation delay time, LCLK1 ↑ to LAD data valid                                                            | 16                          | 28           |         | 23  |      |
| <sup>t</sup> p(MSDV-LADV)  | Propagation delay time, MSD data valid to LAD data valid                                                     | 26, 27                      | 30           |         | 25  |      |
| tp(RASH-LADXZ)             | Propagation delay time, RAS high to LAD disabled                                                             | 16                          | 30           | 1       | 25  |      |

<sup>†</sup> See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for PIPES2 high and PIPES1 low. No other pipeline settings are specified.



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

#### coprocessor mode (MSTR low)

# switching characteristics over recommended ranges of supply voltage and operating free-air (minimum) and case (maximum) temperature range (unless otherwise noted) (continued)<sup>†</sup> enable and disable times

| · · · · · · · · · · · · · · · · · · · |                                        |        | SMJ34082A-28 |     | SMJ34082A-30 |     |      |
|---------------------------------------|----------------------------------------|--------|--------------|-----|--------------|-----|------|
|                                       | PARAMETER                              | FIGURE | MIN          | MAX | MIN          | MAX | UNIT |
| ten(LOEL-LADZX)                       | Enable time, LOE low to LAD enabled    | 16     | 2            | 17  | 2            | 17  |      |
| ten(MAEL-MSAZX)                       | Enable time, MAE low to MSA enabled    | 21, 22 | 2            | 17  | 2            | 17  | ns   |
| ten(MAEL-MSDZX)                       | Enable time, MAE low to MSD enabled    | 22     | 2            | 17  | 2            | 17  |      |
| <sup>t</sup> dis(LOEH-LADXZ)          | Disable time, LOE high to LAD disabled | 16     | 2            | 17  | 2            | 17  |      |
| tdis(MAEH-MSAXZ)                      | Disable time, MAE high to MSA disabled | 21, 22 | 2            | 17  | 2            | 17  | ns   |
| tdis(MAEH-MSDXZ)                      | Disable time, MAE high to MSD disabled | 21     | 2            | 17  | 2            | 17  |      |

#### valid times

|                           |                                                                    |                  | SMJ34082A-28 |     | SMJ34082A-30 |     |      |
|---------------------------|--------------------------------------------------------------------|------------------|--------------|-----|--------------|-----|------|
|                           | PARAMETER                                                          |                  | MIN          | MAX | MIN          | MAX | UNIT |
| t <sub>v</sub> (MWRH-MSA) | Valid time, MSA address after MWR high                             | 20-22, 24,<br>25 | 0            |     | o            |     |      |
| t <sub>v</sub> (MWRH-MSD) | Valid time, MSD data output after MWR high                         | 20-22, 24,<br>25 | 0            |     | 0            |     | ns   |
| <sup>t</sup> v(LC1-MSA)   | Valid time, MSA address valid after LCK $\uparrow$ or $\downarrow$ | 17-22,<br>24-27  | 3            |     | 3            |     | .10  |
| tv(LC1L-COR)              | Valid time, CORDY valid after LCLK1 low                            | 11               | 0            |     | 0            |     |      |

# timing requirements over recommended ranges of supply voltage and operating free-air (minimum) and case (maximum) temperature range (unless otherwise noted)<sup>†</sup> clock period and pulse duration

|                      |                                                             |                       | SMJ340 | 82A-28 | SMJ340 | 82 <b>A-3</b> 0 |      |
|----------------------|-------------------------------------------------------------|-----------------------|--------|--------|--------|-----------------|------|
|                      | PARAMETER                                                   | FIGURE                | MIN    | MAX    | MIN    | MAX             | UNIT |
| <sup>t</sup> c(LC1)  | Clock period, LCLK1 (1/f <sub>clock</sub> ) with PIPES1 low | 10, 17-22,<br>24-27   | 170    |        | 162    |                 | ns   |
| tc(LC2)              | Clock period, LCLK2 (1/fclock) with PIPES1 low              | 10                    | 170    |        | 162    |                 | 113  |
| tw(LC1H)             | Pulse duration, LCLK1 high                                  | 10                    | 76     |        | 72     |                 |      |
| <sup>t</sup> w(LC1L) | Pulse duration, LCLK1 low                                   | 10                    | 76     |        | 72     |                 |      |
| tw(LC2H)             | Pulse duration, LCLK2 high                                  | 10                    | 76     |        | 72     |                 |      |
| tw(LC2L)             | Pulse duration, LCLK2 low                                   | 10                    | 76     |        | 72     |                 |      |
| tw(DCSH)MH           | Pulse duration, DS/CS high with MEMCFG high                 | 20, 25, 27            | 5      |        | 5      |                 | -    |
| tw(RSTL)             | Pulse duration, RESET low                                   | 12                    | 35     |        | 30     |                 | ns   |
| tw(MCEH)             | Pulse duration, MCE high                                    | 18, 25, 27            | 5      |        | 5      |                 |      |
| <sup>t</sup> w(MOEH) | Pulse duration, MOE high                                    | 17, 18, 23,<br>26, 27 | 5      |        | 5      |                 |      |
| tw(MWRH)             | Pulse duration, MWR high                                    | 20, 24, 25            | 5      |        | 5      |                 |      |

<sup>†</sup> See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for PIPES2 high and PIPES1 low. No other pipeline settings are specified.



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

#### coprocessor mode (MSTR low)

## timing requirements over recommended ranges of supply voltage and operating free-air (minimum) and case (maximum) temperature range (unless otherwise noted) (continued)<sup> $\dagger$ </sup>

#### transition times

|         |                        |        | SMJ340 | 82A-28 | SMJ340 | 82A-30 |      |
|---------|------------------------|--------|--------|--------|--------|--------|------|
|         | PARAMETER              | FIGURE | MIN    | MAX    | MIN    | MAX    | UNIT |
| tt(LC1) | Transition time, LCLK1 | 10     |        | 15     |        | 15     |      |
| tt(LC2) | Transition time, LCLK2 | 10     |        | 15     |        | 15     | ns   |

#### setup and hold times

|                           |                                                                        | 1                 | SMJ340 | 32A-28 | SMJ340 | 32A-30 |      |
|---------------------------|------------------------------------------------------------------------|-------------------|--------|--------|--------|--------|------|
|                           | PARAMETER                                                              | FIGURE            | MIN    | MAX    | MIN    | MAX    | UNIT |
| tsu(BUS-LC2H)             | Setup time, BUSFLT valid before LCLK2 ↑                                | 11                | 20     |        | 13     |        |      |
| tsu(CC-LC1)               | Setup time, CC valid before LCLK1 $\uparrow$ or $\downarrow$           | 12                | 7      |        | 7      |        |      |
| tsu(LAD-ATCL)             | Setup time, LAD address valid before ALTCH low                         | 13-16, 23         | 17     |        | 17     |        |      |
| tsu(LAD-CASH)             | Setup time, LAD address valid before CAS high                          | 13, 15, 24,<br>25 | 15     |        | 15     |        |      |
| tsu(LRD-LC2H)             | LRD-LC2H) Setup time, LRDY valid before LCLK2 1                        |                   | 20     |        | 20     |        |      |
| tsu(MSD-LC1)              | Setup time, MSD data valid before LCLK1 $\uparrow$ or $\downarrow$     | 17, 18, 23        | 12     |        | 12     |        | ns   |
| tsu(RASH-ATCL)            | Setup time, RAS high before ALTCH low                                  | 13-15, 23         | 35     |        | 30     |        |      |
| <sup>t</sup> su(RDYL-LC1) | Setup time, RDY low before LCLK1 $\uparrow$ or $\downarrow$            | 12                | 20     |        | 15     |        |      |
| tsu(RSTH-LC1)             | Setup time, RESET high before LCLK1 $\uparrow$ or $\downarrow$         | 12                | 50     |        | 50     |        |      |
| tsu(SF-ATCL)              | Setup time, SF valid before ALTCH low                                  | 13-16, 23         | 15     |        | 15     |        |      |
| tsu(WEL-CASL)             | Setup time, WE low for data write before CAS low                       | 13, 16            | 15     |        | 15     |        |      |
| th(ATCH-SF)               | Hold time, SF valid after ALTCH high                                   | 13-15, 23         | 15     |        | 12     |        |      |
| th(ATCL-LAD)              | Hold time, LAD address valid after ALTCH low                           | 13-16, 23         | 21     |        | 17     |        |      |
| <sup>t</sup> h(CASH-LAD)  | Hold time, LAD data valid after CAS high                               | 13, 15, 24,<br>25 | 0      |        | 0      |        |      |
| th(CASH-SF)               | Hold time, SF valid after CAS high                                     | 13-15, 23         | 15     |        | 15     |        |      |
| th(LC1-CC)                | Hold time, CC valid after LCLK1 ↑ or ↓                                 | 12                | 5      |        | 5      |        |      |
| th(LC1-MSD)               | Hold time, MSD input data valid after LCLK1 $\uparrow$ or $\downarrow$ | 17, 18, 23        | 4      |        | 4      |        | ns   |
| <sup>t</sup> h(LC1-RDY)   | Hold time, RDY valid after LCLK1 $\uparrow$ or $\downarrow$            | 12                | 5      |        | 5      |        |      |
| th(LC1H-LC2L)             | Hold time, LCLK2 low after LCLK1 high                                  | 10                | 20     |        | 20     |        |      |
| th(LC2H-BUS)              | Hold time, BUSFLT valid after LCLK2 high                               | 11                | 5      |        | 5      |        |      |
| th(LC2H-LC1H)             | Hold time, LCLK1 high after LCLK2 high                                 | 10                | 20     |        | 20     |        |      |
| th(LC2H-LRD)              | Hold time, LRDY valid after LCLK2 high                                 | 11                | 5      |        | 5      |        |      |
| th(WEH-SF)                | Hold time, SF valid after WE high                                      | 13                | 20     |        | 20     |        |      |

\* See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for PIPES2 high and PIPES1 low. No other pipeline settings are specified.



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

#### coprocessor mode (MSTR low)

## timing requirements over recommended ranges of supply voltage and operating free-air (minimum) and case (maximum) temperature range (unless otherwise noted) (continued)<sup> $\uparrow$ </sup>

#### delay times

|                 |                                                       |                  | SMJ3408 | 32A-28 | SMJ3408 | 32A-30 |      |
|-----------------|-------------------------------------------------------|------------------|---------|--------|---------|--------|------|
|                 | PARAMETER                                             | FIGURE           | MIN     | MAX    | MIN     | MAX    | UNIT |
| td(DCSH-MCEL)MH | Delay time, DS/CS high to MCE low with MEMCFG<br>high | 18, 22           | 4       |        | 4       |        |      |
| td(DCSH-MWRL)   | Delay time, DS/CS high to MWR low                     | 19, 24           | 5       |        | 5       |        |      |
| td(MCEH-DCSL)MH | Delay time, MCE high to DS/CS low with MEMCFG<br>high | 20               | 4       |        | 4       |        |      |
| td(MCEH-MWRL)   | Delay time, MCE high to MWR low                       | 25               | 5       |        | 5       |        |      |
| td(MOEH-MWRL)   | Delay time, MOE high to MWR low                       | 19               | 5       |        | 5       |        |      |
| td(MSAV-MWRL)   | Delay time, MSA valid to MWR low                      | 20-22, 24,<br>25 | 4       |        | 4       |        | ns   |
| td(MSDZ-MOEL)   | Delay time, MSD disabled to MOE low                   | 21, 22           | 2       |        | 2       |        |      |
| td(MWRH-MCEL)MH | Delay time, MWR high to MCE low with MEMCFG high      | 25               | 5       |        | 5       |        |      |
| td(MWRH-MOEL)   | Delay time, MWR high to MOE low                       | 19, 21, 22       | 5       |        | 5       |        |      |
| td(MWRH-MSDVZ)  | Delay time, MWR high to MSD disabled                  | 21               | 1       | 12     | _1      | 9      |      |
| td(MWRL-MSDZX)  | Delay time, MWR low to MSD enabled                    | 21, 22           | 1       | 13     | 1       | 13     |      |

See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for PIPES2 high and PIPES1 low. No other pipeline settings are specified.



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

#### host-independent mode (MSTR high)

# switching characteristics over recommended ranges of supply voltage and operating free-air (minimum) and case (maximum) temperature range (unless otherwise noted)<sup>†</sup> propagation delay times

#### SMJ34082A-28 SMJ34082A-30 FIGURE UNIT PARAMETER MIN MAX MIN MAX Propagation delay time, CLK 1 to ALTCH high 29,30 10 10 tp(CLKH-ATCH) Propagation delay time, CLK 1 to ALTCH low 29,30 28 28 tp(CLKH-ATCL) 29, 31, 32, Propagation delay time, CLK 1 to CAS high 10 10 tp(CLKH-CASH) 34-36 29, 31, 32, Propagation delay time, CLK T to CAS low 28 28 tp(CLKH-CASL) 34-36 29-31, 33, Propagation delay time, CLK 1 to COINT high 20 20 tp(CLKH-COIH) 35, 36, 46 29-31, 33, Propagation delay time, CLK 1 to COINT low 20 20 tp(CLKH-COIL) 35, 36, 46 Propagation delay time, CLK T to CORDY high 46 20 17 tp(CLKH-CORH) Propagation delay time, CLK T to CORDY low 46 17 tp(CLKH-CORL) 20 36, 38, 40, Propagation delay time, CLK ↑ to DS/CS high with 1 10 1 10 MEMCFG high tp(CLKH-DCSH)MH 42-44 Propagation delay time, CLK T to DS/CS high with 35. 37. 39. 23 20 tp(CLKH-DCSH)ML MEMCFG low 41, 45, 46 Propagation delay time, CLK 1 to DS/CS low with 36, 38, 40, 23 20 1 1 to(CLKH-DCSL)MH MEMCFG high 42-44 Propagation delay time, CLK 1 to DS/CS low with 37, 41, 23 20 tp(CLKH-DCSL)ML MEMCFG low 45-47 Propagation delay time, CLK 1 to INTG high<sup>‡</sup> 47 20 15 tp(CLKH-ITGH) Propagation delay time, CLK T to INTG low 47 25 20 t<sub>p</sub>(CLKH-ITGL) 29, 30, ns 33-35, 43, Propagation delay time, CLK T to LAD valid 35 35 <sup>t</sup>p(CLKH-LADV) 44 36, 38, Propagation delay time, CLK T to MCE high with 10 1 1 10 tp(CLKH-MCEH)MH MEMCFG high 42-46 Propagation delay time, CLK T to MCE high with 37, 39, 41, 1 20 1 20 tp(CLKH-MCEH)ML MEMCFG low 45-47 35-39. 23 20 Propagation delay time, CLK T to MCE low 1 1 tp(CLKH-MCEL) 41-47 37, 38, Propagation delay time, CLK 1 to MOE high 1 11 1 11 <sup>t</sup>p(CLKH-MOEH) 41-47 37. 38. Propagation delay time, CLK T to MOE low 10 35 10 35 tp(CLKH-MOEL) 41-47 35-47 Propagation delay time, CLK 1 to MSA address valid 20 20 tp(CLKH-MSAV) 35, 36, 40 40 Propagation delay time, CLK T to MSD data valid tp(CLKH-MSDV) 39-42 35.36. Propagation delay time, CLK 1 to MWR high 10 10 tp(CLKH-MWRH) 1 1 40-42 35, 36, Propagation delay time, CLK T to MWR low 10 35 10 35 to(CLKH-MWRL) 39-42

<sup>†</sup> See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for PIPES2 high and PIPES1 low. No other pipeline settings are specified.

<sup>‡</sup> Interrupts are not granted during multicycle instructions.



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

#### host-independent mode (MSTR high)

# switching characteristics over recommended ranges of supply voltage and operating free-air (minimum) and case (maximum) temperature range (unless otherwise noted) (continued)<sup>†</sup> propagation delay times (continued)

#### SMJ34082A-28 SMJ34082A-30 FIGURE PARAMETER UNIT MIN MAX MIN MAX 30, 33, 43, Propagation delay time, CLK 1 to WE high 10 10 tp(CLKH-WEH) 44 ns 30, 33, 43, Propagation delay time, CLK 1 to WE low 30 30 tp(CLKH-WEL) 44

#### enable and disable times

|                              |                                                     | FIGURE | SMJ340 | 82A-28 | SMJ340 |     |      |
|------------------------------|-----------------------------------------------------|--------|--------|--------|--------|-----|------|
|                              | PARAMETER                                           |        | MIN    | MAX    | MIN    | MAX | UNIT |
| ten(CLKH-LADZX)              | Enable time, CLK high to LAD enabled                | 29, 30 | 5      |        | 5      |     |      |
| ten(LOEL-LADZX)              | Enable time, LOE low to LAD enabled                 | 33     | 2      | 17     | 2      | 17  |      |
| ten(MAEL-MSAZX)              | Enable time, MAE low to MSA enabled                 | 41, 42 | 2      | 17     | 2      | 17  | ns   |
| ten(MAEL-MSDZX)              | Enable time, MAE low to MSD enabled                 | 42     | 2      | 17     | 2      | 17  |      |
| <sup>t</sup> dis(CLKH-LADZX) | Disable time, CLK high to LAD disabled <sup>‡</sup> | 29, 30 | 1      | 25     |        | 25  |      |
| <sup>t</sup> dis(LOEH-LADXZ) | Disable time, LOE high to LAD disabled              | 33     | 2      | 17     | 2      | 17  |      |
| tdis(MAEH-MSAXZ)             | Disable time, MAE high to MSA disabled              | 41, 42 | 2      | 17     | 2      | 17  | ns   |
| <sup>t</sup> dis(MAEH-MSDXZ) | Disable time, MAE high to MSD disabled              | 42     | 2      | 17     | 2      | 17  |      |

#### valid times

|                          |                                              |                   | SMJ34082A-28 |     | SMJ3408 | 32A-30 |      |
|--------------------------|----------------------------------------------|-------------------|--------------|-----|---------|--------|------|
|                          | PARAMETER                                    | FIGURE            | MIN          | MAX | MIN     | MAX    | UNIT |
| tv(ATCH-LAD)             | Valid time, LAD output data after ALTCH high | 29, 30            | 2            |     | 2       |        |      |
| tv(CLKH-MSA)             | Valid time, MSA address valid after CLK high | 35-47             | 3            | 0   | 3       |        |      |
| tv(MWRH-MSD)             | Valid time, MSD data valid after MWR high    | 35, 36,<br>40-42  | 1            |     | 1       |        | ns   |
| <sup>t</sup> v(MWRH-MSA) | Valid time, MSA address valid after MWR high | 35, 36,<br>40-41  | 1            |     | 1       |        |      |
| <sup>t</sup> v(WEH-LAD)  | Valid time, LAD data valid after WE          | 30, 33, 43,<br>44 | 2            |     | 2       |        |      |

F See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for PIPES2 high and PIPES1 low. No other pipeline settings are specified.

<sup>‡</sup> Valid only for last write in series. The LAD bus is not placed in high-impedance state between consecutive outputs.



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

#### host-independent mode (MSTR high)

## timing requirements over recommended ranges of supply voltage and operating free-air (minimum) and case (maximum) temperature range (unless otherwise noted)<sup>†</sup>

#### clock period and pulse duration

|                      |                                                                |                                         | SMJ340 | 82A-28 | SMJ3408 | 82A-30  | UNIT |
|----------------------|----------------------------------------------------------------|-----------------------------------------|--------|--------|---------|---------|------|
|                      | PARAMETER                                                      | FIGURE                                  | MIN    | MAX    | MIN     | MIN MAX |      |
| tc(CLK)              | Clock period time, CLK (1/f <sub>Clock</sub> ) with PIPES1 low | 28-31,<br>33-48                         | 78     |        | 73      |         | ns   |
| <sup>t</sup> w(ATCH) | Pulse duration, ALTCH high                                     | 30                                      | 5      |        | 5       |         |      |
| <sup>t</sup> w(CASH) | Pulse duration, CAS high                                       | 29, 31, 32,<br>35, 36                   | 5      |        | 5       |         |      |
| <sup>t</sup> w(CLKH) | Pulse duration, CLK high                                       | 28                                      | 17     |        | 17      |         |      |
| <sup>t</sup> w(CLKL) | Pulse duration, CLK low                                        | 28                                      | 22     |        | 22      |         |      |
| tw(DCSH)             | Pulse duration, DS/CS high                                     | Pulse duration, DS/CS high 36, 40, 44 5 |        |        | 5       |         |      |
| tw(ITRL)             | Pulse duration, INTR low                                       | 34, 47                                  | 30     |        | 30      |         | ns   |
| <sup>t</sup> w(MCEH) | Pulse duration, MCE high                                       | 36, 38,<br>44-46                        | 5      |        | 5       |         | 115  |
| <sup>t</sup> w(MOEH) | H) Pulse duration, MOE high                                    |                                         | 6      |        | 6       |         |      |
| <sup>t</sup> w(MWRH) | Pulse duration, MWR high                                       | 35, 36, 40                              | 6      |        | 6       |         |      |
| <sup>t</sup> w(RSTL) | Pulse duration, RESET low                                      | 34                                      | 40     |        | 40      |         |      |
| <sup>t</sup> w(WEH)  | Pulse duration, WE high                                        | 30, 33, 43,<br>44                       | 5      |        | 5       |         |      |

#### transition time

|         |                      | T      | SMJ340 | 82 <b>A-</b> 28 | SMJ340 | 82A-30 |      |
|---------|----------------------|--------|--------|-----------------|--------|--------|------|
|         | PARAMETER            | FIGURE | MIN    | MAX             | MIN    | MAX    | UNIT |
| tt(CLK) | Transition time, CLK | 28     |        | 15              |        | 15     | ns   |

<sup>†</sup> See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for PIPES2 high and PIPES1 low. No other pipeline settings are specified.



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

#### host-independent mode (MSTR high)

# timing requirements over recommended ranges of supply voltage and operating free-air (minimum) and case (maximum) temperature range (unless otherwise noted) (continued)<sup>†</sup> setup and hold times

|                            |                                                                                 | 1                 | SMJ340 | 82A-28 | SMJ34082A-30 |     |      |
|----------------------------|---------------------------------------------------------------------------------|-------------------|--------|--------|--------------|-----|------|
|                            | PARAMETER                                                                       | FIGURE            | MIN    | MAX    | MIN          | MAX | UNIT |
| tsu(CC-CLKH)               | Setup time, CC before CLK high                                                  | 45                | 7      |        | 7            |     |      |
| <sup>t</sup> su(LADV-CLKL) | Setup time, LAD data valid before CLK low for immediate data input <sup>‡</sup> | 32                | 15     |        | 15           |     |      |
| tsu(ITRL-CLKH)             | Setup time, INTR before CLK high                                                | 47                | 20     |        | 15           |     |      |
| <sup>t</sup> su(LAD-CLKH)  | Setup time, LAD input data valid before CLK high                                | 29, 31,<br>34-36  | 15     |        | 13           |     | ns   |
| <sup>t</sup> su(LRD-CLKH)  | u(MSD-CLKH) Setup time, MSD data valid before CLK high                          |                   | 20     |        | 15           |     |      |
| <sup>t</sup> su(MSD-CLKH)  |                                                                                 |                   | 13     |        | 13           |     |      |
| tsu(RDYV-CLKH)             | Setup time, RDY valid before CLK high                                           | 48                | 20     |        | 12           |     |      |
| tsu(RSTH-CLKH)             | Setup time, RESET high before CLK high                                          | 34                | 45     |        | 45           |     |      |
| t <sub>su(RSTL-ITRL)</sub> | Setup time, RESET low before INTR low for bootstrap<br>loader                   | 34                | 20     |        | 20           |     |      |
| th(CLKH-CC)                | Hold time, CC after CLK high                                                    | 45                | 3      |        | 3            |     |      |
| th(CLKH-ITR)               | Hold time, INTR after CLK high                                                  | 47                | 3      |        | 3            |     |      |
| <sup>t</sup> h(CLKH-LAD)   | Hold time, LAD input data valid after CLK high                                  | 29, 31, 35,<br>36 | 5      |        | 5            |     |      |
| th(CLKH-LRD)               | Hold time, LRDY after CLK high                                                  | 48                | 0      |        | 0            |     |      |
| <sup>t</sup> h(CLKH-MSD)   | Hold time, MSD input data valid after CLK high                                  | 37, 38,<br>43-47  | 4      |        | 4            |     | ns   |
| th(CLKH-RDY)               | Hold time, RDY after CLK high                                                   | 48                | 0      |        | 0            |     |      |
| <sup>t</sup> h(CLKL-LAD)   | Hold time, LAD data after CLK low for immediate data input <sup>‡</sup>         | 32                | 5      |        | 5            |     |      |
| <sup>t</sup> h(ITRL-RSTH)  | Hold time, RESET low after INTR low for bootstrap                               |                   | 15     |        | 15           |     |      |

<sup>†</sup> See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for PIPES2 high and PIPES1 low. No other pipeline settings are specified.

<sup>+</sup> This mode permits data input that does not meet the minimum setup before CLK high. The clock period for this mode must be extended according to the equation:

Adjusted clock period = Normal clock period + Data delay + 5 ns

The data delay is the delay from CLK high to valid data. This mode may not be used to input data for divides or square roots.



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

#### host-independent mode (MSTR high)

## timing requirements over recommended ranges of supply voltage and operating free-air (minimum) and case (maximum) temperature range (unless otherwise noted) (continued)<sup>†</sup>

#### delay times

|                            |                                                       |                  | SMJ3408 | 32A-28 | SMJ3408 | 32A-30 |      |
|----------------------------|-------------------------------------------------------|------------------|---------|--------|---------|--------|------|
|                            | PARAMETER                                             | FIGURE           | MIN     | MAX    | MIN     | MAX    | UNIT |
| td(ATCH-CASL)              | Delay time, ALTCH high to CAS low                     | 29               | 5       |        | 5       |        |      |
| td(ATCH-WEL)               | Delay time, ALTCH high to WE low                      | 30               | 3       |        | 3       |        |      |
| td(CASH-ATCL)              | Delay time, CAS high to ALTCH low                     | 29               | 3       |        | 3       |        |      |
| td(CASH-WEL)               | Delay time, CAS high to WE low                        | 33               | 3       |        | 3       |        |      |
| td(COIL-ATCL)              | Delay time, COINT low to ALTCH low                    | 29, 30           | 0       |        | 0       |        |      |
| <sup>t</sup> d(COIL-CASL)  | Delay time, COINT low to CAS low                      | 31, 35, 36       | 0       |        | 0       |        | -    |
| td(COIL-WEL)               | Delay time, COINT low to WE low                       | 33               | 0       |        | 0       |        |      |
| td(DCSH-MCEL)MH            | Delay time, DS/CS high to MCE low with MEMCFG<br>high | 38, 42           | 5       |        | 5       |        |      |
| 乜(DCSH-MWRL)               | Delay time, DS/CS high to MWR low                     | 35, 39           | 4       |        | 4       |        |      |
| td(MCEH-DCSL)MH            | Delay time, MCE high to DC/CS low with MEMCFG<br>high | 40               | 5       |        | 5       |        |      |
| td(MCEH-MWRL)              | Delay time, MCE high to MWR low                       | 36               | 5       |        | 5       |        | ns   |
| td(MOEH-MWRL)              | Delay time, MOE high to MWR low                       | 39               | 5       |        | 5       |        |      |
| td(MSAV-MWRL)              | Delay time, MSA valid to MWR low                      | 35, 36,<br>40-42 | 4       |        | 4       |        |      |
| td(MSDZ-MOEL)              | Delay time, MSD disabled to MOE low                   | 41, 42           | 2       |        | 2       |        |      |
| td(MWRH-MCEL)MH            | Delay time, MWR high to MCE low with MEMCFG high      | 36               | 5       |        | 5       |        |      |
| td(MWRH-MOEL)              | Delay time, MWR high to MOE low                       | 41, 42           | 5       |        | 5       |        |      |
| <sup>t</sup> d(MWRH-MSDXZ) | Delay time, MWR high to MSD disabled                  | 42               | 1       | 12     | 1       | 9      |      |
| td(MWRL-MSDZX)             | Delay time, MWR low to MSD enabled                    | 41, 42           | 1       | 13     | 1       | 13     |      |
| td(WEH-ATCL)               | Delay time, WE high to ALTCH low                      | 29               | 3       |        | 3       |        |      |
| td(WEH-CASL)               | Delay time, WE high to CAS low                        | 31               | 3       |        | 3       |        |      |

<sup>†</sup> See Parameter Measurement Information for load circuit, voltage waveforms, and timing diagrams. The device parameters are measured for PIPES2 high and PIPES1 low. No other pipeline settings are specified.



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

#### **EXPLANATION OF LETTER SYMBOLS**

This data sheet uses a type of letter symbol based on JEDEC Std-100 and IEC Publication 748-2, 1985, to describe time intervals. The format is:

#### tA(BC-DE)F

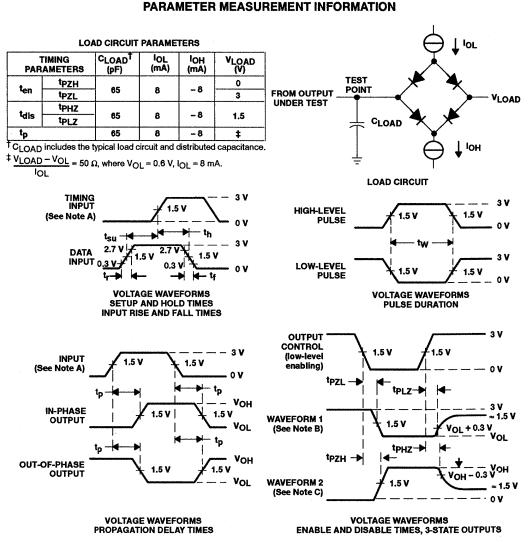
Where:

Subscript A indicates the type of dynamic parameter being represented. One of the following is used:

#### Switching Characteristics:

- p = Propagation delay time
- en = Enable time
- dis = Disable time

**Timing Requirements:** 


- c = Clock period
- w = Pulse duration
- t = Transition time
- d = Delay time
- su = Setup time
- h = Hold time
- v = Valid time
- Subscript B indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur first, that is, at the beginning of the time interval.
- Subscript C indicates the direction of the transistion and/or the final state or level of the signal represented by B. One or two of the following are used:
  - H = High or transition to high
  - L = Low or transition to low
  - V = A valid steady-state level
  - X = Unknown, changing, or "don't care" level
  - Z = High-impedance (off) state
- Subscript D indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur last, that is, at the end of the time interval.
- Subscript E indicates the direction of the transition and/or the final state or level of the signal represented by D. One or two of the symbols described in Subscript C are used.
- Subscript F indicates additional information such as mode of operation, test conditions, etc.

The hyphen between the C and D subscripts is omitted when no confusion is likely to occur. For these letter symbols on this data sheet, the signal names are further abbreviated as follows:

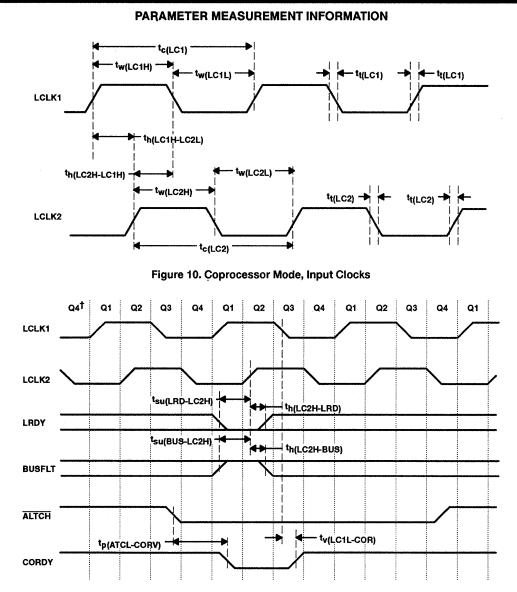
| SIGNAL   | B&D       | SIGNAL    | B&D       | SIGNAL | B&D       | SIGNAL    | B&D       | SIGNAL  | B&D       |
|----------|-----------|-----------|-----------|--------|-----------|-----------|-----------|---------|-----------|
| NAME     | SUBSCRIPT | NAME      | SUBSCRIPT | NAME   | SUBSCRIPT | NAME      | SUBSCRIPT | NAME    | SUBSCRIPT |
| ALTCH    | ATC       | CORDY     | COR       | LCLK2  | LC2       | MSA(0:15) | MSA       | тск     | тск       |
| BUSFLT   | BFT       | DC/CS     | DCS       | LOE    | LOE       | MSD(0:31) | MSD       | TDI     | TDI       |
| CAS      | CAS       | EC(0:1)   | EC        | LRDY   | LRD       | MWR       | MWR       | TDO     | TDO       |
| CC       | CC        | INTG      | INT       | MAE    | MAE       | RAS       | RAS       | TMS     | TMS       |
| CID(0:2) | CID       | INTR      | ITR       | MSTR   | MST       | RDY       | RDY       | Vcc/Vss |           |
| CLK      | CLK       | LAD(0:31) | LAD       | MCE    | MCE       | RESET     | RST       | WE      | WE        |
| COINT    | COI       | LCLK1     | LC1       | MOE    | MOE       | SF        | SF        | MEMCFG  | м         |



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A



NOTES: A. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by pulse generators having the following characteristics: PRR = 1 MHz, Z<sub>0</sub> = 50 Ω, t<sub>f</sub> ≤ 6 ns, t<sub>f</sub> ≤ 6 ns.


B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

C. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. For tpLz and tpHz, VoL and VoH are measured values.

Figure 9



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991



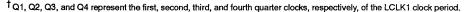
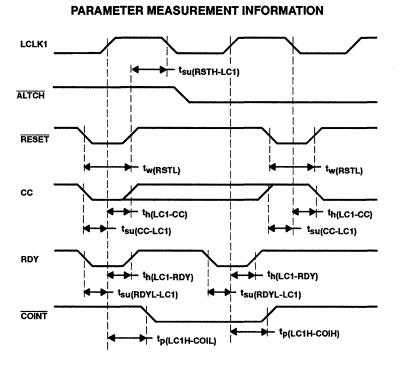
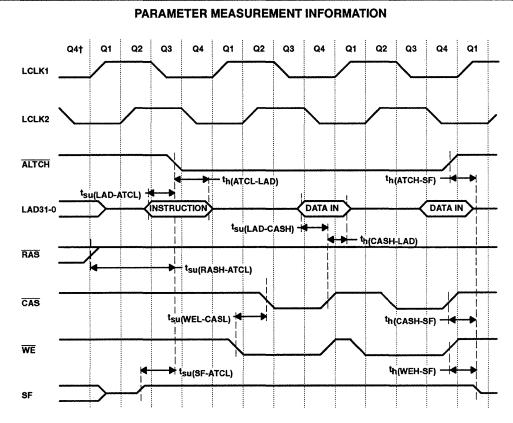




Figure 11. Coprocessor Mode, Bus Control Signals



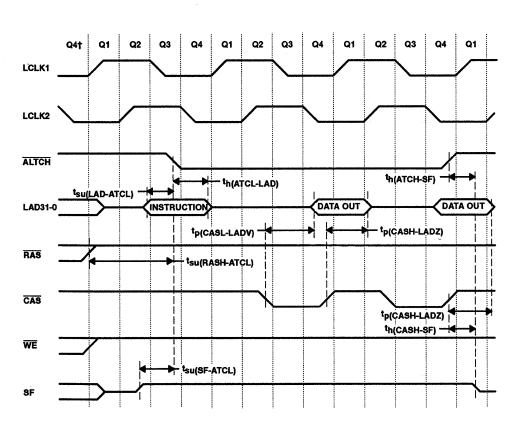

D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A







SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991



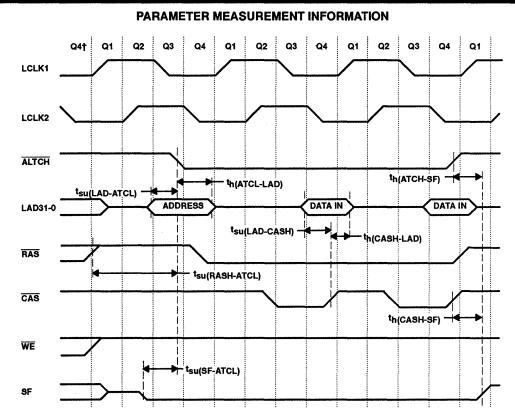

<sup>†</sup>Q1, Q2, Q3, and Q4 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

Figure 13. Coprocessor Mode, SMJ34020 GSP to SMJ34082



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A




#### PARAMETER MEASUREMENT INFORMATION

<sup>†</sup>Q1, Q2, Q3, and Q4 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

Figure 14. Coprocessor Mode, SMJ34082A to SMJ34020 GSP Including Coprocessor Internal Cycle



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991



<sup>†</sup>Q1, Q2, Q3, and Q4 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

Figure 15. Coprocessor Mode, DRAM/VRAM Memory to SMJ34082



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A



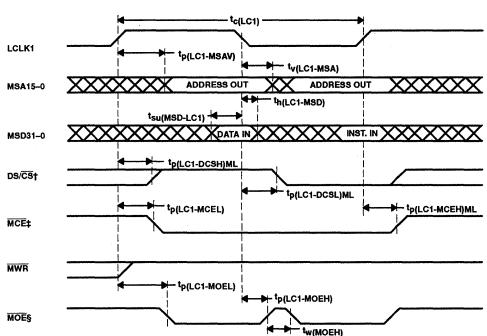




Figure 16. Coprocessor Mode, SMJ34082A to DRAM/VRAM Memory



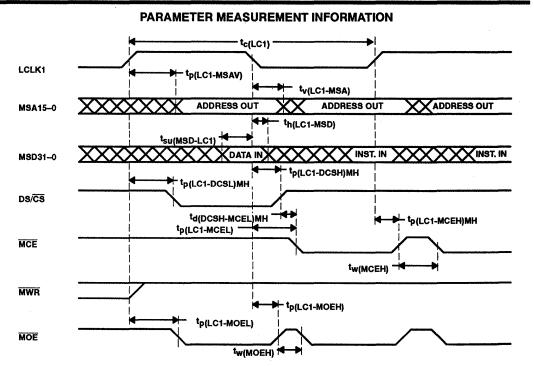
SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991



#### PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.

<sup>‡</sup> MCE dos not toggle at each clock edge.

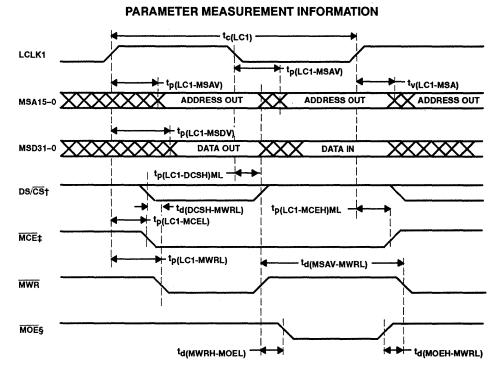

§ MOE goes high at each clock edge.

NOTE: This example shows a data read followed by an instruction read.

#### Figure 17. Coprocessor Mode MSD Bus Timing, Memory to SMJ34082A with MEMCFG Low



D3592, SEPTEMBER 1990 ~ REVISED MAY 1991 - SGUS012A




NOTE: This example shows a data read followed by an instruction read followed by an instruction read. This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is high, DS/CS and MCE rise after every clock edge. In this mode, DS/CS and MCE may not both be active (low) at the same time.

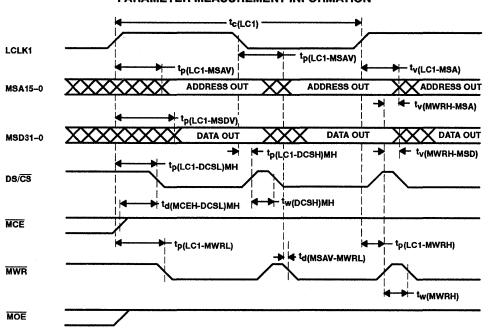
Figure 18. Coprocessor Mode MSD Bus Timing, Memory to SMJ34082A with MEMCFG High



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991



<sup>†</sup> The setting of DS/ $\overline{CS}$  determines whether the value on the MSD bus is an instruction or data. <sup>‡</sup>  $\overline{MCE}$  does not toggle at each clock edge.


§ MWR goes high at each clock edge.

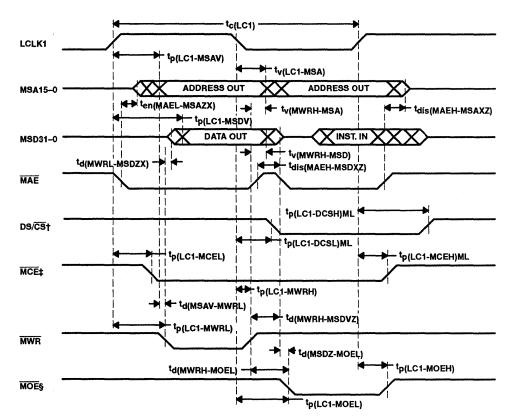
NOTE: This example shows a data write followed by a code read.

Figure 19. Coprocessor Mode MSD Bus Timing, SMJ34082A to Memory with MEMCFG Low



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A




#### PARAMETER MEASUREMENT INFORMATION

NOTE: This example shows multiple data writes. Timing for multiple code writes would be similar. This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is high, DS/CS and MCE rise after every clock edge. In this mode, DS/CS and MCE may not both be active (low) at the same time.

Figure 20. Coprocessor Mode MSD Bus Timing, SMJ34082A to Memory with MEMCFG High



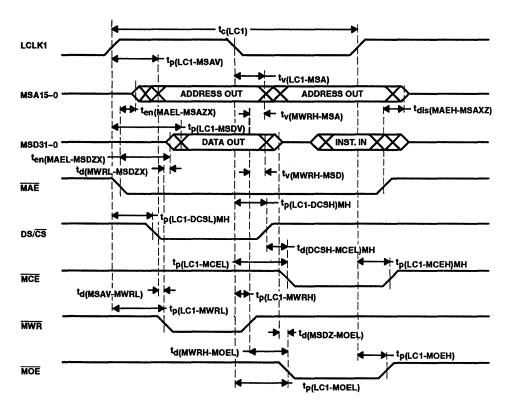
SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991



#### PARAMETER MEASUREMENT INFORMATION

<sup>†</sup>The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.

<sup>‡</sup> MCE does not toggle at each clock edge.


§ MOE goes high at each clock edge.

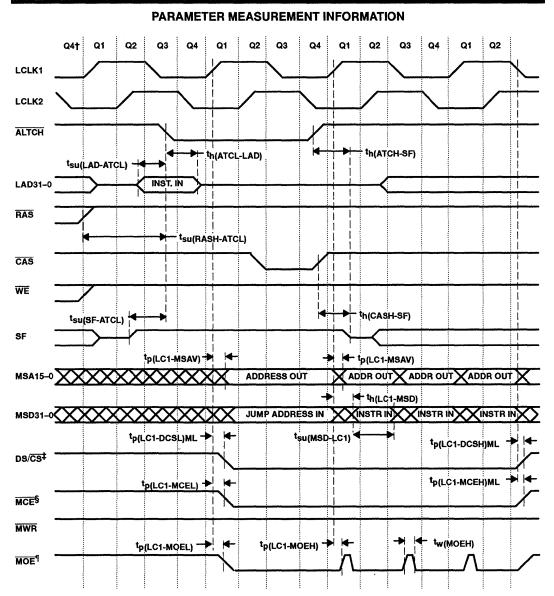
NOTE: This example shows a data write followed by an instruction read.

#### Figure 21. Coprocessor Mode, MSD Enable/Disable Timing with MEMCFG Low



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A




#### PARAMETER MEASUREMENT INFORMATION

NOTE: This example shows a data write followed by an instruction read. Timing for multiple code writes would be similar. This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is high, DS/CS and MCE rise after every clock edge. In this mode, DS/CS and MCE may not both be active (low) at the same time.

Figure 22. Coprocessor Mode, MSD Bus Enable/Disable Timing with MEMCFG High

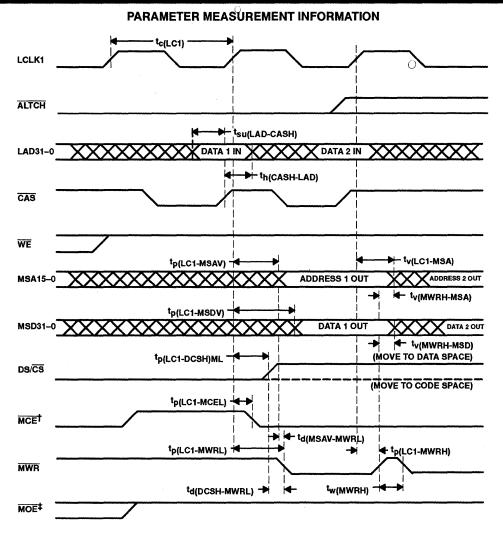


SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991



<sup>†</sup>Q1, Q2, Q3, and Q4 represent the first, second, third, and fourth quarter clocks, respectively, of the LCLK1 clock period.

The setting of DS/CS determines whether the value on the MSD bus in an instruction or data.

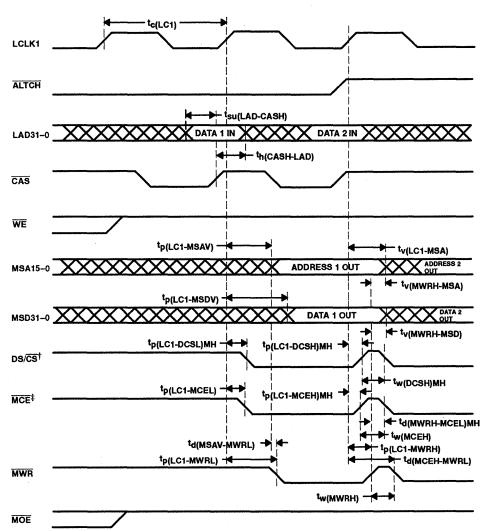

§ MCE does not toggle at each rising clock edge.

<sup>¶</sup> MOE goes hiigh at each rising clock edge.

Figure 23. Coprocessor Mode, Jump to External Memory Subroutine with MEMCFG Low



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A



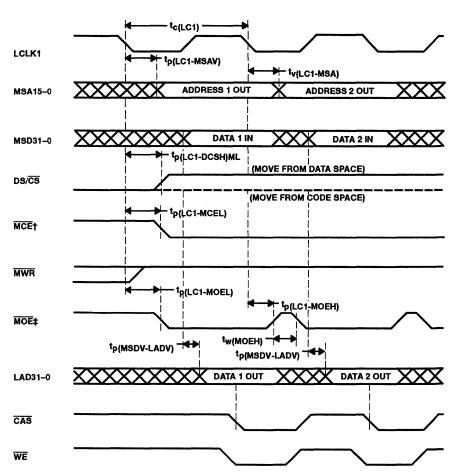

<sup>†</sup> MCE does not toggle at each clock edge. <sup>‡</sup> MOE goes high at each clock edge.

Figure 24. Coprocessor Mode, LAD to MSD Bus Transfer Timing with MEMCFG Low



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991




PARAMETER MEASUREMENT INFORMATION

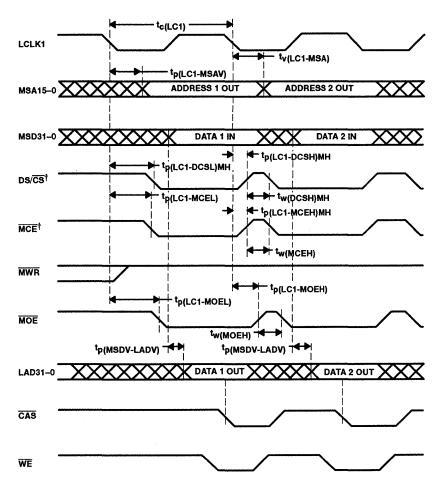
DS/CS valid for moves to data space; MCE valid for moves to code space. Only one of these would be valid for each move instruction.
 This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register.

Figure 25. Coprocessor Mode, LAD to MSD Bus Transfer Timing with MEMCFG High



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A




PARAMETER MEASUREMENT INFORMATION

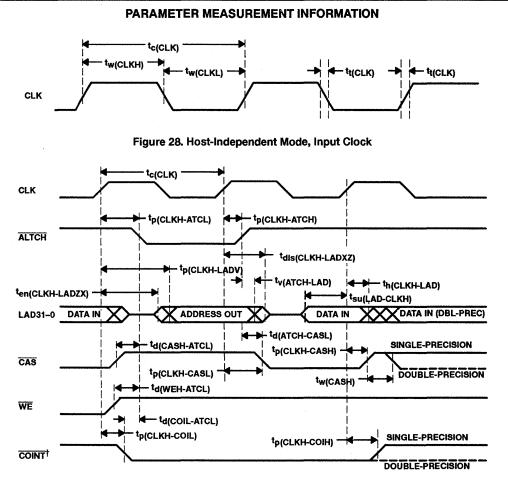
<sup>†</sup> MCE dos not toggle at each clock edge. <sup>‡</sup> MOE goes high at each clock edge.

Figure 26. Coprocessor Mode, MSD to LAD Bus Transfer Timing with MEMCFG Low



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991




#### PARAMETER MEASUREMENT INFORMATION

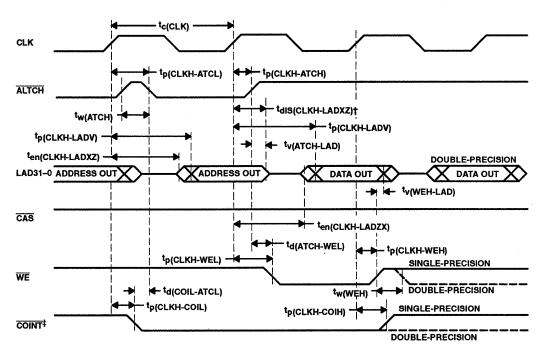
<sup>†</sup> DS/CS valid for moves to data space; MCE valid for moves to code space. Only one would be valid for each move instruction. NOTE: This option for using DS/CS as data space chip enable and MCE as code space chip enable is involved by setting the MEMCFG bit high in the configuration register.

Figure 27. Coprocessor Mode, MSD to LAD Bus Transfer Timing with MEMCFG High



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A




† COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuratin register, COINT is controlled by bit 1 of the LAD move instruction instead of the set mask instruction.

NOTE: This timing diagram assumes an external address latch to store address for external memory reads. Data input hold time on the latch is zero; data (or address) output hold time is nonzero.

Figure 29. Host-Independent Mode, LAD Bus Timing for Memory to SMJ34082A

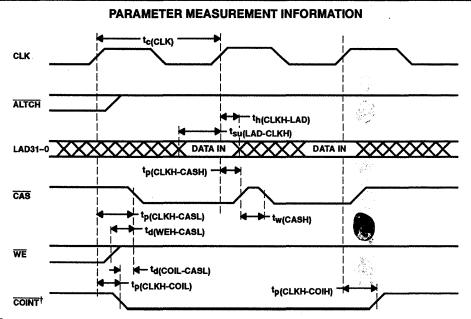


SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

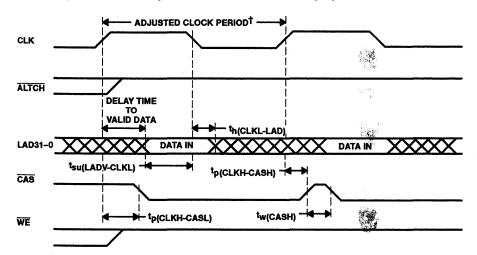


#### PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> Valid only for last write in series. The LAD bus is not placed in high-impedance state between consecutive outputs.


<sup>+</sup> COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuration register, COINT is controlled by bit 1 of the LAD move instruction instead of the set mask instruction.

NOTE: This timing diagram assumes an external address latch to store address for external memory reads. Data input hold time is zero. Data (or address) output hold time is nonzero. Valid only for last write in series. The LAD bus is not placed in high impedance between consecutive outputs.


Figure 30. Host-Independent Mode, LAD Bus Timing for SMJ34082A to Memory



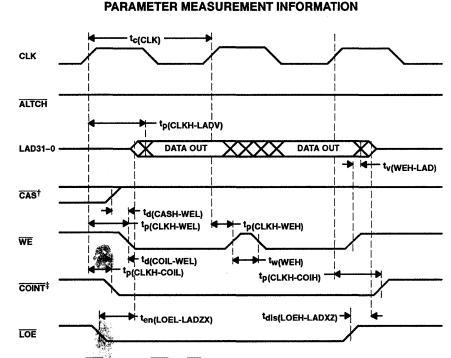
D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A



† COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuration register, COINT is controlled by bit 1 of the LAD move instruction instead of the set mask instruction.



#### Figure 31. Host-Independent Mode, LAD Bus Timing Input to SMJ34082A


<sup>†</sup> This mode permits data input which does not meet the minimum setup before CLK high. For immediate data input, CLK must be high for more than 20 ns. This input mode cannot be used to input data for divides and square roots.

Adjusted clock period = Normal clock period + Data delay + 5 ns.

#### Figure 32. Host-Independent Mode, LAD Bus Timing Input of Immediate Data to SMJ34082A

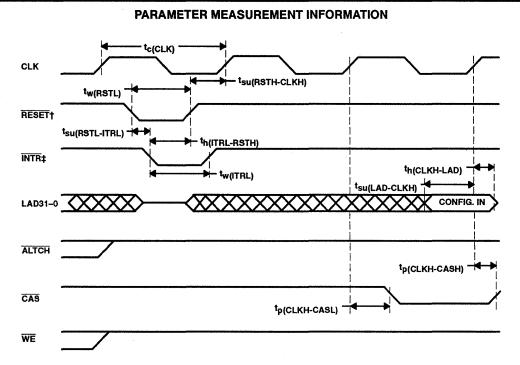


SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991



<sup>†</sup> When the LADCFG bit is high, LOE high places CAS and WE (as well as the LAD bus) in high impedance.

Sec.

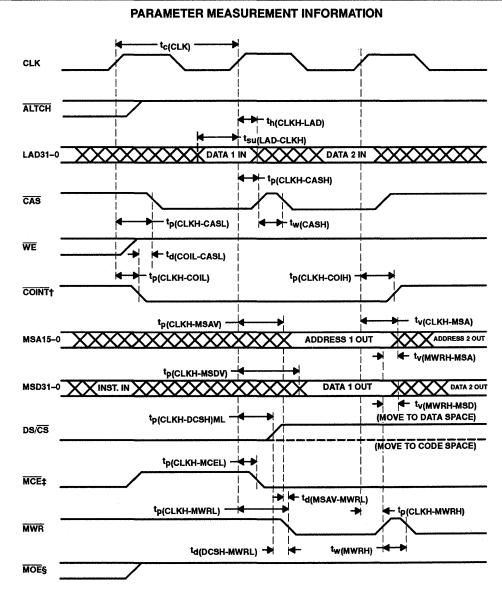

\* Valid only for LADCFG high. When the LADCFG bit is high in the configuration register, COINT is controlled by bit 1 of the LAD move instruction instead of the set mask instruction.

NOTE: If the instruction writes the result of an FPU operation to a register and outputs the result to the LAD bus, in the same cycle, the minimum clock period must be extended.

#### Figure 33. Host-Independent Mode, LAD Bus Timing Output from SMJ34082A



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A




- TRESET is level sensitive. When RESET is set low, both LAD and MSD buses are placed in high-impedance state. When RESET is released, the sequencer forces a jump to address 0. If INTR goes low while RESET is low, the loader moves 64 words through to the external memory on MSD. Timing for the LAD to MSD move is shown in a later diagram, with the exception that the first word on LAD loads the configuration register and does not pass to the MSD bus.
- INTR may be low one or more cycles after RESET goes low. RESET is held low, and then INTR is taken low. The bootstrap loader starts when RESET is set high, which may involve a delay of one or more cycles after INTR goes low.
- NOTE: When the bootstrap loader is invoked, the first data word input on the LAD bus should be the configuration register settings, which will be written into the configuration register. This allows the user to select the MEMCFG setting, for reading or writing memory on the MSD port, as well as the LADCFG setting for the LAD bus interface.

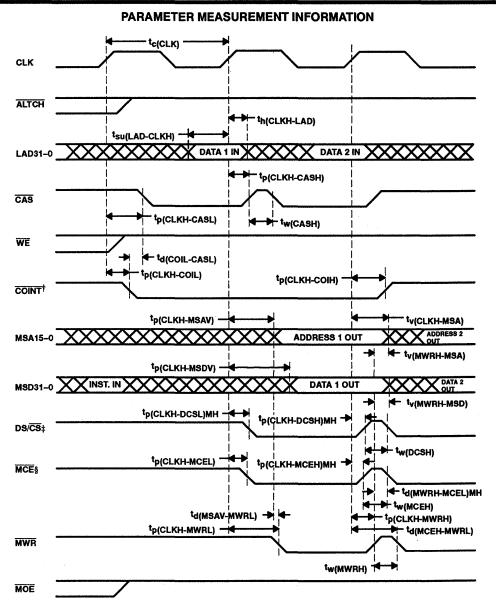
Figure 34. Host-Independent Mode LAD Bus Timing, Bootstrap Loader Operation



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991



<sup>†</sup> COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuration register, COINT is controlled by bit 1 of the LAD move instruction instead of the set mask instruction.


TWCE does not toggle at each rising clock edge.

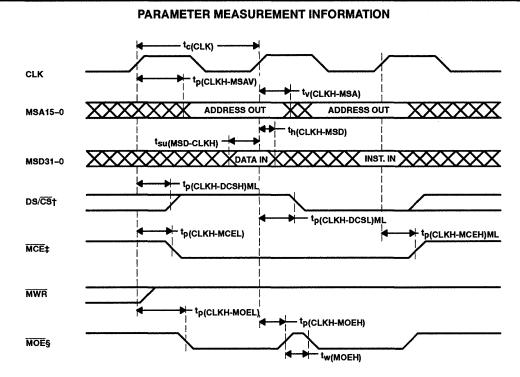
§ MOE goes high at each rising clock edge.

#### Figure 35. Host-Independent Mode, LAD to MSD Bus Timing with MEMCFG Low



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A




<sup>†</sup> COINT timing is for LADCFG high only. When the LADCFG bit is set high in the configuration register, COINT is controlled by bit 1 of the LAD move instruction instead of the set mask instruction.

DS/CS valid for moves to data space; MCE valid for moves to code space. Only one of these would be valid for each move instruction.
This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register.

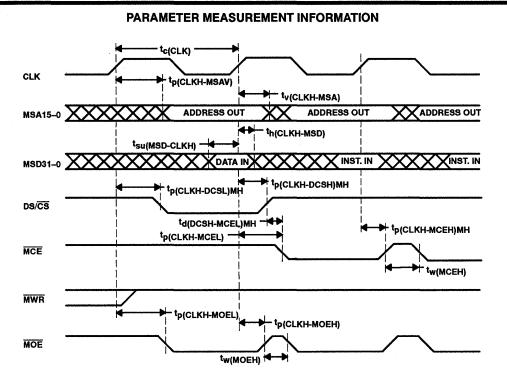
Figure 36. Host-Independent Mode, LAD to MSD Bus Transfer Timing with MEMCFG High



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991



<sup>†</sup> The setting of DS/<del>CS</del> determines whether the value on the MSD bus is an instruction or data. <sup>‡</sup> <u>MCE</u> dos not toggle at each rising clock edge.

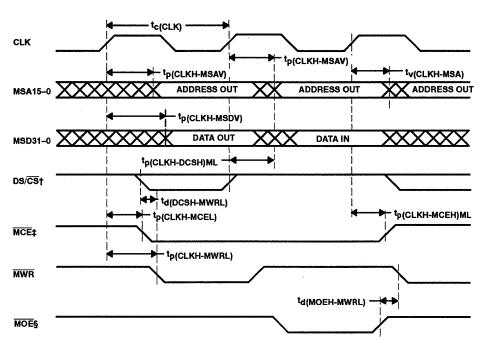

§ MOE goes high at each rising clock edge.

NOTE; This example shows a data read followed by an instruction read.

Figure 37. Host-Independent Mode MSD Bus Timing, Memory to SMJ34082A with MEMCFG Low



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A




NOTE: This example shows a data read followed by an instruction read followed by an instruction read. This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is high, DS/CS and MCE rise after every rising clock edge. In this mode, DS/CS and MCE may not both be active (low) at the same time.

Figure 38. Host-Independent Mode MSD Bus Timing, Memory to SMJ34082A with MEMCFG High



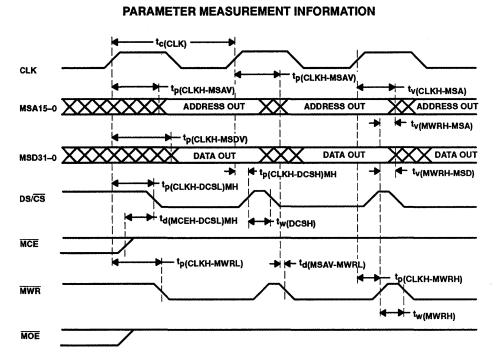
SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991



#### PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> The setting of DS/CS determines whether the value on the MSD bus is an instruction or data.

<sup>‡</sup> MCE dos not toggle at each rising clock edge.

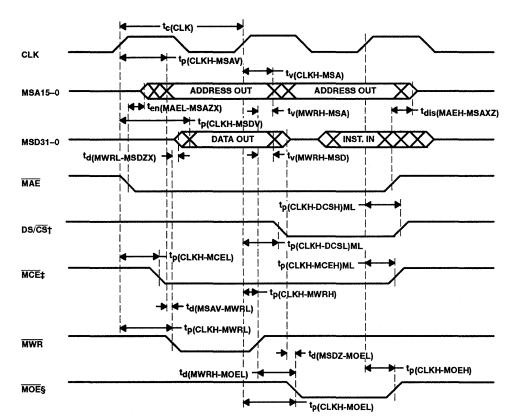

§ MWR goes high at each rising clock edge.

NOTE: This example shows a data write followed by a code read.

Figure 39. Host-Independent Mode MSD Bus Timing, SMJ34082A to Memory with MEMCFG Low



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A




NOTE: This example shows multiple data writes. Timing for multiple code writes would be similar. This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is high, DS/CS and MCE rise after every rising clock edge. In this mode, DS/CS and MCE may not both be active (low) at the same time.

Figure 40. Host-Independent Mode MSD Bus Timing, SMJ34082A to Memory with MEMCFG High

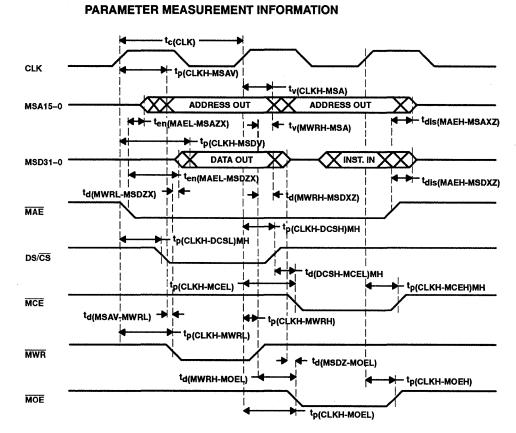


SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991



#### PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> The setting of DS/<del>CS</del> determines whether the value on the MSD bus is an instruction or data. <sup>‡</sup> <u>MCE</u> dos not toggle at each rising clock edge.

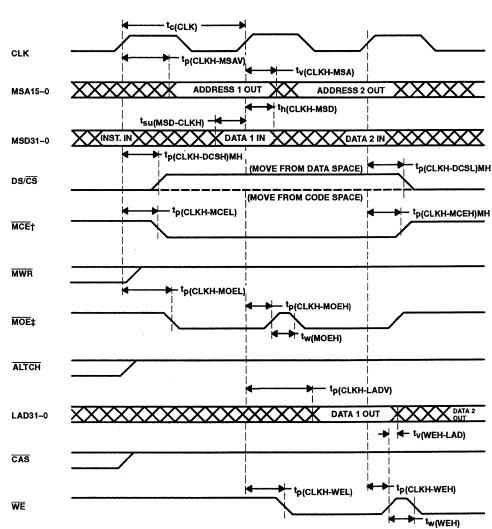

§ MOE goes high at each rising clock edge.

NOTE: This example shows a data write followed by an instruction read.

#### Figure 41. Host-Independent Mode, MSD Enable/Disable Timing with MEMCFG Low



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A




# NOTE: This example shows a data write followed by an instruction read. Timing for multiple code writes would be similar. This option for using DS/CS as data space chip enable and MCE as code space chip enable is invoked by setting the MEMCFG bit high in the configuration register. When MEMCFG is high, DS/CS and MCE rise after every rising clock edge. In this mode, DS/CS and MCE may not both be low at the same time.

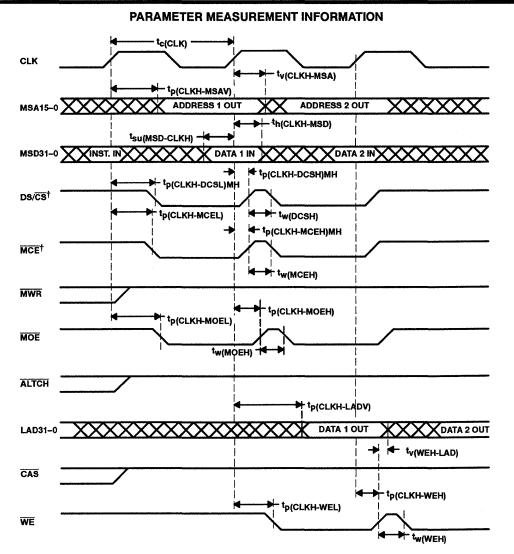
#### Figure 42. Host-Independent Mode, MSD Bus Enable/Disable Timing with MEMCFG High



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991



PARAMETER MEASUREMENT INFORMATION

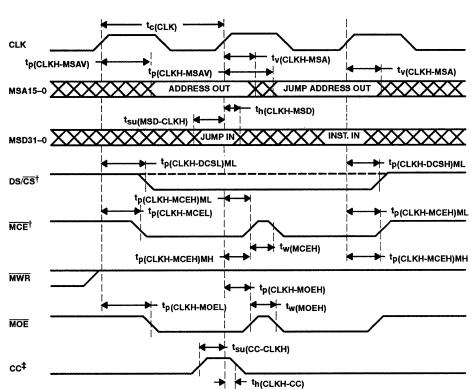

<sup>†</sup> MCE dos not toggle at each rising clock edge.

<sup>‡</sup>MOE goes high at each rising clock edge.

Figure 43. Host-Independent Mode, MSD to LAD Bus Transfer Timing with MEMCFG High



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A




<sup>†</sup> DS/CS valid for moves to data space; MCE valid for moves to code space. Only one would be valid for each move instruction. NOTE: This option for using DS/CS as data space chip enable and MCE as code space chip enable is involved by setting the MEMCFG bit high in the configuration register.

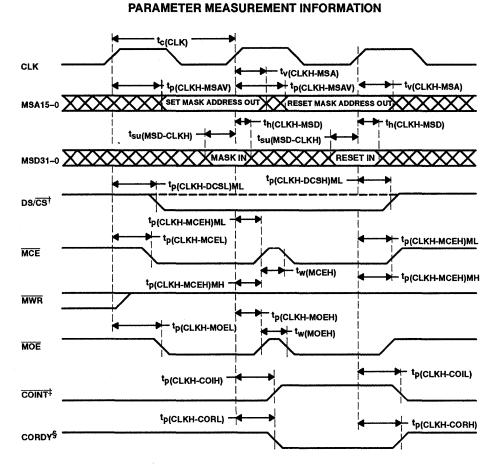
Figure 44. Host-Independent Mode, MSD to LAD Bus Transfer Timing with MEMCF High



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991



PARAMETER MEASUREMENT INFORMATION


<sup>†</sup> Dotted line shows DS/CS for MEMCFG high.

<sup>‡</sup>The CC input is registered on each rising edge of the clock, so the CC bit can be latched one cycle and tested during the next cycle.

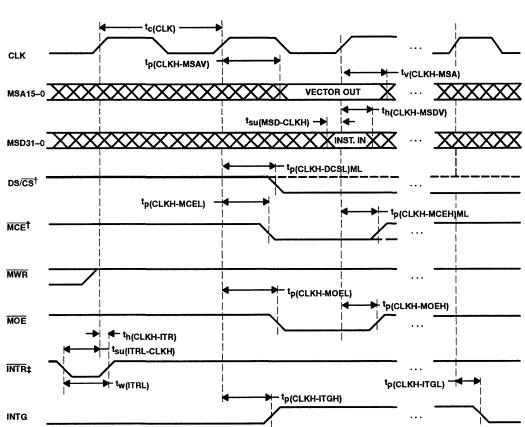
#### Figure 45. Host-Independent Mode, MSD Bus Timing Test Condition (CC) and Branch



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A



<sup>†</sup> Dotted line shows DS/CS for MEMCFG high.


<sup>‡</sup> Valid for MEMCFG low only. When MEMCFG low, COINT is set high by the set mask instruction, and it remains high until reset with another set mask instruction.

§ The CORDY output is set low by the set mask instruction, and it remains low until reset with another set mask instruction.

#### Figure 46. Host-Independent Mode MSD Bus Timing, SET/RESET COINT and CORDY



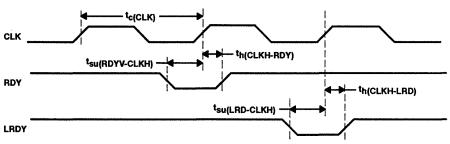
SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991



PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> Dotted lines show DS/CS and MCE for MEMCFG high.

<sup>‡</sup> INTR is negative-edged triggered.


NOTE: Interrupts are not granted during multi-cycle instructions. This example shows two interrupt requests. The first is granted immediately; the second, after the first is finished. INTG remains high after an interrupt is granted until interrupts are reenabled or a return from interrupt instruction is executed.

#### Figure 47. Host-Independent Mode, MSD Bus Timing External Interrupt to SMJ34082A



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

#### PARAMETER MEASUREMENT INFORMATION



NOTE: When either RDY or LRDY is set low and the setup time before CLK high is observed, the device is stalled for one or more clock cycles, until RDY or LRDY is set high again. During a wait state, internal states and status are preserved and output signals do not change. LRDY can be used in this manner only in the host-independent mode.

Figure 48. Host-Independent Mode, MSD Bus Timing Wait State Timing

#### **PROGRAMMING INFORMATION**

#### programming the SMJ34082A

The SMJ34082A is supported by a software development tool kit, including a C compiler and an assembler. Program development using the tools is described in the TMS34082A tool kit documentation. Information on internal instructions and listing of the external instructions are provided in the following sections.

In both the coprocessor and host-independent modes, the SMJ34082A instruction word is 32 bits long. The number, length, and arrangement of fields in the 32-bit word depends on the operating mode and operation selected. Internal microcode to the SMJ34082A is not restricted to the same 32-bit instruction formats so certain internal programs may execute faster than the same operations written with external code can achieve.

In the coprocessor mode, the SMJ34082A can execute instructions both from the SMJ34020 and from the program memory on the MSD bus (MSD31-0). In the host-independent mode the SMJ34082A is controlled from code input on the MSD bus. Internal instructions may be executed in the host-independent mode by performing a jump to the internal address.



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

#### **PROGRAMMING INFORMATION**

#### internal instructions

The SMJ34082A FPU performs a wide range of internal arithmetic and logical operations, as well as complex operations (flagged '†'), summarized below. Complex instructions are multi-cycle routines stored in the internal program ROM.

| One-Operand Operations:        |                                                      |
|--------------------------------|------------------------------------------------------|
| Absolute Value                 | 1s Complement                                        |
| Square Root                    | 2s Complement                                        |
| Reciprocal <sup>†</sup>        |                                                      |
| Conversions:                   |                                                      |
| Integer to Single              | Single to Integer                                    |
| Integer to Double              | Double to Integer                                    |
| Single to Double               | Double to Single                                     |
| Two-Operand Operations:        |                                                      |
| Add                            | Multiply                                             |
| Subtract                       | Divide                                               |
| Compare                        |                                                      |
| Matrix Operations:             |                                                      |
| 4x4, 4x4 Multiply <sup>†</sup> | 3x3, 3x3 Multiply <sup>†</sup>                       |
| 1x4, 4x4 Multiply <sup>†</sup> | 1x3, 3x3 Multiply <sup>†</sup>                       |
| Graphics Operations:           |                                                      |
| Backface Testing <sup>†</sup>  | Polygon Elimination <sup>†</sup>                     |
| Polygon Clipping <sup>†</sup>  | Viewport Scaling and Conversion <sup>†</sup>         |
| 2-D Linear Interpolatio        | n <sup>†</sup> 3-D Linear Interpolation <sup>†</sup> |
| 2-D Window Compare             |                                                      |
| 2-Plane Clipping (X,Y,         |                                                      |
| 2-D Cubic Spline <sup>†</sup>  | 3-D Cubic Spline <sup>†</sup>                        |
| Image Processing:              |                                                      |
| 3x3 Convolution <sup>†</sup>   |                                                      |
| Chained Operations :           |                                                      |
| Polynomial Expansion           | † Multiply/Accumulate <sup>†</sup>                   |
| 1-D Min/Max <sup>†</sup>       | 2-D Min/Max <sup>†</sup>                             |
| Vector Operations:             |                                                      |
| Add <sup>†</sup>               | Dot Product <sup>†</sup>                             |
| Subtract <sup>†</sup>          | Cross Product                                        |
| Magnitude <sup>†</sup>         | Normalizațion <sup>†</sup>                           |
| Scaling <sup>†</sup>           | Reflection <sup>†</sup>                              |
|                                |                                                      |

The internal ROM routines may be used in either the coprocessor or host-independent mode. In the coprocessor mode, the internal routines are invoked by SMJ34020 instructions to its coprocessor(s).

In the host-independent mode, the internal programs can be called as subroutines by the externally stored code. External programs can call internal routines by executing a jump to subroutine with bit 16 (internal code select) set high and the address of the internal routine as the jump address.

The format of the SMJ34082A instruction in the coprocessor mode is shown in Figure 49. The instruction is issued by the SMJ34020 via the LAD bus.

<sup>†</sup> Indicates a complex instruction.



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

|    |   |    |    | PR | OGRA | MMING INFO | RMATI | ON   |   |   |   |   |   |   |   |
|----|---|----|----|----|------|------------|-------|------|---|---|---|---|---|---|---|
| 31 |   | 28 | 24 | 20 | 15   | 13         | 8     | 7    | 6 | 5 |   |   |   |   | 0 |
| I  | D | ra | rb | rd | md   | fpuop      | type  | size | 0 | 1 | 0 | 0 | 0 | 0 | 0 |

#### Figure 49. SMJ34082A Instruction

The 3-bit ID field identifies the coprocessor for which the instruction is intended. This coprocessor ID corresponds to the settings of the CID2-CID0 pins. To broadcast an instruction to all coprocessors, the ID is set to 4h.

| Table 5. C | Table 5. Coprocessor ID |  |  |  |  |  |  |
|------------|-------------------------|--|--|--|--|--|--|
| ID         | COPROCESSOR             |  |  |  |  |  |  |
| 000        | FPU0                    |  |  |  |  |  |  |
| 001        | FPU1                    |  |  |  |  |  |  |
| 010        | FPU2                    |  |  |  |  |  |  |
| 011        | FPU3                    |  |  |  |  |  |  |
| 100        | FPU broadcast           |  |  |  |  |  |  |
| 101        | Reserved                |  |  |  |  |  |  |
| 110        | Reserved                |  |  |  |  |  |  |
| 111        | User defined            |  |  |  |  |  |  |

Table 5 Conressor ID

Four coprocessor addressing modes are defined for the SMJ34082A. The md field indicates the addressing mode.

#### **Table 6. Addressing Modes**

| MODE | MD FIELD | OPERATION                                              |
|------|----------|--------------------------------------------------------|
| 0    | 00       | FPU internal operations with no jump or external moves |
| 1    | 01       | Transfer data to/from SMJ34020 registers               |
| 2    | 10       | Transfer data to/from memory (controlled by SMJ34020)  |
| 3    | 11       | External instructions                                  |

The type and size bits identify the type of operand; as shown below in Table 7. The I bit is used to indicate to the SMJ34082A that this is a reissue of a coprocessor instruction due to a bus interruption. The least significant four bits are the bus status bits, which will all be zero to indicate a coprocessor cycle.

|      | Table 7. OPERAND Types |                                          |  |  |  |  |
|------|------------------------|------------------------------------------|--|--|--|--|
| TYPE | SIZE                   | OPERAND TYPE                             |  |  |  |  |
| 0    | 0                      | 32-bit integer                           |  |  |  |  |
| 0    | 1                      | Reserved                                 |  |  |  |  |
| 1    | 0                      | Single-precision floating-point (32-bit) |  |  |  |  |
| 1    | 1                      | Double-precision floating-point (64-bit) |  |  |  |  |

Table 7 ODEDAND Turses

The ra, rb, and rd fields are for the two sources and destination within the FPU. Register addresses are listed in Table 1. For the ra and rb fields, only the four least significant bits of the register address are used. The ra field may only use the RA register file, C, and CT. The RB field may only use the RB register file, C and CT.

The Floating-Point Unit Operation (fpuop) field is the FPU opcode (5 bits) described in Tables 8, 9, and 10.

In the coprocessor mode, the SMJ34082A executes user-defined routines (stored in external memory on the MSD bus) by executing a jump to external code. For this instruction, the md field (bits 15-13) is set high and the fpuop field gives the routine number (0-31). The SMJ34082A multiplies the routine number by two to get the jump address. For example, routine number 14 would have a jump address of 28 decimal or 1C hex.



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

#### **PROGRAMMING INFORMATION**

The routines are coded using the external instruction format discussed in the next section. The last instruction should be a jump to internal instruction address 0FFFh with the I-bit(internal) set or a return from subroutine instruction. This puts the FPU in an idle state, waiting for the next instruction from the SMJ34020.

| FPUOP | TMS34020 ASSEMBLER OPCODE | DESCRIPTION                                                      |
|-------|---------------------------|------------------------------------------------------------------|
| 00000 | ADDx                      | Sum of ra and rb, place in rd                                    |
| 00001 | SUBx                      | Subtract rb from ra, place result in rd                          |
| 00010 | CMPx                      | Set status bits on result of ra minus rb                         |
| 00011 | SUBx                      | Subtract ra from rb, place result in rd                          |
| 00100 | ADDAx                     | Absolute value of sum of ra and rb, place result in rd           |
| 00101 | SUBAx                     | Absolute value of (ra minus rb), place result in rd              |
| 00110 | MOVE or MOVx              | Load multiple FPU registers from SMJ34020 GSP or its memory      |
| 00111 | MOVE or MOVx              | Save multiple FPU registers to SMJ34020 GSP or its memory        |
| 01000 | MPYx                      | Multiply ra and rb, place result in rd                           |
| 01001 | DIVx                      | Divide ra by rb, place result in rd                              |
| 01010 | INVx                      | Divide 1 by rb, place result in rd                               |
| 01011 | ASUBAx                    | Absolute value of ra minus absolute value of rb, place in rd     |
| 01100 | reserved                  |                                                                  |
| 01101 | MOVEx                     | Move ra to rd, multiple, for n registers                         |
| 01110 | MOVEx                     | Move rb to rd, multiple, for n registers                         |
| 01111 | (see Table 10)            | Single operand instructions, rb field redefined                  |
| 10000 | CPWx                      | Compare point to window (set XLT, XGT, YLT, TGT)                 |
| 10001 | CPVx                      | Compare point to volume (set XLT, XGT, YLT, YGT, ZLT, ZGT)       |
| 10010 | BACKFx                    | Test polygon for facing direction (backface test)                |
| 10011 | INMNMXx                   | Setup FPU registers for MNMX1 or MNMX2 instruction               |
| 10100 | LINTx                     | Given [X1, Y1, Z1], [X2, Y2, Z2], and a plane, find [X3, Y3, Z3] |
| 10101 | CLIPFx                    | Clip a line to a plane pair boundary (start with point 1)        |
| 10110 | CLIPRx                    | Clip a line to a plane pair boundary (start with point 2)        |
| 10111 | CLIPCFx                   | Clip color values to a plane pair boundary (start with point 1)  |
| 11000 | SCALEx                    | Scale and convert coordinates for viewpoint                      |
| 11001 | MTRANx                    | Transpose a matrix                                               |
| 11010 | CKVTXx                    | Compare a polygon vertex to a clipping volume                    |
| 11011 | CONVx                     | 3x3 convolution                                                  |
| 11100 | CLIPCRx                   | Clip color values to a plane pair boundary (start with point 2)  |
| 11101 | OUTC3x                    | Compare a line to a clipping value                               |
| 11110 | CSPLNx                    | Calculate cubic spline for given coefficients                    |
| 11111 | (see Table 11)            | Vector and matrix instructions, rb field redefined               |

#### Table 8. Coprocessor Mode Instructions

F denotes single-precision, D denotes double-precision floating-point, x denotes operand type, and a blank designates signed integer



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

#### **PROGRAMMING INFORMATION**

#### Table 9. Coprocessor Mode Instructions, FPUOP = 011112

| RB   | TMS34020 ASSEMBLER OPCODE | DESCRIPTION                                               |
|------|---------------------------|-----------------------------------------------------------|
| 0000 | PASS                      | Copy ra to rd                                             |
| 0001 | NOT                       | Place 1s complement of ra in rd                           |
| 0010 | ABS                       | Place absolute value of ra in rd                          |
| 0011 | NEG                       | Place negated value of ra in rd                           |
| 0100 | CVDF                      | Convert double in ra to single in rd (T and S define ra)  |
| 0100 | CVFD                      | Convert single in ra to double in rd (T and S define ra)  |
| 0101 | CVDI                      | Convert double in ra to integer in rd (T and S define ra) |
| 0101 | CVFI                      | Convert single in ra to integer in rd (T and S define ra) |
| 0110 | CVID                      | Convert integer in ra to double in rd (T and S define ra) |
| 0110 | CVIF                      | Convert integer in ra to single in rd (T and S define ra) |
| 0111 | VSCLx                     | Multiply each component of a velocity by a scaling factor |
| 1000 | SQARx                     | Place (ra * ra) in rd                                     |
| 1001 | SQRTx                     | Extract square root or ra, place in rd                    |
| 1010 | SQRTAx                    | Extract square root of absolute value of ra, place in rd  |
| 1011 | ABORT                     | Stop execution of any FPU instruction                     |
| 1100 | CKVTXI                    | Initialize check vertex instruction                       |
| 1101 | CHECK                     | Check for previous instruction completion                 |
| 1110 | MOVMEM                    | Move data from system memory to external memory @ MCADDR  |
| 1111 | MOVMEM                    | Move data to system memory from external memory @ MCADDR  |

#### Table 10. Coprocessor Mode Instructions, FPUOP = $11111_2$

| RB   | TMS34020 ASSEMBLER OPCODE | DESCRIPTION                                                 |
|------|---------------------------|-------------------------------------------------------------|
| 0000 | POLYx                     | Polynomial expansion                                        |
| 0001 | MACx                      | Multiply and accumulate                                     |
| 0010 | MNMX1x                    | Determine 1-D minimum and maximum of a series               |
| 0011 | MNMX2x                    | Determine 2-D minimum and maximum of a series of pairs      |
| 0100 | MMPY0x                    | Multiply matrix elements 0, 1, 2, 3 by vector element 0     |
| 0101 | MMPY1x                    | Multiply matrix elements 4, 5, 6, 7 by vector element 1     |
| 0110 | MMPY2x                    | Muttiply matrix elements 8, 9, 10, 11 by vector element 2   |
| 0111 | MMPY3x                    | Multiply matrix elements 12, 13, 14, 15 by vector element 3 |
| 1000 | MADDx                     | Add matrix elements 12, 13, 14, 15 to vector                |
| 1001 | VADDx                     | Add two vectors                                             |
| 1010 | VSUBx                     | Subtract a vector from a vector                             |
| 1011 | VDOTx                     | Compute scalar dot product of two vectors                   |
| 1100 | VCROSx                    | Compute cross product of two vectors                        |
| 1101 | VMAGx                     | Determine the magnitude of a vector                         |
| 1110 | VNORMx                    | Normalize a vector to unit magnitude                        |
| 1111 | VRFLCTx                   | Given normal and incident vectors, find the reflection      |

F denotes single-precision, D denotes double-precision floating-point, x denotes operand type, and a blank designates signed integer



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

#### **PROGRAMMING INFORMATION**

#### external instructions

External instructions are 32 bits long, and their formats (number, length, and function of fields) depend on the operations being selected. Separate formats are provided for data transfers, FPU processing, test and branch operations, and subroutine calls.

Instructions that control FPU operations can select operands from input registers, internal feedback, or from the LAD bus (32-bit operations only). The format for an FPU processing instruction is shown in Figure 50.

| 31 | 28 | 24 | 20 | 15     | 11          | 0 |
|----|----|----|----|--------|-------------|---|
| OP | RA | RB | RD | SEL_OP | INSTRUCTION |   |

#### Figure 50. FPU Processing External Instruction Format

The op field selects the sequencer operation. Three continue instructions are available to permit control of the WE and ALTCH strobe outputs, which enable LAD output in the host-independent mode. The ra, rb, and rd fields are for the two sources and destination in the SMJ34082A register file. The sel\_op field selects the source of the operands: register file or feedback registers. The instruction field designates the operation to be performed.

External instructions and cycle counts are listed in Table 11. Absolute values of operands or results, negated results, and wrapped number inputs are selectable options. Chained operations, using the multiplier and ALU in parallel, and other instructions to control program flow and move data are included.

External instruction timing depends on the pipeline registers setting, controlled by the PIPES2-1 bits in the configuration register. Most FPU processing instructions (with the exception of divide, square root, and double-precision multiply) execute in one cycle per pipeline stage.



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

#### **PROGRAMMING INFORMATION**

| MJ34082A ASSEMBLER | DESCRIPTION                                                                                           | PIPES2-1                 | PIPES2-1                 | PIPES2-1                 | PIPES2-1                 |  |
|--------------------|-------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|
| OPCODE             | OF ROUTINE                                                                                            | 11                       | 10                       | 01                       | 00                       |  |
| ADD                | Add A + B                                                                                             | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |  |
| AND                | Logical AND A, B                                                                                      | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |  |
| ANDNA              | Logical AND NOT A, B                                                                                  | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |  |
| ANDNB              | Logical AND A, NOT B                                                                                  | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |  |
| CJMP               | Conditional jump                                                                                      | 1(1)                     | 1(1)                     | 1(1)                     | 1(1)                     |  |
| CSJR               | Conditional jump to subroutine                                                                        | 1(1)                     | 1(1)                     | 1(1)                     | 1(1)                     |  |
| CMP                | Compare A, B                                                                                          | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |  |
| COMPL              | Pass 1s complement of A                                                                               | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |  |
| DIV                | Divide A / B<br>SP<br>DP<br>integer                                                                   | 8(8)<br>13(13)<br>16(16) | 8(7)<br>13(12)<br>16(15) | 9(7)<br>15(12)<br>17(15) | 9(7)<br>15(12)<br>17(15) |  |
| DTOF               | Convert from DP to SP                                                                                 | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |  |
| DTOI               | Convert from DP to integer                                                                            | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |  |
| DTOU               | Convert from DP to unsigned integer                                                                   | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |  |
| FTOD               | Convert from SP to DP                                                                                 | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |  |
| FTOI               | Convert from SP to integer                                                                            | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |  |
| FTOU               | Convert from SP to unsigned integer                                                                   | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |  |
| ITOD               | Convert from integer to DP                                                                            | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |  |
| ITOF               | Convert from integer to SP                                                                            | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |  |
| LD                 | Load n words into register<br>SP<br>DP<br>integer                                                     | n + 1<br>2n + 1<br>n + 1 | n + 1<br>2n + 1<br>n + 1 | n + 1<br>2n + 1<br>n + 1 | n+1<br>2n+1<br>n+1       |  |
| LDLCT              | Load loop counter with value                                                                          | 1(1)                     | 1(1)                     | 1(1)                     | 1(1)                     |  |
| LDMCADDR           | Load MCADDR with value                                                                                | 1(1)                     | 1(1)                     | 1(1)                     | 1(1)                     |  |
| MASK               | Set programmable mask                                                                                 | 1(1)                     | 1(1)                     | 1(1)                     | 1(1)                     |  |
| MOVA               | Move A (no status flags active)                                                                       | 1(1)                     | 2(1)                     | 2(1)                     | 3(1)                     |  |
| MOVLM              | Move n words from LAD bus to MSD bus<br>SP<br>DP<br>integer                                           | n+1<br>2n+1<br>n+1       | n + 1<br>2n + 1<br>n + 1 | n + 1<br>2n + 1<br>n + 1 | n+1<br>2n+1<br>n+1       |  |
| MOVML              | Move n words from MSD bus to LAD bus<br>SP<br>DP<br>integer                                           | n + 1<br>2n + 1<br>n + 1 |  |
| MOVRR              | Multiple move, register to register<br>SP<br>DP<br>integer                                            | n + 1<br>2n + 1<br>n + 1 |  |
| MULT.ADD           | Multiply A <sub>1</sub> * B <sub>1</sub> , Add A <sub>2</sub> + B <sub>2</sub><br>SP<br>DP<br>integer | 1(1)<br>2(2)<br>1(1)     | 2(1)<br>3(2)<br>2(1)     | 2(1)<br>3(2)<br>2(1)     | 3(1)<br>4(2)<br>3(1)     |  |

#### Table 11. External Instructions and Timing

DP denotes double-precision, and SP denotes single-precision.



SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

#### **PROGRAMMING INFORMATION**

#### Tabale 11. External Instructions and Timing (Continued)

| SMJ34082A ASSEMBLER<br>OPCODE | DESCRIPTION<br>OF ROUTINE                                                    | PIPES2-1<br>11 | PIPES2-1<br>10 | PIPES2-1<br>01 | PIPES2-1<br>00 |
|-------------------------------|------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|
| MULT.NEG                      | Multiply A1 * B1, Subtract 0 - A2                                            |                |                |                |                |
|                               | SP                                                                           | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
|                               | DP                                                                           | 2(2)           | 3(2)           | 3(2)           | 4(2)           |
|                               | integer                                                                      | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
| MULT                          | Multiply A * B                                                               |                |                |                |                |
|                               | SP                                                                           | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
|                               | DP                                                                           | 2(2)           | 3(2)           | 3(2)           | 4(2)           |
| ······                        | integer                                                                      | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
| MULT.PASS                     | Multiply A <sub>1</sub> * B <sub>1</sub> , Add A <sub>2</sub> + 0            | 1              |                |                |                |
|                               | SP                                                                           | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
|                               | DP                                                                           | 2(2)           | 3(2)           | 3(2)           | 4(2)           |
| MUTOUR                        |                                                                              | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
| MULT.SUB                      | Multiply $A_1 * B_1$ , Subtract $A_2 - B_2$                                  |                |                | 0(1)           |                |
|                               | SP<br>DP                                                                     | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
|                               | integer                                                                      | 2(2)           | 3(2)           | 3(2)           | 4(2)           |
| MULT.2SUBA                    | ,                                                                            | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
| MULI.2SUBA                    | Multiply A <sub>1</sub> * B <sub>1</sub> , Subtract 2 – A <sub>2</sub><br>SP | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
|                               | DP                                                                           | 1(1)<br>2(2)   | 3(2)           | 3(2)           | 4(2)           |
|                               | integer                                                                      | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
| MULT.SUBRL                    | Multiply A1 * B1, Subtract B2 – A2                                           |                |                |                |                |
|                               | SP                                                                           | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
|                               | DP                                                                           | 2(2)           | 3(2)           | 3(2)           | 4(2)           |
|                               | integer                                                                      | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
| NEG                           | Pass -A (2s Complement)                                                      | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
| NOR                           | Logical NOR A, B                                                             | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
| OR                            | Logical OR A, B                                                              | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
| PASS                          | Pass A                                                                       | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
| PASS                          | Pass B                                                                       | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
| PASS.ADD                      | Multiply A1 * 1, Add A2 + B2                                                 |                |                |                | ·····          |
|                               | SP                                                                           | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
|                               | DP                                                                           | 2(2)           | 3(2)           | 3(2)           | 4(2)           |
|                               | integer                                                                      | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
| PASS.NEG                      | Multiply A1 * 1, Subtract 0 - A2                                             |                |                |                |                |
|                               | SP                                                                           | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
|                               | DP                                                                           | 2(2)           | 3(2)           | 3(2)           | 4(2)           |
|                               | integer                                                                      | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
| PASS.PASS                     | Multiply A1 * 1, Add A2 + 0                                                  |                |                |                |                |
|                               | SP                                                                           | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
|                               | DP                                                                           | 2(2)           | 3(2)           | 3(2)           | 4(2)           |
|                               | integer                                                                      | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
| PASS.SUB                      | Multiply A1 * 1, Subtract A2 - B2                                            |                |                |                |                |
|                               | SP                                                                           | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
|                               | DP                                                                           | 2(2)           | 3(2)           | 3(2)           | 4(2)           |
|                               | integer                                                                      | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
| PASS.2SUBA                    | Multiply A <sub>1</sub> * 1, Subtract 2 – A <sub>2</sub>                     |                |                |                |                |
|                               | SP                                                                           | 1(1)           | 2(1)           | 2(1)           | 3(1)           |
|                               | DP                                                                           | 2(2)           | 3(2)           | 3(2)           | 4(2)           |
|                               | and SP denotes single-precision                                              | 1(1)           | 2(1)           | 2(1)           | 3(1)           |

DP denotes double-precision, and SP denotes single-precision.



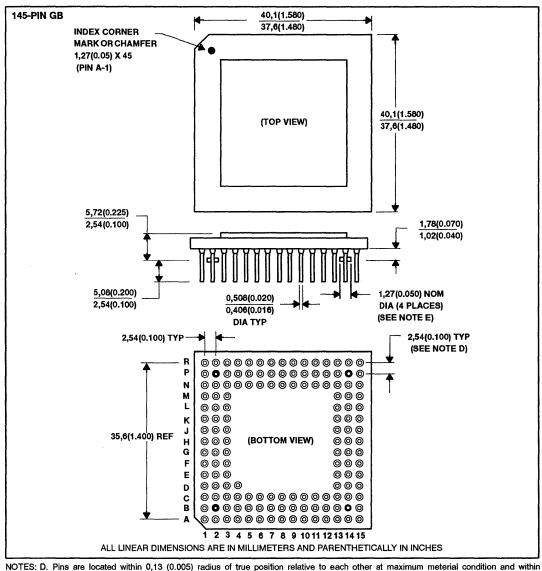
D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A

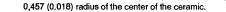
#### **PROGRAMMING INFORMATION**

|                               |                                                                                              |                            | CYCLE COUNTS               |                           |                            |  |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------|----------------------------|----------------------------|---------------------------|----------------------------|--|--|--|
| SMJ34082A ASSEMBLER<br>OPCODE | DESCRIPTION<br>OF ROUTINE                                                                    | PIPES2-1<br>11             | PIPES2-1<br>10             | PIPES2-1<br>01            | PIPES2-1<br>00             |  |  |  |
| RTS                           | Return from subroutine                                                                       | 1(1)                       | 1(1)                       | 1(1)                      | 1(1)                       |  |  |  |
| SLL                           | Logical shift left A by B bits                                                               | 1(1)                       | 2(1)                       | 2(1)                      | 3(1)                       |  |  |  |
| SQRT                          | Square root of A<br>SP<br>DP<br>integer                                                      | 11(11)<br>16(16)<br>20(20) | 11(10)<br>16(15)<br>20(19) | 12(10)<br>17(15)<br>21(19 | 12(10)<br>17(15)<br>21(19) |  |  |  |
| PASS.SUBRL                    | Multiply A <sub>1</sub> * 1, Subtract B <sub>2</sub> – A <sub>2</sub><br>SP<br>DP<br>integer | 1(1)<br>2(2)<br>1(1)       | 2(1)<br>3(2)<br>2(1)       | 2(1)<br>3(2)<br>2(1)      | 3(1)<br>4(2)<br>3(1)       |  |  |  |
| SRA                           | Arithmetic shift right A by B bits                                                           | 1(1)                       | 2(1)                       | 2(1)                      | 3(1)                       |  |  |  |
| SRL                           | Logical shift right A by B bits                                                              | 1(1)                       | 2(1)                       | 2(1)                      | 3(1)                       |  |  |  |
| ST                            | Store n words from register<br>SP<br>DP<br>integer                                           | n + 1<br>2n + 1<br>n + 1   | n +:1<br>2n + 1<br>n + 1   | n + 1<br>2n + 1<br>n + 1  | n + 1<br>2n + 1<br>n + 1   |  |  |  |
| SUB                           | Subtract A – B                                                                               | 1(1)                       | 2(1)                       | 2(1)                      | 3(1)                       |  |  |  |
| SUBRL                         | Subtract B – A                                                                               | 1(1)                       | 2(1)                       | 2(1)                      | 3(1)                       |  |  |  |
| UTOD                          | Convert from unsigned integer to DP                                                          | 1(1)                       | 2(1)                       | 2(1)                      | 3(1)                       |  |  |  |
| UTOF                          | Convert from unsigned integer to SP                                                          | 1(1)                       | 2(1)                       | 2(1)                      | 3(1)                       |  |  |  |
| UWRAPI                        | Unwrap inexact operand                                                                       | 1(1)                       | 2(1)                       | 2(1)                      | 3(1)                       |  |  |  |
| UWRAPR                        | Unwrap rounded operand                                                                       | 1(1)                       | 2(1)                       | 2(1)                      | 3(1)                       |  |  |  |
| UWRAPX                        | Unwrap exact operand                                                                         | 1(1)                       | 2(1)                       | 2(1)                      | 3(1)                       |  |  |  |
| WRAP                          | Wrap denormalized operand                                                                    | 1(1)                       | 2(1)                       | 2(1)                      | 3(1)                       |  |  |  |
| XOR                           | Logical exclusive OR A, B                                                                    | 1(1)                       | 2(1)                       | 2(1)                      | 3(1)                       |  |  |  |

#### Table 11. External Instructions and Timing (Continued)

DP denotes double-precision, and SP denotes single-precision.





SGUS012A - D3592, SEPTEMBER 1990 - REVISED MAY 1991

#### **MECHANICAL DATA**

#### GB pin-grid-array ceramic package

This is a hermetically sealed package.





E. Dimensions do not include solder finish.



D3592, SEPTEMBER 1990 - REVISED MAY 1991 - SGUS012A



## Appendix D

# Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

This application report demonstrates one way that the TMS34082 floating-point processor can be coupled to a Motorola MC68030 microprocessor for high-performance and cost-effective, IEEE 74–1985 compatible, floating-point solutions.

Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

•

## **Overview**

## Objectives

The TMS34082 Floating-Point Processor from Texas Instruments is a cost-effective, high-performance floating-point device. The objective of this application report is to demonstrate one way that the TMS34082 floating-point processor can be tightly coupled to a Motorola MC68030 microprocessor for high-performance and cost-effective, IEEE 754-1985 compatible, floating-point solutions. This application report is for Motorola MC680x0 users who interface to the VME/VSB bus, develop stand-alone systems, or who require fast floating-point processor solutions.

This document will show the simplicity and efficiency with which the TMS34082 interfaces with the Motorola MC68030 as a parallel floating-point processor. This report will also show the advanced floating-point capabilities of the TMS34082 compared to the Motorola MC6888X family.

Direct comparisons have been made between Motorola's coprocessor family and the TMS34082 Floating-Point Processor. Table 1 in the performance analysis section details a comparison of the TMS34082 and the Motorola MC68881. The results clearly show the increase in performance realized by choosing the TMS34082 as the host floating-point processor. By operating the TMS34082 in parallel with the Motorola MC68030, multiple operations can be processed simultaneously for enhanced performance.

When running the TMS34082 floating-point processor in parallel with the Motorola MC68030 as a host, the host processor must ensure the floating-point processor is always busy. In addition, the host processor must also have access to the floating-point processor's outputs and complete control for immediate stalls or interrupts. Details of the system architecture can be found in the System Architecture section.

## TMS34082 Overview

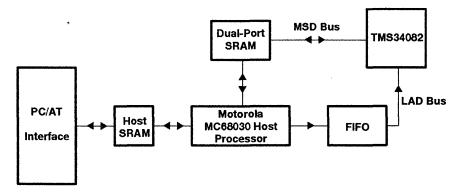
The TMS34082 has features that are unique to floating-point processors. Some of these features are described below.

- Dual buses for accessing both data space and code space: This design allows you to download data over the LAD bus and transfer both instructions and data over the MSD bus, using the TMS34082's ability to simultaneously load instructions and operands over its two buses.
- Dynamic bus-switching: The CC pin can be triggered to affect an immediate jump to a preloaded address. Similar to an interrupt, this feature lets you jump straight to a routine in SRAM.
- Pipelining: The Harvard architecture within the TMS34082 allows pipelined data flow through the internal TMS34082 FPU, maximizing sustained throughput.
- Dynamic pipeline settings: Dynamic pipelining allows flexibility with data flow and feedbacks. Pipeline settings in the configuration register will direct feedback to registers, maximize throughput, or process vectors.
- FAST vs IEEE mode: The TMS34082 can function in fully IEEE 754-1985 compatible mode as well as in a mode that allows flushing all denormalizezd numbers to zero (FAST mode).
- Exception handling: The internal structure of the TMS34082 allows detection of status exceptions via software interrupts that generate address vectors to exception handling subroutines.

Internally, the TMS34082 has 22 onboard registers, which are well suited for matrix multiply graphic routines. It also has selectable data formats such as 32-bit integer, 32-bit floating-point, and 64-bit floating-point processors. In addition, there are internal programs for vector, matrix, and graphics operations.

The TMS34082s dual-bus structure gives you greater design flexibility. You can dynamically switch between the LAD and MSD buses while downloading instructions and data. Results are output on either the LAD or MSD bus.

## System Architecture


## System Overview

Memory mapping is chosen to interface the TMS34082 to the Motorola MC68030 in this design because it is direct and yields high-performance solutions. Furthermore, memory mapping allows the designer the flexibility to develop the floating-point processing interface around system memory.

Parallel processing provides the greatest throughput when coupling the TMS34082 to the Motorola MC68030 processor. In this design, the parallel processing tasks use buffers for data, instructions, and output (see Figure 1). The TMS34082 receives instructions and secondary data via the MSD bus from a dual-port SRAM (DP-SRAM). The dual-port SRAM has been preloaded by the Motorola MC68030. Primary data is obtained over the LAD bus through a FIFO buffer, which has also been preloaded by the Motorola MC68030.

Employing a FIFO buffer to download data to the LAD bus makes effective use of the Motorola MC68030's blocking loading capability, thus freeing the host processor for other functions. The LAD bus FIFO buffer can block load the TMS34082's internal registers with minimal overhead.

After receiving the data, the TMS34082 completes its calculations and writes its results into the dual-port SRAM buffer. To communicate when the calculations have been completed, the TMS34082 can interrupt the Motorola MC68030 and tell it to poll to the dual-port SRAM for output. Alternately, an optimizing compiler can set up boundary limits indicating when the DP-SRAM is full.



## Figure 1. Motorola MC68030 Interface to the TMS34082 – Block Diagram

The system is initialized through a bootstrap loader program. The TMS34082 reads its start-up data through the LAD bus and transfers it via the MSD bus to the DP-SRAM. The first word of data is used to load the configuration register. After 65 clock cycles, the onboard program counter resets itself to 0 and reads from that address in the DP-SRAM.

The Motorola MC68030 receives its code and data from a dual-port,  $8K \times 32$  SRAM. The SRAM information is uploaded from an PC/AT supervisory host through address and data buffers. The bus arbitration handshaking between the PC/AT bus and the Motorola MC68030 is accomplished by I/O mapping on the PC/AT.

Maximum throughput could be realized with an optimizing compiler by grouping functions and operands so that calculations can be pipelined and the registers can be loaded as a block.

As a download host, the IBM PC/AT is accessible to most users, allowing the duplication of this design with relative ease.

## **Objectives and Trade-Offs**

The design objectives during the initial phases of the project were, in order of rank: performance, cost, size, and power. To maximize performance while keeping costs to a minimum, the following guidelines were used:

- Gain in performance should be commensurate with the gain in cost. In other words, a 10% increase in performance must be justified by no more than 10% gain in cost.
- A primary objective was to demonstrate the TMS34082's full capabilities by operating at maximum speed without wait states. This is accomplished by using parts that sufficiently meet the TMS34082 throughput requirements for maximum performance.

There are two schools of thought in processing floating-point operands. The first is to load all data from the Motorola MC68030 host through the FIFOs onto the LAD bus. Instructions and other data are loaded into the DP-SRAM, which the TMS34082 could access over the MSD bus. Results are then placed back into the DP-SRAM and read by the Motorola MC68030. This method is slightly faster, but requires a more sophisticated compiler.

The other approach is to toggle the CC signal to the TMS34082. CC is activated by setting the appropriate mask bit in the configuration register. Toggling CC signals the TMS34082 program loads an address vector over the LAD bus that points to an MSD address in external memory. The TMS34082 then executes the routine at this address. This example is useful when the DP-SRAM acts as a monitor and contains routines that are accessed frequently. An optimizing compiler would load relevant operands to the DP-SRAM or to TMS34082 internal registers and then point to a routine contained in DP-SRAM. The trade-off is that one clock cycle is lost in the jump process, but the compiler would have less overhead.

## **Software Description**

#### **Overview of Code Development**

The objective of the software programs is to demonstrate the full capabilities of the TMS34082. Operands to the TMS34082 are represented in single-precision, double-precision, and integer formats.

Other features presented in these programs are:

- matrix operations,
- conversions between formats,
- arithmetic operations,
- vector processing,
- feedback operations,
- internal ROM routines,
- and block moves, making efficient use of the internal register set.

All of the resident software has been written in the processor's respective assembler language. Software driving the PC/AT is primarily written in C or assembly language.

Code development necessarily begins with the TMS34082. This then becomes the data code for the Motorola MC68030. Routines are written in Motorola MC68030 assembly language to handle data uploads to the FIFO, both uploads and downloads of data/instruction code to the DP-SRAM, and Motorola MC68030 host code resident in the  $8K \times 32$  host SRAMs.

The initial code supplied to host SRAMs is transferred from the PC/AT. The resident Motorola MC68030 assembly language routines are translated from that format to one that the PC/AT recognizes.

The test software developed for this system writes and reads data from the host SRAM to test for correctness, address range functionality, and setup time validity. In addition, it allows thorough testing of the PC/AT bus and validation of host memory setup and hold times. The MS-DOS debugger is initially used for testing, while C code is implemented for more thorough test capabilities. In addition, the C code allows for ready upload and download of system software routines.

## **Big Endian, Little Endian**

Programmers of this system must take into consideration the differences between Big Endian and Little Endian. The Motorola MC68030 device memory can be addressed on a byte-by-byte basis. The data for each byte in a 32-bit word (long word) is in order from most significant to least significant bit. But, the bytes are arranged in order of least significant to most significant (Little Endian). Intel microprocessors reverse their bytes as compared to Motorola processors. Intel arranges bytes from most significant to least significant (Big Endian). Figure 2 illustrates further details on byte arrangement. The hardware description, Appendix B, details more information on mixed implementation of Big Endian/Little Endian.

The PC/AT's backplane uses a different technique to address memory. A byte starts on an addressable byte boundary. A word consisting of two bytes starts on an arbitrary boundary, and the high byte corresponds to a high address (see Figure 2), while the low byte corresponds to a low address.

Code written for this design must take these data formats into consideration.

#### Motorola MC68030

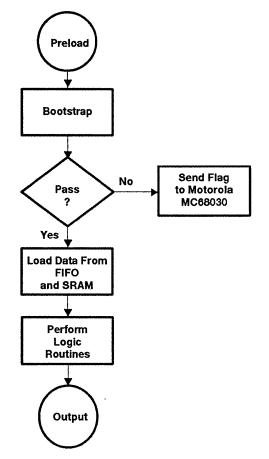
| Data                   |                   |                   |                   | Address<br>\$ 0000 0000 |
|------------------------|-------------------|-------------------|-------------------|-------------------------|
| Long Word \$ 0000 0000 |                   |                   |                   |                         |
| Word \$ 0000 0000      |                   | Word \$ 0000 0002 |                   | 1                       |
| Byte \$ 0000 0000      | Byte \$ 0000 0001 | Byte \$ 0000 0002 | Byte \$ 0000 0003 | 1                       |
|                        | Long Word         | \$ 0000 0004      |                   | \$ 0000 0004            |
| Word \$ 0000 0004      |                   | Word \$ 0000 0006 |                   | 1                       |
| Byte \$ 0000 0004      | Byte \$ 0000 0005 | Byte \$ 0000 0006 | Byte \$ 0000 0007 | 1                       |

Intel 80286

| Data          |                                 |  |
|---------------|---------------------------------|--|
| Word \$ 00000 |                                 |  |
| Byte \$ 00000 |                                 |  |
| Word \$ 00002 |                                 |  |
| Byte \$ 00002 |                                 |  |
|               | 00000<br>Byte \$ 00000<br>00002 |  |

TMS34082

| Data              | Address |
|-------------------|---------|
| Long Word \$ 0000 | \$ 0000 |
| Long Word \$ 0001 | \$ 0001 |


## Figure 2. Data Organization in Memory

### TMS34082 Code Development

Code for the TMS34082 includes a bootstrap loader, hardware test, and processor routines. During startup, routines confirm proper operation of all supporting hardware such as the SRAMs and FIFOs, to ensure the functioning of interfaces to the Motorola MC68030 host and to evaluate the accuracy of internal TMS34082 firmware.

A simple walking 1s and 0s is used to check the DP-SRAMs. The FIFOs can be checked with the bootstrap routine to verify that the proper data is being clocked through the device. In addition, the bootstrap also confirms LAD to MSD bus transfers. The bootstrap is enacted by the Motorola MC68030 by asserting the HALT and the INTR pins. (Consult the TMS34082 data sheet for bootstrap timing characteristics.)

The main software routine will make use of all the relevant internal instructions that demonstrate the TMS34082's processing capabilities. Two subprograms demonstrating the device's superior floating-point capabilities in processing matrix-multiply and transcendental functions are also included. Further, the TMS34082 can be reset either by the host processor, by the PC/AT, or manually.





#### Motorola MC68030 Code Development

The Motorola MC68030 software is divided into six sections:

- 1. test,
- 2. read data/code from host SRAM,
- 3. output code to FIFOs and DP-SRAMs,
- 4. retrieve code from DP-SRAM,
- 5. and write data back to host SRAM.

Transferring data is relatively simple and can be seen in detail under the Software Listing section. The fundamental purpose of the test section is to check the DP-SRAM access and functionality from the Motorola MC68030 side. Checkout of the FIFOs has already been completed by the TMS34082 software. The host SRAM needs to be checked by the PC/AT before loading and by the Motorola MC68030 upon startup to verify correct dual access after arbitration (see Figure 4).

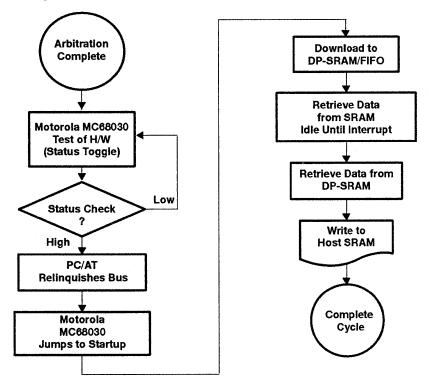



Figure 4. Block Diagram - Motorola MC68030 Code

## Intel 80286 Code Development

The PC/AT code has five primary functions (see Figure 5):

- 1. to upload and download code to Motorola MC68030's host SRAM,
- 2. to test hardware,
- 3. to provide for a convenient development platform,
- 4. to perform as a supervisory controller,
- 5. and to establish communication with the host system.

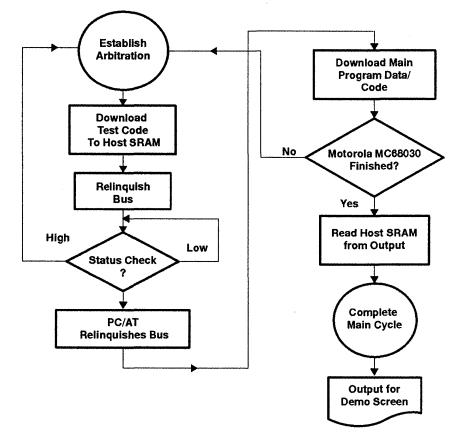



Figure 5. Block Diagram – PC/AT Code

## **Hardware Description**

## Overview

The board is an add-on card that fits into a 16-bit PC/AT slot. The speed at which the PC/AT bus accesses the board is not critical, since it acts as a supervisory host only. Its purpose is to transfer data to the  $8K \times 8$  SRAM, control bus arbitration, and to read status signals on the card. See the enclosed schematics section for details.

The hardware is best described by breaking the board down into two subsystems: the PC/AT interface and the Motorola MC68030 subsystem.

## PC/AT Interface

Two types of data are down loaded from the PC/AT to the Motorola MC68030: memory and I/O information. In the PC/AT, main memory is established for addresses 000000H to 07FFFFH (512K), I/O expansion ROM for locations 0C0000H–0DFFFFH, and prototype card I/O addresses for 300H–31FH. The software for this design makes use of all three of these memory ranges. All system development software is written in the 512K bytes of user memory space.

To down load data to the board's 8K words host SRAM an address in the middle of the PC/AT's I/O expansion ROM memory is chosen, 0D0000H. Thus, 8K words (32 bits wide) is placed in addresses 0D0000H–0D8000H (See Figure 6).

| 000000H — 7FFFH |      |      | — System Memory (512K)      |
|-----------------|------|------|-----------------------------|
| D0000 D8000H    |      |      | — Memory Buffer (32K=8KX32) |
| 318H            | 31AH | 31CH | I/O: Prototype Card         |

## Figure 6. PC/AC Interface: I/O and Memory Addressing

Since the PC/AT system bus is 16 bits wide, it needs to match the 32-bit logic of the Motorola MC68030/TMS34082 system. Interface decode logic handles this by way of an odd/even address toggle, i.e. an even address indicates the lower 16 bits and an odd address indicates the upper 16 bits. Data must be loaded sequentially for this to function properly. An alternative would be to use the dynamic bus sizing capabilities of the Motorola MC68030, but this would require additional handshake logic and minimize real estate for future expansion plans.

The PC/AT Technical Reference Manual recommends that prototype I/O addresses lie between 310H and 31FH. Input/output data is configured to be read and written from address 318H. I/O is mainly used to control bus arbitration, to read status information, and to avoid address bus contention.

If you are only designing with the Motorola MC68030 and the TMS34082, then no design changes need to be made to compensate for byte addressing. However, if you prefer to implement the design as it is described in this report, byte addressing is of concern. While both Motorola's MC68030 and Intel's 80286 have their MSB at the leftmost position, the order in which the bytes are addressed is reversed, also known as a Big Endian/Little Endian format.

Two simple solutions present themselves. The first, a software solution, is to write code to reverse the byte order. The second, a hardware solution, is to simply reverse the data bits to match the byte order. For a prototype system such as this, a software solution is the preferred choice.

The PC/AT interface subsystem uses four PALs to handle address decoding for memory and I/O mapping, status acquisitions, and bus arbitration (See Figure 1).

### Host Processor Interface

This design operates in purely synchronous mode, reducing the overhead logic required to notify the Motorola MC68030 of data size acknowledgements and reducing instruction overhead.

To assist the system designer in applying the TMS34082 to their Motorola MC68030-based system, the following guidelines have been used:

- Interrupts to the Motorola MC68030 are disabled by pulling the signals IPL0, IPL1, IPL2 high. This implies that AVEC is tied high, which also simplifies synchronous operations.
- Occasionally, the TMS34082 and the Motorola MC68030 may attempt to access the same address location in the DP-SRAM, causing a collision. This contention is handled by having the DP-SRAM's BUSY flag pull the BERR and the HALT signals low simultaneously to delay the current cycle.
- Because this application always uses 32-bit data formats, DSACK0 and DSACK1 are pulled high to prevent assertion during synchronous operation with STERM.
- STERM is decoded as a synchronous bus cycle terminator. This also reduces bus cycle delays due to misaligned transfers as they are always 32 bits wide.
- Since this project employs relatively fast SRAMs, external cache is not needed and Motorola MC68030 internal cache is not used. Therefore, CIN, CDIS, and CBACK are tied high. This also assists in stabilizing the setup and hold times during periods when AS is asserted during sychronous operations.
- The memory management features of the Motorola MC68030 are not used. Consequently, MMUDIS is tied high.
- Arbitration between the PC/AT bus and the Motorola MC68030's bus is handled by onboard PAL logic.

Memory Addressing has been encoded as follows: host SRAM accesses at 00008000H, DP-SRAM accesses at 00010000H, and FIFO accesses at location 00020000H. Thus, address bits 15, 16, and 17 can be used for each individual memory access.

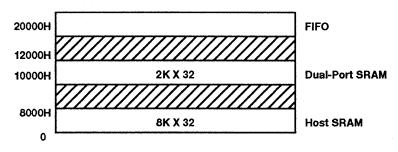



Figure 7. Motorola MC68030 Interface: Memory Addressing

## TMS34082 as a Parallel Processor

Interfacing to the TMS34082 is simple and direct. This project emphasizes a design approach that requires minimal support hardware. By coupling a FIFO buffer directly to the LAD bus, external address latching and decoding is not required. From the MSD bus, the TMS34082 is directly coupled to the DP-SRAM, further reducing the decode hardware.

The data/code space is directly linked to address locations 0000H-07FFH and could be expanded to 64K words as required. For further information regarding pin definitions and electrical characteristics, please refer to the TMS34082 data sheet.

## **Performance Analysis**

To accurately compare the performance of two coprocessors produced by two different manufacturers, it is essential to incorporate commonalties. A preliminary analysis has been completed that compares execution times of functions that are similar to the Motorola MC68881 and the TMS34082 (see Table 1).

The TMS34082 typically speeds execution by 30-40 times. This does not take into consideration effective addressing, overlap, and pipelining, which widens the gap between the TMS34082's execution times and those of the Motorola coprocessor family. Detailed calculations are available upon request.

| <u></u>                                |                      | TMS34082                    |                   | Motorola MC68881                  |                   |
|----------------------------------------|----------------------|-----------------------------|-------------------|-----------------------------------|-------------------|
| Generic<br>Instruction                 | Format/<br>Precision | TI<br>Instruction<br>Syntax | Execution<br>Time | Motorola<br>Instruction<br>Syntax | Execution<br>Time |
|                                        | Integer              | ADD                         | 2                 | FADD                              | 80                |
| Add                                    | Single               | ADDF                        | 2                 |                                   | 72                |
|                                        | Double               | ADDD                        | 2                 |                                   | 78                |
|                                        | Integer              | DIV                         | 16                |                                   | 132               |
| Divide                                 | Single               | DIVF                        | 7                 | FDIV                              | 124               |
|                                        | Double               | DIVD                        | 13                |                                   | 130               |
|                                        | Integer              |                             | 2                 | FCMP                              | 62                |
| 1s Complement                          | Single               | NOT                         | 2                 |                                   | 54                |
|                                        | Double               |                             | 2                 |                                   | 60                |
| ······································ | Integer              | ABS                         | 2                 | FABS                              | 62                |
| Absolute Value                         | Single               |                             | 2                 |                                   | 54                |
|                                        | Double               |                             | 2                 |                                   | 60                |
|                                        | Integer              | NEG                         | 2                 | FNEG                              | 62                |
| Negate                                 | Single               |                             | 2                 |                                   | 54                |
|                                        | Double               |                             | 2                 |                                   | 60                |
| ······································ | Integer              | MPY                         | 2                 | FMUL                              | 100               |
| Multiply                               | Single               | MPYF                        | 2                 |                                   | 92                |
|                                        | Double               | MPYD                        | 3                 |                                   | 98                |
|                                        | Integer              | SQRT                        | 20                | FSQRT                             | 134               |
| Square Root                            | Single               | SQRTF                       | 10                |                                   | 126               |
| ·                                      | Double               | SQRTD                       | 16                |                                   | 132               |
|                                        | Integer              | SUB                         | 2                 | FSUB                              | 80                |
| Subtract                               | Single               | SUBF                        | 2                 |                                   | 72                |
|                                        | Double               | SUBD                        | 2                 |                                   | 78                |

## System Information — Parts List

## Table 2. Parts List

| Reference<br>Designation | Name                 | Pins    | WIDTH<br>(MILS) |
|--------------------------|----------------------|---------|-----------------|
| U1, U2                   | PAL20L8              | 24      | 300             |
| U3                       | PAL16RA8             | 20      | 300             |
| U4                       | PAL16R4              | 20      | 300             |
| U5, U6, U7, U8           | 74BCT245             | 20      | 300             |
| U9                       | 74AS74               | 14      | 300             |
| U10                      | Motorola MC68030     | 13 x 13 | PGA             |
| U11, U12                 | 74F08                | 14      | 300             |
| U13                      | PAL22V10             | 24      | 300             |
| U14                      | 74F08                | 14      | 300             |
| U15, U16, U17, U18       | 7C185                | 28      | 300             |
| U19                      | IDT7132              | 48      | 600             |
| U20, U21, U22            | IDT7142              | 48      | 600             |
| U23, U24, U25, U26       | 74ALS2232            | 24      | 300             |
| U27                      | 74AS74               | 14      | 300             |
| U28                      | TMS34082             | 15 x 15 | PGA             |
| U29                      | 74BCT244             | 20      | 300             |
| U30                      | 74F74                | 24      | 300             |
| U31, U32, U33            | 74BCT244             | 20      | 300             |
| U34                      | 74F74                | 14      | 300             |
| U35                      | 74F08                | 14      | 300             |
| U36                      | 74F374               | 20      | 300             |
| U37                      | 74F08                | 14      | 300             |
| U38                      | 74F00                | 14      | 300             |
| RP1, RP2, RP3            | 10K Pull-up Resistor | 9       | SIP             |
| HDR1                     | Platform             | 16      | 300             |
| C1-41                    | 0.01 μF Capacitor    |         |                 |
| C42                      | 10 μF Capacitor      |         |                 |
| X1                       | 25 MHZ Oscillator    | 14      | 300             |
| X2                       | 40 MHZ Oscillator    | 14      | 300             |
| SW1                      | SPST Switch          |         |                 |
| SW2                      | SPDT Switch          |         |                 |
| SW3                      | 8 POS. DIP SW        | 16      | 300             |

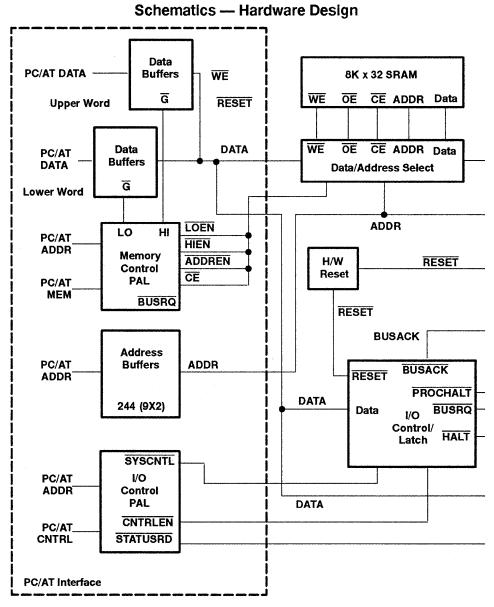
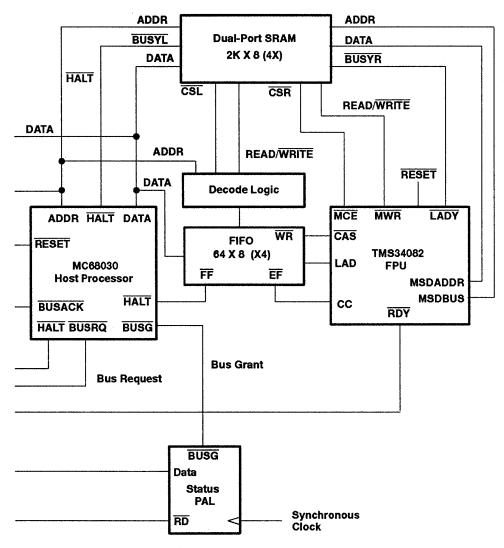




Figure 8(a). Block Diagram





D(31-0)

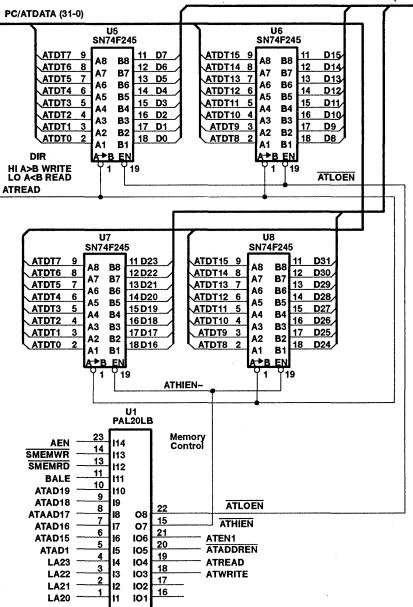



Figure 9. PC/AT I/F and Control, Details of U1, U5, U6, U7, and U8

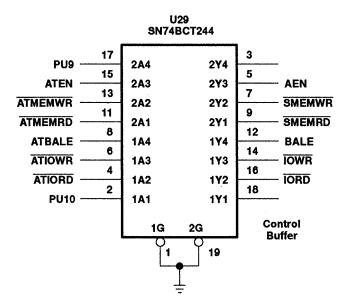



Figure 10. PC/AT I/F and Control, Details of U29

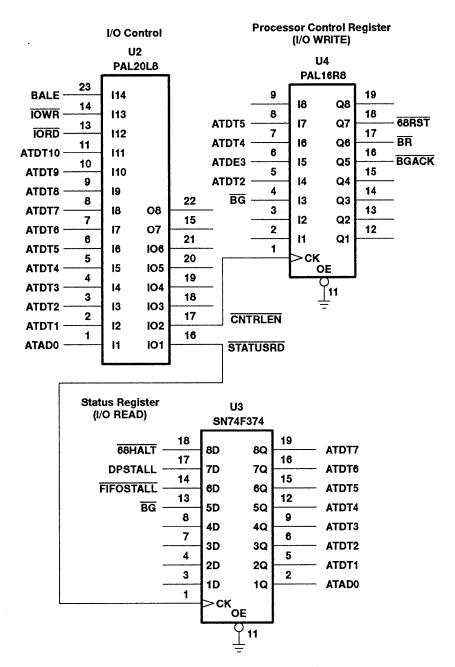



Figure 11. PC/AT I/F and Control, Details of U2, U3, and U4

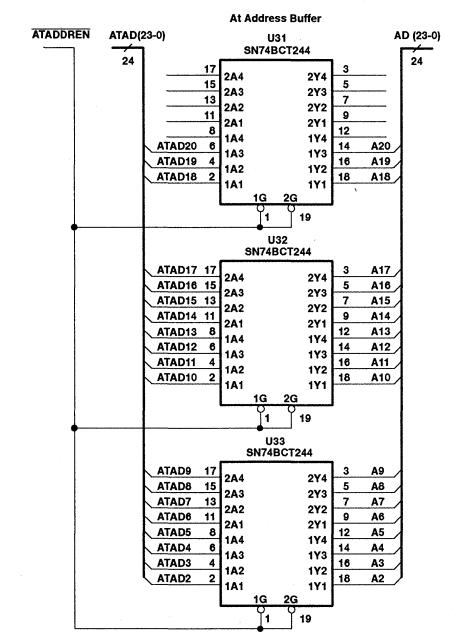



Figure 12. Motorola MC68030 and Address Buffers, Details of U31, U32, and U33

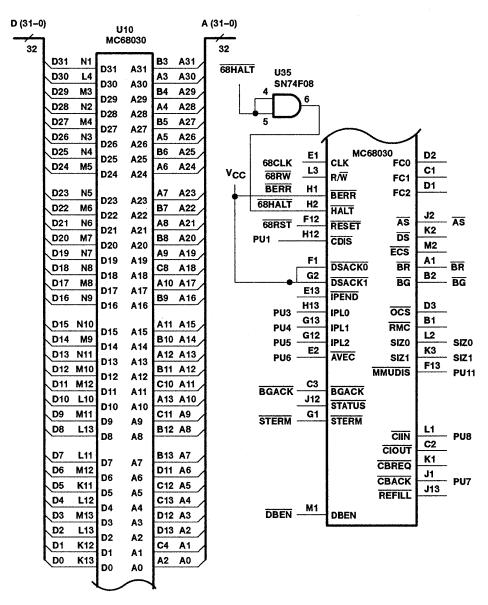
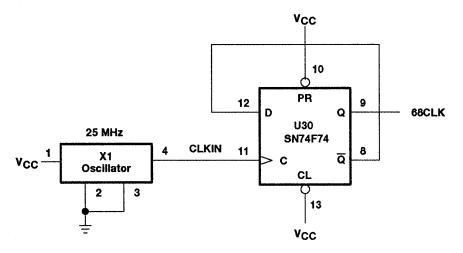
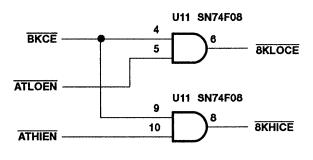





Figure 13. Motorola MC68030 and Address Buffers, Details of U10







8K SRAM Enables Upper/Lower 16 Bits Decode

Figure 15. Motorola MC68030 Decode/Control, Details of U11

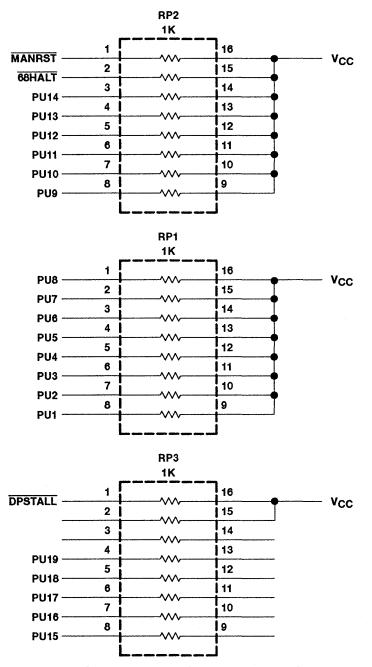



Figure 16. Motorola MC68030 Decode/Control, Details of RP1, RP2, and RP3

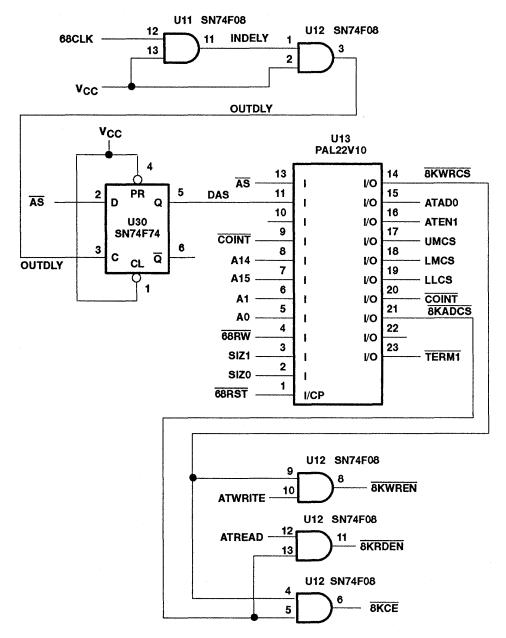
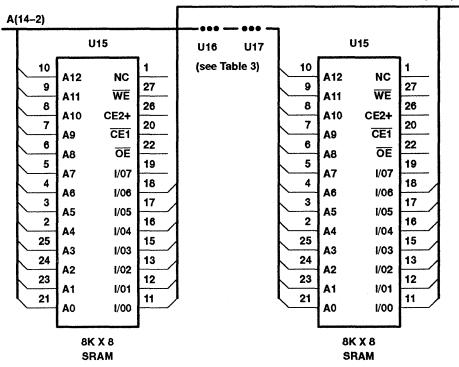
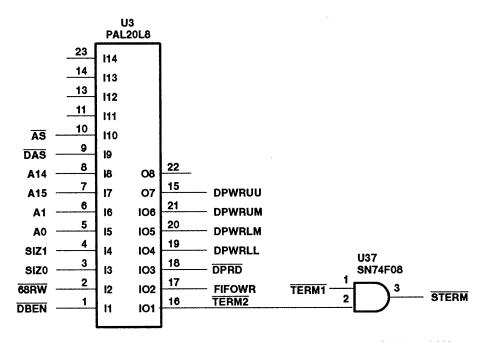
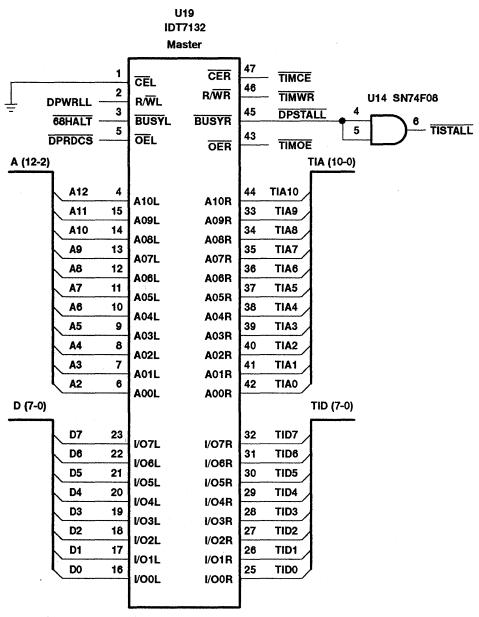



Figure 17. Motorola MC68030 Decode/Control, Details of U11, U12, U13, and U30

D (31--0)



Figure 18. 8K x 8 SRAM DP-SRAM, Details of U15, U16, U17, and U18

| Device |        | 8K x 8 SRAM                     |                |               |        |  |  |  |
|--------|--------|---------------------------------|----------------|---------------|--------|--|--|--|
| Block  | Number | U15                             | U15 U16 U17 U1 |               |        |  |  |  |
|        | Pin    | External Connection Signal Name |                |               |        |  |  |  |
| Name   | Number |                                 |                |               |        |  |  |  |
| A0     | 21     | A2                              | A2             | A2            | A2     |  |  |  |
| A1     | 23     | A3                              | A3             | A3            | A3     |  |  |  |
| A2     | 24     | A4                              | A4             | A4            | A4     |  |  |  |
| A3     | 25     | A5                              | A5             | A5            | A5     |  |  |  |
| A4     | 2      | A6                              | A6             | A6            | A6     |  |  |  |
| A5     | 3      | A7                              | A7             | A7            | A7     |  |  |  |
| A6     | . 4    | A8                              | A8             | A8            | A8     |  |  |  |
| A7     | 5      | A9                              | A9             | A9            | A9     |  |  |  |
| A8     | 6      | A10                             | A10            | A10           | A10    |  |  |  |
| A9     | 7      | A11                             | A11            | A11           | A11    |  |  |  |
| A10    | 8      | A12                             | A12            | A12           | A12    |  |  |  |
| A11    | 9      | A13                             | A13            | A13           | A13    |  |  |  |
| A12    | 10     | A14                             | A14            | A14           | A14    |  |  |  |
| 1/00   | 11     | D0                              | D8             | D16           | D24    |  |  |  |
| I/O1   | 12     | D1                              | D9             | D17           | D25    |  |  |  |
| 1/02   | 13     | _ D2                            | D10            | D18           | D26    |  |  |  |
| I/O3   | 15     | D3                              | D11            | D19           | D27    |  |  |  |
| 1/04   | 16     | D4                              | D12            | D20           | D28    |  |  |  |
| 1/05   | 17     | D5                              | D13            | D21           | D29    |  |  |  |
| 1/06   | 18     | D6                              | D14            | D22           | D30    |  |  |  |
| 1/07   | 19     | D7                              | D15            | D23           | D31    |  |  |  |
| OE     | 22     | 8KRDEN                          | 8KRDEN         | 8KRDEN        | 8KRDEN |  |  |  |
| CE1    | 20     | LLCS                            | LMCS           | UMCS          | UUCS   |  |  |  |
| CE2+   | 26     | Vcc                             | Vcc            | Vcc           | Vcc    |  |  |  |
| WE     | 27     | 8KWREN                          | 8KWREN         | <b>8KWREN</b> | 8KWREN |  |  |  |
| NC     | 1      | No Connection                   |                |               |        |  |  |  |

# Table 3. 8K x 8 SRAM DP-SRAM, Detail Pin Assignments for U15, U16, U17, and U18







2K X 8 DP-SRAM



Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

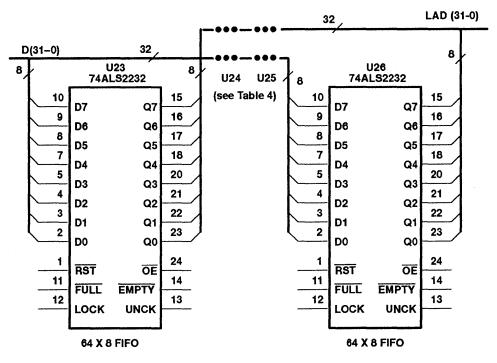



Figure 21. FIFO Logic, Details of U23, U24, U25, and U26

| Device |        | SN74ALS2232                     |               |                 |          |  |  |
|--------|--------|---------------------------------|---------------|-----------------|----------|--|--|
| Block  | Number | U23                             | U24           | U25             | U26      |  |  |
| P      | Pin    | External Connection Signal Name |               |                 |          |  |  |
| Name   | Number | L                               | Alemai Connec | avir Signar Nai |          |  |  |
| D0     | 2      | D0                              | D8            | D16             | D24      |  |  |
| D1     | 3      | D1                              | D9            | D17             | D25      |  |  |
| D2     | 4      | D2                              | D10           | D18             | D26      |  |  |
| D3     | 5      | D3                              | D11           | D19             | D27      |  |  |
| D4     | 7      | D4                              | D12           | D20             | D28      |  |  |
| D5     | 8      | D5                              | D13           | D21             | D29      |  |  |
| D6     | 9      | D6                              | D14           | D22             | D30      |  |  |
| D7     | 10     | D7                              | D15           | D23             | D31      |  |  |
| RST    | 1      | RESET                           | RESET         | RESET           | RESET    |  |  |
| FULL   | 11     | 68HALT                          | 68HALT        | 68HALT          | 68HALT   |  |  |
| LOCK   | 12     | FIFOWR                          | FIFOWR        | FIFOWR          | FIFOWR   |  |  |
| Q0     | 23     | LAD0                            | LAD8          | LAD16           | LAD24    |  |  |
| Q1     | 22     | LAD1                            | LAD9          | LAD17           | LAD25    |  |  |
| Q2     | 21     | LAD2                            | LAD10         | LAD18           | LAD26    |  |  |
| Q3     | 20     | LAD3                            | LAD11         | LAD19           | LAD27    |  |  |
| Q4     | 18     | LAD4                            | LAD12         | LAD20           | LAD28    |  |  |
| Q5     | 17     | LAD5                            | LAD13         | LAD21           | LAD29    |  |  |
| Q6     | 16     | LAD6                            | LAD14         | LAD22           | LAD30    |  |  |
| Q7     | 15     | LAD7                            | LAD15         | LAD23           | LAD31    |  |  |
| ŌĒ     | 24     | COINT                           | COINT         | COINT           | COINT    |  |  |
| EMPTY  | 14     | FIFOSTAL                        | FIFOSTAL      | FIFOSTAL        | FIFOSTAL |  |  |
| UNCK   | 13     | FIFORD                          | FIFORD        | FIFORD          | FIFORD   |  |  |

# Table 4. FIFO Logic, Detail Pin Assignments for U23, U24, U25, and U26

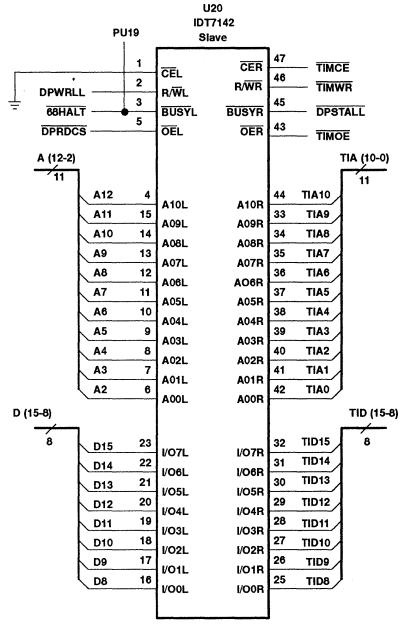





Figure 22. 8K x 8 SRAM DP-SRAM, Details of U20

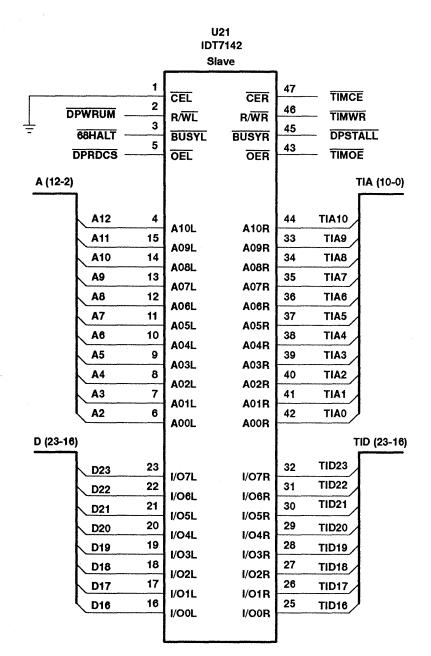



Figure 23. FIFO Logic, Details of U21

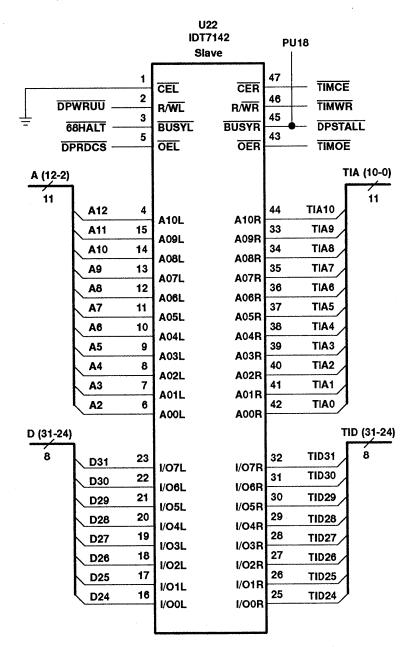
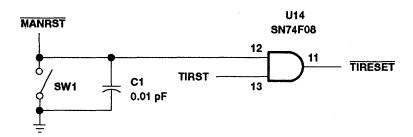




Figure 24. FIFO Logic DP-SRAM, Details of U22





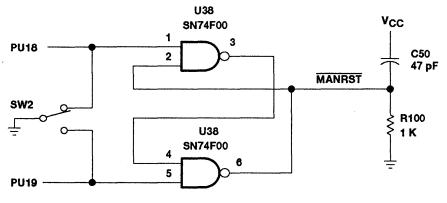



Figure 26. TMS34082, Details of U38

| LAD | (31 | -0) |  |
|-----|-----|-----|--|
|-----|-----|-----|--|

U28

32

|    | •         |              |        |          |
|----|-----------|--------------|--------|----------|
| 32 |           | TMS34        |        | ı F      |
|    | LAD31 D15 | LAD31        | MSD31  | P4 TID31 |
|    | LAD30 E14 | LAD30        | MSD30  | R3 TID30 |
|    | LAD29 C15 | LAD29        | MSD29  | P3 TID29 |
|    | LAD28 D14 | LAD28        | MSD28  | N4 TID28 |
|    | LAD27 B15 | LAD27        | MSD27  | R2 TID27 |
|    | LAD26 C14 | LAD26        | MSD26  | N2 TID26 |
|    | LAD25 C13 | LAD25        | MSD25  | P1 TID25 |
|    | LAD24 A14 | LAD24        | MSD24  | M2 TID24 |
|    | LAD23 B13 |              | MeDoo  | L3 TID23 |
|    | LAD22 A13 | LAD23        | MSD23  | N1 TID22 |
|    | LAD21 C11 | LAD22        | MSD22  | L2 TID21 |
|    | LAD20 B12 | LAD21        | MSD21  | M1 TID20 |
|    | LAD19 A12 | LAD20        | MSD20  | K2 TID19 |
|    | LAD18 B11 | LAD19        | MSD19  | L1 TID18 |
|    | LAD17 A11 | LAD18        | MSD18  | K1 TID17 |
|    | LAD16 B10 | LAD17        | MSD17  | J2 TID16 |
|    |           | LAD16        | MSD16  |          |
|    | LAD15 A10 |              | 140045 | J1 TID15 |
|    | LAD14 B9  | LAD15        | MSD15  | H1 TID14 |
|    | LAD13 A9  | LAD14        | MSD14  | G1 TID13 |
|    | LAD12 A8  | LAD13        | MSD13  | G2 TID12 |
|    | LAD11 A7  | LAD12        | MSD12  | G3 TID11 |
|    | LAD10 B7  | LAD11        | MSD11  | F1 TID10 |
|    | LAD9 A6   | LAD10        | MSD10  | F2 TID9  |
|    | LAD8 A5   | LAD9<br>LAD8 | MSD9   | E1 TID8  |
|    |           | LADO         | MSD8   |          |
|    | LAD7 B6   | LAD7         | MSD7   | E2 TID7  |
|    | LAD6 C6   | LAD6         | MSD6   | D1 TID6  |
|    | LAD5 A4   | LAD5         | MSD5   | D2 TID5  |
|    | LAD4 B5   | LAD4         | MSD4   | C1 TID4  |
|    | LAD3 A3   | LAD3         | MSD3   | C2 TID3  |
|    | LAD2 B4   | LAD2         | MSD2   | D3 TID2  |
|    | LAD1 A2   | LAD1         | MSD1   | B1 TID1  |
|    | LADO B3   | LAD          | MSDO   | C3 TID0  |
|    |           |              |        |          |

Figure 27. TMS34082, Details of U28

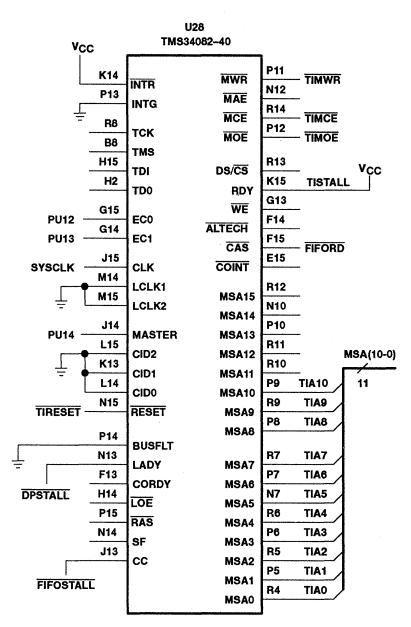



Figure 28. TMS34082, Details of U28

|      |            |                 |    | _          | _      |
|------|------------|-----------------|----|------------|--------|
| J1   | D18        | GND             | J1 | A6         | ATDT3  |
| J1   | B31        | GND             | J1 | A7         | ATDT2  |
| J1   | B19        | GND             | J1 | <b>A</b> 8 | ATDT1  |
| J1   | B1         | GND             | J1 | A9         | ATDTO  |
| J1   | D16        | v <sub>cc</sub> | J1 | B20        | ATCLK  |
| J1   | B29        | v <sub>cc</sub> | J1 | A12        | ATAD19 |
| J1   | B3         | v <sub>cc</sub> | J1 | A13        | ATAD18 |
| J1   | A11        | ATEN            | J1 | A14        | ATAD17 |
| J1   | B11        | ATMEMWR         | J1 | A15        | ATAD16 |
| J1   | B12        | ATMEMRD         | J1 | A16        | ATAD15 |
| J1   | B28        | ATBALE          | J1 | A17        | ATAD14 |
| J1   | B13        | ATIOWR          | J1 | A18        | ATAD13 |
| J1   | B14        | ATIORD          | J1 | A19        | ATAD12 |
| J1   | C18        | ATDT15          | J1 | A20        | ATAD11 |
| J1   | C17        | ATDT14          | J1 | A21        | ATAD10 |
| J1   | C16        | ATDT13          | J1 | A22        | ATAD9  |
| J1   | C15        | ATDT12          | J1 | A23        | ATAD8  |
| J1   | C14        | ATDT11          | J1 | A24        | ATAD7  |
| Jt   | C13        | ATDT10          | J1 | A25        | ATAD6  |
| J1   | C12        | ATDT9           | J1 | A26        | ATAD5  |
| J1   | C11        | ATDT8           | J1 | A27        | ATAD4  |
| J1   | A2         | ATDT7           | J1 | A28        | ATAD3  |
| J1   | A3         | ATDT6           | J1 | A29        | ATAD2  |
| J1 - | <b>A</b> 4 | ATDT5           | J1 | A30        | ATAD1  |
| J1   | A5         | ATDT4           | J1 | A31        | ATAD0  |
| •    | $\sim$     | •               |    |            | •      |

Figure 29. AT-Bus Connector

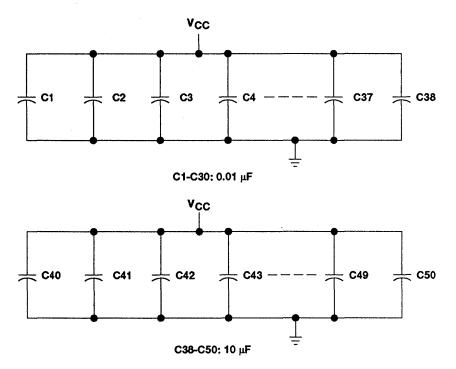



Figure 30. Capacitors

# PAL<sup>®</sup> Code Listing

NOTE: All code is written using PAL<sup>®</sup> ASM software.

Memory Decode for TMS34082 Accelerator BoardPATTERNMEMORY DECODE FUNCTIONSREVISION1AAUTHORMIKE ROBERTSCOMPANYTEXAS INSTRUMENTSDATEOCTOBER 11, 1989; This PAL will decode memory functions from the PC/AT to the Motorola MC68030 host SRAM.CHIP201.8PAI 201.8

| ; DEVIC | 2020      | , ,,,,    | _0_0       |          |        |        |         |
|---------|-----------|-----------|------------|----------|--------|--------|---------|
|         | 2         | 3         | 4 5        | 6        | 7      | 8      | 9       |
|         | 15 ATAD01 |           | AD20 ATAD1 | -        |        | -      | /IORD   |
| AIAD    | IS AIADUI | AIADZ AI  |            |          | AIADIO | AIADIO | 10110   |
|         |           | 10        |            |          |        |        |         |
| ; 10    | 11        | 12        |            |          |        |        |         |
| /IOW    | R BALE    | GND       |            |          |        |        |         |
| ; PIN   |           |           |            |          |        |        |         |
|         | 13        | 14        | 15         | 16       | 17     |        | 18      |
| ,       | /SMEMRD   | /SMEMWR   | /ATHIEN    | ATAD23   | ATAD2  | 2 AT   | EN1     |
|         |           |           | // \11164  | 71171220 | ,      |        |         |
|         | 19        | 20        | 21         | 22       | 23     |        | 24      |
| ,       | ATCNTL    | /ATADDREN | ATEN2      | /ATLOEN  | AEN    | -      | <br>/cc |
|         | ALONIL    |           | ALENZ      |          | ALIN   | v      | CC      |

#### EQUATIONS

; ALWAYS ENABLED

| ATLOEN.TRST   | =V <sub>CC</sub> |
|---------------|------------------|
| ATHIEN.TRST   | $= V_{CC}$       |
| ATADDREN.TRST | $= V_{CC}$       |
| ATCNTL.TRST   | $= V_{CC}$       |
| ATEN1.TRST    | $= V_{CC}$       |
| ATEN2.TRST    | $= V_{CC}$       |

; ABOVE EQUATIONS NOT REQUIRED SINCE PAL ASM DEFAULTS TO THESE. ; THEY HAVE BEEN ADDED FOR CLARITY.

ATEN1 = /BALE \* ATAD19 \* ATAD18 \* ATAD16 \* /ATAD17 \* /AEN ; USED AS A GATE TO ASSERT ACCESS TO HOST SRAM ATEN2 = /(ATAD23 + ATAD22 + ATAD21 + ATAD20) ; INTERMEDIATE TERM DESELECTING ADDRESS LINES 23–20 ATLOEN = ATEN1 \* /ATAD01 \* /SMEMRD \* ATEN2 + ATEN1 \* /ATAD01 \* /SMEMWR \* ATEN2 ; DECODES LOW BYTE IN EITHER READ OR WRITE MODE ATHIEN = ATEN1 \* ATAD01 \* /SMEMRD \* ATEN2 + ATEN1 \* ATAD01 \* /SMEMRD \* ATEN2 + ATEN1 \* ATAD01 \* /SMEMRD \* ATEN2

; DECODES HIGH BYTE IN EITHER READ OR WRITE MODE

PAL is a registered trademark of Monolithic Memories Inc.

ATADDREN = ATEN1 \* /ATAD01 \* /SMEMRD \* ATEN2 + ATEN1 \* /ATAD01 \* /SMEMWR \* ATEN2 + ATEN1 \* ATAD01 \* /SMEMRD \* ATEN2 ; ENABLES THE ADDRESS BUFFERS FOR HIGH OR LOW BYTE

#### I/O Decode for TMS34082 Accelerator Board

PATTERN DECODE CONTROL FUNCTIONS REVISION 1A AUTHOR MIKE ROBERTS COMPANY TI DATE 10/10/89

; This PAL will decode I/O functions to set I/O signals.

; DEVICE U2

CHIP 20L8 PAL20L8 ; PIN 2 3 4 5 6 7 8 9 1 ATAD4 ATAD5 ATAD6 ATAD7 ATAD8 ATAD0 ATAD1 ATAD2 ATAD3 12 13 10 11 14 ATAD9 ATAD10 GND /IORD /IOWR ; PIN 20 15 16 17 18 19 21 22 23 ; NC1 /STATUSRD/CNTRLENNC2 NC3 NC4 NC5 SYSCNTL BALE 24 ; Vcc

EQUATIONS

; ALWAYS ENABLED

| /STATUSRD.TRST | $= V_{CC}$ |
|----------------|------------|
| /CNTRLEN.TRST  | $= V_{CC}$ |
| SYSCNTL.TRST   | $= V_{CC}$ |
| NC1.TRST       | $= V_{CC}$ |
| NC2.TRST       | $= V_{CC}$ |
| NC3.TRST       | $= V_{CC}$ |
| NC4.TRST       | $= V_{CC}$ |

CNTRLEN = /BALE \* ATAD9 \* ATAD8 \* ATAD4 \* ATAD3 \* /ATAD2 \* /ATAD1\* /IOWR ; USED TO ENABLE I/O WRITE REGISTER FOR PC/AT Motorola MC68030 ARBITRATION AND CONTROL OF TMS34082 HALT FUNCTIONS

STATUSRD = /IORD \* /BALE \* ATAD9 \* ATAD8 \* ATAD4 \* ATAD3 \* /ATAD2 \* ATAD1 ; READ STATUS FROM ASYNCHRONOUS PAL ; USED TO READ STATUS FROM STATUS REGISTER

INVERT = ATADO ; USED TO INVERT PC/AT ADDRESS 0

#### Status Control for TMS34082 Accelerator Board

PATTERN STATUS CONTROL FUNCTIONS REVISION 1A AUTHOR MIKE ROBERTS COMPANY TI DATE 10/16/89

; This PAL will decode memory from the Motorola MC68030 to external DP-SRAM and the FIFO buffer.

CHIP 16RA8 PAL16RA8 : DEVICE U3 ; PIN 2 5 7 1 З 4 6 8 9 PRLD NC2 /RESET NC3 NC4 NC5 /BG CLK NC6 10 DBEN ; PIN 12 13 14 15 16 17 18 19 11 /STATUSRD NC7 NC8 ATDT2 ATDT1 ATDTO NC9 NC10 **NC11** 21 22 23 24 20 /TERM /FIFOWR DPRD NC5 Vcc EQUATIONS TERM = 68RW \* A14 \* /A15 \* /AS + /68RW \* A14 \* /A15 \* /DAS + /68RW \* /A14 \* /A15 \* /DAS : SYNCHRONOUS TERMINATION SIGNAL FOR FIFO AND DP-SRAM /FIFOWR = /(/68RW \* /DBEN \* AS \* /A14 \* A15) FIFO WRITE ENABLE. SINCE FIFO IS EDGE-TRIGGERED, THESE SIGNALS ARE RECOMMENDED. DPCE = 68R2 \* A14 \* /A15 \* /AS + /68RW \* A14 \* /A15 \* /DAS ; DUAL-PORT CHIP ENABLE DPRD = 68RW \* A14 \* A15 \* /AS\; 8K SRAM READ SELECT DPWRUU = A14 \* /A15 \* /A1 \* /A0 \* /68RW : BYTE ENABLE SELECTS FOR UPPER-UPPER BYTE DPWRUM = A14 \* /A15 \* /A1 \* A0 \* /68RW + A14 \* /A15 \* /A1 \* /68RW \* /SIZ0 . + A14 \* /A15 \* /A1 \* /68RW \* SIZ1

; BYTE ENABLE FOR UPPER-MIDDLE BYTE

DPWRLM = A14 \* /A15 \* A1 \* /A0 \* /68RW + A14 \* /A15 \* /A1 \* /68RW \* /SIZ1 \* SIZ0

Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

+ A14 \* /A15 \* /A1 \* /68RW \* SIZ1 \* SIZ0 + A14 \* /A15 \* /A1 \* /A0 \* /68RW \* /SIZ0

#### ; BYTE ENABLE FOR UPPER-LOWER BYTE

DPWRLL = A14 \* /A15 \* A1 \* A0 \* /68RW + A14 \* /A15 \* A0 \* /68RW \* SIZ1 \* SIZ0 + A14 \* /A15 \* /68RW \* /SSIZ1 \* /SIZ0 + A14 \* /A15 \* A1 \* /68RW \* SIZ1

; BYTE ENABLE FOR LOWER-LOWER BYTE

#### Byte Enable Decode for TMS34082 Accelerator Board

PATTERN DECODE CONTROL FUNCTION REVISION 1A AUTHOR MIKE ROBERTS COMPANY TI DATE 10/12/1989

; This PAL will decode byte enables of the Motorola MC68030 and PC/AT bytes to the 8K-SRAM.

CHIP 16R4 PAL16R4 ; DEVICE U4 : PIN 2 3 4 5 6 7 8 9 1 NC2 CNTRLEN NC1 BG ATDT2 ATDT3 ATDT4 ATDT5 ATEN1 10 GND 16 11 12 13 14 15 17 18 19 **/OUTEN** NC3 NC4 NC5 NC6 NC7 NC2 /BGACK /BR 20 V<sub>CC</sub>

EQUATIONS ; ALL FUNCTIONS ARE ALWAYS ENABLED

BR := ATDT3 \* BG

; BUS REQUEST TO Motorola MC68030, ONLY ACTIVE WHEN Motorola MC68030 BUS GRANT HIGH

BGACK := ATDT2 \* /BG

; BUS GRANT ACKNOWLEDGE SIGNAL FROM PC/AT, ACTIVE WHEN BUS GRANTED

68RST := NATDT4

; THIS SIGNAL RESETS THE Motorola MC68030

TIRST := ATDT5

; THIS SIGNAL RESETS THE TMS34082

#### Pattern Decode for TMS34082 Accelerator Board

PATTERN DECODE CONTROL FUNCTION REVISION 1A AUTHOR MIKE ROBERTS COMPANY TI DATE 10/12/1989

; This PAL will decode memory from the Motorola MC68030 to external devices.

| C  | HIP   | 22V1    | 0               | PAL22V10 |     |         |        |     |         |
|----|-------|---------|-----------------|----------|-----|---------|--------|-----|---------|
| ;I | PIN   |         |                 |          |     |         |        |     |         |
| ;  | 1     | 2       | 3               | 4        | 5   | 6       | 7      | 8   | 9       |
|    | NC1   | A19     | A18             | /68RW    | A0  | A1      | A15    | A16 | A17     |
| ;  | 10    | 11      | 12              |          |     |         |        |     |         |
|    | A30   | DAS     | GND             |          |     |         |        |     |         |
| ;  | 13    | 14      | 15              | 16       | 17  | 18      | 19     | 20  | 21      |
|    | /C1   | /8KWRCS | /BOOT           | /68TIRS  | NC4 | /DPRDCS | /STERM | NC2 | /8KRDCS |
| ;  | 22    | 23      | 24              |          |     |         |        |     |         |
|    | /8KCE | /FIFOWR | V <sub>CC</sub> |          |     |         |        |     |         |

; MYTHICAL PIN THPC/AT SETS THE REGISTERS ON BOOT-UP CALLED VAPOR VAPOR

**EQUATIONS** 

| /8KWRCS.TRST  | $= V_{CC}$ |            |
|---------------|------------|------------|
| /BOOT.TRST    | $= V_{CC}$ |            |
| /68TIRST.TRST | $= V_{CC}$ |            |
| /DPRDCS.TRST  | $= V_{CC}$ |            |
| /STERM.TRST   | $= V_{CC}$ |            |
| /8KRDCS.TRST  | $= V_{CC}$ |            |
| /8KCE.TRST    | $= V_{CC}$ |            |
| /FIFOWR.TRST  | $= V_{CC}$ |            |
| VAPOR.SETF    |            | $= V_{CC}$ |
|               |            |            |

8KWRCS = /68RW \* /A14 \* /A15 \* /DAS \* /AS \* RST ; 8K SRAM WRITE RE-SELECT

8KRDCS = 68RW \* /A14 \* /A15 \* /AS \* RST ; 8K SRAM READ PRE-SELECT

STERM = /A14 \* /A15 \* 68RW ;8KRDCS + /A14 \* /A15 \* /68RW \* /DAS ;8KWRCS ; SYNCHRONOUS TERMINATION ENDING SYNCHRONOUS CYCLES /UUCS = /9/A14 \* /A15 \* /A1 \* /68RW \* RST + 68RW \* /A14 \* /A15 \* /AS \* RST + ATEN1 \* ATADO) ; BYTE ENABLE SELECTS FOR UPPER-UPPER BYTE

/UMCS = /(/A14 \* /A15 \* /A1 \* A0 \* /68RW \* RST + /A14 \* /A15 \* /A1 \* /SIZO \* RST + /A14 \* /A15 \* /A1 \* /68RW \* SIZ1 \* RST + /A14 \* /A15 (68RW \* RST + 68RW \* /A14 \* /A15 \* /AS \* RST \* ATEN1 \* ATADO)

#### ; BYTE ENABLE FOR UPPER-MIDDLE BYTE

/LMCS = /(A14 \* /A15 \* A1 \* A0 /68RW \* RST + /A14 \* /A15 \* /A1 /68RW \* /SIZ1 \* /SIZ0 \* RST + /A14 \* /A15 \* /A1 \* /68RW \* AIZ1 \* SIZ0 \* RST + /A14 \* /A15 \* /A1 \* A0 \* /68RW \* /SIZ0 \* RST + 68RW \* /A14 \* /A15 \* /AS \* RST ;8KREAD + ATEN1 \* ATADO)

; BYTE ENABLE FOR UPPER-MIDDLE BYTE

/LLCS = /(A14 \* /A15 \* A1 \* A0 \* /68RW \* RST + /A14 \* /A15 \* A0 \* /68RW \* SIZ1 \* SIZ0 \* RST + /A14 \* /A15 \* /68RW \* /SIZ1 \* SIZ0 \* RST + /A14 \* /A15 \* A1 \* /68RW SIZ1 \* RST + 68RW \* /A14 \* /A15 \* /AS \* RST ;8KREAD + ATEN1 \* /ATAD0

; BYTE ENABLE FOR LOWER-LOWER BYTE

# **Software Listings**

Software listings available upon request. Contact the DVP Systems Engineering group at (214) 997-3970.

#### References

TMS34082 Designer's Handbook, Texas Instruments, 1990.
TMS34082 Data Sheet, Texas Instruments, 1990.
Motorola MC68030 User's Manual, Motorola, Inc., 1989.
680x0: Programming by Example, Stan Kelly-Bootle, Howard Sams and Company, 1988.
Motorola MC68881: Floating-Point Coprocessor User's Manual, Motorola, Inc., 1988.
The Motorola Motorola MC68020 and Motorola MC68030 Microprocessors: Assembly Language, Interfacing, and Design, Thomas L. Harman, Prentice Hall, 1989.
80286 and 80287 Programmer's Reference Manual, Intel, Inc. 1987.
8086/8088/80286 Assembly Language, Leo J. Scanlon, Brady Publishing Co., 1988.
Assembly Language Primer for the IBM PC & XT, Robert Lafore, Plume/Waite, 1984.
Technical Reference: Personal Computer AT, IBM, 1985.
80286 Hardware Reference Manual, Intel, Inc., 1987.

Maximizing Your MFLOPS with the TMS34082 and Motorola MC68030

# **Appendix E**

# A High Performance Floating-Point Image Computing Workstation for Medical Applications

This appendix describes the hardware and software architecture of a medium-cost floating-point image processing and display subsystem for the NeXT<sup>™</sup> computer, and its applications as a medical imaging workstation.

Karl S. Mills, Gilman K. Wong, and Yongmin Kim Image Computing Systems Laboratory (ICSL) Department of Electrical Engineering University of Washington Seattle, WA 98195

Reprinted with permission from Medical Imaging IV: Image Capture and Display, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Proceedings Yongman Kim, Editor Volume 1232, Summer 1990



 $\langle \hat{} \rangle$ 

### Abstract

The medical imaging field relies increasingly on imaging and graphics techniques in diverse applications with needs similar to (or more stringent than) those of the military, industrial and scientific communities. However, most image processing and graphics systems available for use in medical imaging today are either expensive, specialized, or in most cases both. High performance imaging and graphics workstations which can provide real-time results for a number of applications, while maintaining affordability and flexibility, can facilitate the application of digital image computing techniques in many different areas.

This paper describes the hardware and software architecture of a medium-cost floating-point image processing and display subsystem for the NeXT<sup>™</sup> computer, and its applications as a medical imaging workstation. Medical imaging applications of the workstation include use in a Picture Archiving and Communications System (PACS), in multimodal image processing and 3-D graphics workstation for a broad range of imaging modalities, and as an electronic alternator utilizing its multiple monitor display capability and large and fast frame buffer.

The subsystem provides a 2048 x 2048 x 32-bit frame buffer (16 Mbytes of image storage) and supports both 8-bit gray scale and 32-bit true color images. When used to display 8-bit gray scale images, up to four different 256-color palettes may be used for each of four 2K x IK x 8-bit image frames. Three of these image frames can be used simultaneously to provide pixel selectable region of interest display. A 1280 x 1024 pixel screen with 1:1 aspect ratio can be windowed into the frame buffer for display of any portion of the processed image or images. In addition, the system provides hardware support for integer zoom and an 82-color cursor. This subsystem is implemented on an add-in board occupying a single slot in the NeXT <sup>TM</sup> computer. Up to three boards may be added to the NeXT <sup>TM</sup> for multiple display capability (e.g., three 1280 x 1024 monitors, each with a 16-Mbyte frame buffer).

Each add-in board provides an expansion connector to which an optional image computing coprocessor board may be added. Each coprocessor board supports up to four processors for a peak performance of 160 MFLOP5. The coprocessors can execute programs from external high-speed microcode memory as well as built-in internal microcode routines. The internal microcode routines provide support for 2-D and 3-D graphics operations, matrix and vector arithmetic, and image processing in integer, IEEE single-precision floating point, or IEEE double-precision floating point.

In addition to providing a library of C functions which links the NeXT <sup>™</sup> computer to the add-in board and supports its various operational modes, algorithms and medical imaging application programs are being developed and implemented for image display and enhancement. As an extension to the built-in algorithms of the coprocessors, 2-D Fast Fourier Transform (FET), 2-D Inverse FFT, convolution, warping and other algorithms (e.g., Discrete Cosine Transform) which exploit the parallel architecture of the coprocessor board are being implemented.

# Introduction

The medical field relies increasingly on image computing in many applications areas. Current needs in the medical field include the employment of image processing and graphics in medical image enhancement, simple measurement, or scientific visualization of change, movement, and flow, as well as successive 2-D slices in 3-D medical images. X-ray Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) all use computationally intensive reconstruction methods to produce detailed cross sections of the structure. Other medical imaging modalities include digital radiography (digital X-rays), ultrasound and nuclear medicine scanners. These imaging modalities are used to understand internal anatomical and functional pathologies and to utilize that information in various clinical cases, for example during brain or orthopedic surgery. Image processing techniques are necessary for picture enhancement, and computing various statistics in applications like detecting suspicious cancer cells from pap smears. Picture Archiving and Communications System (PACS) with filmless archiving for all the images is a powerful concept with vast untapped potential. High-performance graphics and imaging workstations are essential for successful PACS.

This paper describes the most recent of a series of affordable, high-performance image computing workstations, the University of Washington Graphics System Processor #3 (UWGSP3) and its application to medical imaging. The UWGSP3 image processing board set supports the following features:

- Single 2k x 2k x 32-bit (16 Mbytes) roamable video/frame memory implemented entirely with 1 Mbit VRAMs
- 32 bits per pixel configured as 24-bit true-color system with 8 overlay bits, or up to four 8-bit pseudo-color or gray-scale frames (or 3 frames with overlay)
- 160 MFLOPS peak performance for high-speed integer and floating-point image processing and graphics functions
- 1280 x 1024 60-Hz noninterlaced color display with 1:1 screen aspect ratio
- Hardware zoom, roam, and cursor support
- Up to 3 different color palettes, each driven by a different plane, can be displayed at once for region of interest (ROI) operations
- Expansion port for digitizer, additional frame memory or other devices
- Improved system performance (4 to 8 times that of previous UWGSP systems)
- Support for window-oriented user interface
- NeXT<sup>™</sup> host system
- Medium-cost

The UWGSP3 offers the powerful, yet flexible environment necessary for meeting the stringent needs of many imaging applications. Applications other than those in medicine include scientific applications: astronomy, remote sensing, geology, seismology, oceanography, and earth resources planning; industrial applications: machine vision and robotics, tolerance verification, parts identification, optical character recognition, and thermography; military applications: field-deployable military workstations for map analysis and processing, target identification and tracking, and surveillance; forensics: fingerprint analysis and identification, signature verification and dental records analysis; and graphics applications: computer image display and synthesis (for example, solid modeling, ray tracing, object rendering and shading), image overlay, graphic arts, and ad preparation. Although some of these applications may never be implemented, these are the types of applications which could be developed on UWGSP3.

# Background

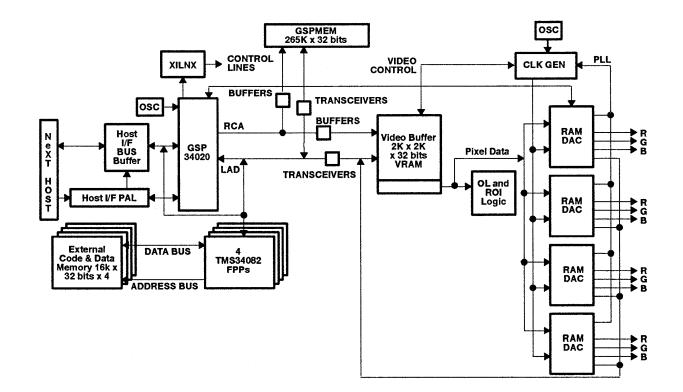
Several image computing subsystems have been developed in the Image Computing Systems Laboratory (ICSL) of the University of Washington. The University of Washington Graphics System Processor #1 (UWGSP1), developed in 1987, was the first of these systems. It has been used as a low-end PACS medical imaging workstation in the University of Washington PACS prototype system [Gee et al., 1989]. This first generation image computing subsystem was implemented on 2 IBM IC/AT protyping cards, heavily utilizing the processing power of the TMS34010 Graphics System Processor (GSP) and TMS32020 Digital Signal Processor (DSP). In UWGSP1, the screen and graphics functions are controlled by the GSP, and the DSP is used as a numeric coprocessor accessed via First-In First-Out (FIFO) buffers from the GSP. The spatial resolution of the display is 512 x 512 pixels with a contrast resolution of 8 bits per pixel. Hardware zoom, pan and scroll, one video frame buffer, and three workspace buffers are incorporated in the system. Software developed for the UWGSP1 includes point operations, arithmetic and logical operations, Region of interest (ROI), convolution, geometric transformation, Fast Fourier Transform (FFT) and Inverse (IFFT). Used in conjunction with a PC/AT host, UWGSP1 provides a flexible three processor low-cost medium performance workstation for fixed-point image processing applications.

While the UWGSP1 has proven to be a viable performer in various image analysis and processing applications, experience with the system exposed problem areas that required attention. UWGSP1 suffered from the following problems which somewhat limited its usefulness as an image computing workstation:

- The DSP's 16-bit fixed-point arithmetic can cause serious problems in accuracy of some image processing and graphics operations due to overflow, truncation, and other problems,
- Communication between the GSP and DSP through FIFO buffers is inefficient and difficult to manage,
- Some DSP operations are slow (e.g., 2-D FFT on 512 x 512 images takes about 16 seconds),
- For many applications, 512 x 512 display resolution is not enough, and
- Because the screen aspect ratio is not 1:1, warping of images is required for them to appear in proper proportion.

Because of these limitations, a second generation image processing subsystem was proposed (UWGSP2) and implemented at the ICSL in 1988 [Chinn et al., 1988]. UWGSP2 utilizes the Texas Instruments' 74ACT8837 Floating Point Processor (FPP) as a replacement for the TMS32020 DSP, to provide high-performance floating-point implementation of computationally-intensive image processing and graphics algorithms. By incorporating the FPP in the second generation design, most of the problems associated with the DSP's 16-bit fixed-point arithmetic operations were alleviated, while still obtaining a performance increase of about 2 times that of UWGSP1. However, the GSP to FPP FIFO interface continued to be a data flow bottleneck in the system, the display resolution was still insufficient for many imaging applications, and the screen aspect ratio was still other than 1:1.

A third generation system (UWGSP3) has been designed and implemented at the ICSL in 1989, and overcomes the limitations of the earlier systems by adding increased display resolution (from 512 x 512 to 1280 x 1024), increased frame buffer storage (from 1 Mbyte to 16 Mbytes), support for 32-bit true-color as well as 8-bit gray scale images or up to 24-bit gray scale images windowed and leveled into 8 bits, an intuitive graphical user interface, and multiple floating-point coprocessors for 160MFLOPS of peak processing performance. This system and its application to medical imaging are described below.


The UWGSP3 is implemented on a single multilayer printed circuit board, with an expansion connector for an optional coprocessor board. It is designed around two special purpose VLSI processors, the TMS34020 second generation Graphics System Processor and the TMS34082 Floating-Point Processor. Figure 1 shows a block diagram of the system with major components which include a NeXT <sup>TM</sup> Host System and Interface Logic, the TMS34020 Graphics System Processor, four TMS34082 Floating-Point Processors, Local Program Memory (1 Mbyte), and Video Display and Frame Buffer Memory (16 Mbytes). Each of these major design blocks is described below.

#### System Architecture

#### NeXT ™ Host System and Interface Logic

The host system for UWGSP3, the NeXT <sup>™</sup> computer, was selected over other potential host systems (e.g., MAC II, PC/AT compatibles, SUN, etc.) mainly for its flexibility and ease of use and programming. The NeXT 's<sup>™</sup> operating system, Mach (compatible with BSD 4.3 UNIX), provides a popular, portable, and flexible environment for software development and maintenance. Although UNIX provides an extremely versatile development environment, it is somewhat cryptic and cumbersome for the general user. However, the NeXT <sup>™</sup> provides a user friendly "Macintosh-like" interface for the nonprogrammer, while still providing the excellent development environment afforded by UNIX. Furthermore, the NeXT <sup>™</sup> architecture includes a high-speed 32-bit bus (NextBus, an enhanced NuBus) providing burst transfer rates of up to 100 Mbytes per second, and the significant board real estate necessary to support complex hardware designs. Another benefit afforded by the NeXT <sup>™</sup> is an interactive interface development environment (Interface Builder) which can generate user interface code directly. Because the user interface usually represents approximately 20% of the code, but requires as much as 80% of the effort, this capability can provide a significant savings in the time to develop various medical imaging applications by simplifying the generation and modification of application software interfaces [Jobs, 1989]. NeXT 's<sup>™</sup> object-oriented approach to software development makes it possible to develop image processing code modules which could be integrated into applications and user interfaces by the end user.

The backplane of the NeXT  $^{TM}$  computer supplies three expansion slots. Thus, up to three UWGSP3 subsystems can be inserted into the NeXT  $^{TM}$  for applications that require multiple displays. Interfacing of the NeXT  $^{TM}$  host to the UWGSP3 system is provided using a dedicated host interface port on the TMS34020. Executable programs, operands, images, and commands are passed to the UWGSP3 and its local memory via this host interface, with the NeXT  $^{TM}$  acting as the master and the UWGSP3 acting as a slave device. The host initializes the subsystem by transferring a GSP executable command decoder into GSP program memory via the host interface port. With the command decoder installed, image processing and graphics functions may be issued from the host. Once a command has been issued to the GSP, the host is free to pursue other functions as may be required, while the GSP decodes the command and executes the appropriate program on the UWGSP3 local bus.



#### Figure 1. UWGSP Block Diagram

Ę-J

#### Processors

The two high-performance special purpose VLSI processors used in UWGSP3 represent state-of-the-art performance and integration. Texas Instruments TMS34020 is the second generation of an advanced high-performance CMOS 32-bit microprocessor optimized for graphics display systems [Texas Instruments, 1989]. Addressing is bit oriented and all data structures such as pixel size and frame size as well as display characteristics are defined in internal GSP control registers, allowing the GSP to be configured to support a wide variety of display devices and formats. The TMS34020 contains a built-in instruction cache, hardware support for raster graphics instructions, video display timing generation hardware, as well as a memory controller and video memory controller. Extensions to the basic architecture of the GSP are provided through its coprocessor interface. Special instructions and cycles are available for enhancing data flow to coprocessors while maintaining a closely coupled processor-coprocessor environment.

The TMS34082 is a high-speed (40 MFLOPS peak) floating-point processor combining on a single chip a 16-bit sequencer, address generation and a three operand floating-point unit with twenty-two 64-bit data registers [Texas Instruments, 1989]. Single and double precision IEEE floating-point operations are supported for addition, subtraction, multiplication, division, square root, and comparison. In addition to floating-point operations, 32-bit integer arithmetic, logic operations and shifts may be performed by the 34082. To allow integer pixels to be manipulated in floating point, conversions are provided from integer to single or double precision formats and vice versa. To make the FPP more useful in imaging and graphics applications, intern1 micrcoode routines are provided for vector and matrix operations and the following graphics and image processing functions:

- 3 x 3 variable kernel convolution
- Backface elimination
- Polygon, 2-Plane, and 2-Plane color clipping
- 2-D and 3-D cubic spline
- 2-D window compare and 3-D volume compare
- Viewport scaling and conversion
- 2-D and 3-D linear interpolation
- Polygon elimination

External microcode support is also available to allow custom algorithm implementation on the 34082 processors. Additional image processing and graphics algorithms utilizing one to four 34082 processors are currently being implemented on UWGSP3.

Using the Texas Instruments TMS34020 GSP and the Texas Instruments TMS34082 Floating-Point Processor as a closely coupled processor pair alleviates much of the data transfer bottleneck experienced in the first and second generation UWGSP subsystems. Images stored in frame buffer memory can be transferred directly to the FPP rather than being read by the GSP and rewritten to FFO buffers as in the earlier UWGSP systems. But, with the display area and pixel depth each more than four times that of UWGSP1 or 2, additional processing capability is required to overcome the added computational demands imposed. For this reason multiple (up to 4) FPPs can be attached to the local GSP bus to provide this processing horsepower. As indicated In Figure 1, the FPPs connect directly to the Local Address and Data (LAD) bus of the GSP. Each FPP is also attached to its own bank of high speed 16K x 32 bit static memory for external microcode and data storage via the MicroStore Data (MSD) and Address (MSA) buses. The static memory and the MSD and MSA buses operate independently from the GSP's LAD bus, thus reducing GSP local bus activity. Transfers between the GSP memory and the FPP static memory pass through the FPP via the LAD and MSD buses when data or programs are needed by the coprocessors. Registers may also be transferred between the GSP and FPPs at any time.

Using the computing horsepower of the TMS34082's, UWGSP3 can outperform the UWGSP2 system by 4 to 8 times for computationally intensive operations requiring floating-point accuracy. By incorporating the TMS34020 as the graphics engine, graphics and other imaging operations also see a performance increase of 4 to 8 times that of the current UWGSP subsystems.

### Memory

Memory on the GSP local bus is linear and can be partitioned in a user-defined manner. The video buffer on UWGSP3 is configured normally as a single 2048 x 2048 x 32-bit buffer, but may be reconfigured as four 2048 x 2048 x 8-bit planes, four 4096 x 4096 x 4-bit planes, four 8K x 8K x 2-bit planes, or four 16K x 16K x 1-bit planes. The large video display buffer provides the ability to load large images into the buffer and roam through them, or to load several different images (e.g., an entire CT or MR study) into the buffer at once. For graphics or computer image generation applications, having a video buffer of more than two times the screen size allows double buffering of the display for smooth image and graphics transitions. The video frame buffer is implemented entirely in 1 Mbit multiport Video RAM (VRAM). The use of VRAM substantially increases the availability of the local bus because screen refresh data moves over a separate path to the combined lookup tables and digital to analog converters (RAMDACs).

The GSP program memory consists of 256K x 32-bits of Dynamic RAM (DRAM). This memory is used to store the local programs and data needed to control the display, manipulate images and graphics, and control the four coprocessors. Because the GSP contains the necessary hardware to control both DRAM and VRAM directly, the memory interface requires only the addition of buffers, transceivers and minimal control logic.

#### **Video Display**

UWGSP3 also provides a solution to the resolution and aspect ratio problems experienced in earlier UWGSP systems. The aspect ratio for the subsystem is adjusted for 1:1 in all display modes, providing a proportionally correct image required for most graphics and image processing applications. Furthermore, the  $1280 \times 1024$  display resolution provides sufficient display resolution for most applications, while a roamable video/frame buffer of 2K x 2K x 32-bits (16 Mbytes) provides an acceptable solution to all others. The GSP generates the video timing signals; however, it cannot drive the display itself.

Four Brooktree RAMDACs are used to drive the monitor. Each RAMDAC has a 256 x 24 bit lookup table (LUT) which drives 8 bits each of red, green and blue signals. The red, green and blue outputs of each RAMDAC are summed together and the composite signals are used to drive the monitor. For true color applications, one RAMDAC will drive only red, one will drive only green and one will drive only blue. The fourth RAMDAC provides 8 bits of overlay information. For gray scale or pseudo-color applications, a single RAMDAC drives red, green and blue outputs concurrently while the other RAMDACs are disabled. While in this mode, it is possible to do region-of-interest (ROI) (i.e., different portions of the screen are assigned different color mappings and/or image data) by switching on and off different RAMDACs In specific regions of the display on a pixel-by-pixel basis. Thus, by enabling different combinations of the RAMDACs, the frame buffer can be configured either as a 24-bit true color buffer with 8-bit overlay or as four separate 8, 4, 2, or 1-bit buffers. Bit-per-pixel selection of 8, 4, 2, or 1 is supported directly in hardware in the RAMDACs and augmented by appropriate clocking of the VRAMs. Overlay is also available in the ROI or 8, 4, 2, or 1-bit modes; however, one of the 8-bit planes must be used for the overlay leaving only three available for image display. Images with contrast resolution ranging from 9 to 24 bits per pixel may also be windowed and leveled into 8 bit gray scale or pseudocolor images using the FPPs. The RAMDACs also include support for a hardware cursor and integer zoom. The cursor shape, color and intensity are stored in a 64 x 64 x 2-bit array within each RAMDAC. The hardware zoom feature requires the support of an external state machine implemented in a Xilinx Logic Cell Array.

## **Software Architecture**

The overall software architecture for the UWGSP3 and NeXT  $^{TM}$  host system is shown in Figure 2. At the lowest level, drivers local to the UWGSP3 board provide screen management functions as well as graphics and image processing primitives. Commands and data are transferred from the host system to the UWDGSP3 over the NextBus using NeXT  $^{TM}$  hardware specific drivers via the host interface. The NeXT  $^{TM}$  drivers use memory mapped I/O to make the entire usable GSP address space available to the host. Implemented on top of this functionality will be device independent image processing and graphics functions which will provide a consistent and portable software interface for applications.

The communication protocol between the host and UWGSP3 is administered by a command decoder running locally on the UWGSP3. The command decoder provides entry points to screen management functions as well as entry points to FPP external microcode routines and FPP management functions.

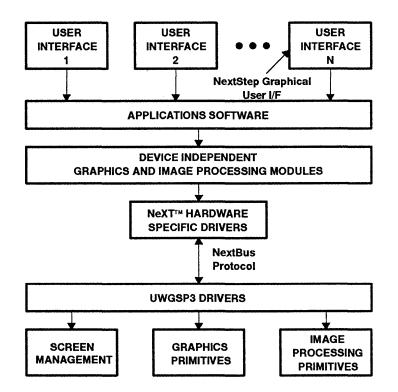



Figure 2. UWGSP3 Software Architecture

C

Microcoded routines are implemented as parallelized algorithms. Each FPP is assigned a different portion of the image to process while the GSP is responsible for handling the data transfers to and from the FPPs. This is done in such a way as to maintain the scalability of the coprocessor board; that is, the routines will be able to utilize any number of FPPs up to the maximum of four. As long as the parallel algorithms maintain a ratio of 3:1 or greater for the amount of time spent processing relative to the amount of time spent transferring data, the power of all four FFPs can be fully utilized. Code generation for both the TMS34020 and TMS34082 is being done in C with assembly language and microcode mixed in as necessary for optimization.

E-10 A High Performance Floating-Point Image Computing Workstation for Medical Applications

Using the Interface Builder development tools available on the NeXT  $^{TM}$ , different graphical user interfaces can be quickly prototyped and implemented for applications. Figures 3 and 4 illustrate a prototype interface of an interactive filtering package for UWGSP3 being developed. Figure 3 shows an example of the window used to specify a filter's frequency response. The shape of the frequency response curve may he changed by either typing in the desired parameters or by using the mouse to interactively drag one of the control points (identified as a solid black dot). In this example, a lowpass filter is shown; but in addition, there are filter windows for highpass, bandpass, bandstop, and azimuthal filters. Once a desired filter is designed, the user can apply the filter to the image by performing a 2-D FFT operation on the image, multiplying the filter and image in the frequency domain, peforming a 2-D IFFT operation, and displaying the filtered image in its window. The UWGSP3 can complete the entire process interactively (e.g., taking only a few seconds for a 256 x 256 image). Thus, trying filters with different characteristics can be easily supported on UWGSP3 without undue delay to the user.

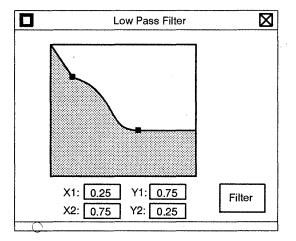



Figure 3. Lowpass Filter Specification Window

Besides allowing interactive filter specification for frequency domain filtering, the package supports image loading and frame buffer roaming and zooming (Figure 4). The image load window (on the left) allows any size image (up to 2048 x 2048) to be loaded anywhere within the 2048 x 2048 frame buffer. Control buttons are provided for standard sized images from 64 x 64 to 2048 x 2048. Another set of control buttons determines which channel the image will he loaded into: red, green, blue, or overlay. The frame buffer window is a scaled representation of the entire frame buffer area. The rectangular black outline defines the boundaries of the current display region. The mouse may be used to move the display to a different portion of the frame buffer by clicking and dragging on the display outline. Zoom buttons on the right allow the display to be zoomed by any integer from 1 to 8. The size of the display outline shrinks to reflect the reduced display region as higher zoom levels are employed. The position of previously loaded images are indicated by the shaded rectangles in the frame buffer window. The interface development effort has been in progress for several months and is almost complete at the time of this writing. The programmer attributes the short development time to the use of the Interface Builder tools.

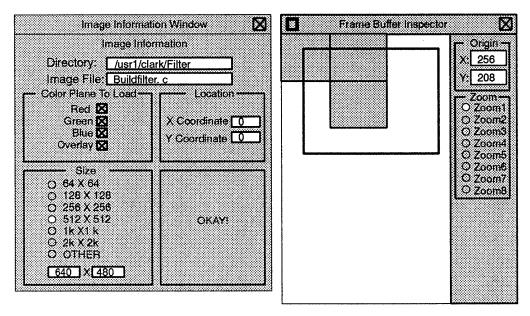



Figure 4. Image Load (left) and Virtual Frame Buffer (right) Windows

## **Application Areas**

The UWGSP3 board set and software libraries transform the NeXT <sup>™</sup> computer into an affordable image processing and graphics workstation with processing performance currently available only with much higher cost workstations. Furthermore, the UWGSP3 board set is designed to be flexible enough to provide processing in a wide range of imaging and graphics applications while most other systems are optimized for specific tasks. Described below are a few of the application areas of UWGSP3 in medical imaging, which show mainly the image processing and display capabilities of the system; however, 2-D and 3-D graphics tools are also being developed.

## PACS Workstation

Requirements for a PACS workstation include the following:

- High-resolution image display
- Large image frame buffer and magnetic storage
- Text display
- Network to tie together workstations
- Archival storage
- Rapid image retrieval and display

Together, the UWGSP3 and the NeXT <sup>™</sup> computer provide a solution to each of these requirements. The 1280 x 1024 display satisfies the condition for high resolution display in most applications (with the possible exception of digital radiography where resolutions of up to 2048 x 2048 are needed). In the arena of on-line storage, we have 16 Mbytes of frame buffer memory available for image storage. In terms of 8-bit gray-scale images, this is enough storage for 16 1k x 1k images, 64 512 x 512 images, 256 256 x 256 images, or 1024 128 x 128 images. In addition, NeXT <sup>™</sup> offers a 660 Mbyte ESDI hard drive which may be used for temporary storage of a local image database to hold a reasonable number of images downloaded from the central database. Furthermore, the UWGSF3's overlay channel meets the PACS workstation's textual (as well as graphical) annotation needs. As for network capabilities, the NeXT <sup>™</sup> features a built-in thin wire Ethernet interface and its operating system supports the TCP1IP protocol. This makes the UWGSP3 system suitable for use with other PACS systems, such as the UW prototype PACS, which already use Ethernet and TCP/IP Kim et al., 1989]. Finally, the NeXT 's<sup>™</sup> leading role in using optical disk technology provides UWGSP3 with a high-capacity transportable storage media capable of storing 256 Mbytes per disk at a cost of about \$0.20 per Mbyte, or the UWGSP3 system can have access to a central archival storage unit, e.g., a 5-114" optical disk jukebox at a lower cost per Mbyte.

One area in which UWGSP3 could use improvement is in the rapid transfer of data from storage to the display. Currently, it takes about 3 seconds to load a  $512 \times 512 \times 8$ -bit image and 38 seconds to load a  $2048 \times 2048 \times 32$ -bit true-color image. However, we are currently evaluating the feasibility of incorporating a parallel transfer disk to improve the NeXT 's<sup>TM</sup> disk performance. Furthermore, we are studying a hardware modification to allow UWGSP3 to operate closer to the NextBus' 100 Mbytes second peak transfer rate.

Another benefit of UWGSP3 is derived directly from the NeXT <sup>™</sup> host system. O'Malley [1989] advocates an iterative approach to PACS workstation development that involves a cycle of prototype evaluation and revision. The NeXT 's<sup>™</sup> Interface Builder tool and its use of the Objective-C object-oriented programming language, provide the rapid prototyping ability needed for this type of development paradigm.

## **Electronic Alternator**

The use of a digital system for emulating a conventional film alternator has been analyzed by several researchers [McNeill et al., 1988][Beard et al., 1988][Choi et al., 1990]. Analysis of these systems and their ability to emulate the current film alternator configuration digitally, has revealed several problems which must be overcome before workstations of this type can be used in radiology departments. Some of the problems include:

- Slow image loading rates for large images
- Inadequate number of image displays
- Resolution requirements (2k x 2k) are cost prohibitive
- Current systems do not address radiologists' needs beyond display and processing

Image loading rates for images as large as  $2k \times 2k$  vary from system to system, but may require as much as 1 minute to load. Recent advances in disk technology such as the Parallel Transfer Disk (PTD) can reduce this to a few seconds, but the ability to maintain as many images as possible resident in memory still remains important, to provide as interactive a system as possible. The UWGSP3 can hold up to four  $2k \times 2k \times 8$  bit images in memory at one time, any of which can be displayed instantaneously. In addition, up to three UWGSP3 may be installed in a single NeXT <sup>TM</sup> computer system allowing a total of up to twelve  $2k \times 2k \times 8$ -bit images or six  $2k \times 2k \times 16$ -bit images to be resident in memory at any one time. Coupled with a PTD this large number of image storage frames would allow for acceptable speeds in displaying radiological studies.

Viewing a large number of images at one time is important to the radiologist in that it better emulates the current mechanical alternator configumtion and allows images to be compared side-by-side. As previously indicated, currently up to 3 UWGSP3 boards can be installed in a single NeXT  $^{TM}$  computer. Thus 3 separate displays, in addition to the NeXT  $^{TM}$  display are available for image viewing and manipulation. This limitation on the number of displays is not limited by the design of the UWGSP3 itself, but in the number of backplane slots available on the NeXT  $^{TM}$  computer system. In later iterations of the board, multiple displays may be available on a single board, further increasing the number of available displays.

Providing displays with resolution as high as  $2k \times 2k$  is at present cost prohibitive when a large number of displays are required in UWGSP3, this issue was addressed by implementing a 1280 x 1024 display which is adequate for display of most imaging modalities. Display of multiple images as large as  $2k \times 2k$  is also possible on UWGSP3 by using hardware pan and scroll of the  $1280 \times 1024$  display in the  $2k \times 2k$  image frame. For multiple displays, this roaming can be done on all images concurrently, providing the same positioning of the display in all images. Or, if desired, the images can be panned and scrolled individually to view different areas of each image.

Many electronic alternator systems have addressed the display and processing needs of the radiologist. However, the integration of verbal annotation and/or digital film annotation is not always addressed. Verbal annotation may still be done using existing dictation hardware (e.g., a dictaphone system); however, the integration of this into the electronic alternator system would allow the verbal annotation to be directly associated with the digital image in a complex database. The NeXT  $^{TM}$  computer host provides the built-in capability for voice digitization, which could be linked with the image in a database. Potential also exists for voice recognition of commands and for speech to text conversion, using the Digital Signal Processor (DSP) available on the NeXT  $^{TM}$  computer host or some other specialized hardware.

## **Image Processing and Graphics**

The optional 160 MFLOPS peak performance coprocessor board makes the UWGSF3 an excellent platform for image computing. The GSP supports many frame buffer manipulation functions (e.g., P1XBLT, FILL, and image arithmetic) and the FPPs include many built-in microcode routines for both image processing and 2-D and 3-D graphics operations (e.g., 3 x 3 convolution, matrix and vector operations, polygon clipping, and backface elimination). Thus, the UWGSF3 serves as a platform suitable for both image processing and graphics applications.

## NxN Variable Size 2-D Convolution

NxN 2-D convolution can be used to implement a variety of image processing filtering operations such as lowpass, highpass, edge enhancement and edge detection. The algorithm is parallelized by segmenting the image into regions and assigning each locality to a different FPP. The predicted performance for a  $512 \times 512 \times 32$ -bit image (using all four FPPs) is as follows:

- 5 x 5 kernel 0.7 seconds
- 11 x 11 kernel 3.0 seconds
- 15 x 15 kernel 5.5 seconds

## FFT/IFFT

In some image analysis applications, FFT filtering techniques are often more convenient and intuitive than 2-D convolution and therefore more desirable. Thus, UWGSP3 must provide efficient FFT and IFFT algorithms. The FFT and IFFT will be implemented using the row and column method. Each of the four FPPs will be given an entire row or column to process, thereby parallelizing the operation. The predicted performance for a 512 x 512 x 32-bit image using all four FPPs is 4 seconds for either an FFT or an IFFT.

### Geometric Transformations (warping)

Geometric transformations are utilized in correction of image distortion arising from deficiencies in the acquisition apparatus, image registration for multimodal image analysis, and interpolated zooms for applications in image magnification and minification. Each FPP is assigned a different region of the resultant image. For each destination pixel, the FPPs calculate the coordinates of the source pixels. The GSP passes the source pixels to the FPPs which then perform a bilinear interpolation using the pixel values. Predicted performance of a lower-order warp using bilinear interpolation is 2.5 seconds for a  $512 \times 512 \times 32$ -bit image.

#### Window and Level

In digital radiography and CT and MR images, pixel sizes of up to 12 bits are generated. Most systems do window and leveling of these images by manipulating a 12-bit to 8-bit video output lookup table [Austin, et al, 1988]. Because UWGSP3 utilizes 8-bit RAMDACs, this method cannot be used. Instead the coprocessor board is used to perform a transformation of the 12-bit image into a window and leveled 8-bit image. The FPPs are used to calculate a transformation lookup table. Regions of the image are then sent to the FPPs which use the lookup tables to produce the 8-bit image. One of the advantages of this method is that the window and level operation can be limited to user defined regions and need not affect the entire display. Furthermore, this method may be used with pixel sizes greater than 12 bits (up to 24 bits per pixel). A full screen (1280 x 1024) transformation of a 24-bit image to an 8-bit image is expected to take less than 0.3 seconds.

#### Graphics

As mentioned in previous sections of this paper, the TMS34082 FPP includes many built-in microcode routines for 2-D and 3-D graphics which can be used to form the core functionality of a graphics library. In addition, the relatively large external microcode and data storage (16K x 32-bit for each FPP) allows higher level operations such as ray tracing and volume rendering to be added to the standard set of functions. Furthermore, the UWGSP3 architecture which couples the GSP with multiple FPPs, allows the computational workload to be distributed among the processors. Thus, each FPP can be given a different portion of the object database or a different set of tasks in the rendering process while the GSP is utilized to maintain the integrity of the frame buffer and transfer blocks of data to and from the FPPs.

Since the design is centered around the TM534020, the availability of the Texas Instruments Graphics Architecture TIGA-340 interface allows a UWGSP3 ported to an IBM AT-compatible (or MCA or EISA-based) architecture to be immediately compatible with many graphics applications written for this standard. In addition, UWGSP3 can be made to emulate other widely accepted video adapters such as EGA and VGA to support a vast number of different application programs.

For the current NeXT <sup>™</sup>-based version of UWGSF3, graphics standards including PHIGS, PHIGS+, GKS, and Renderman are being evaluated for implementation. The use of one of these standardized graphical programming interfaces, with the low level operations written to exploit the multiple FPP architecture, will further enhance UWGSP3's utility for 2-D and 3-D graphics applications.

#### Conclusion

With its increased display resolution, enlarged frame buffer storage, multiple floating point processors and intuitive graphical user interface, UWGSP3 represents an innovation in image computing workstation design and a significant step towards providing affordable real-time display and processing for a variety of applications. It provides an integrated platform for more acceptable and productive end-user environments for both image processing and graphics in the future. In this paper, we have described the basic architecture of UWGSP3, and several solutions to medical imaging applications including use as a PACS workstation, image processing and graphics computational engine, and a multiple display electronic alternator. With the hardware implementation and low-level software now completed, the task of creating the application software to achieve the UWGSP3's potential in these areas and others will extend into the months ahead.

#### Acknowledgements

We would like to acknowledge the efforts of Clark Haass of the ICSL for his work on the interactive filtering package user interface. We would also like to acknowledge Texas Instruments for their help and the donation of the prototype chips and development tools used in UWGSP3; in particular, we wish to thank Mike Asal of the GSP Group in Houston and Ron Drafz of the VLSI Group in Dallas.

#### References

J. D. Austin and T. Van Hook, "Medical image processing on an enhanced workstation," SP1E Medical Imaging II, 914:1317-1324, 1988.

D. Beard, J. L. Creasy, J. Symon and R. Cromartie, "Experiment comparing film and the FilmPlane radiology workstation," SP1E Medical Imaging II, 914:933-937, 1988.

P. Chinn, R. M. Pier, L. A. DeSoto, H. G. Zieber, D. A. Verheiden and Y. Kim, "PC-based floating point image processing system," Electronic Imaging Spring '88, pp. 233-238, 1988.

H.S. Choi, H. W. Park, D. R. Haynor and Y. Kim, "Development of a prototype electronic alternator for DIN/PACS environment and its evaluation," SPIE Medical Imaging IV, 1234: in press, 1990.

S. Jobs, Keynote Address at the University of Washington Computer Fair, March, 1989.

Y. Kim, D. R. Haynor, O. Saarinen, A. H. Rowberg, and J. W. Loop, "Preliminary PACS experience at the University of Washington," Electronic Imaging Spring '89, pp. 142-147, 1989.

J. C. Gee, L. A. DeSoto, D. R. Haynor, Y. Kim and J. W. Loop, "User interface design for a radiological imaging workstation," SP1E Medical Imaging III, 1093:122-132, 1989.

K. McNeill, G.W. Seeley, K. Maloney, L. Fajardo, and M. Kozik, "Comparison of a digital workstation and a film alternator," SP1E Medical Imaging II, 914:929-932, 1988.

K. G. O'Malley, "An iterative approach to development of a PACS display workstation," SPIE Medical Imaging III, 1093:293-300, 1989.

Texas Instruments TMS34020 User's Guide, 2nd Review Copy, August, 1989.

Texas Instruments TMS34082 Floating-Point Processor Product Preview, September, 1989.



## **Appendix F**

# Parallel Signal and Matrix Processing with the TMS34082

This application note will discuss and analyze a TMS34082 based parallel architecture.

E. M. Dowling and Z. Fu Erik Jonsson School of Engineering and Computer Science The University of Texas at Dallas Richardson, Texas 75083–0688

> R. S. Drafz Texas Instruments, Incorporated, M/S 8316 Dallas, Texas 75265–5303

Parallel Signal and Matrix Processing with the TMS34082

### Introduction

VLSI floating-point processor technology is evolving to meet the increasing need to execute sophisticated algorithms at higher and higher rates. Architectural advances in floating-point pipelines and processor organization have led to the TMS34082's high speed arithmetic core and its RISC control structure. However, some applications require much higher speeds than provided by a single TMS34082. A parallel processing solution may be the answer.

The goal of parallel processing is to speed computation by designing the appropriate number of processors into the system. These processors each work on pieces of the algorithm separately, and pass intermediate results among themselves. The simplest and most common form of parallel processing is to assign each processor a different tasks. For example, in a typical computer system, there may be a simple processor in the keyboard, a CPU, and coprocessors for memory management and floating-point operations. Of interest here are the parallel processing architectures that use many identical processors to solve a single numerical problem.

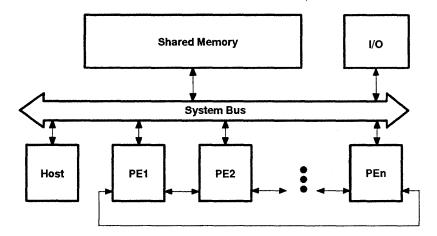
Some common architectures that achieve this are shared memory machines. (Sequent and Multi-Max), distributed memory machines (Ncube, IPSC) and systolic arrays (WARP) [1]. They all use duplicate processors, but have different storage, communication, and programming schemes. Some parallel architectures require all processors to execute the same instructions, but to work on multiple data streams (SIMD = Single Instruction Multiple Data.) Others allow each processor to act independently by providing multiple instruction streams (MIMD = Multiple Instruction Multiple Data.) Many architectures exist to solve numerical problems such as those that arise in scientific computation and signal and image processing applications. Many experimental machines have been targeted to these structured computation intensive applications [1] [3] [4] [5].

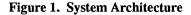
In this application note we will design and analyze a TMS34082 based parallel architecture. The architecture will be a MIMD hybrid shared /distributed memory machine that supports message passing as well as systolic data streaming. This structure provides maximum flexibility at a relative low cost. In addition, the system can be scaled so that any number of processors can be added as the application requires. The system reaches a peak of 40 MFLOPs per processor, and sustains a rate of 10 MFLOPs per processor on structured numerical algorithms. For example, if an algorithm must be executed in real time at 150 MFLOPs, a system with about fifteen or sixteen processors is needed.

Parallel architectures are measured in terms of their speed increase over a sequential architecture using the same type basic cell. (A cell can be thought of as a processing unit that would be the CPU/memory/I/O system in a sequential machine). In the MIMD system, the I/O portion of a cell is generally connected to other cells as well as other conventional I/O devices such as disks, A/D converters, etc. Parallel architectures performance is limited by dependencies found in many algorithms, or, more fundamentally, found in many mathematical problems. These dependencies might cause the parallel architecture to perform less efficiently than a straight sequential architecture due to communication overhead. If the problem itself is not inherently serial, then a parallel algorithm must be designed to solve the problem. Often this parallel algorithm can be derived from the sequential algorithm by rescheduling the computations so that the algorithm dependencies are satisfied, but many independent calculations will be computed at each step.

At this stage of design, the algorithm becomes linked to the underlying architecture. The most challenging part of the design is not to decide which computations can computed in parallel, but to minimize communication delays and waiting time. This requires the algorithm designer to match the dependence structure of the algorithm to the systems communication structure and processor granularity.

The parallel algorithm must be analyzed to see how it performed. The optimum is to use *n* processors for an *n* times speed increase (linear speed-up.) However, Amdahl predicted that most algorithms will have a logarithmic speed-up because their communication burden typically grows exponentially. Fortunately, linear speed-ups can often be attained on modern architectures solving well structured practical numerical problems, due to their regular communications requirements.


As we see, there is a tight interplay between the algorithm and the architecture. In a sense, the algorithm is mapped onto the architecture. It is our intent to design an architecture that can efficiently support many different algorithms. A hybrid approach as discussed in the next section was taken to achieve this level of flexibility. The architecture provides all point-to-point and broadcast paths through a single bus. A bidirectional ring of FIFO buffers connects adjacent processors so that high throughput can be achieved. The architecture design was driven by the matrix multiplication, FFT, QRD, and SVD algorithms. Simulation was used to arrive at an architecture that could support all of these representative algorithms.


Once the basic architecture is established, the cell must be carefully designed. As stated above, the performance of the parallel architecture is based on the speed increase over a single cell. If the cell is poorly designed and slow, the increase will be negligible. The cell designed here is based on the TMS34082 acting in host-independent mode. The MSD bus is used for instructions, while the LAD bus is used for data. The TMS34082 requires some sort of addressing assistance on the LAD side, an address latch at the very least. With this assistance, the TMS34082 has a Harvard architecture so can be made to maintain a steady instruction stream while manipulating data on the LAD side. This capability is of paramount importance in a TMS34082 system, and does not come without careful attention. The TMS34082 does not have any organic LAD addressing support. All LAD addresses must be computed in the floating-point core. Furthermore, when the C-compiler is used, local variables are stored on the MSD side and are accessed through stack operations. Even the stack pointer manipulations are carried out in the floating-point pipe, causing 'bubbles; and reducing performance. To bring the performance of the cell up to the full TMS34082 capabilities, a more sophisticated LAD bus controller will be specified. This controller will have its own register set and an integer unit to perform pointer manipulations under the control of an extended instruction field. The same LAD bus controller will be capable of routing data to more than one destination in a single bus cycle and will be able to move data while the TMS34082 is performing other functions such as floating-point loops.

#### The HARP Architecture

The design of the Hybrid Array Ring Processor (HARP) architecture was guided by a set of goals. First, the architecture was designed to perform a wide range scientific and DSP oriented algorithms. Second, it was designed to be scalable and expandable so that applications specific systems could be easily configured to the user's needs. It was also decided that the architecture should support both single- and double-precision IEEE standard floating-point arithmetic. The principle concern with the interconnection structure was that it had to support both high throughput and fast point-to-point paths. The interconnection topology was to be as simple as possible, yet had to support the target algorithms cleanly and efficiently. From a software perspective, the architecture had to be programmable in an extended version of C, much like hypercubes. Also the architecture needed to support an operating system such as UNIX. Finally, a version had to be implemented that could be accurately simulated in software so that performance measurements could be made.

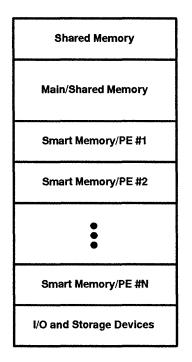
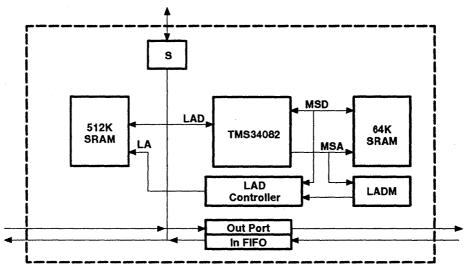
Matrix multiplication, FFT, QRD and SVD algorithms shaped the architecture. A simulator was built using the Rice Parallel Processing Testbed (RPPT) package along with the TMS34082 C-compiler and chip simulator. The RPPT simulator can run programs written in a superset of C, called Concurrent C (CC). An architecture model was written so that waiting time, date transfer delays, and the overall effects of the system topology could be measured. Profile information from the TMS34082 simulator is fed into the RPPT simulation so that the overall simulator measures the actual cycle counts of the parallel program executing on the architecture. Architectural modifications were made whenever limitations and bottlenecks were revealed by the simulation process.

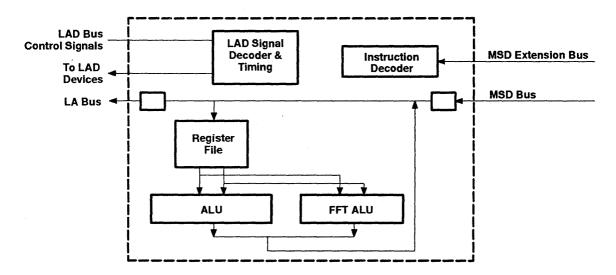




The overall HARP architecture is depicted in Figure 1. The host can be any subsystem that can run the desired operating system. For purposes of simulation, the host was considered to be a 33 MHz MC68030 with associated support hardware. The system bus can be any high-performance bus, but for simulation purposes was taken to be the native MC68030 processor bus running in asynchronous mode. The architecture, however, can be readily implemented for an open bus standard such as VME, Future Bus, etc. for example, a VME based version would be built around an available single-board UNIX engine, memory boards, and I/O cards. PEs would be added in groups of four per card. Each card would have a ring port in and a ring port out connector on the front. Thus flexible systems can be configured to meet specific processing, memory and I/O requirements. Application programs are written in CC to run on P processors, so that the same program will run on systems with different numbers of processors.

The hybrid aspects of the architecture are highlighted when looking at the system's programming models. From a global perspective, the host sees a conventional system that is augmented with smart memory segments as outlined in the memory map of Figure 2. The host must load these segments with code and data and read out the results. From the PE/bus perspective, the system takes the shape of a shared memory machine. Using the shared memory mode, processes are forked to the various nodes and communication primarily takes place over the bus where synchronization is maintained using semaphores and join constructs. The system can also be viewed as a message passing machine. Here processes on the nodes communicate using the send- and receive-message commands. The messages can be routed through the ring or over the bus. Finally, the system can be programmed as a linear or ring systolic array (with broadcast.) The systolic mode is the fastest mode if local PE to PE communication is required by the application algorithm. In this mode a steady data stream flows through the ring network in lockstep with processing. The cell architecture is optimized so that systolic communication and computation overlap.



Figure 2. System Memory Map

The PE is depicted in Figure 3. It consists of a TMS34082 floating-point RISC processor, a 30ns 512K word memory bank, a bus interface, a local bus controller, and a 35ns 32-bit BIFIFO that connects the PE[k] to the PE[k+1]. A full system bus interface implementation includes a local bus arbitration protocol that allows any PE to directly access any other PEs' local memory. The PE is built around the TMS34082's Harvard architecture. The program is stored on the Micro Store Data/Address (MDS & MSA buses) side while the data is stored on the Local Address and Data (LAD) side. The TMS34082 architecture consists of a high-performance FPU, a register file of twenty 32-bit (or ten 64-bit) registers, and a microsequencer. The TMS34082 does not have an address arithmetic unit nor does it have an address bus on the LAD side. In order for the system to reach high performance levels, an external LAD bus controller was designed to compute LAD addresses and provide low level timing and control signals to the devices attached to the LAD bus (FIFOs, SRAM, bus interface).





The LAD controller provided over an order of magnitude performance increase. With the controller, the TMS34082 is capable of performing an entire load or store operation and pointer update in a single clock cycle. The LAD controller can interleave accesses from the memory and the FIFO, as is often needed. The LAD bus controller also can be configured to accelerate systolic ring communication and local memory operations. Suppose the TMS34082 of PE[k] is to read a word from the FIFO connected to PE[k-1]. In many applications it will be also necessary to pass the datum onto the FIFO that is connected to PE[k+1] and possibly store the received datum in local memory. If both are required, the LAD controller will generate the signals for the FIFO[k-1] read, the FIFO[k+1] write, and the memory write all in the same TMS34082 read cycle. The LAD controller's FFT address generator speeds FFTs by over a factor of 100.





Different LAD controller designs have been considered. Some are algorithm specific, like the FFT, and some are more general. The most general LAD controller, as depicted in Figure 3, can be configured and performs LAD addressing under program control. The architecture of the LAD controller is shown in Figure 4. It consists of a register file, and addressing ALU (complete with FFT instructions), a LAD bus timing and control signal decode section, and an instruction decoder. The LAD controller accepts an instruction stream from an extended microcode field on the MSD bus. The registers may be loaded from the MSD bus as immediate operands. In a sense, the TMS34082's instruction set is expanded to include LAD addressing modes. The LAD addressing related fields in the instructions are stored in a separate four-bit memory (LADM) whose address lines are connected to the MSA bus.

## TMS34082 Host-Independent Mode Optimizations

The TMS34082 operates in either the coprocessor or the host-independent mode. It is most commonly used as a floating-point accelerator for the TMS340 graphics processor and is less commonly used in the host-independent mode, where it acts as an autonomous floating-point RISC processor. While the HARP architecture does assume a host processor to run the operating system, it employs the TMS34082s as loosely coupled processors operating in the host-independent mode. In this section some of the more striking aspects of designing a system around the TMS34082 in host-independent mode are discussed. The TMS34082 is capable of achieving very high computational throughputs.

The TMS34082 is truly a compact architecture, fitting somewhere between a conventional RISC and a dedicated floating-point unit. It lacks many common microprocessor features such as an on-board parallel address generator, while it provides an assortment of high-performance floating-point operations and subroutines such as division and square root. The key to success with the TMS34082 in host-independent mode is to keep it fed with data. If the TMS34082 is asked to manage the data stream into the chip, performance will be downgraded. Also, special care must be taken with loop management.

The first thing to take into consideration when developing a system for the host-independent TMS34082 is its Harvard architecture. The chip is designed to accept an instruction stream from the MSD (microstore data) bus and a data stream from the LAD bus. In coprocessor mode, the TMS340 has no problem keeping the TMS34082 fed with data because the LAD bus is directly connected to the TMS340 bus. However, in host-independent mode, special care must be taken to keep the data flowing on the LAD bus under the control of something other than the TMS34082. The reason for this is two fold. First of all, the TMS34082 LAD bus has both address and data multiplexed onto the same bus. Without external support, this means that an address must be first sent out to an external address latch prior to any LAD access, reducing the LAD bus bandwidth by 50%. A more sever problem arises if the TMS34082 does not have a separate integer addressing unit, all pointer updates must be computed in the FPU core. This means that the floating-point pipeline must be broken every time an external access is required. It turns out that non-judicious use of the TMS34082 for pointer updating can easily downgrade performance by an order of magnitude or more. Thus it is recommended that an external bus controller be designed into the system that performs the pointer manipulations needed to support the algorithms that will run on the target system.

Once the hardware has been configured, it is important to optimize the software. The first rule of thumb is to make judicious use of registered variables. Often compilers will use frame pointers and related pointer arithmetic to access local variables. As mentioned previously, if the TMS34082 is to perform pointer arithmetic, it will have to do it in the floating-point pipeline at great expense. The compiler will often place local variables on the stack which is located on the MSD side. This means load and store operations take two cycles each instead of the one cycle on the LAD side. More importantly, each local variable access will involve several external accesses to compute the stack pointer relative address of the local variable. Due to these considerations, it takes the TMS34082 11 cycles to compute k = k + 1 if k is a local variable defined on the MSD stack. On the other hand, if k were declared as a registered variable, the same operation would require only one cycle. Thus great performance dividends will be paid to those who put as many of the most often used local variables of each routine into registers.

The old axiom that 90% of a program's time is spent on 10% of the code is very true when it comes to numerical routines. In fact, most numerical routines spend 90% or more of their time in tight inner loops. For example, the inner loop of the routine to multiply two 256 x 256 matrices on a single TMS34082 would be entered and exited 65,536 times. At each iteration, one multiplication and one addition is performed, which can be computed by the TMS34082 in a single cycle using the *mult.add* command. Now consider the overhead needed to run the loop. If the loop counter variable were located on the MSD stack it would take 11 cycles to increment the loop counter, it would take another 12 cycles to check to see if the loop terminated. In addition, using the FPU core to perform loop counter iterations and stack pointer manipulations forces the compiler to use separate multiply and add operations and store intermediate results. Thus while the TMS34082 provides the ability to compute a floating-point multiply-accumulate a single cycle, an unoptimized loop might spend 30 cycles each iteration in loop overhead. If care is not taken, loop overhead alone can reduce the performance to 3.33% efficiency. This figure does not even account for data accesses. The loop overhead can be reduced to about four cycles per iteration if registered variables are used. Even better, it can be reduced to one cycle through the use of the LOOPCT register and the *cjmp.d* instruction. The *cjmp.d* instruction is a decrement and branch instruction that decrements LOOPCT, compares it against zero, and takes the appropriate branch all within a single cycle.

Now take data accesses into account. An inner-product loop is set up by initializing LOOPCT with the inner-product length, clearing the accumulator, and loading the base addresses of the two input data arrays. First consider the case where the pointers are loaded into an external LAD controller. Two data loads are performed in two cycles while the LAD controller autoincrements the pointers for the next loop iteration. Next a *mult.add* instruction is used to perform the multiply accumulate in a single cycle. Finally, the *cjmp.d* is used to decrement the loop counter and branch to the beginning of the loop. This implementation required four cycles per loop iteration and a LAD controller that could interleave two increment pointer registers. Now consider an implementation that does not use an external LAD controller, but does use LOOPCT and registered variables for the loop pointers. The loop starts out by performing two pointer additions with the output sent to the LAD bus and two loads; four cycles. Next the multiply and add are computed in two instructions because the FPU pipeline had been interrupted. The *cjmp.d* is the last instruction in the loop. This loop had a total count of nine cycles.

The two above loops can sustain 10 MFLOPs and 4.44 MFLOPs respectively. Slightly enhanced performance can be achieved many loop iterations are in-line coded into a single loop iteration. If the vector length is 100, then the inner product could be computed in ten loop iterations if ten multiply accumulates are performed in each loop iteration. With the external LAD controller, twenty loads are followed by ten *mult.adds* and one *cjmp.d*. This reduces the number of *cjmps* by nine, but adds additional loop end condition checking overhead if the number of loop iterations is not a multiple of ten. Anywhere between one and ten multiply accumulates can be performed in the inner loop depending on the divisors of the inner product length. Using this optimization technique, the sustained inner product performance can be raised from 10 MFLOPs to 15 MFLOPs.

Experience shows that one must recognize what the TMS34082 is and what it is not. It is a high-performance floating-point unit that can execute floating-point code efficiently. It is not a general purpose processor with a full set of addressing modes and parallel on-board executions units. Great speed-ups in compiler generated code can be easily achieved through judicious use of registered variables. Hand optimized assembler level optimizations can be attained by using the LOOPCT register and the *cjmp.d* instruction. Further speed-ups come through the use of and external LAD side address generator. Once a system architecture is defined, systems level optimizations can be made to overlay various bus operations into the same cycle.

#### Algorithms

In this section several algorithms will be briefly discussed. First consider the problem of multiplying the matrices  $A \in R^{m \times r}$  and  $B \in R^{r \times n}$  to form the product  $C \in R^{m \times n}$  on a system with P PEs. At the start of the algorithm, A and B are stored in the shared memory. At the end of the algorithm, the product matrix C is returned to the shared memory. The first step of the algorithm is for the host to move the columns of B into the PE s using the system bus. Column  $b_j$  is moved to PE[j mod P]. This column will be used to compute  $c_j = Ab_j$  so that  $c_j$  will be accumulated on PE[j mod P]. The matrix A is moved into the array at PE[0] and PE[0]'s right output buffer concurrently. The inner product of row  $a_i$  and each resident  $b_j$  is formed and stored as  $c_{ij}$ 's. PE[k] reads a word or row  $a_i$  from PE[k-1], one word at a time, directly into the TSM34082's FPU pipeline and stores the row in memory for future use and transfers it to the FIFO connected to PE[k+1] all in the same cycle. The rows of A stream through the system until the trailing row cycles through. Due to the ordering of computations, PE[0] will finish first, then PE[1] etc. Once PE[0] finishes, it sends its results over the bus to the system memory. Then PE[1] will follow suit, then PE[2] ... etc. on down the line.

Next consider the radix-2 decimation in time (DIT) FFT algorithm. Assume that the number of PEs, P is a power of two. Also assume that the LAD bus controller is capable of performing FFT address generation in addition to the autoincrement mode used in the previous algorithm. For purposes of illustration, suppose that a N = 1024 point FFT is to PE performed on P = 8 processors. The algorithm is outlined as follows. First decimate the time series into eight 128-point subsequences and send the ith subsequence to PE[i] over the system bus. Next each node computes a 128-point radix-2 DIT FFT on the local subsequence. These sequences are built back up using standard binary tree recombination with twiddling. The tree is viewed as having the root node in processor zero  $log_2(N)$ iterations into the future. At the first iteration, each PE is considered to be a leaf of the tree. At this iteration each PE[2k + 1] sends its results to PE[k] for k = 0...(N/2) - 1. The even PEs then perform the twiddle and recombination operations so that the even cells now have 256-point sequences. At the next iteration, PE[4K+2] sends its results to PE[4k] for k = 0...(N/4) - 1. Now the mod 4 PEs twiddle and recombine. Next PE[4] sends its result to PE[0] and PE[0] assembles the final 1024 point result. The communication of the algorithm is not local, but the algorithm permits the data to be routed through idle cells so that a negligible penalty is paid for the nonlocal communication. The nonlocal communication only costs one cycle of delay per route-through node; the data rate of the data stream is not effected. Simulation studies have shown that this extra cost has a negligible effect on performance. The simulation studies did show that performance was reduced due to the nonsequential access requirement within a given local vector computation. The nonsequential addressing forces one to send entire messages instead of single elements at a time transparently. Also, as the recombination process progresses, more and more processors become idle.

Another version of the FFT was studied that was able realize the full potential of the system. Most applications that require an FFT actually require many FFTs. For example, a real-time processing system might require that 1024 point frames of an incoming signal be computed continuously. In image processing, a 512 x 512 pixel FFT can be computed by first performing 512 512-point column FFTs followed by 512 512-point row FFTs. Similarly, spectral based PDE solvers used in scientific application s require large numbers of 1-D FFTs to compute a single 3-D FFT. The course granularity of the system allows each separate PE to compute an FFT separately. This is a pure smart memory algorithm. The host loads the PEs with data and pulls out results. If enough processors are in the system, the overall computation rate is limited only by the amount of time it takes to load and unload a single smart memory segment with a complex data vector.

The next algorithm considered was the QRD. The QRD provides an alternative way to solve linear systems. The standard algorithm used to solve linear systems is Gaussian elimination with partial pivoting. The pivoting portion of that algorithm degrades performance in the HARP architecture, but a Householder QRD maps quite well.  $A \in R^{m \times n}$  has a factorization A = QR where  $Q \in R^{m \times m}$  is orthognal and  $R \in R^{m \times n}$  is upper triangular [11]. Consider the case where m = n and rand(A) = n. Write Ax = b as QRx = b so that multiplying on both sides by  $Q^T$  gives the triangular system  $Rx = Q^T b$  which can be solved by back substitution. Note that multiplying both sides by  $Q^T$  is equivalent triangularizing A by a sequence of orthognal transformations and applying these same transformations to b. In the case where m>n, this procedure may also be applied to solve linear least squares problems.

Suppose  $A \in \mathbb{R}^{m \times n}$  is to be decomposed on a P processor system. Assign column  $a_j$  to PE[j mod P]. If P does not divide *n*, then some PEs will have extra columns. First set the iteration variable, k, and proceed as follows. At iteration k, the PE containing  $a_k$  computes the vector  $v_k \in \mathbb{R}^{m-k+1}$  such that the bottom (k - m)-element subvector of  $a_k$ , denoted  $a_k(k : m)$  satisfies  $H_j a_k((k : m) = \alpha \varepsilon_1$  where  $\varepsilon_1$  is the k-order unit standard basis vector and  $\alpha = || a_k (k : m) ||$ . The kth transformation must be applied only to columns k through n. So  $v_k$  is sent down the ring to the right from the PE where  $a_k$  resides. When the head of the  $v_k$  data stream arrives, the remaining PEs perform the transformation,  $a_j (k : m) = a_j (k : m) - (vT_k a_j (k : m)) v_k \forall j > k$  to the local columns. The algorithm is essentially a waveform algorithm where the computation wave propagates to the right and a trail of results (R) are left behind. If the matrix Q is desired, the v-vectors may be saved so that Q is available in factored form. If the algorithm is used to solve a linear or linear least squares system, the vector b is augmented as the last column of A and loaded accordingly.

The final algorithm to be discussed is the SVD. Hestenes's method [6] [9] for computing the SVD has received much attention lately in the literature due to its parallel nature. The Hestense method is a one-sided Jaccobi algorithm that operates by applying orthognalizing plane rotations to all pairs of columns of the matrix  $A \in \mathbb{R}^{m \times n}$ . A sequence of all pairs of such rotation is called a sweep. The algorithm can be shown to converge after a sufficient number of sweeps have been applied. Once the algorithm has converged, the matrix, A, will have been transformed via orthognal transformations to another matrix,  $B \in \mathbb{R}^{m \times n}$ , whose columns are orthognal to each other. If the product of the sequence of orthognal transformations is collected in  $V \in \mathbb{R}^{n \times n}$ , then we have AV = B. It is trivial to next factor B as  $B = U\Sigma$  gives  $A = U \Sigma V^T$ , which can be seen to be the SVD of A. We do note that this algorithm generated  $U \in \mathbb{R}^{m \times n}$  and  $\Sigma \in \mathbb{R}^n x^n$  instead of  $U \in \mathbb{R}^{m \times m}$  and  $\Sigma \in \mathbb{R}^m x^n$  but that no information was lost. Several systolic array algorithms have been devised to perform the Hestenes SVD algorithm on a linear bidirectional systolic array [2] [8] [10]. The methods are based on a theorem that states that the order in which all the pairs columns are orthognalized does not affect the overall convergence of the Jaccobi algorithm [8]. Algorithms are designed by selecting an ordering where groups of P pairs can be computed at each time step on P processors. The key to a successful ordering is that the next group of P pairs in the ordering can be generated by local shifts of columns between processors. Figure 5 shows how columns are switched in order to generate such an ordering on a P-element bidirectional array. In the figure each PE is assumed to have two vector registers, VRa, and VRb which each hold a column of the matrix. If the columns are loaded into the vector registers, and permuted as depicted in the figure, one sweep will be computed every N-2 update cycles. At the end of the sweep, the updated columns will return to their original position in the array, ready for the next sweep.

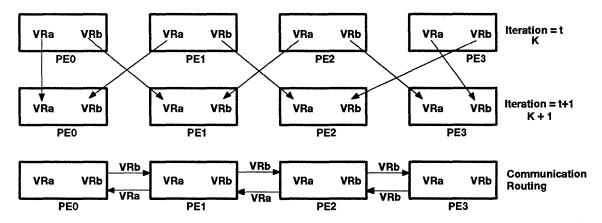



Figure 5. Parallel Jaccobi Updating on a Systolic Architecture

It is clear that this algorithm can be directly implemented on the HARP architecture. The bidirectional ring is sufficient for communication, and the vector registers can be implemented as buffer areas in the local SRAM. Each node must first compute the Jaccobi rotation matrix, apply it to the local columns stored on that node, and send the results to adjacent nodes as indicated in the figure. All nodes perform the same function except the end nodes. The shifting of data between the two data buffers on PE[N-1] can be accomplished by a single pointer swap. If the number of columns in the matrix exceeds 2P, then the algorithm is slightly more complicated. Now PEs will have to do the job of more than one PE. The complication comes in the form of pointer housekeeping and additional conditional statements. Only the computations that represent the boarder PEs of the sub-array need to communicate with the neighbor PEs, the internal nodes of the subarrays just exchange pointers.

## **Simulation Results and Performance Analysis**

A simulator was constructed using the RPPT simulation package. The RPPT package consists of a CC compiler, an architecture modeling / analysis package, and a facility to bind CC programs to the architecture model. Once a program and architecture have been bound, RPPT runs a simulation of the program running on the architecture. While doing so, RPPT keeps track of time using a parallel time construct. It is able to account for delays caused by bus contentions, processes waiting for input, data transfers across a bus or communication channel, and processors executing code. The above mentioned delays can be caused by either the parallel program or the underlying architecture or both. In order to account for the time spent by processors executing code, RPPT converts the CC program into assembly code and assigns to each basic block a cycle count (a basic block has one entry, one exit, and each instruction in the block is performed exactly once.) It then inserts an instruction at the front of each basic block that increments a cycle counter variable by the number of cycles spent in that basic block. This act is called profiling, and is done to the native MC68020 assembly code generated for the execution of the simulation of a SUN3 platform. In order to make RPPT count TMS34082 cycles, the node program is recompiled on the TMS34082 C compiler, translated to assembly code, and profiled with using the TMS34028 simulator in single step mode. The basic blocks of the MC68020 assembly code are then cross profiled by replacing the MC68020 cycle counts with the TMS34082 cycle counts. The key is that both programs execute the same C code so are essentially the same. The architectural modifications of the LAD bus controller are brought into the simulation here by updating the cycle count numbers to reflect the elimination of the cycles that are actually performed in parallel by the LAD controller.

The matrix multiplication was analyzed first. It showed us that the maximum sustainable throughput of a node was essentially limited to 10 MFLOPs. This is so because in the inner-loop of a long inner product required two loads, a *mult.add*, and a conditional jump. Thus two FLOPs are performed every four cycles, so that at 20 MHz, the TMS34082 can continuously compute data streams at a rate of 10 MFLOPs. This limit can be raised to up to 15.5 MFLOPs if the exact number of elements in the inner product is known ahead of time. For example, if the inner product length were 100, the loop iterations consisting of 20 loads, ten *mult.adds* and one conditional jump would each perform 20 FLOPs every 31 cycles. The program used in the simulation was written for the general case so that the nodes were essentially limited to 10 MFLOPs sustained throughput rate.

The simulator was used to measure the efficiency of the HARP and to study the effects of matrix size and the number of processors in the system. The simulation accounts for the time to move the inputs to the nodes from the shared memory, compute the results, and move the results from the individual nodes back into the shared memory. The simulator counts all cycles to include addressing, loop management, testing of conditions, etc. It gives an indication as to the amount of time spent performing FLOPs and the amount of time spent on communication and overhead. Figure 6 shows a plot of the average MFLOPs achieved by a ten element array running matrix multiplications. Note that as the size of the matrices increase, the overall performance of the system approaches the theoretical limit of 100 MFLOPs. The reason that performance is not as close to the limit for smaller matrices, is that the I/O and program overhead becomes more significant. Figure 7 show a plot of the performance measured in average MFLOPs for systems running a 128 x 128 matrix multiplication using P processors. Note that for up to 32 processors (the largest array the simulator could handle) there is a linear speed-up as more processors are added. This violation of Amdahl's law is predictable because the communication overhead of the algorithm/architecture combination clearly does not increase exponentially as more processors are added.

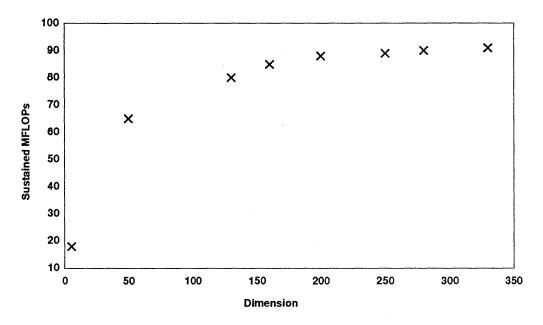



Figure 6. Matrix Multiplication Performance on 10-Processor Systems

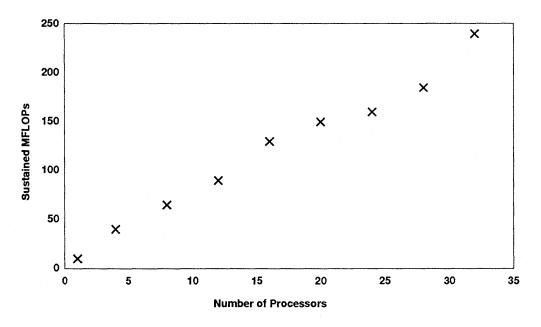
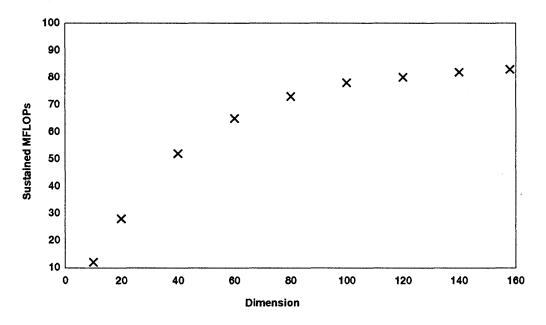



Figure 7. 128 x 128 Matrix Multiplication on P-Processor Systems

The next algorithm that was implemented was the FFT. The LAD controller provided hardware support for the radix-2 addressing scheme. In the first set of experiments, single FFTs of various lengths were computed on different sized arrays. The results are summarized in Table 1. We note that the sustained MFLOPS on a single processor is within 75% of the maximum sustainable throughput for a single node. The pay off for adding more processors, however, is less pronounced than in the matrix multiply algorithm. This is due to the fact that communication overhead can not be completely overlapped with computations. Thus, as more processors are added, the execution time of the algorithm decreases, but the efficiency of the system also decreases.


The pipeline FFT algorithm was also analyzed. Here the number of processors was determined to form an FFT pipeline that maximized overall performance. Using this number of processors, performance was limited only by the system bus bandwidth. Table 2 shows the results of the second set of experiments for transform lengths from 256 to 4096 that were performed on the optimum sized arrays. For each transform length/ array size pair, the table lists several parameters. First the 1-D pipeline FFT effective computation time is listed followed by the maximum sampling rate that could be accommodated for the various transform lengths. The next column shows how much time it takes to compute an N x N 2-D FFT using the row/column algorithm. The sustained MFLOPs achieved for each 2-D FFT is listed last. The maximum attainable sustained computation rate can be taken to be 10\*P MFLOPs, were P is the number of processors in the array. The efficiency is the measured sustained MFLOPS divided by the total attainable MFLOPs. The simulation shows the system efficiency ranges from 67.8% for the 256 x 256 transform to 80.8% for the 4096 x 4096 transform.

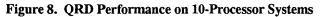

|      | N=512    | N=1024   | N=2048   | N=4096   |
|------|----------|----------|----------|----------|
| P=1  | t=3.69   | t=7.94   | t=17.0   | t=36.2   |
|      | SM=7.47  | SM=7.74  | SM=7.96  | SM=8.14  |
| P=4  | t=1.64   | t=3.39   | t=7.03   | t=14.59  |
|      | SM=16.86 | SM=18.12 | SM=19.23 | SM=20.22 |
| P==8 | t=1.40   | t=2.82   | t=5.74   | t=11.72  |
|      | SM=19.79 | SM=21.77 | SM=23.55 | SM=25.17 |
| P=16 | t=1.31   | t=2.59   | t=5.18   | t=10.43  |
|      | SM=21.15 | SM=23.74 | SM=26.09 | SM=28.26 |

Table 1. Distributed FFT Performance Results.

P = # of processors. t = time in milliseconds and SM = sustained MFLOPS.

The column-systolic Householder QRD was also executed on the simulator. Figure 8 shows the sustained MFLOP rating of the QRD as a function of matrix dimension on a ten processor system. Note that the algorithm approaches the 100 MFLOPs maximum sustainable capacity of the system nearly as fast as the matrix multiplication algorithm, but levels off to 90 MFLOPS due to additional serial threads in the QRD algorithm. Figure 9 indicates that for large matrix size, that the algorithm has linear speed-up as more processors are added. This is due to the fact that communications and computations are nearly full pipelined. It is also due to the modulo P wrapping of the columns to the array and the use of the external ring connection. This mapping strategy achieves nearly perfect load balancing and allows the inherent dependencies of QRD to be effectively eliminated by allowing the system to execute more than one iteration of the algorithm at a time.





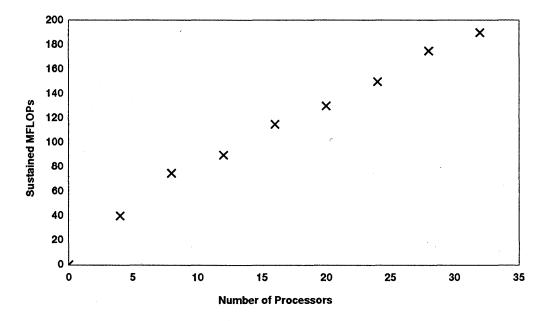



Figure 9. 128 x 128 QRD on P-Processor Systems

The last algorithm that was implemented to date was the modified Hestenes-Luk SVD. The algorithm was found to be efficient for large matrices especially if the number of processors was large. As Figure 10 indicates, as more and more columns are mapped to each processor, the efficiency of the algorithm diminishes slightly. This is due to the fact that more and more time must be spent on pointer operations and loop overhead since the array is actually emulating a large array. Memory constraints limited the range of the number of processors that could be used to implement the SVD, but Figure 11 shows the results of the system performing 48 x 48 SVDs on differing numbers of processors. We note that the number of processors must divide the dimensions of the matrix or some processors will need to be idle. The figure indicates a linear speed-up as more processors are added for large sized problems. This behavior is expected due to the fact that the communication overhead does not grow as more processors are added. Actually, as more processors are added, the communication delay remains constant while the pointer overhead and housekeeping diminishes.

| N    | Processors<br>Required | Time Per<br>Pipelined<br>FFT | Maximum Data<br>Rate | NxN FFT<br>Execution<br>Time | NxN FFT<br>Sustained<br>MFLOPs |
|------|------------------------|------------------------------|----------------------|------------------------------|--------------------------------|
| 256  | 18                     | 94                           | 5.45 MHz             | 51.5ms                       | 122                            |
| 512  | 19                     | 186                          | 5.51 MHz             | 197ms                        | 143                            |
| 1024 | 21                     | 372                          | 5.51 MHz             | 776ms                        | 162                            |

5.50 MHz

5.43 MHz

3.09sec

12.43sec

746

1468

2048

4096

22

24

Table 2. Pipelined FFT Performance Results for Real-Time Signal and Image Processing

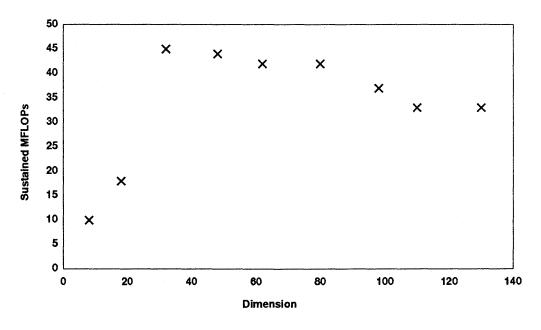



Figure 10. SVD Performance on 8-Processor Systems

179

194

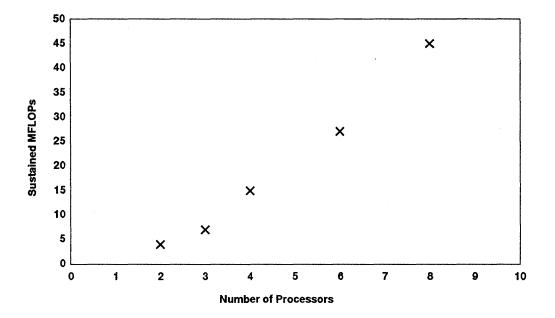



Figure 11. 48 x 48 SVD on P-Processor Systems

#### Conclusion

In this paper a hybrid architecture for matrix, DSP, image, and scientific computations has been presented to harness the power of N TMS34082 floating-point processors. The architecture can be programmed using many different programming models and parallel processing paradigms so that efficient programs can be written for a broad range of algorithms. The machine may be programmed as a shared memory machine, a message passing distributed memory machine, or a systolic array. The architecture may dynamically switch between any of these modes under software control.

The architecture is optimized to operate with multiple TMS34082s. To this end, a local bus controller is introduced to assist the TMS34082s in pointer manipulations and to provide a fast addressing capability on the LAD bus. The bus controller also provides the ability to perform multiple bus operations, such as a fetch and a send, in the same cycle. By allowing the bus controller to have its own instruction stream, a program controlled DMA mechanism makes it possible for the cell to send messages or pass systolic data streams while the processor was executes numerical loops. While a simple address latching scheme seems reasonable, use of the smart LAD bus controller leads to speed-ups of two to three orders of magnitude.

The system was implemented using the TMS34082 Toolkit along with the RPPT simulation package. Matrix Multiplication, FFT, QRD and SVD algorithms were coded in Concurrent C and executed on the architecture model to provide detailed cycles counts which were converted into MFLOPs ratings for each algorithm. The simulations showed what must be done to make the system execute code efficiently. The main findings were that the TMS34082 must be freed from pointer manipulations whenever possible, that registered variables should be utilized to reduce costly stack operations, and that the LOOPCT register together with the *cjmp.d* instruction should be used to control loops. Hand optimizations to the assembly code generated by the C compiler were needed off-load LAD pointer manipulations to the bus controller hardware. The simulation showed that high performance can be achieved if the system is carefully designed and code is optimized. Algorithms can often sustain computation rates approaching MFLOPs per processor, where the MFLOPs rating account for program overhead and data I/O time. For example, the simulation showed the matrix multiplication algorithm could run at just under 100 MFLOPs on a ten TMS34082 system.

#### Bibliography

- 1. M. Annaratone, E. Arnould, R. Cohn, T. Gross, and H. T. Kung. Harp architecture: From prototype to production. In *Proceedings of the 1987 National Computer Conference*, Chicago, Illinois, June 1987.
- 2. R. P. Brent and F. T. Luk. The solution of singular-value and symmetric eigenvalue problems on multiprocessor arrays. SIAM J. Sci. Stat. Compt., 6(1):69-84, January 1985.
- 3. E. M. Dowling, M. Griffin, and F. J. Taylor. A multi-purpose VLSI floating-point array processor. 22nd Annual Asilomar Conference on Signals, Systems, and Computers, October, 1988.
- 4. B. L. Drake, F. T. Luk, J. M. Speiser, and J. J. Symanski. Slapp: A systolic linear algebra parallel processor. *Computer*, 20(7):35-43, July, 1987.
- 5. D. W. Foulser and R. Schreiber. The saxpy matrix-1: A general purpose systolic computer. *Computer*, 2–(7):35-43, July, 1987.
- 6. M. R., Hestenes. Inversion of matrices by biorthogonalization and related results. SIAM J. App. Math, 6(1):51-90, March, 1958.
- 7. H. T. Kung. Why systolic architectures? IEEE Computer Magazine, pages 37-46, January, 1982.
- 8. F. T. Luk. On parallel Jaccobi orderings. SIAM J. Sci. Stat. Compt., 10(1), January, 1989.
- 9. J. C. Nash. A one sided transformation method of the singular value decomposition and algebraic eigenproblem. *The Computer Journal*, 18:74-76, 1975.
- 10. R. A. Whiteside, N. S. Ostlund, and P. G. Hibbard. a parallel diagonalization algorithm for a loop multiple processor system. *IEEE Trans. on Computers*, C-33(5):409-413, May 1984.
- 11. G. H. Golub and C. F. Van Loan. Matrix Computations, 2nd Ed., John Hopkins University Press, Baltimore, MD, 1989.



## **TI** Worldwide **Sales Offices**

ALABAMA: Huntsville: 4960 Corporate Drive, Suite N-150, Huntsville, AL 35805-6202, (205) 837-7530.

ARIZONA: Phoenix: 8825 N. 23rd Avenue, Suite 100, Phoenix, AZ 85021, (602) 995-1007. Suite 100, Phoenix, AZ 85021, (602) 995-1007. CALIFORNIA: Invine: 1920 Main Street, Suite 900, Invine, CA 92714, (714) 660-1200; Roseville: A 95678, (916) 786-9208; San Diego: 5625 Ruffin Road, Suite 100, San Diego, CA 92123, (619) 278-9601; Santa Clara: 5353 Betsy Ross Drive, Santa Clara; CA 95054, (408) 980-9000; Woodland Hills: 21550 Oxnard Street, Suite 700, Woodland Hills, CA 91367, (618) 704-8100. (818) 704-8100.

COLORADO: Aurora: 1400 S. Potomac Street, Suite 101, Aurora, CO 80012, (303) 368-8000. CONNECTICUT: Wallingford: 9 Barnes Industrial Park So., Wallingford, CT 06492, (203) 269-0074

PLOPIDA: Altamonte Springs: 370 S. North Lake Boulevard, Suite 1008, Altamonte Springs, FL 32701, (407) 260-2116; Fort Lauderdale: 2950 N.W. 62nd Street, Suite 100, Fort Lauderdale, FL 33309, (305) 973-8502; Tampa: 4803 George Road, Suite 390, Tampa, FL 33634-6234, (813) 882-0017.

GEORGIA: Norcross: 5515 Spalding Drive,

Norcross, GA 30092, (404) 662-7900

ILLINOIS: Arlington Heights: 515 W. Algonquin, Arlington Heights, IL 60005, (708) 640-3000.

INDIANA: Carmel: 550 Congressional Drive, Suite 100, Carmel, IN 46032, (317) 573-6400; Fort Wayne: 118 E. Ludwig Road, Suite 102, Fort Wayne, IN 46825, (219) 482-3311.

IOWA: Cedar Rapids: 373 Collins Road N.E., Suite 201, Cedar Rapids, IA 52402, (319) 395-9551

KANSAS: Overland Park: 7300 College Boulevard, Lighton Plaza, Suite 150, Overland Park, KS 66210, (913) 451-4511.

MARYLAND: Columbia: 8815 Centre Park Drive, Suite 100, Columbia, MD 21045, (301) 964-2003.

MASSACHUSETTS: Waltham: 950 Winter Street, Suite 2800, Waltham, MA 02154, (617) 895-9100.

MICHIGAN: Farmington Hills: 33737 W. 12 Mile Road, Farmington Hills, MI 48331, (313) 553-1500; Grand Rapids: 3075 Orchard Vista Drive S.E., Grand Rapids, MI 49506, (616) 957-4202.

MINNESOTA: Eden Prairie: 11000 W. 78th Street, Suite 100, Eden Prairie, MN 55344, (612) 828-9300.

MISSOURI: St. Louis: 12412 Powerscourt Drive, Suite 125, St. Louis, MO 63131, (314) 821-8400.

NEW JERSEY: Iselin: Parkway Towers, 485E. Route 1 South, Iselin, NJ 08830, (201) 750-1050. NEW MEXICO: Albuquerque: 1224 Parsons Court, N.E., Albuquerque, NM 87112, (505) 291-0495.

291-0495. NEW YORK: East Syracuse: 6365 Collamer Drive, East Syracuse, NY 13057, (315) 463-0291; Fishkill: 300 Westage Business Center, Suite 140, Fishkill, NY 12524, (914) 897-2900; Melville: 1895 Walt Whitman Road, PO. Box 2936, Melville: 1895 Walt Whitman Road, PO. Box 29

NORTH CAROLINA: Charlotte: 8 Woodlawn Green, Suite 100, Charlotte, NC 28217, (704) 527-0930; **Raleigh:** 2809 Highwoods Boulevard, Suite 100, Raleigh, NC 27625, (919) 876-2725. OHIO: Beachwood: 23775 Commerce Park Road, Beachwood, OH 44122, (216) 464-6100; Beavercreek: 4200 Colonel Glenn Highway,

Suite 600, Beavercreek, OH 45431, (513) 427-6200

OREGON: Beaverton: 6700 S.W. 105th Street, Suite 110, Beaverton, OR 97005, (503) 643-6758. PENNSYLVANIA: Blue Bell: 670 Sentry Parkway, Blue Bell, PA 19422, (215) 825-9500. PUERTO RICO: Hato Rey: 615 Merchantile Plaza Building, Suite 505, Hato Rey, PR 00918, (809) 753-8700.

TEXAS: Austin: 12501 Research Boulevard, Austin, TX 78759, (512) 250-7655; Dallas: 7839 Churchill Way, Dallas, TX 75251, (214) 917-1264; Houston: 9301 Southwest Freeway, Suite 360, Houston, TX 77074, (713) 778-6592. UTAH: Salt Lake City: 1800 S. West Temple Street, Suite 201, Salt Lake City, UT 84115, (801) 466-8973.

WASHINGTON: Redmond: 5010 148th Avenue N.E., Building B, Suite 107, Redmond, WA 98052, (206) 881-3080.

WISCONSIN: Waukesha: 20825 Swenson Drive, Suite 900, Waukesha WI 53186, (414) 798-1001.

CANADA: Nepean: 301 Moodie Drive, Mallom Center, Suite 102, Nepean, Ontario, Canada K2H 9C4, (613) 726-1970; Richmond Hill, 280 Centre Street East, Richmond Hill, Ontario, Canada L4C 1B1, (416) 884-9181; **St. Laurent**: 9460 Trans Canada Highway, St. Laurent, Quebec, Canada H4S 1R7, (514) 335-8392.

ARGENTINA: Texas Instruments Argentina Viamonte 1119, 1053 Capital Federal, Buenos Aires, Argentina, 1/748-3699.

AUSTRALIA (& NEW ZEALAND): Texas AUS I HALIA (& NEW ZEALAND): 16Xas Instruments Australia Ltd., 6-10 Talavera Road, North Ryde (Sydney), New South Wales, Australia 2113, 2-878-9000; 5th Floor, 418 Street, Kilda Road, Melbourne, Victoria, Australia 3004, 3 267-4677; 171 Philip Highway, Elizabeth, South Australia 5112, 8 255-2066.

AUSTRIA: Texas Instruments GmbH., Hietzinger Kai 101-105, A-1130 Wien, (0222) 9100-0.

BELGIUM: S.A. Texas Instruments Belgium N.V., 11, Avenue Jules Bordetlaan 11, 1140 Brussels, Belgium, (02) 242 30 80.

BRAZIL: Texas Instruments Electronicos do Brasil Ltda., Rua Paes Leme, 524-7 Andar Pinheiros, 05424 Sao Paulo, Brazil, 0815-6166. DENMARK: Texas Instruments A/S, Borupvang 2D, DK-2750 Ballerup, (44) 68 7400. FINLAND: Texas Instruments OY, P.O. Box 86, 02321 Espoo, Finland, (0) 802 6517.

**FRANCE:** Texas Instruments France, 8-10 Avenue Morane Saulnier-B.P. 67, 78141 Velizy Villacoublay cedex, France, (1) 30 70 10 03.

GERMANY: Texas Instruments Deutschland GmbH., Haggertystrasse 1, 8050 Freising, (08161) 80-0 od. Nbst; Kurfürstendamm (08161) 80-0 do. Nost, Kunurstendamm 195-196, 1000 Berlin 15, (630) 8 82 73 65; Düsseldorfer Strasse 40, 6236 Eschborn 1, (66196) 80 70, Kirchhorster Strasse 2, 3000 Hannover 51, (0511) 64 68-0; Maybachstrasse II, 7302 Ostilderna 2 (Neilingen), (0711) 34 03-0; Gildehotenter, Hollestrasse 3, 4300 Essen 1, (0201) 24 25-0.

HOLLAND: Texas Instruments Holland B.V., Hogehilweg 19, Postbus 12995, 1100 AZ Amsterdam-Zuidoost, Holland, (020) 5602911.

HONG KONG: Texas Instruments Hong Kong Ltd., 8th Floor, World Shipping Center, 7 Canton Road, Kowloon, Hong Kong, 7351223.

HUNGARY: Texas Instruments International, Budaorsi u.42, H-1112 Budapest, Hungary, (1) 1 66 66 17.

IRELAND: Texas instruments Ireland Ltd., 7/8 Harcourt Street, Dublin 2, Ireland, (01) 755233. ITALY: Texas Instruments Italia S.p.A., Centro Direzionale Colleoni, Palazzo Perseo-Via Paracelso, 12, 20041, Agrate Brianza (Mi), (039) 63221; Via Castello della Magliana, 38, 00148 Roma, (06) 5222651; Via Amendola, 17, 40100 Bologna, (051) 554004.

JAPAN: Texas Instruments Japan Ltd., Aoyama JAPAN: Texas Instruments Japan Ltd., Aoyama Fuji Building 3-6-12 Kira-aoyama Minato-ku, Tokyo, Japan 107, 03-3498-2111; MS Shibaura, Building 9F, 4-13-23 Shibaura, Minato-ku, Tokyo, Japan 108, 03-3769-8700; Nissho-iwai Building 5F, 2-5-8 Imabashi, Chuou-ku, Osaka, Japan 541, 06-204-1881; Dai-ni Toyota Building Nishi-kan 7F, 4-10-27 Meieki, Nakamura-ku, Nagoya, Japan 450, 052-583-8691; Kanazawa Oyama-cho Daichi Seimei Building 6F, 3-10 Oyama-cho Dalichi Seimei Building 6F, 3-10 Oyama-cho, Kanazawa, Ishikawa, Japan 920, 0762-23-5471; Matsumoto Showa Building 6F, 0762-23-5471; Matsumoto Showa Building 6F, 1-2-11 Fukashi, Matsumoto Showa Building 6F, 1-2-11 Fukashi, Matsumoto, Nagano, Japan 390, 0263-33-1060; Daiichi Olympic Tachikawa Building 6F, 1-25-12, Akebono-cho, Tachikawa Nishiguchi KN Building 6F, 2-8-4 Kita-Saiwai, Nishi-KU, Yokohama, Kanagawa, Japan 220, 045-322-6741; Nihon Seimei Kyoto Yasaka Building 5F, 843-2, Higashi Shiokohjichor, Higashi-ru, Nishinotoh-in, Shiokohji-dori, Shimogyo-ku, Kyoto, Japan 600, 075-341-7713; Sumitomo Seimei Kumaava Building FE -244 Sumitomo Seimei Kurnagaya Building 8F, 2-44 Yayoi, Kurnagaya, Saitama, Japan 360, 0485-22-2440, 2597-1, Aza Harudai, Oaza Yasaka, Kitsuki, Oita, Japan 873, 09786-3-3211.

KOREA: Texas Instruments Korea Ltd., 28th Floor, Trade Tower, 159-1, Samsung-Dong, Kangnam-ku Seoul, Korea, 2 551 2800.

MEXICO: Texas Instruments de Mexico S.A. Alfonso Reyes 115, Col. Hipodromo Condesa, Mexico, D.F., Mexico 06120, 5/525-3860.

MIDDLE EAST: Texas Instruments, No. 13, 1st Floor Mannai Building, Diplomatic Area, P.O. Box 26335, Manama Bahrain, Arabian Gulf, 973 274681

NORWAY: Texas Instruments Norge A/S, PB 106, Refstad (Sinsenveien 53), 0513 Oslo 5, Norway, (02) 155090.

PEOPLE'S REPUBLIC OF CHINA: Texas Instruments China Inc., Beijing Representative Office, 7-05 CITIC Building, 19 Jianguomenwai Dajie, Beijing, China, 500-2255, Ext. 3750. PHILIPPINES: Texas Instruments Asia Ltd.

Philippines Branch, 14th Floor, Ba-Lepanto Building, Paseo de Roxas, Makati, Metro Manila, Philippines, 2 817 6031.

Plantpointes, 2 of vos1. PORTUGAL: Texas Instruments Equipamento Electronico (Portugal) LDA., 2650 Moreira Da Maia, 4470 Maia, Portugal (2) 948 1003. SINGAPORE (& INDIA, INDONESIA, MALAYSIA, THAILAND): Texas Instruments Singapore (PTE) Ltd., Asia Pacific Division, 101 Thomson Road, #23-01, United Square, Eingapore 1120, 2620 91. Singapore 1130, 350 8100.

Singapore 1130, 300 8100. SPAIN: Texas Instruments España S.A., c/Gobelas 43, Ctra de La Coruna km. 14, La Florida, 28023 Madrid, Spain, (1) 372 8051; c/Diputacion, 279-3-5, 08007 Barcelona, Spain, (3) 317 91 80.

SWEDEN: Texas Instruments International Trade Corporation (Sverigefilialen), Box 30, S-164 93 Kista, Sweden, (08) 752 58 00.

SWITZERLAND: Texas Instruments Switzerland AG, Riedstrafse 6, CH-8953 Dietikon, Switzerland, (01) 74 42 811.

TalwAN: Texas Instruments Supply Company, Taiwan Branch, Room 903, 9th Floor, Bank Tower, 205 Tung Hua N. Road, Taipei, Taiwan, Republic of China, 2 713 9311.

UNITED KINGDOM: Texas Instruments Ltd., Manton Lane, Bedford, England, MK41 7PA, (0234) 270 111.



© 1991 Texas Instruments Incorporated

## TI North American Sales Offices

and the second 
ALABAMA: Huntsville: (205) 837-7530 ARIZONA: Phoenix: (602) 995-1007 CALIFORNIA: Irvine: (714) 660-1200 Roseville: (916) 786-9208 San Diego: (619) 278-9601 Santa Clara: (408) 980-9000 Woodland Hills: (818) 704-8100 COLORADO: Aurora: (303) 368-8000 CONNECTICUT: Wallingford: (203) 269-0074 FLORIDA: Altamonte Springs: (407) 260-2116 Fort Lauderdale: (305) 973-8502 Tampa: (813) 882-0017 GEORGIA: Norcross: (404) 662-7900 ILLINOIS: Arlington Heights: (708) 640-3000 INDIANA: Carmel: (317) 573-6400 Fort Wayne: (219) 482-3311 IOWA: Cedar Rapids: (319) 395-9551 KANSAS: Overland Park: (913) 451-4511 MARYLAND: Columbia: (301) 964-2003 MASSACHUSETTS: Waltham: (617) 895-9100 MICHIGAN: Farmington Hills: (313) 553-1500 Grand Rapids: (616) 957-4202 MINNESOTA: Eden Prairie: (612) 828-9300 MISSOURI: St. Louis: (314) 821-8400 NEW JERSEY: Iselin: (201) 750-1050 NEW MEXICO: Albuquerque: (505) 291-0495 NEW YORK: East Syracuse: (315) 463-9291 Fishkill: (914) 897-2900 Melville: (516) 454-6600 Pittsford: (716) 385-6770 NORTH CAROLINA: Charlotte: (704) 527-0930 Raleigh: (919) 876-2725 OHIO: Beachwood: (216) 464-6100 Beavercreek: (513) 427-6200 OREGON: Beaverton: (503) 643-6758 PENNSYLVANIA: Blue Bell: (215) 825-9500 PUERTO RICO: Hato Rev: (809) 753-8700 TEXAS: Austin: (512) 250-7655 Dallas: (214) 917-1264 Houston: (713) 778-6592 UTAH: Salt Lake City: (801) 466-8973 WASHINGTON: Redmond: (206) 881-3080 WISCONSIN: Waukesha: (414) 798-1001 CANADA: Nepean: (613) 726-1970 Richmond Hill: (416) 884-9181 St. Laurent: (514) 335-8392

## TI Regional Technology Centers

CALIFORNIA: Irvine: (714) 660-8140 Santa Clara: (408) 748-2220 GEORGIA: Norcross: (404) 662-7950 ILLINOIS: Arlington Heights: (708) 640-2909 INDIANA: Indianapolis: (317) 573-6400 MASSACHUSETTS: Watham: (617) 895-9196 MEXICO: Mexico City: 491-70834 MINNESOTA: Minneapolis: (612) 828-9300 TEXAS: Dallas: (214) 917-3881 CANADA: Nepean: (613) 726-1970

## Customer Response Center TOLL FREE: (800) 336-5236

TOLL FREE: (80 OUTSIDE USA: ) 336-5236 (214) 995-6611 (8:00 a.m. - 5:00 p.m. CST)

## TI Authorized North American Distributors

Alliance Electronics, Inc. (military product only) Almac Electronics Arrow/Kienulff Electronics Group Arrow (Canada) Future Electronics (Canada) GRS Electronics (Canada) GRS Electronics Lex Electronics Marshall Industries Newark Electronics Wyle Laboratories Zeus Components Rochester Electronics, Inc. (obsolete product only (508) 462-9332)

## **TI Distributors**

ALABAMA: Arrow/Kierulff (205) 837-6955; Hall-Mark (205) 837-8700; Marshall (205) 881-9235; Lex (205) 895-0480. ABIZONA: ArrowKierulff (602) 437-0750;

ARIZONA: Arrow/Kierulff (602) 437-0750; Hali-Mark (602) 437-1200; Marshall (602) 496-0290; Lex (602) 431-0030; Wyle (602) 437-2088.

437-2000. CALIFORNIA: Los Angeles/Orange County: Arrow/Kienulff (818) 701-7500, (714) 838-5422; Hall-Mark (818) 773-4500, (714) 727-6000; Marshall (818) 407-4100, (714) 458-5301; Lex (818) 880-9686, (714) 863-0200; Wyle (818) 880-9000, (714) 863-9953; Zeus (714) 921-9000, (818) 889-3838;

Sacramento: Hall-Mark (916) 624-9781; Marshall (916) 635-9700; Lex (916) 364-0230; Wyle (916) 638-5282;

San Diego: Arrow/Kierulff (619) 565-4800; Hall-Mark (619) 268-1201; Marshall (619) 578-9600; Lex (619) 495-0015; Wyle (619) 565-9171; Zeus (619) 277-9681;

San Francisco Bay Area: Arrow/Kierulff (408) 441-9700; Hall-Mark (408) 432-4000; Marshall (408) 942-4600; Lex (408) 432-7171; Wyle (408) 727-2500; Zeus (408) 629-4789.

COLORADO: Arrow/Kieruff (303) 373-5616; Hall-Mark (303) 790-1662; Marshall (303) 451-8383; Lex (303) 799-0258; Wyle (303) 457-9953.

CONNECTICUT: Arrow/Kierulff (203) 265-7741; Hall-Mark (203) 271-2844; Marshall (203) 265-3822; Lex (203) 264-4700.

FLORIDA: Fort Lauderdale: Arrow/Kierulff (305) 429-8200; Hall-Mark (305) 971-9280; Marshall (305) 977-4880; Lex (305) 977-7511; Orlando: Arrow/Kierulff (407) 333-9300; Hall-Mark (407) 830-5855; Marshall (407) 767-8585; Lex (407) 331-7555; Zeus (407) 365-3000;

Tampa: Hall-Mark (813) 541-7440; Marshall (813) 573-1399; Lex (813) 541-5100. GEORGIA: Arrow/Kierulif (404) 497-1300; Hall-Mark (404) 623-4400; Marshall (404) 923-5750; Lex (404) 449-9170.

LLINOIS: Arrow/Kierulff (708) 250-0500; Hall-Mark (708) 860-3800; Marshall (708) 490-0155; Newark (312)784-5100; Lex (708) 330-2888.

INDIANA: Arrow/Kierulff (317) 299-2071; Hall-Mark (317) 872-8875; Marshall (317) 297-0483; Lex (317) 843-1050.



IOWA: Arrow/Kierulff (319) 395-7230; Lex (319) 373-1417.

KANSAS: Arrow/Kierulff (913) 541-9542; Hall-Mark (913) 888-4747; Marshall (913) 492-3121; Lex (913) 492-2922.

MARYLAND: Arrow/Kieruff (301) 995-6002; Hall-Mark (301) 988-9800; Marshall (301) 622-1118; Lex (301) 596-7800; Zeus (301) 997-1118.

MASSACHUSETTS: Arrow/Kierulff (508) 658-0900; Hall-Mark (508) 667-0902; Marshall (508) 658-0810; Lax (508) 694-9100; Wyle (617) 272-7300; Zeus (617) 863-8800.

MICHIGAN: Detroit: Arrow/Kienulff (313) 462-2290; Hall-Mark (313) 462-1205; Marshall (313) 525-5850; Newark (313) 967-0600; Lex (313) 525-8100;

Grand Rapids: Arrow/Kierulff (616) 243-0912. MINNESOTA: Arrow/Kierulff (612) 830-1800; Hall-Mark (612) 941-2600; Marshall (612) 559-2211; Lex (612) 941-5280.

MISSOURI: Arrow/Kierulff (314) 567-6888; Hall-Mark (314) 291-5350; Marshall (314) 291-4650; Lex (314) 739-0526.

NEW HAMPSHIRE: Lex (800) 833-3557. NEW JERSEY: Arrow/Kientiff (201) 538-0900, (609) 596-8000; GRS (609) 964-8560; Hall-Mark (201) 515-3000, (609) 235-1900; Marshall (201) 882-0320, (609) 234-9100; Lex (201) 227-7880, (609) 273-7900.

NEW MEXICO: Alliance (505) 292-3360. NEW YORK: Long Island: Arrow/Kierulff (516) 231-1000; Hall-Mark (516) 737-0600; Marshall (516) 273-2424; Lex (516) 231-2500; Zeus (914) 937-7400;

Rochester: Arrow/Kierulff (716) 427-0300; Hall-Mark (716) 425-3300; Marshall (716) 235-7620; Lex (716) 383-8020;

Syracuse: Marshall (607) 798-1611. NORTH CAROLINA: Arrow/Kierulff (919) 876-3132; (919) 725-8711; Hall-Mark (919) 872-0712; Marshall (919) 878-9882; Lex (919) 876-0000.

OHIO: Cleveland: Arrow/Kierulff (216) 248-3990; Hall-Mark (216) 349-4632; Marshall (216) 248-1788; Lex (216) 464-2970; Columbus: Hall-Mark (614) 888-3313;

Dayton: Arrow/Kierulff (513) 435-5563; Marshall (513) 898-4480; Lex (513) 439-1800; Zeus (513) 293-6162.

District Construction of the second secon

PENNSYLVANIA: Arrow/Kierulff (215) 928-1800; GRS (215) 922-7037; Marshall (412) 788-0441; Lex (412) 963-6804.

TEXAS: Austin: Arrow/Kierulff (512) 835-4180; Hall-Mark (512) 258-8848; Lex (512) 339-0088; Wyle (512) 345-8853;

Dallas: Arrow/Kierulff (214) 380-6464; Hall-Mark (214) 553-4300; Marshall (214) 233-5200; Lex (214) 247-6300; Wyle (214) 235-9953; Zeus (214) 783-7010;

Houston: Arrow/Kierulff (713) 530-4700; Hall-Mark (713) 781-6100; Marshall (713) 895-9200; Lex (713) 784-3600; Wyle (713) 879-9953:

UTAH: Arrow/Kierulff (801) 973-6913; Marshall (801) 485-1551; Wyle (801) 974-9953.

WaSHINGTON: Almac (206) 643-9992, (509) 924-9500; Arrow/Kierulff (206) 643-4800; Marshall (206) 486-5747; Wyle (206) 881-1150. WISCONSIN: Arrow/Kierulff (414) 792-0150; Hall-Mark (414) 797-7844; Marshall (414) 797-8400; Lex (414) 784-9451.

CANADA: Calgary: Future (403) 235-5325; Edmonton: Future (403) 438-2858;

Montreal: Arrow Canada (514) 735-5511; Future (514) 694-7710; Marshall (514) 694-8142; Ottawa: Arrow Canada (613) 226-6903; Future (613) 820-8313; **Quebec City**: Arrow Canada (418) 871-7500;

Toronto: Arrow Canada (416) 670-7769; Future (416) 612-9200; Marshall (416)458-8046; Vancouver: Arrow Canada (604) 421-2333; Future (604) 294-1166.

© 1991 Texas Instruments Incorporated

D0291





Printed in U.S.A., May 1991 2564007-9761 revision A SCGU004