

San Antonio Fonts sanant

7-33

Proportional
Original character set, no typesetter’s equivalent
A serif typeface with hollow (commonly called in-line) uprights. Distinctive and
semiformal in appearance, ideal for memos, newsletters, flyers, and headings.
22, 28, and 40 pixels

Spacing
Derivation
Description

Sizes

Example

sanant San Antonio Fonts

7-34 Bit-Mapped Text

System Fonts sys

7-35

Monospaced (block font)
Original character set, no typesetter’s equivalent
Designed to emulate character-ROM fonts displayed by text terminals. The
smaller size is suitable for low-to-medium-resolution displays. The larger size
is suitable for high-resolution displays of 1024-by-768 and above. The charac-
ters defined within this font are compatible with the IBM EGA/VGA extended
character set.
16 and 24 pixels

Spacing
Derivation
Description

Sizes

Example

tampa Tampa Fonts

7-36 Bit-Mapped Text

Proportional
Original character set, no typesetter’s equivalent
A bold-to-medium-weight serif typeface. Small sizes suited for diagrams and
labels. Larger sizes are well suited to headlines and posters.
18, 22, 30, and 42 pixels

Spacing
Derivation
Description

Sizes

Example

Tampa Fonts tampa

7-37

ti_art TI Art Nouveau Fonts

7-38 Bit-Mapped Text

Proportional
Art Nouveau
A bold-weight, stylized serif typeface. Very ornate; perfect for flyers, posters,
and newsletters.
22, 28, 41, 54, and 82 pixels

Spacing
Derivation
Description

Sizes

Example

TI Art Nouveau Fonts ti_art

7-39

ti_bau TI Bauhaus Fonts

7-40 Bit-Mapped Text

Proportional
Bauhaus Medium
A medium-weight sans-serif typeface. General-purpose font suited to all uses.
Commonly seen on business cards, letterheads, magazines, and other publi-
cations.
11, 14, 17, 19, 22, 24, 28, 43, 56 pixels

Spacing
Derivation
Description

Sizes

Example

TI Bauhaus Fonts ti_bau

7-41

ti_bau TI Bauhaus Fonts

7-42 Bit-Mapped Text

TI Cloister Fonts ti_clo

7-43

Proportional
Cloister Black
A highly stylized, bold-weight Olde English typeface. Best suited for invita-
tions, posters, and flyers. Very decorative.
27 and 40 pixels

Spacing
Derivation
Description

Sizes

ti_dom TI Dom Casual Fonts

7-44 Bit-Mapped Text

Proportional
Dom Casual
A bold-weight semi cursive typeface. Distinctive and informal. Ideal for news-
letters, posters, and flyers.
23, 25, 30, 42, and 46 pixels

\

Spacing
Derivation
Description

Sizes

TI Dom Casual Fonts ti_dom

7-45

ti_hel TI Helvetica Fonts

7-46 Bit-Mapped Text

Proportional
Helvetica
A light-weight sans-serif typeface. Patterned after one of the most widely used
typefaces in the United States. Appropriate for use in all business-related
applications, particularly correspondence and newsletters.
11, 15, 18, 20, 22, 24, 28, 32, 36, 42, 54, and 82 pixels

Spacing
Derivation
Description

Sizes

Example

TI Helvetica Fonts ti_hel

7-47

ti_hel TI Helvetica Fonts

7-48 Bit-Mapped Text

TI Park Avenue Fonts ti_prk

7-49

Proportional
Park Avenue/Zapf Chancery
A medium-weight, ornate cursive typeface. Suited to many purposes. Com-
monly seen on wedding invitations but appropriate wherever a formal font is
desired.
15, 18, 21, 23, 25, 28, 43, and 54 pixels

Spacing
Derivation
Description

Sizes

Example

ti_prk TI Park Avenue Fonts

7-50 Bit-Mapped Text

TI Park Avenue Fonts ti_prk

7-51

ti_rom TI Roman Fonts

7-52 Bit-Mapped Text

Proportional
Times-Roman
A light-to-medium-weight serif typeface. Patterned after the most widely used
typeface in the United States and most English-speaking countries. Appropri-
ate for use in all business-related applications, particularly correspondence
and newsletters.
11, 14, 16, 18, 20, 22, 26, 30, 33, 38, 52, and 78 pixels

Spacing
Derivation
Description

Sizes

Example

TI Roman Fonts ti_rom

7-53

ti_rom TI Roman Fonts

7-54 Bit-Mapped Text

TI Roman Fonts ti_rom

7-55

ti_typ TI Typewriter Elite Fonts

7-56 Bit-Mapped Text

Monospace
Typewriter Elite
A light-weight serif typeface. Small sizes suited to correspondence and news-
letters. Larger sizes perfect for labels and headlines.
11, 14, 16, 18, 20, 22, 26, and 38 pixels

Spacing
Derivation
Description

Sizes

Example

TI Typewriter Elite Fonts ti_typ

7-57

7-58 Bit-Mapped Text

8-1

Chapter 8

Extensibility

Prior to TIGA, the software developer was limited by fixed sets of graphics
drawing functions. In the rapidly changing graphics market, a fixed set of draw-
ing functions is unacceptable.

The extensibility designed into the TIGA interface was a major goal. As a re-
sult, TIGA provides functions that enable an application or driver to install cus-
tom graphics functions.

Topics in this chapter include

Section Page
8.1 Dynamic Load Module 8-2.
8.2 Generating a Dynamic Load Module 8-4.
8.3 Installing a Dynamic Load Module 8-6.
8.4 Invoking Functions in a Dynamic Load Module 8-9.
8.5 C-Packet Mode 8-12.
8.6 Direct Mode 8-16.
8.7 Downloaded Function Restrictions 8-28.
8.8 Using the TMS340-to-Host Callback Functions 8-31.
8.9 Installing Interrupts 8-36.
8.10 Object Code Compatibility 8-39.
8.11 TIGA Linking Loader 8-45.

Dynamic Load Module

8-2 Extensibility

8.1 Dynamic Load Module

The key to TIGA’s extensibility is the dynamic load module (DLM). This module
is a collection of C or assembly functions written by the application or device
driver programmer and linked together to form the module. The DLM is down-
loaded at runtime into TMS340 memory and integrated with the TIGA graphics
manager. Once downloaded, each function contained within the module can
be called with the same conventions as the TIGA core or extended graphics
library functions.

TIGA currently supports two types of dynamic load modules:

Relocatable load module (RLM), and

Absolute load module (ALM).

A dynamic load module comprises functions that can be either standard
C-type functions callable either from the host processor or from the TMS340,
or interrupt service routines called on reception of an interrupt via the TIGA
standard interrupt handler.

8.1.1 Relocatable Load Modules

Relocatable load modules (RLMs) are produced directly with the TMS340
compiler and assembly tools and are in common object file format, or COFF.
A description of this file format is given in the TMS340 Family Code Generation
Tools User’s Guide. These modules contain the necessary relocation entries
so that they can be loaded anywhere in TMS340 memory. They may also con-
tain unresolved references to TIGA core or graphics library functions, which
are resolved when the modules are loaded. Furthermore, the modules contain
all the necessary symbol information, stored after loading, so that subsequent
RLMs that are loaded may reference the functions in another RLM. You can
install an RLM by invoking the install_rlm function.

RLMs are the preferred format for creating a dynamic load module. They offer
the greatest flexibility because the module can be relocated anywhere in
TMS340 memory space, and the module’s symbols can be accessed by sub-
sequently loaded modules.

8.1.2 Absolute Load Modules

Absolute load modules (ALMs) were required in pre-2.0 versions of TIGA be-
cause the downloading of a user extension to TIGA was done by invoking the
linking loader. This is not the case in versions 2.0 and onward, and ALMs are
now redundant. ALMs are supported in TIGA purely to maintain downward
compatibility with TIGA drivers written for versions of TIGA prior to 2.0.

 Dynamic Load Module

8-3

You create ALMs from relocatable load modules by calling the create_alm
function, which uses the TIGA heap management routines to allocate a space
in TMS340 memory where the ALM will be loaded. The function create_alm
then links and relocates the module to the area starting address in heap. Thus,
the ALM can be loaded only into this one area in memory. The heap area for
the module is then freed by the create_alm function. It is therefore imperative
that the state of the heap in TMS340 memory is the same when the ALM is
created as when it is installed. Normally, you can achieve this by always initial-
izing heap before calling create_alm and then reinitializing heap when the
module is installed. You can perform heap initialization by calling
set_videomode with an INIT style.

When an ALM is loaded, heap is allocated to store the module. The start ad-
dress is compared to the one returned when the module was created. If they
are the same, the ALM is loaded into TIGA; if not, the load is aborted. There
is a further restriction: since the symbol information is no longer available with-
in the file (as it is with RLMs), modules loaded subsequently cannot reference
functions in an ALM.

With TIGA 2.0, the functionality of the relocating loader in TIGALNK has been
incorporated into the TIGA communication driver, thus eliminating the need to
invoke TIGALNK when loading RLMs. Therefore, RLMs can now be loaded
by any TIGA application, even if no free host memory is available.

Generating a Dynamic Load Module

8-4 Extensibility

8.2 Generating a Dynamic Load Module

A TIGA dynamic load module consists of the following three parts:

A collection of C and/or assembly functions, some (or all) of which are to
become TIGA extensions or interrupt service routines.

A TIGAEXT section declaration. Required only if TIGA extensions are be-
ing declared.

A TIGAISR section declaration. Required only if TIGA interrupt service
routines are being declared.

This document does not describe the mechanics of generating the TMS340
source and object code of a user function. This is discussed fully in the
TMS340 Family Code Generation Tools User’s Guide. If the user library is to
contain functions written with TMS340 assembly code, then certain guidelines
must to be met to ensure that the C environment is maintained by the assembly
language function. For a description of how to interface assembly language
routines with the C environment, see Chapter 5, Runtime Environment in the
TMS340 Family Code Generation Tools User’s Guide.

Depending on whether or not a DLM contains extensions or interrupt services
routines, one or two specially named COFF sections must be created and
linked with the module. If the module contains extensions, then a section called
TIGAEXT must be created. If the module contains interrupt service routines,
then a section called TIGAISR must be created. The format of these sections
is described below.

8.2.1 TIGAEXT Section

The TIGAEXT section must contain one and only one address reference for
each extension contained within the module (that is callable from the host). For
example, if the module contains two functions called my_func1 and
my_func2, the section declaration would look like this:

;–– ;
;TIGAEXT – This COFF section contains references for all ;
;extensions contained in the module it is linked with. ;
;–– ;
;External References

.globl _my_func1, _my_func2
;Start section declaration

.sect ”.TIGAEXT”

.long _my_func1 ;command number 0 within module

.long _my_func2 ;command number 1 within module

.text ;end section

8.2.2 The TIGAISR Section

The TIGAISR section contains two entries for every interrupt service routine
contained within the module. These entries specify an address reference to
the ISR and the interrupt number of the ISR.

 Generating a Dynamic Load Module

8-5

For example, if two ISRs called my_int1 and my_int10 were contained within
the module, then the section declaration would look like this:
;–– ;
;TIGAISR – This COFF section contains information for all ;
;of the ISRs contained in the module it is linked with. ;
;–– ;
;External References

.globl _my_int1, _my_int10
;Start section declaration

.sect ”.TIGAISR”

.long _my_int1

.word 1 ;interrupt number 1;

.long _my_int10

.word 10 ;interrupt number 10;

.text ;end section

Note:

The TIGAEXT and TIGAISR sections must contain the exact number of dec-
larations for the external functions to be installed. This is because the length
of these sections is used to determine the number of declarations.

8.2.3 Linking the Code and Special Sections Into an RLM

Once the user functions have been written, they are compiled and/or as-
sembled, producing a series of COFF object files (.obj). These files should be
partially linked together with the object files generated by assembling the
TIGAEXT and/or TIGAISR sections. Below is an example where two functions
and two interrupt service routines are created and linked into a RLM.

The source files contain the following:

myfuncs.c Functions my_func1 and my_func2
tigaext.asm References for the above (as in the example)
myints.asm Two interrupt routines, my_int1, and my_int10
tigaisr.asm References and trap numbers for the above ISRs

1) Assemble and/or compile all of the source files:

gspcl myfuncs.c tigaext.asm myints.asm tigaisr.asm

This produces four object files:

myfuncs.obj myints.obj
tigaext.obj tigaisr.obj

2) Partially link all the object modules together to form the RLM:

gsplnk –o EXAMPLE.RLM –r –cr myfuncs.obj tigaext.obj
myints.obj tigaisr.obj

The result of the linking is a relocatable load module entitled example.rlm.

Note:

In some versions of the linker, the warning –Unresolved Reference to
”_c_int00” is displayed. It can be ignored.

Installing a Dynamic Load Module

8-6 Extensibility

8.3 Installing a Dynamic Load Module

To invoke the commands in a dynamic load module, you must first install the
module into the TIGA graphics manager. The module file is in the form of a file
in a directory of the host PC. If this directory is not the current working directory,
the TIGA environment variable must first be set up to point to this directory. Use
the –l option of the TIGA environment variable to find the DLM. The actual in-
stallation procedure differs from RLM to ALM.

8.3.1 Installing a Relocatable Load Module

A relocatable load module is installed by the install_rlm function. Below is an
example program written in Microsoft C, which demonstrates how to install the
RLM example.rlm, described in subsection 8.2.3.

Example 8–1. Installation of the RLM example.rlm

#include <tiga.h>

main()
{

short module;
/*–– */
/* Initialize the TIGA environment */
/*–– */
init_tiga(0);
/*–– */
/* Attempt to load example.rlm */
/*–– */
if((module = install_rlm(”example”)) < 0)
{

printf(”Fatal Error – Could not install example.rlm\n”);
printf(”Error code: %d\n”, module);
term_tiga();

}
/*–– */
/* RLM loaded. We can now call any TIGA Core or RLM function */
/*–– */

:
:

/*–– */
/* Terminate TIGA */
/*–– */
term_tiga(); /* Terminate TIGA */

}

Note:

Refer to Section 3.4 for listings of the init_tiga and term_tiga functions used
in this example.

 Installing a Dynamic Load Module

8-7

The install_rlm function is invoked with the filename of the RLM file. If the RLM
file is in the same directory as the calling application or is in the directory speci-
fied by the –l TIGA environment variable, only the filename of the RLM must
be specified. Otherwise, the complete path must be specified. A default exten-
sion of .rlm is assumed unless one is given. The install_rlm function returns
either the module ID for the RLM, which is used when invoking the functions,
or an error code if some error occurred. Error codes are negative values; mod-
ule identifiers are always positive (including zero).

8.3.2 Installing an Absolute Load Module

An absolute load module must first be created from a relocatable load module.
Example 8–2 is a program written in Microsoft C that demonstrates how to
create an ALM from the example.rlm described in subsection 8.3.1.

Example 8–2. Creation of an ALM From EXAMPLE.RLM

#include <tiga.h>

main()
{

register short return_code;

/*––– */
/* Initialize the TIGA environment */
/*––– */
init_tiga(0);
/*––– */
/* Attempt to create the ALM module */
/*––– */
return_code = create_alm(”example”, ”example”);
if(return_code < 0)
{

printf(”Fatal Error – Could not create example.alm\n”);
printf(”Error code: %d\n”, return_code);
term_tiga();

}
/*––– */
/* Further initialization code would go here... */
/*––– */

:
:

/*––– */
/* Terminate TIGA */
/*––– */
term_tiga();

}

init_driver()
{

register short return_code;

/*––– */
/* Initialize the TIGA environment */
/*––– */
init_tiga(0);

Installing a Dynamic Load Module

8-8 Extensibility

/*––– */
/* Attempt to load example.alm */
/*––– */
if((return_code = install_alm(”example”)) < 0)
{

printf(”Fatal Error –Could not install example.alm\n”);
printf(”Error code: %d\n”, return_code);
term_tiga();

}
/*––– */
/* ALM loaded. We can now call any Core or ALM function */
/*––– */

:
:

/*––– */
/* Terminate TIGA */
/*––– */
term_tiga(); /* Terminate TIGA */

}

Note:

Refer to Section 3.4 for listings of the init_tiga and term_tiga functions used
in this example.

The example assumes that at the time the program is run initially, the function
create_alm can be invoked by create_alm to produce the ALM file. The invoca-
tion produces an example.alm file in the same directory as example.rlm. De-
fault extensions of .rlm and .alm are assumed unless overridden by the file
names supplied. The function create_alm produces an ALM file only if it does
not already exist. This generally restrains the program from unnecessarily rec-
reating the ALM every time the program is run. If the application requires a new
ALM, it must first delete the old one explicitly.

The example also assumes that the part of the program that uses the user ex-
tensions in the ALM is executed after the init_driver function is invoked. This
scenario is typical with application drivers. The main program actually does
very little more than initialization and calling the DOS TSR exit function. Later,
the application calls an init_driver type function to get the driver ready for sub-
sequent application calls. At this time, the TIGA environment is reinitialized,
and the ALM is installed. The install_alm function loads the code from the host
PC file into TMS340 memory.

 Invoking Functions in a Dynamic Load Module

8-9

8.4 Invoking Functions in a Dynamic Load Module

The process of invoking a function in a DLM is done in two parts:

Selection of the function, (described in this section).

Actual invocation of the function and passing of its parameters from the
host to the TMS34 (described in subsequent sections).

8.4.1 Command Number Format

User extensions that are installed in a DLM are identified by a unique com-
mand number. This command number consists of a 16-bit word divided into
the following fields, as Figure 8–1 shows:

Figure 8–1. Command Number Format

1) The function type (bits 14–15) :

00 = direct mode
01 = C-packet
10 = reserved for future use
11 = reserved for future use

2) The module number (between 0 and 31) (bits 9–13) :

31 = TIGA core functions
30 = TIGA graphics library functions installed via the
 install_primitives function
0 thru 29 for user modules in the order of installation

3) The function number within the module (bits 0–8).

The function type field currently selects between the C-packet mode and di-
rect-mode functions. These two modes determine the manner in which the pa-
rameters of the function are passed between the host and the TMS340. The
two modes are described in subsequent sections.

The module number is a unique identifier for each module. TIGA supports up
to 32 DLMs, numbered from 0 to 31. The TIGA core functions are always in-
stalled at initialization time as module number 31. Likewise, the DLM that con-
tains the TIGA graphics library functions is always assigned module number
30 by the install_primitives function. The remaining 30 module slots, num-
bered 0–29, are assigned to user DLMs as they are installed. The first user
DLM installed is assigned the number 0, the second DLM the number 1, and
so on.

Invoking Functions in a Dynamic Load Module

8-10 Extensibility

The function number specifies one of the 512 possible functions that can be
contained within a module. Function numbers are defined by the order in which
they are declared in the TIGAEXT section within a module. For example, as
described in subsection 8.2.1 my_func1 would be designated function num-
ber 0, and my_func2 would be designated function number 1.

8.4.2 Using Macros in Command Number Definitions

The format of the command number may be subject to change in future ver-
sions of TIGA. To minimize the potential changes to an application, macros are
provided in the tiga.* include files so that a command number of a function can
be specified without referencing the individual bits in the command number.
The macros are

CORE_CP(function_number)
CORE_DM(function_number)
EXT_CP(function_number)
EXT_DM(function_number)
USER_CP(module | function_number)
USER_DM(module | function_number)

The macros CORE_CP and CORE_DM select C-packet or direct-mode func-
tions with a module number of 31 (for the TIGA core functions). Similarly,
EXT_CP and EXT_DM select C-packet or direct-mode functions with a mod-
ule number of 30 (for the TIGA graphics library functions). USER_CP and
USER_DM designate user extensions. They take a single argument, which
is the module number returned by the install_rlm or install_alm function ORed
with the function number of the function from its position in the TIGAEXT sec-
tion. The module number should be passed as it is supplied from the install
procedure.

These macros should always be used when specifying command numbers.
If they are not, and if an application hard-codes the bits in a command number,
there is a risk of incompatibility with future versions of TIGA.

8.4.3 Passing Parameters to the TIGA Function

A TIGA function can be invoked in two ways, depending on the type of function
call that is made: C-packet or direct mode.

C-packet functions are the easiest of the two to write and have a more flexible
parameter format. C-packet functions receive their parameters on the stack;
this makes it very easy for you to develop a function that becomes a user ex-
tension, by first writing it and debugging it on the host side. The function can
then be extracted from the host code and recompiled with the TMS340 C com-
piler. Any parameters it received on the host side will be passed from the host
to the TMS340 via a TIGA communication driver routine and then pushed onto
the TMS340 C stack so that the function behaves just as if it were invoked lo-
cally to the host. To do this, however, extra data that describes the type and
size of each parameter must be sent along to the TMS340.

 Invoking Functions in a Dynamic Load Module

8-11

The extra overhead of sending this data, plus the time taken to format the pa-
rameters and push them onto the stack, can be eliminated by using direct
mode. This sends raw data into the communication buffer used for host-to-
TMS340 communication. The user extension function receives on the stack
a single parameter that is a pointer to the communication buffer where the data
is stored. The function itself must pick up the data from this buffer in the ex-
pected format.

Most applications are developed by using C-packet initially. Those functions
that are more time critical can be modified to use direct mode. Source code
changes to an extension to change it from C-packet to direct mode are not that
significant. Sections 8.5 and 8.6 give a complete description of C-packet and
direct modes, respectively.

C-Packet Mode

8-12 Extensibility

8.5 C-Packet Mode

To invoke a user extension using C-packet mode, you must supply three
pieces of information:

The type of call the function uses

The function’s command number

A description of the function arguments

8.5.1 The Type of Call

The current C-packet system supports three basic types of function calls:

cp_cmd This entry point is for functions that do not require any form of
return data.

cp_ret This entry point is for functions that require only a single stan-
dard C-type return value.

cp_alt This entry point is for those functions that pass pointers to data
that is modified indirectly by the function called.

draw_a_line(x1, y1, x2, y2) uses cp_cmd
poly_line(10, &point_list) uses cp_cmd
i = read_point(x, y) uses cp_ret
copy_mem(&src, &dst, len) uses cp_alt

An additional set of entry points is used when the argument list is potentially
too large for the size of the communication buffer used to transfer parameters
between the host and the TMS340. These entry points, cp_cmd_a, cp_ret_a,
and cp_alt_a, have the same functionality as those described above but can
also allocate additional space for passing larger amounts of data as parame-
ters to a TIGA extended function, at a cost of speed performance. Avoid these
entry points when you know that the argument length of the function in ques-
tion will not exceed the maximum size dictated by the communication buffer’s
data size (comm_buff_size is a field of the CONFIG structure returned by
get_config).

8.5.2 The Command Number

Subsection 8.4.1 describes in detail the command number format. The com-
mand number should always be specified in the form:

USER_CP (module | function_number)

for user C-packet extensions, where module is the module ID of the DLM re-
turned at install time and function_number is the position of the function in the
TIGAEXT section.

 C-Packet Mode

8-13

8.5.3 Description of Function Arguments

To call the desired function, each of that function’s arguments must be under-
stood by the graphics manager so that data can be passed to the DLM function
in the expected form. Each individual argument is called a packet and has its
own separate header. Entering the packet headers is made easier when addi-
tional defines in the tiga.* include files are used to represent the different data
types.

The packet header uses a keyword to describe the value being passed.
Table 8–1 describes the Microsoft C equivalent types for each keyword:

Table 8–1.Keyword Equivalent Types

Keyword Microsoft C Equivalent Type

BYTE 8-bit unsigned char

WORD 16-bit unsigned short

DWORD 32-bit signed long

SWORD 16-bit signed short

DOUBLE 64-bit double floating-point

These packet headers are currently supported by TIGA:

_WORD(a) Immediate WORD argument a
_SWORD(a) Immediate signed WORD argument a
_DWORD(a) Immediate double WORD argument a
_DOUBLE(a) Immediate double floating-point argument a
_BYTE_PTR(b,a) BYTE array pointer a with b elements
_WORD_PTR(b,a) WORD array pointer a with b elements
_DWORD_PTR(b,a) DWORD array pointer a with b elements
_DOUBLE_PTR(b,a) DOUBLE array pointer a with b elements
_STRING(a) Null-terminated string pointer a
_ALTBYTE_PTR(b,a) Function-altered BYTE array pointer
_ALTWORD_PTR(b,a) Function-altered WORD array pointer
_ALTDWORD_PTR(b,a) Function-altered DWORD array pointer
_ALTDOUBLE_PTR(b,a) Function-altered DOUBLE array pointer

Because the immediate arguments passed in Microsoft C are always pro-
moted to short type, there is no BYTE identifier. If immediate char values are
passed, either the_WORD or _SWORD identifier should be used. Also, since
immediate short types are the only data types that must be promoted (to 32
bits) by the graphics manager, they are the only data size to have a signed
identifier. All other arguments’ sign extension requirements should be handled
by the called routines.

C-Packet Mode

8-14 Extensibility

8.5.4 C-Packet Examples

The exact argument list of the C-packet entry points is as follows:

entry_point_name(cmd_number, num_packets, packet1, ..,packetn)

where:

cmd_number is the command number
num_packets is the number of C type packets
packet1...packetn is the packet data (see below)

The following are some examples of user extensions. These examples are not
supplied TI-extended functions.

Example function:

init_grafix()

The function requires no return data. (Use cp_cmd)
The function’s command number was stored in CMD_ID.

The function has no arguments.

Resulting include file entry:

#define init_grafix() cp_cmd(USER_CP(CMD_ID), 0)

Example function:

fill_rect(w, h, x, y)

The function requires no return data. (Use cp_cmd.)
The function’s command number was stored in CMD_ID.

The function has 4 arguments, all WORDS.

Resulting include file entry:

#define fill_rect(w,h,x,y) \
cp_cmd(USER_CP(CMD_ID),4,_WORD(w),_WORD(h),_WORD(x),_WORD(y

))

Example function:

poly_line(n, &linelist)

The function requires no return data (Use cp_cmd.)
The function’s command number was stored in CMD_ID.

The function has 2 arguments, WORDn, and WORD_PTR, line_list.

Resulting include file entry:

#define poly_line(n,ptr) \
cp_cmd(USER_CP(CMD_ID),2,_WORD(n),_WORD_PTR(2*n,ptr))

 C-Packet Mode

8-15

Example function:

init_matrix(&matrix)

The called function initializes the array pointed to indirectly by &matrix .
(Use cp_alt)
The function’s command number was stored in CMD_ID.

The function has one argument, which points to a 4 × 4 element-function-
altered array of longs.

Resulting include file entry:

#define init_matrix(ptr) \
cp_alt(USER_CP(CMD_ID),1,_ALTDWORD_PTR(16,ptr))

8.5.5 Overflow of the Command Buffer

When a command of any kind (TIGA or user function) is invoked by an applica-
tion, the communication driver functions transfer its parameters from host
memory into a temporary buffer in the TMS340 memory (called a command
buffer). If one of the parameters of the function is a pointer, then the pointer
itself is not copied over; only the data that is being pointed to is copied. If the
pointer is an array, as in the polyline function, then it can be of arbitrary length.
Thus, it is simple for the application to overflow this fixed length buffer by, for
example, asking TIGA to draw a million-element polyline. The application must
know the size of data that it is attempting to transfer into the TMS340 processor
memory and must check that it will fit in the command buffer. For this reason,
the command buffer size is included as an element in the configuration struc-
ture returned by get_config. Note that if a C-packet entry point is being used,
allowances must be made for the packet type and size words, which also use
space in the command buffer.

Memory space management is required for all direct-mode and three regular
C-packet entry points. However, the application can use the _a C-packet entry
points (for example, cp_cmd_a) that check the size of the parameters, and
download them in the normal way if they fit. If they do not fit, the entry points
attempt to allocate a temporary buffer from the TMS340 heap pool to store the
parameters. If the allocation is not successful, the error function is invoked.
The checking of the parameter size requires two passes through the argu-
ments. This technique incurs some speed overhead; however, a rapid
real-time function does not commonly use arrays too large to fit in the com-
mand buffer.

Another technique provided in TIGA for the management of large amounts of
data that may overflow the command buffer is the direct-mode entry points
dm_poly and dm_ipoly. These entry points turn the buffer into a circular queue
so that any size of data can download into the buffer. This technique requires
the writing of a custom TMS340 processor command that manages the data
and the handshaking employed.

Direct Mode

8-16 Extensibility

8.6 Direct Mode

The principal difference between C-packet and direct modes is that in direct
mode, when the downloaded function is invoked on the TMS340 side, the ar-
guments are not on the stack as in C-packet mode. The downloaded function
is invoked with a single argument, which is a pointer to a data area where the
host downloaded the parameters. The function itself must fetch the passed ar-
guments from this data area into the local variables.This process makes the
writing of functions slightly more complicated, but this is offset by the increase
in performance. These functions are intended to improve the process of invok-
ing TIGA extensions from the TMS340; they are not intended to be called from
other downloaded functions from the TMS340 side (although they could be).
Functions that need to be called from both the host and TMS340 (by another
downloaded function) are best written in C-packet or should have an alternate
C-callable entry point.

Note that for the fastest possible transfer of data, the direct-mode entry points
do not check the size of the data being transferred. The application must en-
sure that the data being transferred does not overflow the command buffer.

A further difference between C-packet and direct mode is that in C-packet
mode the arguments passed to a function could be of any combination of im-
mediate data and pointers in any particular order. This is not the case with di-
rect mode. No packet information is sent with the data to specify whether it is
immediate or not and what its size is. The direct-mode entry point itself deter-
mines what format the parameters can be specified in, and, in turn, how these
parameters are received in the TMS340 communication buffer. The following
sections provide a list of the direct-mode entry points and the parameterization
of their arguments.

8.6.1 Differences Between Microsoft C and High C/NDP Compilers

The MetaWare High C and Microway NDP compilers promote all argument
types to 32-bit long words when passing arguments between functions,
whereas the Microsoft C compiler promotes chars and shorts to 16-bit words.
This fundamental difference affects how arguments are passed via the direct-
mode entry points.

Those direct-mode entry points affected by the difference in immediate argu-
ment promotion described above have two calling definitions: one for use with
the Microsoft C compiler and the other for use with the High C/NDP compiler.
The High C/NDP definition has an additional argument, flags, which identifies
the actual significant words for each immediate value argument. For example,
the dm_cmd entry point definition for the High C/NDP compilers is

void dm_cmd(cmd_number, length, flags, arg1, ... , argn);
short cmd_number;
short length;
unsigned long flags;
short (or long) arg1...argn;

 Direct Mode

8-17

Here, length contains the number of significant words in the argument list. A
short and a char both have one significant word, whereas a long has two signif-
icant words. Although the arguments are defined as shorts, longs are passed
in many TIGA functions (including our own) as a single argument, and the 2
is added to the length instead of 1.

The flags argument is a simple identifier for the first 32 arguments passed to
the entry point. Bit 0 of flags corresponds to arg1, and so on. The bit should
be set to 1 if its corresponding argument is a long, and set to 0 if the argument
is a short or a char. These identifiers enable the High C/NDP AI libraries to con-
vert the call into the standard Microsoft C format, 16-bit segmented call, before
calling the appropriate TIGA CD function.

Another difference between the Microsoft and the High C/NDP AI libraries is
the way data pointers are handled. Refer to Section 3.2, page 3-3, for a de-
scription of how data pointers are interpreted in each AI library. The interpreta-
tion affects pointer types passed as arguments to direct-mode entry points.
For example, the definition for the dm_psnd entry point depends on which AI
library is being linked to as follows:

ai.lib , ai_com.lib : (far data references):

void dm_psnd(cmd_number, length, ptr)
short cmd_number;
short length;
void far *ptr;

hcai.lib , ndpai.lib (near data references):

void dm_psnd(cmd_number, length, ptr)
short cmd_number;
short length;
void *ptr;

Note that the only difference is the type of argument pointer. For far data refer-
ences, it is a far pointer. For near data references, it is a near pointer. It is impor-
tant to keep this in mind because the direct-mode entry point descriptions in
the following sections do not differentiate near and far pointers.

8.6.2 Standard Command Entry Point

Compiler: Microsoft C, AI libraries: ai.lib, ai_com.lib

void dm_cmd(cmd_number, length, arg1, ... , argn);
short cmd_number;
short length;
short arg1...argn;

Compiler: High C / NDP, AI libraries: hcai.lib / ndpai.lib

void dm_cmd(cmd_number, length, flags, arg1, ... , argn);
short cmd_number;
short length;
unsigned long flags;
short (or long) arg1...argn;

Direct Mode

8-18 Extensibility

This command is the most commonly used for direct-mode commands in the
TIGA system. The length specified is the number of 16-bit words that are sent;
thus, to send a long, length should increase by 2.

The TIGA core function poke_breg uses this entry point. It sends a 16-bit regis-
ter number and a 32-bit value to be loaded into the register. Note that the length
is three because three16-bit words are pushed onto the stack (2 of them being
the MSW and LSW of value).

Compiler: Microsoft C, AI libraries: ai.lib, ai_com.lib

#define poke_breg(regno,value) \
dm_cmd(POKE_BREG,3,(short)(regno),(long)(value))

Compiler: High C / NDP, AI libraries: hcai.lib / ndpai.lib

#define poke_breg(regno,value) \
dm_cmd(POKE_BREG,3,2,(short)(regno),(long)(value))

Note the additional flags argument value of 2. This specifies

Flag Bit Significant Words in Argument

bit 0 = 0: Argument 0 (regno) has 1 significant word

bit 1 = 1: Argument 1 (value) has 2 significant words

Figure 8–2 shows how the data in the communication buffer looks.

Figure 8–2. Data Structure of dm_cmd

The poke_breg function has one parameter on the stack, which is data_ptr.
The function contains the following TMS340 assembly code to extract the data
from the communication buffer:

_dm_poke_breg:
move A0,*–SP,1 ; save A0

; (Field Size 1 is 32–bits by default)
move *–A14,A8,1 ; get data_ptr
setf 16,1,0 ; set Field Size 0 to 16–bits
move *A8+,A0,0 ; get regno into A0
move *A8,A8,1 ; get value into A8

8.6.3 Standard Command Entry Point With Return

Compiler: Microsoft C, AI libraries: ai.lib, ai_com.lib

 Direct Mode

8-19

long dm_ret(cmd_number, length, arg1, ... , argn);
short cmd_number;
short length;
short (or long) arg1...argn;

Compiler: High C / NDP, AI libraries: hcai.lib / ndpai.lib

long dm_ret(cmd_number, length, flags, arg1, ...,
argn);

short cmd_number;
short length;
unsigned long flags;
short (or long) arg1...argn;

This command is similar to dm_cmd described in subsection 8.6.2. The differ-
ence is that after calling the TMS340 function, the host waits for the command
to finish and then fetches and returns the standard C return value as a long,
but is of the same type as that returned by the called routine (signed or un-
signed, etc.). The value is returned in the DX:AX registers. As with dm_cmd,
dm_ret specifies length in 16-bit words.

The TIGA core function cvxyl uses the dm_ret entry point. It passes two 16-bit
arguments, x and y, returning a 32-bit long value.

Compiler: Microsoft C, AI libraries: ai.lib, ai_com.lib

#define cvxyl(x,y) \
dm_ret(CVXYL,2,(short)(x),(short)(y))

Compiler: High C / NDP, AI libraries: hcai.lib / ndpai.lib

#define cvxyl(x,y) \
dm_ret(CVXYL,2,0,(short)(x),(short)(y))

Note the additional flags argument value of 0. This specifies that each argu-
ment x and y has only one significant word (flag bits are 0 for each).

8.6.4 Standard Memory Send Command Entry Point

void dm_psnd(cmd_number, length, ptr)
short cmd_number;
short length;
void *ptr; /* void far *ptr for ai, ai_com libs */

This command calls functions that require information in the form of an array
or structure. Note that in this case the length specified is in bytes, not 16-bit
words as in the previous two entry points. The ptr argument is a pointer into
host memory. The contents of this pointer are downloaded into the communi-
cation buffer.

The TIGA extended function draw_polyline uses this entry point. Notice that
the numpts is multiplied by 4 because every point consists of two coordinates
(x and y), each of which is 2 bytes long.

Direct Mode

8-20 Extensibility

Compiler: Microsoft C, AI libraries: ai.lib, ai_com.lib

#define draw_polyline(numpts,pts) \
dm_psnd(DRAW_POLYLINE, (short)(4*(numpts)), (short far

*)(pts))

Compiler: High C / NDP, AI libraries: hcai.lib / ndpai.lib

#define draw_polyline(numpts,pts) \
dm_psnd(DRAW_POLYLINE, (short)(4*(numpts)), (short

*)(pts))

Figure 8–3 shows how the data in the communication buffer looks.

Figure 8–3. Data Structure of dm_psnd

16-Bit Words

numpts × 4data_ptr

pts[)],x x Coordinate of First Point

y Coordinate of First Point

x Coordinate of Second Point

y Coordinate of Second Point

pts[)],y

pts[1),x

pts[1),y

Because the entry point always sends the byte count into the first word of the
communication buffer, the TMS340 function itself must scale it to a point-count
by dividing the value by 4. The function contains the following TMS340 assem-
bly code to extract the data from the communication buffer:

_dm_draw_polyline:
 :
 :

move *–A14,A11,1 ;get data_ptr
setf 16,1,0 ;set field Size 0 to 16 bits
move *A11+,A10,0 ;1st word is number of bytes

;the post–increment of A11 means that
;it is now a pointer to pts[0]

srl 2,A10 ;convert to numpts

8.6.5 Standard Memory Return Command Entry Point

long dm_pget(cmd_number, length, ptr)
short cmd_number;
short length;
void *ptr; /* void far *ptr for ai, ai_com libs */

 Direct Mode

8-21

The dm_pget command calls functions that return information in the form of
an array or structure. The length (in bytes) is sent as the first element in the
command buffer. The function writes the return data into the communication
buffer at the word following the length. The dm_pget entry point then copies
the data from the communication buffer to the host address specified by the
argument ptr.

8.6.6 Standard String Entry Point

void dm_pstr(cmd_number, ptr)
short cmd_number;
void *ptr; /* void far *ptr for ai, ai_com libs */

The dm_pstr entry point is similar to dm_psnd, but instead of sending a pointer
with a known length, it sends a null-terminated string. In this case, the commu-
nication buffer has no length entry as the first word. Successive bytes of the
buffer contain the characters in ptr with a null (zero) terminator.

8.6.7 Altered Memory Return Command Entry Point

unsigned long dm_palt(cmd_number, length, ptr)
short cmd_number;
short length;
void *ptr; /* void far *ptr for ai, ai_com libs */

The long_palt entry point sends and returns information in the form of an array
or structure. This entry point combines the functionality of the dm_psnd and
dm_pget entry points to send the contents of a pointer (of length bytes), which
is then modified by the TMS340 function. When the command completes ex-
ecution, the data is returned back into the host memory pointed to by ptr.

8.6.8 Send/Return Memory Command Entry Point

unsigned long dm_ptrx(cmd_number, send_length, send_ptr,
return_length, return_ptr)

short cmd_number;
short send_length;
void *send_ptr; /* void far *send_ptr for ai, ai_com libs */
short return_length;
void *return_ptr; /* void far *return_ptr for ai, ai_com libs */

The dm_ptrx entry point is used to send information in an array or structure and
return information to a different array or structure. It is similar to dm_palt in sub-
section 8.6.7 except that data is returned to a different area of host memory.
The parameters send_length and return_length are in bytes.

Direct Mode

8-22 Extensibility

8.6.9 Mixed Immediate and Pointer Command Entry Point

void dm_pcmd(cmd_number, num_words, word1, word2,...,
num_ptrs, cnt1, ptr1, cnt2, ptr2, ...)

short cmd_number; /* command_number */
short num_words; /* number of words to send */
short word1; /* immediate data */
short word2;

:
short num_ptrs; /* number of pointers to send */
short cnt1; /* number of bytes in pointer 1 */
void *ptr1; /* void far *ptr1 for ai, ai_com libs */
short cnt2;
void *ptr2; /* void far *ptr2 for ai, ai_com libs */

The dm_pcmd entry point combines immediate and pointer data. The first pa-
rameter after the command number is the number of words (num_words) to
send in the same manner as dm_cmd. Following that are the words them-
selves on the stack. After the immediate data is a count of the number of point-
ers to send (num_ptrs). Each pointer is preceded by a count of the number of
bytes contained in the array or structure that the pointer is pointing to.

Note that the arguments word1, word2, ..., must be words (that is, not more
than 16-bits of significant data).

8.6.10 Mixed Immediate and Pointer Command Entry Point With Return

unsigned long dm_pret(cmd_number, num_words, word1, word,..,
num_ptrs, cnt1, ptrl, cnt2, ptr2, ..)

short cmd_numbers; /* command_number */
short num_words; /* number of words to send */
short word1; /* immediate data */
short word2;

:
short num_ptrs; /* number of pointers to send */
short cnt1; /* number of bytes in pointer 1 */
void *ptr1; /* void far *ptr1 for ai, ai_com libs */
short cnt2;
void *ptr2; /* void far *ptr2 for ai, ai_com libs */

The dm_pret command is similar to dm_pcmd except that it returns a standard
C value in the DX:AX registers.

Note that the arguments word1, word2, ..., must be words (that is, not more
than 16-bits of significant data).

8.6.11 Poly Function Command

void dm_poly(cmd_number, packet_number, packet_size, packet_ptr)
short cmd_number;
short packet_number;
short packet_size;
void *packet_ptr; /* void far *packet_ptr for ai, ai_com libs */

 Direct Mode

8-23

The dm_poly entry point is different from every other C-packet and di-
rect-mode entry point in that it does not simply transfer data from host to
TMS340 memory and invoke a command. This command supports parallel
operations on large amounts of data; that is, some of the data being sent can
be processed while the rest is being sent down.

The command buffer used by the communication driver to download the pa-
rameters is turned into a circular queue of packets. Figure 8–4 shows what the
command buffer contains.

Figure 8–4. Data Structure of dm_poly
16-Bit Words

Total Number of Packets

Number of Packets in a Burst

Packets Sent

Packets Used

Start of Packet 1

data_ptr

The dm_poly entry point sends a burst of packets down from the host to the
TMS340. It updates the packets-sent count and monitors the packets-used
count to ensure that there is enough room to download more packets. The user
function must be specially written to comprehend this handshaking scheme
and be responsible for the update of the packets-used entry.

Direct Mode

8-24 Extensibility

Example 8–3. TMS340 Shell Routine With dm_poly

;–– ;
; TIGA – Graphics Manager function ;
;–– ;
; Usage: Example TMS340 shell routine with dm_poly entry point ;
;––
; Include TMS340 register definitions
 .copy gspreg.inc
; Include macros
 .mlib gspmac.lib
; Declare globals
 .globl _example_dmpoly
; External References; Arguments Received from Host
aTOTAL .set 0 ;total number of packets
aPAGE .set 10h ;packets per page
aSENT .set 20h ;packets sent
aUSED .set 30h ;packets used
aDATA .set 40h ;data starts here; Register usage
Rarg .set A0 ;pointer to arguments
Rccurrent .set A1 ;count (current)
Rctotal .set A2 ;count (total packets)
Rctemp .set A3 ;count (temp)
Rcpage .set A4 ;count (total per page)
Rdata .set A5 ;pointer to data
BURST_SIZE .set 16
_example_dmpoly:
 mmtm SP,A0,A1,A2,A3,A4,A5,A6,A7,A9
 Popc Rarg ;get pointer to args
 move *Rarg(aTOTAL),Rctotal,0 ;get total packets
 move *Rarg(aPAGE),Rcpage,0 ;get packets per page
 clr Rccurrent ;clear current count
page_loop:
 move Rarg,Rdata
 addi aDATA,Rdata
 Push Rcpage
burst_loop:
 movk BURST_SIZE,Rctemp ;Rctemp is number pkts
 sub Rctemp,Rctotal
 jrge full_burst
 add Rctotal,Rctemp
 clr Rctotal
full_burst:
 add Rctemp,Rccurrent ;current count up to date
check_loop:
 move *Rarg(aSENT),A8,0 ;Get count ready
 sub Rccurrent,A8 ;Sub off desired count
 jrlt check_loop ;If not ready, then wait

packet_loop:
;––– ;
; Grab some data and do something with it ;
;––– ;
 move *Rdata+,A6,1
 move *Rdata+,A7,1
 move *Rdata+,A9,0
;––– ;
 dsjs Rctemp,packet_loop
 move Rccurrent,*Rarg(aUSED),0
 move Rctotal,Rctotal
 jrz exit
 subk BURST_SIZE,Rcpage
 jrgt burst_loop
 Pop Rcpage
 jruc page_loop
exit: Pop Rcpage
 mmfm SP,A0,A1,A2,A3,A4,A5,A6,A7,A9
 rets 2

 Direct Mode

8-25

8.6.12 Immediate and Poly Data Entry Point

void dm_ipoly(cmd_number, nShorts, sData,..., ItemSz, nItems, pData)
unsigned short cmd_number; /* command number */
unsigned short nShorts; /* # of immediate short words to send */
unsigned short sData; /* First short word of data to send */

:
unsigned short ItemSz; /* Size of items that follow (bytes) */
unsigned short nItems; /* # of items that follow */
void *pData; /* void far *pData for ai, ai_com libs */

This entry point is similar to dm_poly; it is used for operations that require a
large amount of data items to be transferred. The TMS340 has the ability to
operate on one or more data items at a time; some of the data can be pro-
cessed by the TMS340 while more is being sent down.

A user function located on the TMS340, which expects data sent by this entry
point, must be coded by using a specific set of rules. When the TMS340 func-
tion is called, it receives a data pointer in TMS340 memory. The data at that
address consists of the immediate data values. The poly data, which is sent
in bursts by the host, requires special processing and communication protocol
to be received. To isolate this processing from the user function, a service rou-
tine is provided called srv_ipoly. This service routine should be called, once the
user function is ready to process the poly data. The parameters for this function
are as follows:

srv_ipoly(pItemSrv, pDataBuf)
void (*pItemSrv)(); /* Ptr to item handler */
char *pDataBuf; /* Address after last immed. word */

The pDataBuf argument is the address immediately following the last immedi-
ate word received by the user function.

The pItemSrv is the address of a function that can, in turn, be called by srv_ipo-
ly to handle 1 or more Items. This function will be called repetitively by srv_ipoly
until all the items have been received by the host and serviced. This function
will be called with the following arguments:

(*pItemSrv)(nItems, pItems);
unsigned short nItems; /* Number of items this time */
char *pItems; /* Pointer to data */

The nItems argument is the number of items requiring service. The pItems ar-
gument is the address of a data buffer containing nItems worth of data.

The following is an example of how this entry point can be used. For this exam-
ple, a polypixel command is implemented. The function has two immediate ar-
guments: the foregound color of the pixel, and the raster op to be used to draw
the pixels. The remaining poly data is an array of points where pixels are to be
drawn.

Direct Mode

8-26 Extensibility

The host program to call the entry point would look like this:

dm_ipoly(CMD, 2, color, rop, 4, nPoints, pData)

where:

CMD is the command number of the polypixel function.

2 specifies that two immediate arguments follow: color and rop.

color is the first immediate argument.

rop is the second immediate value.

4 specifies the item size as four bytes. Each item is a point, which in
this case is two words. The first specifies the X coordinate, the sec-
ond specifies the Y.

nPoints specifies the number.

pData is the pointer in host memory where the point resides.

The downloaded TMS340 user function called polypixel looks like this:

;–––
; TIGA – POLYPIXEL – Example User function ;
–––
; Example of a downloaded TMS340 function that uses the
; dm_ipoly host entry point.
;–––
; Include TMS340 register definitions
 .copy gspreg.inc
; Include macros
 .mlib gspmac.lib
; Declare globals
 .globl _PolyPixel
; External References
 .globl _srv_ipoly
; Polypixel argument definition
aCOLOR .set 0h
aROP .set 10h
aDATA .set 20h ; address passed to srv_ipoly

 Direct Mode

8-27

_PolyPixel:
mmtm SP,A0,A1,A2
setf 16,0,0
move @CONTROL,A2,0 ;save CONTROL register
Popc A0 ;get pointer to data
move *A0(aCOLOR),A1,0 ;get color
move A1,COLOR1 ;set gsp foreground color
move *A0(aROP),A1,0 ;get raster op
setf 5,0,0
move A1,@CONTROL+10,0 ;use it to set gsp pp op
setf 16,0,0

; Ready for poly data, push the address following the
; immediate data and the address of the service routine

Push STK
move A0,A8
addi aDATA,A8
Pushc A8 ;push data address
movi drawpixels,A8
Pushc A8 ;push item service routine
calla _srv_ipoly

; All done, cleanup and exit
move A2,@CONTROL,0 ;restore CONTROL register
mmfm SP,A0,A1,A2
rets 2

;–––
;
; Item service routine: drawpixels
;
; This function is called repetitively by the srv_ipoly
; function until all the items sent by the host have been
; received and serviced. This function is called with two
; stack parameters: the 1st parameter is the number of
; items requiring service, and the 2nd argument is the
; address of the data items in TMS340 memory.
;
;–––
drawpixels:

mmtm SP,B10,B11,B12,B13 ;save registers
move STK,B13
move *–B13,B10,1 ;pop number of items
move *–B13,B11,1 ;pop ptr to item data
move B13,STK

drawloop:
addk 1,COLOR1
move *B11+,B12,1 ;get Y:X pixel coords
pixt COLOR1,*B12.XY ;draw a pixel
dsjs B10,drawloop ;loop until items exhausted
mmfm SP,B10,B11,B12,B13 ;restore registers
rets 2

Downloaded Function Restrictions

8-28 Extensibility

8.7 Downloaded Function Restrictions

User extended functions and interrupt service routines contained in a dynamic
load module have the ability to access functions or globals that were previously
installed into TIGA. This includes the core functions and the TIGA graphics li-
brary functions (provided that they have been installed by the application).
Note that certain functions are host-only functions and cannot be invoked by
a dynamically loaded routine. These functions are identified by the host-only
type field in Chapter 4, Core Functions.

The downloaded function, whether written in TMS340-C or assembly lan-
guage, can take advantage of all the facilities of the graphics manager. Specifi-
cally, it can

1) Invoke nearly all the TIGA core functions as if they were written on the host
side. Thus, it can invoke the function set_palet with the parameters used
in Microsoft C. Not all the functions can be invoked from the TMS340 side,
because some require access to host side data structures, such as those
concerned with the linking loader. Two include files (gsptiga.h and
gspextnd.h) containing the graphics manager core functions and graphics
library functions are supplied for this purpose. This capability has the ad-
vantage that an application can be written and debugged on the host side
by using Microsoft debug tools, and then individual functions can be down-
loaded onto the TMS340 side with no changes.

2) Access global variables of the graphics manager, such as those specifying
display coordinates, directly without invoking functions to do it. An include
file (gspglobs.h) containing the graphics manager global variables is
supplied for this purpose. The file shown in the following example lists the
global variables that the downloaded extension is free to access in the cur-
rent version of TIGA.

 Downloaded Function Restrictions

8-29

extern long bottom_of_stack; /* Declared in link file */
extern CONFIG config; /* Current configuration */
extern PALET DEFAULT_PALET[16]; /* Default palette */
extern CURSOR DefaultCursor; /* Default cursor struct */
extern long end_of_dram; /* Declared in link file */
extern ENVIRONMENT env; /* Environment variables */
extern ENVTEXT envtext; /* Text environment */
extern ENVCURS envcurs; /* Cursor environment */
extern MODEINFO *modeinfo; /* Operating mode info */
extern MODULE Module[32]; /* Function module descr. */
extern unsigned char *monitorinfo; /* Monitor timing info */
extern OFFSCREEN_AREA *offscreen; /* Pointer to current data */
extern unsigned char *page; /* Pointer to current data */
extern PALET palet[]; /* Current palette in use */
extern PATTERN pattern; /* Current pattern information */
extern unsigned char *setup; /* Current setup pointer */
extern unsigned short sin_tbl[]; /* Sine lookup table */
extern long stack_size; /* Declared in link file */
extern long start_of_dram /* Declared in link file */
extern FONT *sysfont; /* Pointer to system font */
extern FONT sys16, sys24; /* System font choices */
extern long *sys_memory; /* Pointer to heap packets */
extern long sys_size; /* Size of heap */
extern unsigned short *pHCOUNT, *pHEBLNK, *pHESYNC, *pHSBLNK, *pHTOTAL;
extern unsigned short *pVCOUNT, *pVEBLNK, *pVESYNC, *pVSBLNK, *pVTOTAL;

When these variables refer to a specific type of declaration, such as PALET,

the include file gsptypes.h should also be included to define this type of decla-
ration.

8.7.1 Register Usage Conventions

Assembly language functions used in conjunction with the TIGA functions
should follow certain guidelines for register use. The following registers must
be restored to their original states (the state before the function was called) be-
fore control is returned to the calling routine:

Status register fields FE1 and FS1. Fields FE0 and FS0 need not be re-
stored.

All A-file registers except A8.

In general, all B-file registers. However, certain B-file registers such as
COLOR0 and COLOR1 may be altered by attribute control functions that
update parameters .

In general, I/O registers CONTROL, DPYCTL, CONVDP, and INTENB.
However, some I/O register bits may be altered by attribute control func-
tions that update parameters such as the plane mask, pixel-processing
operation, or transparency flag. These register bits typically are not
changed by graphics output functions.

Downloaded Function Restrictions

8-30 Extensibility

Upon entry to a downloaded extension, certain registers are in a known state
and contain well-defined parameters. These assumptions cannot be made of
interrupt service routines, because they can interrupt a function that may be
using one of these registers for a different purpose. Extensions, however, can
assume that the following registers are in these states:

Status register:

FE1 = 0
FS1 = 32
FE0 and FS0 are undefined

A-File Registers: STK-A14 points to the C-parameter stack.

B-file registers:
DPTCH Screen pitch (difference in starting memory addresses of

any two successive scan lines in display memory).
OFFSET Memory address of pixel at top left of screen.
WSTART Top left corner of current window.
WEND Bottom right corner of current window.
COLOR0 Source background color.
COLOR1 Source foreground color.

I/O registers:
CONTROL Contains current pixel-processing operation code and

transparency control bit. These are set by the application
program and may vary from one call to the next. In contrast,
in the window mode, PBH and PBV bits are set to specific
values. The window mode is set to enable clipping without
interrupts (W = 3). The PBH and PBV bits are both zero.

CONVDP Is set up for the screen pitch.
PMASK Contains the current plane mask.

8.7.2 TIGA Graphics Manager System Parameters

The TIGA graphics manager assumes that certain system parameters are un-
der its control. Dynamic load modules should not alter the following register
bits:

The master interrupt enable bit (IE) in the status register.
The cache disable bit (CD) in the CONTROL register.
The DRAM refresh control bits (RR and RM) in the CONTROL register of
the TMS34010.
The four host interface registers (HSTADRL, HSTADRH, HSTDATA, and
HSTCTL) of the TMS34010.
The DRAM refresh control bits and RCA bus configuration mode in the
CONFIG register of the TMS34020.

 Using the TMS340-to-Host Callback Functions

8-31

8.8 Using the TMS340-to-Host Callback Functions

The mechanics used in implementing a TMS340 function that calls back to the
80x86 host are based on the same C-Packet scheme as the standard C-Pack-
et host-to-TMS340 call. One simplifying difference, however, is that the call-
back version of the packet handler contains only a single entry point. This entry
point handles all types of callback functions. Thus, to create a callback invoca-
tion line, only two pieces of information are required:

The function’s command number

The description of the function arguments.

8.8.1 The Command Number

Since callback functions are always application defined, there is no complex
mechanism for calculating callback function numbers. The function number is
determined solely by the position of the function pointer in the function pointer
array passed at callback initialization. (See subsection 8.8.4).

8.8.2 Description of the Function Arguments

To call the desired function, each of that function’s arguments must be under-
stood by the graphics manager so that data can be passed to the host routine
in the expected form. As with the standard TMS340 call, C-Packets are used
to describe the arguments. The following packet types are defined in gsptiga.h
for host calls:

__WORD(a) Immediate word, argument a
__DWORD(a) Immediate double word, argument a
__BYTE_PTR(b,a) Byte array pointer a with b elements
__WORD_PTR(b,a) Word array pointer a with b elements
__DWORD_PTR(b,a) Double-word array pointer a with b elements
__STRING(a) Null-terminated string pointer a
__ALTBYTE_PTR(b,a) Function-altered byte array pointer
__ALTWORD_PTR(b,a) Function-altered word array pointer
__ALTDWORD_PTR(b,a) Function-altered double-word array pointer
__INBYTE_PTR(b,a) Function-initialized byte array pointer
__INWORD_PTR(b,a) Function-initialized word array pointer
__INDWORD_PTR(b,a) Function-initialized double-word array pointer

These packets conform closely to those defined for the standard TMS340 call.
The added IN-type packets are used for functions that initialize arrays and are
not concerned with the initial values in the array. Note that each packet type
used in TMS340-to-host calls has two leading underscores, whereas host-to-
TMS340 packet types have one.

Using the TMS340-to-Host Callback Functions

8-32 Extensibility

8.8.3 Callback Examples

The exact argument list of the callback entry point is as follows:

host_command(cmd_number, num_packets, packet1, ... ,
packetn)

where:

cmd_number is the command number
num_packets is the number of C type packets
packet1...packetn is the packet data

Below are some examples of user extensions. The example functions used
are the standard file access functions as supplied with Microsoft C 5.1.

Example Function:

FILE *fopen(path, type)
char *path; ;Path name of file
char *type; ;Type of access permitted

Assume that the function number is stored in CMD_ID.

The function has two arguments, both null-terminated strings.

Resulting include file entry:

#define fopen(a,b)\
host_command(CMD_ID, 2, __STRING(a), __STRING(b))

Note:

This function returns a 32-bit pointer in FAR model; thus, it can be treated as
a DWORD on the TMS340.

Example Function:

short fread(buffer, size, count, stream)
void *buffer; Storage location for data
short size; Item size in bytes
short count; Max number of items to read
FILE *stream Pointer to FILE structure

Assume that the function number is stored in CMD_ID.

The function has four arguments. The first is a function-initialized pointer
(size * count elements), the second two are immediate words, and the last
is a FAR pointer, which is treated as a DWORD.

Resulting include file entry:

#define fread(a,b,c,d)\
host_command(CMD_ID, 4,
__INBYTE_PTR(b*c,a), __WORD(b), __WORD(c), __DWORD(d))

 Using the TMS340-to-Host Callback Functions

8-33

Example Function:

short fwrite(buffer, size, count, stream)
void *buffer; Storage location for data
short size; Item size in bytes
short count; Max number of items to read
FILE *stream Pointer to FILE structure

Assume that the function number is stored in CMD_ID.

The function has four arguments. The first is a nonaltered array pointer
(size * count elements), the second two are immediate words, and the last
is a FAR pointer, which is treated as a DWORD.

Resulting include file entry:

#define fwrite(a,b,c,d)\
host_command(CMD_ID, 4, __BYTE_PTR(b*c,a), __WORD(b),

__WORD(c), __DWORD(d))

Note:

This function returns a 32-bit pointer in FAR model; thus, it can be treated as
a DWORD on the TMS340.

Example Function:

FILE *fclose(stream)
 FILE *stream; Pointer to FILE structure

Assume that the function number is stored in CMD_ID.

The function has a single arguments: a FAR pointer, which is treated as
a DWORD.

Resulting include file entry:

#define fclose(a) host_command(CMD_ID, 1, __DWORD(a))

8.8.4 Initializing the Callback Environment

Because callback is purely an application option in TIGA 2.0, there are no as-
signed communications buffers to handle it. To initialize the callback environ-
ment, the TIGA application must

Allocate equal-sized host memory and TMS340 memory command buff-
ers

Define the host function array

Initialize the HOST_INIT structure and execute the TIGA core function
setup_hostcmd()

Using the TMS340-to-Host Callback Functions

8-34 Extensibility

For example, consider the file I/O functions discussed in the previous section.
The following is a host code excerpt, which performs the callback initialization
for these functions.

#include <tiga.h>
#include <typedefs.h>
#include <stdio.h> /* Microsoft C include file */

HOST_INIT far hinit;

void (*hcmds[4])() = {fopen,fread,fwrite,fclose};
short handle;
unsigned long gptr;
char *hptr;

init_callback()
{

/* Allocate TMS340 Side Buffer */
if(!(handle = gsph_alloc(BUFFER_SIZE)))

memory_error();
gptr = gsph_deref(handle);

/* Allocate Host Side Buffer */
if(!(hptr = (char*) malloc(BUFFER_SIZE)))

memory_error();

/* Initialize HOST_INIT structure */
hinit.host_buffer = hptr;
hinit.TMS340_buffer = gptr;
hinit.buffer_size = BUFFER_SIZE;
hinit.host_commands = &hcmds[0];
hinit.command_count = 4;

/* Initialize Callback*/
setup_hostcmd(&hinit);

}

For a more complete example, refer to the CBFILE example in the \tiga\demos
directory.

8.8.5 Sizing the Callback Buffer and Handling Overflow

Since the callback buffer is application-allocated, it is assumed that the size
allocated is large enough to handle the application’s requirements. In the event
that the packet data overflows the allocated buffer size, the command aborts
on the TMS340 side without calling the host.

 Using the TMS340-to-Host Callback Functions

8-35

To help calculate whether a command will fit into the command buffer allo-
cated, use the following packet sizes as a guide:

__WORD(a) 8 bytes
__DWORD(a) 8 bytes
__BYTE_PTR(b,a) (8 + b) bytes
__WORD_PTR(b,a) (8 + 2 * b) bytes
__DWORD_PTR(b,a) (8 + 4 * b) bytes
__STRING(a) (8 + sizeof(a) + 1) bytes
__ALTBYTE_PTR(b,a) (8 + b) bytes
__ALTWORD_PTR(b,a) (1 + 2 * b) bytes
__ALTDWORD_PTR(b,a) (8 + 4 * b) bytes
__INBYTE_PTR(b,a) (10 + b) bytes
__INWORD_PTR(b,a) (10 + 2 * b) bytes
__INDWORD_PTR(b,a) (10 + 4 * b) bytes

Because most functions have few arguments, you can calculate the static
packet size, and array sizes could be limited accordingly.

Installing Interrupts

8-36 Extensibility

8.9 Installing Interrupts

TIGA 2.0 has a built-in interrupt handler to ease the use of interrupt service
routines (ISR) within TIGA. TIGA’s ISR handler supports traps 0–31 and pro-
vides special support for the trap vectors shown in Table 8–2.

Table 8–2.Trap Vectors

Trap Description Mnemonic

1 External interrupt 1 X1

2 External interrupt 2 X2

9 Host interrupt HI

10 Display interrupt DI

11 Window violation interrupt WV

30 Illegal opcode interrupt ILLOP

The TIGA ISR handler properly manages the INTENB and INTPEND registers
for the traps listed in Table 8–2.

TIGA’s ISR handler provides support for chaining multiple ISRs on a single in-
terrupt level. Up to eight ISRs can be installed for the display interrupt (trap 10),
while a virtually unlimited number (limited only by processing time and avail-
able memory) of ISRs can be installed on the other supported traps.

The interrupt service routines are installed into the general interrupt handler
during the installation of a dynamic load module.The routines that are to be-
come interrupt service routines must be written, compiled, and assembled. A
specially named TIGAISR section must then be declared, identifying the name
of each interrupt service routine and the level where it should be installed. The
format of this section is explained in subsection 8.2.2 on page 8-4. During the
download process, the information within this special section is used to chain
interrupts into the TIGA interrupt handler, where each interrupt is assigned a
priority level.

ISRs are uniquely identified by the trap number that they service and their
priority of execution when the trap is called. ISRs are serviced in priority order,
with a priority of 0 being serviced first, then priority 1, and so on. The priority
of an ISR is assigned when the ISR is loaded into the TIGA graphics manager
using the install_rlm or install_alm functions. The function get_isr_priorities
can be called to obtain the priorities assigned to ISRs after loading. Additional
information about the get_isr_priorities function can be found on page 4-30.

When the TIGA graphics manager is initially loaded, or whenever
set_videomode(TIGA,INIT) is called, TIGA’s interrupt handler is initialized.
The ISRs shown in Table 8–3 are installed automatically during this initializa-
tion.

 Installing Interrupts

8-37

Table 8–3.Interrupt Service Routines

Trap # Priority Trap Function ISR Function

10 0 Display interrupt Cursor handling

10 1 Display interrupt Page flip servicing

10 2 Display interrupt Wait scan servicing

30 0 Illegal opcode trap Emulation of REV instruction

The set_interrupt function must be called to enable or disable a particular inter-
rupt service routine. The interrupt level and the associated priority must be
specified as arguments to this function. The TIGA core functions
set_curs_state, page_flip, and wait_scan automatically enable and disable
the interrupt service routines for the cursor, page flip, and waitscan interrupts,
respectively.

Interrupt service routines installed into the TIGA interrupt handler must follow
a strict set of conventions and can make certain assumptions concerning the
state of the TMS340 device:

An ISR is called by the TIGA interrupt handler with no arguments.

The ISR must terminate with a RETS 0 instruction. The TIGA interrupt
handler performs the required RETI after processing all ISRs.

The TIGA interrupt handler sets up a temporary C program stack (register
A14) to enable ISRs to make calls to C functions.

When the ISR is called, fields 0 and 1 are initialized as

Field 0: FS0: 16 FE0: 0
Field 1: FS1: 32 FE1: 0

The ISR does not need to restore fields 0 and 1 before exiting. The TIGA
interrupt handler resets them upon return from the ISR.

All A- and B-files registers that are modified by the ISR, with the exception
of A8, must be restored before exiting.

The ISR must not re-enable interrupts via the eint instruction.

Installing Interrupts

8-38 Extensibility

Note that it is possible for a downloaded extension to be executed from the
host and, in turn, set the traps to its own service routine to avoid the overhead
of the global interrupt handler in certain time-critical functions. However, care
must be taken, especially in the display interrupt used by TIGA functions such
as the cursor functions. If equivalent support is not given to these functions,
as provided by the global interrupt handler, certain TIGA functions may not ex-
ecute correctly.

Certain TMS340 boards provide external connection to the LINT1 and LINT2
TMS340 processor pins. In such cases, interrupt service routines can be writ-
ten for them by using the techniques outlined here. However, these techniques
are clearly not portable across all TMS340 processor boards.

For an example of how to create, load, and use an interrupt service routine with
TIGA, refer to the files in the \tiga\demos\isr directory.

 Object Code Compatibility

8-39

8.10 Object Code Compatibility

Because TIGA 2.0 encompasses both the TMS34010 and TMS34020 proces-
sors, you must keep in mind the differences between the two processors when
you write extensions to TIGA. The two processors are 100% object code com-
patible, and all code written for the TMS34010 runs on the TMS34020. Howev-
er, additional functionality has been added to the TMS34020; for this reason,
take care in executing the code on that processor. A full list of compatibility
guidelines are given in Appendix C of the TMS34010 User’s Guide and in
Chapter 1 of the TMS34020 User’s Guide. Those guidelines provide a thor-
ough list of restrictions to follow to maintain software compatibility. The follow-
ing subsections are not exhaustive but provide a more detailed approach on
how to deal with the differences between the two processors.

8.10.1 Determining the Processor

Because the processor checks in this section invariably involve a two-way
branch where different actions must be performed for each of the two proces-
sors (’34010 and ’34020), you must be able to distinguish them. The de-
vice_rev field of the CONFIG structure is provided for this purpose. The code
to perform the processor check in C and in assembly language is as follows:

Example 8–4. C Code to Determine the TMS340 Processor Type

#include <gsptypes.h>
#include <gspglobs.h>
#include <gspreg.h>

{
:

if(config.device_rev & (1 << REV_34010))
{

/* TMS34010-specific code */
:

}
if (config.device_rev & (1 << REV_34020))
{

/* TMS34020-specific code */
:

}
:

}

Object Code Compatibility

8-40 Extensibility

Example 8–5. Assembly Code to Determine the TMS340 Processor Type

include gsptypes.inc
include gspglobs.inc
include gspreg.inc

:
move @_config+CONFIG_DEVICE_REV,A8,1
btst REV_34010,A8
jrz not_34010

is_34010:
: ;TMS34010-specific code

not_34010:
btst REV_34020,A8
jrz not_34020

is_34020:
:

;TMS34020-specific code
not_34020:

:

8.10.2 Pattern B-File Register

A simple modification must be made to the TMS34020’s LINE instruction be-
cause the B13 register is used to define a 32-bit pattern with which the line is
drawn. On the TMS34010, this register was not used, and, although the
TMS34010’s user guide states that this register should be set to all 1s to guar-
antee the drawing of a solid line, this was generally not done. If the routine is
to draw a solid line, then the code should be like this:

movi –1,B13 ;set PATTERN register to all 1s
move B11,B11 ;does line point up or down?
jrlt down
line 0 ;draw Bresenham line
jruc exit

down:
line 1 ;draw Bresenham line

exit:

Note that although this is required only for the TMS34020, it does not cause
a problem for the TMS34010, so, in this case, there is no need to provide a
branch around the initialization of B13 for the TMS34010.

8.10.3 Pitch Registers

Another potential problem is with the SPTCH/DPTCH B-file registers and the
CONVSP/CONVDP I/O registers. On the TMS34010, the CONVSP and
CONVDP I/O registers contain the value of the leftmost one of the SPTCH and
DPTCH registers, respectively, and these are used in the conversion of an XY
address to a linear address in certain graphics instructions (such as PIXBLT
XY,XY). Some of these graphics instructions, however, do not actually use the
values in the SPTCH and DPTCH registers; these become, in some sense,
spare registers and can be used as temporary variables. The TMS34020 be-

 Object Code Compatibility

8-41

haves in the same way, except that the TMS34020 eliminated one of the re-
strictions on the TMS34010: that the pitch for XY conversion must be a power
of 2. If an arbitrary pitch is to be used, CONVSP and CONVDP no longer con-
tain the leftmost one of the SPTCH and DPTCH registers. In these cases, the
I/O registers are not used, and SPTCH and DPTCH must contain the pitch.
Thus, these registers are no longer spare. This means that you must be careful
in using TMS34010 code written for power-of-two displays on TMS34020
boards with nonpower-of-2 displays. In this case, the SPTCH/CONVSP and
DPTCH/CONVDP instruction pairs should contain corresponding values, as
the TMS34010 User’s Guide indicates (although this is sometimes ignored).

The initialization of CONVSP and CONVDP in the TMS34010 is different from
that in the TMS34020. Although it is unlikely that you will need to initialize the
CONVDP register, it is quite likely that you will need to initialize the CONVSP
register. The initialization must be done as follows:

Example 8–6. Initialization of the CONVSP Register

include gsptypes.inc
include gspglobs.inc
include gspreg.inc

_set_spitch:
; Assume A0 contains the desired pitch

move A0,SPTCH ; Initialize the SPTCH register
move @_config+CONFIG_DEVICE_REV, A8, 1
btst REV_34010,A8
jrz not_34010

is_34010: ; TMS34010 code (SPTCH must be a power of 2)
lmo A0,A0
setf 16,0,0
move A0,@CONVSP, 0 ; Put lmo (SPTCH) into CONVSP

not_34010:
btst REV_34020,A8
jrz not_34020

is_34020:
setcsp

not_34020:

8.10.4 Video Timing Registers

Most applications do not need to access the video timing I/O registers, be-
cause they are set up by TIGA at initialization time and thereafter are never
accessed directly. The video timing I/O registers are useful for functions that
need to synchronize themselves to the display (such as cursor handling, page
flipping etc.). These functions are provided by the TIGA graphics manager di-
rectly. TIGA also provides mechanisms to allow an application to install an in-
terrupt

Object Code Compatibility

8-42 Extensibility

service routine that is invoked whenever a particular line of the frame buffer
is being displayed. Despite these provisions, there may be a reason to syn-
chronize an application directly into the display hardware and therefore to in-
terrogate the state of the video I/O registers.

Due to enhancements made to the video controller on the TMS34020, it was
necessary to modify the addresses where the video I/O registers reside. TIGA
provides global pointers that allow an application to access these registers.
The global pointers are automatically initialized to either the TMS34010 or the
TMS34020 processor I/O addresses, depending on which processor is in-
stalled on the board. The application should use these pointers rather than ac-
cess the I/O addresses directly. The pointers and the TIGA function that initial-
izes them are shown in the following example:

Example 8–7. Initialization of the Video Timing I/O Register Pointers

unsigned short *pHCOUNT, *pHEBLNK, *pHESYNC, *pHSBLNK, *pHTOTAL;
unsigned short *pVCOUNT, *pVEBLNK, *pVESYNC, *pVSBLNK, *pVTOTAL;

#include <gsptypes.h>
#include <gspglobs.h>
#include <gspreg.h>

init_ioreg_ptrs()
{
 if(config.device_rev & (1 << REV_34010))
 {
 pHCOUNT = (unsigned short *)HCOUNT10;
 pHEBLNK = (unsigned short *)HEBLNK10;
 pHESYNC = (unsigned short *)HESYNC10;
 pHSBLNK = (unsigned short *)HSBLNK10;
 pHTOTAL = (unsigned short *)HTOTAL10;
 pVCOUNT = (unsigned short *)VCOUNT10;
 pVEBLNK = (unsigned short *)VEBLNK10;
 pVESYNC = (unsigned short *)VESYNC10;
 pVSBLNK = (unsigned short *)VSBLNK10;
 pVTOTAL = (unsigned short *)VTOTAL10;
 }
 if(config.device_rev & (1 << REV_34020))
 {
 pHCOUNT = (unsigned short *)HCOUNT20;
 pHEBLNK = (unsigned short *)HEBLNK20;
 pHESYNC = (unsigned short *)HESYNC20;
 pHSBLNK = (unsigned short *)HSBLNK20;
 pHTOTAL = (unsigned short *)HTOTAL20;
 pVCOUNT = (unsigned short *)VCOUNT20;
 pVEBLNK = (unsigned short *)VEBLNK20;
 pVESYNC = (unsigned short *)VESYNC20;
 pVSBLNK = (unsigned short *)VSBLNK20;
 pVTOTAL = (unsigned short *)VTOTAL20;
 }
}

 Object Code Compatibility

8-43

8.10.5 TM34020-Specific Instructions

Although all TMS34010 instructions run on the TMS34020, the TMS34020
contains new instructions that are not available on the TMS34010. In many
cases, these instructions provide considerably increased performance over
the TMS34010-only instructions, so it is in the application programmer’s inter-
est to detect the TMS34020 and use its instructions whenever possible. The
following code uses the TMS34020’s fast line instruction FLINE, which is 1
cycle per pixel faster than the regular LINE instruction:

Example 8–8. Use of TMS34020-Specific Instructions

include gsptypes.inc
include gspglobs.inc
include gspreg.inc

btst REV_34020,A8
jrz not_34020

is_34020: ;TMS34020–specific code
cvdxyl B2 ;convert to linear address
move B11,B11 ;does line point up or down?
jrlt fdown
fline 0 ;draw Bresenham line
jruc exit

fdown:
fline 1 ;draw Bresenham line
jruc exit

not_34020: ;TMS34010–compatible code
move B11,B11 ;does line point up or down?
jrlt down
line 0 ;draw Bresenham line
jruc exit

down:
line 1 ;draw Bresenham line

exit:

8.10.6 VRAM Block Mode

The TMS34020 supports two instructions (VFILL and VBLT) that use the spe-
cial VRAM block mode. Certain restrictions limit the use of these instructions.
These instructions can be used only if

1) The particular VRAMs used on the board support block mode (the
TMS44C251s do support it)

2) DPTCH is an integral multiple of 080h

3) PSIZE is 4, 8, 16, or 32

Object Code Compatibility

8-44 Extensibility

4) Pixel processing is set to replace

5) Transparency is disabled

To assist the checking of these restrictions, TIGA has a silicon_capability field
in its MODEINFO structure (a substructure of the CONFIG structure), which
is a combination of the first three restrictions. If Bit 0 of this field is a 1, then the
VRAMs do support block write, and DPTCH and PSIZE of the current mode
do allow correct operation of the block write feature. If bit 0 of this field is a 0,
then block write support is not available.

Note that this field may change from mode to mode because a board may sup-
port different pixel sizes. If block write is supported in an 8-bit-per-pixel mode,
it will not be supported in a 1-bit-per-pixel mode. Also note that restrictions 4
and 5 must be checked by an application before the VFILL or VBLT instruction
can be executed, but this can be done by a simple check of the CONTROL reg-
ister. An example of a piece of code showing the use of the VFILL instruction
is given below.

Example 8–9. Use of the VFILL Instruction

include gsptypes.inc
include gspglobs.inc
include gspreg.inc

btst REV_34020,A8 ;Suppose B–file is set up for a FILL XY
jrne no_vfill

is_34020: ;34020–specific code
setf 1,0,0
move@(_config+CONFIG_SILICON_CAPABILITY), A8, 0
jrz no_vfill ;Check the VRAM_BLOCK_WRITE flag set
setf 10,0,0
move @CONTROL+5,A8,0
andi 3E1h,A8 ;T and PPOP must be zero for VFILL
jrnz no_vfill
clip
jrz exit
cvdxyl B2 ;convert to linear dest address
vlcol ;load VRAM color latches
vfill L ;perform linear fill
jruc exit

no_vfill:
fill XY ;fill the rectangle

exit:

 The TIGA Linking Loader

8-45

8.11 The TIGA Linking Loader

The TIGA linking loader, TIGALNK, was the mechanism by which extensibility
was made possible in TIGA versions prior to TIGA 2.0. The functions per-
formed by TIGALNK are now included in the TIGA communication driver, so
TIGALNK is useful only for debugging the installation of relocatable load mod-
ules, because it provides useful error messages. Furthermore, the
error_check option, described in subsection 8.11.3, cannot be performed by
an equivalent procedure in the CD. It can be performed only through TI-
GALNK.

TIGALNK is a full TMS340 linker that provides object code relocation any-
where in TMS340 memory. It is fully portable, using the TIGA communication
driver to interface to any TMS340 board that has TIGA ported to it. TIGALNK
has extensibility control built into it, so that it can read the TIGAEXT and
TIGAISR sections and inform the graphics manager of the user extensions
that are to be installed.

TIGALNK’s options can be performed via equivalent functions in TIGA’s com-
munication driver. A list of the linking loader options with their procedural
equivalents is given in Table 8–4.

Table 8–4.Linking Loader Options

Option Files Description Equivalent Function

–ca RLMNAME,
ALMNAME

Link, then create an ALM create_alm

–cs COFFNAME Create external symbol table create_esym

–ec RLMNAME Check the RLM for errors None

–fs SYMNAME Flush external symbol table flush_esym

–la ALMNAME Load ALM into GM install_alm

–lr RLMNAME Link, then load into GM install_rlm

–lx COFFNAME Load and execute COFF file load_coff / gsp_execute

The rest of this section contains a detailed description of the TIGALNK options.
These options can be placed anywhere on the command line; they do not have
to be placed before filename arguments.

In addition to the flags are a –q (quiet) option and a –v (verbose) option. If no
options are specified, then the linker assumes normal command line opera-
tion, and all working messages and error messages are displayed normally.
Selecting quiet mode operation suppresses all textual messages, and only er-
ror codes are returned upon termination. In verbose mode operation, the linker
provides messages during every internal operation.

The TIGA Linking Loader

8-46 Extensibility

8.11.1 /ca — Create Absolute Load Module

This option creates an absolute load module (.alm) from the specified relocat-
able load module (.rlm). If the name of the output ALM file is not specified on
the command line, then the base name of the RLM file is used, but with a forced
file extension of .alm. Also, if no path information is supplied for the output file,
then it is placed in the path specified by the –l option of the TIGA environment
variable.

8.11.2 /cs — Create External Symbol Table

This option reads the symbolic information from the TIGA’s graphics manager,
tigagm.out and builds a new symbol table from it.

8.11.3 /ec — Error Check

This command line option can be used to check the integrity of an RLM before
installing it.

Once executed, the /ec option scans the specified RLM and prints out the num-
ber of extensions or interrupt service routines contained within the module. If
none are present — that is, if no .TIGAEXT or .TIGAISR section is present—
then a warning message is displayed. The amount of heap required to load the
module is then displayed, and the largest available block of TMS340 heap is
also displayed.

If the module contains any unresolved references that would not be resolved
at loadtime, these are printed out. This allows you to resolve symbol refer-
ences before actually attempting to download and install the file.

Note:

Only symbols contained in the TIGA external symbol table are used to re-
solve symbol references. As supplied, or after creation by the /lx or /cs op-
tion, this file contains only the symbols for tigagm.out, the TIGA core func-
tions. If the module being checked contains references to other modules,
such as the TIGA extended functions, then these must be loaded before per-
forming the check.

Example:

TIGALNK /LX – load and execute TIGAGM.OUT
TIGALNK /LR extprims – load TIGA extended functions

(EXTPRIMS.RLM)
TIGALNK /EC user – check integrity of user.rlm

 The TIGA Linking Loader

8-47

8.11.4 /fs — Flush External Symbol Table

This option flushes all symbols from the external symbol table, except those
in the TIGA graphics manager, tigagm.out. As the symbols for each installed
module are deleted, a call to the TIGA graphics manager is made to delete the
module from TMS340 memory.

8.11.5 /la — Load and Install an Absolute Load Module

This option loads and installs an ALM into the active TIGA graphics manager
running on the target; this makes it possible for functions contained in the mod-
ule to be invoked from the host.

Note:

ALMs contain no symbolic information, so modules loaded after an ALM can-
not make references to symbols contained within an ALM.

8.11.6 /lr — Load and Install a Relocatable Load Module

This option loads and installs an RLM into the TIGA graphics manager so that
functions contained in the module can be invoked from the host.

Symbols contained in the module are added to the external symbol table so
that they can be referenced by modules loaded afterwards.

8.11.7 /lx — Load and Execute a COFF File / Execute TIGA GM

This option has the ability to perform two distinct functions, depending on
whether or not a COFF file is specified as a command line argument. If a COFF
file name is provided on the command line, then it is loaded and executed
much like the stand-alone COFF loader provided with the TI software develop-
ment board.

If a COFF file name is not provided, then it is assumed that the TIGA graphics
manager is to be loaded and executed. In this case, two additional functions
are performed after tigagm.out is loaded and executed. The TIGA external
symbol table is created, and the symbols contained in tigagm.out are written
to it. Once these two functions are complete, a call to the TIGA communication
driver function handshake is performed to initialize communications between
the host and the TMS340.

8-48 Extensibility

A-1

Appendix A

Data Structures

This appendix contains the data structure definitions required by TIGA appli-
cations. They are defined in the include files typedefs.h and typedefs.pl.

Section Page
A.1 Integral Data Types A-2.
A.2 CONFIG Structure A-3.
A.3 CURSOR Structure A-5.
A.4 ENVIRONMENT Structure A-7.
A.5 FONTINFO Structure A-8.
A.6 MODEINFO Structure A-9.
A.7 OFFSCREEN Structure A-13.
A.8 PALET Structure A-14.
A.9 PATTERN Structure A-15.

The structure definitions supplied refer to the C syntax. In the assembly lan-
guage equivalent file, typedefs.inc, the structure name precedes every field
name. Thus, the hot_x field in the cursor structure becomes cursor_hot_x.
This is because in the macro assembler, all fields must be unique. Note that
this also applies to the TMS340-side equivalent file gsptypes.inc. All type defi-
nitions in this file are in upper case. The two TMS340-side type definition files,
gsptypes.h and gsptypes.inc, contain additional type definitions internal to
TIGA and are not generally of use to the applications programmer.

Integral Data Types

A-2 Data Structures

A.1 Integral Data Types

The TIGA data structures use the following type definitions throughout:

typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned long ulong;
typedef unsigned long PTR;
typedef uchar far *HPTR;

 CONFIG Structure

A-3

A.2 CONFIG Structure

The CONFIG structure contains the TMS340 board and display mode configu-
ration information. Part of this structure is the MODEINFO structure defined
in Section A.6, which describes the display mode configuration. If alternate
configurations are available, they can be set with set_config.

typedef struct
{

ushort version_number;
ulong comm_buff_size;
ulong sys_flags;
ulong device_rev;
ushort num_modes;
ushort current_mode;
ulong program_mem_start;
ulong program_mem_end;
ulong display_mem_start;
ulong display_mem_end;
ulong stack_size;
ulong shared_mem_size;
HPTR shared_host_addr;
PTR shared_gsp_addr;
MODEINFO mode;

}CONFIG;

The CONFIG structure consists of the following fields:

version_number TIGA Graphics Manager revision number, assigned by
Texas Instruments. The major revision number appears
in the 8 MSBs, the minor revision number in the 8 LSBs.
For example, the TIGA 2.0 Graphics Manager version
number assigned to the version_number field is
0x0200.

comm_buff_size Size, in bytes, of each communication buffer. This field
can be used by an application to determine if the data
being sent to a TIGA function has the potential of over-
flowing the communications buffer. If so, an alternate
entry point can be called.

sys_flags This 32-bit field describes the silicon devices resident
on the target TMS340-based board as follows:
Bit 0 TMS34082 #0 is present (0=no,1=yes)
Bit 1 TMS34082 #1 is present (0=no,1=yes)
Bit 2 TMS34082 #2 is present (0=no,1=yes)
Bit 3 TMS34082 #3 is present (0=no,1=yes)
Bit 4 Reserved (broadcast ID)
Bits 5–6 Reserved for future devices
Bit 7 User-defined coprocessor is present
Bits 8–31 Reserved for future use by TI

CONFIG Structure

A-4 Data Structures

device_rev This 32-bit field describes the revision of the TMS340
processor on the target board as follows:
Bits 0–2 Silicon revision number
Bit 3 ’34010 present (0=’34020,1=’34010)
Bit 4 ’34020 present (0=’34010,1=’34020)
Bits 5–15 Reserved for future generation parts
Bits 16–31 Reserved for use by TI

num_modes Total number of display modes available. The mode
number argument specified to the set_config function
must be in the range from 0 to num_modes–1.

current_mode Mode number corresponding to the current display
mode. This value will be in the range from 0 to
num_modes–1.

program_mem_start Starting linear address of the largest block of TMS340
program memory.

program_mem_end Ending linear address of the largest block of TMS340
program memory.

display_mem_start Starting linear address of TMS340 display memory.

display_mem_end Ending linear address of TMS340 display memory.

stack_size Size (in bits) of the TIGA graphics manager system
stack.

shared_mem_size Size (in bytes) of shared memory area that is available
for use by a TIGA application. This field is 0 for TMS340
boards that do not support shared memory.

shared_host_addr If shared_mem_size is nonzero, then this field contains
the starting host address of the shared memory area. If
shared_mem_size is zero, then this field is undefined.

shared_gsp_addr If shared_mem_size is nonzero, then this field contains
the starting TMS340 address of the shared memory
area. If shared_mem_size is zero, then this field is un-
defined.

mode This structure contains information pertaining to the cur-
rent display mode. See the MODEINFO structure defini-
tion in Section A.6 for detailed information.

 CURSOR Structure

A-5

A.3 CURSOR Structure

This structure defines the cursor shape parameter for the set_curs_shape
function.

typedef struct
{

short hot_x;
short hot_y;
ushort width;
ushort height;
ushort pitch;
ulong color;
ushort mask_rop;
ushort shape_rop;
ulong mask_color;
PTR data;

}CURSOR;

This structure consists of the following fields:

hot_x This value is added to the x coordinate of the top-left corner of
the cursor shape array to position the cursor hotspot at the pixel
specified by the set_curs_xy function.

hot_y This value is added to the y coordinate of the top-left corner of
the cursor shape array to position the cursor hotspot at the pixel
specified by the set_curs_xy function.

width Width (x-dimension) of the cursor shape in pixels.

height Height (y-dimension) of the cursor shape in pixels.

pitch Linear bit difference in the addresses of successive rows of the
cursor data.

color Cursor shape foreground color. This value is automatically rep-
licated by the pixel size before use.

mask_rop This field specifies the pixel-processing and transparency op-
erations used to draw the cursor mask data to the screen as
follows:
Bits 0–4 Pixel processing operating code
Bit 5 Transparency enable (0=disable,1=enable)
Bits 6–15 Reserved for future use

Consult the set_ppop function description on page 4-120 for
further information on valid pixel processing operating codes.
Also, note that the transparency mode is always set to 0 (trans-
parency on result equal 0) for theTMS34020 device by the cur-
sor drawing functions.

shape_rop This field specifies the pixel-processing and transparency op-
erations used to draw the cursor shape data to the screen. The
field bit definitions are the same as those described in the
mask_rop field above.

CURSOR Structure

A-6 Data Structures

mask_color Cursor mask foreground color. This value is automatically rep-
licated by the pixel size before use.

data Pointer to TMS340 memory containing two contiguous arrays.
The dimensions of these arrays are specified by the width and
height CURSOR structure fields. The bit pitch of the arrays is
specified by the pitch CURSOR structure field. The first array
contains the cursor mask data. The second array contains the
cursor shape information.

 ENVIRONMENT Structure

A-7

A.4 ENVIRONMENT Structure

The ENVIRONMENT structure contains the TIGA graphics library environ-
ment global variables.

typedef struct
{

ulong xyorigin;
ulong pensize;
PTR srcbm;
PTR dstbm;
ulong stylemask;

}ENVIRONMENT;

The ENVIRONMENT structure consists of the following fields:

xyorigin Current drawing origin in y::x format. The x drawing origin is con-
tained in the 16 LSBs, and the y drawing origin is contained in the
16 MSBs. The drawing origin is modified by using the
set_draw_origin graphics library function.

pensize Current size of drawing pen in y::x format. The x dimension of the
drawing pen is contained in the 16 LSBs, the y dimension in the
16 MSBs. The pen size is modified by using the set_pensize
graphics library function.

srcbm The address in TMS340 memory of the source bitmap structure.
The elements of this structure are modified by using the
set_srcbm graphics library function.

dstbm The address in TMS340 memory of the destination bitmap struc-
ture. The elements of this structure are modified by using the
set_dstbm graphics library function.

stylemask Contains the current line style mask used in the styled_line,
styled_oval, styled_ovalarc, and styled_piearc graphics library
functions.

FONTINFO Structure

A-8 Data Structures

A.5 FONTINFO Structure

The FONTINFO structure contains parameters describing the font currently in
use in TIGA. These parameters can be obtained by an application through the
core function get_fontinfo.

typedef struct
{

char facename[30];
short deflt; /* ASCII code of default character */
short first; /* ASCII code of first character */
short last; /* ASCII code of last character */
short maxwide; /* maximum character width */
short avgwide; /* Average width of characters */
short maxkern; /* Max character kerning amount */
short charwide;/* Width of characters (0=proportional) */
short charhigh;/* character height */
short ascent; /* ascent (how far above base line) */
short descent; /* descent (how far below base line) */
short leading; /* leading (row bottom to next row top) */
PTR fontptr; /* address of font in TMS340 memory */
short id; /* id of font (set at install time) */

}FONTINFO;

The majority of the fields within the FONTINFO structure are identical to those
defined in the FONT structure. An application uses the FONT structure to ob-
tain font information from a font file, while it uses the FONTINFO structure to
obtain font information about a loaded font. Consult Chapter 7, Bit-Mapped
Text, for a complete description of TIGA fonts. Section 7.1, Bit-Mapped Font
Parameters on page 7-2describes some of the parameters in the FONTINFO
structure. Subsection 7.2.1, page 7-5, describes the fields of the FONT struc-
ture.

The following FONTINFO structure fields are not described in Section 7.1:

fontptr The address, in TMS340 memory, where the font shape data is
located.

id The font identifier, returned by the function install_font, which is
used in subsequent text functions to identify the desired font.

 MODEINFO Structure

A-9

A.6 MODEINFO Structure

This structure contains configuration information for the current display mode.
It is part of the configuration structure returned by get_config (which returns
only the MODEINFO for the current display mode). The get_modeinfo function
can be used to query the configuration information for any display mode sup-
ported by the TMS340 board.

typedef struct
{

ulong disp_pitch;
ushort disp_vres;
ushort disp_hres;
short screen_wide;
short screen_high
ushort disp_psize;
ulong pixel_mask;
ushort palet_gun_depth
ulong palet_size;
short palet_inset;
ushort num_pages;
short num_offscrn_areas;
ulong wksp_addr;
ulong wksp_pitch;
ushort silicon_capability;
unsigned short color_class;
unsigned long red_mask;
unsigned long blue_mask;
unsigned long green_mask;
unsigned short x_aspect;
unsigned short y_aspect;
unsigned short diagonal_aspect;

}MODEINFO;

The MODEINFO structure consists of the following fields:

disp_pitch Linear difference (in bits) in the starting memory ad-
dresses of adjacent rows of the display memory.

disp_vres Vertical resolution, in scan lines, of the visible portion
of the screen.

disp_hres Horizontal resolution, in pixels, of the visible portion of
the screen.

screen_wide Physical width, in millimeters, of the monitor attached
to the TMS340-based board.

screen_high Physical height, in millimeters, of the monitor attached
to the TMS340-based board.

disp_psize Pixel size, in bits. Valid pixel sizes are 1, 2, 4, 8, and 16.
In addition, boards based on the TMS34020 may also
support a 32-bit pixel size.

pixel_mask Bits within a pixel with valid data.The pixel_mask field
normally contains the value (2^disp_psize)–1, indicating
that every bit of the pixel is pertinent. However, on
some boards, the frame buffer may be arranged by 8

MODEINFO Structure

A-10 Data Structures

bits (disp_psize = 8), but with only 6 bits actually im-
plemented. In this case, pixel_mask would contain the
value 0x3F.

palet_gun_depth Number of bits of resolution in the digital-to-analog
converter (DAC) in the display hardware. For a mono-
chrome display, this value is one. For color displays,
this value is the maximum of the number of red, blue,
or green bits that are used to drive the RGB gun.

palet_size Number of valid color values for this display mode. For
a monochrome system, this value is two. For a single
color index system, this value is the number of valid in-
dices. For systems with individual red, green, and blue
indices, this value is the maximum valid index for the
red, blue or green index.

palet_inset Linear offset, from the beginning of the scan line to the
first valid pixel data, for display boards using the
TMS34070 color palette, which stores the palette data
in the frame buffer. For most systems, this field is 0.

num_pages Number of display pages available. Some boards may
support display modes with multiple pages. Multiple
pages are extremely useful in animation applications.
The core function, page_flip, can be used to flip rapidly
between display pages.

num_offscrn_areas Number of offscreen memory blocks available in this
display mode. If nonzero, then information describing
these offscreen areas can be obtained by calling the
core function get_offscreen_memory.

wksp_addr Starting linear address, in TMS340 memory, of a one-
bit-per-pixel workspace, with the same dimensions as
the visible screen. This field is valid only if argument
wksp_pitch is nonzero. This workspace is not required
for any of TIGA’s drawing functions.

wksp_pitch Pitch, in bits, of the workspace area. If wksp_pitch=0,
then no workspace area is currently allocated.

silicon_capability Silicon features available in the current display mode.
This 16-bit field contains the following bit definitions:
Bit 0 VRAM block write support (0=no,

1=yes)
Bits 1–15 Reserved for future use

 MODEINFO Structure

A-11

color_class This 16-bit field describes the color capabilities of the
current display mode. Valid color classes are:

Color Color Palette Color Type Pixel Value

Class Description R/W Fixed Color Gray Index RGB

0 Gray scale √ √ √

1 Static gray √ √ √

2 Pseudo color √ √ √

3 Static color √ √ √

4 Direct color √ √ √

5 True color √ √ √

Color capabilities are dependent on three physical attributes of the
TMS340-based display board:

1) Palette type; either programmble (R/W) or nonprogrammable (fixed or no
palette at all).

2) Color type; either color or gray scale.

3) Pixel-value usage; the pixel value is either a single index for RG&B or is
composed of separate RGB values, which index into different RGB color-
map entries.

Note that a monochrome mode is simply a gray-scale or static-gray class with
a two-element colormap.

red_mask, green_mask, blue_mask
These 32-bit fields are used for the direct color and
true color classes where there is a separate colormap
for each primary color. Each mask defines within a pix-
el value those bits that index into the appropriate red,
green, or blue colormap. Each mask is composed of
one contiguous set of bits, with no bits in common with
the other masks. These fields are zero for color
classes 0–3.

x_aspect, y_aspect, diagonal_aspect
These fields specify the relative width, height, and di-
agonal dimensions of a screen pixel and correspond
directly to the screen’s aspect ratio. The x_aspect and
y_aspect values are calculated so that the following is
true:

(x_aspect * disp_hres) / screen_wide = (y_aspect * disp_vres) / screen_high

For example, a monitor screen with physical dimensions of 280 × 203 millime-
ters and a display mode of 1024 pixels × 768 lines (horizonal, vertical, respec-
tively) would result in x, y, and diagonal aspects of 1, 0.97, and 1.39, respec-

MODEINFO Structure

A-12 Data Structures

tively. This corresponds to an aspect ratio of 100 horizontal pixels to every 97
vertical pixels. For screens whose pixels do not have integral diagonal lengths,
the field values should be multiplied by a constant factor to derive integral re-
sults. Therefore, the correct values for x, y, and diagonal aspects in our pre-
vious example would be 100, 97, and 139, respectively. For numerical stability,
these field values should be kept under 1000.

 OFFSCREEN Structure

A-13

A.7 OFFSCREEN Structure

This structure defines the offscreen areas returned by the
get_offscreen_memory function.

typedef struct
{

PTR addr;
ushort xext;
ushort yext;

}OFFSCREEN_AREA;

The OFFSCREEN structure consists of the following fields:

addr Address in TMS340 memory of the offscreen area.

xext x extension (width) of the offscreen area in pixels.

yext y extension (height) of the offscreen area in scan lines.

PALET Structure

A-14 Data Structures

A.8 PALET Structure

This structure contains the red, green, blue, and intensity components for a
palette entry.

typedef struct
{

uchar r;
uchar g;
uchar b;
uchar i;

}PALET;

This structure consists of the following fields of the palette entry:

r Value of the red color component

g Value of the green color component

b Value of the blue color component

i Value of the intensity

 PATTERN Structure

A-15

A.9 PATTERN Structure

The PATTERN structure defines the pattern shape information passed to the
set_patn function.

typedef structure
{

ushort width;
ushort height;
ushort depth;
PTR data;

}PATTERN;

This structure consists of the following fields:

width Width of the pattern in bits. Currently, only 16-bit wide patterns
are supported.

height Height of pattern in bits. Currently, only 16-bit high patterns are
supported.

depth Depth (bits/pixel) of pattern. Currently, only monochrome (1 bit-
per-pixel) patterns are supported.

data Pointer to pattern data in TMS340 memory.

A-16 Data Structures

B-1

Appendix B

TIGA Reserved Symbols

This appendix lists the TIGA and TMS340 reserved symbols in the following
sections:

Section Page
B.1 Reserved Functions B-2.
B.2 TIGA Core Functions Symbols B-3.
B.3 TIGA Extended Graphics Library Symbols B-6.

Reserved Functions

B-2 TIGA Reserved Symbols

B.1 Reserved Functions

TIGA currently reserves the following functions for internal use. Do not choose
function names that conflict with these. Avoid calling functions from an applica-
tion program, because future versions of TIGA may not contain these func-
tions.

add_interrupt
add_module
del_all_modules
del_interrupt
del_module
get_memseg
get_module
get_msg
get_state
get_xstate
gm_is_alive
handshake
init_cursor
init_interrupts
init_video_regs
makename

oem_init
read_hstaddr
read_hstadrh
read_hstadrl
read_hstctl
read_hstdata
rstr_commstate
save_commstate
set_memseg
set_msg
set_xstate
write_hstaddr
write_hstadrh
write_hstadrl
write_hstctl
write_hstdata

 TIGA Core Functions Symbols

B-3

B.2 TIGA Core Functions Symbols

TIGA currently uses the following symbols in its core functions and in the
TMS340 C environment. To guarantee successful operation, do not use down-
loadable extensions whose names conflict with any of these symbols.

Downloadable extensions used with the graphics library functions should have
names that do not conflict with those in Section B.3.

IsrCStk
IsrEntryTable
IsrSrv
_CoreFunc
_CursorISR
_DEFAULT_PALET
_DefaultCursor
_DiTable
_IsrEnabled
_ModIntIoRegs
_Module
_NextDiEntry
_OutTTY
_PageFlipISR
_TrapVector
_WaitScanISR
_abort
_add_interrupt
_add_module
_ai_rev
_atexit
_c_int00
_cb_buffer
_cb_size
_check_dpyint
_clear_frame_buffer
_clear_page
_clear_screen
_comm_info
_config
_cpacket
_cpw
_csa
_curs_offset

_cvxyl
_default_setup
_del_all_modules
_del_interrupt
_del_module
_delay
_dm_clear_frame_buffer
_dm_clear_page
_dm_clear_screen
_dm_cpw
_dm_cvxyl
_dm_get_nearest_color
_dm_gsp2gsp
_dm_init_palet
_dm_lmo_dm_peek_breg
_dm_poke_breg
_dm_rmo
_dm_set_ai_rev
_dm_set_bcolor
_dm_set_cbbuf
_dm_set_clip_rect
_dm_set_colors
_dm_set_curs_shape
_dm_set_curs_state
_dm_set_cursattr
_dm_set_fcolor
_dm_set_palet_entry
_dm_set_pmask
_dm_set_ppop
_dm_set_text_xy
_dm_set_windowing
_dm_set_wksp
_dm_text_outp

TIGA Core Functions Symbols

B-4 TIGA Reserved Symbols

_envtext
_envcurs
_env
_esym
_exit
_field_insert
_field_extract
_flush_extended
_flush_module
_function_implemented
_get_colors
_get_config
_get_curs_state
_get_curs_xy
_get_fontinfo
_get_isr_priorities
_get_module
_get_nearest_color
_get_offscreen_memory
_get_palet_entry
_get_palet
_get_pmask
_get_ppop
_get_state
_get_text_xy
_get_transp
_get_vector
_get_windowing
_get_wksp
_getrev
_gm_idlefunction
_gsp2gsp
_gsp_calloc
_gsp_free
_gsp_handle
_gsp_malloc
_gsp_maxheap
_gsp_minit
_gsp_realloc
_gsph_alloc
_gsph_compact
_gsph_deref
_gsph_falloc
_gsph_findhandle

_gsph_findmem
_gsph_free
_gsph_init
_gsph_maxheap
_gsph_memtype
_gsph_realloc
_gsph_sinit
_gsph_totalfree
_handleBlock
_handleAlloc
_handle
_handleGrow
_hblock_handle
_high_water_mark
_highlevel_minit
_host_command
_idlefunc_ptr
_illop
_init_cursor
_init_interrupts
_init_ioreg_ptrs
_init_palet
_init_text
_init_trap_vectors
_init_video_regs
_lastMP
_lastSeg
_linmem
_lmem
_lmo
_lowlevel_minit
_main
_makekey
_memcpy
_memmove
_modeinfo
_monitorinfo
_movmem
_mpFree
_null_patn_line
_numMP
_numSegs
_numstr

 TIGA Core Functions Symbols

B-5

_oemdata
_oemmsg
_offscreen
_pHCOUNT
_pHEBLNK
_pHESYNC
_pHSBLNK
_pHTOTAL
_pVCOUNT
_pVEBLNK
_pVESYNC
_pVSBLNK
_pVTOTAL
_page_busy
_page
_page_flip
_palet
_palloc
_pattern
_peek_breg
_poke_breg
_printf
_release_buffer
_rmo
_set_bcolor
_set_clip_rect
_set_colors
_set_config
_set_curs_shape
_set_curs_state
_set_cursattr
_set_dpitch
_set_fcolor
_set_interrupt
_set_module_state

_set_palet
_set_palet_entry
_set_pmask
_set_ppop
_set_text_xy
_set_vector
_set_windowing
_set_wksp
_setup
_srv_ipoly
_stack_size
_strcmp
_strcpy
_strlen
_sym_chk
_sym_close
_sym_flush
_sym_getstate
_sym_get
_sym_init
_sym_open
_sym_put
_sys16
_sys_memory
_sysfont
_text_out
_text_outp
_tmphandles
_transp_off
_transp_on
_video_enable
_wait_scan
cp_call
dm_call

TIGA Extended Graphics Library Symbols

B-6 TIGA Reserved Symbols

B.3 TIGA Extended Graphics Library Symbols

TIGA uses the following symbols in its extended graphics library functions. To
guarantee successful operation, downloadable extensions with graphics li-
brary functions should not use names that conflict with any of these symbols.

_arc_draw
_arc_fill
_arc_pen
_arc_quadrant
_arc_quad
_arc_slice
_bitblt
_decode_rect
_delete_font
_dm_bitblt
_dm_draw_line
_dm_draw_oval
_dm_draw_ovalarc
_dm_draw_piearc
_dm_draw_point
_dm_draw_polyline
_dm_draw_rect
_dm_fill_convex
_dm_fill_oval
_dm_fill_piearc
_dm_fill_polygon
_dm_fill_rect
_dm_frame_oval
_dm_frame_rect
_dm_get_pixel
_dm_move_pixel
_dm_patnfill_convex
_dm_patnfill_oval
_dm_patnfill_piearc
_dm_patnfill_polygon
_dm_patnfill_rect
_dm_patnframe_oval
_dm_patnframe_rect
_dm_patnpen_line
_dm_patnpen_ovalarc
_dm_patnpen_piearc
_dm_patnpen_point
_dm_patnpen_polyline
_dm_pen_line

_dm_pen_ovalarc
_dm_pen_piearc
_dm_pen_point
_dm_pen_polyline
_dm_put_pixel
_dm_seed_fill
_dm_seed_patnfill
_dm_set_draw_origin
_dm_set_patn
_dm_set_pensize
_dm_styled_ovalarc
_dm_styled_oval
_dm_zoom_rect
_draw_eliparc
_draw_line
_draw_oval
_draw_ovalarc
_draw_piearc
_draw_point
_draw_polyline
_draw_rect
_encode_rect
_fill_convex
_fill_eliparc
_fill_oval
_fill_piearc
_fill_polygon
_fill_rect
_frame_oval
_frame_rect
_get_env
_get_pixel
_get_textattr
_in_font
_install_font
_move_pixel
_onarc
_patn_line

_patnfill_convex
_patnfill_oval
_patnfill_piearc
_patnfill_polygon
_patnfill_rect
_patnframe_oval
_patnframe_rect
_patnpen_line
_patnpen_ovalarc
_patnpen_piearc
_patnpen_point
_patnpen_polyline
_pen_eliparc
_pen_line
_pen_ovalarc
_pen_piearc
_pen_point
_pen_polyline
_put_pixel
_seed_fill
_seed_patnfill
_select_font
_set_draw_origin
_set_dstbm
_set_patn
_set_pensize
_set_srcbm
_set_textattr
_sin_tbl
_styled_line
_styled_oval
_styled_ovalarc
_styled_piearc
_swap_bm
_text_width
_trig_values
_zoom_rect

C-1

Appendix C

Debugger Support for TIGA

TIGA is the definitive interface standard for applications software written to run
on the TMS340 architecture. However, it gives no guidelines to debugger
developers with special hardware accessing requirements.

A set of routines has been included in TIGA to meet the often unique needs
of debugger developers. This appendix contains those routines.

Section Page
C.1 Debugger Routines C-2.
C.2 TIGA / Debugger Interface C-12.
C.3 Compatibility Functions C-14.

Debugger Functions

C-2 Debugger

C.1 Debugger Functions

A separate document describing the use of the debugger functions will be
published in the future. Development of debugger functions will be based on
user feedback received and on the following criteria:

Portability to any TIGA environment, which potentially includes all
TMS34010- and TMS34020-based PC graphics displays.

Transparency to share the TMS34010’s host interface registers with an
application that is being debugged and that uses the host interface for
communication between host and TMS340-resident software.

Ability to support the symbolic debugging of RLMs (Relocatable Load
Modules).

The following is a list of the routines in TIGA that provide debugger support:

get_vector Return contents of TMS340 trap vector

set_vector Set contents of TMS340 trap vector

get_xstate Return TMS340 execution state

set_xstate Set TMS340 execution state

get_memseg Return high/low bounds of TMS340 memory segment

set_memseg Set high/low bounds of TMS340 memory segment

get_msg Receive a message from the TMS340

set_msg Send a message to the TMS340

save_commstate Save communication state

rstr_commstate Restore communication state

oem_init Initialize board-specific data

Note:

The get_vector and set_vector functions are described in Chapter 4 because
their usefulness is not restricted to debuggers.

 Return High/Low Bounds of TMS340 Memory Segment get_memseg

C-3

void get_memseg(addrlo, addrhi);
unsigned long *addrlo, *addrhi;

Host-only

The get_memseg function is not for general use. It is intended for debuggers
and other such tools that have special hardware accessing requirements. This
function returns the low and high bit addresses of a usable block of TMS340
memory. Note that if the TIGA graphics manager is active (determined by a call
to gm_is_alive), then this block of memory has been appropriated by the TIGA
memory manager and should not be used. Instead, a call to TIGA should
allocate usable memory. The two arguments, addrlo and addrhi, are pointers
to unsigned longs where the TMS340 addresses are to be placed.

Syntax

Type

Description

get_msg Return a Message From the TMS340

C-4 Debugger Support for TIGA

unsigned short get_msg();

Host-only

The get_msg function is not for general use. It is intended for debuggers and
other such tools that have special hardware accessing requirements.This
function receives a 3-bit message from the TMS340. The message is located
in bits 0–2 of the returned value. The fourth bit, bit 3, is an interrupt bit and
indicates that an interrupt was requested by the host.

Syntax

Type

Description

 Return TMS340 Execution State get_xstate

C-5

unsigned short get_xstate();

Host-only

The get_xstate function is not for general use. It is intended for debuggers and
other such tools that have special hardware accessing requirements. This
function returns the current TMS340 execution state. The returned 16 bits are
described below:

Bit 0 1 if TMS340 is halted, 0 if not

Bit 1 1 if NMI set, 0 if not

Bit 2 1 if NMIMODE set, 0 if not

Bit 3 1 if cache flushed, 0 if not

Bit 4 1 if cache disabled, 0 if not

Bit 5 1 if host interrupt (the INTIN bit of the host control register) is set, 0 if
it is cleared.

Bits 6–15 Reserved for future use

#include <tiga.h>
main()
{

if (tiga_set(CD_OPEN) >= 0)
{

if (get_xstate() & 1)
printf(”TMS340 is halted\n”);

else
printf(”TMS340 is running\n”);

tiga_set(CD_CLOSE);
}

}

Syntax

Type

Description

Example

oem_init Initialize Board-Specific Data

C-6 Debugger Support for TIGA

unsigned long oem_init(gm_size)
unsigned long gm_size;

Host-only

The oem_init function halts the TMS340 and performs any board-specific
initialization required before loading a COFF file. It also performs TMS340
heap memory initialization using the size of the TIGA graphics manager (GM)
in its calculations. This size, in bytes, is specified by the argument gm_size.

The oem_init function returns a TMS340 address corresponding to the start
of the TIGA GM. This address is not the execution entry point of the TIGA GM,
but rather the relocation address of the TIGA GM COFF file.

Syntax

Type

Description

 Restore Communication State rstr_commstate

C-7

unsigned short rstr_commstate();

Host-only

The rstr_commstate function is not for general use. It is intended for
debuggers and other such tools that have special hardware accessing
requirements. This function restores the state of TMS340 communications to
the state it was in after a previous call to save_commstate.The function returns
zero if it is unable to save the state, nonzero if it is successful.

Syntax

Type

Description

save_commstate Save Communication State

C-8 Debugger Support for TIGA

unsigned short save_commstate();

Host-only

The save_commstate function is not for general use. It is intended for
debuggers and other such tools that have special hardware accessing
requirements. This function saves the state of TMS340 communications. The
function returns zero if it is unable to save the state, nonzero if it is successful.

Syntax

Type

Description

 Set High/Low Bounds of TMS340 Memory Segment set_memseg

C-9

void set_memseg(addrlo, addhi);
unsigned long addrlo, addrhi;

Host-only

The set_memseg function is not for general use. It is intended for debuggers
and other such tools that have special hardware accessing requirements. This
function sets the low and high bit addresses of a usable block of TMS340
memory. It should be called to reflect the new memory size after some of the
memory returned by get_memseg is used.

Syntax

Type

Description

set_msg Set a Message From the TMS340

C-10 Debugger Support for TIGA

void set_msg(msg);
unsigned short msg;

Host-only

The set_msg function is not for general use. It is intended for debuggers and
other such tools that have special hardware accessing requirements. This
function sends a 3-bit message to the TMS340. The message is located in bits
0–2 of argument msg. The fourth bit, bit 3, is an interrupt bit and requests a host
interrupt into the TMS340.

Syntax

Type

Description

 Set TMS340 Execution State set_xstate

C-11

void set_xstate(options);
unsigned short options;

Host-only

The set_xstate function is not for general use. It is intended for debuggers and
other such tools that have special hardware accessing requirements. This
function sets the current TMS340 execution state. The returned 16 bits are
described below:

Bit 0 1 to halt the TMS340, 0 to let it run

Bit 1 1 to invoke an NMI, 0 to clear NMI

Bit 2 1 to set NMIMODE, 0 to clear NMIMODE

Bit 3 1 to flush cache, 0 to stop cache flush

Bit 4 1 to disable cache, 0 to enable cache

Bit 5 1 to set the host interrupt (the INTIN bit of the host control register);
0 does nothing because the bit can be cleared only by the TMS340.

Bits 6–15 Reserved for future use; must be set to 0s

#include <tiga.h>

main()
{

if (tiga_set(CD_OPEN) >=0)
{

set_xstate(1); /* halt the TMS340 */
set_xstate(0); /* run the TMS340 */
tiga_set(CD_CLOSE);

}
}

Syntax

Type

Description

Example

TIGA /Debugger Interface

C-12 Debugger Support for TIGA

C.2 TIGA / Debugger Interface

TIGA 2.2 provides the capability for symbolic debugging of relocatable load
modules (RLMs) by providing RLM relocation and filename information to a
TMS340-resident debugger monitor via the TRAP 29 software interface. This
capability is enabled by specifying the –d2 option when loading the TIGA
communication driver (tigacd.exe).

For a debugger to take advantage of this capability, it must provide and install
an interrupt service routine (ISR) into the trap 29 vector. The following three
services must be provided by the debugger ISR to fully support TIGA’s debug
capability:

1) Load symbols into the debugger that correspond to an RLM or the TIGA
graphics manager.

2) Flush symbols that correspond to a previously loaded RLM.

3) Flush all symbols that correspond to all previously loaded RLMs.

Whenever an application loads or flushes an RLM, TIGA first services the
request and then passes the request onto the debugger ISR, via a trap 29
software interrupt, for processing. When control is passed to the debugger’s
ISR, the stack is set up as follows:

old PC (msw)
old PC (lsw)
ST (msw)
ST (lsw)SP memory addresses

Information regarding the request is stored relative to the old PC on the stack.
Once the ISR has fetched the value of the old PC (for example, in Addr), the
request information can then be read relative to Addr as follows:

1) Module Load (ML) request

Addr: RETS instruction (0x0960)
Addr+0x10: Magic number (0x0468)
Addr+0x20 Request type (0x4D4C, ASCII for ML)
Addr+0x30: Module ID
Addr+0x40: Number of sections (starts with section 0)
Addr+0x50: LSW of section 0 relocation
Addr+0x60: MSW of section 0 relocation

: :
Addr+0x50+(n–1)*0x20: LSW of section n–1 relocation
Addr+0x50+(n–1)*0x20: MSW of section n–1 relocation
Addr+0x50+n*0x20: Filename[0]
Addr+0x58+n*0x20: Filename[1]

: :

 TIGA /Debugger Interface

C-13

Note:

Filename is a null-terminated, fully qualified (drive and directory included)
string.

2) Module Flush (MF) request

Addr: RETS instruction (0x0960)
Addr+0x10: Magic number (0x0468)
Addr+0x20: Request type (0x4D46, ASCII for MF)
Addr+0x30: Module ID

3) Flush all Modules (MA) request

Addr: RETS instruction (0x0960)
Addr+0x10: Magic number (0x0468)
Addr+0x20: Request type (0x4D41, ASCII for MA)

After servicing the request, the debugger ISR should call the RETI instruction
to properly terminate the interrupt.

Compatibility Functions

C-14 Debugger Support for TIGA

C.3 Compatibility Functions

It is recommended that you do not use the compatibility functions. Their
operations functions can be performed by the entry points in the previous
section and by the communication functions described in Chapter 4. These
functions talk directly to TMS34010 hardware, which is not present on the
TMS34020. Their functionality can be emulated only on the TMS34020.
However, since the TMS34010 has been available for some years now, many
utilities have been written that interface to the TMS34010 hardware directly.
If these utilities are to be ported to TIGA with the understanding that they may
not run correctly on the TMS34020 or other future products, then these
functions may provide a quick method of porting.

read_hstaddr Read the TMS34010 host address register

read_hstadrh Read the TMS34010 host address high register

read_hstadrl Read the TMS34010 host address low register

read_hstctl Read the TMS34010 host control register

read_hstdata Read the TMS34010 host data register

write_hstaddr Write to the TMS34010 host address register

write_hstadrh Write to the TMS34010 host address high register

write_hstadrl Write to the TMS34010 host address low register

write_hstctl Write to the TMS34010 host control register

write_hstdata Write to the TMS34010 host data register

Read the TMS34010 Host Address Register read_hstaddr

C-15

unsigned long read_hstaddr();

Host-only

The read_hstaddr function returns the contents of the host address register of
the TMS34010.

Syntax

Type

Description

read_hstadrh Read the TMS34010 Host Address High Register

C-16 Debugger Support for TIGA

unsigned short read_hstadrh();

Host-only

The read_hstadrh function returns the contents of the host address high
register of the TMS34010.

Syntax

Type

Description

Read the TMS34010 Host Address Low Register read_hstadrl

C-17

unsigned short read_hstadrl();

Host-only

The read_hstadrl function returns the contents of the host address low register
of the TMS34010.

Syntax

Type

Description

read_hstctl Read the TMS34010 Host Control Register

C-18 Debugger Support for TIGA

unsigned short read_hstctl();

Host-only

The read_hstctl function returns the contents of the host control register of the
TMS34010.

Syntax

Type

Description

Read the TMS34010 Host Data Register read_hstdata

C-19

unsigned short read_hstdata();

Host-only

The read_hstdata function returns the contents of the host data register of the
TMS34010.

Syntax

Type

Description

write_hstaddr Write to the TMS34010 Host Address Register

C-20 Debugger Support for TIGA

void write_hstaddr(value)
 unsigned long value;

Host-only

The write_hstaddr function writes the supplied 32-bit value into the host
address register of the TMS34010.

Syntax

Type

Description

Write to the TMS34010 Host Address High Register write_hstadrh

C-21

void write_hstadrh(value)
 unsigned short value;

Host-only

The write_hstadrh function writes the supplied 16-bit value into the host
address high register of the TMS34010.

Syntax

Type

Description

write_hstadrl Write to the TMS34010 Host Address Low Register

C-22 Debugger Support for TIGA

void write_hstadrl(value)
unsigned short value;

Host-only

The write_hstadrl function writes the supplied 16-bit value into the host
address low register of the TMS34010.

Syntax

Type

Description

Write to the TMS34010 Host Control Register write_hstctl

C-23

void write_hstctl(value)
unsigned short value;

Host-only

The write_hstctl function writes the supplied 16-bit value into the host control
register of the TMS34010. Note that for TIGA to function properly, the values
of the INCR, INCW, and LBL bits in host control must be set in a particular
manner. If these bits are modified, they must be restored before invoking
another TIGA function, or else the TIGA environment may be corrupted.

Syntax

Type

Description

write_hstdata Write to the TMS34010 Host Data Register

C-24 Debugger Support for TIGA

void write_hstdata(value)
unsigned short value;

Host-only

The write_hstdata function writes the supplied 16-bit value into the host data
register of the TMS34010.

Syntax

Type

Description

D-1

Appendix D

Error Messages / Error Codes

Error messages are returned by the standard TIGA error handler if problems
are encountered while a TIGA driver or application is running. The problems
associated with these errors are likely caused by the application or by the driv-
er itself.

Error codes are returned when problems occur during loading of the TIGA
Communication Driver (CD), the TIGA Graphics Manager (GM), or TIGA ex-
tensions contained in ALM or RLM files. These problems may be caused by
the TIGA application or by the driver but are more apt to be the result of improp-
er installation of TIGA or the TMS340 board. The following TIGA functions and
utility programs, which provide the CD, GM, RLM and ALM load support in
TIGA, are the most likely to generate these error codes:

tigalnk.exe TIGA linking loader utility
create_alm() Create alm file
create_esym() Create external symbol file
flush_esym() Flush external symbols from symbol file
install_alm() Load TIGA extensions from ALM file
install_primitives() Load TIGA graphics library functions
install_rlm() Load TIGA extensions from RLM file
sym_flush() Flush relocatable load module symbols

Each description of error message / error code contains the following informa-
tion:

The status code returned to signify that an error has occurred

The status message returned to signify that an error has occurred

The general type of error that has occurred

A list of possible causes that prompted the error

Possible solutions to fix the cause of the error

This appendix contains a list of error messages and error codes returned by
TIGA, in the following sections:

Section Page
D.1 Error Messages D-2.
D.2 Error Codes D-3.
D.3 Communication Driver (CD) Errors D-7.

Error Code

Error Msg.

Error Type

Cause(s)

Fix(es)

Error Messages

D-2 Error Messages / Error Codes

D.1 Error Messages

Timeout waiting for a free command buffer

TIGA extended function error

TIGA graphics manager has been corrupted. A called TIGA extended function
did not execute to completion

Check TIGA function source for problems. Also, check host entry point invoca-
tion to ensure that arguments are being passed correctly

Timeout waiting for current TIGA command

TIGA extended function error

TIGA graphics manager has been corrupted. A called TIGA extended function
did not execute to completion

Check TIGA function source for problems. Also, check host entry point invoca-
tion to ensure that arguments are being passed correctly

Not enough memory to store parameters

TIGA function calling error

An alternate (_a) entry point was called, but not enough TMS340 memory was
available to allocate temporary command buffer

Reduce the amount of data being sent to the function

Error Msg.

Error Type

Cause(s)

Fix(es)

Error Msg.

Error Type

Cause(s)

Fix(es)

Error Msg.

Error Type

Cause(s)

Fix(es)

 Error Codes

D-3

D.2 Error Codes

–1

TIGA system error (TIGA 1.1 and lower only)

The file tigalnk.exe could not be found

1) Ensure that the –m option of the TIGA environment variable is set to your
main TIGA directory

2) If so, verify that the file tigalnk.exe is contained in the directory specified by
the –m option

–2

TIGA communication driver (CD) error

Invalid command line arguments specified for tigacd.exe

Ensure that the command line arguments are specified when running
tigacd.exe are valid. Check Section 2.6 for valid options

–3

TIGA memory error

1) Not enough host memory to invoke TIGALNK (TIGA versions 1.1 and lower
only) or

2) Not enough TMS340 memory available to load specified module

1) Free memory on host by eliminating unused TSR’s
2) Ensure that your TMS340 board has enough memory to run the application.

If not, add additional memory to TMS340 board, if possible

–4

TIGA communication driver (CD) error

TIGA communication driver (tigacd.exe) not running

Run tigacd.exe to install the TIGA communications driver before running a
TIGA application or driver

–5

TIGA graphics manager (GM) error

1)TIGA graphics manager (tigagm.out) load error or
2) TMS340 board failure

1) Ensure that the file tigagm.out exists in the directory specified by the –m op-
tion of the TIGA environment variable

2) Run the manufacturer’s supplied diagnostics to ensure your TMS340 board
is operating properly

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Codes

D-4 Error Messages / Error Codes

–6

RLM load error

1) RLM does not exist in the directory specified in the application or
2) RLM does not exist in the directory specified by the –l option of the TIGA

environment variable

1, 2) Ensure that the RLM file exists in either the directory specified by the
application or in the directory specified by the –l option of the TIGA environ-
ment variable

3) Obtain a new copy of the RLM file

–7

Symbol file error (TIGA versions 1.1 and lower only)

1) TIGA could not find the file tiga340.sym
2) The tiga340.sym file is corrupt

1) Ensure that the –m option of the TIGA environment variable is set to your
main TIGA directory. Also, make sure that the file tiga340.sym exists in this
directory

2) Run tigalnk /ca to create a new tiga340.sym file

–8

ALM load error

1) ALM does not exist in directory specified in the application
2) ALM does not exist in directory specified by the –l option of the TIGA envi-

ronment variable
3) ALM file is corrupt

1, 2) Ensure that the ALM file exists in either the directory specified by the
application or in the directory specified by the –l option of the TIGA environ-
ment variable

3) Obtain a new copy of the ALM file

–9

COFF (.out) file load error

TIGA could not locate specified COFF .out file

Ensure that the specified COFF.out file exists in the directory expected by the
application

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

 Error Codes

D-5

–10

Symbol reference error

An unresolved symbol was encountered when the specified RLM or ALM file
was loading

1) Run tigalnk /lx to reinitialize external symbol table
2) Run tigalnk /ec filename to determine undefined symbols

–11

Symbol file creation error (TIGA versions1.1 and lower only)

The COFF file specified in tigalnk /cs filename is not linked at an absolute ad-
dress

Relink the specified COFF file without the –ar or –r linker option

–12

Symbol file error

The modules installed in the symbol table do not match those the TIGA graph-
ics manager has installed

Run tigalnk –fs to flush the symbols. Then, rerun your TIGA application

–13

Handshake error

1) TIGA graphics manager (tigagm.out) load error
2) Wrong tigagm.out being used
3) TMS340 board failure

1, 2) Ensure that the correct file tigagm.out exists in the directory specified by
the –m option of the TIGA environment variable

3) Run the manufacturer’s supplied diagnostics to make sure your TMS340
board is operating properly.

–14

COFF load error (TIGA versions 2.0 and higher only)

An error was encountered while attempting to load a COFF file

Recreate the COFF file and try again

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Codes

D-6 Error Messages / Error Codes

–15

Symbol table error (TIGA versions 2.0 and higher only)

Not enough TMS340 memory available to store the symbols associated with
an RLM

1) Use the %f option of the install_rlm function to disable loading of symbols
2) Reduce the number and name length of symbols in RLM
3) Add more memory to the TMS340 board, if possible

–25

TMS340 board error (TIGA versions 2.0 and higher only)

Communications error with target TMS340 board

1) Ensure that you installed the TMS340 board properly
2) Run the manufacturer’s supplied diagnostics to ensure your TMS340 board

is operating properly

–26

TIGA communication driver error (TIGA versions 2.0 and higher only)

The TIGA communications driver was already closed when the TIGA function
tiga_set(CD_CLOSE) was issued

No fix required

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

Error Code

Error Type

Cause(s)

Fix(es)

 Communication Driver (CD) Errors

D-7

D.3 Communication Driver (CD) Errors

TIGA Driver already installed in interrupt level 0x ??

An attempt was made to load the TIGA CD at the current TIGA interrupt level
when it is already installed.

Do not reload the TIGA CD once it is installed. The TIGA CD remains memory
resident until:

1) The PC is rebooted or powered off, or

2) The TIGA CD is uninstalled (using the command tigacd –u from the DOS
command line.

NonTIGA Driver installed in interrupt level 0x ??

An attempt was made to load the TIGA CD at an interrupt level currently in use
by another driver.

Load the TIGA CD at a different interrupt level. To change the TIGA interrupt
level, modify the –i option of the TIGA environment variable. See Section 2.5.

Abort (No response from display board)

Initialization of the TIGA display board failed. Possible causes are:

1) The TIGA display board is not installed or is defective.

2) The TIGA display board is not is not set up properly.

3) The wrong TIGA CD is being used.

4) The wrong TIGA configuration file (tiga.cfg) is being used.

To fix the causes lilsted above:

1) Ensure that the TIGA display board is installed properly in your PC.

Is the board connector fully seated into the adapter slot?
Is the board installed in the correct slot? A board with a 16-bit connec-
tor should be installed in a 16-bit slot.
Are all socketed components fully seated into their sockets?
Run any diagnostics provided with the display board to determine if
the board is damaged.

2) Rerun the TIGA board setup program that came with the board (if
supplied). Ensure that all I/O addresses and memory addresses required
during setup correspond to the actual configuration of your diplay board.
You may want to try various combinations of options presented during set-
up to see if any of them work with your display board.

3) Ensure that the TIGA CD you are using is intended for your display board.
If in doubt, refer to your board’s software installation manual.

Error Msg.

Cause(s)

Fix(es)

Error Msg.

Cause(s)

Fix(es)

Error Msg.

Cause(s)

Fix(es)

Communication Driver (CD) Errors

D-8 Error Messages / Error Codes

Ensure that the file tiga.cfg in use is intended for your display board. If in
doubt, refer to your board’s software installation manual.

TIGA driver is not installed!

An attempt was made to unload the TIGA CD from memory (using the com-
mand tigacd –u from the DOS command line), but it failed because no interrupt
vector is present at the current TIGA interrupt level.

1) Do not attempt to unload the TIGA CD when it is not installed.
2) Do not modify the TIGA interrupt level (by changing the –i option of the TIGA

environment variable) after loading the TIGA CD.

Attempt to unload TIGA driver failed!

An attempt was made to unload the TIGA CD from memory (using the com-
mand tigacd –u from the DOS command line), but it failed because the inter-
rupt vector present at the current TIGA interrupt level does not belong to TIGA.

1) Do not modify the TIGA interrupt level (by changing the –i option of the TIGA
environment variable) after loading the TIGA CD.

2) Ensure that no other driver is using the same interrupt level as TIGA.

Required file TIGA.CFG not found

The file tiga.cfg could not be found in the directory specified by the –m option
of the TIGA environment variable.

1) Ensure that the –m option of the TIGA environment is set to the main TIGA
directory. See Section 2.5 for more information.
2) Ensure that the file tiga.cfg exists in the directory specified by the –m option

of the TIGA envronment variable
3) Ensure that the hidden or read-only file attributes are not set for tiga.cfg.
4) Ensure that the file tiga.cfg is not damaged. If in doubt, refer to your board’s

software installation manual.

Error Msg.

Cause(s)

Fix(es)

Error Msg.

Cause(s)

Fix(es)

Error Msg.

Cause(s)

Fix(es)

E-1

Appendix E

Glossary

A
A_DIR: An MS-DOS environment variable; identifies the directories

searched when you specify include and macro files for the TMS340 fami-
ly assembler.

AI: Application interface. A part of TIGA consisting of a linkable application
library and include files that reference TIGA type and function definitions.
The AI provides the interface between an application and the TIGA com-
munication driver (CD).

ALM: Absolute load module. An extension to the TIGA standard in the form
of TMS340 object code. It is linked to an absolute memory location and
stored in a memory image format. An application can load the ALM to in-
voke custom TMS340 functions.

B
bitblt: Bit-aligned block transfer. Transfer of a rectangular array of pixel in-

formation from one location in a bitmap to another with the potential of
applying 1 of 16 logical operators during the transfer.

bitmap: 1. The digital representation of an image in which bits are mapped
to pixels. 2. A block of memory used to hold raster images in a device-
specific format.

C
CD: Communication driver. This is a terminate-and-stay-resident program

that runs on the PC. It is specific to a particular board and is supplied by
the board manufacturer with the board.The CD contains functions that
are invoked by an application’s calls to the AI to communicate via the PC
bus to the target TMS340 board.

C_DIR: An MS-DOS environment variable; it identifies the directories
searched when you specify include files for the TMS340 C compiler and
object directories for the TMS340 linker.

Glossary

E-2 Glossary

COFF: Common object file format. An implementation of the object file for-
mat of the same name developed by AT&T. The TMS340 family compiler,
assembler, and linker use and produce COFF files.

command buffer: An area of TMS340 memory used by the TIGA interface
buffer data passed by the application and read by the TMS340 proces-
sor.

command number: An identifier of a function to be invoked by an applica-
tion when the function resides on the TMS340 board. The command
number consists of three parts: 1) The function type, which specifies the
format in which the parameters are referenced by the TMS340. 2) The
module number, which acts as an identifier to the group of functions. Ev-
ery DLM receives a module number when it is installed . 3) The function
number, which specifies the specific function within the DLM that is to be
invoked.

communication buffer: See command buffer.

configuration: The hardware setting of the TMS340 board, comprising dis-
play resolution, pixel size, palette size, availability of shared memory, etc.

coprocessor: Microdevice that offloads numeric operations from the main
processor to speed up overall operation. The TMS34082 is a coproces-
sor to the TMS34020. The two devices are tightly coupled together. The
coprocessor adds to the register and instruction capability of the
TMS34020, resulting in improved handling of floating-point arithmetic. In
this manual, the TMS340 processors are occasionally defined as copro-
cessors to the 80x86 PC processor. This is to emphasize that the
TMS340 is a programmable processor and can offload much of the bur-
den of the graphics processing and bitmap manipulation from the host
PC.

core functions: A group of TIGA functions that can always be invoked by
an application after TIGA has been installed, as opposed to the extended
functions that need to be loaded explicitly by an application.

C-packet mode: A method of passing parameters in TIGA from the host to
a function on the TMS340 board. It enables the parameters pushed onto
the host stack to appear on the TMS340 program stack, as if the function
had been invoked locally to the TMS340.

cursor: In TIGA, an icon on the screen. The cursor is generally under mouse
control and is used as a pointing device in a graphics application.

 Glossary

E-3

D
DDK: Driver developer’s kit. A product provided by Texas Instruments to al-

low software developers to write application drivers that interface to the
TIGA-340 standard.

direct mode: A TIGA mode that is the fastest mechanism to transfer param-
eters from the host to a function on the TMS340 board. The parameter
data is passed in raw form to a TIGA communication buffer, and the
TMS340 function receives a pointer to the data.

DLM: Dynamic load module. The DLM is a key part of TIGA’s extensibility.
The module consists of a collection of custom C or assembly routines
that are not otherwise part of TIGA; thus, they are an extension of TIGA’s
functionality. The DLM is loaded by an application so that the custom
TMS340 functions can be invoked by the application. There are two
types of modules: relocatable load modules (RLMs) and absolute load
modules (ALMs).

E
environment or drawing environment: A group of attributes consisting of

drawing origin, pen size, fill pattern, source and destination bitmaps, and
line style.

environment variable: An MS-DOS variable that can have a string as-
signed by an end-user with the MS-DOS SET command. This string can
be interrogated by a program running under MS-DOS.

extended functions: A portion of the TIGA interface functions that can be
invoked only by a TIGA application after they have been explicitly in-
stalled.They consist mostly of drawing functions.

extensibility: A key feature of TIGA that consists of an expandable function
set. An application programmer can write custom TMS340 functions,
which can be installed at runtime and invoked from the host application
in the same manner as the standard TIGA functions.

F
font: A set of characters in predefined format that contain alignment infor-

mation, allowing the text routines to produce a visually correct represen-
tation of a given character string.

frame buffer: A portion of memory used to buffer rasterized data to be out-
put to a CRT display monitor. The contents of the frame buffer are often
referred to as the bitmap of the display and contain the logical pixels cor-
responding to the points on the monitor screen.

Glossary

E-4 Glossary

G
GM: Graphics manager. A TMS340 object file specific to a particular board,

supplied with the board by the manufacturer. It contains a command ex-
ecutive to process commands sent from the application, and a set of
functions. Some of these are integral TIGA functions, and some may be
user extensions.

GSP: Graphics system processor. A TMS340 family-based system with the
processing power and control capabilities necessary to manage high-
performance bitmapped graphics.

H
heap: An area of memory that a program can allocate dynamically.

I
ISR: Interrupt service routine. A routine to service an interrupt on the

TMS340 processor. The most common interrupt is that produced by the
display interrupt, but other interrupts are available from the host proces-
sor and from two external interrupt pins for window violation. ISRs can
be downloaded by an application as part of a DLM .

ISV: Independent software vendor. A company that produces software prod-
ucts. In this guide, ISV refers to a company that writes a software product
to interface directly with TIGA. ISVs include Microsoft, Autodesk, etc.

L
linking loader: A program called TIGALNK that runs under MS-DOS and is

an integral part of TIGA. It loads and links a dynamic load module with
user extensions to TIGA into the TIGA Graphics Manager on the
TMS340.

M
memory management: Also referred to as dynamic memory allocation. It

consists of a group of functions that are used for heap management.

mode: A particular configuration of a board. An individual board may have
several modes, for example: 1024 pixels × 768 lines at 8 bits per pixel,
or 640 pixels × 480 lines at 4 bits per pixel.

MS-DOS : Microsoft disk operating system. A PC-based operating system.
Because MS-DOS and PC-DOS are essentially the same operating sys-
tem, this manual uses the term MS-DOS to refer to both systems.

 Glossary

E-5

N
NMI: Nonmaskable Interrupt.The NMI cannot be disabled; it is usually gen-

erated by a host processor.

O
OEM: Original equipment manufacturer. A hardware manufacturing compa-

ny. In this user’s guide, it refers to companies that manufacture PC
graphics add-in boards with a TMS340 processor on them.

offscreen memory: The part of the frame buffer not being output to a dis-
play. A frame buffer, although typically one contiguous area of linear
memory, can be viewed as a rectangular area with a specific pitch. Each
row of the rectangular area corresponds to a row of pixels on the screen.
If the length is less than the frame buffer pitch, or if there are more lines
in the frame buffer than are displayed on the screen, there will be an area
of the frame buffer not used for display. This area is named offscreen
memory. Offscreen memory does not include the program memory used
to store code and data.

origin: The zero intersection of X and Y axes from which all points are calcu-
lated.

P
page: Some TMS340 boards may have enough memory in their frame buff-

er to hold two complete copies of the bitmap output to the screen. This
technique, sometimes called double buffering, allows one area of the
screen to be displayed (the display page) while another is being updated
(the drawing page). When the drawing is completed, the drawing and dis-
play pages are interchanged (page flipping). The flip is synchronized to
the vertical blank time to ensure a flicker-free display. This technique is
useful for producing animation sequences.

palette: A digital-lookup table used in a computer graphics display for trans-
lating data from the bitmap into the pixel values shown on the display.

pattern or fill pattern: A design that some TIGA graphics output functions
use to fill an area with a pattern rather than a solid color. The pattern is
specified as a 1-bit-per-pixel map. When the pattern is drawn, 0s in the
bitmap are drawn in the current background color, and 1s are drawn in
the current foreground color.

pen or drawing pen: A software drafting tool that some TIGA graphics func-
tions use to draw a pixel outline on the screen. The application can select
the width and the height of the pen. The area covered by the pen can be
solid or pattern-filled.

Glossary

E-6 Glossary

pixel processing: A logical or arithmetic combination of two pixel values
(source and destination).

PixBlt: Pixelblock transfer. Operations on arrays of pixels in which each pix-
el is represented by one or more bits. PixBlt operations are a superset
of bitblt operations and include not only commonly used logical opera-
tions, but also integer arithmetic and other multibit operations.

plane: (Also bit plane or color plane). A bitmap layer in a display device with
multiple bits per pixel. If the pixel size is n bits and the bits in each pixel
are numbered 0 to n–1, plane 0 is made up of bits 0 from all the pixels,
and plane n–1 is made up of bits numbered n–1 from all the pixels. A lay-
ered graphics display allows planes or groups of planes to be manipu-
lated independently of the other planes.

R
raster-op: Raster operation. See pixel processing.

RLM: Relocatable load module. An extension to the TIGA standard in the
form of TMS340 object code. The RLM file is in COFF file format. It is
loaded by an application so that the application can invoke custom
TMS340 functions.

S
SDB: Software development board. A PC-compatible board manufactured

by Texas Instruments. Two SDBs are produced by Texas Instruments:
a TMS34010-based board and a TMS34020-based board.

SDK: Software developer’s kit. A Texas Instruments product that allows soft-
ware developers to write TMS340 code. The SDK may be used to devel-
op a TIGA extension, but it is equally applicable for programmers who
wish to develop stand-alone TMS340 applications.

shift-register transfer: A transfer between RAM storage and the internal
shift register in a video RAM.

SPK: Software porting kit. A Texas Instruments product that allows man-
ufacturers of TMS340-based boards to port TIGA to their board. It con-
tains all TIGA software source code.

 Glossary

E-7

swizzle: The reversal of every bit in a byte. This is required to convert from
big-endian processors (where the smallest numbered bit in a word is
most significant) to little-endian processors (where the smallest num-
bered bit in a word is least significant).

symbol table: A file containing the symbol names of all the variables and
functions on the TMS340 side of TIGA. The symbol table is used by the
linking loader when it is downloading an RLM to resolve references to
those symbols. This enables the functions in the RLM to call TIGA func-
tions that are resident on the TMS340 board.

T

TDB: TIGA development board. A TMS34010-based graphics board avail-
able from Texas Instruments.

TIGA: Texas Instruments Graphics Architecture. A software interface stan-
dard that allows a host processor to communicate with the TMS340
graphics processors that are typically resident on an add-in board. The
current implementation of TIGA is for the PC market and interfaces the
80x86 processor running under MS-DOS with the TMS340.

TIGACD: The filename of the executable program containing the communi-
cation driver that you run to install TIGA on your system.

TIGALNK: See linking loader.

time-out: The time allowed for a command to complete. An application in-
vokes a TIGA TMS340 function by placing a command number and ap-
propriate parameters in one of several command buffers. After loading
several commands, the command buffers may be full; the host must wait
until the TMS340 finishes the current command and frees up a buffer.
Also, if the function invoked needs to return data back to the application,
the application must wait until the TMS340 completes the command. If
the application waits longer than a specified time, a time-out warning
message is displayed.

TMS340: A family of graphics system processors and peripherals manufac-
tured by Texas Instruments.

TMS34010: First-generation graphics processor manufactured by Texas In-
struments.

TMS34020: Second-generation graphics processor manufactured by Texas
Instruments.

TMS34070: First-generation color palette manufactured by Texas Instru-
ments.

Glossary

E-8 Glossary

TMS34082: Floating-point unit manufactured by Texas Instruments; copro-
cessor to the TMS34020.

transparency: The attribute of effective invisibility in a pixel. When a trans-
parent pixel is written to the screen, it does not alter that portion of the
screen it is written to. For example, in a pixel array containing the pattern
for the letter A, all pixels surrounding the A pattern could be given a spe-
cial value indicating that they are transparent. When the array is written
to the screen, the A pattern, but not the pixels in the rectangle containing
it, would be invisible.

trap vector: A specific 32-bit address in TMS340 memory that contains the
address of an interrupt service routine.

TSR: Terminate and stay resident. A type of program that runs under MS-
DOS. When it terminates, this type of program leaves a portion of itself
in memory.

W
window: A specified rectangular area of virtual space on the display.

workspace: An area of memory that is equal in size to a 1-bit-per-pixel re-
presentation of the current display resolution. Polygon fill functions use
the workspace as a temporary drawing area before drawing on the
screen. The workspace can reside either in offscreen memory or in heap.

Index-1

Index

A
absolute load module, ALM, 4-14, 4-81, 8-3, 8-7,

8-45, 8-47
installation, 8-7

addr, A-13
AI libraries, development tools, 3-4
application interface, AI, 1-3, 2-5, 2-10
application program, 4-29, 4-32, 4-89, 5-84
area-fill, pattern, 4-101, 5-56, 5-57, 5-59, 5-61, 5-62,

5-75, 5-76, 5-82, 5-101, 6-12
ascent, 7-2
attributes, 8-29
autoexec modification, 2-7
aux_command, 3-10

B
b, A-14
back-face test, 5-25
background color, 8-29
base line, 7-2
bitblt, 3-14
block font, 4-140, 5-86
Bresenham’s algorithm, 5-11

C
C-packet, 8-9, 8-10, 8-12, 8-16
callback functions, 8-31
cd_is_alive, 2-15, 4-57
cd_is_alive replacement, 2-13
changes in TIGA 2.0, 2-13
character height, 7-3
character offset, 7-4

character origin, 7-3
character rectangle, 7-3
character width, 7-3
clear functions, 3-10
clear_frame_buffer, 3-11
clear_page, 3-11
clear_screen, 3-11
clipping, 5-73, 5-75, 5-79, 5-84, 5-99

window, 6-18
cltiga batch file, 2-10
COFF loader, 4-57
color, A-5
comm_buff_size, A-3
command buffer, 1-4, 3-13, 8-10, 8-12, 8-15, 8-16
command number, 1-4, 4-85, 8-4, 8-9, 8-10, 8-12
communication driver, CD, 1-3, 2-8, 2-9, 3-13, 8-10,

8-12, 8-15, 8-45
communication functions, 1-3, 3-18
compatibility functions, C-14
CONFIG structure, 3-10, 3-13, 3-16, 4-61, 8-12,

8-15, A-3
coordinate

pixel, 4-12, 4-16
screen, 4-101
x-y, 4-12, 4-45, 4-97, 4-122, 4-133

cop2gsp, 3-18, 4-11
coprocessor, 3-18, 4-11, 4-52
core functions, reserved symbols, B-3
cp_alt, 8-12, 8-14
cp_cmd, 8-12, 8-14
cp_ret, 8-12
cpw, 3-11
create_alm, 3-18, 4-14, 4-112, 8-2, 8-3, 8-7, 8-8,

8-45
create_esym, 3-18, 8-45
current_mode, A-4

Index

Index-2

cursor, 4-26, 4-27, 4-61, 4-103, 4-108, 4-109, 8-36,
A-5

CURSOR structure, A-5
CURSOR structure change, 2-13
CURSOR structure, version 1.1, 2-14
CURSOR structure, version 2.0, 2-14
cvxyl, 3-16

D
data, A-6, A-15
debugger functions, C-2
decode_rect, 3-14
delete_font, 3-15
depth, A-15
descent, 7-2
destination bit map, 5-4
development tools, 3-2
device_rev, A-4
direct mode, 8-9, 8-10, 8-16, 8-28
disp_hres, A-9
disp_pitch, A-9
disp_psize, A-9
disp_vres, A-9
display_mem_end, A-4
display_mem_start, A-4
dm_cmd, 8-17
dm_ipoly, 8-15, 8-25
dm_palt, 8-21
dm_pcmd, 8-22
dm_pget, 8-20
dm_poly, 8-15, 8-22
dm_pret, 8-22
dm_psnd, 8-19
dm_pstr, 8-21
dm_ptrx, 8-21
dm_ret, 8-18
documentation files, 2-5
double buffering, 4-92
downward compatibility, 2-13
draw_line, 3-12, 6-3, 6-8
draw_oval, 3-12, 6-3, 6-8
draw_ovalarc, 3-12, 6-3, 6-8
draw_piearc, 3-12, 6-3, 6-8

draw_point, 3-12, 6-3
draw_polyline, 3-12, 3-14, 6-3, 6-8
draw_rect, 3-12, 6-3, 6-8
drawing origin, 4-27, 4-109, A-7
driver developer’s kit, DDK, 2-2
driver development package, DDP

subdirectories, 2-5
system requirements, 2-3

dstbm, A-7
dynamic load module, DLM, 8-2, 8-9

E
elliptical arc, 5-13
encode_rect, 3-14
ENVIRONMENT structure, 3-11, A-7
environment variable, 2-7, 2-8, 4-14, 8-6, 8-45

–i option, 2-8
–l option, 2-8
–m option, 2-8

extended function development, 3-5
extended functions, reserved symbols, B-6
extensibility, 1-2, 1-3, 1-5, 4-14, 4-20, 4-30, 4-61,

4-81, 4-83, 4-112, 8-1
extensibility functions, 3-18

F
field_extract, 3-18
field_insert, 3-18
fill_convex, 3-12, 3-14, 6-3
fill_oval, 3-12, 6-3
fill_piearc, 3-12, 6-3
fill_polygon, 3-12, 3-14, 6-3
fill_rect, 3-12, 6-3
flush_esym, 3-18
flush_extended, 3-18, 4-20
flush_module, 3-18
font, 2-11

alphabetical listing, 7-16
available, 7-14
bit-mapped parameters, 7-2
block, 7-11
data structure, 7-5
database summary, 7-14
header information, 7-5
height, 7-3

Index

Index-3

installing, 7-15
location table, 7-10
names, 7-15
offset/width, 7-10
pattern table, 7-8
proportionally spaced, 4-13, 7-11
size, 4-80
table, 5-9, 5-41, 5-77, 7-12
TIGA-compatible, 2-5

font structure
ascent, 7-7
avgwide, 7-7
charhigh, 7-7
charwide, 7-7
default, 7-6
descent, 7-7
facename, 7-6
first, 7-6
last, 7-6
leading, 7-7
length, 7-6
magic, 7-5
maxkern, 7-6
maxwide, 7-6
oLocTbl, 7-8
oOwTbl, 7-8
oPatnTbl, 7-7
rowpitch, 7-7

FONTINFO structure, A-8
fontptr, A-8
foreground color, 8-29
frame thickness, 5-34
frame_oval, 3-13, 6-3
frame_rect, 3-13, 6-3
function argument, 8-13
function_implemented, 3-10, 4-11, 4-22

G
g, A-14
get_colors, 3-11
get_config, 3-10, 4-61, 8-12, 8-15
get_curs_state, 3-15, 4-26
get_curs_xy, 3-15, 4-27
get_env, 3-11
get_fontinfo, 3-15
get_isr_priorities, 3-18, 4-30, 4-81, 4-83, 4-112
get_memseg, C-3

get_modeinfo, 3-10
get_msg, C-4
get_nearest_color, 3-12
get_offscreen_memory, 3-17, A-13
get_palet, 3-12
get_palet_entry, 3-12
get_pixel, 3-16
get_pmask, 3-11
get_ppop, 3-11
get_text_xy, 3-15
get_textattr, 3-15
get_transp, 3-11
get_vector, 3-19
get_videomode, 3-10, 4-48, 4-126
get_windowing, 3-11
get_wksp, 3-16
get_xstate, C-5
gm_idlefunc, 3-10
graphics attributes control functions, 3-11
graphics cursor functions, 3-15
graphics drawing functions, 3-12
graphics library, 2-11
graphics library functions, 4-82, 8-10
graphics manager, GM, 1-4, 2-9, 3-13, 4-57, 4-81,

4-83, 8-13, 8-28, 8-30, 8-47
graphics utility functions, 3-16
gsp_calloc, 3-17, 4-56
gsp_execute, 3-10, 4-57, 4-88
gsp_free, 3-17, 4-58
gsp_malloc, 3-17, 4-59
gsp_maxheap, 3-17, 4-60
gsp_minit, 3-17, 4-61
gsp_realloc, 3-17, 4-62
gsp2cop, 3-18, 4-22, 4-52
gsp2gsp, 3-18
gsp2host, 3-18, 4-54
gsp2hostxy, 3-18, 4-55
gsph_alloc, 3-17
gsph_calloc, 3-17
gsph_compact, 3-17
gsph_deref, 3-17
gsph_falloc, 3-17
gsph_fcalloc, 3-17
gsph_findhandle, 3-17
gsph_findmtype, 3-17

Index

Index-4

gsph_free, 3-17

gsph_init, 3-17

gsph_maxheap, 3-17

gsph_memtype, 3-17

gsph_realloc, 3-17

gsph_totalfree, 3-17

H
handle-based functions, 3-16

header, 5-80, 5-101

height, A-5, A-15

host-PC development tools, 3-2

host-PC include files, 3-3

host-PC libraries, 3-3

host2gsp, 3-18

host2gspxy, 3-18, 4-78

hot_x, A-5

hot_y, A-5

I
i, A-14

I/O functions, 3-18

id, A-8

image width, 7-4

in_font, 3-15

include files, 2-5, 2-7, 3-3, 3-5, 8-10, 8-13, 8-28, A-1

include files for PC development, 3-3

INIT_GM, 4-127

init_palet, 3-12, 4-22

init_text, 3-15

initialization, 2-9, 3-6, 4-61, 8-47

initialization functions, 3-10

initialization/termination, 2-13

install_alm, 3-18, 4-30, 4-81, 4-112, 8-8, 8-10, 8-45

install_font, 3-15

install_primitives, 3-10, 3-18, 4-82, 8-9

install_rlm, 3-18, 4-30, 4-83, 4-112, 8-7, 8-10, 8-45

install_usererror, 3-10, 4-85, 4-123, 4-127

installation, 2-4, 8-6, 8-36

integral data types, A-2

intercharacter spacing, 5-38, 5-86, 5-87

interrupt, 2-8, 3-18, 4-30, 4-81, 4-83, 4-112, 8-2, 8-4,
8-28, 8-30

interrupt handler functions, 3-19

L
leading, 7-3
leftmost one, 4-87

libraries, 3-5
line-style, pattern, 4-101, 5-88, 5-89, 5-90, 5-92,

5-93, 5-94, 5-95, 6-13
linking loader, 8-45

options, 8-45

lmo, 3-16
loadcoff, 3-10, 4-57, 4-88

M
magic, 5-22
mask_color, A-6

mask_rop, A-5
math/graphics, 2-10
memory management, 8-3, A-3

handle-based functions, 3-16
pointer-based functions, 3-17

mg2tiga utility, 2-11
mode, A-4

mode arguments, 4-126
AI_8514, 4-126
CGA, 4-126
EGA, 4-126
HERCULES, 4-126
MDA, 4-126
OFF_MODE, 4-126
PREVIOUS, 4-126
tiga, 4-126
VGA, 4-126

MODEINFO structure, A-9

N
new functions, 2-15
NO_ENABLE, 4-127

num_modes, A-4
num_offscrn_areas, A-10
num_pages, A-10

Index

Index-5

O
oem_init, C-6
OFFSCREEN structure, A-13
offscreen workspace, 2-15
operations on pixels, 6-15
origin

character, 5-87
drawing, 4-12, 4-16, 4-45, 4-97, 4-101, 4-122,

4-133, 5-57, 5-59, 5-62, 5-65, 5-67, 5-70,
5-72, 5-73, 5-75, 5-78, 5-81, 5-88, 5-90, 5-92,
5-94, 5-98

outcode, 4-12

P
packet header, 8-13
page flip, 4-89
page_busy, 3-19
page_flip, 3-19
PALET structure, A-14
palet_gun_depth, A-9, A-10
palet_inset, A-10
palet_size, A-10
palette, 4-7, 4-8, 4-34, 4-38, 4-40, 4-79, 4-101,

4-115, 4-116, 4-117, A-14
palette functions, 3-12
patn, 6-12
patnfill_convex, 3-13, 3-14, 6-2, 6-6
patnfill_oval, 3-13, 6-2, 6-6
patnfill_piearc, 3-13, 6-2, 6-6
patnfill_polygon, 3-13, 3-14, 6-2, 6-6
patnfill_rect, 3-13, 6-2
patnframe_oval, 3-13, 6-3
patnframe_rect, 3-13, 6-3
patnpen_line, 3-13, 6-2
patnpen_ovalarc, 3-13, 6-3
patnpen_piearc, 3-13, 6-3
patnpen_point, 6-2
patnpen_polyline, 3-13, 3-14, 6-2
pattern, 3-11, 3-13, 5-81, 5-83, 6-3, A-15

area-fill, 4-101, 5-56, 5-57, 5-59, 5-61, 5-62,
5-75, 5-76, 5-82, 5-101

line-style, 4-101, 5-88, 5-89, 5-90, 5-92, 5-93,
5-94, 5-95

PATTERN structure, A-15
peek_breg, 3-16
pen, 3-13, 4-101, 5-57, 5-59, 5-61, 5-62, 5-64, 5-65,

5-67, 5-69, 5-70, 5-83, 6-2, 6-10, A-7
pen_line, 3-13, 6-2
pen_ovalarc, 3-13, 6-2
pen_piearc, 3-13, 6-2
pen_point, 3-13, 6-2
pen_polyline, 3-13, 3-14, 6-2
pie chart, 5-28
pitch, 5-79, 5-80, 5-84, 5-85, A-5
pixel array function, 3-14
pixel processing, 4-103
pixel_mask, A-9
pixel-processing operation, 4-101, 4-138, 4-139,

5-4, 5-100, 6-16
pixel-size independence, 6-19
plane mask, 4-42, 4-46, 4-101, 4-118, 4-138, 4-139,

5-4, 6-16
pointer-based functions, 3-17
poke_breg, 3-16
poly drawing functions, 3-13, 6-3, 8-15
program_mem_end, A-4
program_mem_start, A-4
proportionally spaced, 4-80, 5-86, 5-87
proprietary extension, 4-129
put_pixel, 3-13

R
r, A-14
read_hstaddr, C-15
read_hstadrh, C-16
read_hstadrl, C-17
read_hstctl, C-18
read_hstdata, C-19
rectangular drawing pen, 6-10
register usage, 8-29
relocatable load module, RLM, 4-14, 4-83, 8-2, 8-5,

8-46, 8-47
installation, 8-6

rightmost one, 4-95
rmo, 3-16
rstr_commstate, C-7
run-length encoding, 5-21

Index

Index-6

S
sample TIGA application, 3-6
save_commstate, C-8
screen_high, A-9
seed fill, 5-73
seed_fill, 3-13
seed_patnfill, 3-13
select_font, 3-15
set_bcolor, 3-11
set_clip_rect, 3-11
set_colors, 3-11
set_config, 2-14, 3-10, A-3

return value, 2-14
set_curs_shape, 3-15, 4-61, 4-103, A-5
set_curs_state, 3-15, 4-108
set_curs_xy, 3-15, 4-103, 4-109
set_cursattr, 3-15
set_draw_origin, 3-11, A-7
set_dstbm, 3-14, A-7
set_fcolor, 3-11
set_interrupt, 3-19, 4-112, 8-37
set_memseg, C-9
set_module_state, 3-18
set_msg, C-10
set_palet, 3-12, 4-22
set_palet_entry, 3-12, 4-22
set_patn, 3-11, 6-12, A-15
set_pensize, 3-11
set_pmask, 3-11
set_ppop, 3-11
set_srcbm, 3-14, A-7
set_text_xy, 3-15
set_textattr, 3-15
set_timeout, 3-10, 4-123
set_transp, 3-11, 4-22
set_vector, 3-19
set_videomode, 2-9, 3-10, 4-48, 4-126
set_videomode replacement, 2-13
set_windowing, 3-11
set_wksp, 3-16, 4-61
set_xstate, C-11
setup_hostcmd, 3-10
shape_rop, A-5

share_gsp_addr, A-4
share_host_addr, A-4
share_mem_size, A-4
silicon_capability, A-10
software developer’s kit, SDK, 2-2
software development package, SDP, subdirecto-

ries, 2-5
software porting kit, SPK, 2-2
software porting package, SPP

subdirectories, 2-5
system requirements, 2-3

source bit map, 5-4
srcbm, A-7
stack_size, 4-61, A-4
style argument

CLR_SCREEN, 4-127
INIT, 4-127
INIT_GLOBALS, 4-126
NO_INIT, 4-126

styled_line, 3-13
styled_oval, 3-13
styled_ovalarc, 3-13
styled_piearc, 3-13
stylemask, A-7
supported development tools, 3-2
swap_bm, 3-14
sym_flush, 3-18
symbol table, 3-18, 8-46, 8-47
synchronize, 3-10, 4-132
sys_flags, 4-11, 4-52, A-3
system requirements, 2-3

T
termination, 3-6
text

alignment, 5-38, 5-87
functions, 2-11, 3-15

text attributes
alignment, 7-13
intercharacter gaps, 7-13
intercharacter spacing, 7-13

text_out, 3-15
text_outp, 3-15
text_width, 3-15
text-related functions, 7-2
TIGA, 5-22

Index

Index-7

TIGA 1.1, 2-13
tiga_busy, 3-10
tiga_set, 3-10
tigacd, 2-9
TIGAEXT section, 4-81, 4-83, 8-4, 8-5, 8-10, 8-12,

8-45
TIGAISR section, 8-4, 8-36, 8-45
TIGALNK, 8-45

options, 8-45
TMS340 development products, 2-2
TMS340 development tools, 3-2
TMS340 function library, 2-11
TMS340 include files and libraries, 3-5
TMS34082 coprocessor, 4-52
transp_off, 3-11
transp_on, 3-11
transparency, 4-22, 4-42, 4-46, 4-101, 4-118, 4-124,

4-138, 4-139, 5-4, 5-100, 6-15, 8-29
trap vector, 4-47, 8-36

U
unsupported functions, 2-15
utilities, 2-5, 2-10, 3-16

V
version_number, A-3

W
wait_scan, 3-19
width, A-5, A-15
windowing modes, 4-49

default, 4-49
wksp_addr, A-10
wksp_pitch, A-10
write_hstaddr, C-20
write_hstadrh, C-21
write_hstadrl, C-22
write_hstctl, C-23
write_hstdata, C-24

X
x-y coordinates, 4-13
xext, A-13
xyorigin, A-7

Y
yext, A-13

Z
zoom, 5-98
zoom_rect, 3-14

Index

Index-8

