
~ennory ~anagennent
Applications Handbook

Contributors

VLSI Logic Applications Engineering
VLSI Marketing Department

TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. TI advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

TI warrants performance of its semiconductor products to current
specifications in accordance with TI's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
such testing necessary to support this warranty. Unless mandated
by government requirements, specific testing of all parameters of each
device is not necessarily performed.

In the absence of written agreement to the contrary, TI assumes no
liability for TI applications assistance, customer's product design, or
infringement of patents or copyrights of third parties by or arising from
use of semiconductor devices described herein. Nor does TI warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intellectual property right
of TI covering or relating to any combination, machine, or process in
which such semiconductor devices might be or are used.

Copyright © 1987, Texas Instruments Incorporated

Contents

Section

1 Introduction

2 Memory Timing Controllers .. .
2. 1 Introduction .. .
2.2 Memory Timing Controller Using the 'ALS2967 and 'ALS2968

2.2.1 Functional Description
2.2.2 Typical Implementation
2.2.3 Timing Controller Details
2.2.4 Summary .. .
2.2.5 ABELTM and CUPLTM Files

2.3 Memory Timing Controller Using the 'ALS6301 and 'ALS6302
2.3.1 Functional Description
2.3.2 Typical Implementation
2.3.3 Timing Controller Details
2.3.4 Refresh Timer Details
2.3.5 Programmable Logic Designs
2.3.6 Summary .. .
2.3.7 ABELTM Files
2.3.8 CUPL TM Files

2.4 THCT4502B/MC68000L8 Interface
2.4.1 Introduction .. .
2.4.2 ALE-to-Clock Relationship
2.4.3 DRAM Refresh Time
2.4.4 DRAM Precharge Time
2.4.5 Row Address Setup and Hold Time
2.4.6 Data Valid to Write Enable Setup Time
2.4.7 Read Access Time from CAS
2.4.8 Other Considerations
2.4.9 Summary .. .

2.5 Programmer and Software Manufacturer Addresses
2.5.1 Programmer Manufacturer Addresses
2.5.2 Software Manufacturer Addresses

3 Cache Memory Systems
3.1 Introduction .. .
3.2 Memory Systems with Cache
3.3 Cache Memory Systems Using' ACT2151 and' ACT2152

3.3.1 Set-Associative Cache Address Matching
3.3.2 Cycle Time Improvement
3.3.3 Cache Memory Configuration
3.3.4 Summary .. .

3.4 Article Reprints .. .

ABEL is a trademark of DATA liD
CUPl is a trademark of Personal CAD Systems, Inc.

Page

1-1

2-1
2-1
2-1
2-1
2-4
2-5
2-8
2-9
2-14
2-14
2-17
2-18
2-21
2-22
2-22
2-23
2-28
2-34
2-34
2-36
2-36
2-37
2-37
2-37
2-38
2-38
2-39
2-39
2-39
2-40

3-1
3-1
3-2
3-3
3-3
3-3
3-5
3-8
3-8

iii

Section

4

5

6

iv

Error Detection and Correction (EDAC)
4.1 Use of an Error Detection and Correction (EDAC) Device

4.1.1 Introduction .. .
4.1.2 Error Types and Sources in Dynamic Memories
4.1.3 Solutions to Boost System Reliability
4.1.4 EDAC Operation
4.1.5 Texas Instruments EDAC Family
4.1.6 Summary .. .

4.2 Error Detection and Correction Using 'ALS632B, 'ALS633,
'ALS634A, and 'ALS635

4.2.1 Introduction .. .
4.2.2 Operational Description

First-In First-Out Memories (FIFO)
5.1 High-Speed Bus Coupling Considerations-FIFO Memory Buffers

5.1.1 Introduction .. .
5.1.2 Toggle Fall-Through Architecture
5.1.3 Zero Fall-Through Architecture
5. 1 .4 Buffering Design Considerations
5.1.5 Synchronization Design Considerations
5.1.6 Summary .. .

BiCMOS .. .

Page

4-1
4-1
4-1
4-1
4-1
4-2
4-5
4-7

4-8
4-8
4-10

5-1
5-1
5-1
5-1
5-2
5-3
5-4
5-5

6-1
6.1 BiCMOS Memory Drivers Boost Performance. .. 6-1

6.1.1 Reducing Undershoot Problems 6-1
6.1.2 BiCMOS Drivers Match MOS Memory Needs 6-2
6.1.3 BiCMOS Lowers Power by 50% or More 6-2
6.1.4 Less Undershoot Means Higher Reliability. .. 6-3
6.1.5 How Do I Get More Information. .. 6-3

6.2 BiCMOS Bus Interface ... 6-4
6.2. 1 Abstract .. 6-4
6.2.2 Introduction. .. 6-4
6.2.3 Reduction of Supply Current Demand Without

Sacrificing Performance 6-4
6.2.4 Combinational Bipolar and CMOS Optimal Process Solution. 6-6
6.2.5 Variety of Functional Options in Two Package Configurations. 6-8
6.2.6 Summary. .. 6-8

Figure

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15

3-1
3-2
3-3
3-4
3-5
3-6
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
5-1
5-2
5-3
5-4
6-1
6-2
6-3
6-4

6-5
6-6
6-7

List of Illustrations

Title

'ALS2967, 'ALS2968 Functional Block Diagram
'ALS2967, 'ALS2968 Timing Controller Interface
8086 Access Cycle .. .
Refreshl Access Cycle ..
'ALS2967, 'ALS2968 Memory Timing Controller Flow Chart
Refresh/Memory Timing Controller
'ALS6301, 'ALS6302 Functional Block Diagram
'ALS6301, 'ALS6302 Timing Controller Interface
68000 Access Cycle. ..
Refresh/Access Cycle ..
'ALS6301, 'ALS6302 Memory Timing Controller Flow Chart
Refresh/Memory Timing Controller
THCT 4502B/MC68000L8 Interface Block Diagram
THCT 4502B/MC68000L8 Read Cycle Timing Diagram
THCT 4502B/MC68000L8 Write Access, Refresh,

and Read Access Timing Diagram
Memory Size vs Access Time and Cost Per Bit
Typical Memory System with Cache
Set-Associative Cache Address Matching
Cache Memory Configuration (Block Size = 1)
Cache Memory Configuration (Block Size = 4)
Cache Memory Configuration, Dual Cache (K = 2)
Typical 'AS632 System .. .
Memory Management System Using Scrubbing
'AS632 Logic Diagram
Mechanical Data .. .
Read-Flag-Correct Timing Diagram
Read-Modify-Write Operation
Diagnostic Mode Timing Diagram
16-Bit System Using Conventional 1 6-Bit EDAC
16-Bit System Using 32-Bit EDAC
Toggle Fall-Through FIFO (M Words by N Bits)
Zero Fall-Through FIFO (M Words by N Bits)
Buffering Application
Throughput Curve for 64-Word, 30-MHz FIFO
Effect of On-Chip Series Output Resistors
4M-Word X 32-Bit Memory System
Initial Undershoot Comparison of SN74BCT2828 vs AM29828
SN74BCT29861 and AM29861 Required Off-State Current vs

Average Propagation Delay .. .
Bus Network.
BiCMOS Process .. .
BiCMOS Three-State Gate Schematic

Page

2-2
2-4
2-5
2-6
2-7
2-8
2-15
2-17
2-18
2-19
2-20
2-21
2-34
2-35

2-35
3-1
3-2
3-3
3-5
3-6
3-7
4-3
4-5
4-6
4-9
4-10
4-12
4-13
4-13
4-14
5-2
5-3
5-3
5-5
6-1
6-2
6-3

6-5
6-6
6-6
6-7

v

Table
2-1
2-2
2-3
4-1
4-2
4-3
4-4
4-5
4-6
5-1
6-1

vi

List of Tables

Title
'ALS2967, 'ALS2968 Mode Control Function Table
'ALS6301, 'ALS6302 Mode Control Function Table
Refresh Clock Frequency Input Pin Strap Configuration
Chip Densities vs Soft Error Rates
System MTBF Increases with an EDAC
Hamming Code Parity Algorithm
SN74AS632 Syndrome Decoding
Texas Instruments Error Detection and Correction Devices
Pin Function for 'ALS632B, 'ALS633, 'ALS634A, and 'ALS635
FIFO Applications
SN74BCT29861/AM29861 ICC Comparison

Page

2-3
2-16
2-36
4-1
4-2
4-2
4-4
4-7
4-8
5-1
6-5

1 Introduction
Texas Instruments (TI) is pleased to make available this collection of application reports
and application briefs on several of our new single-chip memory management products.
Designed to help you attain your systems goals, these products can help you achieve
minimal memory access times for maximum system throughput. While there may be
other alternatives available, few can provide speed enhancement while reducing both
design effort and component cost. Many of the new memory management products
from TI accelerate the performance of VME, VERSAbus®, MUL TIBUS®, and PC Bus
architectures even further.

Single chip solutions to complex functions such as cache tag control, DRAM address
multiplexing and refresh, and soft error correction are all part of the TI memory
management family of products. This family offers many benefits such as greater
ease of use, improved system performance, and a reduction in cost over discrete logic
options.

This document contains information on each of the new memory management
products from TI. For example, the cache tag application report details how you can
store frequently accessed data and instructions in a few high speed SRAMs and then
"tag" them by using the TI family of CMOS cache controllers to achieve high speed
system throughput.

High-performance DRAM controllers are discussed in "Memory Timing Controllers
Using the 'ALS2967/'ALS2968 & 'ALS6301 /'ALS6302." The TI SN74ALS6301
DRAM controller incorporates address multiplexing and refresh circuitry in a single
chip. The wide address capability and IMPACTTM speed performance of the
SN74ALS6301 allow it to support the newer 1 M-bit DRAM chips.

Maintaining data integrity in larger memory arrays can be accomplished using error
detection and correction circuits. The application report on the TI SN74AS632 32-bit
Error Detection and Correction (EDAC) circuit describes how the 'AS632 can detect
both hard and soft errors in memory arrays and guarantee system reliability by
correcting these errors while avoiding processor wait states.

Every memory management function from TI uses a "universal architecture" design
to allow for easy compatibility with any microprocessor, keeping design effort to a
minimum. These single-chip solutions are designed to be especially easy to use with
Motorola VME and VERSAbus® architectures as well as Intel MUL TIBUS®, and PC
Bus based systems.

IMPACT is a trademark of Texas Instruments
VERSAbus is a registered trademark of Motorola
MUL TIBUS is a registered trademark of Intel Corporation

1-1

1-2

2 Memory Timing Controllers

2.1 Introduction

As processor and memory speeds increase, so do dynamic memory controller
requirements. Typical processor speeds today range from 8 to 10 MHz. This increase
in processor speed has created a need for faster memories, as well as faster memory
timing controllers. The 'ALS2967, 'ALS2968, 'ALS6301, and 'ALS6302 are Memory
Timing Controllers that are designed to meet the need of high performance memory
systems.

In addition to offering better system performance, a faster memory controller typically
allows the designer to use slower-rated dynamic random access memories (DRAMs).
This results in significant cost savings because of the large number of DRAMs required.
In other words, a faster dynamic memory controller can reduce overall dynamic
memory costs.

The 'ALS2967, 'ALS2968, 'ALS6301, and 'ALS6302 feature address multiplexing,
memory bank selection, and an address latch for systems which multiplex both data
and address on the same bus. A row counter is provided for normal refresh operations.
Column and bank counters are available for systems which use memory scrubbing.

This Section describes -the functional operation of the 'ALS2967, 'ALS2968,
'ALS6301, and 'ALS6302 and shows how they can be interfaced to a typical
processor. For illustration purposes, a simple timing controller generated from
programmable logic is used to interface both the 'ALS2967 and the 'ALS6301 to the
microprocessor. The 'ALS2967 is interfaced with an Intel 8086 and the 'ALS6301
is interfaced with a Motorola 68000.

This Section also presents a circuit configuration which interfaces the MC68000 to
DRAM memory using the THCT45028 dynamic RAM Controller. The memory array
is organized as 4 banks of 256K memory (TMS4256/4257) providing a 1 M byte deep
system architecture.

2.2 Memory Timing Controllers Using the SN54/74ALS2967, SN54/74ALS2968

2.2. 1 Functional Description

The 'ALS2967 and 'ALS2968 are capable of controlling 16K, 64K, and 256K DRAMs.
The two devices typically operate in a read/write or a refresh mode. During normal
read/write operations, the row and column addresses are multiplexed to the DRAM,
and the corresponding RAS and CAS signals are activated to strobe the addresses
into memory. In the refresh mode, the two counters cycle through the refresh
addresses. If memory scrubbing is not being implemented, only the row counter is
used. When memory scrubbing is being performed, both the row and column counters
are used to perform read-modify-write cycles using an error detection and correction
circuit such as the 'ALS632A. In this mode, all RAS outputs will be active (low) while
only one CAS output is active at a time.

Two device types are offered to help simplify interfacing with the system dynamic
timing controller. The 'ALS2967 offers active-low row address strobe input (RASI)
and column address strobe input (CASI) signals, while the 'ALS2968 offers active­
high RASI and CASI inputs. Figure 2-1 is a functional block diagram of the two devices.

2-1

2-2

OE
MCO

MC1

MSEL

CS

RASI

LE

AO
A1

A2

A3

A4

A5
A6

A7

A8

A9
A10

A11

A12

A13

A14

A15

A16

A17

SELO

SEL1

CAS I

MUX
(37)

-'"" EN
(26) '"

O} 0 (25) G-
1 3

(2)
G4

(1) ,..,
G5 - ., r

9X
COUNTER 9

0/1.4 CTR20 ..
9

J f'
O~ 1,4

9
1~ 2.4.5

21 ~ 2,4.5 V ~
I
U !~ [ROW]

: I ~ ~ 2CT = 0

~ I ~
./

RAS DECODE
9

,.., G1 CT < / DMUX
10

11 ./
-0 ./ EN

12
~ 13 XIV

14 ~
[COL] ./ 0- V4

15 1
16 / 4~ 41l 1 - ~V4

2 r< ~1+/C2 17 3- V4

J~)-c{:>- -4 18
BCO

O} 10 [BANK] BC1 1 G 13 • ALS2967 ONL V 19 ~ 10.4.5 'V ~
"

(27)
11.4.5"'1 ~

12,4.5 V ~ ------ G5
• ALS2968 ONL V LATCHES

.r. 13,4.5"'1 ~ (14) '"
~1

9X
(3)

[ROW]
(5)

(7)

(9) " (11)
9

(15)
9"",,-

10 CAS DECODE J
(17)

DMUX (19) ./ .r. EN (21) ./ '"
(4)

XIV
(6) 9X 0 ~G4
(8) [COLUMN]

1 - t-G5
(10) 1

2- ~G6
(12)

9 9 3 ~G4 (16) 10 2 .. ,
(18) ../
(20)

O} 5Z 1Q
J

(22) 1 13

[BANK]
(23)

10
0}6G ~g (24)

10 1 (10/20.4)7"'1 f"\.. -
(11/21.4)7"'1 ~

J.4!l. - - - ~~~?~7",,:>~V_ - - -<C>---T G7 (12/22.4)7"'1 P
-0 (13/23.4)7 V P

(48) • ALS2968 ONL V I
-------------------~

Figure 2-1. 'ALS2967, 'ALS2968 Functional Block Diagram

(43)

(42)

~ (40)

~ (35)

~ (33)

~

(47)

(45)

(31)

(29)

(46)

(44)

(30)

(28)

00
01
02

03

04
05

06

07

08

RASO

RAS1

RAS2

RAS3

CASO

CAS1

CAS2

CAS3

Table 2-1 describes the four operating modes of the 'ALS2967 and 'ALS2968 as
controlled by inputs MCO and MC 1. During normal read/write operations, the row
and column addresses are multiplexed to the DRAM. When MSEL is high, the column
address is selected; when MSEL is low, the row address is selected. The corresponding
RASn and CASn output signals strobe the addresses into the selected memory bank
or banks. A single 'ALS2967 or 'ALS2968 can control as many as four banks of 256K
memory. Additional banks of memory can be controlled by using additional 'ALS2967
or 'ALS2968 devices and decoding each chip select (CS) input.

Table 2-1. 'ALS2967, 'ALS2968 Mode-Control Function Table

SIGNAL

MC1 MCO MODE SELECTED

L L Refresh without Scrubbing. Refresh cycles are performed using

the row counter to generate the addresses. In this mode, all four

RAS outputs are active while the four CAS outputs remain high.

L H Refresh with Scrubbing/Initialize. Refresh cycles are performed

using both the row and column counters to generate the

addresses. MSEL selects the row or the column counter. All four

RAS outputs go low in response to RASI ('ALS2967) or RASI

('ALS2968), while only one CASn output goes low in response

to CAS I ('ALS2967) or CASI ('ALS2968). The bank counter keeps

track of which CAS output goes active. This mode can also be

used during system power-up so that the memory can be written

with a known data pattern.

H L Read/Write. This mode is used to perform read/write cycles. Both

the row and column addresses are multiplexed to the address

output lines using MSEL. SELO and SEL 1 are decoded to

determine which RASn and CASn outputs will be active.

H H Clear Refresh Counters. This mode clears the three refresh

counters (row, column, and bank) on the inactive transition of

RASI ('ALS2967) or RASI ('ALS2968), putting them at the

beginning of the refresh sequence. In this mode, all four RAS

outputs are driven low after the active edge of RASI ('ALS2967)

or RASI ('ALS2968) so that DRAM wake-up cycles can also be

performed.

In systems where addresses and data are both multiplexed onto a single bus, the
'ALS2967 and 'ALS2968 use latches (row, column and bank) to hold the address
information. The 20 input latches are transparent when the latch enable input (LE)
is high; the input data is latched whenever LE goes low. For systems in which the
processor has separate address and data buses, LE may be tied high.

The two 9-bit counters in the 'ALS2967 and 'ALS2968 support 128, 256, and 512
line refresh operations. Transparent, burst, synchronous, or asynchronous refresh
modes are all possible as determined by the memory timing controller. The refresh
counters are advanced on the low-to-high transition of RASI on the 'ALS2967, and
on the high-to-Iow transition of RASI on the 'ALS2968. This is true in either refresh
mode. In the clear refresh counter mode, the refresh counters (row, column, and bank)
can be reset to zero on the low-to-high transition of RASI on the 'ALS2967 or on
the high-to-Iow transition of RASI on the 'ALS2968.

2-3

2.2.2 Typicallmplementation

&
'1:.

REFRESH
TIMER

RFC ~

--

Figure 2-2 shows a system interface using the 'ALS2967 between an Intel 8086 and
four banks of 256K DRAMs. Addresses A 18 and A 19 are used to select one of the
four memory banks. Since members of the 8086 processor family multiplex both data
and addresses onto the same data bus, input latches on the 'ALS2967 must be used
to store the row, column, and bank information. The ALE signal from the 8086 can
be directly connected to the latch enable (LE) input on the 'ALS2967.

The RASI, CASI, MSEL and mode control (Mea, MC1) inputs on the 'ALS2967 must
be generated by the memory timing controller. The memory timing controller functions
as an arbitrator between refresh cycles and 8086 access cycles. It also guarantees
that timing requirements of the DRAM will be met.

DYNAMIC
MEMORY

CONTROLLER

I--
~

BANK 0

A8-AO

DYNAMIC RAMs

256K X 16-BIT
TMS4256 (16)

REFREQ - 'ALS2967 ~ RASO

I-- ~ CASO
RESET +--

TIMING
--+ W

CLOCK
GENERATOR CONTROLLER II

8284A ~
-- BANK 1 256K X 16-BIT REF REO

08-00
I-- ~~ A8-AO

TMS4256 (16)
ROY ~ ROY RFC - ~ r--t

CLK OSC
.. RESET ~ r---+ RAS1 ...

I .. OSC ~ r---+ CAS1 ...
----4

N ..-.
, ,r - .. --

II RAS RASI
CLK READY

...
- .. CASI CAS ... BANK 2 256K X 16-BIT

8086-2 MSEl
.. MSEl ~~ TMS4256 (16) po

r-rv' A8-AO

- .. - ---.. MC1 r-r--. -
MIlO MIlO MC1 ... i-- RAS2

- .. RD -f
MCO

r-r--. -
RD - CAS2

- .. WR 4~
-

WR W

rAlE II
ALE .. LE BANK 3 256K X 16-BIT - ...

-~ TMS4256 (16)
A8-AO

A to. ROW (A8-AO) '---V
A17-AO COL (A9-A 17) : RAS3

~ r
A18 --. SElO .. CAS3 :: ...
A19 SEl1 W

015-00 015-00

II
~ ~

~ 'AS240
(2)

- A

- ,
G

-
Figure 2-2. 'ALS2967, 'ALS2968 Timing Controller Interface

2-4

2.2.3 Timing Controller Details

Figure 2-3 is a timing diagram for a typical 8086 access cycle. The 'ALS2967 control
signals required to execute the access cycle are also shown. Control signals for the
'ALS2967 are referenced from the OSC output of the 8284A clock generator. The
timing controller in this example is generated from a state machine referenced from
the OSC output of the 8284A. In critical timing situations, it may be necessary to
tightly control the phase relationship of the system clock to the OSC signal. This can
be accomplished by using a phase lock loop or similar method to generate the OSC
signal.

CLK __ _

ALE --------
MilO ,-----

i [AOX _______ -J ,. ,Juwm->.--------tf DATA FROM MEMORY)>----cc

o - I \ I /
RO , ~. ______ ~I-----------J

I I

![AOX _______ --'X; AO-A17 X'-_____ w_R '1_E_O_A_TA _____ X'-______ _

E WR I \ I / I ~ _____ _+I------J
I I
I I

STO STO STO STO ST2l ST22 ST23 ST24 ST25 ST26 ST27 ST28 ST29 ST30 STO STO STO

osc I

I

\~------------~I ____________ ~/
I
I

MSEL / _________________ --J I , ,-----
~Ta(cl--+l cAs-----------------------------\'-________________________ ~1

REFREQ = H. RESET = L MCl = H. RFC = L. ROY = H

Figure 2-3. 8086 Access Cycle

2-5

ClK

ALE

In this example, refresh requests (REFREQ) are generated every 122 clock cycles.
The timing controller will perform the refresh cycle (RAS only) immediately if the
processor is not in the middle of an access cycle. If the controller is in the middle
of an access cycle, the refresh cycle will be delayed until the access cycle is complete.
If the controller is asked to perform an access cycle during a refresh, the controller
will place the processor in a wait state (ROY low) until the refresh is complete.
Figure 2-4 shows the timing diagram for a refresh/access cycle as explained above.
To implement memory scrubbing, the controller must execute a read/write cycle during
the refresh cycle and then place the 'ALS2967 in the memory scrubbing mode (This
example executes RAS only refresh).

Figure 2-5 is a flow chart for the timing controller. ABELTM and CUPLTM software
was used to generate fuse maps from the present state of the inputs and present
condition of the state machine. These fuse maps were then used in programming the
field programmable logic devices. The files used to generate the fuse maps have been
included for reference at the end of this application note.

1~4----REFRESH CYCLE -----I~MoIII41------

,-------, , , ,-------, , , ,-------, , ,
I
I
I I
I

REFREQ -_-_-_-_-_--.....l.\~ _______ ---II I
I
I

MilO -----r..:-----....!.!....------' I c-=
i [ADX

o RD----+---~----~---~-----

I
I

(DATA FROM MEMORY >--

~ ____ ~~~ ______ ~:x~----
I

~[ADX
~ WR ---~----;:-------:-------;:------

~---~---~~---~------------~/I

2-6

OSC

Me1

I
I
I STO STO

(IF ROY = ll!ST10 ST11 ST12 ST13 ST14 ST15 ST16 ST17 ST18 ST19 ST20

\~------------wil
I

RDY _______ ~,~-_-_-_-_-_-_-__ -_~~-_-_-_-_-_-_-_~_-~_~_' ____ -I,r----------------
RFC ______ -'/ \~--

RAS \I....-_____ --J! \~--------------------~!
~SEl _____________________ -J'

\~-----
CAS \1....-_--------',

Figure 2-4. Refresh/Access Cycle

INITIALIZE

(RESET = H)

STO

MCI = H

ROY= H

RFC = L

RAS = H

MSEL= L

CAS = H

YES

ACCESS CYCLE
ST 21 THRU

ST30
(FIGURE 3)

NOTE:
IF RESET = H

THEN
INITIALIZE

REFRESH CYCLE
ST 1 THRU

ST9
(FIGURE 4)

NOTE:

IF ALE&M/IO=H
THEN

ROY = L

IF RESET = H
THEN

INITIALIZE

ACCESS CYCLE
(FIGURE 4)
ST10 THRU

ST20

Figure 2-5. 'ALS2967, 'ALS2968 Memory Timing Controller Flow Chart

2-7

2.2.4 Summary

2-8

Figure 2-6 shows the actual circuit implementation of the refresh and memory timing
controller. The refresh timer signals the controller whenever it is time to execute a
refresh cycle. As required by memory, every row (256 on the TMS4256 DRAM) must
be addressed every 4 ms. This implies that one row should be refreshed at least once
every 15.6 Ils. With an 8-MHz system clock, the refresh timer should use
approximately a division factor of 122. This results in a refresh request every 15.3 J.tS.

The refresh complete input (RFC) is used to signal the refresh timer that the refresh
has been completed. It is important that the timer not stop so that the 4-ms memory
requirement is maintained.

TIMING CONTROllER

(3)
RESET

REFRESH TIMER
TIB82S167B

OSC (1)
(2)

RESET

(3) (15) (13)_
RFC RFC RAS

REFREQ
(19) (2)

REFREQ
(11)_

CAS
(1O)

MilO MSEl
TIBPAl16R8 (9)

RO MC1
(1)

WR
(14)

ClK ROY

ALE

Figure 2-6. Refresh/Memory Timing Controller

The TIBPAL 16R8 circuit shown in Figure 2-6 is used to generate the refresh request
signal every 122 clock cycles. The refresh request signal (active low) will remain active
(low) until a refresh complete (RFC) signal is received from the timing controller. During
a system reset, the refresh request output is set to a high-logic level. When using
different clock rates or memory sizes, the division circuit in the refresh timer should
be adjusted accordingly.

The TIB82S 167B field programmable sequencer shown in Figure 2-6 is configured
as a state machine to execute the flow chart shown in Figure 2-5. In cases with
different system timings, the CUPL TM file can be modified to fit the processor
requirements. In addition, a slight modification to the file will allow an 'ALS2968 to
be used instead of an 'ALS2967.

A preprogrammed sample of the refresh and timing controllers shown in Figure 2-6
can be obtained by calling PAL/PROM Applications, 214/995-2980.

The 'ALS2967 and 'ALS2968, coupled with programmable logic, offer the system
designer a solution to high-speed dynamic memory requirements. Programmable logic
allows the designer to tailor the timing controller to a selected processor and memory.
In many cases, the generation of a high-speed timing controller from programmable
logic will allow the designer to use slower DRAMs without affecting system speed.
This results in lower total system cost because of the large number of memory devices
used.

2.2.5 ABELTM and CUPLTM Files

2.2.5.1 ABELTM File

module RF_TIMER
title 'REFRESH TIMER

R. K. BREUNINGER TEXAS INSTRUMENTS, DALLAS, 08/12/86'

RFT DEVICE 'PI6R8';

"input declarations

CLK
RESET
RFC
OE

pin 1;
pin 2;
pin 3;
pin 11;

" SYSTEM CLOCK (8086)
" RESETS WHEN HIGH
" REFRESH COMPLETE
" MUST BE TIED LOW

"output declarations

00,01,02
03,04,05,06
REF REO_

pin 12,13,14;
pin 15,16,17,18;
pin 19;

" COUNTER STATES
" COUNTER STATES
" REFRESH REOUEST - ACTIVE LOW

"intermediate variables

CNT_REF 00 & !Ql & !02 & 03 & 04 & 05 & Q6;
SCLR = RESET # CNT_REF;
count = [06,05,Q4,03,02,01,00];
C,H,L = .C.,I,O,

equations

REFREO_ .-
00 . -
01 .-
02 .-
03 .-
04 .-
05 .-
06 .-

RFC # ICNT_REF & REFREO_ # RESET;
(! 00) & ! SCLR;
(01 $ 00) & !SCLR;
(02 $ 01 & 00) & !SCLR;
(03 $ (02 & 01 & 00» & !SCLR;
(04 $ (03 & 02 & 01 & 00» & !SCLR;
(05 $ (04 & 03 & 02 & 01 & 00» & !SCLR;

!(!05 & f06 # !04 & !06 # !Ol & !06
!OO & !06 # !02 & 106 # !01 & !06 # SCLR);

test_vectors ([OE,RESET,CLK,RFC] -) [count,REFREO_])
[0, 1 ,C, °] -) [° , H];

@CONST cnt = 1; @REPEAT 121 ([0, ° ,C, °] -) [cnt, H];
@CONST cnt = cnt + It}

[0, ° , C , °] -) [° , L] ;

@CONST cnt = 1; @REPEAT 20 [0, ° , C , °] -) [cnt L] ;
@CONST cnt = cnt + I;}

[0, 0 , C , 1] -) (21 H] ;
[0, ° , C , °] -) [22 , H] ;
[0, ° C °] -) [23 H] ;
[0, 0 , C , °] -) [24 , H] ;

end RF_TIMER

2-9

2.2.5.2 CUPLTM Source File

2-10

Partno
Name
Date
Revision
Designer
Company
Assembly
Location

MTC-SI61;
MTC-SI61;
08/13/86;
03;
BREUNINGER;
TEXAS INSTRUMENTS;
None;
DALLAS, TEXAS;

/**/
/* DYNAMIC TIMING CONTROLER */
/* (FOR ALS2961) * /
/**/
/* Allowable Target Device Types: TIB82S161B *1
1**1

1** Inputs **1
pin 1 = OSC;
pin 2 = REFREQ;
pin 3 = RESET;
pin 4 = MIO;
pin 5 = RD;
pin 6 = WR;
pin 1 = ALE;
pin 16 = GND;

1** Outputs **1
pin 9 = MCI -;
pin 10 = MSEL;
pin I I = CAS;
pin 13 = RAS;
pin 14 = ROY;
pin 15 = RFC;

1*
1*
1*
/*
1*
1*
1*
1*

1*
1*
1*
/*
1*
1*

OSCILLATOR (8284A)
REFRESH REQUEST
RESET - INITIALIZES WHEN HIGH
MEMORY I/O
READ
WRITE
ADDRESS LATCH ENABLE
PIN 16 MUST BE TIED LOW

MODE CONTROL
MULTIPLEXER SELECT
COLUMN ADDRESS STROBE
ROW ADDRESS STOBE
READY
REFRESH COMPLETE

*1
*1
*1
*1
*1
*1
*1
*1

*1
*/
*1
*1
*1
*1

1** Internal Node Group - State bits declared as nodes **1
node [P4_,P3_,P2_,Pl_,PO_];

1** Declarations and Intermediate Variable Definitions
Field State = [P4_,P3_,P2_,Pl_,PO_];

$define STO 'b'OOOOO
$define STI 'b'OOOOI
$define ST2 'b'OOOIO
$define ST3 'b'00011
$define ST4 'b'OOIOO
$define ST5 'b'OOIOI
$define ST6 'b'00110
$define ST1 'b'OOlll
$define ST8 'b'OlOOO
$define ST9 'b'OIOOI
$define STIO 'b'OlOIO
$define STII 'b'01011
$define ST12 'b'01100

**1

$define 5T13 'b'OllOl
$define ST14 'b'OlllO
$define STl5 'b'OIIII
$define ST16 'b'lOOOO
$define ST17 'b'lOOOl
$define STl8 'b'10010
$define ST19 'b'lOOII
$define ST20 'b'lOIOO
$define ST2l 'b'lOlOl
$define ST22 'b'IOIIO
$define ST23 'b'IOlll
$define ST24 'b'llOOO
$define ST25 'b'llOOI
$define ST26 'b'lIOIO
$define ST27 'b'IIOII
$define ST28 'b'IIIOO
$define ST29 'b'llIOI
$define ST30 'b'IIIIO
$define ST31 'b'llill

/** Logic Equations **/
Sequence State
{Present STO IF RE5ET

IF !RESET &
IF !RESET &
OEFAULT

NEXT STO OUT [MCl_, ROY,!RFC, RAS,!MSEL, CAS];
!REFREQ NEXT STl;

/** REFRESH CYCLE **/

REFREQ & ALE & MIO NEXT 5T21;
NEXT STO;

Present STI IF ALE & MIO&!RESET NEXT ST2 OUT [!MCl_,!ROY];
IF !RE5ET NEXT ST2 OUT [!MCl_];

Present ST2 IF ALE & MIO&!RESET NEXT ST3 OUT [!ROY, RFC,!RAS];
IF !RE5ET NEXT ST3 OUT [RFC,!RAS];

Present ST3 IF ALE & MIO&!RESET NEXT 5T4 OUT [!ROY];
IF !RESET NEXT 5T4;

Present ST4 IF ALE & MIO&!RE5ET NEXT ST5 OUT [!ROY];
IF !RE5ET NEXT 5T5;

Present ST5 IF ALE & MIO&!RESET NEXT 5T6 OUT [!ROY];
IF !RE5ET NEXT 5T6;

Present ST6 IF ALE & MIO&!RE5ET NEXT 5T7 OUT [!ROY,!RFC];
IF !RE5ET NEXT 5T7 OUT [!RFC];

Present ST7 IF ALE & MIO&!RE5ET NEXT 5T8 OUT [!ROY, RAS];
IF !RE5ET NEXT 5T8 OUT [RAS];

Present 5T8 IF ALE & MIO&!RE5ET NEXT 5T9 OUT [tROY];
IF !RE5ET NEXT 5T9;

Present ST9 IF ROY & !RE5ET NEXT STO OUT [MCl_, ROY,!RFC, RAS,fM5EL, CAS];
IF tROY & !RESET NEXT STIO OUT [MCI_];

2-11

/** ACCESS IMMEDIATELY AFTER REFRESH WHEN REQUESTED **/
Present STIO IF !RESET NEXT STll;
Present STII IF !RESET NEXT STI2 OUT [tRAS];
Present STI2 IF !RESET NEXT ST13 OUT [ROY, MSEL];
Present ST13 IF !RESET NEXT STI4 OUT [tCAS];
Present STI4 IF !RESET NEXT STI5;
Present ST15 IF !RESET NEXT ST16;
Present STI6 IF !RESET NEXT STI7;
Present STI7 IF !RESET NEXT STI8;
Present ST18 IF !RESET NEXT STI9;
Present ST19 IF !RESET NEXT ST20;
Present ST20 IF RD & WR & !RESET NEXT STO OUT [MCI_, RDY,!RFC, RAS,!MSEL, CAS];

IF !RESET NEXT ST20;

/** ACCESS TIMING CYCLE **/
Present ST21 IF !RESET
Present ST22 IF !RESET
Present ST23 IF tRESET
Present ST24 IF !RESET
Present ST25 IF !RESET
Present ST26 IF lRESET
Present ST27 IF !RESET
Present ST28 IF !RESET
Present ST29 IF tRESET
Present ST30 IF RD & WR &

NEXT ST22 OUT [!RAS];
NEXT ST23 OUT [MSEL];
NEXT ST24 OUT [!CAS];
NEXT ST25;

IF lRESET

APPEND MCI_.s = RESET;
APPEND RAS.s = RESET;
APPEND PO_.r = RESET;
APPEND P3_.r = RESET;

2-12

NEXT ST26;
NEXT ST27;
NEXT ST28;
NEXT ST29;
NEXT ST30;

!RESET NEXT STO OUT [MCl_, RDY,lRFC, RAS,lMSEL, CAS];
NEXT ST30;}

APPEND RDY.s = RESET;
APPEND MSEL.r= RESET;
APPEND PI_.r = RESET;
APPEND P4_.r = RESET;

APPEND RFC.r = RESET;
APPEND CAS.s = RESET;
APPEND P2_.r = RESET;

2.2.5.3 CUPL TM Simulation File

Partno MTC-S167;
Name MTC-S167;
Date 08/13/86;
Revision 03;
Designer BREUNINGER;
Company TEXAS INSTRUMENTS;
Assembly None;
Location DALLAS, TEXAS;
1**1
1* DYNAMIC TIMING CONTROLLER SIMULATION FILE *1
1* (FOR ALS2967) *1
1**1
1* Allowable Target Device Types: TIB82S167B *1
1**1

ORDER:
GND,~3,OSC,~3,RESET,~6,REFREQ,~4,MIO,~3,RD,~2,WR,~2,ALE,~5,
MCI _,~4,MSEL,~3,CAS,~3,RASt~3,RDY,~3tRFC;

VECTORS:

$msg"REFRESH WITH ACCESS FOLLOWING";
$msg" ------------ INPUT --------------- -------- OUTPUT --------";
$msg" GND OSC RESET REFREQ MIO RD WR ALE MCI MSEL CAS RAS ROY RFC";
$msg" ---";
I*RESET*I 0 C I X X X X X H L H H H L
1* STO*I 0 C 0 0 X X X X H L H H H L
1* STl*1 0 C 0 X 0 X X 0 L L H H H L
1* ST2*1 0 C 0 X 0 X X 0 L L H L H H
1* ST3*1 0 C 0 X 0 X X 0 L L H L H H
1* ST4*1 0 C 0 X 1 X X 1 L L H L L H
1* ST5*1 0 C 0 X X X X X L L H L L H
1* ST6*1 0 C 0 X X X X X L L H L L L
1* ST7*1 0 C 0 X X X X X L L H H L L
1* ST8*1 0 C 0 X X X X X L L H H L L
1* ST9*1 0 C 0 X X X X X H L H H L L
I*STIO*I 0 C 0 1 X X X X H L H H L L
I*ST11*1 0 C 0 X X X X X H L H L L L
I*STI2*1 0 C 0 X X X X X H H H L H L
I*STI3*1 0 C 0 X X X X X H H L L H L
I*STI4*1 0 C 0 X X X X X H H L L H L
I*STI5*1 0 C 0 X X X X X H H L L H L
I*STI6*1 0 C 0 X X X X X H H L L H L
I*STI7*1 0 C 0 X X X X X H H L L H L
I*STI8*1 0 C 0 X X X X X H H L L H L
I*STI9*1 0 C 0 X X X X X H H L L H L
I*ST20*1 0 C 0 X X 0 0 X H H L L H L
I*ST20*1 0 C 0 X X 1 1 X H L H H H L

2-13

$msg" ";
$msg"REFRESH WITHOUT ACCESS FOLLOWING";
$msg" ------------ INPUT ---------------
$msg" GNO OSC RESET REFREQ MIO RO WR ALE
I*RESET*I 0 C 1 X X X X X
1* STO*I 0 COO X X X X
1* STI*I 0 COX 0 X X 0
1* ST2*1 0 COX 0 X X 0
1* ST3*1 0 COX 0 X X 0
1* ST4*1 0 COX 0 X X 0
1* ST5*1 0 COX 0 X X 0
1* ST6*1 0 COX 0 X X 0
1* ST7*1 0 COX 0 X X 0
1* ST8*1 0 COX 0 X X 0
1* ST9*1 0 COX 0 X X 0

$msg" ";
$msg"ACCESS TIMING CYCLE It;
$msg" ------------ INPUT ---------------
$msg" GNO OSC RESET REFREQ MIa RO WR ALE
I*RESET*I 0 C 1 X X X X X
1* STO * I 0 COl I X X 1
I*ST21*1 0 COX X X X X
I*ST22*1 0 COX X X X X
I*ST23*1 0 COX X X X x
I*ST24*1 0 COX X X X X
I*ST25*1 0 COX X X X X
I*ST26*1 0 COX X X X X
I*ST27*1 0 COX x X x X
I*ST28*1 0 COX X X X X
I*ST29*1 0 COX X X X X
I*ST30*1 0 COX X 0 0 X
I*ST30*1 0 COX X 1 I X

-------- OUTPUT --------";
MCI MSEL CAS RAS ROY RFC";
H L H H H L
H L H H H L
L L H H H L
L L H L H H
L L H L H H
L L H L H H
L L H L H H
L L H L H L
L L H H H L
L L H H H L
H L H H H L

-------- OUTPUT --------";
MCI MSEL GAS RAS ROY RFC";
H L H H H L
H L H H H L
H L H L H L
H H H L H L
H H L L H L
H H L L H L
H H L L H L
H H L L H L
H H L L H L
H H L L H L
H H L L H L
H H L L H L
H L H H H L

2.3 Memory Timing Controllers Using the SN54/74ALS6301, SN54/74ALS6302

2.3.1 Functional Description

2-14

The 'ALS630 1 and 'ALS6302 are capable of controlling any DRAM up to 1 M. The
two devices typically operate in a read/write or a refresh mode. During normal
read/write operations, the row and column addresses are multiplexed to the DRAM,
and the corresponding RAS and CAS signals are activated to strobe the addresses
into memory. In the refresh mode, the two counters cycle through the refresh
addresses. If memory scrubbing is not being implemented, only the row counter is
used. When memory scrubbing is being performed, both the row and column counters
are used to perform read-modify-write cycles using an error detection and correction
circuit such as the 'ALS632A. In this mode, all RAS outputs will be active (low) while
only one CAS output is active at a time.

Two device types are offered to help simplify interfacing with the system dynamic
timing controller. The 'ALS6301 offers active-low row address strobe input (RASI)
and column address strobe input (CASI) signals, while the 'ALS6302 offers active­
high RASI and CASI inputs. Figure 2-7 is a functional block diagram of the two devices.

MUX

OE (40) ~ EN

MCO~(~2~8)~----~-------------------------------------4~+-------~01L
MC1 (27) 11 G ~ (46) QO

MSEL (52) G4 (45)
(1) v---r.m- Q 1

CS -C G5 ~ ~~

[ROW}

L...---l<:"lI 2CT - 0

L...------{~JI G1

10 J..-----""/
CT ~ 11 J..-----.J/

12 J..-----.J/
13 J..-----""/
14 ---'/
15 J..-----""/

[COL) 161------.J/

17 ---'/

r-< t> 1 +/C2 18 ---'/

19 1_----""/
BCO RASI J~)-<t>- ~

, ALS6301 ONLY
[BANK}

201-;....;...;---...
BC1

~1

.. ' ___ r.. v (42)

v:-::mt~(38) Q4
Q5

(37)

10X

V~

RAS DECODE

... ----{.~"lI EN

XIV

... --1----------1 1

.-+--1----------12

DMUX

0- V4

1-1- V4

3-1- V4

~~(36)Q6
Q7

r~Q8
~Q9

O} 10
G - (50) RASO - 1 13 10,4,5 V 1"..,>---'--;'';;'';';'-

11,4,5V :; (48) RAS1

RASI ...!~~ - - - ... ----------------------+-f-+-+--f--+-+-+---+ ___ I-~ G5 12,4,5V :; (33) RAS2
'ALS63020NLV

LE (14)

i"P (13)

LATCHES
13,4,5V :: (31) RAS3

AO (2)

A1 (4)

A2 (6)

A3 (8)

A4 (10)

~1

A5~(~1~5)~===*1~0~t-~ A6 J17) 10
A7 (19)
A8 (21)

A9 (23)
A 10 _(;,;;3.:..,) ____

10X

[ROW)

10X A 11 ~(~5:...) __ 1
A12 ~(:.;.7:...) __ ... 1
A 13 ~(~9):...-_ __....1

4 k 5 [COLUMN}

A14 (11) 10
A15 (16)
A16 (18)

A17 ~(2~0~)--'1
A18 (22)
A19 (24)

10

[BANK}

10

10.J>

CAS DECODE

~ EN

XIV

'---__ I--+---f 1

L----+-+--I2

DMUX

O-~ G4

1 -I- G5

2-1- G6

3 -I- G4 - ...
L---------+-----------I-4_--I ~ } 5Z i%

SELO~(~2~5)L--------jl~--1-kirDr--------1I---------------4---------~--~~0}6G20
SEL1 (26) L....l"l ~D 1_--------------4_------------... ~ 1 2~10/20,4)7V 1[~J------(-4....;9)- CASO

- ~--------... (11/21,4)7V ~ (47) CAS1

CAS I J.5.!l. - - - .!~6~~~V ____ <{:>- __ .T ---+-----------------I G7 (12/22,4)7 V ~ (32) CAS2

I : (13/23.4)7 V ~ (30) CAS3

CAS I J5.1! ___:~S~O~O~:.. ________ ...J

Figure 2-7. 'ALS6301, 'ALS6302 Functional Block Diagram

2-15

2-16

Table 2-2 describes the four operating modes of the 'ALS6301 and 'ALS6302 as
controlled by inputs MCO and MC1. During normal read/write operations, the row
and column addresses are multiplexed to the DRAM. When MSEL is high, the column
address is selected; when MSEL is low, the row address is selected. The corresponding
RASn and CASn output signals strobe the addresses into the selected memory bank
or banks. A single 'ALS6301 or 'ALS6302 can control as many as four banks of 1 M
memory. Additional banks of memory can be controlled by using additional'ALS6301
or 'ALS6302 devices and decoding each chip select (CS) input.

Table 2-2. ' AlS6301, , AlS6302 Mode-Control Function Table

SIGNAL
MODE SELECTED

MC1 MCO

L L Refresh without Scrubbing. Refresh cycles are performed using

the row counter to generate the addresses. In this mode, all four

RAS outputs are active while the four CAS outputs remain high.

L H Refresh with Scrubbing/Initialize. Refresh cycles are performed

using both the row and column counters to generate the

addresses. MSEL selects the row or the column counter. All four

RAS outputs go low in response to RASI (' ALS630 1) or RASI

('ALS6302), while only one CASn output goes low in response
to CASI ('ALS6301) or CASI ('ALS6302). The bank counter keeps

track of which CAS output goes active. This mode can also be

used during system power-up so that the memory can be written

with a known data pattern.

H L Read/Write. This mode is used to perform read/write cycles. Both

the row and column addresses are multiplexed to the address

output lines using MSEL. SELO and SEL 1 are decoded to

determine which RASn and CASn outputs will be active.

H H Clear Refresh Counters. This mode clears the three refresh

counters (row, column, and bank) on the inactive transition of

RASI ('ALS6301) or RASI ('ALS6302), putting them at the

beginning of the refresh sequence. In this mode, all four RAS

outputs are driven low after the active edge of RASI (' ALS630 1)

or RASI ('ALS6302) so that DRAM wake-up cycles can also be

performed.

In systems where addresses and data are both multiplexed onto a single bus, the
'ALS6301 and 'ALS6302 use latches (row, column and bank) to hold the address
information. The 22 input latches are transparent when the latch enable input (LE)
is high; the input data is latched whenever LE goes low. For systems in which the
processor has separate address and data buses, LE may be tied high.

The two 1 O-bit counters in the 'ALS6301 and 'ALS6302 support 128, 256, and 512
line refresh operations. Transparent, burst, synchronous, or asynchronous refresh
modes are all possible as determined by the memory timing controller. The refresh
counters are advanced on the low-to-high transition of RASI on the 'ALS6301, and
on the high-to-Iow transition of RASI on the 'ALS6302. This is true in either refresh
mode. In the clear refresh counter mode, the refresh counters (row, column, and bank)
can be reset to zero on the low-to-high transition of RASI on the 'ALS6301 or on
the high-to-Iow transition of RASI on the 'ALS6302.

2.3.2 Typical Implementation

REFRESH
TIMER

Figure 2-8 shows a system interface using the 'ALS6301 between a Motorola
68000L 10 and four banks of 1 M DRAMs. Addresses A21 and A22 are used to select
one of the four memory banks. Since members of the 68000 processor family have
separate address and data busses, the input latches on the 'ALS6301 are left
transparent by tying the latch enable (LE) input high. The CASO thru CAS3 outputs
of the 'ALS6301 are fed into the byte controller along with processor signals LDS
and UDS. The byte controller made from programmable logic allows the processor
to determine whether upper, lower or both bytes are accessed.

The RASI, CASI, MSEL and mode control (MCO, MC1) inputs on the 'ALS6301 must
be generated by the memory timing controller. The memory timing controller functions
as an arbitrator between refresh cycles and 68000L 10 access cycles. It also
guarantees that timing requirements of the DRAM will be met.

DYNAMIC
MEMORY

CONTROllER
DYNAMIC RAMs

BANKO

, MEG x '6-BIT
RFCM---------------~

REFREQ-
'AlS630' I

,---1>
I
I
I RESET 4-

CLOCK
GENERATOR

TIMING
CONTROllER

ClK

........ REFREQ

OSC t-i-... OSC

~ RESET

e-----+--rN ClK
~.

. ~

ClK
RST 1f-4.-

68000l'O

A5 A5

DT ACK ~ DT ACK

A23 A23

RFC

VCC
i..:. lE

RAS -----t RASI

CAS ----t CAS I

MSEl -----t MSEl

MC' ----t MC'

-:f MCO

A2' t--------------------.. r SElO

A22t--------------------.. SEL1

r+ W UPPER: lOWER

BANK'

, MEG x , 6-BIT

Q9-Q0t--____ -r-=Q.;;...9-..=;.QO.....-, ~~ A9-AO I
r-4 RAS' I

- r- UCAS' I lCAS' if--

~W I
UPPER I lOWER

BANK2

"-- -l., , MEG x , 6-BIT
;---I A9-AO I
r- RAS2 I

r---- r- ____ UCAS2 I lCAS2 if--

...... W UPPER : lOWER

BANK3

'__--\ ' MEG ~ '6-BIT

II ROW (A'-A'O)
A20-A' 1T-------------------.fI COL(A' , -A20)

BYTE
CONTROllER

L-----.-'7'I A9-AO I
L--__ --I_ .. ~ RAS3 I

UCASO
....------I--! .. UCAS3 I lCAS3 M-+-+~

4HW I
UPPER BYTE I lOWER BYTE

CASO f---t UCAS' f--

CAS' H UCAS2 f---

CAS2 f---t UCAS3 f----
..

CAS3f---t lCASOt----------+---~ ~----~ ~--~

lCAS't----------+---~ r-----~ ~----~

lDS~------------------------------__M~ lCAS2t----------+---~ r-----~ ~---~

UDS • lCAS3t----------+---~ ~----~ ~---~

R/W~--~

Figure 2-8. 'ALS6301, 'ALS6302 Timing Controller Interface

2-17

2.3.3 Timing Controller Details

2-18

Figure 2-9 is a timing diagram for a typical 6800011 0 access cycle. The 'AlS6301
control signals required to execute the access cycle are also shown. Control signals
for the 'AlS6301 are referenced from the OSC output of the 8284A clock generator.
OSC runs at 2 times the speed of the system clock, that is ClK = 10 MHz and
OSC = 20 MHz. By running the timing controller at a higher speed than the system
clock, the system performance is improved. A programmable logic sequencer, the
TIB82S167B, was programmed for use as the timing controller.

In this example, refresh requests (REFREQ) are generated every 155 clock cycles.
The timing controller will perform the refresh cycle (RAS only) immediately if the
processor is not in the middle of an access cycle. If the controller is in the middle
of an access cycle, the refresh cycle will be delayed until the access cycle is complete.
If the controller is asked to perform an access cycle during a refresh, the access cycle
will begin immediately after the refresh cycle is completed. Address bit A23 indicates
whether the access requested is a memory access (A23 = l) or an I/O access
(A23 = H). The timing controller will perform an access cycle only if Address bit A23
is low. Figure 2-10 is a timing diagram of the refresh/access cycle as explained above.
To implement memory scrubbing, the controller must execute a read/write cycle during
the refresh cycle and then place the 'AlS6301 in the memory scrubbing mode. (This
example executes a RAS only refresh.) The flowchart in Figure 2-11 outlines the
required functionality of the timing controller. This flowchart was used along with
the timing diagrams in Figures 2-9 and 2-10 to design the timing controller.

so S1 S2 S3 S4 S5 S6 S7
ClKI '\-_....If ''--_....If ''--__ I \ I \ r

I
I
I

AS. lOS. / UOS ______ J. ,~----------------~~----

[

AOX >--<
~ 0:: _________ ..J!

VALID ADRESS

~ta(cl~
I I ,..---'---~
I (READ DATA >-
I

>--< VALID ADDRESS ,
I

(

i[:~; _______ ...l...-_

OATA-------~----------~ VALID WRITE DATA

~~-------------I

STO STO : tST14 ST15 tST16 ST17
OSC

ST19 ST20 STO STATE

\~------~----------~;--
MSEl _______________________________ -J! '---

~-------------;-­
,'------------------~;--

MC1 -H. RFC-l

tStart sequence when AS=H, CLK=H, REFREQ=H, STATE=O
:t:Return to STO if A23 is high

Figure 2-9. 68000 Access Cycle

~
CD

~ REFRESH CYCLE ~~ ACCESS CYCLE IF REQUIRED ~I
W W W W W S5 S6 S7 SO

CLK/ \ I \ I \ I \ I \ I \ I \ (
AS, LDS, r-- -- --..,.-- - - ---,-----« ' « I \~ __ __

UDS

ADX ADDRESS VALID X ADDRESS VALID X ADDRESS VALID X ADDRESS VALID

c
< R/Vii w I I I
a:

DATA (READ DATA)

ADX

~I R/Vii
~

ADDRESS VALID X ADDRESS VALID X ADDRESS VALID X ADDRESS VALID

\ \ \

DATA (VALID WRITE OAT A X VALID WRITE OAT A X VALID WRITE DATA X VALID WRITE DATA)
STO tsn ST2 ST3 ST4 ST5 ST6 *ST7 ST8 ST9 sno ST11 ST12 Sn3 STO STO STATE

asc

MCI \ /
REQ§ , , , ' \. /

'-- - --\- - - .---~--
RFC f ,~ __ ___

RAS \ I \ I
MSEL I \"'---__

CAS \ I
DTACK \ I

t Start sequence when REFREO = L, STATE = 0
:I: Return to STATE 0 if REO = H or A23 = H
§ REO is internal status register used to store an access request during a refresh cycle. (If AS = H during refresh cycle ST1-ST5)

Figure 2-10. Refresh/Access Cycle

2-20

INITIALIZE

(RESET - L)

STO

MC1 - H

DTACK - H MSEL - L

RFC - L CAS - H

NO

YES

ACCESS CYCLE

NO

ST14 THRU
ST20

(FIGURE 2-9)

NOTE:
IF RESET = L

THEN
INITIALIZE

REFRESH CYCLE
ST1 THRU ST6
(FIGURE 2-10)

NOTE:
IF AS-H

THEN
REQ-L

IF RESET - L
THEN

INITIALIZE

ACCESS CYCLE
(FIGURE 2-10)

ST7 THRU ST13

Figure 2-11. 'ALS6301, 'ALS6302 Memory Timing Controller Flow Chart

2.3.4 Refresh Timer Details
Figure 2-12 shows the actual circuit implementation of the refresh and memory timing
controller. The refresh timer signals the controller whenever it is time to execute a
refresh cycle. As required by memory, every row (512 on the TMS4C1025 DRAM)
must be addressed every 8 ms. This implies that one row should be refreshed at least
once every 15.6 ms. With a 10-MHz system clock, the refresh timer should use
approximately a division factor of 155. This results in a refresh request every 15.3 ms.
The refresh complete input (RFC) is used to signal the refresh timer that the refresh
has been completed. It is important that the timer not stop so that the 8 ms memory
requirement is maintained.

The TIBPAL22V1 0 circuit shown in Figure 2-12 is used to generate the refresh request
signal every 155 clock cycles. The refresh request signal (active low) will remain active
(low) until a refresh complete (RFC) signal is received from the timing controller. During
a system reset, the refresh request output is set to a high logic level. When using
different clock rates or memory sizes, the division circuit in the refresh timer should
be adjusted accordingly.

TIMING CONTROLLER

(3)
RESET

REFRESH TIMER
TIB82S167B

OSC (1)

(2)
RESET

(3) (15) (13)_
RFC RFC RAS

REFREO
(22) (2)

REFREO
(11)_

CAS
(10)

CLK MSEL
TIBPAL22V10 (9)

AS MC1

(1)
A23

(14) __
CLK DTACK

Figure 2-12. Refresh/Memory Timing Controller

2-21

2.3.5 Programmable Logic Designs

2.3.6 Summary

2-22

As mentioned previously, the timing controller, byte controller, and the refresh timer
used in this example are created using programmable logic. ABELTM and CUPLTM
software packages have been used to reduce equations and generate the fuse maps
needed to program these devices. The files used to generate the fuse maps have been
included for reference at the end of this application report. Test vectors are included
with the device files so software simulation can be performed on the computer. If
the proper instruction is provided, the software will attach the test vectors to the
end of the fuse map. This allows programming equipment to run a functional test
on each device immediately after programming. To help familiarize the reader with
these software tools, the timing controller design was done in both ABEL TM and
CUPLTM.

The TIB82S 167B field programmable sequencer shown in Figure 2-12 is configured
as a state machine to execute the flow chart shown in Figure 2-11 . As shown in the
flowchart, the timing controller is initialized by taking the reset input low. From the
initialization state, state 0, the timing controller can perform either an access or a
refresh cycle depending on the signals AS, CLK, and REFREO. If an access is requested
(AS = H) during a refresh cycle, an internal status register, REO, will flag the request
and as soon as the refresh cycle is completed, an access cycle will be started. At
the start of an access cycle, the timing controller checks the state of the A23 address
bit. If A23 is high, indicating an I/O access, the timing controller terminates the access
cycle and returns to state O.

As seen in Figures 2-9,2-10, and 2-11, a state, STO-ST30, has been assigned to
each clock cycle. The appended ABELTM and CUPLTM files can be easily understood
by comparing the state equations to the states shown in these figures. Since the only
difference between the 'ALS6301 and the 'ALS6302 is that the RASI and the CASI
inputs are active-high instead of active-low, a slight modification to the timing
controller software file will allow an 'ALS6302 to be used instead of an 'ALS6301.
The TIBPAL22V10 refresh timer and the TIBPAL 16L8 byte controller designs are
straight forward and easily achieved as can be seen in the appended files.

In applications with different systems timings, the ABEL TM and CUPL TM files can be
modified to fit the processor requirements. A preprogrammed sample of the timing
controller, refresh timer and byte controller can be obtained by calling LSI/PAL/PROM
Applications, 214/995-2980. If a basic understanding of programmable logic is
needed, see the Texas Instruments Field Programmable Logic Applications note.

The 'ALS6301 and 'ALS6302, coupled with programmable logic, offer the system
designer a solution to high speed dynamic memory requirements. Programmable logic
allows the designer to tailor the timing controller to a selected processor and memory.
In many cases, the generation of a high speed timing controller from programmable
logic will allow the designer to use slower DRAMs without affecting system speed.
This results in lower total system cost because of the large number of memory devices
used.

2.3.7 ABELTM Files

module DMC 8167

module DMC_SI61 flag '-KY','-R2' "leave unused OR terms connected
title 'DYNAMIC MEMORY CONTROLLER FOR THE ALS6301 APPLICATION
Loren Schiele Texas Instruments, August 15, 1986'

DMC device 'F82S167';

" Input pin assfgnments

OSC pin 1 ;
REFREQ pfn 2;
RESET pfn 3;
CLK pin 4;
AS pin 5;
A23 pin 6;
GND pin 16;

" Output pin and node assignments

MCI pin 9; MCI - R node 25;
MSEL pin 10; MSEL_R node 26;
CAS pfn 1 1 ; CAS_R node 21;
RAS pin 13; RAS_R node 28;
DTACK pin 14; DTACK_R node 29;
RFC pin 15; RFC_R node 30;

" Internal status and counter nodes

PO
PI
P2
P3
P4
REQ

node 36;
node 35;
node 34;
node 33;
node 32;
node 31;

PO_R
Pl_R
P2_R
P3_R
P4_R
REQ_R

node 42;
node 41;
node 40;
node 39;
node 38;
node 37;

, OSCILLATOR
REFRESH REQUEST
RESET - INITIALIZES WHEN LOW
OSC DIVIDED BY 2
ADDRESS STROBE
MOST SIGNIFICANT ADDRESS BIT
PIN 16 MUST BE TIED LOW

" MODE CONTROL
" MULTIPLEXER SELECT
" COLUMN ADDRESS STROBE
" ROW ADDRESS STROBE
" DATA ACKNOWLEDGE
" REFRESH COMPLETE

" INTERNAL COUNTER REGISTER
" INTERNAL COUNTER REGISTER
" INTERNAL COUNTER REGISTER
" INTERNAL COUNTER REGISTER
" INTERNAL COUNTER REGISTER
" REFRESH REQUEST STATUS REGISTER

" Define Set and Reset inputs to output and status flip-flops
MCI = [MC I ,MC 1_ R] ; -
MSEL - [MSEL,MSEL_R];
CAS - [CAS,CAS_R];
RAS - = [RAS,RAS_R] ;
DTACK = [DTACK,DTACK_R]; -
RFC - = [RFC,RFC_R];
RE~ = [REQ,REQ_R] ;

" 'high' and 'low' are used to set or reset the output and status
" registers. Example: MCI_ := high & RESET; will cause pin 9 to
" go high on the next clock edge ff input pin 3 is high.

high = [I, 0];
low = [0, 1];
Count = [P4,P3,P2,Pl,PO];
Cnt = [P4,P3,P2,Pl,PO];
H,L,clk,X = 1, 0, .C., .X.;

@page

" STATE REGISTER SET DEFINED
" STATE REGISTER SET DEFINED

2-23

2-24

state_diagram Count
State 0:

" REFRESH TIMING CYCLE
State 1 :

State 2:

State 3:

State 4:

State 5:

case
!REFREQ

REFREQ
REFREQ

endcase;

MCI .-.--REQ_ :=
case
RFC .-.--RAS "-.--REQ_ .-.. -
case
REQ_ .-· -
case
RFC .-· --REQ_ "-.-
case
RAS .-.--REQ_ .---
case

" NEXT
" STATE

& RESET : 1;
& AS & ClK & RESET :14;
& (! AS # ! ClK) : 0;

low & RESET;
low & (AS & RESET);
RESET==l 2;
high & RESET;
low & RESET;
low & (AS & RESET);
RESET==l 3;
low & (AS & RESET) ;
RESET==l 4;
low & RESET;
low & (AS & RESET);
RESET==1 5;
high;
low & (AS & RESET);
RESET == 1 6;

" DETERMINE IF ACCESS HAS BEEN REQUESTED
State 6: REQ_ := high & A23;

"Cl_ := high & RESET;
case REQ # A23 0;

!A23 & !REQ & RESET 7;
endcase;

" ACCESS AFTER REFRESH
State 7: RAS_ .- low & RESET; .-

case RESET==1 8;
State 8: REQ_ .- high & RESET; · -

"SEl - := high & RESET;
case RESET==1 9;

State 9: CAS -- low & RESET; - .-
OTACK -- low & RESET; - --
case RESET==1 : 1 0;

State 10: case RESET==1 : 1 1 ;

State 1 1 : case RESET==l :12;

State 12: case RESET==1 : 13;

State 13: RAS - .- high;
"SEl .- low; - .-
CAS - := high;
OTACK .- high; - .-
case RESET==1 0;

@page

endcase;

endcase;

endcase;

endcase;

endcase;

endcase;

endcase;

endcase;
endcase;

endcase;

endcase;

endcase;

" ACCESS TIMING CYCLE
State 14: ease RESET==l : 15; endease;
State 15: RAS - · - low & !A23 & RESET;

ease A23 == I : 0;
!A23 & RESET : 16;

endease;
State 16: MSEL .- high & RESET;

DTACK_:= low & RESET;
ease RESET==1 : 17; endease;

State 17 : CAS - · - low & RESET;
ease RESET==1 : 18; endease;

State 18: ease RESET==I : 19; endease;
State 19 : ease RESET==l :20; endease;
State 20: RAS - .- high;

MSEL .- low; -
CAS · - high;
DTACK - · - high;
ease RESET==l 0; endease;

equations
enable MCI = 1 ; "always enabled, pin 19 is preset

" INITIALIZATION WHEN RESET IS LOW
[MC1,RAS,DTACK,REQ,CAS] .- IRESET;
[PO R,Pl_R,P2_R,P3_R,P4_R,HSEL_R,RFC_R] .- !RESET;

test_vectors ' REFRESH WITH ACCESS FOLLOWING'

([GND,OSC,RESET,REFREQ,CLK,AS,A23] -) [HCI,HSEL,CAS,RAS,DTACK,RFC,REQ,Cnt])
[0 ,elk, 0 X X , X, X] -) [H L H H H L H 0] ;
[0 ,elk, 1 0 X , X, X] -) [H L H H H L H 1] ;
[0 ,elk, 1 X X 1 , X] -) [L L H H H L L 2] ;
[0 ,elk, 1 X X , X, X] -) [L L H L H H L 3] ;
[0 ,elk, 1 X X X, X] -) [L L H L H H L 4] ;
[0 ,elk, 1 X X , X, X] -) [L L H L H L L 5] ;
[0 ,elk, 1 X X , X, X] -) [L L H H H L L 6] ;
[0 ,elk, 1 X X , X, 0] -) [H L H H H L L 7] ;
[0 ,elk, 1 X X , X, X] -) [H L H L H L L 8] ;
[0 ,elk, 1 X X X, X] -) [H H H L H L H 9] ;
[0 ,elk, 1 X X , X, X] -) [H H L L L L H , lO] ;
[0 ,elk, 1 X X , X, X] -) [H H L L L L H , 1 1] ;
[0 ,elk, 1 X X , X, X] -) [H H L L L L H ,12] ;
[0 ,elk, 1 X X , X, X] -) [H H L L L L H ,13] ;
[0 ,elk, 1 X X , X, X] -) [H L H H H L H 0] ;
[0 ,elk, 1 1 0 0, X] -) [H L H H H L H 0] ;
[0 ,elk, 1 1 0 1 , X] -) [H L H H H L H , 0] ;
[0 ,elk, 1 1 1 , 0, X] -) [H L H H H L H 0] ;

test_vectors ' REFRESH WITHOUT ACCESS FOLLOWING'

([GND,OSC,RESET,REFREQ,CLK,AS,A23] -) [HC1,HSEL,CAS,RAS,DTACK,RFC,REQ,Cnt])
[0 ,elk, 0 X X , X, X] -) [H L H H H L H 0] ;
[0 ,elk, I 0 X , X, X] -) [H L H H H L H 1] ;
[0 ,elk, 1 X X 0, X] -) [L L H H H L H 2] ;
[0 ,elk, I X X 0, X] -) [L L H L H H H 3] ;
[0 ,elk, 1 X X 0, X] -) [L L H L H H H 4] ;
[0 ,elk, I X X 0, X] -) [L L H L H L H 5] ;
[0 ,elk, 1 X X , X, X] -) [L L H H H L H 6] ;
[0 ,elk, I X X 0, X] -) [H L H H H L H 0] ;
[0 ,elk, 1 0 X 0, X] -) [H L H H H L H 1] ;

@page

2-25

test_vectors ' REFRESH WITH ACCESS REQUEST BUT DATA NOT IN DRAM (A23=H) ,

([GND,OSC,RESET,REFREQ,CLK,AS,A23] -) [MCl,MSEL,CAS,RAS,DTACK,RFC,REQ,Cnt])
[0 ,elk, 0 X , X , X, X] -) [H L H , H , H L , H , 0] ;
[0 ,elk, 1 0 , X , X, X] -) [H L H , H , H L , H , 1] ;
[0 ,elk, 1 X , X , 1 , X] -) [L L H , H , H L , L , 2] ;
[0 ,elk, 1 X , X , 0, X] -) [L L H , L , H H , L , 3] ;
[0 ,elk, 1 X , X , 0, X] -) [L L H , L , H H , L , 4] ;
[0 ,elk, 1 X , X , 0, X] -) [L L H , L , H L , L , 5] ;
[0 ,elk, 1 X , X , 0, X] -) [L L H , H , H L , L , 6] ;
[0 ,elk, 1 X , X , 0, 1] -) [H L H , H , H L , H , 0] ;
[0 ,elk, 1 1 , 0 , 0, X] -) [H L H , H , H L , H , 0] ;

test_vectors ' ACCESS TIMING CYCLE '

([GND,OSC,RESET,REFREQ,CLK,AS,A23] -) [MCl,MSEL,CAS,RAS,DTACK,RFC,REQ,Cnt])
[0 ,elk, 0 X , X , X, X] -) [H L H , H , H , L , H , 0] ;
[0 ,elk, 1 1 , 1 , 1 , X] -) [H L H , H , H , L , H ,14] ;
[0 ,elk, 1 X , X , X, X] -) [H L H , H , H , L , H ,15] ;
[0 ,elk, 1 X , X , X, 0] -) [H L H , L , H , L , H , 16] ;
[0 ,elk, 1 X , X , X, X] -) [H H H , L , L , L , H , 17] ;
[0 ,elk, 1 X , X , X, X] -) [H H L , L , L , L , H , 18] ;
[0 ,e I k, 1 X , X , X, X] -) [H H L , L , L , L , H ,19] ;
[0 ,elk, 1 X , X , X, X] -) [H H L , L , L , L , H ,20] ;
[0 ,elk, 1 X , X , X, X] -) [H L H , H , H , L , H , 0] ;
[0 ,elk, 1 1 , 0 , 0, X] -) [H L H , H , H , L , H , 0] ;

test_vectors ' ACCESS TIMING CYCLE BUT DATA NOT IN DRAM (A23=H) ,

([GNO,QSC,RESET,REFREQ,CLK,AS,A23] -) [MCl,MSEL,CAS,RAS,DTACK,RFC,REQ,Cnt])
[0 ,elk, 0 X , X , X, X] -) [H , L , H , H , H , L , H , 0];
[0 ,elk, 1 1 , 1 , 1 , X] -) [H , L , H , H , H , L , H ,14];
[0 ,elk, 1 X , X , X, X] -) [H , L , H , H , H , L , H ,15];
[0 ,elk, 1 X , X , X, 1] -) [H , L , H , H , H , L , H , o];
[0 ,elk, 1 1 , 0 , 0, X] -) [H , L , H , H , H , L , H , 0] ;

test_vectors ' RESET DURING ACCESS TIMING CYCLE '

([GNO,OSC,RESET,REFREQ,CLK,AS,A23] -) [MCl,HSEL,CAS,RAS,DTACK,RFC,REQ,Cnt])
[0 ,elk, 0 X , X , X, X] -) [H , L , H , H , H L , H , 0] ;
[0 ,elk, 1 1 , 1 , 1 , X] -) [H , L , H , H , H L , H ,14] ;
[0 ,elk, 1 X , X , X, X] -) [H , L , H , H , H L , H , 15] ;
[0 ,elk, 1 X , X , X, 0] -) [H , L , H , L , H L , H ,16] ;
[0 ,elk, 1 X , X , X, X] -) [H , H , H , L , L L , H , 17] ;
[0 ,elk, 1 X , X , X, X] -) [H , H , L , L , L L , H , 18] ;
[0 ,elk, 0 X , X , X, X] -) [H , L , H , H , H L , H 0] ;
[0 ,elk, 0 X , X , X, X] -) [H , L , H , H , H L , H , 0] ;

end OMC_SI67

2-26

module TIMER154

module TIMER154 flag '-r2','-f'
title 'REFRESH TIMER

LOREN SCHIELE TEXAS INSTRUMENTS, DALLAS, 08/15/86'

T154 DEVICE 'P22VIO';

"input declarations

CLK
RESET
RFC

pi n 1;
pin 2;
pin 3;

"output declarations

" SYSTEM CLOCK
" RESETS WHEN LOW
" REFRESH COMPLETE

" COUNTER STATES
" COUNTER STATES

QO ,Q 1 ,Q2 ,Q3
Q4,Q5,Q6,Q7
REFREQ_

pin 14,15,16,17;
pin 18,19,20,21;
pin 22; " REFRESH REQUEST - ACTIVE LOW

"intermediate variables

CNT_154_ = !QO & Ql & !Q2 & Q3 & Q4 & !Q5 & !Q6 & Q7;
SCLR = !RESET # CNT_154_;
count = [Q7,Q6,Q5,Q4,Q3,Q2,Ql,QO);
C,H,L,X = .C.,I,O,.X.;

equations

REFREQ_
QO
Ql
Q2
Q3
Q4
Q5

.-0-

e-o-

e-o-

0-

0-
0-

0-
0-

e_

RFC # !CNT_154_ & REFREQ_ # !RESET;
(IQO) & !SCLR;
(Ql $ QO) & !SCLR;
(Q2 $ Ql & QO) & !SCLR;
(Q3 $ (Q2 & Ql & QO» & !SCLR;
(Q4 $ (Q3 & Q2 & Ql & QO» & !SCLR;
(Q5 $ (Q4 & Q3 & Q2 & Ql & QO» & !SCLR;

Q6 0-
0- (Q6 $ (Q5 & Q4 & Q3 & Q2 & Ql & QO» & !SCLR;

Q7 0-
e - (Q7 $ (Q6 & Q5 & Q4 & Q3 & Q2 & Ql & QO» & !SCLR;

test_vectors ([RESET,CLK,RFC) -) [count,REFREQ_)
[° , C ,0) -) [0 H) ;

@CONST cnt = 1 ;
@REPEAT 154 { [, C , 0) -) (cnt , H) ;
@CONST cnt = cnt + 1 ; }

(, C , °] -) [0 , L] ;
@CONST cnt = 1;
@REPEAT 20 { [, C , 0] -) [cnt , L] ;
@CONST cnt = cnt + 1 ; }

[1 , C , 1] -) [21 H] ;
[1 , C , 0] -) [22 H] ;
[1 , C , X) -) [23 H] ;
[0 , C , X] -) [° , H] ;

end TIMER154

2-27

2.3.8 CUPLTM Files

2-28

DYNAMIC MEMORY CONTROLLER

Partno
Name
Date
Revision
Designer
Company
Assembly
Location

DMC-S167;
DMC-S167;
08/15/86;
01;
SCHIELE;
TEXAS INSTRUMENTS;
None;
DALLAS, TEXAS;

1**··*·**·······*··**···**·········**·*··**···**·*···****·*·*··**1
I· DYNAMIC MEMORY CONTROLLER ./
1* FOR ALS6301 • I
1·*··**··*·**·****··*·*··*··*·**··········*·*········· ••• * ••• * ••• /
I· Allowable Target Device Types: TI682S1676 ·1
1**·*·*·*******·*··*·**·*********··*****·************· ***** •• *.**/

1** Inputs *./
pin 1 OSC;
pin 2 REFREQ;
pin 3 RESET;
pin 4 CLK;
pin 5 AS;
pin 6 A23_;
pin 16 = GNO;

1** Outputs *·1
pin 9 Mel
pin 10 MSEL;
pin 1 1 CAS;
pin 13 = RAS;
pin 14 DTACK;
pfn 15 RfC;

/*
/.
/*
1*
/*
1*
/*

/*
/.
/*
1*
/*
1*

OSCILLATOR
REFRESH REQUEST
RESET - INITIALIZES WHEN LOW
OSC DIVIDED BY 2
ADDRESS STROBE
MOST SIGNIfICANT ADDRESS BIT
PIN 16 MUST BE TIED LOW

MODE CONTROL
MULTIPLEXER SELECT
COLUMN ADDRESS STROBE
ROW ADDRESS STOBE
DATA ACKNOWLEDGE
REfRESH COMPLETE

*1
·1
*/
*/
./
*/
*/

*1
*/
*/
./
*1
*/

1·* Internal Node Group State bits declared as nodes **/
node [REQ,P4_,P3_,P2_,Pl_,PO_];

1** Declarations and Intermediate Variable Definitions •• /
field State = [P4_,P3_,P2_,P1_,PO_];

$define
$define
$define
$deffne
$define
$deffne
$deffne
$define
$deffne
$define
$define
$define
$define
$define
$define
$define
$deffne
$define
$define
$define
$define

STO
511
ST2
513
514
ST5
ST6
ST7
ST8
ST9

ST10
STll
ST12
ST13
ST14
ST15
ST16
ST17
ST18
ST19
ST20

'b'OOOOO
'b'OOOOl
'b'00010
'b'00011
'b'OOIOO
'b'00101
'b'00110
'b'OOlll
'b'OIOOO
'b'01001
'b'OIOIO
'b'OIOll
'b'Ol100
'b'OtlOl
'b'01110
'b'01111
'b'lOOOO
'b'IOOOl
'b'10010
'b'100ll
'b' 10100

/** logic Equations **/

Sequence state
{Present STO IF RESET & !REFREQ NEXT STl;

IF RESET & REFREQ & AS & ClK NEXT ST14;
DEFAULT NEXT STO;

/* REFRESH TIMING CYCLE */
Present ST1 IF AS & RESET NEXT ST2 OUT [!MCl_,!REQ];

IF RESET NEXT ST2 OUT [IMCl_];
Present ST2 IF AS & RESET NEXT ST3 OUT [RFC,IRAS,!REQ];

IF RESET NEXT ST3 OUT [RFC,!RAS];
Present ST3 IF AS & RESET NEXT ST4 OUT [!REQ];

IF RESET NEXT ST4;
Present ST4 IF AS & RESET NEXT ST5 OUT [!RFC,!REQ];

IF RESET NEXT ST5 OUT [!RFC];
Present ST5 IF AS & RESET NEXT ST6 OUT [RAS,!REQ];

IF RESET NEXT ST6 OUT [RAS];
/** DETERMINE IF ACCESS HAS BEEN REQUESTED **/
Present 5T6 IF A23_ # REQ NEXT STO OUT [MCl_,REQ];

If !A23_ & RESET & !REQ NEXT ST7 OUT [MCI_];

/** ACCESS AFTER REFRESH
Present ST7 IF RESET
Present 5T8 IF RESET
Present ST9 IF RESET
Present ST10 IF RESET
Present STII IF RESET
Present ST12 IF RESET
Present ST13

**/

/** ACCESS TIMING CYCLE **/

NEXT ST8 OUT
NEXT ST9 OUT
NEXT STIO OUT
NEXT STII;
NEXT ST12;
NEXT STI3;
NEXT STO OUT

Present ST14 IF
Present ST15 IF

RESET NEXT STI5;
A23_ NEXT STO;

[!RAS] ;
[REQ, MSEL];
[!CAS, !DTACK];

[RAS,!MSEl, CAS, DTACK];

If
Present ST16 IF
Present ST17 IF
Present ST18 IF
Present ST19 IF
Present ST20

!A23_ & RESET NEXT STI6 OUT [!RAS];
RESET NEXT STI7 OUT [HSEl,!DTACK];
RESET NEXT ST18 OUT [!CAS];
RESET NEXT STI9;
RESET NEXT ST20;

NEXT STO OUT [RAS,!MSEl, CAS, DTACK];}

APPEND MCI_.s
APPEND RAS.s
APPEND DTACK.s
APPEND P2_.r

= !RESET; APPEND REQ.s = !RESET; APPEND RFC.r = !RESET;
= !RESET; APPEND MSEl.r = !RESET; APPEND CAS.s = !RESET;
= !RESET; APPEND PO_.r = !RESET; APPEND PI_.r = !RESET;
= !RESET; APPEND P3_.r = !RESET; APPEND P4_.r = !RESET;

2-29

DYNAMIC MEMORY SIMULATION

Partno DMC-SI67;
Name DMC-SI67;
Date 08/15/86;
Revision 01;
Designer SCHIELE;
Company TEXAS INSTRUMENTS;
Assembly None;
Location DALLAS, TEXAS;
1 •• * ••••••••••••••••• * •••••• * •• * •••• *** ••• *****************·***··1
1* DYNAMIC TIMING CONTROLLER */
1* SIMULATION FILE *1
1* FOR ALS6301 *1
/*.*.* ••• *************.*.**.*********** ••• ***.* ••• ** •• ** •• * ••• ***/
/. Allowable Target Device Types: TI882S1678 *1
/***.***.* •• ***.* •• **1

ORDER: GND,~3,OSC,\3,RESET,\6,REFREQ,\4,CLK,\3,AS,\2,A23_,\6,

MCI _,\4,MSEL,\3,CAS,\3,RAS,\4,OTACK,\4,RFC,\4,REQ;

VECTORS:
$01sg" REFRESH WITH ACCESS FOLLOWING";
$msg" n. ,
$01sg" ------------ INPUT ------------- -------- OUTPUT ---------- ACCESS";
$msg" GND OSC RESET REFREQ CLK AS A23 MCI MSEL CAS RAS DTACK RFC REQ";
$msg" --";
I*RESET*/ 0 C 0 X X X X H L H H H L H
1* STO* / 0 C 1 0 X X X H L H H H L H
1* STl*1 0 C 1 X X 1 X L L H H H L L
/* ST2*/ 0 C 1 X X X X L L H L H H L
/. ST3*/ 0 C 1 X X X X L L H L H H L
1* ST4*/ 0 C 1 X X X X L L H L H L L
1* ST5*1 0 C 1 X X X X L L H H H L L
/* ST6*1 0 C 1 X X X 0 H L H H H L L
1* ST7*1 0 C 1 X X X X H L H L H L L
1* ST8* I 0 C 1 X X X X H H H L H L H
1* ST9*/ 0 C 1 X X X X H H L L L L H
I*STI0*1 0 C 1 X X X X H H L L L L H
I*ST 11 * 1 0 C 1 X X X X H H L L L L H
I*STI2*1 0 C 1 X X X X H H L L L L H
I*STI3*1 0 C 1 X X X X H L H H H L H
/*STO *1 0 C 1 1 0 0 X H L H H H L H
I*STO *1 0 C 1 0 1 X H L H H H L H
I*STO * I 0 C 1 1 0 X H L H H H L H

$msg" ". ,
$01sg" "-,
$01sg"REFRESH WITHOUT ACCESS FOLLOWING";
$msg" " . ,
$msg" ------------ INPUT ------------- -------- OUTPUT ---------- ACCESS";
$msg" GND OSC RESET REFREQ CLK AS A23 MCI MSEL CAS RAS DTACK RFC REQ " . ,
$01sg" --";
I*RESET*/ 0 C 0 X X X X H L H H H L H
1* STO* I 0 C 1 0 X X X H L H H H L H
1* STI*I 0 C I X X 0 X L L H H H L H
1* ST2*1 0 C I X X 0 X L L H L H H H
1* ST3·1 0 C 1 X X 0 X L L H L H H H
1* ST4*1 0 C 1 X X 0 X L L H L H L H
1* ST5*1 0 C 1 X X 0 X L L H H H L H
1* ST6· I 0 C 1 X X X 0 H L H H H L H
1* STO*I 0 c 1 X X 0 X H L H H H L H

2-30

$msg" It. ,
$msg" " . ,
$msg"REFRESH WITH ACCESS REQUEST BUT DATA NOT IN DRAM (A23=H)";
$msg" ". t

$msg" ------------ INPUT ------------- -------- OUTPUT ---------- ACCESS";
$msg" GND OSC RESET REFREQ CLK AS A23 MCI MSEL CAS RAS DTACK RFC REQ ". ,
$msg" --"i
I*RESET*/ 0 C 0 X X X X H L H H H L H
1* STO* I 0 C 1 0 X X X H L H H H L H
1* STI * I 0 C I X X 1 X L L H H H L L
1* ST2*1 0 C 1 X X 0 X L L H L H H L
1* ST3*1 0 C 1 X X 0 X L L H L H H L
1* ST4*1 0 C 1 X X 0 X L L H L H L L
1* ST5*1 0 C 1 X X 0 X L L H H H L L
1* ST6*1 0 C 1 X X 0 1 H L H H H L H
1* STO*I 0 C 1 1 0 0 X H L H H H L H

$msg" ". ,
$msg" ". t

$msg"ACCESS TIMING CYCLE ". ,
$msg" fl.

t

$msg" ------------ INPUT ------------- -------- OUTPUT ---------- ACCESS";
$msg" GND OSC RESET REFREQ CLK AS A23 MCI MSEL CAS RAS DTACK RFC REQ " . ,
$msg" --";
I*RESET*I 0 C 0 X X X X H L H H H L H
I*STO *1 0 C 1 1 1 1 X H L H H H L H
I*STI4*1 0 C 1 X X X X H L H H H L H
I*STI5* I 0 C 1 X X X 0 H L H L H L H
I*STI6*1 0 C I X X X X H H H L L L H
I*STI?*I 0 C 1 X X X X H H L L l l H
I*STI8*1 0 C 1 X X X X H H L L L l H
I*STI9*1 0 C 1 X X X X H H L L L L H
I*ST20*1 0 C 1 X X X X H L H H H L H
I*STO * I 0 C 1 1 0 0 X H L H H H L H

$msg" ". t

$msg" It.
t

$msg"ACCESS TIMING CYCLE BUT DATA NOT IN DRAM (A23=H)";
$msg" ". t

$msg" ------------ INPUT ------------- -------- OUTPUT ---------- ACCESS";
$msg" GND OSC RESET REFREQ CLK AS A23 MCI MSEl CAS RAS DTACK RFC REQ " . ,
$msg" --,.j
I*STO *1 0 C 1 1 I X H L H H H L H
I*STI4*1 0 C X X X X H L H H H L H
I*STI5*1 0 C X X X 1 H L H H H L H
I*STO *1 0 C 1 0 0 X H L H H H L H

$msg" ". t

$msg" fl. ,
$msg"RESET DURING ACCESS TIMING CYCLE It;
$msg" " . t

$msg" ------------ INPUT ------------- -------- OUTPUT ---------- ACCESS";
$msg" GND OSC RESET REFREQ CLK AS A23 MCI MSEL CAS RAS DTACK RFC REQ " . ,
$msg" --";
I*RESET*I 0 C 0 X X X X H L H H H l H
I*STO * I 0 C 1 1 1 1 X H L H H H L H
I*STI4*1 0 C 1 X X X X H L H H H L H
I*STI5*1 0 C 1 X X X 0 H L H L H L H
I*STI6*1 0 C 1 X X X X H H H L L L H
I*STl?*1 0 C I X X X X H H L L L L H
I*STI8*1 0 C 0 X X X X H L H H H L H
I*STO *1 0 C 0 X X X X H L H H H L H
I*STO *1 0 C 0 X X X X H L H H H L H

2-31

2-32

BYTE CONTROLLER

Partno
Name
Date
Revision
Designer
Company
Assembly
Location

BYTE_CON;
BYTE_CON;
08/15/86;
01;
SCHIELE;
TEXAS INSTRUMENTS;
None;
DALLAS, TEXAS;

/*** ***********1
1* BYTE CONTROLLER */
1* FOR ALS6301/MC68000LI0 APPLICATION *1
1**/
1* Allowable Target Device Types: TIBPAL16L8 *1
1*** ***********/
1** Inputs **1
pin 1 = CASO; 1* CAS BANK SELECT *1
pin 2 = CASI ; 1* " */
pin 3 = CAS2; 1* tt *1
pin 4 = CAS3; 1* tt */
pin 5 = LOS; 1* LOWER DATA STROBE *1
pin 6 = UDS; 1* UPPER DATA STROBE */

1** Outputs **1
pin 12 = UCASO; 1* UPPER BYTE SELECT - BANK 0 *1
pin 13 = LCASO; 1* LOWER BYTE SELECT - BANK 0 */
pin 14 = UCASI ; 1* UPPER BYTE SELECT - BANK 1 *1
pin 15 = LCASI ; 1* LOWER BYTE SELECT - BANK 1 */
pin 16 = UCAS2; 1* UPPER BYTE SELECT - BANK 2 *1
pin 17 = LCAS2; 1* LOWER BYTE SELECT BANK 2 */
pin 18 = UCAS3; 1* UPPER BYTE SELECT - BANK 3 *1
pin 19 = LCAS3; 1* LOWER BYTE SELECT - BANK 3 */

1* equations *1
UCASO = CASO # UOS;
LCASO = CASO # LOS;
UCASI = CASI # UOS;
LCASt = CASt # LOS;
UCAS2 :: CAS2 # UOS;
LCAS2 = CAS2 # LOS;
UCAS3 = CAS3 # UOS;
LCAS3 = CAS3 # LOS;

BYTE CONTROLLER SIMULATION

Partno BYTE_CON;
Name BYTE_CON;
Date 08/15/86;
Revision 01;
Designer SCHIELE;
Company TEXAS INSTRUMENTS;
Assembly None;
Location DALLAS, TEXAS;
/******** •• * ••• ** ••• * ••••••••••••• ** •• * ••• * •••••••••••••••••••••• /

/* BYTE CONTROLLER SIMULATION FILE .j
/* FOR ALS6301/MC68000LIO APPLICATION ./
/* •••••••• * ••••• * ••••••••••••••••••••• * ••• * ••••••••••••••••• **.*.j

j* Allowable Target Device Types: TIBPAL16l8 ./
/ ••• * •••••••• * •••••••••••••••••••••••••• *.* ••••••••••••••••• **.*.j

ORDER:
CASO,~2,CASl,'2,CAS2,'2,CAS3,'3,LDS,'2,UDS,'4,LCASO,~2,UCASO,'2,
LCASl,'2,UCASl,'2,LCAS2,\2,UCAS2,'2,LCAS3,'2,UCAS3;

VECTORS:

$msg" INPUT ------- OUTPUT -------
$msg" L U L U L U L U
$msg" C C C C C C C C C C C C
$msg" A A A A L U A A A A A A A A
$msg" 5 5 5 5 0 D 5 5 S S 5 S 5 S
$msg" 0 1 2 3 S 5 0 0 1 1 2 2 3 3
$msg" ---

1 1 1 1 X X H H H H H H H H
X X X X 1 1 H H H H H H H H

0 1 1 1 0 0 L L H H H H H H
1 0 1 1 0 0 H H L L H H H H
1 1 0 1 0 0 H H H H L L H H
1 1 1 0 0 0 H H H H H H L L

0 1 1 1 0 L H H H H H H H
1 0 1 1 0 H H L H H H H H
1 1 0 1 0 H H H H L H H H
1 1 1 0 0 H H H H H H L H

0 1 1 1 0 H L H H H H H H
1 0 1 1 0 H H H L H H H H
1 1 0 1 0 H H H H H L H H
1 1 1 0 0 H H H H H H H L

2-33

2.4 THCT4502B/MC68000L8 Interface

2.4.1 Introduction

I 16-MHz I
OSCILLATOR J

2-34

This application report presents a circuit configuration which interfaces the
MC68000L8 to DRAM memory via the THCT45028 dynamic RAM controller. The
memory array is four banks of 256K-byte memory (TMS4256/4257) that provides
a 1 M byte deep system architecture.

Figure 2-13 is a schematic diagram of the circuit and Figure 2-14 a timing diagram
for two consecutive read cycles. Figure 2-15 shows a write access, followed by a
refresh, followed by a read-access grant. The THCT45028 uses the MC68000L8
system clock and requires no wait states on normal access cycles. When incorporating
DRAMs and a DRAM controller into a microprocessor based system, the following
timing specifications should be satisfied to guarantee a correct match between
processor and memory.

ALE-to-Clock Relationship
DRAM Refresh Time
DRAM Precharge Time
Row Address Setup and Hold Time
Data Valid to Write Enable Time
Read Access Time

'AS74

~
SYS CLK

~ o Q

0:

L~ MC.8000L8 THCT4502B

'-- > RASO f--

AS ALE RAS1 ~
~ ACR RAS2

A21 CS RAS3

MAO-MAB
A1-A9 • RAO-RAS

A10-A1B • CAO-CAB

A19 .. RENO

A20 .. REN1

VCC CAS1 'AS74 -
00-015 -Q Dr-.-1_ ROY

CASOl

CLR < I-

'(J)-
UOS

f>-R/W

LOS

~~ OTACK~ - \. ~ :---r - -

TMS4256

.. RAS

CAS

---t AO-AS ,. W

J~AS

-tW

TMS4256

RAS

CAS

~ ... AO-AS

H W

]:"AS

-I W

TMS4256

RAS

CAS

~ AO-AB

H W

J:'AS

-IW

TMS4256

r-~ RAS

.. CAS -... AO-AS

~ W

]~S
-I W

Figure 2-13. THCT4502B/MC68000L8 Interface Block Diagram

~~
~S

~
S

~--1

~W
--.S

~
B

~W

B

~--l - B

~W

~W
,B

~
B

~~

.~-----------READ----------~~.4~---------READ----------~~

so S 1 S2 S3 S4 S5 S6 S7 SO S 1 S2 S3 S4 S5 S6 S7
SYS ClK

45028 ClK
I

TCHSl-+i l+- I+--TSH----.t

AS I
~ ________________ r--

I
I

R/W I
I
I

lDS/UDS "
I,~ ____________ ~r--

TAEl-REl...t t.- T AEH-REH"" 14- ~ 14-- T AEl-REl

RAS
I

~ ________ ~ __ ~r
TAEl-CEl 14

CAS
~ _______ r

DTACK
~ ______________ ~r

Figure 2-14. THCT4502B/MC68000L8 Read Cycle Timing Diagram

... 14-----WRITE----___ ~ ... I .. ----REFRE5H-------.M--REAO ACCE55 GRANT--+I

5Y5 ClK

45028 ClK

R/VV

ROY

50 51 52 53 54 55 56 57 SO 51 52 53 54 SW 5W 5W 5W 5W 5W 55 56 57

I

TCH5l-+\ 14-

TAEl-REl~ 14-
I
14

TCl5H~ ~

" II
II
II
II
II
II'

T AEH-REH-+! ~ ~

~ TAEL-CEl

I

TAEl-RYl-+!

I I ~CH-RRL ~
If-~ I4-TCH-REL

TCH-RRH

TCH-CEl M .,
I
I
I

I
14- ~ !4-TCH-RYH

Figure 2-15. THCT4502B/MC68000L8 Write Acce5s, Refresh, and
Read Access Timing Diagram

r

r
r

r
r

2-35

2.4.2 ALE-to-Clock Relationship
When using the THCT 45028, the high-to-Iow transition of ALE should not occur
between 1 5 ns before and 1 5 ns after the falling edge of the clock signal. This condition
guarantees the proper selection between refresh and access cycles.

When connecting the Address Strobe (AS) of the MC68000 processor directly to ALE,
ensure that the following condition is met.

15 < 0.5T - tCHSl
15 < 0.5(125) - 60
15 < 2.5

At 8 MHz, this condition cannot be guaranteed. Therefore a circuit is required to shift
the input phase of the THCT45028 clock signal by 90 degrees. As shown in
Figure 2-13, this circuit can be built using sfandard 'AS74 D-type flip-flops. With the
THCT45028 ClK shifted by 90 degrees, the new equation becomes:

15 < 0.5T + 0.25T - tCHSl
15 < 0.5(125) + 0.25(125) - 60
15 < 33.75

It should be noted that all of the following equations take into account the 90 degree
phase shift. At lower clock frequencies, such as 6 MHz, the AS signal can be directly
connected to the THCT45028 and the phase shift circuits are not required.

2.4.3 DRAM Refresh Time

TWST

l

l

l

l

H

H

H

H

The refresh clock frequency is controlled by the strap input pins (TWST, FS 1, and
FSO) on the THCT45028. Table 2-3 shows the strap configuration for the
THCT45028. At 8 MHz, with no wait states, setting TWST low, FS1 high, and FSO
high yields a refresh rate of 11.375 p,s/row. The TMS4256/4257 requires that each
of the 256 rows be refreshed at least once every 4 ms. With a refresh rate of
11.375 p,s/row, the time required to refresh all 256 rows will be 2.9 ms. This easily
satisfies the 4-ms refresh requirement.

Table 2-3. Refresh Clock Frequency Input Pin Strap Configuration

WAIT

STRAP INPUT MODES
STATES MINIMUM CLOCK

FOR CLOCK REFRESH CYCLES

MEMORY REFRESH FREQUENCY FREQUENCY FOR EACH

FS1 FSO ACCESS RATE (MHz) (kHz) REFRESH

l It 0 EXTERNAL - REFREO 4

l H 0 EXTERNAL - REFREO 3

H l 0 elK 7 61 3.904 64-95t: 3

H H 0 elK 7 91 5.824 64-88§ 4

l l 1 elK 7 61 3.904 64-95t: 3

l H 1 elK 7 91 5.824 64-75t: 4

H l 1 elK 7 106 6.784 64-73t: 4

H H 1 elK 7 121 7.744 64-83' 4

t This strap configuration resets the Refresh Timer Circuitry.
:t: Upper figure in refresh frequency is the frequency that is produced if the minimum clock frequency of the next select state is used.
§ Refresh frequency if clock frequency is 8 MHz.
, Refresh frequency if clock frequency is 10 MHz.

2-36

2.4.4 DRAM Precharge Time
The precharge time is the time required between access cycles to allow internal nodes
on the DRAM to charge to their correct reference levels. This is specified on the DRAM
data sheet as tw(RH) min. As with most DRAMs, there is a choice of performance
ranges. For the TMS4256/4257, tw(RH) ranges from 100 ns on the - 12 device to
120 ns on the - 20 device.

When using the THCT45028, there are three precharge conditions which can occur
during normal operation. Each condition must be checked to be sure the precharge
condition is met. The following equations check these three conditions.

1. Access-to-Access cycle

tw(RH) < tSH - tAEH-REH - tt(REH) + tAEL-REL
tw(RH) < 150 - 35 - 30 + 35
tw(RH) < 120

2. Access-to-Refresh cycle

tw(RH) < 1.5T + 0.25T + tCH-RRL - tCLSH - tAEH-REH - tt(REH)
tw(RH) < 1.5(125) + 0.25(125) + 50 - 70 - 35 - 30
tw(RH) h 133.75

3. Refresh-to-Access cycle

tw(RH) < T - tCH-RRH - tt(REH) + tCH-REL
tw(RH) < 125 - 30 - 30 + 45
tw(RH) < 110

When the listed equations are correct, the THCT45028 guarantees the precharge
condition for either the -12 or -15 TMS4256/4257 DRAMs.

2.4.5 Row Address Setup and Hold Time
To meet the row address setup-time requirement, the address must be present at
the RAO-RA8 and CAO-CA8 inputs to the THCT 45028 for at least 10 ns (tAV-AEU
before ALE goes low. The row address setup time from the MC68000L8 is defined
by the tAVSL specification. At 8 MHz, tAVSL is 30 ns minimum. This meets the
THCT45028 specification. The row address setup time to the DRAM must also be
satisfied. For the TMS4256/4257, tsu(RA) is specified as O-ns minimum. The following
equation applies:

o ns < tAVSL + tAEL-REL - tRAV-MAV
o ns < 30 + 35 - 42
o ns < 23

When the equation is correct, the THCT 45028 guarantees the row address setup time
to the DRAM. The row address hold time required by the TMS4256/4257 is 15 ns.
This specification is guaranteed by the THCT45028. From the data sheet,
tREL-MAX is specified as 20 ns min.

2.4.6 Data Valid to Write Enable Setup Time
Data can be written into DRAM by two different methods. Depending upon the mode
of operation, the falling edge of CAS or the the falling edge of W will strobe the data
into memory. When W goes low prior to CAS going low, data out will remain in the
high-impedance state for the entire cycle. This permits common input/output
operation. This type of cycle is referred to as an early write cycle. When W goes low
after CAS goes low, the type of cycle is referred to as delayed-write or read-modify­
write cycle. To avoid bus contention, this operation requires a buffer between the
Q outputs and the microprocessor.

2-37

The circuit shown in Figure 2-13 generates an early write cycle. Therefore, data valid
to write enable needs to be referenced to the falling edge of CAS. The TMS4256/4257
requirement for an early write cycle is tsu(WCL), which is 0 ns minimum. The following
eq~ation applies:

o ns < tCHSL + tAEL-CEL - 0.5T - tCLDO
o ns < 60 + 115 - 0.5(125) - 70
o ns < 42.5

When the equation is correct, the MC68000/THCT 45028 combination guarantees
that data will be valid before CAS goes low.

2.4.7 Read Access Time from CAS
When the microprocessor tries to read data from memory, the Read-Access-Time
guarantees that data is available. When using the THCT45028, there are two possible
access situations. The most common is the normal access cycle. Another possible
access situation is the access-grant cycle. The access-grant cycle occurs when an
access cycle immediately follows a refresh cycle.

For the TMS4256/4257, access from CAS is specified as ta(C). When using the
TMS4256/4257, three speed types are available for selection. The three speed types
are as follows:

Speed type -12 ta(CA)
Speed type -15 ta(CA)
Speed type - 20 ta(CA)

60 ns
75 ns
100 ns

The following equations apply to the circuit shown in Figure 2-14.

1. Normal Access Cycles

ta(C) < 2.5T - tCHSL - tAEL-CEL - tt(CEL) - tp(OR) - tDICL
ta(C) < 2.5(125) - 60 - 115 - 20 - 15 - 15
ta(C) < 87.5

2. Access Grant Cycles

ta(C) < 2.5T - 0.25T - tCH-CEL - tt(CEL) - tp(OR) - tDICL
ta(C) < 2.5(125) - 0.25(125) - 140 - 20 - 15 - 15
ta(C) < 91.25

As shown by the equations, the only speed type that does not meet the access time
requirement is the - 20 device. The -12 and -15 devices both meet ta(C).

2.4.8 Other Considerations

2-38

The OT ACK input on the MC68000L8 informs the microprocessor that data is
available. Wait states are inserted by holding DTACK high. This process for the access­
grant cycle is illustrated in Figure 2-15. If an access request occurs during a refresh
cycle, the THCT45028 completes the refresh cycle, then finishes the access request.
In this situation, the DTACK signal is held high until data is available. The AS74 flip­
flop shown in Figure 2-13 is used to time the OT ACK signal in relationship to the falling
edge of S6.

On normal accesses, the RDY signal is high allowing either UDS, LDS or R/W to force
DTACK low. During write cycles, R/W will force OTACK low. During read cycles, UDS
and/or ["5'S will force DTACK low. During access-grant cycles, the low ROY signal
holds DT ACK high until it is released.

2.4.9 Summary
This application report provides an example of how to interface the THCT 4502B with
the MC68000L8. The major design criteria has been calculated and checked against
typical DRAM specifications. When using processor speeds lower than 8 MHz, the
interface is simplified further because it is not necessary to shift the THCT4502B input
clock frequencies. Additional design ideas can be obtained from an Applications Brief
"TMS4500B/MC68000 INTERFACE", Texas Instruments publication SMCA008.

2.5 Programmer and Software Manufacturers Addresses t

2.5.1 Programmer Manufacturers Addresses

ECI Semiconductor
975 Comstock St.
Santa Clara, CA 95054
(408) 727-6562

DATA I/O
10525 Willows Rd. NE
Redmond, WA 98073-9746
(206) 881-6444

DIGITAL MEDIA
11770 Warner Ave. Suite 225
Fountain Valley, CA 92708
(714) 751-1373

Kontron Electronics
1 230 Charleston Rd.
Mountain View, CA 94039-7230
(415) 965-7020

Stag Micro Systems
528-5 Weddell Drive
Sunnyvale, CA 94089
(408) 745-1991

Storey Systems
3201 N. Hwy 67, Suite E
Mesquite, TX 75150
(214) 270-4135

Structured Design
988 Bryant Way
Sunnyvale, CA 94087
(408) 988-0725

Sunrise Electronics
524 S. Vermont Avenue
Glendora, CA 91740
(81 8) 91 4-1 926

Valley Data Sciences
2426 Charleston Rd.
Mountain View, CA 94043
(415) 968-2900

Varix
1210 Campbell Rd. Suite 100
Richardson, TX 75081
(214) 437-0777

Digelec
1602 Lawerence Ave. Suite 113
Ocean, NJ 07712
(201) 493-2420

2-39

2.5.2 Software Manufacturer Addresses

2-40

Assisted Technologies Division (CUPL)
Personal CAD Systems
1290 Parkmoor Avenue
San Jose, CA 95126
(408) 971-1300

DATA 110 (ABEL)
10525 Willows Rd. NE
Redmond, WA 98073-9746
(206) 881-6444

tTexas Instruments does not endorse or warrant the suppliers referenced.

3 Cache Memory Systems

3.1 Introduction

As the typical operating speeds of processors have increased to provide for the ever
increasing need for computing power, the necessity of developing a memory hierarchy
(the incorporation of two or more memory technologies in the same system) has
become apparent. One of these memory technologies is selected on the basis of fast
access time (with associated high cost per bit) to allow minimum system cycle time.
The other technologies are chosen with the lowest possible cost per bit relative to
speed in order to achieve the maximum system memory capacity. In a system with
a multiple level hierarchy, the speed-to-cost relationship depends upon the frequency
of access and the total memory requirement at that level. By proper use of this
hierarchy through coordination of hardware, system software, and in some cases user
software, the overall memory system will reflect the characteristics that approximate
the fast access time of the fast memory technology and the low cost per bit of the
low cost memory technology. Large computer systems have made use of this memory
optimization technique to maintain very large data bases and high throughput (see
Figure 3-1). Many smaller processor systems use this technique to allow mass storage
of data, where a tape or a disk is the low-cost memory and Random Access Memory
(RAM) is the fast memory technology.

Because of the increase in processor speeds, memory hierarchy is now extending to
the RAM memory used in microcomputer systems. Typically, Dynamic RAM (DRAM)
is used as the bulk or main memory and High-Speed Static RAM (HSS) serves as the
fast-access memory. This HSS RAM is usually 1 K to 8K words deep and serves as
a fast buffer memory between the processor and the main memory. This small fast
buffer memory is called "cache" memory because it is the storage location for a
carefully selected portion of the data from the main memory. The addresses for that
portion of memory currently in the buffer memory is saved in the cache tag RAM (a
small memory that is used to store the addresses of the data that has been mapped
to cache). .

14 RElA TIVE MEMORY SIZE ,
ARCHIVIAL STORAGE

(MAGNETIC TAPE)

INCREASING
BULK STORAGE COST PER BIT

(DISK)

MAIN SEMICONDUCTOR
MEMORY

INCREASING (DRAM)

ACCESS TIME

Figure 3-1. Memory Size vs Access Time and Cost Per Bit

3-1

3.2 Memory Systems with Cache

3-2

When the processor accesses main memory, the processor address is compared to
the addresses currently present in the cache tag RAM. When a match occurs, the
required data is resident in the cache and the access is called a "hit" and is completed
in the cycle time of the fast memory. When a match does not occur (a "miss"), the
main memory is accessed and the processor must be delayed to allow for the slower
access cycle of the main memory. Whether a hit has occurred is determined by the
cache-tag RAM. Figure 3-2 shows the relative placement of the processor, main
memory, cache, and cache-tag RAM within a system.

Since there must be comparisons made between the current processor address and
the addresses in the cache, the cache-tag RAM must have a very fast access time
to prevent the degradation of processor accesses even when a match occurs.
Previously, the memory used for the cache-tag RAM was the same as that used for
the cache, which (because of added delays through comparison logic) meant that
the full benefits of the cache were not realized.

The Cache Address Comparators were designed to reduce this cache access
degradation to a minimum by incorporating the matching logic on-chip. This provides
match-recognition times that are compatible to the access time of the cache-buffer
memory.

I \
I DATA BUS) \

\ ~ ~ I

... ~

D

CACHE BUFFER
E~ MAIN RAM PROCESSOR MEMORY

A

'" \
ADDRESS BUS)

I

~ ~
D A ~~

CACHE TAG
RAM

M

I
Figure 3-2. Typical Memory System with Cache

3.3 Cache Memory Systems Using 'ACT2151 and 'ACT2152

3.3.1 Set-Associative Cache Address Matching

LOW ORDER n
ADDRESS

The' ACT21 51 and' ACT21 52 implement the set-associative type of cache address
matching. This algorithm may be more clearly understood by considering main memory
as an (m) by (n) array of blocks and the cache is an (n) by (k) array (see Figure 3-3).
Each block is composed of (x) words, and transfers between main memory and cache
memory always move all (x) words in that block. Corresponding to every block in the
buffer RAM is a tag address specifying which block of main memory is currently
resident in the buffer RAM at that location. The set-associative algorithm maps each
modulo (n) group of (m) blocks into the corresponding (n) row of the cache. The low
order address lines of the processor covering the sets (n) select a row of the cache
buffer and the corresponding row in the tag RAM. The data is stored in the cache
buffer and the high-order address specifying the block (m) is saved in the tag RAM.
The high-order address then becomes the tag.

n-1

•
•
•
2

1

o

MAIN MEMORY

x

x
x
x

x
o 1 2 • • • m-1

\,-.. ---"-I ,-----, V
m

(HIGH ORDER ADDRESS)

CACHE ,--______________ ~A _________________ ~

I \
BUFFER RAM TAG RAM - ,

--1
NV

m-1

-,
--;

-~ - -f
--I

- -f

NV

NV
-;
-~

-~
2

-~
--t

0
- - -f

--f
0

1
_..J

- ;
--I

DATA LABEL

K = Number of BUFFERIT AG groups for multiple cache systems
X = Blocks moved to cache
D = Valid data from main memory
? = Areas of cache that have not been loaded from main memory

NV = Code to indicate non-valid label
0, 1,2, m-1 = Labels from high order address specifying the block moved from main memory.

Figure 3-3. Set-Associative Cache Address Matching

3.3.2 Cycle Time Improvement
There are several algorithms used to determine which areas of main memory should
be resident in cache and which should be replaced (first-in, first-out; least recently
used; or random). Since programs typically have the property of locality (over short
periods of time most accesses are to a small group of memory addresses), these
replacement algorithms can make the cache have the majority of processor accesses
resulting in hits. The hit ratio (number of hits x 1 OO%/number of memory accesses)
runs 90% and higher in systems with well coordinated memory to cache mapping
routines. As the block size (x) increases, the replacement mapping algorithm options
have greater impact on the cache performance.

3-3

3-4

When running at maximum frequency, many microprocessors are operating with
memory access times of 100 ns or less. After allowing for address buffering, decoding,
and propagation delays through data buffers, the maximum access time that can be
tolerated is 60 ns or less before processor throughput is affected. For large memory
systems, DRAM can be used to achieve a cost effective memory.

However, these cannot meet a 60-ns access requirement. If the actual system
throughput for a system with cache and one without cache are compared, the
advantages of cache become obvious.

For comparison of the two architectures, assume that a processor is implemented
in which 30% of the active cycle involve main memory (the other 70% used for
instruction decoding and internal operations). Also assume that the processor cycles
at 125 ns with a required memory access time of 60 ns. If the memory is not ready,
the cycle time is extended by 125-ns increments till satisfied. This processor using
1 20-ns DRAMs would require one delay increment on main memory accesses and
200-ns DRAMs would require two delay increments. The average cycle time can be
calculated for each memory speed as follows:

Average Cycle Time = [(INT) x (CYC)] + [(MEM) x (CYC + DEL)]

where INT = percent of time doing internal operations
CYC = processor cycle time
MEM = percent of time doing memory accesses
DEL = number of delay increments x 100 ns

For a processor using 120-ns DRAMs:

Average Cycle Time = [(70%) x (125 ns)] + [(30%) x (125 + 125)]
Average Cycle Time = 1 63 ns

For a processor using 200-ns DRAMs:

Average Cycle Time = [(70%) x (125 ns)] + [(30%) x (125 + 250)]
Average Cycle Time = 200 ns

For the same system with cache memory assume a 90% hit ratio with 60-ns cache
and 120-ns DRAM:

Average Cycle Time = [INT x CYC] + [MEM x [(HIT x CAC) + (MIS x (CYC +
DEL))]]

where INT percent of time doing internal operations
CYC processor cycle time
MEM = percent of time doing memory accesses
DEL number of delay increments x 100 ns
HIT percent of memory accesses hit cache
MIS percent of memory accesses miss cache
CAC cache memory access cycle time

Average Cycle Time = [70% x 125] + [30% x [(90% x 125) + (10% x
125 + 125))]]

Average Cycle Time = 1 29 ns

This value represents a 20% improvement with 120-ns devices over the non-cache
implementation with 120-ns devices and 35% using 200-ns devices. This performance
improvement can be further demonstrated for those systems using custom or bit­
slice processors where the memory cycle time as well as access time is of concern.
For this example, consider a processor with a cycle time of 50 ns and main memory
cycle time of 100 ns (use the same access ratios as in the previous example):

Average Cycle Time
(Without Cache)

[(70%) x (50)] + [(30%) x (100)] = 65 ns

Average Cycle Time = [70% x 50] + [30% x [(90% x 50) + (10% x 100)]
(With Cache) = 52 ns

This represents a 20% decrease in average cycle time for the processor using 50-ns
cache memory. If the main memory was rated at a cycle time of 200 ns, either using
slow main memory or due to allocation of alternate cycles for some other activity
(multiprocessors, direct memory access, display refresh, etc.), the cache would still
give an average cycle time of 55 ns. This is an improvement of 63% over the 95 ns
average cycle time for a non-cache system.

3.3.3 Cache Memory Configurations

/
',/

"\

PROCESSOR

Figures 3-4, 3-5, and 3-6 illustrate applications for the' ACT2151 and the' ACT2152
in cache memory systems. Figure 3-4 shows a cache-memory configuration that has
a 512M-byte main memory with a block size of 4 32-bit words. In this particular
application, a cache containing 1024 four-word blocks was chosen thus defining the
main (n) x (m) array as being 1024 sets of 32,728 four word blocks. The 128M­
word memory requires an address bus of 27 lines. The least significant bits (A2-A3)
are used as a word select for one of the four words in each block. The next least
significant address lines (A4-A 13) are used as the set select inputs to the cache buffer
RAM and the cache tag RAM. The remaining high order address lines (A 14-A28) form
the label or tag which is stored and compared by the tag RAM.

\
00-031 "

~~
I

v8
001-0032

(4) 4K x 8 .. MAIN

RAM
CS "" MEMORY

AO-A 11
512M BYTES

0
.4
,,12

I A2-A13 \
A2-A28 \

J
A4-A13 A14-A24 A4-A13 A25-A28 7

,v10 ,1.-11 ,V1O ,I' 4

00-010 00-03
L...- AO-AS """- AO-AS 04-010 ~+5V

'ACT2151 'ACT2151
.~

-fS M f- ,rs M ~

T

T
TIBPAL 16R8

CONTROL
(RESET, 1jJ, PE. CS)

Figure 3-4. Cache Memory Configuration (Block Size 4)

3-5

3-6

Since the label in this example is composed of 1 5 address lines, two' ACT21 51 devices
are used to expand the tag. The 15 address lines are the data inputs to the tag RAM.
The other data inputs are tied to 5 V so that, after Reset, invalid data cannot force
a match. The match output of the two' ACT2151 devices are combined to form the
enable for the cache data buffer. If the contents of either' ACT21 51 do not contain
a match, the cache is not enabled. These signals are also used by the control circuits
to inform the system that the address is not present in the cache so that main memory
might be accessed. The control circuit also resets the cache upon power-up. This
is accomplished by taking the RESET input of the' ACT2151 low. After reset, no
matches will occur at any locations until that location has been written.

In the application shown in Figure 3-5, the expansion of the cache RAM is carried
out in both depth (more sets) and width (wider tag). The block size was chosen as
one such that the 4K cache now represents 4096 blocks of one word each. The high­
order addresses are still used as the label to the tag RAM. A 13 is used to select
between two' ACT21 52 pairs. Each pair contains labels for 2048 of the cache-memory
blocks. Address lines A2 thru A 12 are used as the set-address inputs. If the
chip select (CS) is at a logic high (deselected), the' ACT2152 match output (M) is high.
An AND function can be used to enable the cache data buffers and also notify the
control circuit if access needs to be made into the main memory. The logic for this
system illustrates that the upper pair are compared for the first 2048 blocks within
cache and the lower pair are compared for the second depending on the state of
address A 13.

A11 AO-A10 A12-A18

7

ADDRESSES TO
CACHE BUFFER RAM

11

AO-A26

AO-A10

11 8

AO-A 10
00

-
07

'ACT2151
.-~-----~------~s

M3t---.....

M4 TIBPA1'

e-~~------~~----------~s 'ACT2151 CONTROL

AO-A10

'ACT2152

--~--------~ M2~------------------~
~------~s 'ACT2152

Figure 3-S. Cache Memory Configuration (Block Size 1)

CS TO

PROCESSOR

A dual cache structure (K = 2) is shown in Figure 3-6. The M-word memory is divided
into 4096 sets of 256 four-word blocks. In this example, AO and A 1 are used to select
which one of the four words within a block are accessed. A2-A 12 select which of
the 2048 block labels are to be compared. Addresses A 14-A21 form the eight-bit
label for the block. Address A 13 is used by the cache control logic in conjunction
with the possible processor status lines as chip select inputs. The match outputs from
the two' ACT2152 devices, A 1 and A2, are NANDed to form an active-low enable
to the cache data buffers and to serve as a request to the control logic. The match
outputs from 81 and 82 also are NANDed to perform a similar function for cache RAM
B. If no match is found in cache RAM A or 8, the control logic will initiate an access
from main memory. The purpose of the dual-cache architecture is to allow for rapid
switching between multiple tasks or programs since the processor can have access
to one cache while the controller moves data between main memory and the other
cache. The dual or multiple cache approach also yields more replacement options than
the single cache architecture. When an access results in a miss in the single cache
system, the data in cache is replaced by the current data even though the old data
may still be useful. 8y using independent caches, the control can determine which
data is most expendable and replace that block while the other caches keep their
potentially useful data.

I \~----
V~--~,
1\ 00-015 /

\ ~, ~ CACHE RAM ARRANGED IN /
./ 16 DUAL 16K WORD CACHE

00-015
CACHE RAM B 16 ... 1.- I

E~--------------~----------------------~ 00-015

CACHE RAM A

,- AO-A11

l2{ AO-A11

E 1------+------.,

AO-A2l

\
\
/

MAIN
MEMORY

4M WORDS

~
A2-A12 A14-A21 A2-A12 1~14-A21

I +
A 1 3 /11 ... ~ 11 l'

/8 L- AO_A10 00-D7 M

I

t t

CACHE
CONTROL

LOGIC

; 'ACT2l52 t--~
S ~

~~--------~----------------~----~ __ ~~B~1 ____ ~ M MATCHB

t-----+---------+----------------------4-------II- 'ACT2l52

00-07
-AO-A10 M=sxr

t-----ts 'ACT2l52 -M • MATCH A

A1

t--------II- 'ACT2l52
IS A2

1S
B2

MEMORY DIVISION

4096 SETS
256 BLOCKS/SET
4 WORDS/BLOCK

II~I--~:------------~
Figure 3-6. Cache Memory Configuration, Dual Cache (K 2)

MEMORY
CONTROL

3-7

3.3.4 Summary
Cache-memory architecture can enhance the throughput of many microprocessor
systems. This allows large low-cost memory to perform like a high-speed RAM. The
, ACT21 51 and' ACT21 52 reduce the tag memory implementation cost and complexity
and provides label comparison times comparable to the access times of high-speed
memories. These additional benefits make high-performance microprocessor designs
that can use the same techniques of optimizing cost, memory size, and throughput
that had previously been available only in larger computer applications.

3.4 Article Reprints

3-8

The following three articles are being reprinted in this report for your convenience.
The articles are IICaches Keep Main Memories From Slowing Down Fast CPUs",
IICache-Memory Functions Surface on VLSI Chip", and IIMatch Cache Architecture
to Computer System".

Until main-memory speeds catch up to CPU processing speeds,
cache memories can be called upon to keep overall throughput rates
up--especiallyas main-memory sizes grow.

Caches keep main memories
from slowing down fast CPUs

This article begins a series on cache-memory
systems long employed in mainframes and high-end
minicomputers, and just now ready to enter
microcomputers as large, but slow dynamic RAMs
become available. The strategy of Texas Instruments
is sketched by Richard N Gossen, manager of
advanced development, in this issue (p. 32).

Whenever a speed mismatch occurs between main­
memory bulk storage and a fast-processing CPU, a
cache memory can provide the interface to take full
advantage of the CPU's processing speed. From the
main memory, the cache memory extracts and tem­
porarily stores enough data to satisfy immediate
CPU needs. Writing from the main memory is at
the main-memory's slow speed, but reading to the
CPU is at the CPU's high speed. As
the word "cache" implies, the
memory's operation is hidden from
(or rather, transparent to) the user.

Figure la exemplifies an 8-Mbyte
main-and-cache-memory system in a
typical large computer (see "Caches
Needed as Main Memories Grow").
The main memory alone can attain a
cycle time of about 400 ns, but with
error-detection-and-correction cir­
cuitry added to the system, a cycle
time of abou t 500 ns is more likely.
On the other hand, an ECL- or TTL­
based CPU can be ten times faster
with about a 50-ns cycle time. Buffering main
memory with a 50-ns cache-well within current
technology-enables the computer to run at a speed
close to the CPU's maximum speed.

Figure lb shows a more detailed block diagram
of a typical cache memory. It represents a set-

Cliff Rhodes, Static-RAM Design Manager
Texas Instruments Inc.
4000 Greenbriar Dr., Stafford, TX 77477

associative cache system with 2-kbytes of data storage
capacity in a single-set configuration and it serves
a l6-bit microprocessor system with a 22-bit address
bus. The basic storage elements are two RAM arrays:
one, a 1024 X l6-bit-word unit for data storage; and
the other, a 1024 X l3-bit-word unit for address, or
tag, storage. Addresses that arrive via the CPU data
bus (Ao to A21) are compared with those held in the
tag RAM. If they match, the desired data are located
in the cache's data RAM and the main memory can
be bypassed.

When first turned on, or should the computer
system malfunction or be shut down momentarily,
the cache would then probably contain improper or
erroneous data. Thus, a most important function not

Reprinted with permission from ELECTRONIC DESIGN, Vol. 30, No.2 January 21, 1982. Copyright 1982 Hayden Publishing Co., Inc.

Cache memories

specifically shown in the block diagram is a special
control-logic section to perform initialization opera­
tions for loading the cache with valid initial data.
Particularly important is the proper loading of the
tag RAM to prevent false matches.

Traditionally, cache memories have been con­
structed with static-RAM bipolar-semiconductor
technology, but recent improvements have given
NMOS static RAMs an edge by requiring less power
at the same speeds as bipolars. The CPUs, of course,
are built from high-speed ECL or Schottky TTL,
whereas main memories usually are composed of
dynamic RAMs that are about an order of magnitude
slower than the CPU.

Cache concept based on probability

No matter what the cache is made of or how it
is configured, its operation is based on "property­
of-locality" probability principles, which experience

8-Mbyte
main memory

(500-nscycle)

has shown to have the following characteristics:
First, over short time periods, most CPU memory
accesses are made to adjacent, small groups of
locations; therefore, even a small cache, storing
carefully selected data, will have data the CPU needs
most of the time. Second, data stored in the cache
and recently used will likely be reused shortly
thereafter. Finally, data adjacent to data that have
been recently used will most likely be used next.

Usually, then, several adjacent words are
transferred from main memory into the cache: The
immediate need may be for just one of the words,
but eventually the subsequent words are likely to
be required. This procedure reduces repeated ac­
cesses to main memory ("misses"), and increases the
probability of finding the data in the cache, or "hits."

To demonstrate the effectiveness of a cache, con­
sider a typical system, where 20% of all CPU opera­
tions are memory accesses (misses), the CPU cycle-

16-kbyte
cache memory

(50-ns cycle)

Data
storage

Tag storage and
control logic

CPU
(50-ns cycle).

1. In a computer system with a main memory, whose cycle time is a relatively slow 500 ns,
a fast 50-ns cache memory is interposed to match the CPU's 50-ns cycle time (a). In more
detail, a set-associative cache system has address tag words stored in one RAM, while the
data words are stored in a separate RAM (b).

time is 50 ns, and main-memory cycle-time is 500
ns. Accordingly, average machine-cycle time is

20 X 500 + 80 X 50
100

=140 ns.

However, with a 90%-efficient, 50-ns cache, the
average cycle time is

2 X 500 + 18 X 50 + 80 X 50
100

=59 ns.

Note that with an effective 90% hft ratio, the CPU
is forced to access the main memory on just 2% of
all machine cycles (10% of 20% of the cycles). Thus,
most memory accesses are handled through the
cache, and the average machine cycle-time is cut to
almost a third. H9wever, these calculations are

2. A fully associative mapping algorithm allows anyone of
the m X n main-memory blocks to be placed into anyone
of the cache-memory blocks.

simplified, because only a monoprogram instruction
stream is considered. Indeed, properly designed
cache memories routinely achieve considerably bet­
ter performance in mainframes and minicomputers
with actual, more complex programs.

A cache memory's data-storage section can be
implemented fairly simply with standard, high­
speed static RAMs. However, the address, or tag­
storage, section must do more than just store-it
must also compare addresses on the CPU bus with
those it stores. This is best done with an associative­
addressing technique.

Data access by association

Data in an associative or content-addressable
memory are not accessed merely by a location, or
address, code as in conventional memories, but are
found according to some property or "value" of the
data. Instead of an address word, a so-called search
key, or descriptor, is presented to the cache, which
represents particular values of all or some of the bits
of a stored word. When it is compared together with
a "lock"-the so-called tag bits-with all the words
stored in the cache, the search key ferrets out all
associated words. If the key has few attributes-is
therefore said to be "loose" -many words can match
and be accessed.

Though simple in concept, the associative-search
procedure is very complex in execution. The two most
common mapping algorithms that associate a set of
data in main memory-called a "block"-with a
corresponding block in the cache are designated
"fully associative mapping" and "minimal set-as­
sociative mapping."

In fully associative mapping (Fig. 2), anyone of
the m X n blocks in main memory can be placed in
anyone of the cache blocks, which then has a tag
address associated with it that specifies from which
main-memory block it came. (One of the tag bits­
a control bit-checks the validity of the block, and

3. The larger the cache, the smaller the number of misses (a). Splitting the cache into several independent
sets further reduces the miss ratio (b); however, in both these cases the improvement rate tapers off sharply
beyond some specific point. And when block-size and block-quantity are traded off against each other
(c), miss rates are minimized sharply at some particular optimum size/number relationship.

Cache memories

the low-order address bits can define bytes and data­
transfer units, or words.) Each address generated by
the CPU must be compared with all of the tags, and
the field of address tags must span all main-memory
m X n blocks, regardless of the cache's capacity. In
this case, the cache acts as a linear array.

In set-associative mapping, a selection from an n
row of m blocks is placed into the corresponding row
of the cache. Then only those bits covering dimension
m become the tag of the set n. Thus, for each CPU
address only the tags in that row must be compared.
However, for the minimum effective set-having a
dimension of two-a linear array must swap blocks
frequently because the cache cannot hold more than
one block from a row at any time.

Whether fully associative or set-associative map­
ping, if data-block addresses in the cache tag-store
match those on the CPU address-bus, the data are
made available from the cache. And if no match, or
a miss, occurs, the CPU is delayed while the needed
data are fetched from main memory. In this process,
the entire block containing the data sought is
transferred into the cache.

.... I.----Group 0

Of course, the larger the cache, the smaller the
number of misses on each CPU cycle. However, for
a normalized miss-rate-vs-cache-size plot that as­
sumes a fixed number of blocks in the cache and a
main-memory size from 2 to 4 Mbytes, the rate of
improvement in miss rate diminishes rapidly above
8 kbytes of cache size (Fig. 3a). Thus, the cost of a
very large cache is not paid back in higher
performance, when optimum size is exceeded.

However, further improvement can be obtained by
breaking the cache capacity into a number of sets
-defined as the number of parallel, independent
caches in a system. For the same 2-to-4-Mbyte main
memory and with the total cache size fixed at 8
kbytes, two separate caches of 4 kbytes each offer
better performance than a single 8-kbyte implemen­
tation, because another quick data-replacement trial
is available whenever a miss occurs the first time
(Fig. 3b). With a single set, a miss forces accessing
the slow main memory, which replaces all the data
in the cache, even though the replaced data may soon
be required again in the program. However, again
performance increase slows significantly above an

'j' Group 1------1,\
Data memory

Tag Word 1 Word 2 Tag Word 1 Word 2 -r I I
I I I I I I I I I

I I I I
I

I I I
I I
I I I

I
Byte I Byte Byte I Byte Block of data

index

=t1'
Address memory

Cache memory (1024 words)

14----18bits--...... --18 bits--.........,j

"----Tags--.........,j

Block of data plus tags

<a>

4. The cache for the PDP 11/70 is organized into two 256 blocks of data totaling 1024 words
(a). Every block has a tag field representative of the physical address of the word in the main
memory (b).

optimum size-in this case, above between two and
three independent sets for the 8-kbyte cache capacity.

Naturally, block size and the number of blocks also
affect miss rate. However, in a constant-capacity
cache, trading the number of blocks against their size
seems to raise a conflict: Large blocks accommodate
more adjacent data and thus would tend to reduce
the miss rate. But a higher number of smaller blocks
also would help reduce misses by providing more
data choices. Figure 3c shows a minimum miss rate

at about 8 bytes per block, or 1000 blocks, for a total
8-kbyte cache capacity. For block sizes between 2 and
16 bytes, an 8-, 16-, or 32-kbyte cache offers the same
normalized miss-rate performance, although larger
the total capacity, the smaller the absolute miss-rate.

To complete this general overall description of
cache operation, one additional important function
must be examined-the data-replacement algo­
rithm. Again, any time a cache memory records a
miss, a new block containing the required data must

Caches needed as main memories grow

Although advanced microprocessor-based systems
are beginning to see the dawn of the cache-memory
era, large systems like the IBM 360 class and large
minicomputers like the DEC PDP-ll series have bee.n
"caching-in" for years. On a cost-effective basis, a
cache system offers higher system speed for the cost
of just a small quantity of fast memory plus its
associated logic.

The resulting speed depends on the size and or­
ganization of the cache, not the shr.e of main memory,
and no programming changes follow when a cache
system is used. Nevertheless, it is the increased main­
memory size that will fuel the growth of cache-type
systems in the upcoming high-performance micro­
computers and microprocessor systems.

The high-density RAM chips that will significantly

1982 projected 16-bit /-LC performance

Fastest supportable
Processor Maximum clock rate memory access

99000
8001A
68000
8086-?

6 MHz
6 MHz
8 MHz
8 MHz

90 ns
215 ns
225 ns
280 ns

increase the main-memory sizes that microprocessors
and microcomputers will be called upon to support
are relatively slow dynamic units (see table). By 1983,
as the 64-kbit dynamic RAM becomes a cost-effective
chip, the average 16-bit processor will be operating
with 128 kbytes of memory. And by 1985, with the
expected maturity of the 256-kbit dynamic RAM, 1f2-

Mbyte memories will be commonplace in 16-bit pro­
cessor systems (see curve). Already, TI's 16-bit 99000
processors can address up to 16 Mbytes with the
addition of a memory-management unit. Systems of
this size, like mainframes and large minicomputers,
will demand cache memories to enhance performance.

While physical memory size encourages the growth
of cache systems, improved microprocessor perfor­
mance also contributes to wider cache use. Processor
speeds will certainly increase, necessitating fast cache

memories to enable CPU s to make full use of their
improved capabilities. The accompanying table pro­
jects the expected speed performance in 1982 of
several of the best known processors.

For example, TI's 99000, with a maximum clock­
rate of 6 MHz, is expected to support memory access
times of 90 ns. This meshes perfectly with the new
generations of NMOS static RAMs, whose access
times are now in the 3O-to-50 ns range. A 99000 will
almost certainly benefit from a cache-memory system
when it supports main memories in the megabyte
range. Indeed, the Zilog Z8001A, the Motorola M68000,

Average 16-bit
RAM

p.C memory

1024

512 I-

2561-

(kbytes) 64 I-

16t-

I I I I

1981 1982 1983 1984 1985

~nd the Intel 8086-2 are somewhat slower than the
99000 in memory-access times; therefore, they should
most definitely benefit from a cache for high­
performance applications.

In such microprocessor systems, dynamic RAM
used as the main memory will always remain the
limiting factor to improved system performance
because it is slower than a microprocessor. Even a
dynamic RAM with access time as fast as 150 ns slows
considerably when operated in a I-Mbyte memory
system using error-detection-and-correction circuitry.
The best performance of such a RAM is in the range
of 400 to 500 ns, minimum. If a processor is forced
to interface at this slow speed, severe performance
penalties result in the system.

Cache memories

be fetched from main memory to replace the block
already in the cache. But which block should be
removed to make way for the new information?

Clearly, replacement should be based on some type
of index of value for maximum effectiveness, not
randomly performed. An index of value can be based
on the chronology of the data, such as FIFO (first­
in, first-out), or the frequency of use, LRU (least
recently used), or a combination of the two. Of these,
LRU is one of the most popular techniques. It is based
on the theory that if information has been often and
recently referenced, it is likely to be referenced again
in the near future.

LRU offers some advantage over the FIFO
algorithm. Even though FIFO eliminates the
possibility of loading data and immediately remov­
ing it, FIFO has a serious disadvantage: Even when
a block of data is frequently and continually used,
eventually it becomes the oldest and is removed,
although experience shows it likely will be needed
again, soon. In addition, FIFO can introduce some
unusual side effects.

The associative cache In the PDP-11

In an actual cache system, say the PDP-11/70, a
1024-word (2048-byte) memory is organized as an
associative cache in two groups, or sets-each group
containing 256 blocks of data and each block contain­
ing two words divided into two bytes (Fig. 4a). Every
block also has a tag field to represent the physical
address in main memory, where the original copy
of the data-block resides.

Data from main memory can be stored in the cache
in an index position determined by its main-memory
physical address (Fig. 4b). An 8-bit index field (bits
2 to 9) of the main memory's 22-bit physical-address
word determines which of the 256 cache-memory­
array blocks will contain the data (either in group
o or group 1 as determined by the hit or miss
conditions). And the lowest two bits (bits 1 and 2)
select word-1 or word-2 and byte locations in the
block. But only the high-address field (bits 10 to 21)

· -the tag field-is stored in the cache.
Data are always sought in the cache first. If the

information is not present-a miss-a two-word
block of data is transferred (written) from main to
cache memory. In a typical program, writes to the
cache occur just 10% and reads from the cache, 90%
of the time. Read hits average 80 to 95% of all
memory operations in a typical program. 0

Design
A cache-tag store and comparator on a single chip will reduce parts
count, save space, and also greatly simplify cache systems in upcoming
minicomputers and microcomputers having large memories.

Cache-memory functions
surface on VLSI chip

This is the second article in a series on
cache-memory· systems. The first article,
which covers the ,basic philosophy of cache
systems, appeared in the Jan. 21 issue (p.
179). The overall approach was sketched by
Richard N Gossen, manager of advanced
memory development at Texas Instru­
ments. in the same issue (p. 32).

Given the growth now occurring, and in
the offing, in the main-memory size of
minicomputer and microcomputer sys­
tems, cache memories will be needed to take
full advantage of their CPU s' speed. The
TMS2150 cache-address and comparator IC
represents a major step in simplifying the
cache designer's task, as it handles most of
the so-called tag functions-cache-address
storage and comparison.

A cache memory is a small, fast buffer
memory interposed between a fast CPU
and a relatively slow main memory, like a
dynamic RAM. In this way, with an­
ticipated and frequently used information
prestored in the cache, the CPU can obtain
most of the data and addresses it needs at
a speed comparable to its own. By proper
design, the number of information accesses
to the large but slow main memory can be
reduced to a minimum. With a special memory­
mapping technique, a small number of cache storage
locations can represent large blocks of backing­
memory information.

The cache, a fast static RAM, is divided into two
sections-the tag store for the cache addresses; and
the data store for numerical, program, or other types

Clifford C. Rhodes, Static RAM Design Manager
Jino Chun, Memory Design Engineer
Troy Herndon, Memory Design Engineer
Texas Instruments Inc.
P.O. Box 1443, Houston, TX 77001

of data. Cache memories, however, require more
than mere storage. Just as important is high-speed
data comparison to check a portion of the CPU
address field against the tag addresses previously
stored in the static RAM. This operation determines
whether the data addressed by the CPU resides in
the cache.

The 2150 (Fig. 1) stores the cache tags (or ad­
dresses) in a 512-word X 9-bit static RAM, and also
contains a 9-bit comparator. In addition, it generates
and checks parity. The RAM's high speed, of course,
matches or exceeds that of most available

Reprinted with permission from ELECTRONIC DESIGN, Vol. 30, No.4 February 18, 1982. Copyright 1982 Hayden Publishing Co., Inc.

Cache tag-comparator

microprocessors, and the 9-bit comparator circuit,
which is integrated into the chip's memory-sensing
amplifiers, is about 50% faster than bipolar com­
parators currently found in cache systems.

Housed in a 24-pin, 300-mil ceramic DIP, the 2150
works over an ambient temperature range of 0° to
70°C. Operation is'from a single +5-V power supply,
and the chip interfaces directly with both TTL and
MOS logic circuits. Because of the ceramic package,
power dissipation can go as high as 660 m W; typical
dissipation, however, is 400 mW. To simplify cache­
system design, the 2150 works fully statically-no
clock or synchronizing signals needed-and it is
easily expandable to fit any size processor bus or
memory system (see "VLSI Built with Proven
Techniques").

1. The TMS21so caChe-tag store and comparator, a single
VLSI chip housed In a ceramic 24-pln DIP, occupies 24,600·
mll2 of silicon and is fabricated with proven 4.S-JLm design
rules and NMOS technology.

The use of the 2150 makes for a minimum chip­
count cache system, especially in conjunction with
the companion TMS2149 1-k-x-4-bit static RAMs to
store the data. The 2150 alone replaces 14 chips in
conventional systems. Still, even the simplest cache­
control circuit with the 2150 requires several TTL
devices for buffering and control and some fast
RAMs (like the 2149s) for storage.

In the block diagram of the 2150 (Fig. 2), the tag
static-memory array of 64 rows by 72 columns is
organized into the 512 words of 9 bits each, for a
total of 4608 bits.

Initializing this memory is simple: Merely pulsing
the Reset terminal low to clear all 512 memory
locations forces the chip's Match output terminal
high; and the reset pulse can be as short as 35 ns.
Initializing a conventional cache memory, however,
is much more complex. It requires a set of sequential
operations that is time-consuming and demands far
more hardware than the 2150's asynchronous single
pulse.

A read cycle is enabled when the chip-select
(CS) input is driven low while the write-control input
(W) is held high (Fig. 3a). During this cycle, nine
input-address bits (Ao-As) select a 9-bit word in the
memory array for comparison with eight input-data
bits (Do-D7) and an internally generated parity bit.
Upon a valid match, the Match output terminal goes
high. However, if the parity check indicates an error
in the internal-memory data, the parity-error output
(PE) and the Match output go low. ThePE output is
an open-collector type, allowing simple oR-tie con­
nections to other devices.

For a write cycle, both cs and w must be driven
low. Then, the data on the Do-D7 terminals, plus an
even parity bit from the internal parity generator
are written into the memory-array location ad­
dressed (or rather tagged) by Ao-As. A parity error
can be forced by holding the PE terminal low , which
is very useful for testing.

The 512-x-9-bit tag memory-array structure
permits the system to be expanded in building-block
fashion for either wider or deeper tag stores. Pat­
terned after bit-slice techniques, the 2150 can be
considered an 8-bit-slice cache-address and com­
parator; accordingly, a 16-bit word could be divided
into two 8-bit segments and operated on in parallel
by two cache systems, speeding up performance in
comparison with serial operation.

A key speed specification of a cache-address com­
parator is the delay time, 1ij (A), needed for the signal
to go from the address input to the match outputs.
Generally, this specification is a worst-case delay
path in a cache-memory system. The 2150 is available
with four delay versions-maximums of 45, 55, 70,
and 90 ns-to meet a variety of cache-memory

VLSI built with proven techniques

Occupying just 24,600 mil2 of silicon, the TMS2150
cache-address store and comparator is fabricated with
conservative, 4.5-~m design rules and 2.5-~m NMOS
polysilicon gate lengths. Many of the 2150's circuit
techniques were first proven on the TMS2147H and
TMS2149 4-k low-power, fast static RAMs. One such
circuit, a distributed column-sensing amplifier (Fig.
a), significantly improves the speed-power product
over that of previous high-speed MOS designs.

During read cycles, tag data stored in the 2150's
on-board memory are not directly accessible; instead,
they are ~ompared with the input data and checked
for parity. Since this parity check must be performed
at high speed, the sense amplifiers must reach valid

Pull-down
transistor

Common data I

Bit

(a) Dout

Pull-down
transistor

Common data

logic levels very quickly. That is beyond conventional
differential amplifiers, but does not faze the dis­
tributed, column-sensing amplifier in the 2150. One
method employed in the sense amplifier to help
achieve the required speed is to isolate the bit lines
(BIT and BIT) fully from the data lines (D out and
DouJ thus reducing the amplifier loading, which
would hold speed down.

A cross-coupled pair of FETs driven by data-line
source-followers acts as the main sense amplifier. This
circuit provides fast level shifting, high gain, and
excellent performance over the total expected range
of semiconductor processing variations and operating
temperatures.

Reading occurs when a column is selected by a high-

level signal to the circuit's column-select input. This
input activates the column amplifier, which differen­
tially drives the pair of common-data lines to the
sensed state, which is then quickly transformed into
sharp, clean logic levels by the sense amplifier.

To write data into the on-board memory, the pair
of data-in signal lines (Din and Din> must activate the
gates of the bit-line pull-down transistors. With the
desired column selected, forcing a data-in line to the
V DD voltage level pulls the associated bit line low to
write the data in. At the same time, the complemen­
tary Data In line is held low, which permits the
complementary bit line to rise to V DD via the bit-line
bias circuitry (not shown).

Because the bit lines are fully isolated from data­
line loading, they can be driven efficiently by the

Dou! ---1

Din-1

(b)

(c)

reommoo match

chip's small memory-cell transistors. Also, the sense­
amplifier circuit has a precisely controlled differen­
tial-voltage gain. Moreover, the dynamic require­
ments for the column-decoding circuitry (also not
shown) are light, because only one small transistor
activates the column selection. And since the
transistor's source terminal is at ground potential, a
relatively low column-selection voltage is sufficient
to activate the column.

In addition, the Exclusive-NOR gates were specially
designed to minimize chip real estate. To simplify the
layout, the parity circuit's Exclusive-NOR gate (Fig.
b) requires just a single-polarity input signal,
minimizing the needed interconnection area. Similar­
ly, the comparator's Exclusive-NOR circuit (Fig. c) uses
a common match line for the 9-bit comparator circuit
to hold down· the interconnection area.

Cache tag-comparator

system speeds (Fig. 3a shows a unit whose td (A) is
about 30 ns).

chip-select-to-match delay time, ttI (CS), which is
about 25 ns maximum in the fastest 2150 version,
and the input-address-to-PE delay time, itt (PE),
which is specified at a maximum of 55 ns for the
same version.

Applying the 2150

The fastest specified version (45 ns) is about 20%
faster than the fastest conventional bipolar RAM and
external TTL comparator circuit. In addition to being
fast, the address-to-match signal time of the 2150
is relatively stable over the operating temperature
range, increasing just 20% from its 25°C value with
the Match output driving a 30-pF load (Fig. 4). In
addition, td (A) changes little with supply-voltage
variations.

Other important timing parameters include the

With the tag-store and comparator circuitry on a
single chip, the 2150, of course, is a large saver of
circuit-board space. One or more 2150s together with
several 2149 static RAMs can be placed on a single
board, rather than the 11/2 to 2 boards usually

Reset '

2. The 2150 contains a 64-row- X-72-column static-RAM memory array organized as 512 words
of 9 bits each. The RAM stores tag-address data for the cache system, and the rest of the
chip provides the logic for comparing the stored tag address with the address on the data-
bus line for validity, and providing or checking the data's parity.

Vee = 5 0 V T = 25°C

I~~ ____ -.......,

00-07 @1 Data valid

--=t=J_~,_'-+_~(_A_)_'~l ___ ~: ____ -J1:
I '-~(CS)- 7:=1 tr(A) r+tp(CS)+L

l \) I~ J
I tr(PE)~I-_______ _

Ao-Ag ~l-__ Ad_d_re_ss_va_lid ___ ...J

Match

X Address valid 'f.!:lli
I

~ Data valid 'f.!:lli J

J

~ ::::::: ~ '" r-~

c
o
'(i;
'::;
'5
3>
l{)

ci

PE! \ -'-
-~~~~~(P=E~)-.-~+--------L----------- j 4- td(A) l10 ns/division -

Address (b) Match (a) input output

3. The timing cycles for 2150 start with a cs-Iow signal. After comparison and matching, either
a Match high or a parity error (PE) low is obtained (a). The worst-case time delay between
the address input and match output, td (A), is a key 2150 specification, and is available as
one of four maximum values. A unit actually measured has a typical30-ns ~ (A) delay (b).

required. Moreover, a single-board cache memory
virtually eliminates the delay times from the
capacitances introduced by buffers, conductor
traces, board connectors, and backplane wiring.

For example, the board can contain a single-set,
2-kbyte cache memory for 16-bit words (Fig. 5). Two
2150s serve for tag storage and comparison and four

30

Temperature (0 C)

4. The delay between the address input and the match
output, td (A), of the 2150 is relatively insensitive to variations
in temperature or V cc.

To
controller

0 0-0'5
(to CPU)

Ao

A'3-A21

As-A'2

A,-A7

Valid

Reset

Parity error

WE

NIT

2149s hold the 16-bit data words. Taken together with
some TTL packages-four 748240 octal buffers and
one 74810-they make an II-package tag and data­
storage system that requires only a controller (not
shown) to support a two-way interleaved backing
dynamic memory. This cache board, which operates
at a total delay from address input to valid-data
output of less than 80 ns, can be applied to almost
any 16-bit minicomputer or microprocessor system
having a 22-bit address field.

Acting as 8-bit-slice devices, the two 2150s split
the processor address bus into two sections when
comparing and matching addresses. When an ad­
dress match is verified by both chips, the Match
outputs-gated through G.-supply an enable signal
to the 748240s configured as bidirectional buffers.
In that way, address-input data can move from the
2149 static RAMs to the processor data bus.

When the write-enable (WE) line is pulled low, data
are entered into the 2149 RAMs from the processor,
while the tag addresses of the data are entered into
the 2150's internal tag-store RAM. 0

74810

5. The 2150 readily lends itself to building-block implementations of cache-memory systems, as
in this 2-kbyte single-set cache that employs two 2150s for a 16-bit processor with a 22-bit address
field. In addition, the cache system requires four TM82149 static RAMs, four 748240 bidirectionally
connected buffers, and a 74810 gate chip. Thus the cache circuit comprises 11 chips. Not shown
is the hit/miss and controller circuit that a cache also requires.

Performance could be improved by fitting cache-memory hardware to the
system software or fine-tuning the software to the cache hardware.

Match cache architecture
to the computer system

The following article is the third in a series on
cache-memory systems. The previous article covered
the details of a particular cache tag-store and com­
parator Ie (Feb. 18, 1982. p. 159). The first article
covered the basic cache philosophy (Jan. 21, 1981, p.
179). Texa.~ Instrument.~' overall approach was
sketched by Richard N. Gossen, manager of Ad­
vanced Memory Development, in the Jan. 21 issue
(p. 32).

Cache-system architecture can take many forms,
each with its own performance advantages and
disadvantages and differing degrees of economy. But
for optimum performance, the architecture of a
cache-memory system should be matched specifical­
ly to the architecture of the overall computer system.
Moreover, the cache's hardware and operational logic
should be fitted to both the statistical and structural
properties of the computer system's software and be
highly transparent to it.

Of course, existing software can also be tuned to
fit a particular cache hardware and its functional
properties. A properly configured and finely tuned
cache software-hardware system can approach well
over 80% of the throughput that a very expensive
all-high-speed memory could deliver. What's more,
a cache system can do it with a slow, low-cost bulk
memory plus a small amount of additional high­
speed hardware for the cache.

Very high speed memory is expensive; therefore,
the typical computer system cannot afford too much.
On the other hand, bulk memory offers a large
amount of low-cost capacity, but it is slow. A cache­
memory system can combine the advantages of the
two types of memories economically: small, but fast
memory in the cache with large but slow memory
for bulk storage.

Jerry VanAken, Computer Systems Engineer
Texas Instruments Inc.
8600 Commerce Park, Houston, TX 77036

A well-designed cache-memory system can
manage to keep the few most-likely-to-be-accessed
data in the cache for quick reference, while the bulk
memory serves as a backup on those occasions when
the processor references data not contained in the
cache. When successfully implemented, this ap­
proach yields an almost transparent, economical
memory system with the capacity of the bulk
storage, but with the quick response of the cache.

The memory system of an inexpensive microcom­
puter system today is likely to be made up of a
relatively low-cost disk and dynamic RAMs. Such a
two-level memory hierarchy is well-suited to the
needs of the less expensive popular microprocessor,
whose minimum memory cycle times are on the
order of 500 ns. Some of the newer high-performance
microprocessors, however, have much shorter cycle
times. An example is the 24-MHz 16-bit TMS99000,
whose minimum memory cycle is 167 ns. For such
a processor to access a block of relatively slow
dynamic RAM, it must be slowed down by adding
wait states to each memory cycle. This can be avoided
by adding a third level to the memory hierarchy in
the form of a high-speed cache of relatively simple
design. The performance of such a processor can be
improved dramatically, and the cache itself will
represent only an incremental cost to the total

CPU

1. Even a simple single-microprocessor system can benefit
from a cache system. With it, the number of accesses that
must be made to disks and slow main memories like dynamic
RAMs can be reduced substantially.

Reorinted with oermission from ELECTRONIC DESIGN, Vol. 30, No.5 March 4, 1982. Copyright 1982 Hayden Publishing Co., Inc.

Cache-memory architectures

system-especially with .the help of support chips
such as the TMS2150 cache address comparator to
keep the chip count low.

Although the per-bit cost of disk and semiconduc­
tor memory has decreased dramatically in recent
years, microcomputers remain expensive largely
because each decrease in the per-bit cost of memory
devices is countered by a proportionate increase in
the size of the average memory system. However,
adding a cache to a memory system can produce a
more than proportionate yield on the user's invest­
ment in his memory system-in the form of more
memory-access cycles per second per dollar.

But even though the addition of a cache to a
conventional, centralized high-performance micro­
computer can greatly increase memory effective­
ness, even greater improvements are possible with
a distributed-intelligence architecture. The central­
ized-processor arrangement shown in Fig. 1 is based
on the economics of past years, when the processor
part of the system represented a much larger part
of the overall system cost than it does today. Now,
the situation is different: to have a single $20
microprocessor control $1000 worth of memory no
longer makes economic sense. Low-cost independent
microprocessors with local I/O arrangements in a
distributed-intelligence system not only makes more
economic sense, but can provide substantially better
overall performance by using more of the available
memory bandwidth (Figs. 2 through 5).

Moreover, the amount of memory bandwidth
available can be effectively improved through the
addition of caches; hence, the distributed-in­
telligence processing system can benefit from prop­
erly applied caching even more than the centralized­
processor system of Fig. 1. In the simplest dis­
tributed system (Fig. 2), a central, global, bulk­
storage memory can serve many independent
microprocessors along a common bus. As the number
of processors on the bus increases, the system
throughput at first increases proportionately. But
the bus gradually saturates-its bandwidth capabili­
ty can handle no more data (Fig. 3). Adding more
processors soon does not improve overall throughput:
Since access to the memory for all data and instruc­
tions, as well as messages between the processors,
is via the bus, the bus quickly becomes very busy.
As more processors are added, contention for the bus
mounts, and delays become longer.

Distribute memory too

Moving some of the memory to the local sites of
execution (Fig. 4)-in a so-called function-to-func­
tion architecture (FFA)l-will help alleviate bus­
contention problems by locally storing most of the
instructions and data needed for the special func-

tions performed at that site. In this way, the global
memory need contain just the shared data and those
instructions needed for overall coordination, which
together with interprocessor messages now have
more "room" on the bus. This arrangement then
allows still more processors to be handled with a
given bus bandwidth.

Depending on the effort expended in organizing
the software and the amount of local memory, the
traffic on the bus can be cut way down-perhaps
to as little as 10% of that of a nondistributed memory
architecture. But to allow a high-performance
microprocessor to operate at full speed, this local
memory should be the fast, static-RAM type, which
unfortunately is expensive and, in practice, limited
to small capacities. However, configuring this small
memory into a cache system would help matters
since its capacity, though small, will be filled con­
tinually with current data (in a properly designed
system). The small cache capacity would be as
effective as a much larger static-RAM block mapped
into a fixed set of memory addresses.

Moreover, with more of the bus bandwidth made
available, entire blocks of data can be moved with
each global-memory access. Block transfers from the
global memory can have much the same advantage
as moving blocks from a disk: Following the initial
access time, the overhead time for each additional
data word in the block is merely incremental.

For example, the global memory is likely to be
made up of several dynamic RAMs, which support
paged-mode operation. In this mode, only one row
address is needed for a subsequent series of column
addresses, which decreases the amount of overhead
time per access. Or, the global-memory circuit may
access not one, but several words in parallel, and then
feed these to the system one-by-one at the maximum
transfer rate of the bus. (Recent bus interfaces, such
as the proposed IEEE-P896 standard, have been
designed to support such efficient block transfers.)

Block transfers are particularly beneficial to

1-- --I

1 Microprocessor I

In:
'--- -.- --
~

2. A distributed-intelligence, orfunction-to-function, system,
having several local microprocessors instead of one
centralized CPU, not only makes more economic sense, but
can provide substantially better overall throughput.

caches because of their locality property, which
characterizes the memory-access patterns of all
programs. Basically, if a program accesses one word
in a data or instruction block, it is likely to access
other words in the same block subsequently. By
reading the entire block into the cache at once, there's
a good chance that the cache will be able to satisfy
a greater number of additional access requests from
the local processor without requiring more trips to
the global memory for data.

Where to locate the cache

After the decision has been made to go with block
transfers of data to the cache in the distributed­
intelligence system, the next thing to determine is
the location of the cache. In Fig. 2, the cache is located
on the global-memory board. This cache location can
decrease the time on the bus for memory accesses;
accordingly, the bus is available for more data
transfers. While this cache location decreases the
overhead time per memory-data bus transfer, the
number of such bus transfers remains the same as
without the cache.

However, if the cache memory is located as in Fig.
4, the number of transfers over the bus is reduced.
A block of data is accessed from main memory just
once, but locally the same data can be used many
times over without having to go back to the main
memory via the bus. The bus bandwidth, thus freed
up, now allows an increase in the amount of data
transferred in each block. In addition, the cache block
can be made large enough to achieve a desired hit
ratio.

But if the processors run very long, uninterrupted
programs and need just a f~w global-memory ac­
cesses, a simple FF A configuration (Fig. 4 without
a cache, but with ordinary local memory) could be
the most economical approach. With such programs,
each processor executes the same on-board routines
and accesses the same data locations repeatedly.
Then the global memory need handle just messages
between processors and system-wide instructions
and data.

With the traffic on the bus reduced substantially,
more processors can be added to the bus. And global­
to-local-memory transfers could proceed via a direct­
memory-access (DMA) system, which of course
would be initialized under software control.
Transfers via a local cache system (Fig. 4 with cache
systems), however, would carry out the transfers
automatically, transparent to the software.

Almost transparent

When a distributed system is implemented with
local caches, the software is virtually unaware of the
split between the local and global memories:

System
throughput
(words/s)

3. When a multiprocessor system shares a single
bus, throughput rises proportionately at first with
the number of processors, but tapers off as the
bus's data-handling capacity saturates.

Hardware-the cache's control logic-maps the con­
tents of each local cache into the global memory, and
the cache is largely transparent to the software. (By
comparison, in a DMA arrangement, the software
would have to be totally involved in the local-global
memory split.) Accordingly, with distributed cache
systems, existing software (such as Pascal) for
centralized-CPU systems can be used, with but
minor modifications, for a higher-performance
distributed-intelligence system.

Clearly, the distributed cache-system approach is
general-purpose: All data and instructions can be
mapped into the global memory as in the centralized
system, and the local caches will then (almost)
transparently remap the information for local use.
In other words, the distributed system with local
cache can best serve a general-purpose processing
environment, where the specific functions of the
individual processors cannot be predicted in advance,
and thus where the contents of the local memories
cannot be fixed at the time the system hardware is
configured.

On the other hand, with a fairly fixed and predic­
table installation, perhaps with Fortran software, or
in a plant-process-control application, where the data
and software needed on each processor (board) are
firmly established, the FF A approach could be used
in place of local caches. But to achieve even greater
performance, a distributed memory system can com­
bine two or more of the approaches described. For
example, cache memories can be employed for both
the local and global memories-a combination of
Figs. 2 and 4. The local cache decreases the number
of references to the global memory, and the global
cache decreases the average length of the bus cycles
when global accesses do become necessary. Or, in a
variation of the distributed-processor system of Fig.
2c, local memory and local cache can be used on the
same processor. In Fig. 2d, the addition of a cache
improves the performance of a large but slow local
memory composed of 64-kbyte (or larger) dynamic
RAMs.

Cache-memory architectures

Although, in general, employing local caches in a
distributed system (like the one in Fig. 2c) will
remove local instruction and data traffic from the
bus and speed throughput substantially, trying to
make the caches appear totally transparent can
introduce interference problems with messages
between processors. In the distributed system of Fig.
2c, for example, messages between processors should
not be accessed through the local caches because this
class of data is not held there: The caches contain
only local current instructions and data from the
global memory. As a result, in Fig. 3, when micropro­
cessor 1 writes a message to microprocessor 2, the
data should pass via a particular location in the
global memory that acts as a message buffer. In the
process, the local cache on the microprocessor-l
board must be prevented from intercepting the
message. And when microprocessor 2 tries to read
the message, its cache also must be removed from
the message path. Otherwise, microprocessor 2 will
encounter stale data in cache memory, and not the
new message from microprocessor 1, which had just
been deposited into the global-memory.

A write-through (as opposed to nonwrite through
or write-back) caching policy can ensure micropro­
cessor 1 writes its message to global memory, but
additional steps are needed to ensure that
microprocessor 2 reads the message from global
memory without interference from its cache.
Software recognition of the special status of in­
terprocessor messages can easily solve this potential
problem. But this approach constitutes a lack of total
transparency for the caches.

One approach passes all interprocessor messages
through the microprocessor's 1/0 space. Since 1/0
data are not cached, this strategy automatically

4. A cache, located at the slow global memory as in Fig. 2,
can reduce the number of required slow accesses to main
memory, thus leaving the bus more time for other activities.
But locating part of the memory at each processor-in a
distributed architecture-Is even better.

avoids the interference problem. Interprocessor
messages pass through the 1/0 space, bypassing the
caches altogether. So if the software is initially
written to handle the interprocessor messages via
the 1/0 space, then when caches are introduced, they
will automatically be transparent to the caches.

Alternately, a particular set of addresses in the
global-memory space can be dedicated to message
passing. The control logic in each processor-board's
cache could incorporate a comparison circuit that
recognized the message-space addresses and allows
access to the message area in global memory to
bypass the cache.

System data should also bypass the caches and be
taken by a processor directly from the master copy
in the main memory: Such data are constantly being
updated by the other processors. If passed via the
local caches, such data would invariably be perceived
as stale because of the constant updating. If allocated
to specific and exclusive global-memory addresses,
these system data can be handled like the in-·
terprocessor messages to bypass the caches.

Similarly, each processor should have exclusive
access to its own private instruction and data seg­
ments in the global memory. In this way, the data
are "protected," with some support from bus
hardware, from a processor that may go "berserk"
and corrupt the instruction and data segments of the
other processors in the system.

Clearly, with caches in distributed-intelligence
systems, the memory accesses must be organized
rationally to optimize throughput, avoid inefficient
data thrashing and, most important of all, avoid
using data belonging to other processors. Of course,
with a single cache (as in Figs. 1 and 2), it is rather
difficult to mix up the data, since the cache should
always contain updated master versions of the cor­
responding blocks of memory (which is never
changed without knowledge of the cache). In a
multiprocessor system like Fig. 4, however, each
local cache is supposed to keep a separate, accurate
copy of some portion of the global memory-as it
pertains to its own processor. But a mixup is possible
because of the multiplicity of processors. '

The point of all this is that it is exceedingly
difficult to make the cache memories in a distributed
system totally transparent to software, while simul­
taneously ensuring that each processor is provided
with a coherent, updated version of the contents of
global memory. Methods have been proposed for
accomplishing just this, but they tend to be expensive
in terms of the hardware required, and are therefore
beyond the reach of the typical microprocessor-based
system.

In some systems, the entire contents of the cache
may have to be "flushed," if for any reason its

Cache-memory architectures

contents have become invalid. For example, a DMA
device may alter the contents of main memory,.
invalidating the contents of the cache. Also, consider
the case of a processor attached to a memory mapper
(like a 74LS610), which translates the logical ad­
dresses output from the processor into the physical
addresses used to access the memory. A cache will
usually be attached directly to the processor to avoid
lengthening the cache access time with the propaga­
tion delay through the mapper circuitry. However,
this means that the cache contents are mapped into
the logical rather than the physical address space.
Consequently, when the map file is altered, this
makes the cache contents invalid since the mapping
of the logical into the physical address space is no
longer the same.

For applications where the cache contents must
frequently be flushed, a cache-reset function is
essential. Without the ability to flush the cache
instantaneously, the system would be forced to clear
each cache block, one by one.

But flushing the entire cache when just a small
portion of its contents needs updating is wasteful.
Naturally, a more complex reloading arrangement
can be designed to provide higher caching efficiency
where only part of the cache data must be replaced
frequently, but only at the expense of increased
overhead in logic and software. Selectively dumping

5. The local memory can be in "ordinary" RAM
form (as in function-to-function architecture) or in
cache form. Or, both a cache and a local dynamic
RAM can be used.

Global memory

2

6. Interprocessor messages should bypass caches to avoid
interference. This can be accomplished with the software or
special overhead hardware, or by employing the
microprocessor's 1/0 space to carry the messages.

only the affected areas of the cache capacity-such
as when a DMA operation partially alters the con­
tents of the global memory-instead of a total reset,
would be more efficient, but also much more ex­
pensive. It would also occupy more board space.

Complexity requires board space. With the trend
to smallness in electronic packaging, sometimes
compromises must be made. CPU speed is generally
compromised when going from a multiboard
minicomputer design to a design that just barely
crams a CPU onto a single board. To put substantial
memory onto the board as well usually requires going
to a slower microcomputer design, which puts the
CPU into a chip, and leaves board room for the
memory. However, the speed lost because of these
compromises can be partially recovered by in­
corporating a cache on the board (or even on the
microprocessor chip). The cache effectively raises the
individual processor's memory access speed when it
is used with a slow on-board dynamic RAM (Fig. 5).

The TMS9995 microprocessor is a precache step
in this direction: It contains a modest chunk (256
bytes) of high-speed random-access memory, which
is mapped into a fixed area of the processor's address
space. Thus, it does not qualify strictly as a cache.
However, it can be used to the same effect by loading
the RAM-under explicit software control-with
currently needed data and instructions.

The next step would be to put a cache on the
processor board (or chip) with as much memory as
the board space allows, all of which would be almost
transparent to the system software. Equally impor­
tant, a cache could make the most of the limited
amount of memory that now can be put onto a board
with the microprocessor and 110.

Despite the transparency, a programmer who is
aware of the cache's capability can fine-tune the
software to maximize its efficiency. On the other
hand, overly refined software for one hardware
system can produce poor efficiency on another, while
remaining transportable in the sense that it executes
without error. But as software can be adapted to
maximize the efficiency of cache configuration and
minimize its limitations, so can cache-system
hardware be designed to best fit very extensive
existing software. It is a two-way street. 0

References

1. "Functional Architecture Threatens Central CPU," ELEC­
TRONIC DESIGN, Sept. 3, 1981, p. 141-156.

4 Error Detection and Correction (EDAC)

4.1 Use of an Error Detection and Correction (EDAC) Device

4.1.1 Introduction
The DRAM technology of today (i.e., 256K/M) has enabled system designers to use
much larger memory sizes than ever before. However, as with most advances in
technology, this has brought a new problem. For system memory sizes larger than
1/2 million bits, it is generally considered that error detection and correction is required
to guarantee system reliability without a tradeoff in performance. Although present
methods of parity checking will identify errors, they are not able to correct them. And
not correcting these errors can be costly. For example, in personal computers when
parity errors are encountered, the system has to be reset to eliminate the problem.
This system reset destroys any data stored in RAM and it must be reentered. Obviously
this is unacceptable to your customers. To eliminate this problem, TI has produced
a cost effective Error Detection and Correction (EDAC) device.

4.1.2 Error Types and Sources in Dynamic Memories
Two kinds of errors occur in memory devices; soft and/or hard errors. A hard error
is a physical failure of the memory device (e.g.,- an internal short or an open lead).
This type of error causes the memory location to always be either a high or a low.
A soft error is a random occurrence of a memory location change from a high level
to low level. These errors may be caused by system noise, alpha particle radiation,
or power surges.

In spite of design techniques used by memory chip manufactures to reduce these
errors, they are still a source of major concern in your system. Table 4-1 indicates
that as the density of memory chips increase their probability of errors also increase.
Therefore, your data integrity decreases in larger memory arrays.

Table 4-1. Chip Densities vs Soft-Error Rates

CHIP DENSITY TYPICAL SOFT -ERROR RATE

BITS/CHIP (% PER 1000 HOURS)

64K 0.10 - 0.20

256K 0.15 - 0.30

1M 0.20 - 0.35

4.1.3 Solutions to Boost System Reliability
There are several alternatives available that will either decrease or eliminate these
errors in your system. One method used to determine data integrity is the incorporation
of parity checking. This can be accomplished by using an SN74ALS29833 Parity Bus
Transceiver . To identify an error, the data word and the generated parity are compared
by performing an exclusive-OR operation. If several bits in the data word are in error
or the parity has changed, the exclusive-OR output would be low. While data integrity
can be determined using this method, it is unable to correct errors.

4-1

To obtain the desired level of quality, some type of error-correction scheme must be
incorporated. An EDAC chip provides the simple solution to the problem, while
dramatically extending the system Mean Time Between Failures (MTBF). This is
accomplished by detecting and correcting single bit errors and detecting double bit
errors. See Table 4-2.

Table 4-2. System MTBF Increases with an EDAC

MTBFt

Without EDAC With EDAC

CORRECT ABLE SOFT ERROR (SINGLE BIT) 7 Months >200 Years

tBased on 16M-Bit memory system using 256K DRAMs with a 0.30% per 1000 hour soft error rate.

When you include the other system variables causing errors (power surges, noisy
systems, etc.), your memory system MTBF, without an EDAC could be reduced to
several days. These types of memory-cell errors can be corrected using an EDAC.

4.1.4 EDAC Operation

CHECK
WORD

BIT

CBO

CB1

CB2

CB3

CB4

CB5

CB6

When data is written to memory, the TI SN74AS632 (32-Bit EDAC) generates parity
check bits. Each check bit is generated by performing a specific parity check on the
32-bit data word. For example, CBO is obtained by comparing specific bits of the 32-bit
word with those corresponding to an "X" in the Hamming Code Parity Algorithm (see
Table 4-3). CBO will be at a high level if the total number of highs corresponding to
these locations is an odd number. CBO will be at a low level if this number is even.
This procedure is repeated 7 times to obtain the 7 check bits, CBO-CB6 of the Hamming
Code. Check bits CBO-CB2 are used to determine odd parity. Check bits CB3-CB6
are used for even parity.

Table 4-3. Hamming Code Parity Algorithm

32-BIT DATA WORD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X

The seven check bits are parity bits derived from the matrix of data bits as indicated by "X" for each bit.

4-2

These check bits are stored along with the data in your systems main memory. This
additional memory requirement is the only overhead involved with the use of an EDAC.
Figure 4-1 shows a typical system using an EDAC and illustrates this overhead.

CONTROL 3 ... 7

CONTROL .. TIB825167B ' .. II CHECK BITS \. CHECK
BIT ...

OE ~ ... 74ALS/ , I MEMORY
' ..

EDAC 'AS632 32
CONTROL ... ERR EDAC DATA BITS

STATUS I \.
PROCESSOR

MERR J
""""-

, , I'
,

....
DATA

MEMORY

,- DATA BUS

"
Figure 4-1. Typical 'AS632 System

During a read cycle, the data and check bits are read from memory, any of which
may be invalid. New check bits are computed from the stored data bits. To determine
the validity of the data, the new and old check bits are exclusive-ORed producing
a 7-bit syndrome code. When decoded, these syndrome bits describe the condition
of the data word: free of errors, having a single bit error, or having multiple errors.
See Table 4-4. Any single error in the 32-bit word can be corrected. Both single and
double bit errors are indicated to the processor via single and double bit error flags.

There are two additional options for implementing EDAC into your system; detect
only and correct always. Of these two, correct always is the easiest to implement.
The EDAC always corrects single-bit errors and writes this corrected word onto the
system data bus or into memory.

Because days can elapse between errors, correction can be done only when needed.
The detect-only option increases your system performance during a read cycle by
allowing data to be written directly to the system processor. If a single or double bit
error occurs, the EDAC will flag the processor. This enables the processor to enter
a wait cycle until the word is corrected. This method of implementation does not use
the error correction portion of the EDAC until the processor determines what action
to take in the event of an error.

Another method of ensuring data integrity in your system is to use an EDAC unit during
memory refresh. The EDAC willI/clean" every memory location of errors during the
mandatory refresh cycles. This process is known as memory scrubbing. The data can
then be checked again during a memory-access cycle. By checking the data twice,
the time between corrections is reduced. Therefore, the probability of multibit errors
in your system declines.

4-3

Table 4-4. 'AS632 Syndrome Decoding

SYNDROME BITS
ERROR

SYNDROME BITS
ERROR

SYNDROME BITS
ERROR

6 5 4 3 2 1 0

L L L L L L L unc

L L L L L L H 2-bit

L L L L L H L 2-bit

L L L L L H H unc

L L L L H L L 2-bit

L L L L H L H unc

L L L L H H L unc

L L L L H H H 2-bit

L L L H L L L 2-bit

L L L H L L H unc

L L L H L H L OB31

L L L H L H H 2-bit

L L L H H L L unc

L L L H H L H 2-bit

L L L H H H L 2-bit

L L L H H H H OB30

L L H L L L L 2-bit

L L H L L L H unc

L L H L L H L OB29

L L H L L H H 2-bit

L L H L H L L OB28

L L H L H L H 2-bit

L L H L H H L 2-bit

L L H L H H H OB27

L L H H L L L OB26

L L H H L L H 2-bit

L L H H L H L 2-bit

L L H H L H H OB25

L L H H H L L 2-bit

L L H H H L H OB24

L L H H H H L unc

L L H H H H H 2-bit

CB X = error in check bit X
OB Y = error in data bit Y
2-bit = double-bit error

6 5

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

L H

unc = uncorrectable multi bit error

4 3

L L

L L

L L

L L

L L

L L

L L

L L

L H

L H

L H

L H

L H

L H

L H

L H

H L

H L

H L

H L

H L

H L

H L

H L

H H

H H

H H

H H

H H

H H

H H

H H

210 6 543 2 1 0

L L L 2-bit H L L L L L L 2-bit

L L H unc H L L L L L H unc

L H L OB7 H L L L L H L unc

L H H 2-bit H L L L L H H 2-bit

H L L OB6 H L L L H L L unc

H L H 2-bit H L L L H L H 2-bit

H H L 2-bit H L L L H H L 2-bit

H H H OB5 H L L L H H H unc

L L L OB4 H L L H L L L unc

L L H 2-bit H L L H L L H 2-bit

L H L 2-bit H L L H L H L 2-bit

L H H OB3 H L L H L H H OB15

H L L 2-bit H L L H H L L 2-bit

H L H OB2 H L L H H L H unc

H H L unc H L L H H H L OB14

H H H 2-bit H L L H H H H 2-bit

L L L OBO H L H L L L L unc

L L H 2-bit H L H L L L H 2-bit

L H L 2-bit H L H L L H L 2-bit

L H H unc H L H L L H H OB13

H L L 2-bit H L H L H L L 2-bit

H L H OB1 H L H L H L H OB12

H H L unc H L H L H H L OB11

H H H 2-bit H L H L H H H 2-bit

L L L 2-bit H L H H L L L 2-bit

L L H unc H L H H L L H OB10

L H L unc H L H H L H L OB9

L H H 2-bit H L H H L H H 2-bit

H L L unc H L H H H L L OB8

H L H 2-bit H L H H H L H 2-bit

H H L 2-bit H L H H H H L 2-bit

H H H CB6 H L H H H H H CB5

SYNDROME BITS
ERROR

6 543 2 1 0

H H L L L L L unc

H H L L L L H 2-bit

H H L L L H L 2-bit

H H L L L H H OB23

H H L L H L L 2-bit

H H L L H L H OB22

H H L L H H L OB21

H H L L H H H 2-bit

H H L H L L L 2-bit

H H L H L L H OB20

H H L H L H L OB19

H H L H L H H 2-bit

H H L H H L L OB18

H H L H H L H 2-bit

H H L H H H L 2-bit

H H L H H H H CB4

H H H L L L L 2-bit

H H H L L L H OB16

H H H L L H L unc

H H H L L H H 2-bit

H H H L H L L OB17

H H H L H L H 2-bit

H H H L H H L 2-bit

H H H L H H H CB3

H H H H L L L unc

H H H H L L H 2-bit

H H H H L H L 2-bit

H H H H L H H CB2

H H H H H L L 2-bit

H H H H H L H CB1

H H H H H H L CBO

H H H H H H H none

The circuit illustrated in Figure 4-2 is an example of a memory system that used
scrubbing. This circuit consists of the TI SN74ALS6302, a 1 M-DRAM Controller, the
TMS4C 1 024, 1 M DRAMs, the SN74AS632, a 32-bit EDAC, and control circuits.

4-4

REFRESH
TIMER

TlBPAL16R8

RFC

-> REFREO

RESET

CLOCK
GENERATOR

OSC

ClK

I
~

ClK

RST

A5

INT

A23

CPU

A21

A22

A20-A1

D5S"

UOS

R/W

00-015

r---

~ TIMING
CONTROLLER

TlBPALs

Yo REFREO
TMS4C1024

RFC 4-
'AL6301 ~ A9-AO I 6 CHECKS

OSC r----i BITS I
lE lE RASO r---. RASO 1M x 16 BITS I lCASO -

CAS CASI r-- f---t UCASO I
ClK I

RAS RASI

~:9AO
I

MSEl MSEL

RESET MC1 MC1 TMS4C1024

A5 MCO MCO 00-09 I 6 CHECK

I BITS
INT SO

1-'---+ RAS1 I RAS1 1M x 16 BITS LCAS1 I--
A23 S1t--- .--- 1--- UCAS1 I

,-- R/W OECB r--- I-- W
I
I

~G ERR f---

MERR t--- TMS4C1024

I OEBO-3 I-- RAS2 ==1 RAS2 6 CHECK

I BITS
A9-AO

RAS3 ~----t 1M x 16 BITS I LCAS2 fo-SELO BYTE I
SEl1

00","0"" 2f - UCAS2
I

II , ROW (A1-A10) UCASO I--
...-- W I

COLUMN (A 11-A20) UCAS1-
TMS4C1024

CASO ~ UCAS2 I - RAS3 6 CHECK
CAS1 f------+ UCAS3

I
I BITS

CAS2 r----. ~y
A9-AO 1M x 16 BITS I

LCAS3 '---r I -
CAS3 ~ TIBPAL16L8

UCAS5 I
~W 015-00 015-00 I

LCA50 ~ -
LCA51 f--------

LCA52 ~

LCA53 f--------

I' Il 'AS632

~ (2)
05-023

L 00-07 I--VCC Q

024-031 r--Vcc

SO

-S1

'-- OECB
IL

~ ERR CBO-CB5

MERR

o,,~ OEBO-3

Figure 4-2. Memory Management Systems Using Scrubbing

4.1.5 Texas Instruments EDAC Family
Because of the increase in MTBF, the SN74AS632 can increase system reliability
typically by well over 500-fold. The 'AS632 provides built-in diagnostics to assure
reliable device operation. Byte-write capability is included to allow operation on 8-bit,
16-bit, or 32-bit word widths in 3-state bus applications. The 'AS632 provides the
fastest correction time, 32 ns, and error-detection time, 25 ns, available today. The
architecture of the 'AS632 is illustrated in Figure 4-3.

4-5

so

S1

C
C

OE

-

-

BO-
B6

CB

DBO-D B31

OE DB

4-6

DECODER
XIY

0

o P
1 3

1

2 3 "'" ...,

2 ~

I--_ ...
7~ ,

j~

L4--
-""
""

.... 32.,
'"

I SYNDROME

1, GENERATOR

I
=1

7~ ~1 7~
h 7' 1 I -,

h
CHECK-BIT 4 7~ ~-- GENERATOR ~

(See Table 2)

"
LATCHES ~

C1 ~
7~ ~ 10 ,

MUX ~t [7
4,. X-OR]

BUFFERS Ik GO 1~ l-32 7"
<I, ---- G1

,- ...

*
7~ 7~ -- ERROR , ... 0 , ...

EN DETECTOR
(See Table 3)

LATCHES

C1
I...... EN ERROR P--ERR

32"
• 32., 10 71 --, MUL TI- p--MERR '" , .. ERROR

~ ,

32 "
32"

7

, BIT-IN-
ERROR

~lt
ERROR

BUFFERS CORRECTOR DECODER

<l =1 "- EN
~ ~

l ~

*
~ 32 ~ ,

32 ~
[32

...
.... EN

, ...
"\,,;I

X-OR]

Figure 4-3. 'AS632 Logic Diagram

4.1.6 Summary

Along with the 'AS632 32-bit EDAC, TI has a complete family of high-performance
EDAC products to fit your particular application. See Table 4-5.

Table 4-5. Texas Instruments Error Detection and Correction Devices

DIP DEVICE DETECTIONt CORRECTION FEATURES AVAILABLE PINS TYPE TIME (MAX) TIME (MAX)

40 ALS616 40 65 16-BIT, 3-ST ATE NOW

40 AS616 25:1: 32 SPEED ENHANCED ALS616 2087

28 LS630 30 65 16-BIT, NO BYTE-WRITE, 3-ST A TE NOW

28 LS631 30 65 16-BIT, NO BYTE-WRITE, OPEN NOW

COLLECTOR

52 ALS632A 40 58 32-BIT, 3-STATE NOW

52 ALS632B 30 37 SPEED ENHANCED ALS632A NOW

52 AS632 25 32 FASTEST EDAC AVAILABLE NOW

48 ALS634A 40 58 32-BIT, NO BYTE-WRITE, 3-STATE NOW

48 AS634 25:1: 32 SPEED ENHANCED ALS634 1087

tSingle Bit Error
:l:Design Goals

All of the products listed in Table 4-5 offer the following:

1. Built-in Diagnostic Capabilities
2. Modified Hamming Code Operation
3. Dependable Texas Instruments Quality and Reliability

Memory errors are becoming a very important concern to the system designer. To
effectively ensure data integrity, a method of correcting data errors is necessary. An
EDAC unit provides you with this essential function along with increasing system MTBF
from days to years. The TI EDAC family offers you ease of implementation, high
performance, and a device that is compatible with any microprocessor you might be
using.

For more information on the TI family of EDAC devices, please contact your local TI
Sales Representative or the Customer Response Center at 1-800-232-3200.

For your convenience, the TI documentation is listed below.

Error Detection and Correction Application Reports:
SN54/74LS630 or SN54/74LS631
SN54/74ALS632B, 'ALS633, 'ALS634A, 'ALS635

Data Sheets:
SN 54/7 4AS632
SN54/74ALS632B, 'ALS633, 'ALS634A, 'ALS635
SN54/74ALS616, 'ALS617
SN54/74LS630, 'LS631 (TTL Data Book Vol. 2)

LSI Data Book

TI Reference Number

SDLA003
SDAS102

SDAS101
SDAS105B
SDAS047
SDLD001

SDVD001

4-7

4.2 Error Detection and Correction Using 'AlS632B, 'AlS633, 'AlS634A, and 'AlS635

4.2.1 Introduction
With memory systems continuing to expand and the expectation of 256K-byte DRAMs
in the near future, error detection and correction has become increasingly important.
Generally, the larger the chip density, the greater the probability for device errors.
It is easy to recognize this probability when one considers that a 32-bit x 64K-byte
memory, using 64K-byte DRAMs, equals approximately 2.1 million bits of information.
This expands to 8.4 million bits of information when using 256K-byte DRAMs. For
memory sizes larger than 0.5 million bits, error detection and correction is required
to guarantee high reliability.

The SN54/74ALS6328, SN54/74ALS633, SN54/74ALS634A, and SN54/74ALS635
provide a solution to these requirements in 32-bit machines. In addition, the 'ALS6328
and 'ALS633 provide the necessary hardware to perform byte-write operations which
are typically used in the more advanced systems. To ensure the integrity of the error
detection and correction circuit, diagnostic capabilities have been provided in all four
devices.

The 'ALS6328 series devices are not limited to 32-bit systems. They can be
implemented in 16- or 24-bit systems. In the case of 16-bit systems, the additional
memory needed for holding the check bits can be reduced when compared to
conventional 16-bit EDACs.

The pin functions are listed in Table 4-6. Mechanical data for the 'ALS6328, 'ALS633,
'ALS634A, and 'ALS635 is shown in Figure 4-4.

Table 4-6. Pin Function for' ALS632B, , ALS633, , ALS634A, and ' ALS635

PIN NAME DESCRIPTION

Selects the operating mode of the EDAC
S1 SO MODE OPERATION
L L WRITE Input dataworp and output checkword
H L READ & FLAG Input dataword and output error flags

S1,SO
H H CORRECT Latched input data and checkword/output corrected

Data and error syndrome code
L H DIAGNOSTIC Input various datawords against latched

checkword/output valid error flags

DBO through DB31 I/O port for entering or outputing data

Three state control for the data I/O port. A high allows data to be entered, and - -
OEBO through OEB3 low outputs the data. Each pin controls 8 data I/O ports (or one byte). OEBO

('ALS632B, 'ALS633) controls DBO through DB7, OEB1 controls DB8 through DB15, OEB2 controls DB16 through
DB23, and OEB3 controls DB24 through DB31.

OEDB Three state control for the data 1/0 port. When low allows data to outputed and a high allows
(ALS634, ALS635) data to be entered.

LEDBO
Controls the dataword output latch. When low, the data output latch is transparent. When high, the
latch stores whatever data was setup at its inputs when the last low to high transistion occured on the pin.

CSO through CS6
I/O Port for entering or outputing the checkword. It is also used to output the syndrome error code
during the error correction mode.

OECS
Three state control for the checkword I/O port. A high allows data to be entered and a low
allows either the checkword or syndrome code (depending on EDAC mode) to be outputed.

ERR Single error output flag, a low indicates at least a single bit error.

MERR Multiple error output flag, when low indicates two or more errors present

4-8

ceramic packages - side-braze (JD suffix)

This is a hermetically sealed ceramic package with a metal cap and side-brazed tin-plated leads.

'ALS632B, 'ALS633 •.. JD PACKAGE
(TOP VIEW)

'ALS634A,'ALS635 .•• JD PACKAGE
(TOP VIEW)

LEOBO
MERR

ERR
OBO
OBl
OB2
OB3
OB4
OB5

OEBO
OB6
OB7

GNO

0B8
OB9

OEBl
OB10
OBll
OB12
OB13
OB14
OB15

CB6
CB5
CB4

OECB

ct ct
~A~

~-
JI.-O,25 (0.010)

NOM

VCC MERR VCC
Sl ERR Sl
SO OBO SO
OB31 OBl OB31
OB30 OB2 OB30
OB29 OB3 OB29
OB28 OB4 OB28
OB27 OB5 OB27
OB26 OEOB OB26
OEB3 OB6 OB25
OB25 OB7 OB24
OB24 GNO GNO
GNO OB8 OB23
OB23 OB9 OB22
OB22 OB10 OB21
OEB2 OBll OB20
OB21 OB12 OB19
OB20 OB13 OB18
OB19 OB14 OB17
OB18 OB15 OB16
OB17 CB6 CBO
OB16 CB5 CBl
CBO CB4 CB2
CBl OECB CB3
CB2
CB3

~ to-_-------B MAX --------.. -i~

~~ .. --:1

INDEX DOT

~---------------------------------~~

0,51 (0.020) l",""r-r--r-r--r-r~~~~~~~;:;:;::;:::;:;::;::::;~;----T

SEAT7~:'1~
PLA::O (00751-l:/h II

j
It I 11,.52(0,0601 ---+-

MAX ~ ~ 1,02 (0.040)

0,53 (0.021)

2,54 (0.100) T.P. 0,38 (0.015)
PIN SPACING

(See Note a)

~ DIM
48 52

A ± 0,25 (0.010) 15,24 (0.600) 15,24 (0.600)

BMAX 62,2 (2.45) 67,3 (2.65)

C NOM 15,0 (0.590) 15,0 (0.590)

ALL DIMENSIONS ARE IN MI LLiMETERS AND PARENTHETICALLY IN INCHES

NOTE: a. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.

Figure 4-4. Mechanical Data

5,1 (0.200)

MAX

3,05 (0.120)

MIN

4-9

4.2.2 Operational Description

4.2.2. 1 Write Mode
During a memory write cycle, the EDAC is required to generate a 7-bit check word
to accompany the 32-bit data word before being written into memory. To place the
'ALS632B, 'ALS633, 'ALS634A and 'ALS635 in the write mode, take S 1 and SO
low. Output-enable controls OEBO through OEB3 for the 'ALS632B, 'ALS633 or OEDB
for the 'ALS634A, 'ALS635 must be taken high before the data word can be applied.
Output-enable control OECS must be taken low to pass the check word to the external
bus.

The check word will be generated in not more than 30 ns after the data word has
been applied. During the write mode, the 'ALS632B series EDACs can be made to
appear transparent to memory, because typical write times of most DRAMs are much
larger than the propagation delay of data to check word.

4.2.2.2 Read-Flag-Correct Operation
During a memory read cycle, the function of the 'ALS632B series EDACs is to compare
the 32-bit data word against the 7-bit check word previously stored in memory. It
will then flag and correct any single-bit error which may have occurred. Single-bit
errors will be detected through the ERR flag and double-bit errors will be detected
through the MERR flag. Figure 4-5 shows a typical timing diagram of the read-flag­
correct operation.

When SO is taken high, the EDAC will begin the internal correction process, although
the error flags are enabled while in the read mode. For many applications, the simplest
operation can be obtained by always executing the correction cycle, regardless if a
single-bit error has occurred.

r---READ---I~"'I t-----------coRREcT----------... ~I

till thIS) ---"~I :
I I I

so -,L... _____ ~I I
S1---

... 14-------tcorrection-------..~1
I I
rtsu(1)-"~14.---th(9)---+t I ~tdiS~

11r-------~I~------~I~~~ __ --~Ir_------------------~~~~
DBO THRU DB31 ---00(INPUT DATA WORD OUTPUT CORRECTED DATA WORD

I~------~--------~~~~I~----~~--------------------~~..,
: I4--ten--+l

I I I
OEBO THRU 0EB3 : : I~----------------------------------~ ~tSU(1)-"~'4......--th(9)~ ~tdiS---"

CBO THRU CB6 ------:t--I"NIN;;PU:nT:cC;;H~EC;K~wiOo"RiRDo_--~~~~1 OUTPUT SYNDROME CODE I

I4--ten~----
I

ERR 07/0WJ;~;S§?ww ffiX~--------------V-AL-ID ER~R~F-LA-G----------------..,.W MiY/liW4I
~ tpd ~I
I

Figure 4-5. Read-Flag-Correct Timing Diagram

4-10

4.2.2.3 Important Timing Considerations for Read-Flag-Correct Mode
The most frequently asked question for an EDAC is how fast can a correction cycle
be executed. Before SO can be taken high, the data and check word must be set up
for at least 5 ns. In addition, the data and check word must be held for at least 10 ns
after SO goes high. This ensures that the data and check word are saved in the EDAC
input latches. After the hold time has been satisfied, the source which is driving the
data bus can be placed in high impedance and the EDAC's output drivers
can be enabled. This is accomplished by taking OEBO through OEB3 ('ALS632B,
'ALS633) or OEDB ('ALS634A, 'ALS635) low.

If the minimum data setup time is used as a reference and the output drivers are
enabled after the minimum data hold time, then correction will be accomplished in
37 ns or less.

4.2.2.4 Read-Modify- Write Operations
The 'ALS632B and 'ALS633 contain the necessary hardware to perform byte-write
operations. The 'ALS634A and 'ALS635 are not capable of byte-write operations
because they do not contain an-output data latch or individual byte controls. When
performing a read-modify-write function, perform the read-flag-correct cycle as
previously discussed and shown in Figure 4-5. This ensures that corrected data is
used at the start of the modify-write operation.

The corrected data is then latched into the output data latch by taking LEDBO from
low to high. Upon completing this, modifying any byte or bytes is accomplished by
taking the appropriate byte control OEBO through OEB3 high. This allows the user
to place the modified byte or bytes back onto the data bus while retaining the other
byte or bytes. An example of a read-modify-write for byte a is shown in Figure 4-6.

Since the check word is no longer valid for the modified data word, a new one is
generated by taking SO and S1 low. After the appropriate propagation delay, the new
check word will be available.

4.2.2.5 Important Timing Considerations for Read-Modify Write Operations
LEDBO should not be transitioned from low to high for 30 ns after SO goes high. This
ensures that corrected data is latched into the data output latches. However, LEDBO
should be taken high before either SO or S 1 go low. Again, this is to ensure that the
corrected data is stored into the data output latches. It is important that the new check
word be available no later than 32 ns after SO and S 1 go low.

4-11

14---- th (SI--+I

I ~I----------------------------------~ SO I I I
I4--READ---l~~.I--------CORRECT----------1~IIIIII."------WRITE-----+~

Sl~ : I
I I
I OUTPUT CORRECTED DATA WORD I

DBO THRU DB7 ---< INPUT DATf WORD ~""'----------)~»~)~>~-..Jt""-I;;INiPipuUiT:r;M;oO:oiDliFFI~EDDBB"VrTTEE OO)»+)~)~>>~--
I I

DBS THRU DB15 INPUT DATA WORD OUTPUT CORRECTED DATA WORD

DB16 THRU DB23 INPUT DATA WORD OUTPUT CORRECTED DATA WORD

DB24 THRU DB31 INPUT DATA WORD OUTPUT CORRECTED DATA WORD

OEBO

0EB2

i
I I
I+---tsu(2)~ j4-tsu(3)~

LEDBO ~~~~~~~~~~~~""I:""~~~~~""I:""~~ -W//$/II&///#$$/4' :
k--t~ I

W I
OECB ----------------------" I

I

CBO THRU CB6 ~_IN_P_UT_C_H_EC_K_W_O_RD __ ~.v~_',~ ______ OU_T_PU_T_S_VN_D_R_OM_E_C_O_DE __ ~ __ -JI~O~U~T~PU~T~C~HE~C~K~WO~R~D~~~--

~tpd-.t

\~ __________ V_AL_ID~E_R_R_F_LA_G ________ --JI

MERR \~ _____ VA_L_ID_M_E_RR_F_L_AG _______ I

Figure 4-6. Read-Modify-Write Operation

4.2.2.6 Diagnostic Mode Operation

4-12

The purpose of the diagnostic mode is to provide the capability of detecting when
the EDAC or memory is failing. There are several possible methods of using this feature.
Figure 4-7 shows a typical timing diagram of some diagnostics which can be performed
with these devices. Generally, the EDAC is first placed in the read mode (SO = L,
S 1 = H) and a valid check word and data word are applied. A valid check word is
one in which the associated data word is known. The EDAC is next placed into the
diagnostic mode by taking SO high and S 1 low. This latches the valid check word
into the input latches but leaves the data input latches transparent. To verify that
the valid check word was properly latched, OECS can be taken low causing the valid
check word to be placed back onto the bus. Since the data input latches remain
transparent, this allows various diagnostic data words to be applied against the valid
check word. A diagnostic data word is one in which either a single- or double-bit error
exists. In either case, the error flags respond. The output data latch can be verified
by taking LEDBO high and confirming the stored diagnostic data word is the same.
This is possible because error correction is disabled while in the diagnostic mode
(SO = H, S1 = L). Taking S1 high and LEDBO low will verify that the EDAC will correct
the data word. In addition, the error-syndrome code can be verified by taking OECS
low. It should be noted that only the 'ALS632B and 'ALS633 are capable of this pass
through verification of the diagnostic data word. The 'ALS634A and 'ALS635 do not
have the output data latch required to perform this function.

so

S1

DBO THRU DB31

L
~tSU(51~

: r'---
~------------------~I------~I

I ...--th(101~
I

INPUT VALID DATA WORD INPUT DIAGNOSTIC DATA WORD OUTPUT DIAGNOSTIC
DATA WORD

OUTPUT CORRECTED
DATA WORD

I I I I tdis~
OEBO--------~I--------------------+I------~------~I : r----
THRU: I I I I
~3 I I I ~----------------~I------------~

I tSU(7I--f11~t-----'~I"'."""'''-tSU(41: jlll-tpd~

LEDBO ________ ~:--------------------+!--~rl--,~------~!--------------~I--__________________ _
: : i4-+- th(121-----.1

CBO
THRU

CB6

,...tSU(61...-, th(111~, I ~tpd--+l
~----------~~r~~-------I------------~Ir_--------------------------------~~

INPUT VALID
CHECK WORD

11~~--~----~~~-J~------~------~I------J~--------------------------------td-iS~~~1

I I ,...----..
i I .-----
I I I
I I i

OUTPUT SYNDROME CODE OUTPUT VALID CHECK WORD

~tpd----! ~tpd____! ______________________________ _

'ERR -"""'1- - - ,VERIFY PROPER OPERATION OF ERR FLAG I VERIFY PROPER OPERATION OF ERR FLAG, FLAG SHOULD BE LOW
_~ ____ ---I '-___ ..!.":.~~~~ !E.,!:!I!'!!.. __ __ J WITH A DIAGNOSTIC DATA WORD WITH A SINGLE ERROR

__ !!:"=::.~ __ .!I I4---tpd----.t ________________________________ _

MERR , VERIFY PROPER OPERATION OF MERR FLAG , VERIFY PROPER OPERATION OF MERR FLAG, FLAG SHOULD BE LOW
_________ ...J \.. ___ .!!:..A:' S~O~L!!. ~ ~~~ ___ -' WITH A DIAGNOSTIC DATA WORD WITH A DOUBLE ERROR

Figure 4-7. Diagnostic Mode Timing Diagram

4.2.2.7 16-Bit Systems Using the 'ALS632B Series EDACs
The 'ALS6328 series EDACs can reduce the memory size required in 16-bit systems
where conventional 16-bit EDACs (6 check bits, 16 data bits) are presently used.
Figure 4-8 shows the typical system architecture for the 16-bit EDAC. In this system,
88 devices would be required for the 22-bit x 256K-byte memory array, assuming
64K-byte DRAMs are used. It is easy to see that 27.3%, or 24 devices, are required
for storing the check bits. When using the 'ALS6328 series EDACs, the memory
required for the check bits can be reduced to 17.9%, or only 14 devices. This reduces
the total number of DRAMs required by 10 devices. Figure 4-9 shows the architecture
using the 32-bit EDAC. The four 'LS646s are used to group two 16-bit data words
into one 32-bit data word. In addition, this type of system can be used in byte-write
operations where the other system cannot.

16-BIT
CPU

'LS630

16

MEMORY
22-BIT WIDE BY 256K DEEP

MEMORY FOR
CHECK-BITS
6 X4 (64K DRAMs)

NORMAL 16-BIT
MEMORY
16 X 4 (64K DRAMs)

TOTAL MEMORY: 88 DEVICES

Figure 4-8. 16-Bit System Using Conventional 16-Bit EDAC

4-13

'LS646

'ALS632B

.... l/L , SERIES YL , .r; " / / ---,/ ~ ~
..... '8 '7

.,

'LS646 ~
16-BIT

~ ~ CPU / rV ~ '8

V" I'll
'LS646

I

~ /
'- ~ ~ I 132

.,
./ ~ / ., , 8

'LS646

~ V'- ,
/ --,/ N ' 8

Figure 4-9. 16-Bit System Using 32-Bit EDAC

4-14

MEMORY
39-BIT WIDE BY 256K DEEP

TOTAL MEM

MEMORY FOR
CHECK-BITS
7 X 2 (64K DRAMs)

32-BIT
MEMORY
32 X 2 (64K DRAMs)

ORY: 78 DEVICES

5 First-In First-Out Memories (FIFO)

5.1 High-Speed Bus Coupling Considerations - FIFO Memory Buffers

5.1.1 Introduction
High-speed First-In-First-Out (FIFO) memory buffers are becoming very important tools
for those system design engineers looking for innovative ways to increase system
performance. Texas Instruments (TI) brought you the first monolithic FIFO
(SN74S225). But many of present day systems require more than the SN74S225
can provide. To meet the needs of those systems, TI has designed an enhanced family
of IMPACTTM Bipolar and EPICTM CMOS FIFO products. Table 5-1 lists some typical
applications, key requirements, and the TI FIFO available to meet those needs.

Table 5-1. FIFO Applications

APPLICATION KEY REQUIREMENTS FIFO PRODUCTS

CPU Buffering Data rate of processor 'LS222/224/227/228

Word width/depth 'ALS229A/232A/233A

Zero fall-through ' ALS2232/2233/2234

Peripheral I/O Deep/fast 'ALS234/235/236

Data-path synchronization 'ALS2232/2233/2234

Status flags TACT7202

TACT2202

Data Acquisition High data rate 'ALS229A/232A/233A

, ALS234/235/236

'ALS2232/2233/2234

Data/Telecom Low power/large depth TACT7202

Status flags TACT2202

This report explains how a TI FIFO can help boost your system performance by
maximizing data transfer rates, handling large data streams, or matching different
transfer rates. It will also define FIFO architectures and the details of the design
considerations needed.

A FIFO is a dual-port buffer memory that is organized in a manner that the first data
entered into the memory is the first removed. One port is the input, where the data
"producer" enters words into the buffer. The other port is the output, where the data
"consumer" removes words. Data in the buffer cannot be randomly addressed like
a RAM. A FIFO operates much like a line of people at a checkout counter.

There are two major architectures used in single-chip FIFO; toggle fall-through and
zero fall-through.

5.1.2 Toggle Fall-Through Architecture
The toggle fall-through type of FIFO consists of an array of registers. Figure 5-1
illustrates this architecture for an M-word by N-bit FIFO. The output of each register
is connected to the input of the following register in a chain-like fashion. Data is input
to the first register and is removed from the last register. As each word is input into
the FIFO, internal control logic toggles the word through the series of registers to
the last one available. As each word is output from the FIFO, all the words are shifted
down one register.

EPIC is a trademark of Texas Instruments Incorporated

5-1

SHIFT-IN

INPUT RDY-'---

SHIFT-OUT

ARRAY
CONTROL

OUTPUT
CONTROL

OUTPUT RDY-.----

INPUT DATA

SECOND
REGISTER

• • • • • •

OUTPUT DATA

Figure 5-1. Toggle Fall-Through FIFO (M words by N bits)

A toggle fall-through FIFO is described by the number of words in depth, number of
bits in width, maximum input and output clocking rates, and fall-through time. The
fall-through time is the maximum delay required for a word to travel from the input
to the output in an empty FIFO. The complement to this specification is the bubble­
through time or the delay it takes for all words to ripple down one regjster after a
word has been read from a full FIFO. However, these two specifications are roughly
equivalent so only the greater value is included in the data sheet.

TI offers several toggle fall-through FIFO products. The SN74S225 is a 16 x 5,
10 MHz FIFO. It has 3-state outputs and is cascadable in depth. The SN74ALS234
is a 16 x 4, 30 MHz, cascadable FIFO with 3-state outputs. The SN74ALS235 is
a 16 x 5, 25 MHz, cascadable FIFO. It has 3-state outputs and includes half-full and
almost full/empty flags. The SN74ALS236 is a bi-state version of the SN74ALS234.

5.1.3 Zero Fall-Through Architecture

5-2

The zero fall-through type of FIFO consists of a dual-port RAM with read and write
address pointers. Figure 5-2 illustrates this architecture for an M-word by N-bit FIFO.
Data is input to the word addressed by the write pointer and data is output from the
word addressed by the read pointer. Upon reset, both pointers are cleared to a value
of zero. After each word is read or written, the respective pointer is incremented by
one. Internal comparison logic is used to generate condition flags such as full and
to prevent overrun and under-run (too much writing and too much reading of data).

DATA INPUT

N

D

DUAL-PORT
RAM

M-WORDS

Q

N

DA ~--I

QA --+

DATA OUTPUT

COMPARE
LOGIC

SHIFT-IN

SHIFT-OUT

FLAGS

Figure 5-2. Zero Fall-Through FIFO (M words by N bits)

A zero fall-through FIFO is described in terms similar to the toggle products. However,
the fall-through time now consists of the delay for incrementing the pointer and
comparing the new pointer values. This time is roughly equivalent to the time between
shift clocks for the input and the output, or "zero". In many applications zero fall­
through FIFOs are preferred to toggle FIFOs for this reason.

TI offers several zero fall-through FIFO products. The SN74LS222 and SN74LS224
are 16 x 4, 1 O-MHz FIFOs with 3-state outputs. The SN74LS227 and SN74LS228
are open-collector versions of the SN74LS222 and SN74LS224. The SN74ALS229A
is a 16 x 5, 30-MHz, 3-state FIFO. It has 4 flags: full, empty, full - 2, and empty
+ 2. The SN74ALS232A is a 16 x 4, 30-MHz, 3-state FIFO with full and empty
flags. The SN74ALS233A is a version of the SN74ALS229A with full - 1 and empty
+ 1 flags instead of the full - 2 and empty + 2.

The SN74ALS2232 is a 64 x 8, 40-MHz FIFO with 3-state outputs and both full
and empty flags. The SN74ALS2233 is a 64 x 9, 40-MHz FIFO with 3-state outputs
and four flags: full, empty, almost full/empty, and half full. The SN74ALS22XX is a
64 x 9, 40-MHz, cascadable FIFO with 3-state outputs and both full and empty flags.
The TACT7202 is a 1 K x 9, 16-MHz cascadable FIFO with full and empty flags. The
TACT2202 is a 1 K x 8, 16-MHz FIFO with full and empty flags.

5.1.4 Buffering Design Considerations
A FIFO can be used as a buffer between two communication devices. In buffering
applications where the delay from input to output is not critical (e.g., CPU to printer)
either a toggle or zero fall-through FIFO can be used. In this instance, only the input
and output clocking rates and the depth of the FIFO are critical. In buffering applications
where the fall-through delay is important (e.g., bus interface) then the zero fall-through
architecture should be used.

The rare case for FIFO operation is when the consumer is faster than the producer.
A FIFO depth of one word would suffice. The other situation (see Figure 5-3) requires
more words.

PRODUCER ~x MHZ~ FIFO ~y MHZ~ CONSUMER I
Figure 5-3. Buffering Application

5-3

The following equations can be used, to determine the depth needed. If the data
producer writes a frame of (L) words at a rate of (X) MHz and the data consumer
reads words at a rate of (Y) MHz, the resulting equations are:

1. L. 1 IX + (BUFFER DELAY) = L • 1/Y

2. MAX (BUFFER DELAY) = DEPTH • 1 IX

3. MAX (L) • 1/X + DEPTH • 1/X = MAX (L) • 1/Y

4. DEPTH • 1/X = MAX (L) • (1/Y - 1/X)

5. DEPTH = MAX (L) • (X/Y - 1)

For example, with L = 100 words maximum, X = 8 MHz, and Y = 5 MHz, the
necessary depth = 60 words. In this case, a 64-word FIFO would suffice.

The reverse of equation 5 gives the maximum length of a frame for a given FIFO
depth:

1
6. MAX (L) = DEPTH • ---­

(X/Y - 1)

For example, with depth = 64, X = 1 MHz, and Y = 0.8 MHz, the maximum length
of a frame = 256 words.

5.1.5 Synchronization Design Considerations

5-4

In synchronizing applications, the data producer and consumer can operate
continuously but asynchronously. The maximum throughput of the FIFO depends on
both the clock rate at each port (Fin and Fout) and the fall-through time (TF). (fmax)
is derived from the maximum one-word time delay through the FIFO. The equations are:

7. MAXIMUM DELAY = _1_ + TF
Fin

8.
fmax

9. fmax = ----
1/Fin + TF

For a toggle fall-through FIFO in these conditions fmax is considerably less than
Fin. For example, if Fin = 30 MHz and TF = 1000 ns, then fmax = 967 KHz.
For a zero fall-through FIFO, f max approaches Fin. For example, if Fin = 35 MHz
and TF = 40 ns, then fmax = 14.6 MHz. To ensure only a single-clock delay from
the input and to output ports, the FIFO must be clocked at a rate less than fmax.

The FIFO may be operated at higher rates by working near the half-full condition.
The number of words that can be written into an empty FI FO in the fall-through
time (or read from a full FIFO) determines the margins from the empty condition
for operating the FIFO at its maximum rate (Fin). The numbers correspond to:

F'
10. MARGIN = ~

1/TF

For example, if Fin = 30 MHz and TF = 1000 ns, then the margin = 30 words.
For a 64-word FIFO this would mean that the FIFO could be operated at its maximum
throughput rate (Fin) when it is between 30 words and 64 words full. Figure 5-4
shows the throughput curve for this type FIFO.

5.1.6 Summary

N

~ 30
I
>
t)

c
Q)
::::J
g- 20
..t
E
::::J
E
.~ 10
~
I
)(
co

~ 0.967

Fin = 30 MHz
TF = 1000 ns

~------~----------~-00 30 64
FIFO Words

Figure 5-4. Throughput Curve for 64-Word, 30-MHz FIFO

In general, cascading N FIFOs in depth causes equations 9 and 10 to change to:

1
11. fmax = ----------

1/(Fin + N • TF)

12. MARGIN

FIFOs are versatile building blocks for the design of data communication products.
The need for buffering and/or synchronization of data can be met by selecting the
appropriately-sized toggle or zero fall-through FIFO using the methods presented in
this report. TI produces many different single-chip FIFO products for a wide range
of applications. Contact your local TI representative to obtain individual FIFO data
sheets for further information about a particular product.

5-5

6 BiCMOS

6.1 BiCMOS Memory Drivers Boost Performance

In current memory management systems, the replacement of discrete logic with single­
chip solutions for DRAM control, Error Detection and Correction, and Cache Tag control
has greatly improved memory access times. However, in large MaS memory
applications the use of external drivers in conjunction with the memory management
products can provide added drive to maintain maximum performance. These drivers
must meet the requirements of high drive for high capacitive loads, high speed for
maximum system throughput, and low power for system power constraints. The
designer can now meet these needs with the TI 2000 series Bus Interface devices
with improved performance and reliability. The devices offered in new BiCMaS, 'AS,
and 'ALS technologies provide designers with the characteristics needed to drive the
high capacitive loads in MaS memory and bus-intensive systems while reducing
undershoot for reliable system performance.

6. 1. 1 Reducing Undershoot Problems
In order to maintain maximum system throughput, memory drivers require high-speed
operation with very fast switching speeds. As a result, these switching speeds
together with the high inductance and capacitance in bus intensive environments can
create problems with output signal undershoot and overshoot. This undershoot and
overshoot can cause system reliability problems such as false reads at the input to
DRAMs. Commonly, these problems with undershoot and overshoot are controlled
with an external series resistor, which increases package count and board space. The
2000 series devices provide on-chip 25-0 series damping resistors on all outputs to
reduce undershoot and overshoot without adding to board real estate. Figure 6-1
compares the initial undershoot of the 'AS640 and the 'AS2640 with on-chip series
damping resistors. The 'AS2640 can reduce initial undershoot by 58% thus supplying
a more reliable input to systems susceptible to undershoot problems.

\
\

2
1\

1\
j ~

I \ - -
~ ~ ,-' o

~rL
SN74AS2640 J SN74AS640

1 I

~
VOLT/DIV -2

Figure 6-1. Effect of On-Chip Series Output Resistors

6-1

6.1.2 BiCMOS Drivers Match MOS Memory Needs

CPU

\

The 2000 series devices offered in the new TI BiCMOS technology provide the
advantages of both bipolar and CMOS. BiCMOS combines 2-JtM IMPACTTM bipolar
with 1.5-JtM CMOS to provide the high drive and speeds of bipolar and the low power
of CMOS. These interface devices have TTL input and output transistors with CMOS
internal circuits. The output transistors supply 48/64 rnA of drive current necessary
for bus structures such as VME and MUL TIBUS II, while the CMOS internal circuits
provide low power during disabled or 3-state operation. As with all 2000 series
devices, the BiCMOS parts have series damping resistors to reduce undershoot and
overshoot.

The BiCMOS drivers can provide the drive and speed necessary in MOS memory
applications with a power savings over bipolar devices. Figure 6-2 shows a 4-M word
x 32-bit memory configuration consisting of a SN74ALS6301 Dynamic Memory
Controller (DMC)'. a SN74BCT2828 Memory Driver and 4-M words of memory
comprised of four banks of TMS4C1 024 DRAMs. Each SN74ALS6301 can control
up to 4M words of memory. The memory driver provides extra drive to maintain
maximum performance in a 32-bit system. The 1 O-bit SN74BCT2828 gives a single­
package reliable solution with up to 48 rnA of output-drive current.

SN74ALS6301 10.,\.
TMS4C1024

DYNAMIC "'--
SN74BCT2828 4 BANKS

MEMORY / ADDR
MEMORY - , ,

L \ DRIVER

V' ADDRESS '
CONTROLLER 4-MEGAWORDS x 32-BITS

I\. ~
.,4 "

,
RAS : RAS , 4

_ CAS ./ -! CAS
MCO,1 RASI CAS I MSEL

, .. -
"" 4~ ,h U r W

2~ /" ,
"

MEMORY
TIMING W

CONTROLLER

... I,..-

DATA BUS I
Figure 6-2. 4M Word x 32-Bit Memory System

6.1.3 BiCMOS Lowers Power by 50% or More

6-2

When comparing the performance of the SN 74BCT2828 to the functionally equivalent
AM29828, there is a considerable power reduction. As shown below, there is a 50%
reduction in supply current while enabled. However, the real savings comes from the
disabled operation. There is more than a 95% supply current reduction while disabled.
Since the amount of time a driver is enabled varies with each system, power reduction
will vary with the minimum being 50% improvement.

ICC enabled
ICC disabled

AM29828
80 rnA
80 rnA

'BCT2828
40 rnA

3 rnA

In applications that involve multiple drivers the power savings is even more apparent.
For example, if a system requires five drivers with only one enabled at any given time,
the AM29828 would use almost 8 times more current then the SN74BCT2828.

ICC enabled
ICC disabled

Total

AM29828
1 x 80 rnA
4 x 80 rnA

400 rnA
Result = 87% power savings

'BCT2828
1 x 40 rnA
4 x 3 rnA

52 rnA

6.1.4 Less Undershoot Means Higher Reliability

>
is
j::
...I
o
>

The use of the 2000 series BiCMOS drivers also provides the reduced undershoot
to prevent false reads at the inputs to the DRAMs without the addition of external
resistors. Figure 6-3 shows the improvement of initial undershoot of the
SN74BCT2828 compared with the AM29828. The SN74BCT2828 undershoot is 40%
less than the AM29828 providing a more reliable signal with the same package count.

40% REDUCTION OF INITIAL UNDERSHOOT

'1-
-i-

i-

i-
BCT2828 ~

I "' .-
AM29828 ~

-l-
i-...

"I~
i-...

I •• I I -- I I I • . .. I I I • I •

I I I I I I I I I I I I, I I I I I I I I i- I

\. -l-..
2

\\ - -,- -."".

"0 l//~ ~ ~ - - o

'V --
-2

Figure 6-3. Initial Undershoot Comparison of 74BCT2828 vs AM2928

6.1.5 How Do I Get More Information
Each of the 2000 Bus Interface series devices provide the designer with reliable signals
without increasing package count and board real estate. The high drive and speed
complement Memory Management products for use in large memory and bus
applications. The onset of BiCMOS also brings a tremendous power savings which
can be appreciated in all designs. Below is a listing of the 2000 series offered. For
more information on these Bus Interface and Memory Management products, contact
your local Texas Instruments field sales representative or authorized distributor.

6-3

6.2

6.2.1

Device Description Output IOL (mA)

'BCT2240 Octal Buffer/Driver Inverting 35

'BCT2241 Octal Buffer/Driver True 35

'BCT2244 Octal Buffer/Driver True 35

'BCT2540 Octal Buffer/Driver Inverting 35

'BCT2541 Octal Buffer/Driver True 35

'BCT2827 10-bit Buffer/Driver True 12

'BCT2828 10-bit Buffer/Driver Inverting 12

'ALS2240 Octal Buffer/Driver Inverting 15

'ALS2242 Octal Transceiver Inverting 30

'ALS2244 Octal Buffer/Driver True 30

'ALS2540 Octal Buffer/Driver Inverting 30

'ALS2541 Octal Buffer/Driver True 30

'AS2620 Octal Transceiver Inverting 35

'AS2623 Octal Transceiver True 35

'AS2640 Octal Transceiver Inverting 35

'AS2645 Octal Transceiver True 35

BiCMOS Bus Interface

Abstract
Bipolar and CMOS processes have their individual advantages. The advantages of
bipolar are speed and output drive current capability. The advantage of CMOS is
significantly lower power consumption with continually improving speed performance.
The merge of the two processes in order to use their individual advantages for optimal
product development was therefore a predictable technology transition.

This portion of this report concerns the use of such a process, BiCMOS, and the
advantages provided in bus-interface logic. Ultimately, the system advantage gained
from the use of BiCMOS bus interface logic results in a 25% reduction of total system
power.

6.2.2 Introduction
Bus-interface logic requires very high output-drive currents of 48/64 mAo These
currents are required to drive high-capacitive loads and backplanes and to meet the
required specifications of established standards. Advanced speed performance is also
a necessity to allow the rapid transfer of information and to compliment the
performance of other system components.

Excessive power consumption was the tradeoff that system designers were forced
to accept to achieve the desired output-drive current and speed performance. In an
average system, 30% of the total device supply current is required to support the
bus interface logic. The use of BiCMOS bus-interface logic can reduce the required
device supply current by more than 90%. This results in an overall system power
savings of more than 25%.

6.2.3 Reduction of Supply Current Demand Without Sacrificing Performance

6-4

The combination of bipolar and CMOS components makes the power savings a reality
without sacrificing required output drive current or speed performance. An examination
of bus-interface logic in system operation reveals that the device is either enabled

(active) or disabled. Since in bus configurations only one device is active at any given
time, the remaining devices tied to the bus are disabled. Therefore, for the majority
of the time, devices tied to the bus are in a disabled mode. Further evaluation reveals
that the currently available bipolar devices that are capable of meeting the
specifications required for bus-interface logic require supply currents ranging from
75 mA to 160 mA per device depending upon the function.

BiCMOS requires approximately 10 mA maximum (lCCZ) when disabled and further
reduces the active supply current demand by approximately 50% compared to
equivalent bipolar devices. Table 6-1 is a comparison of the SN74BCT29861 and
AM29861 supply currents. Figure 6-4 illustrates typical switching performance and
disabled supply current demand between the two devices.

Table 6-1. SN74BCT29861/AM29861 ICC Comparison

SN74BCT29861
ICC Supply current Enable 30 mA (Max)

(Vee = 5.5 V @ 70°C) Disable 7 mA (Max)

AM29861
tlee Supply current 150 mA (Max)

(Vee = 5.5 V @ 70°C)

t Advanced Micro Devices Bipolar Microprocessor Logic and
Interface 1985 Data Book. No breakout given for enable or disable

ICC·

5- •
4-
3-
2-
1 -
0 , , ,

0 20 40 60

ICCZ - Required· Offstate Current (Maximum) - rnA

Figure 6-4. SN74BCT29861 and AM29861 Required Off-State Current
vs Average Propagation Delay

To highlight the system power savings advantage exhibited by BiCMOS bus-interface
products, see the conditions in Figure 6-5. Assuming a bus network contains a fanout
of ten bus interface devices, Figure 6-5 illustrates that only one device is enabled,
while the other nine are disabled.

6-5

I ENABLED II DISABLED II DISABLED II DISABLED II DISABLED I
BUS

I DISABLED II DISABLED II DISABLED II DISABLED II DISABLED I
Figure 6-5. Bus Network

Assumption:

Advanced

Bipolar BiCMOS

ICC (Enable) 150 rnA 30 rnA

ICCZ (Disable) 150 rnA 10 rnA

Advanced Bipolar

ICC (Enable) 1 x 1 50 rnA = 1 50 rnA

ICCZ (Disable) 9 x 1 50 rnA = 1350 mA

ICC (Total) 1500 rnA

BiCMOS

ICC (Enable) 1 x 30 rnA = 30 rnA

ICCZ (Disable) 9 x 7 rnA = 63 rnA

ICC (Total) 93 rnA

Result: 94% power savings.

6.2.4 Combinational Bipolar and CMOS Optimal Process Solution

6-6

BiCMOS bus-interface logic is a TTL-to-TTL interface product that provides the optimal
combination of speed performance, output drive, and low power. To achieve these
characteristics, TI combines 2-",m bipolar IMPACTTM (Implanted Advanced Composed
Technology) process with 1.5-",m CMOS process is shown in Figure 6-6.

The bipolar process provides output transistors capable of supplying the required
48/64 rnA. The transistors also use the smaller TTL voltage swings of -0.5 V­
to - 3.5 V as compared to their rail-to-rail or GND-to-VCC voltage swings that are
associated with CMOS transistors. The smaller voltage swings associated with TTL
outputs reduce the overall effect of transient voltage noise on the ground pins.
Excessive noise spikes can be detrimental to reliable system performance due to output
glitching, loss of stored data, increase of system noise, etc.

P CHAN N CHAN BIPOLAR

Figure 6-6. BiCMOS Process

The following equation is a simple method of calculating the induced voltage on the
ground and VCC pins due to transient currents caused by switching capacitive loads.

d2VO(t)
Vl(t) = - lp Cl ---

dt2

Where: Vl(t)
lp
Cl

d2VO(t)
dt

Voltage transient
Package inductance
load capacitance
Change in the slope of the transition edge
Transition edge time

Since lp, Cl, and dt are the same, the amount of voltage level transition swing is
the only difference between the bipolar and CMOS transistors. Since CMOS transistors
require a wider voltage swing, it becomes apparent that a CMOS output transistor
will produce a larger amount of voltage noise that, if excessive, could cause system
reliability problems.

The CMOS process provides a disable circuit that consumes considerably less current
than a pure bipolar circuit. Figure 6-7 illustrates how the CMOS components combine
with the bipolar components to interrupt the flow of supply current during the disabte
mode or three state. The remaining internal components are also fabricated from
CMOS which further reduces the required amount of supply current.

Both the bipolar and CMOS processes provide the capability to adequately meet the
advanced speed performance required for bus interface.

ENABLE
CONTROL

Vee

• DURING OPERATION: A SHORTED, B OPEN
• DURING THREE-STATE: A OPEN, B SHORTED

OUTPUT

Figure 6-7. BiCMOS Three-State Gate Schematic

6-7

6.2.5 Variety of Functional Options in Two-Package Configurations

6.2.6 Summary

6-8

Additional design support for bus-interface logic is the availability of popular functions
in multiple variation such as true or inverting outputs and synchronous or asynchronous
operation. BiCMaS will be offered with two pinout options; 1) The traditional pinout
for pin-to-pin compatibility with existing bipolar devices. 2) Flow through architecture
with center power pins to further reduce the voltage noise associated with multiple
output switching.

As indicated by the VL(t) equation, the amount of switching noise can be reduced
through a decrease in the package inductance.

The functional options that will be available in BiCMaS are as follows:

FUNCTION

'240 Series

'245 Series

'373 Series

'543 Series

'646 Series

'2000 Series

'29818/819

'29820 Series

'29830 Series

'29840 Series

'29850 Series

'29860 Series

DESCRIPTION

Octal Buffers/Drivers

Octal Transceivers

Octal Latches

Octal Registered Transceivers

Octal Registered Transceivers

Memory Drivers

Pipeline Registers

8-10 Bit Buffers and Registers

Bidirectional Parity Transceivers

8-10 Bit Latches and D-Latches

Bidirectional Parity Transceivers with Latches

9-10 Bit Transceivers

BiCMas bus-interface logic is a TTL-to-TTL product that provides a 95% reduction
in standby current demand. This results in a 25% total system power savings without
sacrificing high output drive or speed performance.

