
1985

I

ata

TEXAS
INSTRUMENTS

SNYS001

TI32000 Family

Introduction

Architecture Overview

Component Description

Data Sheets

Mechanical Data

Glossary

Appendix

TI32000 Family
Data Manual

~
TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. TI advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

TI warrants performance of its semiconductor products~ including SNJ
and SMJ devices, to current specifications in accordance with Tl's
standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems such testing necessary to support this
warranty. Unless mandated by government requirements, 'specific
testing of all parameters of .each device is not necessarily performed.

In the absence of written agreement to the contrary, TI assumes no
liability for TI applications assistance, customer's product design, or '
infringement of patents or copyrights of third parties by or arising from
use of semiconductor devices described herein. Nor does TI warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intellectual property right
of TI covering or relating to any combination, machine, or process in
which such semiconductor devices might be or are used.

Specifications contained in this data book supersede all data for these
products published by TI in the US before January 1985.

The information presented in this document is based in part on material
copyrighted by National Semiconductor Corporation.

ISBN 0-89512-186-7

Copyright © 1985, Texas Instruments Incorporated

Contents

Section Page

1 Introduction. .. 1-1
1.1 Typical Applications of the TI32000 Family " 1-4
1.2 Mainframe Performance at a Microprocessor Price " 1-4
1.3 Coprocessors Increase System Performance " 1-4
1.4 System Support Chips 1-5
1.5 T132000: The 32-Bit Solution. .. 1-5
1.6 Key Features of the TI32000 Family 1-5

2 Architecture Overview. .. 2-1
2.1 Computer Architecture " 273

2.1.1 Introduction............................... 2-3
2.1.2 High-Level Language Support " 2-4
2.1.3 Memory Organization " 2-8
2.1.4 Protection 2-14

2.2 High-Level Language Support on the TI32000 2-15
2.2.1 Introduction 2-15
2.2.2 Data Types Supported " 2-15
2.2.3 Instruction Set. .. 2-19
2.2.4 Register Set " 2-24
2.2.5 Addressing Modes " 2-27

2.3 Memory Organization. .. 2-30
2.3.1 Introduction............................... 2-10
2.3.2 Mapping Mechanisms in the TI32000 2-31
2.3.3 Virtual Memory Mechanisms of the TI32000 2-35
2.3.4 Memory Protection Mechanisms of the

TI32000 Family " 2-38
2.3.5 Virtual Machines 2-38

2.4 Other Features of the TI32000 Architecture " 2-39
2.4.1 Introduction............................... 2-39
2.4.2 Modular Software 2-39
2.4.3 Input/Output 2-46
2.4.4 Coprocessors.............................. 2-52
2.4.5 Debugging Facilities. .. 2-55

v

Contents (Continued)

Section Page

vi

3 Component Description .. 3-1

3.1 TI32032T Microprocessor 3-3
3.1.1 Programming Model .. 3-3
3.1.2 Instruction Set ... '. .. 3-8
3.1.3 Functional Description 3-11

3.2 TI32016T Microprocessor 3-63
3.2.1 Programming Model .. 3-63
3.2.2 Instruction Set. .. 3-68
3.2.3 Functional Description 3-71

3.3 TI32081 W Floating Point Unit ... 3-121
3.3. 1 Operand Formats .. 3-121
3.3.2 Programming Model 3-123
3.3.3 Instruction Set " 3-126
3.3.4 Traps.................................... 3-132
3.3.5 Functional Operation 3-132

3.4 TI32082W Memory Management Unit 3-139
3.4.1 Internal Organization 3-139
3.4.2 Memory Management'lnstructions 3-145
3.4.3 Functional Operation 3-146

3.5 TI32202W Interrupt Control Unit 3-161
3.5.1 General Description 3-161
3.5.2 Functional Description 3-163

3.6 TI32201 Timing Control Unit .. 3-187
3.6.1 Power and Grounding. .. 3-187
3.6.2 Crystal Oscillator Characteristics '. 3-187

. 3.6.3 Clocks................................... 3-188
3.6.4 Resetting................................. 3-188
3.6.5 Synchronizing Two or More TCUs. 3-188
3.6.6 Bus Cycles " 3-189
3.6.7 Bus Cycle Extension 3-191
3.6.8 Bus Cycle Extension Combinations 3-197
3.6.9 Overriding WAITn Wait-States 3-197

4 Data Sheets 4-1
TI32032T Microprocessor .. 4-3
TI32016T Microprocessor .. 4-23
TI32081 W-2 Floating Point Unit. .. 4-43
TI32082 Memory Management Unit 4-51
T132202-2 Interrupt Control Unit .. 4-63
T132201-2 Timing Control Unit 4-71

Contents (Concluded)

Section Page

5 Ordering Information and Mechanical Data 5-1
5.1 Ordering Instructions .. 5-3
5.2 Packaging Mechanical Data : " 5-4

5.2.1 FN Plastic Chip Carrier Package " 5-4
5.2.2 GB Ceramic Pin Grid Array Package " 5-5
5.2.3 JD Ceramic Dual-in-Line Package-Side Braze. 5-6
5.2.4 N Plastic Package " 5-7

6 Glossary... 6-1

A Appendix.............. " A-1
Instruction Formats '. A-3

vii

viii

List of Illustrations

Figure Title Page

Architecture Overview
1 Linear vs Segmented Address Space .. 2-9
2 Mapping the Entire Address Space. .. 2-11
3 Page-Based Mapping .. 2-12
4 Primitive Data Types .. 2-17
5 General Instruction Format. .. 2-22
6 Displacement Encodings 2-23
7 Register Set .. 2-25
8 Standard Addressing Modes 2-28
9 High-Level Language Addressing Modes. 2-29

10 Mapping... 2-32
11 Hierarchy of Tables. .. 2-33
12 Page or Pointer Table Entry. .. 2-33
13 Table Driven Mapping .. 2-34
14 Associative Cache. .. 2-35
15 Virtual Machines. .. 2-39
16 Module Run-Time Environment. .. 2-43
17 CXP Instruction. .. 2-44
18 Stack Flow for Procedure Calls 2-45
19 Dispatch Table 2-47
20 Nonvectored Interrupts and Traps 2-48
21 Return from Trap Instruction ~ , 2-49
22 Cascaded Vectored Interrupts .. 2-51
23 Breakpointing....................................... 2-56

TI32032T Microprocessor
1 Address-Data and Dedicated Registers .. 3-3
2 Processor Status Register .. 3-4
3 CFG Register. .. 3-5
4 Module Descriptor Format .. 3-7
5 A Sample Link Table .. 3-8
6 General Instruction Form.at. .. 3-8
7 Index Byte Format. .. 3-9
8 Displacement Encodings 3-9
9 Recommended Supply Connections .. 3-19

ix

x

List of Illustrations (Continued)

Figure Tit/e Page

10 Clock Timing Relationships 3-19
11 Power-On Reset Requirements. .. 3-20
12 General Reset Timing. .. 3-20
13 Recommended Reset Connections,

Non-Memory-Managed System 3-21
14 Recommended Reset Connections, Memory-Managed System ... 3-21
1 5 Bus Connections .. 3-22
16 Read Cycle Timing 3-23
17 Write Cycle Timing .. 3-24
18 ROY Pin Timing. .. 3-25
19 Extended Cycle Example .. 3-27
20 Memory Interface 3-29
21 Coprocessor Connections 3-35
22 CPU Read from Coprocessor .. 3-36
23 CPU Write to Coprocessor. .. 3-37
24 Read Cycle with Address Translation (CPU Action) 3-38
25 Write Cycle with Address Translation (CPU Action) 3-39
26 Memory-Managed Read Cycle , 3-40
27 Memory-Managed Write Cycle. .. 3-41
28 System Connection Diagram .. 3-42
29 FL T Float Command Timing. .. 3-43
30 HOLD Timing, Bus Initially Idle ' 3-44
31 HOLD Timing, Bus Initially Not Idle 3-47
32 Interrupt Dispatch and Cascade Tables 3-48
33 Interrupt/Trap Service Routine Calling Sequence. 3-49
34 Return from Trap (RETT) Instruction Flow. 3-50
35 Return from Interrupt (RETI) Instruction .Flow 3-51
36 Interrupt Control Unit Connections '. 3-52
37 Cascaded Interrupt Control Unit Connections '. 3-53
38 Coprocessor Status Word Format ,............ 3-59

TI320 16T Microprocessor
1 Address-Data and Dedicated Registers. 3-63
2 Processor Status Register " 3-64
3 CFG Register ' ... ~ 3-65
4 Module Descriptor Format ' ... ; 3-67
5 A Sample Link Table 3-68
6 General Instruction Format ' .. " 3-68
7 Index Byte Format. .. 3-69

Figure

8
9

10
12
13

List of Illustrations (Continued)

Title

Displacement Encodings
Recommended Supply Connections
Clock Timing Relationships
General Reset Timing
Recommended Reset Connections,
Non-Memory-Managed System

14 Recommended Reset Connections, Memory-Managed System .. .
1 5 Bus Connections
16 Read Cycle Timing
17 Write Cycle Timing
18 ROY Pin Timing
19 Extended Cycle Example
20 Memory Interface
21 Coprocessor Connections
22 CPU Read from Coprocessor
23 CPU Write to Coprocessor
24 Read Cycle with Address Translation (CPU Action)
25 Write Cycle with Address Translation (CPU Action)
26 Memory-Managed Read Cycle
27 Memory-Managed Write Cycle
28 System Connection Diagram
29 FL T Float Command Timing
30 HOLD Timing, Bus Initially Idle
31 HOLD Timing, Bus Initially Not Idle
32 Interrupt Dispatch and Cascade Tables
33 Interrupt/Trap Service Routine Calling Sequence
34 Return from Trap (RETT) Instruction Flow
35 Return from Interrupt (RET\) Instruction Flow
36 Interrupt Control Unit Connections
37 Cascaded Interrupt Control Unit Connections
38 Coprocessor Status Word Fromat

TI32081W Floating Point Unit

Page

3-69
3-71
3-79
3-80

3-80
3-81
3-82
3-84
3-85
3-86
3-87
3-89
3-91
3-93
3-94
3-96
3-97
3-98
3-99
3-100
3-101
3-103
3-105
3-106
3-107
3-108
3-109
3-110
3-111
3-118

1 Floating-Point Operand Formats .. 3-121
2 Register Set 3-123
3 The Floating-Point Status Register .. 3-124
4 General Instruction Format. .. 3-126
5 Index Byte Format. .. 3-127

xi

List of Illustrations (Continued)

Figure Tit/e Page

xii

6 Displacement Encodings 3-127
7 Floating-Point Instruction Formats .. 3-130
8 Resommended Supply Connections .. 3-133
9 Power-On Reset Requirements. 3-133

10 General Reset Timing. .. 3-133
11 Coprocessor Read Cycle .. 3-134
1 2 Coprocessor Write Cycle " 3-1 34
13 FPU Protocol Status Word Format " 3-136

TI32082W Memory Management Unit .. 3-139
1 MMU Block Diagram .. 3-140
2 Grounding Connections .. 3-146
3 CPU, MMU Interconnections .. 3-147
4 Bus Operation Timing: Logical Address in Translation Buffer. 3-148
5 Bus Operation: Read Cycle When Logical Address is not in

Translation Buffer .. 3-149
6 Bus Translation Write Cycle When Logical Address is not in

Translation Buffer .. 3-150
7 Hold Connections .. 3-151
8 Bus Operation in Breakpoints on Physical Address 3-151
9 Coprocessor Instruction Timing: Get IDIOpcode/Dc;tta

from CPU .. 3-152
10 Coprocessor Instruction Timing: MMU Sends Status/Data

to CPU .. 3-152
11 Logical to Physical Address Translation 3-157

TI32202W Interrupt Control Unit
1 TI32202W ICU Block Diagram. 3-161
2 Counter Output Signals in Pulsed Form and Square

Waveform for Three Different Initial Values 3-163
3 Counter Configuration and Basic Operations. 3-164
4 Interrupt Control Unit Connections in 16-Bit Bus Mode. 3-165
5 Interrupt Control Unit Connections in 8-Bit Bus Mode. 3-166
6 Cascaded Interrupt Control Unit Connections in

8-Bit Bus Mode .. 3-167

List of Illustrations (Concluded)

Figure Title Page

7 CPU Interrupt-Acknowledge Sequence .. 3-168
8 Interrupt Dispatch and Cascade Tables 3-169
9 CPU Return from Interrupt Sequence .. 3-170

10 ICU Interrupt-Acknowledge Sequence 3-172
11 ICU Return from Interrupt Sequence 3-173
12 ICU Internal Registers .. 3-175
13 Typical Circuit to Show RETI and INT A Vector Capability. 3-177
14 Recommended ICU's Initialization Sequence. 3-185

TI32201 Timing Control Unit
1 Crystal Connection 3-187
2 ClK 1 and ClK 1 Clock Signals .. 3-188
3 Recommended Reset Connections

(Non-Memory Managed System) 3-189
4 Recommended Reset Connections (Memory-Managed System) . .. 3-189
5 Slave TCU Does Not Use RWEN During Normal Operation 3-190
6 TCU Uses Both SYNC and RWEN 3-190
7 Synchronizing Two TCUs. .. 3-191
8 Synchronizing One TCU to an External Pulse 3-191
9 Basic TCU Cycle (Fast Cycle) 3-192

10 Wait-State Insertion Using CWAIT (Fast Cycle) 3-193
11 Wait-State Insertion Using WAITn (Fast Cycle) 3-194
12 Peripheral Cycle 3-195
13 Cycle Hold Timing Diagram .. 3-196
14 Fast Cycle with 12 Wait-States. .. 3-198
15 Peripheral Cycle with Six Wait-States 3-199
16 Cycle Hold with Three Wait-States 3-200
17 Cycle Hold of a Peripheral Cycle 3-201
18 Overriding WAITn Wait-States (Write Cycle). 3-202

xiii

List of Tables

Table Tide Page

TI32032T Microprocessor
1 TI32000 Addressing Modes. .. 3-1 2
2 TI32000 Instruction Set Summary. .. 3-14
3 Bus Access Types. .. 3-30
4 Access Sequences 3-31
5 Interrupt Sequences 3-33
6 Service Sequence .. 3-57
7 Coprocessor Protocol. .. 3-58
8 Floating-Point Instruction Protocols 3-60
9 Memory Management Instruction Protocols 3-61.

10 Application-Specific Coprocessor Instruction Protocols 3-62

TI32016T Microprocessor
1 TI32000 Addressing Modes. .. 3-72
2 TI32000 Instruction Set Summary " 3-74
3 Bus Cycle Categories. .. 3-89
4 Access Sequences 3-90
5 Interrupt Sequences 3-92
6 Service Sequence .. 3-11 5
7 Coprocessor Protocol. .. 3-11 6
8 Floating-Point Instruction Protocols 3-118
9 Memory Management Instruction Protocols 3-119

. 10 Application-Specific Coprocessor Protocols 3-120

TI32081 W Floating Point Unit
1 Sample F Fields. .. 3-1 21
2 Sample E Fields. .. 3-122
3 Normalized Number Ranges. .. 3-122
4 TI32000 Family Addressing Modes .. 3-129
5 Bus Status Combinations. .. 3-135
6 General Instruction Protocol. .. 3-135
7 Floating-Point Instruction Protocols 3-137

TI32082W Memory Management Unit
1 MMU Bit Maps 3-141
2 RDVAL/WRVAL Instruction ., .. 3-154

TI32202W Interrupt Control Unit
HVCT Register Data Coding. .. 3-176

xiv

TI32000 Family

Introduction

1 -1

a
;:,
~

o
c.
s:::
n
:!.
o
;:,

1-2

1 Introduction
Texas Instruments, the company that ignited the microchip revolution by inventing
the silicon transistor, the integrated circuit, and the microprocessor, now drives the
32-bit minicomputer to the micro level with the TI32000"" family of Microprocessor
Chip Sets.

The TI32000 family consists of the following components:

BUS
COMPONENT INTERNAL DATA ADDRESS DESCRIPTION t
TI32032T 32 32 24 Microprocessor (CPU)
T132032D+ 32 32 32 Microprocessor (CPU)
T132032DC+ 32 32 32 Microprocessor (CPU), CMOS
TI32016T 32 16 24 Microprocessor (CPU)
T132008T+ 32 8 24 Microprocessor (CPU)

TI32081W 64 16 - Floating Point Unit (FPU)
TI32081 D+ 64 32 - Floating Point Unit (FPU)

TI32082W 32 16 24 Memory Management Unit
(MMU)

T132082WA+ 32 16 24 Memory Management Unit, No
Breakpoints

T132082DC+ 32 32 32 Memory Management Unit
(MMU), CMOS

TI32202W 16 8/16 - Interrupt Control Unit (lCU)
T132202B+ 8 8 - Interrupt Control Unit (ICU)

TI32201 Not Applicable Timing Control Unit (TCU),
Bipolar

The TI32000 family is the solution for users wishing to standardize on a software
transportable 32-bit, 16-bit, and 8-bit microprocessor family. Its elegant, symmetrical
architecture makes it suitable for applications including powerful PCs, multiuser
business computers, engineering workstations, super-mini computers and high-speed
digital communications equipment.

T"T132000 is a trademark of Texas Instruments.
tExcept where" noted, all devices are implemented in NMOS technology.
:l:Product is currently undergoing development.

1-3

a
t:
o

'+:;
(.)
::::J

"C
o
t:

II
::l ...
~

0
Co
c
(") ... o·
::l

1.1

1.2

Typical Applications of the TI32000 Family

COMPUTERS COMMUNICATIONS
Personal Computers PABX
Multiuser Business Systems Central Office Switching
Graphics Display Terminals Digital Transmission
.Large Plotters Networks
Copiers
Transaction Systems CONSUMER PRODUCTS

Home Computers
INDUSTRIAL Automotive Controllers

CAD/CAE Systems
Automatic Test Equipment MILITARY
Instrumentation Weapons Systems
Process Control Aircraft Controllers
Robotics Land Vehicles
Numerical Processing

M,ainframe Performance at a Microprocessor Price

The TI32000 family provides total hardware support for Demand-Paged Virtual
Memory, high-speed floating-point operations, and High-Level Language (HLL)
constructs. It has greatly extended the capabilities of even the latest generation of
super minicomputers in its handling of HLL modules. Its highly symmetrical instruction
set, comparable to the popular VAXTM architecture, makes it particularly well suited
to powerful operating systems such as UNIXTM. Furthermore when it comes to software
productivity, any code written for the 32-bit TI32032 CPU will run just as well on
the 16-bit TI32016 or 8-bit TI32008 CPU, and vice versa. Consider this absolute
upward-to-downward and downward-to-upward object code compatibility in contrast
to the upward-only compatibility of all other microprocessor families. This means
programs written for your top-of-the-Iine 32-bit machines will also run on 8- and 16-bit
systems, thus reducing repetitive software development, maintenance, and overhead
costs. Further, each new product can rely on existing software and be much quicker
to market.

1.3 Coprocessors Increase System Performance

1-4

Included in the TI32000 family of chip sets is the TI32082 Memory Management Unit
(MMU) Coprocessor. The MMU implements Demand-Paged Virtual Memory
management in systems where inexpensive secondary storage (e.g., a Winchester disk)
is used to supplement physical memory (RAM) in support of large programs and data
structures. The MMU incorporates two-level page indexing, as found in IBM
mainframes, to avoid the many problems found in single-level indexing.

Another coprocessor, the TI32081 Floating Point Unit (FPU), accelerates floating-point
calculations and appears as a software-transparent extension of the CPU. A user can
also design his own" Application-Specific Coprocessor Unit" which communicates
with the CPU in the same manner as the dedicated coprocessors. As coprocessors

VAX is a trademark of Digital Equipment Corporation.
UNIX is a trademark of AT&T Bell Laboratories.

appear as transparent extensions of the CPU to TI32000 programers, the decision
to include or omit them in your end-products (for cost/performance reasons) will not
affect software compatibility across your range of products.

1.4 System Support Chips

1.5

Support chips in the TI32000 family include the TI32202 Interrupt Control Units (lCU)
and the TI32201 Timing Control Unit (TCU). A single TI32202 ICU provides 16
prioritized, vectored hardware interrupts; and when cascaded with other ICUs, up to
256 prioritized external interrupts are possible. (The T132202B, a simplified version
of the T132202W, provides only 8 external interrupts, 64 cascaded.) The TI32201
TCU provides bus cycle timing, read-write control signals, various modes of bus cycle
extension, and CPU timing.

T132000: The 32-Bit Solution

By matching a TI32000 CPU with the appropriate combination of coprocessors and
support chips, a system designer can accurately match cost and performance to his
end product. Clearly, the TI32000 family of microprocessor chip-sets provides a total
system solution for your design, be it 8, 16, or 32 bits.

1 .6 Key Features of the TI32000 Family

Some of the features that set the TI32000family apart as the best choice for 32-bit
designs are as follows:

Family of Microprocessor Chip Sets
The TI32000 is more than just a single chip set, it is a family of chip sets.
By mixing and matching TI32000 CPUs with compatible coprocessors and
support chips, a system designer has an unprecedented degree of flexibility
in matching cost and performance to the end product.

Cleanest 32-Bit Super Mini Computer Architecture
The TI32000 was designed around a 32-bit architecture from the beginning.
It has a fully symmetrical instruction set so that all addressing modes and
all data types can be operated on by all instructions. This makes it easy
to learn the architecture; easy to program in assembly language; and easy
to write code-efficient, high-level language compilers.

8, 16, 32, and 64-Bit Compatible Architecture
The TI32000 has an absolute upward and downward object code
compatible architecture. This allows upgrading a product line while still
preserving your entire software data base, thus reducing development costs
and the risks involved in introducing new products. TI's commitment does
not stop there. Even future 64-bit family members will be designed to
maintain compatibility across the entire product range.

Demand-Paged Virtual Memory Management
The TI32000 provides hardware support for Demand-Paged Virtual Memory
Management. This allows use of low-cost disk storage to increase the
apparent size of main memory, and is an efficient method for managing
very large address spaces. It is also the same popular memory management
method used by DEC and IBM in their minicomputers and mainframes.

1-5

a

I

1-6

Application-Specific Coprocessors
The TI32000 architecture allows users to design their own application
specific coprocessors to interface with the existing chip set. These
coprocessors can be used to increase your overall system performance
by accelerating customized CPU instructions that you would otherwise
implement in software. At the same time, software compatibility is
maintained, i.e., it is always possible to substitute lower-cost software
modules in place of the coprocessor.

Floating-Point Coprocessor
The TI32081 Floating-Point Coprocessors provide high-speed arithmetic
computation with high precision and accuracy at low cost. They support
the entire TI32000 family of CPUs and comply with the proposed IEEE
standard for floating-point arithmetic, Task P754.

Operating System Support
TI32000 features such as hardware support for Demand-Paged Virtual
memory management, user software protection and modular programming
make it much easier to implement powerful, reliable and efficient operating
systems. These features along with its symmetrical architecture and
powerful instruction set make the TI32000 the most efficient and highest
performance UNIX engine.

High-Level Language Support
The TI32000 has special features that support high-level languages, thus
improving software productivity and reducing development costs. For
example, there are special instructions that help the compiler deal with
structured data types such as Arrays, Strings, Records, and Stacks. Also,
modular programming is supported by special hardware registers, software
instructions, an external addressing mode, and architecturally supported
link tables.

TI32000 Family

Architecture Overview '1

II

jll

2-1

II
l>
~

n
:::T
;:;:
CD
n ..
t:
~

CD

2-2

2 Architecture Overview
2.1 Computer Architecture

2.1.1 Introduction

The architecture of a computer describes what that computer looks like to people
who write software for it. More precisely, the architecture is the complete and
detailed specification of the interface between the computer and software. The
architecture specifies those elementary instructions that are decoded and executed
directly by the machine. But it is important to keep in mind that architecture
describes only whatthe computer does, not howit does it. Two machines are said to
have the same architecture if all the software written for one can execute on the
other, even if the actual hardware construction of the two machines is entirely
different. For example, the members of the IBM System 360-370 family all have
basically the same architecture, but the technology used to implement that
architecture ranges from discrete transistors to Very Large Scale Integration.

Occasionally, the term architecture is used in a more general sense as the boundary
between different levels of the whole system. (For example, terms such as
"operating system architecture" are occasionally employed.) In this document we
will use "architecture" exclusively for the boundary between the actual machine
hardware and the software.

A computer architect is someone who designs computer architectures. The terms
architecture and architect obviously have been adapted from their ordinary use in
the building construction industry. The words are apt because in many ways the job
of a computer architect is similar to that of an ordinary architect. Both are more
concerned with the overall design of a structure and its appearance to users than
with the exact details of the construction, which is the province of the structural
engineer or general contractor in the building industry and the hardware designer in
the computer industry.

The relationship between computer architect and computer implementor is
analogous to the relationship between an architect and a general contractor. The
architect designs the overall appearance of the building, balancing a number of
conflicting goals (e.g., the desirable view provided by many large windows and the
equally desirable goal of energy efficiency), always keeping in mind what is possible
with current construction technology (the availability and cost of materials). The
general contractor is responsible for translating the architect's vision into a building.
If the contractor discovers that some detail of the building's architecture will be too
difficult or too expensive to build, or that it will lead to an unsafe structure, the
architect will have to make changes.

2-3

II
Q) ...
:::::s ...
CJ
Q) ...

:E
CJ

.d:

l>
"'" C')
:r
;:;:
CD
(")
c:
"'" CD

Similarly, the computer architect designs the external appearance (to software) of
the computer, balancing a number of conflicting goals (e.g., complete protection vs
simplicity of use), always keeping in mind the current state of semiconductor
technology. The computer implementor translates this design into silicon. If the
implementor finds that some feature of the computer architecture is too difficult or
too expensive to implement, or if another feature causes the computer to run
significantly slower, the computer architect may have to make changes.

The role of the architect in both industries is to make an intelligent compromise
among a number of desirable goals and to balance this against the limitations of
current technology to get a cost-effective design. Architectural mistakes usually
result when one goal is single-mindedly pursued to the exclusion of other goals, or
when a desired goal is simply not technologically feasible.

A certain amount of controversy currently surrounds a number of issues associated
with computer architecture. As defined, computer architecture is the boundary
between the hardware and software. The controversy is fundamentally over where
that boundary should be drawn and what trade-offs should be made between
various features for reasons of performance. Discussion has centered around three
main topics:

• What is the best way to support high-level languages?
• How should memory be organized?
• What protection features should be provided by the hardware?

In the remaining sections of this chapter we will examine these three topics,
introduce some of the points at issue, and present the TI32000™ approach to each
topic.

2.1.2 High-Level Language Support

2-4

All evidence suggests that programming in a high-level language (e.g., Pascal) is
more productive than programming in assembly language. Some researchers have
found that high-level language programmers produce the same number of
debugged lines of code per day as assembly language programmers. Since a line of
code in a high-level language usually performs a more complex operation than a
line of code in assembly language, the high-level programmer is more productive.

Studies have shown that both the time to debug a program and the difficulty in
understanding and maintaining it are proportional to the number of instructions,
with little dependency on the complexity of each instruction. Since several
instructions might be required for each high-level language statement, the savings
in programming time and cost over an equivalent assembly language program are
obvious.

Before the advent of the T132000, however, these advantages had been partially
offset by the inherent inefficiency of high-level languages as opposed to assembly
language programs. Depending on the compiler, the computer, and the application,
a compiled program might be anywher~ from 0% to 300% longer and slower than
the best assembly language program. The basic reason for the inherent inefficiency

TI32000 is a trademark of Texas Instruments Incorporated.

of high-level languages (HLLs) when they are targeted to contemporary
architectures is that these architectures were not designed to support compilers.

2.1.2.1 Deficiencies of Current Architectures

The shortcomings of current computer architectures are largely attributable to what
Glenford Myers has called the semantic gap,1 a measure of the difference between
the concepts in high-level languages and the concepts in the computer architecture.
The objects and operations reflected in these architectures are seldom closely
related to the objects and operations provided in the programming languages. This
semantic gap contributes to software unreliability, performance problems,
excessive program size, compiler complexity, and distortions of the language.

Here are some ofthe heavily used concepts in high-level languages, along with a few
comments on the architectural support for these concepts provided by most
computer architectures.

Arrays. The array is one ofthe most frequently used data structures in most HLLs. An
array is a set of entries, each with the same data type (Le., arrays of integers, arrays
of characters, etc.). Most languages provide for multidimensional arrays,
performing operations on entire arrays and checking to see that array subscripts do
not exceed the boundary of the array. However, most computer architectures
provide very limited architectural features to support any of these constructs.

Records. A record consists of a number of components (usually called fields) that
may be of different data types. Thus a record might consist of characters, integers,
and real numbers. Until now, there was nothing in the architecture of most
microprocessors to support records.

Strings. Most languages contain the concepts offixed and variable sized strings and
of string processing operations such as concatenation and searching for a specified
substring within a string. Many microprocessor architectures provide no string
processing instructions at all.

Procedures. The basic program unit in modern HLLs is the procedure. A procedure
call entails saving the state of the calling procedure, dynamically allocating and
initializing local storage for the called procedure, passing arguments, and executing
the called procedure. Most microprocessor architectures provide no support for any
of these operations.

Modules. Modern HLLs (Pascal, Ada) implement the concept of a software module
containing several procedures and associated data. Each module may be developed
independently of all other modules and combined for final execution. This
modularization reduces software development cost and time, increases design
flexibility, and simplifies system design. To date, most processors have not
supported the modular software concept.

One source of current problems is that contemporary architectures are asymmetric,
and therefore do not permit the concepts in HLLs to be efficiently modeled in

1. Glenford J. Myers, Advances in Computer Architecture, Wiley, 1978.

2-5

EJ

II
l>
~

n
:T
;:;:
CD
n ...
c:
~

CD

machine language. Symmetry is the degree.to which all addressing modes exist for
all operands and all required operators that exist for every data type.

Section 2.2 discusses symmetry in detail and also defines the key terms, such as
"addressing mode" and "data type".

2.1.2.2 The TI32000 Approach

2.1.2.3

2-6 '

The deficiencies in contemporary microprocessor architectures have been
addressed by the designers of the T132000. They have made a major effort to bridge
the semantic gap with this new architecture. The TI32000 architecture, in fact, is
designed specifically to support high-level language compilers; it enables even
relatively unsophisticated compilers to produce efficient code. Special addressing
modes are provided to access such HLL constructions as arrays and records, and
new operators that are specifically tailored for high-level languages.

Addressing Modes. The TI32000 architecture supports four standard addressing
modes (i.e., mechanisms for accessing operands) common to most processors:
register, immediate, absolute, and register relative. In addition, the TI32000
introduces four HLL-oriented addressing modes: Top-of-Stack mode is very useful
for evaluating arithmetic expressions in high-level languages; Scaled Indexing
mode can be used to access elements in byte, word, double word, or quad word
arrays; Memory Relative mode can be used for manipulating fields in a record; and
External mode can be used to access data in separately compiled modules. (See
section 2.2 for a discussion of addressing modes.)

New Operators. In addition to the conventional CPU instructions, such as data
movement, arithmetic logic, and shifts, the architecture includes advanced
instructions which are very useful in an HLL environment. These advanced
instructions are: the CHECK instruction which determines whether an array index is
within bounds; the INDEX instruction which implements the recursive indexing step
for multidimensional arrays; the STRING instruction which manipulates data
strings; and the ENTER and EXIT instructions which minimize the overhead in
procedure calls by managing the resources (registers, stack frame) allocated at the
beginning of a procedure and reclaimed at the end. (See section 2.2 for more on
these instructions.)

Controversial Topics

The addressing modes and new operators provided by the TI32000 clearly represent
an advance over contemporary architectures. Yet two of the issues faced by the
TI32000 designers remain controversial.

• Should three operand instructions be provided?
• Should instructions be primarily register oriented, memory-to-memory, or

top-of-stack?

Three-Operand Instructions. It is occasionally claimed that an architecture must
provide general three operand instructions if it truly is to support an HLL. (A three
operand instruction is, as the name implies, an instruction which contains two
source operands as well as a destination. For example, an instruction to directly
implement the FORTRAN statement,

A=B+C

would be a three-operand instruction with operands A, 8, C and the operator +. The
reasoning behind this claim is basically that if three-operand statements are
common in high-level languages, then the presence ofthree-operand instructions in
the architecture will result in greater code density. The VAX-111M, for example,
permits three-operand instructions for most arithmetic operations.

However, a study by D.E. Knuth 2 of Stanford University in 1971 showed that in
250,000 lines of FORTRAN code, 80% of all statements were of the form

A op 8 or A = 8

It follows that three-operand HLL statements are extremely rare and the need for
such constructs in the architecture is unproven. Moreover, since provision for three
operand instructions imposes a certain burden of its own (whether in code density
or execution speed), the utility of this instruction category must certainly be
questioned. The designers of the TI32000 felt that the need for three operand
instructions was not great enough to justify that overhead. In fact, the TI32000
provides greater code density than the VAX-11.

Registers. It is also occasionally claimed (for example by Glenford Myers in his book
Advances in Computer Architecture3) that registers are alien to the concepts in HLLs
and should be done away with in the interests of bridging the semantic gap. The
designers of the TI32000 disagree. The high-level language concept that relates
most strongly to registers is the idea of the set of variables that are local to a
procedure. The modular programming methodology described above encourages
the use of a number of small procedures instead of large monolithic programs. Each
of these procedures usually makes use of only a few variables of its own, but these
variables are used over and over again in that procedure. For instance, ,a procedure
that manipulates an array must constantly refer to the array index.

The chief advantage of registers is that they allow a working set of variables to be
kept close at hand where they can be accessed quickly.

This working set of variables is stored in the register set. Studies by William Wulf,
or et al.4 have indicated that five registers are sufficient for almost all applications.
TI32000 CPU uses 8 (Le., 23) address-data registers and several specialized registers
for particular pointers. The TI32000 architecture allows memory-to-memory
operations, but it does not require them.

Registers allow the compiler writer to optimize the execution of HLL statements,
whereas a purely memory-to-memory machine must constantly carry the overhead
of referencing all variables in main memory. A pure stack-oriented machine (i.e., an
architecture where all variables are assumed to be on the top two locations of the

VAX-11 is a trademark of Digital Equipment Corporation.

2. D. E. Knuth, "An Empirical Study of FORTRAN Programs," Software Practice and Experience, 1, 2 (April
June, 1971) 105-133.

3. Meyers, op. cit., p. 23
4. W. A. Wulf, et al., The Design of an Optimizing Compiler, North Holland, 1975

2-7

II
Q) ...
:s ...
(J
Q) ...
:E
(J ... «

stack) is essentially equivalent to a machine with two registers. Many studies have
shown that pure stack machines do not give any significant advantage over a
general register machine.5

2.1.3 Memory Organization

1 2.1.3.1

» ...
(')

:r
~.

en
(')
I: ...
en

2-8

There are three aspects to memory organization: (1) the overall memory
architecture, which is basically how the 'logical memory looks to the computer
program; (2) logical-to-physical address translation (mapping), which maps the
logical structure of memory onto hardware; and (3) virtual memory mechanisms.
The TI32000 has a linear memory architecture; it supports page-based mapping;
and it provides a number of mechanisms which support a virtual memory system.

Linear vs Segmented Memory Architecture

The main memory of a computer is organized as a set of consecutively numbered
storage cells. In most computers these memory cells contain eight bits (a byte). The
location number associated with one of these physical storage cells is called a
physical address, and the set of all physical addresses is called physical address
space.

The physical address space is thus determined by the actual hardware in the
computer's memory system.

On the other hand, a program running on a computer can generate a set of
addresses that is limited only by the number of bits in its address registers. This set
of addresses is not necessarily related to the actual amount of physical memory in
the system. For example, consider a computer with a 16-bit address field in
instructions and 4,096 (4K) bytes of memory. A program on this computer can
address 65,536 (64K) locations, for the simple reason that 216 (65,536) 16-bit
numbers exist. The set of these numbers is called logical address space; it is the set
of logically possible addresses (even if they are not realized physically); it is the set
of all addresses that can be generated by a program. The organization of the logical
address space defines the memory architecture. The two main types of memory
architecture are linear and segmented.

In a linear address space, addresses start at location zero and proceed in a linear
fashion (i.e., with no holes or breaks) to the upper limit imposed by the total number
of bits in a logical address. In TI32000 systems there can be up to 32 bits in a logical
address, resulting in over 4 billion (232) bytes.

The alternative to a linear memory architecture is a segmented memory
architecture. A segmented address space is basically a collection of small linear
address spaces. A rigid distinction is made between the segment (the particular
address space in which a datum is located) and the displacement of the datum
within the segment (the distance in bytes from the start of the segment to the
location in question). A segmented address is consequently a two-component value.
The first component (the segment selector) picks out a particular segment while the
second component specifies the displacement within the segment. (See Figure 1 for
a comparison of linear and segmented memory.)

5. Meyers, op. cit., p. 49

LINEAR LOGICAL ADDRESS SPACE

SINGLE-COMPONENT
ADDRESS

OPERAND

SEGMENTED LOGICAL ADDRESS SPACE

D
SEGMENT A

OPERAND

SEGMENT C

Figure 1. Linear vs Segmented Address Space

The advantages of segmented memory center around protection issues. The claim
is made that a segmented memory better suits the organization of modern, modular
programs and structured data than does a linear memory. Consequently,
mechanisms for preventing access to segments, or preventing segments from
being read or written into can be used to protect meaningful program units. In other
words, since the logical address space of a segmented architecture reflects the
logical structure of the program, protection mechanisms provided for segments
naturally accrue to meaningful program units.

This is in fact true. However, except for a few processors (e.g., the MULTICS
processor), few segmented machines have consistently carried out this program.
For example, most current segmented architectures impose a limit of 64K bytes on
the length of a segment. But in order for segmentation to realize its protection

2-9

II

II

advantages, segments should be allowed to have arbitrary size. A 2M byte segment,
after all, will be needed to hold a 2M byte array, if the program organization is to
reflect the program structure. Also, in modern bit-mapped graphics systems (a
typical application for 16-bit microcomputers), 2M byte arrays are common.
Moreover, since programs can consist of hundreds or even thousands of modules, it
is important for the architecture to support large numbers of segments if
segmentation is to be used properly.

Large data bases are a typical application that will require either segments of
arbitrary size or a great many segments.

Unfortunately, most segmented architectures allow only small segments (Le., less
than 64K bytes) and usually support only a limited number of them (typically, fewer
than 128). The size limitation is an artifact of earlier days when the entire (linear)
address space was only 64K bytes long. The designers of segmented machines
expanded the address space of their earlier processors, while attempting to
preserve some measure of software compatibility by making the old 64K-byte linear
address space one of the new 64K bytes segments. The 8086 and its relationship to
the 8080 is the most painful illustration of this phenomenon.

In such segmented architectures, all data structures larger than the maximum
segment size must be broken down to fit into several segments, since an address
pointer cannot be incremented from the top of one segment to the bottom of another
segment. By contrast, a linear address space can accommodate data structures of
any size up to the maximum size of memory.

The TI32000 provides the protection advantages of segmentation without the
segment size disadvantages, by permitting segments to be constructed out of an
arbitrary number of fixed-size memory units. These memory units are called pages,
and they form the basis for the TI32000 mapping, virtual memory, and memory
protection mechanisms.

The TI32000 permits a form of segmentation, that is, it lets the operating system
keep track of collections of pages with the same protection attributes, but it does not
require segmentation by building it into the architecture. Moreover, the
segmentation permitted by the TI32000 is more general than that built into standard
segmented architectures (for example, segments can have arbitrary size).

2.1.3.2 Page-Based Mapping and Alternatives

2-10

Mapping is based on the distinction between logical address space and physical
address space. Basically, mapping is the process of translating a logical address into
an arbitrary physical address. Without mapping, logical addresses are simply
equated with physical addresses; by exploiting mapping, a logical address can be
assigned to an arbitrary physical address. Mapping thus provides a kind of
generalized relocation mechanism.

Unmapped memory is adequate for simple, single-user, single-task systems, which
is why most microcomputer applications until now have been unmapped. However,
the large memory and increased power of 16-bit microcomputers have led to their
being employed in multiuser,multitasking applications. And in these cases mapping

is highly desirable. Because, without mapping, the different programs in a
multiprogramming system or the different tasks in a multitasking system must
operate within the same logical address space. Consequently, each program or task
must be careful not to access any address outside its assigned partition, and in
general everyone must be familiar with the detailed organization of memory in order
to make full use of it.

By contrast, mapping allows each program or task to be assigned its own logical
address space, with the mapping mechanism responsible for translating these
independent logical address spaces into the same physical address space. Since the
programs and tasks have separate logical address spaces, there is no chance of
interference.

Since it is too cumbersome to control the translation of each logical address
individually, mapping is ordinarily done in blocks of addresses. The simplest and
historically the earliest mapping systems mapped the entire logical address space of
a program as one unit. (See Figure 2 for a diagram of such a system.)

THREE

PROGRAM
1

LOGICAL PROGRAM
ADDRESS 2

SPACES

PROGRAM
3

MAP LOGIC

PHYSICAL
ADDRESS
SPACE

Figure 2. Mapping the Entire Address Space

More recent systems are based on mapping smaller chunks of memory, rather than
the entire logical address space of a program. Basically, there are two kinds of
address translation schemes, differing only in the structure of the mapping blocks:
One based on variable sized segments; and the other based on fixed-size units
called "pages." The TI32000 employs a page-based mapping system.

In TI32000 systems with 24 address bits, the logical address space is broken up into
32,768 pages, each with a fixed size of 512 bytes. The physical address space is
broken up into the same number of pieces, each the same size as a page. These
pieces of physical memory into which the pages are mapped are called page frames.
Figure 3 shows a part of the TI32000 mapping scheme.

2-11

II

II
:t> ...
C')
~
;:;:
CD
C') ...
c:: ...
CD

2-12

A page-based mapping system is usually more efficient than a segment-based
mapping system because of the memory fragmentation problem associated with
segment-based systems. This problem occurs often in segmented multiprogram
systems when the available memory space becomes fragmented into many small
pieces and not enough contiguous physical memory is available to contain one large
segment. By contrast, since all pages are the same size, if any physical page frame is
available, it can hold any page.

The mapping operation is performed by the TI32082 Memory Management Unit
(MMU) and is explained thoroughly in section 2.3.2. This translation process is
performed automatically, making use of a table in memory that contains the physical
addresses of each page frame.

Each program or task can have its own set of translation tables, and changing the
selected group of tables is simply a matter of updating an MMU register that points
to the starting address of the top-level page table. Therefore, each program or task
can have its own map from logical memory to physical memory, and each program
or task can have its own logical address space.

LOGICAL ADDRESS SPACE PHYSICAL ADDRESS SPACE

512 { 0
BYTES 512

PAGE 0

PAGE 1
1024

• PAGE 2

•
• PAGE 3

PAGE 4

PAGE 5

PAGE 6

PAGE 7

PAGE 8

PAGE 9

PAGE 11

•
T •

•

o }512 PAGE FRAME 0
~------t 512 BYTES

PAGE FRAME 1
~------t 1024

PAGE FRAME 2 •

t----t-\--.... PAGE FRAME 3
•
•

1---I-4a11 PAGE FRAME 4

PAGE FRAME 5

PAGE FRAME 6

PAGE FRAME 7

PAGE FRAME 8

PAGE FRAME 9

t--~~PAGEFRAME10

T

PAGE FRAME 11

PAGE FRAME 12

T
•
•
• T

Figure 3. Page-Based Mapping

Entries in the translation tables contain protection bits along with physical
addresses. These protection bits are used to provide each page with a set of
protection attributes (e.g., read only). The Operating System can treat a collection of
pages with the same attributes as a segment. Thus, page-based mapping provides a
mechanism for implementing segmentation.

2.1.3.3 Virtual Memory

In many computer systems, the logical address space is far larger than the actual
memory hardware. Virtual memoryis a mechanism for circumventing the limits on
physical memory size. Under a virtual memory system, it appears to users as if the
entire logical address space is available for storage. But, in fact, at any given
moment only a few pages of the logical address space are mapped into physical
space. The other pages are not present in main memory at all; instead, the
information in these pages is stored on a secondary storage device, such as a disk,
whose cost-per-bit is more economical.

In a virtual memory system, whenever the computer generates a memory address,
the hardware checks whether that address lies in a page that is actually in memory. If
it does, the address is translated to the appropriate physical address, and the
memory reference takes place normally. If the indicated page is not in memory, an
operation called a page swap is performed, and the operating system software loads
the missing page from disk. If this operation is performed swiftly, the user will have
the illusion of a gigantic physical memory. For efficiency, when the referenced
location has to be brought from the peripheral to the main memory, other locations
likely to be referenced next may be brought in. Information not currently in use is
removed from the main memory and returned to peripheral storage, thus making
room for the new material.

Of course the beauty of virtual memory is that the user or programmer does not
have to be aware of the process. He uses one consistent set of addresses called
logical addresses. The memory management hardware keeps track of where the
irformation resides at any given time and translates the logical address into a real
location in physical memory. When the CPU finds the requested logical address to be
unavailable in main memory, it notifies the operating system which initiates a swap.

When the data to be replaced has not been modified during the time it was resident
in main memory, there is no need to write it backto the peripheral device since an up
to-date copy already exists there. Under such a circumstance, the old data is
overwritten with the new data.

Virtual memory was first implemented on the Atlas computer at Manchester
University, using special hardware. All computers with virtual memory since the
Atlas have also required special hardware functions to implement virtual memory.
Current microprocessors do not have adequate mechanisms to support virtual
memory systems. For example, in both the Z8000 and the 68000 no provision is
made for restarting an instruction that causes a page fault. In TI32000 virtual
memory systems, this special hardware is provided by the TI32082 MMU (with some
support from the CPU chip).

2-13

II

II
l> ...
(')
:r
;:;"
CD
(')
~

c ...
CD

2.1.4 Protection

2-14

The last major area of debate about computer architecture concerns the whole topic
of protection: memory protection, program protection, and user protection. The
basic issue is what should be the granularity of the protection mechanisms that are
provided. The basic difficulty is that the finer the granularity, the more the overhead
associated with protection.

Some systems implement a hierarchy of protection levels from most privileged to
least privileged. These levels are often called rings. Each ring has its own access
control information for a page. Generally, a more privileged ring has access to all the
information in a less privileged ring. However, the number of rings is severely
limited, usually to four, and tasks often do not have a strictly hierarchical
relationship; therefore, ring systems are seldom flexible enough for modern
operating systems.

Instead, a capability-based protection system is often proposed as an alternative
which allows non-hierarchical relationships between an arbitrary number of tasks.
In a capability-based operating system, each task has a table of operations it is
allowed to perform that may affect other tasks in the system: This table is protected
from direct modification by the task. Thus, the only way a task can perform an
operation which could affect another task is if it has the appropriate capability in its
capability table. A task may give a specific capability to another task. By restricting
the distribution and type of capabilities it gives out, a task may tightly control access
to the services it provides.

One problem with most capability-based systems is that the concept is carried to
such lengths that it interferes with efficient accessing and processing of information
w:thin a task. Since the cost of protection is always high in these capability systems,
performance suffers.

The designers of the TI32000 felt that a capability-based protection scheme could be
implemented at some level in the system, but that the appropriate level to do this
was in the kernel of the operating system, not in the architecture itself. The basic
reason for leaving capabilities out ofthe architecture is twofold: (1) the extra burden
should not be imposed on all programmers who use this architecture or on every
memory reference; (2) the implementation of a capability-based system is such a
new and complex task that locking such a system into silicon before it is thoroughly
proven can be very risky. The designers of the TI32000 preferred to work out the bugs
in their operating system before they froze it permanently in silicon.

The protection features actually implemented in the TI32000 architecture can be
divided into three groups:

1. Operating System/User mode. A distinction is made between two
operating modes of the CPU: Operating System mode in which all the
power of the instruction set is available and User mode in which only a
restricted subset of the instructions are available. Operating System mode
is intended for operating systems and other trusted programs. User mode
is intended for those programs that are not trusted.

2. Separate address spaces for each task. Each task running on the TI32000
has its own collection of pages constituting its address space. Access to
another task's address space is impossible.

3. Protection bits in the page and pointer table entries. Associated with each
page are bits that define whether that page can be read but not written into,
read and written into, or neither read nor written into. (See section 2.3.4.)

2.2 High-Level Language Support on the TI32000

2.2.1 Introduction

In the previous section it was shown that with conventional architectures the gain in
programming efficiency produced by writing in high-level languages instead of
assembly language is usually undermined by the larger amount of memory
required to store the code. This phenomenon is a result of the large number of
instructions that must be generated by the compiler to map HLL concepts onto the
more restricted repertoire of machine instructions. Performance is also diminished
because of the large number of memory transactions generated by the instructions.
In addition, when the differences between the abstractions called for by a problem
and the capabilities directly implemented in the computer's hardware is very great,
the code generation portion of a compiler must be extremely complex.

A primary design objective for the TI32000 is for the structure and behavior of the
processor's architecture to correspond in a reasonable way with the objects and
operations of high-level languages. The goal was to develop a symmetrical
architecture particularly suited to being the target for compilers. The architecture of
the TI32000 meets that goal; it enables symmetric use of address-data registers,
memory locations, addressing modes, data types, and instructions.

Compilers can easily generate high-performance (very dense and efficient) code for
the T132000. The TI32000 is particularly well suited to the Pascal high-level language.
Because ofthe T132000's Address-Data registers, the program also executes faster. In
addition, the architecture avoids special-case instructions and addressing modes
that compilers have difficulty using.

In this section we will examine in detail the means by which the concepts of HLLs are
supported by the TI32000 architecture; namely, by a symmetrical architecture, a
sophisticated instruction set, and expanded addressing capabilities.

2.2.2 Data Types Supported

The objects and concepts of a high-level language include constants, variables,
expressions, and functions. Each of these has a particular data type which
determines the range of values that the constant, variable, expression, or function
may assume in the program.

A data type is said to be supported by a computer if the computer's instruction set
contains operators that directly manipulate the data type, or has operators and
addressing modes that facilitate its manipulation. Data types directly manipulated
by the hardware are called primitive data types. Those data types supported by the
hardware, but not manipulated directly, consist of ordered collections of primitive
types and are called structured data types.

2-15

II
Q) ...
:::J ...
CJ
Q) ...
:2
CJ ...
<t

12.2.2.1

»
""'I
n
:r
;:+
CD
n -t: ""'I
CD

The TI32000 supports the following data types:
• Primitive Data Types (see Figure 4)

Integers (signed and unsigned)
Floating-Point
Booleans
Binary Coded Decimal (BCD) digits
Bit Fields

• Structu red Data Types
Arrays
Records
Strings
Stacks

Integer Data Types

The integer data type is used to represent integers, i.e., whole numbers without
fractional parts. Integers may be signed (negative as well as positive) or unsigned
(positive only). Integer data types on the TI32000are available in three sizes: 8-bit
(byte), 16-bit (word) and 32-bit (double word). Signed integers are represented as
binary two's complement numbers and have values in the range - 27 to 27 -1,
- 215 to 215 -1 or - 231 to 231 -1; unsigned integers have values in the range 0 to
28 -1, 0 to 216 -1, 0 to 232 -1. When integers are stored in memory, the least
significant byte is stored at the lowest address; the most significant byte at the
highest address.

2.2.2.2 Floating-Point Data Types

2-16

The floating-point data type is used to represent real numbers, i.e., numbers with
fractional parts. Floating-point numbers are represented by an encoded version of
the familiar scientific notation:

n = s x f x 10e

where s is the sign of the number, f is called the fraction, or mantissa, and e is a
positive or negative integer called the exponent. (Figure 4 shows how these values
are represented by fields within the number.) Floating-point numbers are available
in two sizes: 32-bit (single-precision) and 64-bit (double-precision). Double
precision offers both.a larger range (larger exponent) and more precision (larger
mantissa). The TI32000 floating-point data type is compatible with the proposed
IEEE floating-point standard (Task P754).

Manipulation of the floating-point data type is actually handled by the TI32081
Floating-Point Processor (FPU) (see section 2.4.4). If an FPU exists in the system, the
user can treat floating-point numbers (both single- and double-precision) as any
other TI32000 data types and may use any of the TI32000 addressing modes to
reference them. Also, conversion is provided from every integer and floating format
to every other integer and floating format. If an FPU is not present, these functions
must be simulated in software.

INTEGER

BYTE 18 BITS

7 0

_____ W_O_R_D ___ 116 BITS

15 o

~ _____________ D_O_U_B_L_E_W __ O_R_D ______________ ~I 32 BITS

31 o
FLOATING POINT

.. 1_s ... I __ E_X_P_O_N_E_N_T ____ _______ F_R_A_C_T_IO __ N _____ J 132 BITS

31 30 23 22 0

~1_s~I ____ E_x_P_O_N_E_N_T ____ ~ ____________ F_R_A_C_T_IO_N ______ ~~~ :~TS
63 62 52 51 0

BOO LEANS

I xxxxxxxil

7 o
I xxxxxxxxxxxxxxx I I
15 0

BIT

01BIT

BIT FIELDS

____ ~""-'I~»OMI~j"""'~.;E""'%""'?]"""-___"1 UP TO 32 BITS

BCD DIGITS

I DIGIT 11 DIGIT 01 8 BITS

7 4 3 0

I DIGIT 31 DIGIT 21 DIGIT 11 DIGIT 0116 BITS

15 12 11 8 7 4 3 0

31 27 24 23 19 '16 15 12

31

XXXXXXXXXl};i]

o

8 7 4 3 o
Figure 4. Primitive Data Types

2.2.2.3 Other Primitive Data Types

The Boolean (or logical) data type is a single bit whose value, 1 or 0, represents the
two logic values true and false. A Boolean data type has many uses in a program, for
example, to save the results of comparisons, to mark special cases, and in general to
distinguish between two possible outcomes or conditions. Booleans are
represented on the TI32000 by integers (byte, word, or double word). True is
integer 1; false is integer O.

2-17

II
Q) ...
::J
+J
CJ
Q)
+J :c
CJ ...

<C

II
»
~ n
::r
;::;:
CD
n
~

c
~

CD

2-18

The bit field data type is different from other primitive data types in that the basic
addressable unit is measured in bits instead of bytes. On the T132000, bit fields may
be 1 to 32 bits long, and located arbitrarily' with respect to the beginning of a byte.
They are useful when a data structure includes elements of nonstandard lengths,
since they allow programs to manipulate fields smaller than a byte.

With the binary-coded decimal (BCD) data type, unsigned decimal integers can be
stored in the computer, using 4 bits for each decimal digit. The BCD data type is
represented on the TI32000 by three formats, consisting of 2,4, or a digits. Two BCD
digits may be packed into a byte, four to a word, or eight to a double word. Thus one
byte may represent the values from 0 to 99, as opposed to 0 to 225 for a normal
unsigned a-bit number. Similarly, a word can represent values in the range 0 to 9,999,
or a double word can represent values in the range 0 to 99,999,999.

Although BCD requires more bits to represent a large decimal number, it does have
certain advantages over binary. For many business applications, the amount of
actual computing to be done between source input and output is small, so that
converting data from binary to decimal formats can represent a significant portion
of the total processing overhead. BCD arithmetic eliminates this conversion
overhead since the computations are actually performed in decimal. Also of
importance to business applications is the loss of accuracy which can result from
conversions from decimal to binary and back again, a loss which is avoided by using
decimal arithmetic.

Arrays. An array is a structured data type consisting of a number of components, all
of the same data type, such that each data element can be individually identified by
an integer index. Arrays represent a basic storage mode for all high-level languages.

In Pascal programs, for example, each element of an array is referenced by the array
name and an index value giving the component's position in the array. Arrays range
from simple one-dimensional vector arrays to "1ore complex multidimensional
arrays. The elements of an array may be integers, floating-point numbers, Booleans,
characters, or more complex objects built up from these types.

The TI32000 provides special operators that facilitate calculation of the array index
and determination if the index is outside the limits of the array. In addition, certain
TI32000 addressing modes facilitate quick access to array elements. (See
section 2.2.5.2.)

Records. A record, like an array, is a structured data type with several components.
However, unlike arrays, the components of a record may each be of a different data
type. In high-level languages, such as Pascal, a component of a record is selected by
using both the name ofthe record variable and the name ofthe component. Usually,
records are grouped into large arrays, called files in COBOL, structures in PU1, and
record structures in Pascal.

The TI32000 addressing modes facilitate quick access to record elements. (See
section 2.2.5.2.)

St,rings. A string is an'array of integers, all of the same length. The integers may be
bytes, words, or double words. Strings are common data structures in high-level
languages. For example, strings of ASCII characters (i.e., bytes) are commonly used
to contain alphanumeric text.

On the T132000, a string is represented by a sequence of integers stored in
contiguous memory. Special instructions exist that facilitate comparison of strings,
movement of strings, and searching strings for particular integer values. (See
section 2.2.3.4.)

Stacks. A stack is a one-dimensional data structure in which values are entered and
removed one item at a time at one end, called the top-of-stack.lt consists of a block of
memory and a variable called the stack pointer.

Stacks are important data structures in both systems and applications
programming. They are used to store return address and status information during
subroutine calls and interrupt servicing. Also, algorithms for expression evaluation
in compilers and interpreters depend on stacks to store intermediate results. Block
structured HLLs such as Pascal keep local data and other information on a stack.
Parameters of a procedure in a block-structured HLL are usually passed on a stack,
and assembly language programs sometimes use this convention as well.

The TI32000 supports both a User Stack and an Interrupt Stack. Depending on the
mode of operation, one of two stack pointers (SPO or SP1) contains the memory
address of the top item on the stack. Instructions exist which allow for explicit
manipulation of the stack pointer, and the current stack can be used in almost all
TI32000 instructions to hold an operand.

For example, an item may be pushed onto the stack by subtracting the length of the
item from the stack pointer (since stacks, by convention, grow downward in
memory) then moving the item to the address now pointed to by the stack pointer.
An item may be popped off the stack by moving the item pointed to by the stack
pointerto the destination then adding the length ofthe item to the stack pointer. Both
of these operations are performed by selecting the Top-of-Stack Addressing mode.

Instructions also exist which push or pop the contents of one or more registers. For
example, the Jump to Subroutine instruction causes the Program Counter's
contents to be pushed on the stack, and the Enter instruction causes the contents of
the Frame Pointer and specified address-data registers to be pushed on the stack.
(See section 2.2.3.6.)

2.2.3 Instruction Set

One of the most important considerations in evaluating a computer architecture is
the relationship between the machine's primitive data types and the instructions that
manipulate those data types. For example, if a processor has byte, word, and double
word integers, it should have an Add instruction that operates on each ofthese data
types in a uniform and consistent manner. In the TI32000 architecture, a complete
and comprehensive set of instructions is available for every hardware recognized
primitive data type. In addition, special instructions are available that facilitate
manipulation of structured data types.

2-19

II

II
» ...
n
:r
;:;:
CD
n
~

r:: ...
CD

2.2.3.1

2.2.3.2

The instruction set includes over 100 basic instruction types, chosen on the basis of a
study of the use and frequency of specific instructions in various applications;
special case instructions, which compilers cannot use, have been avoided. The
instruction set is further expanded through the use of special coprocessors, acting
as extensions to the CPU.

This instruction set is symmetrical; that is, instructions can be used with any general
addressing mode, any operand length (byte, word, and double word), and can make
use of any address-data register.

The TI32000 instructions are genuine two operand instructions, although many
instructions use more (up to five) operands. This, combined with the consistent and
symmetric architecture, reduces the code size considerably.

Integer Instructions

A large set of arithmetic instructions are provided for integer manipulation: addition
and subtraction, multiplication and division (with various remainder, rounding,
modulus and result-length options), two's complement, and absolute value. Other
instructions include:

• Move instructions that allow either zero or sign extension (a useful feature
when the size of the destination exceeds the size of the source) .

• Shift instructions allowing logical and arithmetic shifts, as well as rotation
left or right, both by any amount.

• Boolean instructions (AND, OR, Exclusive OR, Complement, and Bit Clear)
allowing each bit in a data word to be manipulated independently.

• Two BCD arithmetic instructions, Add and Subtract, handling up to eight
digits at a time.

• Extended Multiply and Divide instructions which return a result which is
twice the size of the operands which they read.

Floating-Point (FPU) Instructions

The TI32000 supports 32-bit and 64-bit precision floating-point calculations, as well
as 8-, 16-, and 32-bit fixed-point calculations. In addition to the floating Add,
Subtract, Multiply, Divide, and Compare instructions, there is a Move instruction that
doubles as a conversion instruction for converting from integer to floating-point
format. Instructions are also provided to Round off a floating-point number toward
zero, and to convert a floating-point number to the largest integer less than or equal
to itself (the Floor ofthat nU,mber). For positive floating-point numbers these lasttwo
operations have the same effect; they differ, however, for negative numbers. For
example, -3.17 truncates to -3, but its Floor is -4.

These instructions are implemented by the FPU and display the same symmetry,
addressing modes, and flexibility as the rest of the instruction set. The architecture
ofthe TI32000 makes available to the FPU all the TI32000 addressing modes, and any
instructions can be register-to-register, memory-to-register, or memory-to-memory.

2.2.3.3. Boolean, Bit, and Bit Field Instructions

2-20

Boolean instructions treat a data word as an array of bits and allow each bit to be
handled independently. Boolean operators include AND, OR, Exclusive OR,
Complement, and Bit Clear.

The TI32000 family provides a special Boolean Not instruction for implementing
high-level languages which require that TRUE = , and FALSE = O. To simplify the
handling of Boolean expressions in compilers, a Set-on-Condition instruction stores
a'" into its only operand if a condition code check is satisfied; if not, it stores a '0'.

Bit instructions allow convenient handling of individual bits or arbitrarily large bit
arrays. In addition to the ability to set, clear, complement ortest any bit in memory or
in a register, the TI32000 family provides semaphore primitives (test and set, test and
clear) for mUltiprocessing and multitasking coordination. Also provided is a Convert
to Bit-Field Pointer instruction which converts a byte address and a bit offset into a
bit address. This allows a field address to be converted to an integer and thus passed
to a procedure or function, which is very useful in HLLs. A Find First Set instruction 2
searches a sequence of bits, either in memory or in a register, and returns the bit
number of the first '" bit it sees.

Two Bit Field instructions can access bit fields up to 32 bits in length anywhere in
memory, independent of byte alignments. The Extract instruction reads a bit field,
expands the result to the length specified in the opcode, and then stores the
expanded result into another operand. An Insert instruction reads an operand ofthe
length specified in the opcode and stores the low-order part into a bit field.

2.2.3.4 Block, String, and Array Instructions

For the many iterative operations which are required in high-level languages, the
Block Move and Block Compare instructions facilitate efficient generation of
compiler code. They are written the same way as the standard memory-to-memory
move and comparison instructions, except for the addition of a third displacement
operand which specifies how many elements (bytes, words or double words) are to
be moved or compared.

Strings of bytes~ words, or double words are easily manipulated with the Move
String, Compare String, and Skip instructions. To avoid destructive overwriting,
move and compare operations can proceed from low addresses to high addresses,
or vice versa. These operations can proceed unconditionally or be terminated when
a comparison condition is met (when either a specific value is encountered or when
a value is no longer encountered). Also, a string of instructions may be interrupted or
aborted, and then restarted where it left off. These string instructions are
comparable in their powerto those available on large minicomputer and mainframe
computers.

For array handling, two instructions are provided, Check and Index. The Check
instruction determines whether an array index is within bounds. It allows the user to
specify both an upper and a lower bound. It also subtracts the lower bound from the
value being checked and stores the difference in a register, where it can be used in an
Index instruction or in an index addressing mode.

The array Index instruction performs one step of a multidimensional array-address
calculation. The opcode specifies the length of the second and third operands; the
first operand is an address-data register. The Index instruction performs a
multiplication and an addition, leaving the result in a register. The result is then used
in another Index instruction for the next dimension, or it is used in an index
addressing mode.

2-21

Q) ...
:::s
u
Q) :c
u ...
<t

II
»
~
(')
::T
;:;"
CD
(') ,....
c:
~

CD

2.2.3.5 Jumps, Branches, and Calls

A number of different Jumps and Branches are implemented: simple Jump, Jump
to Subroutine, simple Branch, Conditional Branch, and Multiway Branch (a branch is
a PC-relative Jump). Since the displacement in these instructions can be as large as
the PC, there is no limit to their range. In addition, several different returns are
supported: return from subroutine, return from trap, and return from interrupt. The
latter two are discussed in more detail in the section covering interrupts and traps,
(section 2.4.3).

2.2.3.6 Register Manipulation Instructions

2.2.3.7

2-22

Any address-data register can be accessed via the general addressing modes. Thus
any TI32000 instruction that uses a general addressing mode to access one of its
operands can manipulate these registers. In addition, several instructions are
provided explicitly for register manipulation.

The Save and Restore instructions manipulate the address-data registers. The
instruction format for these operations includes an immediate field of 8 bits, each bit
specifying which of the eight address-data registers are to be stored or fetched from
the stack.

Instructions manipulating the dedicated registers allow these registers to be loaded
and stored; bits in the program status register may be set and cleared, and the stack
pointer may be adjusted.

Instruction Format

The TI32000 has a variable-length instruction format in which instructions are
represented as a series of bytes. Figure 5 shows the general format of a TI32000
instruction.

J

IMPLIED
OPERAND(S)

OPTIONAL
EXTENSIONS

I\.

DISP2 DISP1 SCALED SCALED

IMM2 IMM1

INDEX
BYTE

2

./
./

./

INDEX
BYTE

1
,

GEN.ADDR.
MODE

\1

BASIC
INSTRUCTION

I\.

GEN GEN
ADDR. ADDR. OPCODE
MODE

""-'
1

'
'-

MODE
2

INCREASING MEMORY

Figure 5. General Instruction Format

\

The Basic Instruction is one to three bytes long and contains the Opcode and up to
two 5-bit General Addressing mode (gen) fields. Following the Basic Instruction field
is a set of optional extensions, which may appear depending on the instruction and
the addressing modes selected.

The Opcode specifies the operation to be performed, for example, ADD, MOV, etc.,
and the number of operands to be used in the instruction. The specification of an
operand length (B, W, 0, F, or L) is written appended to the opcode. For example,
ADDW specifies the addition of two word-long operands, while MOVF specifies a
move to a single-precision floating-point operand. The length specification in
integer instructions is encoded in the basic instruction as B = 00, W = 01, or 0 = 11;
the length specification in floating-point instructions is encoded in the basic opcode
asF=10rL=0.,

The General Addressing mode fields specify the addressing mode to be used to
access the instruction's operands.

Index Bytes appear in the instruction format when either or both gen fields specify
Scaled Index mode. In this case, the gen field specifies only the Scale Factor (1,2,4
or 8), and the Index Byte specifies which 'address-data register to use as the index
and which addressing mode calculation to perform before indexing.

Following Index Bytes come any displacements (addressing constants) or
immediate values associated with the selected addressing modes. Each
Displacement/Immediate (Disp/lmm) field may contain one or two displacements,
or one immediate value. The size of a Dispfield is encoded within the top bits ofthat
field, with the remaining bits interpreted as a signed (two's complement) value (see
Figure 6). The size of an immediate value is determined from the Opcode field.

7 0

I 0 I SIGNED DISPLACEMENT I
BYTE DISPLACEMENT: RANGE = -64 TO +63

7 0

1 J 0 I ' ACEMEN"
S\GNED D\SP\'

WORD DISPLACEMENT: RANGE = -8K TO 8K -1
7 0

1 11 1 ~~~~
~c,~

s~\,
0\

~.,,~~o
S

DOUBLE WORD DISPLACEMENT:

RANGE = -112GB TO 1/2GB-1

Figure 6. Displacement Encodings

2-23

II
Q) ...
:::J ...
CJ
Q) ... :c
CJ ...
«

II
» ... n
::T
;::;"

2.2.3.8 ,Special Encodings

Two other special encodings, reg and quick, allow the very compact encoding of
frequently used instructions. For example, there are quick forms of add, move and
compare instructions which encode a small integer operand (range from - 8 to + 7)
in place of a second general addressing mode. Some instructions require additional,
'implied' immediates and/or displacements, apart from those associated with
addressing modes. Any such extensions appear at the end of the instruction, in the
order that they appear within the list of operands in the instruction definition.

2.2.4 Register Set

The TI32000 architecture supports 33 registers, grouped into two register sets: 16
address-data registers and 17 dedicated registers (see Figure 7). Eight of the
address-data registers are located on the CPU and eight are located on the FPU. The
17 dedicated registers include nine on the CPU, one on the FPU, and seven on the
MMU. Besides storing operands and the results from arithmetic operations, these
registers may also be used for the temporary storage of program instructions and
control information concerning which instruction is to be executed next.

~ 2.2.4.1 CPU Address-Data Registers ,...
c ...
CD

Internal to the CPU are eight 32-bit address-data registers RO through R7, which
provide local, high.speed storage for the processor. They can be used to store bytes,
words, double words, and quadruple words.

All address-data registers are available to all instructions. Thus, the compiler has
freedom in its use of the registers and needn't do much housekeeping. The
architecture also enables address-data registers to be used as accumulators, data
registers, 'and address pointers. This represents a great improvement over
machines that permit only a few registers to serve as address pointers, creating a
bottleneck in address calculations, a very important function in high-level language
programming.

2.2.4.2 CPU Dedicated Registers

2-24

The nine dedicated registers on the CPU chip are used for storing address and status
information. The MOD register and the Processor Status Register are both 16 bits;
the other registers are effectively 24 bits in length, although an additional eight bits
(which in the current implementation are always set to zero) have been provided to
allow for future expansion. .

PC: The Program Counter register is a pointer to the first byte of the currently
executing instruction. After the instruction is completed, the program counter is
incremented to point to the next instruction. Since this register is 24 bits wide, all
16M bytes of memory can be directly addressed without the need for segmented
addresses.

SPO, SP1: The SPO register points to the lowest address ofthe last item stored on the
Interrupt Stack. This stack is normally used only by the operating system, primarily
for temporary data storage and for holding return information for operating system
subroutines and interrupt and trap service routines. The SP1 register points to the
lowest address of the last item stored on the User Stack. This stack can be used by
normal user programs to hold temporary data and subroutine return information.

DEDICATED

14 32 BITS

PROGRAM COUNTER

STATIC BASE

FRAME POINTER

USER STACK PTR.

INTERRUPT STACK PTR.

INTERRUPT BASE

14--16 BITS --.J
PROGRAM STATUS PSR

MODULE MOD

CPU REGISTERS

~I
PC RO

SB R1

FP R2

SP1 R3

SPO R4

INTBASE R5

R6

R7

ADDRESS-DATA

~------32 BITS-----~~I \4

CONFIGURATION (CFGI

4 BITS
14 ~I

EEEE1
---- ------- -- -- --r ------ -------

MMU REGISTERS FPU REGISTERS
DEDICATED I DEDICATED

14 32 BITS ~I I 1l1li 32 BITS ~I

PAGE TABLE BASE PTBO I FLOATING POINT STATUS I
I PAGE TABLE BASE PTB1 FLOATING POINT DATA

ERROR/INVALIDATE ADDRESS EIA I 14 32 BITS ~I

I FO
MEMORY STATUS MSR

I F1
BREAKPOINT BPRO

I
F2

BREAKPOINT BPR1

I F3

~ 24 BITS ~I

I BREAKPOINT COUNT I BCNT I
F4

I
F5

I
F6

F7

Figure 7. Register Set

2-25

» ...
n
:T
;:;:
m
n ...
c ...
m

FP: The Frame Pointerregister is used by a procedure to access parameters and local
variables on the stack. It is set up when a procedure is entered and points to the stack
frame of the currently executing procedure, which contains the parameters for the
currently executing subroutine and also the volatile (as opposed to static) local
variables. The procedure parameters are addressed with positive offsets from the
frame pointer; the local variables of the procedure are addressed with negative
offsets from the frame pointer.

SB: The Static Base register points to the global variables of a software module. All
references to a module's data are relative to this register. (See section 2.4.2.)

INTBASE: The Interrupt Base register holds the address of the dispatch table for
interrupts and traps. (See sections 2.4.3.2 and 2.4.3.3.)

MOD: The Module register holds the address of the Module Descriptor of the
currently executing software module. (See section 2.4.2.2.)

PSR: The Processor Status register holds the CPU status and control flags for the
T132000. The PSR is 16 bits long and is divided into two eight-bit halves. The low
order eight bits are accessible to all programs, but the high-order bits are accessible
only to programs executing in Operating System mode. Among the bits in the PSR
are the Carry bit, the Trace bit, (which causes a trap to be executed after every
instruction), the Mode bit (which is set when the processor is in User Mode), the
Interrupt Enable bit (which if set will cause interrupts to be accepted), and several
other bits which can be used by comparison instructions.

CFG: The I bit indicates the presence of external interrupt vectoring circuitry
(specifically, the TI32202 Interrupt Control Unit). If the CFG I bit is set, interrupts
requested through the INT pin are 'vectored'; if it is clear, these interrupts are 'non
vectored'. The F, M, and C bits indicate the presence of the FPU, MMU, and
Application-Specific Coprocessors. If these bits are not set, the corresponding
instructions are trapped as being undefined.

2.2.4.3 FPU Registers

The Floating Point Unit registers are located on the Floating Point Unit coprocessors
and consist of eight 32-bit address-data registers and a dedicated 32-bit Floating
Point Status Register. The eight floating-point registers can each store a single
precision operand or half of a double-precision operand. When 64-bit double
precision operands are to be operated upon, the specified register (n) and the next
register (n + 1) are concatenated for the operation. Register n + 1 contains the high
order bits.

The Floating-Point Status register (FSR) holds mode control information, error bits,
and trap enables. Like the other registers, the FSR is 32 bits wide. (See section
2.4.4.2.)

2.2.4.4 MMU Registers

2-26

The optional memory management architecture uses the following 32-bit dedicated
registers to control address translation:

The Page Table Base registers (PTO and PTB1) are controlled by the operating system
and point to the starting location of the address translation tables in physical
memory. All Operating System mode addresses are translated with the PTBO
register. User mode addresses are translated using this register if the Dual Space
(OS) bit in the Memory Status Register (MSR) is one; if this bit is zero, the PTB1
register is used.

EIA: The Error/Invalidate Address register is used to invalidate addresses in the
translation buffer. The translation buffer is a transparent cache of the most recently
used pointer table entries. When an entry in a table is modified in memory, the copy
of it in the translation buffer is deleted by writing the address of the affected virtual
page into the EIA register. When a PTB register is modified, all cache entries made D
using that register are deleted. The EIA is also used to store the address which
caused a memory management exception to occur.

MSR: The Memory Status register holds fields which control and examine the
memory management status, and is accessible only in the Operating System mode.
(See sections 2.4.4.2 and 2.4.4.3.)

Other registers in the MMU provide high-level software debug facilities during
program execution.

2.2.5 Addressing Modes

Information encoded in an instruction includes a specification ofthe operation to be
performed, the type of operands to be manipulated, and the location of these
operands. An operand can be located in a register, in the instruction itself (as an
immediate operand), or in memory. Instructions specify the location of their
operands by nine addressing modes. Two addressing modes are used to access
operands in registers and in instructions - Register mode and Immediate mode.
The other modes are used to access operands in memory. The address of the
operand is calculated in accordance with the desired addressing mode. The
calculation is done by taking the sum of up to three components:

• a displacement element in an instruction
• a pointer (i.e., an address) in a register or in memory
• an index value in a register

The nine addressing modes may also be divided into standard modes for
microprocessor architectures and those modes which are particularly suited to the
operations and data structures of high-level languages.

2.2.5.1 Standard Modes

The following standard addressing modes are supported by the TI32000
architecture (see Figure 8 for a diagram of each one):

• Register
• Immediate
• Absolute
• Register relative

2-27

I
l> ... n
:::T
;::;"
CD
n
t: ...
CD

REGISTER: In the Register addressing mode, the operand is in one of the eight
address-data registers. In certain Coprocessor instructions, an auxiliary set of eight
registers may be referenced instead.

IMMEDIATE: The immediate mode operand is in the instruction. The length of the
immediate mode operand is specified by the operand length or by the basic
instruction length.

ABSOLUTE: With absolute mode, the operand address is the value of a
displacement in the instruction.

REGISTER RELATIVE: The register relative mode computes an effective address (the
operand address) by adding a displacement given in the instruction to a pointer in an
address-data register.

ADDR·DATA REGISTER

REGISTER
MODE ---_ ..

OPERAND ADDRESS = ADDR·DATA REGISTER

A·D REG.
REGISTER r--.,....-..
RELATIVE

MODE _,... _ ..

OPERAND ADDRESS = ADDR·DATA REGISTER + DISP.

IMMEDIATE I OPERAND I
MODE

OPERAND = IMMEDIATE VALUE

ABSO~~~~ ... I_D_I_S_P_.:--------~.~I OPERAND I
OPERAND ADDRESS = DISP.

Figure 8. Standard Addressing Modes

2.2.5.2 High-Level Language Modes

2-28

In addition to these standard addressing mode types, the TI32000 employs several
addressing mode types which, in combination with the already powerful instruction
set, make the TI32000 a superb vehicle for high-level languages. They are listed
below and diagrammed in Figure 9:

• Memory Space
• Memory Relative
• External
• Top-of-Stack
• Scaled Index

ADDRESSING
MODE

REGISTER
RELATIVE

MODE

INSTRUCTION REGISTER MEMORY

OED. REG.

DISP. IDEO. REG. ADDR. t-1-----i.~I_A_D_D_R_E_SS_ ~--O-P-ER-A-N-D-..

OPERAND ADDRESS = OED. REG. + DISP.
SPO OR SP1

TOP OF STACK I SPO OR SP1 SPECIFIER t----~~I ADDRESS

OPERAND ADDRESS = TOS

I-----I~IHI OPE RAND

MEMORY
RELATIVE

MODE

SCALED
INDEX
MODE

EXTERNAL
MODE

SB, FP OR SP

ADDRESS

OPERAND ADDRESS = (OED. REG. & DISP21 + DISP1

1,2,4, OR 8

EFFECTIVE ADDR.
OF A SECOND

GEN ADDR. MODE

OPERAND ADDRESS = MODE + A·D REG. X INDEX

OPERAND ADDRESS = (LINK TABLE ENTRY + DISPlI + DISP2

ADDRESS

OPERAND

31

LINK TABLE ADDR

31 LINK TABLE 0

OPERAND ADDR.

Figure 9. High-Level Language Addressing Modes

MEMORY SPACE: This addressing mode is identical to Register Relative, discussed
above, except that the register used is one of the dedicated registers - PC, SP, SB or
FP. These registers point to data areas generally' needed by high-level languages.

MEMORY RELATIVE: The Memory Relative mode allows pointers located in
memory to be used directly, without having to be loaded into registers (as is required
in other microprocessors). Memory relative mode is useful for handling address
pointers and manipulating fields in a record. When this addressing mode is used,
the instruction specifies two displacements. The first displacement is added to a

2-29

II

l>
~
(')
:r
;:;:
(t)
(')
~

c:
~
(t)

specified dedicated register, and a double word is fetched from this address. The
operand address is the sum of this value and the second displacement. In accessing
records, the second displacement specifies the location of a field in the record
pointed to by the double word. The exact size of the contents of this field is
programmable.

EXTERNAL: The External Addressing mode is unique to the T132000, and supports
the software module concept, which allows the modules to be relocated without
linkage editing. This mode is used to access operands that are external to the
currently executing module. Associated with each module is a Link Table, containing
the absolute addresses of external variables. The external addressing mode
specifies two displacements: the ordinal number of the external variable (i e., the
Link Table entry to be used) and an offset to a subfield of the referenced variable
(e.g., a subfield of a Pascal record). (See section 2.4.2.)

TOP-OF-STACK: In this addressing mode, also unique to the T132000, the currently
selected Stack Pointer (SPO or SP1) specifies the location of the operand. Depending
on the instruction, the SP will be incremented or decremented, allowing normal
push and pop facilities. This addressing mode allows manipulation or accessing of
an operand on the stack by all instructions. For instance, the Top-of-Stack (TOS)
value can be added to the contents of a memory location, a register, or to itself, and
the result saved on the stack. On most other microprocessors, in which top-of-stack
addressing is limited to a very small number of instructions, these manipulations
would require several instructions to achieve the same results. The great advantage
ofthis addressing mode is that it allows quick reference using a minimum number of
bits to intermediate values in arithmetic computations.

SCALED INDEX: This addressing mode computes the operand address from one of
the address-data registers and a second addressing mode. The register value is
multiplied by one, two, four or eight (index byte, index word, index double, or index
quad). The effective address of the second addr~ssing mode is then added to the
multiplied register value to form the final operand address. The Scaled Index mode
is used for addressing into arrays, when the elements ofthe array are bytes, words,

. double words, floating-point numbers or long floating-point numbers.

2.3 Memory Organization

2.3.1 Introduction

2-30

Microprocessors were first developed when the design of complex, special-purpose
chips became so expensive that it was more cost effective to use a general-purpose
programmable device instead of a special-purpose chip. The programs for these
early microprocessors were very small, typically requiring 2K to 8K bytes of memory
and rarely exceeding 16K bytes. (This was just as well, since memory was very
expensive.)

Now, almost exactly a decade since the microprocessor was invented, the memory
requirements for typical applications approach those of minicomputers or even
mainframes. Consequently, the memory organization issues discussed in section
2.1 have arisen.

In this section, we will cover the memory organization and memory management
mechanisms of the T132000. The key topics to be discussed are page-based
mapping, virtual memory, memory protection, and virtual machines. The address
translation, virtual memory, and memory protection mechanisms of the TI32000
architecture are contained in the TI32082 Memory Management Unit (MMU). The
MMU also contains the logic for debugging as well as on-chip cache. Special
instructions are provided in the TI32000 instruction set to control the MMU.

2.3.2 Mapping Mechanisms in the TI32000

Present TI32000 systems have a logical address space of 16 million bytes divided
into 32,768 pages, each with a fixed size of 512 bytes. The potential physical address
space is the same size and is also divided into similarly sized page frames. As
described earlier, address translation (mapping) is the process of translating a
logical address to a physical address. In the TI32000 architecture, address
translation is done in units of a page. Thus two addresses next to each other in the
same logical page will be next to each other in the same physical page frame,
although two pages which are contiguous in logical memory may not be contiguous
in physical memory.

For purposes of implementing the address translation, the 24 bits of a logical
address may be thought of as consisting of two fields: the page selector field, which
is the upper 15 bits, and the offset field, which is the lower 9 bits. Only the page
selector bits are actually translated in the mapping process. The 9 bits of the offset
specify a location within a page and are passed through the mapping process
unaltered. The mapping process is performed automatically by the MMU.

Basically the mapping operation consists of treating the page selector field as an
index into a table of physical addresses. Entries in this table hold the upper 15 bits of
the physical address of a page frame. When a logical address is sent to the MMU, its
lower 9 bits are appended to the 15-bit physical address in the table and the resulting
24-bit physical address is actually used to fetch data. (See Figure 10 for a diagram of
this operation. This figure shows an abstract view of the TI32000 mapping
operation; in reality, a two-level mapping is employed.)

2.3.2.1 Page Tables, Pointer Tables, and Entries

The address translation mechanism is carried out by tables in memory. The MMU
contains a special register (PTB1) that points to the beginning of the page table. This
table has 256 entries, each of which is 4 bytes wide, thus its total size is 1,024 bytes.
Each entry in the page table points to a pointer table. Pointer tables contain 128
entries of 4 bytes, thus the pointer tables are each contained in a page. Each entry in
a pointer table points to a physical page. (See Figure 11 for a diagram ofthis pointer
tree.)

Each program or task can have its own page table. Changing the page table is simply
a matter of changing an MMU register that points to the starting address of the
current page table. Therefore, each program or task can have its own map from
logical memory to physical memory and each· program or task can have its own
logical address space.

2-31

Q) ...
:l
~

CJ
Q)
~

:2
CJ ...
«

II
l> ...
n
::T
;::;.'
CD
n
s::: ...
CD

2-32

LOGICAL ADDRESS

PROTECTION .. 23 _______ ---.. 0

o

2

3

4

5

6

BITS
PAGE TABLE

(LEVELl)

I-------+-.....

I--~~~~~~~

1-----+--+--1

t------+--~
7

8

PHYSICAL ADDRESS

Figure 10. Mapping

Each entry in the page table or in one of the pointer tables has the same basic format
(see Figure 12).

The high-order 23 bits contain the starting physical address of the specified page
frame.

Bits 0 through 4 contain status bits:
V The Valid Bit indicates whether the entry specifies a page that is present in

memory. (See section 2.3.3.1, Page Faults and the Valid Bit.)
R The Referenced Bit indicates whether the page has been accessed. This bit is

automatically set when the corresponding page has been accessed for
reading or writing. (See section 2.3.3.3, Support for Page Swapping
Algorithms.)

M The Modified Bit indicates whether the page has been written into. This bit is
automatically set when any attempt is made to write to the corresponding
page.

PL The Protection Level field indicates the level of protection provided for the
page. (See section 2.3.4, Protection.)

PAGE TABLE
BASE REGISTER

I J

r- -
.-

...
PAGE

TABLE

· "III'

...

...

r""

POINTER
TABLES

o
Ii

....

..

/
r-

PHYSICAL
PAG,ES

Figure 11. Hierarchy of Tables

Figure 12. Page or Pointer Table Entry

2.3.2.2 The Complete Mapping Process

The mapping operation shown schematically in Figure 10, above, is actually
accomplished by the following process:

The page selector component ofthe logical address (the high-order 15 bits), shown
in Figure 10, actually consists oftwo subfields: the high-order 8 bits, which select an
entry in the page table, and the low-order 7 bits, which select an entry in the

2-33

II
IV ...
~ -(J
IV -:E
(J ...
«

II
l> ...
(')
::r
;:;:
CD
(') ...
c: ...

'CD

2-34

appropriate pointer table. (The offset component of a logical address specifies the
displacement from the base of a page to the specified item.) Figure 13 shows a more
complete version of the mapping process outlined in Figure 10.

PAGE TABLE BASE
REGISTER

PTBX (X = 0 OR 1)

POINTER
TABLE
INDEX

PAGE TABLE l INDEX OFFSET
23 16 15 98 0
...... --...... ---,.---... LOGICAL

___ --+_ _+-...... _-+-_J ADDRESS

THE PAGE TABLE
(INDEX 1)

01--_____
1

255~ ____ ~ ___ ~

POINTER TABLE
(INDEX 2)

01--____ --41

1
21--------t

3
1--------41

PAGE NUMBER OFFSET

PHYSICAL ADDRESS

Figure 13. Table Driven Mapping

To speed up the mapping process, the MMU provides an associative cache on the
chip itself. The cache contains the 32 most recently accessed logical addresses along
with their translated physical addresses. Each entry consists of the high-order
15 bits of a logical address and the high-order 15 bits of the translated physical
address (see Figure 14).

When a logical address is passed from the CPU to the MMU, the MMU first attempts
to match that logical address with an entry in the cache. If the entry is present, the
physical address portion of the entry is used immediately. If the entry is not present,
the MMU must fetch the page table and pointer table entries from memory before
address translation can be performed.

If the entry is present, address translation requires only one clock cycle. If the entry is
not present, address translation will take slightly longer. This associative table is
transparent to the user and calculations indicate that it dramatically speeds up
address translation since the hit rc;ttio (the percentage of time the cache contains the
entry) is about 98%.

MMU

LOGICAL

-'\ ASSOCIATIVE PHYSICAL -'\

CACHE

vi TABLE
ADDRESS vi ADDRESS

CPU MEMORY

I' DATA OR INSTRUCTION REFERENCE -'\
'v vi

Figure 14. Associative Cache

2.3.3 Virtual Memory Mechanisms of the TI32000

Programs share many traits in common with human beings. For example, they obey
Parkinson's Law. Just as work expands to fill the time available, so programs tend to
expand over their lifetime to fill the physical memory available to them. Once the
memory limits have been reached, further expansion of the program is difficult and
error prone, usually requiring hard to manage overlays. The ideal solution to this
problem is to give the program a virtually infinite (limitless) memory. A program in
an infinite memory can be enlarged without bumping into any barriers.
Unfortunately, memory costs usually preclude enormous physical memories.
However, virtual memorygives the programmer the illusion of a gigantic memory at
minimal cost.

2-35

Q) ...
:::s ...
(.)
Q) ... :c
(.) ...
«

»
~
C')
::r
::+'
CD
C')
r+
C
~

CD

With virtual memory, the user regards the combination of main and peripheral
storage as a single large storage. The user can write large programs without
worrying about the physical memory limitations of the system. To accomplish this,
the operating system places some of the user programs and data in peripheral
storage and brings them into main memory only as they are needed.

The TI32000 makes virtual memory operating systems easy to implement by means
of its page-based mapping mechanism. Programs and data are swapped between
main memory and secondary storage units of a page, as was described in section
2.1. In addition, the architecture provides several other mechanisms which support
virtual memory.

Three bits in the page entry are important for virtual memory systems. These bits
were discussed briefly in section 2.3.2.1. In the following three subparagraphs we
will cover in much greater detail the use of these three bits in virtual memory
systems. Also covered will be the instruction abortion/reexecution facility, the other
TI32000 feature specifically designed to support virtual memory.

2.3.3.1 Page Faults and the Valid Bit

The Valid Bit in a page or pointer table entry indicates whether the corresponding
page is present in main memory or not. Whenever an address is generated by the
CPU and passed to the MMU fortranslation into a physical address, the MMU checks
the valid bit of the table entry specified by the incoming logical address. If the valid
bit is 1, the page is assumed to be present in main memory and address translation
proceeds in the normal fashion.

However, if the valid bit is 0, then the page is assumed not to be in main memory and
a page fault occurs. A page fault is a hardware generated trap that is used to tell the
operating system to bring the missing page in from secondary storage. The page
fault occurs in the MMU, which generates an Abort signal to the CPU. The Abort
signal causes the CPU to immediately halt execution of the current instruction.

2.3.3.2 Instruction Aborting and Reexecution

2-36

When a page fault occurs, for whatever reason, the MMU sends the Abort signal to
the CPU. At this point the CPU will stop executing the instruction and return any
register that was altered by the instruction to its condition before the instruction
started. The operating system will then be called to initiate a page swap. Once the
appropriate page is in memory, the CPU and MMU also must insure that the aborted
instruction can be reexecuted.

One of the problems in implementing virtual memory systems is that an instruction
may generate a page fault at any time during the course of its execution. If the
instruction itself occupies several bytes, it may overlap a page boundary and the act
offetching an instruction may itself cause a page fault. Or the process offetching the
source or destination operand may cause a page fault.

In order to permit the instruction to be restarted, the Abort signal usually causes the
CPU to be returned to its state before the aborted instruction happened. The
program counter is automatically saved as are the processor status register, the

stack pointer, and several other registers. When the operating system has completed
the page swap, it executes a RETURN FROM TRAP instruction and execution
resumes with the aborted instruction, with all registers being restored to their old
values.

String handling instructions require special treatment during an abort. Obviously it
is not desirable to have a long string instruction repeated from the beginning if an
abort occurs somewhere in the string. The TI32000 provides for the aborted
instruction to be reexecuted from the point where the problem occurred.

2.3.3.3 Support for Page Swapping Algorithms

To facilitate virtual memory implementation, two other bits in the page and pointer
table entries are used: the Referenced Bit (R) and the Modified Bit (M).

It has been tacitly assumed that there is a vacant page frame in which to put the
newly loaded page. In general, such will nfJt be the case and it will be necessary to
remove some page (i.e., copy it back into the secondary memory) in order to make
room for the new page. Thus, an algorithm that decides which page to remove is
needed.

Choosing a page to remove at random is certainly not a good idea. If the page
containing the instruction is the one chosen, another page fault will occur as soon as
an attempt is made to fetch the next instruction. Most operating systems try to
predict which ofthe pages in memory is the least useful, in the sense that its absence
would have the smallest adverse effect on the running program. One way of doing
so is to make a prediction when the next reference to each page will occur and
remove the page whose next reference lies farthest in the future. In other words, to
try to select the page that will not be needed for a long time.

One popular algorithm evicts the page least recently used because that page has a
high probability of not being in the working set. This algorithm is called the Least
Recently Used algorithm. The Referenced bit can be used to implement a version of
this algorithm.

The Referenced bit is set by the hardware when the page is referenced (read or
written) by an instruction. By periodically checking and clearing this bit in all page
and pointer table entries, the operating system can gain insight into the frequency
with which pages are being used.6 This information can be used to select pages to be
swapped out, for example, on a least recently used basis.

If a page about to be evicted has not been modified since it was read in (a likely
occurrence if the program contains program rather than data), then it is not
necessary to write it back into secondary memory, as an accurate copy already exists
there. If, however, it has been modified since it was read in, the copy in secondary
storage is no longer accurate and the page must be rewritten. The Modified bit is set
by the hardware whenever a page is writte.n to during the time it is resident in main
memory.

6. Peter J. Denning, 'Working Sets Past and Present: IEEE Transactions on Software Engineering, SE-6, No.1,
1980.

2-37

fJ
Q) ...
:::s ...
CJ
Q) ...
:2
CJ ... «

II
l> ...
n
::r
;:;:
CI)
n ...
c: ...
CI)

2.3.4

When the time comes to swap this page, the operating system can check this bit to
see if there is a need for updating the copy on disc. If the bit is 1 (i.e., the page has
been modified), then the page must be swapped out to secondary storage. However,
if this bit is 0, then the page has not been modified since it was last read in and it can
simply be discarded.

Memory Protection Mechanisms on the TI32000 Family

The page mechanism can also provide the basis for memory protection within a
logical address space. Each page can have attributes associated with it that indicate
how the page can be accessed. These attributes can allow reads only, reads and
writes, or they can prevent any access at all. Entries in the page and pointer tables
contain protection bits (the PL field) along with physical addresses (see section
2.3.2.1). These protection bits define the attribute of that page (e.g., read only).

The interpretation ofthe protection bits depends on the operating mode ofthe CPU.
A given setting of the PL field will be interpreted differently when the CPU is in
Operating System mode than when the CPU is in User mode. The bits have the
following interpretation.

PL Operating System Mode User Mode

00 read only no access

01 read and write no access

10 read and write read only

11 read and write read and write

The operating system can treat a collection of pages with the same attributes as a
segment. For example, a constants segment might be a set of pages containing data
with the read-only attribute set, so users could ·not modify the data. Thus, page
based mapping provides a mechanism for implementing segmentation.

Intertask protection is accomplished by giving each task its own set of page tables.
Thus each task has its own address space, providing maximum flexibility and virtual
memory for each task. By changing the single register that points to the page table,
one can switch to the new task's address space.

2.3.5 Virtual Machines

2-38

If the virtual memory hardware allows application software to execute in a different
address space from the operating system, then it is possible to implement virtual
machines. Software running on a virtual machine believes that it is running on a
processor whose hardware provides the functions that are, in fact, provided by the
operating system. In fact, the virtual memory hardware and liD devices are
simulated by the operating system with the aid of the real memory management
hardware and liD devices. Thus software which normally must be run alone (e.g., an
operating system) can be run under the control of another operating system. This
can be very useful for debugging a new operating system or running several
incompatible operating systems on the same machine.

Figure 15 shows a simplified diagram of such a virtual machine.

r-
I
I
I
I
I
I

-..,
I

A

L ___ ...J
VIRTUAL MACHINE

FOR B

Figure 15. Virtual Machines

B

Operating system A and operating system B run in different address spaces. System
A manipulates the actual TI32000 hardware, whereas system B manipulates an
illusory machine consisting of the TI32000 hardware and virtual peripherals
simulated by system A. The actual mechanisms employed to create such a virtual
machine are somewhat technical and are covered in detail in the TI32000
Programmer's Reference Manual. Basically, system A constructs a simulated table
onto the real page table. Virtual I/O devices are simulated similarly.

2.4 Other Features of the TI32000 Architecture

2.4.1 Introduction

This section will discuss additional architectural features of the TI32000 that reduce
the traditional gap between the semantics of high-level programming languages
and microprocessor architectures. Specifically, these are features which support
good software design and programming practices. The topics covered include
support for modular software design, input/output implementation, extension of
the instruction set by means of coprocessors, and software debugging support.

2.4.2 Modular Software

Modular programming is one of the principle techniques for the systematic design
of well-structured software. Large programs are among the most complex creations
of human intellect. This complexity has been a major factor contributing to software
unreliability. The concept of modularity in software design provides a means of
overcoming natural human limitations for dealing with programming complexity by
specifying the subdivision of large and complex programming tasks into smaller
and simpler subtasks, or modules, each of which performs some well-defined

2-39

II

l>
"'" (')
::T
;::;:
CD
(')
r+
t:
"'" CD

portion of the complete processing task. Such modules may then be independently
designed, written, tested, and compiled, perhaps by different programmers working
in parallel.

Programs which are written as a set of modules are more likely to be correct. They
are more easily understandable and therefore more easily modified, maintained,
and documented. Also, because communication between modules is permitted
only through well-defined interfaces, the inner workings of a module need not be
known to other modules. This protects a module's code and allows design changes
to be done locally to a module without side effects on other modules or on the use of
the system.

Nearly all HLLs incorporate features to support modular programming. For
example, programs in Ada, the new Department of Defense high-order language,
are composed of one or more program units - subprograms, packages or tasks
which can be compiled separately. In Pascal, separately compiled program modules
may referto variables, functions or procedures declared in another module by using
certain extensions to the language, e.g., Import and Export directives.

The ultimate extension of the concept of modularity and the ultimate simplicity in
software design and implementation is achieved when the modules are written to
be used in ROM form. (For example, the VRTX real-time executive from Hunter &
Ready, Inc.) Such software modules are simple hardware-like components and
require a minimal amount of program design overhead.

Up to now, microprocessor architectures have provided inadequate and
cumbersome architecture support for a modular programming methodology. The
following section will discuss the problems associated with the implementation of
modularity by a microprocessor; and the two subsequent sections will explain the
T132000's architectural solutions to these difficulties.

2.4.2.1 Overview

2-40

The major difficulty limiting the widespread use of libraries of ROM modules has
been the necessity of modifying a module's addresses when it is linked with other
separately compiled modules and loaded into memory for execution. Since
addresses in ROM cannot be modified, it has been difficult to devise a uniform
method of employing ROM modules in programs. Even when the module's code can
be modified (e.g., modules on disk), this is a tedious and often lengthy enterprise.

The problems result from the fact that when several modules are combined into a
single memory image, a module's final position can vary widely. Consequently, all
addresses in jumps and calls or in data accesses that are dependent on knowing the
module's absolute address at run time must be different according to where the
module is loaded. Similarly, when a module calls another module,the address ofthe
called module will be dependent on the relative position ofthe two modules. Thus, a
module's code will not be identical for each position it occupies in memory and a
linkage editor must be used to modify the addresses in each module according to its
assigned position in memory.

2.4.2.2 Support Mechanisms

Software modules which have been compiled and assembled are known as Object
Modules and are typically stored in relocatable object code. The function of a linkage
editor is to merge the object modules into a single linear address space which may
then be loaded into memory for execution. This requires binding (converting to an
absolute value) all unresolved addresses. Relocation refers to the binding of the
nonsequential addresses within the module (calls, returns, branches, and
nonsequential data references); linking is the process of binding the addresses of
subroutines or variables in other modules.

On the T132000, editing of nonsequential addresses (jumps) within a module is not
required, since TI32000 assembly language code is Position-Independent Code
(PIC). This is achieved by the use of addressing modes which form an effective
memory address relative to a base register - PC, FP, SP or S8. Since the relative
distance between two nonsequential addresses remains constant, the same offset
relative to the base register can be used in all positions in memory. This means a
program can be loaded anywhere in memory and run correctly. In addition, facilities
provided by the MMU allow a program to be moved in memory after it has been
linked and loaded. This is especially important in time-sharing systems where
programs must be swapped in and out of main memory to allow sharing of the
processor. Also, because the base register relative addressing mode allows 30-bit
signed displacements, which is 6 bits more than any present logical address, no
code editing is ever necessary for branching, regardless of the amount of code in a
module.

Position-independent code combined with the TI32000 virtual memory mechanism
allows a program to be relocated in the logical address space as well as the physical
address space. Machines that use paging or a relocation register, but lack base
register relative addressing, allow programs to be moved in physical memory, but
do not allow them to be moved to a different logical address after linking.

For references to variables and subroutines in other modules, the TI32000 provides
a sophisticated linkage facility such that no editing of a module's external addresses
is required.

To begin with, all programs for the TI32000 are organized as modules. Each module
consists of three components:

1. The Program Code component contains the code to be executed by the
processor and the module's constant data (or 'literals').

2. The Static Data component contains the module's global variables and
data, i.e., data which may be accessed by all procedures within the module.
In a Pascal.program, for example, this component would contain the data
structures declared in the outermost block.

3. The Link Table contains two types of entries: External Variable Descriptors
and External Procedure Descriptors. The External Variable Descriptor is the
absolute address of a variable located in the static data component or
program code area of another module. This value is used in the External
Addressing mode, in conjunction with the current Mod Table address (see
below), to compute the effective address of the external variable. The

2-41

II

II
l> ...
n
::r
;:;"
CD
n ,...
t: ...
CD

External Procedure Descriptor is used in the Call External Procedure (CXP)
instruction and will be discussed later. There is one entry in the Link Table
for each external variable and procedure referenced by the module.

In a typical system, the linker program (in conjunction with the loader) specifies the
locations of the three components of a module. The static data and Link Table
typically reside in RAM; the code component can be either RAM or ROM. The three
components can be mapped into noncontiguous locations in memory and each can
be independently relocated. Since the Link Table contains the absolute addresses of
external variables, the linker need not assign absolute memory addresses for these
in the module itself; they may be assigned at load time.

To allow the transfer of control from one module to another, the TI32000 provides
three structures: a Module Table in memory and two dedicated registers on the CPU.

1. The Module Table is set up in random-access memory starting at logical
address 0 and contains a Module Descriptorfor each module in the address
space of the program. A Module Descriptor has four 32-bit entries
corresponding to each component of a module:
• The Static Base entry contains the base address of the beginning of the

module's static local data area .
• The Link Base points to the beginning of the module's Link Table.
• The Program Base is the address of the beginning of the code and

constant data for the module. Since a module may have multiple entry
points, this pointer is used with an offset from the Link Table to find them.
One entry is currently unused but has been allocated to allow for future
expansion.

2. The Mod Register on the CPU contains the address of the Module
Descriptor for the current module.

3. The Static Base Register contains a copy of the Static Base component of
the Module Descriptor of the currently executing module, i.e., it points to
the beginning of the current module'S static data area.

See Figure 16 for a illustration of a module's environment.

On the T132000, modules need not be linked together prior to loading. As modules
are loaded, a linking loader simply updates the Module Table and fills the linkage
table entries with the appropriate values. No modification of a module's code is
required. Thus, modules may be stored in read-only memory and may be added to a
system independently of each other, without regard to their individual addressing.
Also, since the pointers in the Module Table reach any point within the address
space, modules can be located anywhere in memory.

2.4.2.3 Programming with Modules

2-42

The Call External Procedure (CXP) instruction is used to execute a procedure
residing in another module. Recall that the Link Table contains two types of entries
for each module in the program's address space: External Variable Descriptors and
External Procedure Descriptors. The latter entries consist of two 16-bit fields each.
The MODULE field contains the address ofthe referenced procedure's Module Table
entry. The OFFSET field is an unsigned number giving the position ofthe entry point

relative to the new module's Program Base pointer (in called module's Mod Table).
This allows a called procedure to be found automatically, without requiring the
calling routine to supply any addressing information.

I

I

STATIC BASE
REG

- I
I

t
MOD REG

I
I

P ROG.COUNTER

l ~ I
- I

MOD TABLE J . .. SB ...

LB

PB

RESERVED

. STATIC DATA

~D

LINK TABLE ..

EXT. VAR.
~

DESCRIPTION

GLOBAL DATA
'"I'" ... ~

4
.~ .. -.

PROGRAM CODE

. ..

Figure 16. Module Run-Time Environment

Figure 17 depicts the execution of the CXP instruction where Module #2 calls
Module #3.

This instruction automatically performs the following sequence of operations.
1. The External Procedure Descriptor for Module #3 is found by adding a

displacement specified in the instruction to the Link Table address of
Module #2. In the assembly language program this displacement is
represented by a label name; the actual numerical value of the
displacement is assigned by the assembler.

2. The current status of Module #2 is saved by pushing the contents of its PC
and Mod registers onto the stack.

3. The Module field of the Link Table's External Procedure Descriptor for
Module #3 is moved into the MOD register so that this register now points
to the Module Table for Module #3.

2-43

II

II

2-44

4. The Static Base value in the Module Table is placed in the Static Base
Register (this is done to speed up accesses to the module's static variables,
which would otherwise be referenced by indexing into the Module Table).

5. The Offset field in the External Procedure Descriptor is added to the
contents of the Mod Table's Program Base and this value is placed in the PC.
The CPU is now in the environment of Module #3.

PROG CODE

SB

LB

PB

MOD REG #3

SB

LB

PB

STATIC DATA #3

PROG CODE #3

Figure 17. CXP Instruction

The Call External Procedure with Descriptor (CXPD) instruction allows an External
Procedure Descriptor to be passed as a parameter to a called module. The address of
a function or procedure from the calling module's Link Table is pushed onto the stack
and the called module may then use this value to call the procedure.

The Enter and Exit instructions minimize the overhead in procedure calls by
automatically managing the resources that must be allocated at the beginning of a
procedure and reclaimed at the end.

The Enter instruction saves the Frame Pointer (FP) ofthe calling module on the stack
and loads the Stack Pointer value into the FP register so that they now point to the
same location, i.e., the saved FP value on the stack. Space on the stack is allocated for
the procedure's local variables and a specified number of registers required for use
by the procedure are pushed on the stack. See Figure 18 for an example of one
procedure calling another.

15 0

SP ... SAVED R2

SAVED R1

LOCAL
VARS

(6 BYTES)

15 0 FP 1. FPO
r---~

SP-. PC PC SP~

MOD MOD

DUMMY DUMMY

ARG2 ARG2

15 0
ARG1 ARG1

sp-'r--r

FPo~1 I FPO~
STATE BEFORE STATE AFTER: STATE AFTER:

CALL SEQUENCE ADDR ARG1. TOS ENTER [R1. R2). 6
MOVW ARG2. TOS

CXP OUTWORD
MAIN PROCEDURE

CODE FOLLOWS
AT THIS POINT

15 o

PC

MOD

DUMMY

ARG2

ARG1

STATE AFTER:
EXIT [R1. R2)

Figure 18. Stack Flow for Procedure Calls

15 0
SP iI
FPo"'l I

STATE AFTER:
RXP6

The T132000's use of the FP allows the procedure to allocate local variables on the
stack and address them as fixed offsets from the FP. Also, once the local storage is
allocated, the stack can still be used for temporary storage without affecting the
addressing of the local variables. The programmer need not keep track of the
changing offset between the SP and local storage, which is especially advantageous
for nested procedure calls and recursive functions.

The Exit instruction automatically restores the registers saved by the Enter
instruction, loads the value of the FP into the Stack Pointer thus deallocating the
procedure variables, and restores the previous FP.

The Return from External Procedure (RXP) instruction restores the Static Base, the
Mod register, and the PC ofthe call,ing procedure~ In addition, this instruction may be
used to remove the parameters which were passed to the called procedure.

2-45

II
Q) ...
::l
(.)
Q) :c
(.) ... «

II
l> ...
n
:::T
;:;:
CD
n ,..
c: ...
CD

2.4.3

Data accesses by modules are provided in the following manner.
1. Parameters and local variables on the stack may be stored and accessed

with the Memory Space addressing mode or the Memory Relative
addressing mode using the FP register. Parameters are addressed with
positive offsets from the FP; local variables are addressed with negative
offsets from the FP.

2. A module's static data is accessed by using the Memory Space addressing
mode with the Static Base (SB) register. Since displacement fields relative
to SB register can be 1, 2 or 4 bytes, no limit is imposed on the amount of
static data a module may have. Note that on other microprocessors, which
handle static data in the same way as any other external references, no
protection is provided for accesses by other modules. The TI32000 provides
this protection at the hardware level. The Mod Table allows each module to
have its own static data area so that a procedure being executed by a
module will not modify that module's data. In applications requiring two or
more tasks to be executing the same code concurrently, this protection is
essential to insure reentrancy.

3. For operands that are external to the currently executing module, the
External addressing mode is used. This addressing mode specifies two
displacements. The first is added to the Link Base entry in the Mod Table to
.obtain the External Variable Descriptor entry in the Link Table. The second
displacement is added to the External Variable Descriptor to compute the
effective address ofthe operand. Since both displacements may be as large
as the logical address space, there is no limit to the size of the Link Table or
to the size of the external variable (which might be a structure rather than a
single data element).

Indexing by the contents of anyone of the CPU's eight address-data registers is an
option on all addressing modes which generate an effective address to memory, so
that a static or external variable can also.be an array. For example, to access an array
that has been passed by reference, the starting address ofthe array may be found by
using the Memory Space mode relative to the FP; this value can then be loaded into
an address-data register and used with the Scaled Index mode.

Input/Output

The input/output structure defined by a computer's architecture provides the
interface between the central processor and the outside world, as well as between
the processor and its secondary storage devices, external support circuits, and
coprocessors.

The first two sections will discuss one aspect of the T132000's architectural support
for I/O operations, specifically, its sophisticated and efficient exception handling
mechanism.

2.4.3.1 Overview

2-46

Program exceptions are conditions which alter the normal sequence of instruction
execution, causing the processor to suspend the current process and call the
operating system for service. An exception resulting from the activity of a source
external to the processor is known as an interrupt; an exception which is initiated by

some action or condition in the program itself is called a trap. Thus, an interrupt
need not have a relationship to the executing program, while a trap is caused by the
executing program and will recur each time the program is executed. The TI32000
recognizes 12 exceptions: 9 traps and 3 interrupts.

The exception handling technique employed by an interrupt-driven processor
determines how fast the processor can perform input/output transfers, the speed
with which transfers between tasks and processes can be achieved, and the
software overhead required for both. Therefore, it determines to a large extent the
efficiency of a processor's multiprogramming and multitasking (including real-time)
capabilities.

Exception handling on the TI32000 makes use of the hardware structures provided
for external procedure calls and, in addition, establishes a Dispatch Table in memory
whose base address is contained in the CPU Interrupt Base register. This table
contains an External Procedure Descriptor for each interrupt service procedure
required. See Figure 19.

I I .. ~31
INT BASE I o NVI

1 NMI

2 ABT

3 FPU

4 ILL

5 SVC

6 DVZ

7 FLG

8 BPT

9 TRC

10 UNO
.....

0

NONVECTOREDINTERRUPT

NONMASKABLEINTERRUPT

ABORT

FPU TRAP

ILLEGAL OPERATION TRAP

SUPERVISOR CALL TRAP

DIVIDE BY ZERO TRAP

FLAG TRAP

BREAKPOINT TRAP

TRACE TRAP

UNDEFINED INSTRUCTION TRAP
... ,

11 - 15 RESERVED

RUPTS

Figure 19. Dispatch Table

For purposes of addressing the Dispatch Table, each of the 12 exceptions has been
assigned a number. This exception number (or Interrupt vector) is used to compute
the starting address of the service procedure for the particular exception required,
i.e., the exception number is multiplied by 4, added to the contents of the Interrupt
Base register, and this value is used as an index into the Dispatch Table to obtain the
External Procedure Descriptor of the service routine to call.

2-47

II
CD ..
::::s ...
(,)
CD ... :c
(,) ..

<C

2-48

When an exception occurs, the CPU automatically preserves the complete machine
state of the program immediately prior to the occurrence of the exception.
Depending on the kind of exception, it will restore and/or adjust the contents of the
Program Counter, the Processor Status register, and the current Stack Pointer. A copy
of the PSR is made and pushed onto the Interrupt Stack. The PSR is set to reflect
Operating System mode and the selection of the service routine's Interrupt Stack.
The Interrupt exception number is then used to obtain the address of the External
Procedure Descriptor from the Dispatch Table and an External Procedure Call is
made. As with any such call, the Mod register and the Program Counter are pushed
onto the Interrupt Stack. See Figure 20.

INT BASE REG

EXCEPTION --..0
#0-15 -~~-... (

NEWSB REG.

SPO

INTERRUPT STACK
ON ENTRY INTO

EXCEPTION
HANDLING

ROUTINE

DISPATCH TABLE

DESCRIPTOR

MOD TABLE

SB

LB

PB

PROGRAM CODE

EXCEPTION
HANDLING
ROUTINE

RETURN
ADDRESS

PSR MOD

Figure 20. Nonvectored Interrupts and Traps

To return control to the interrupted program, one of two instructions is used. The
Return From Trap instruction (RETT) is used for all traps and nonmaskable
interrupts. It restores the PSR, the Mod register, and the PC and S8 registers to their

previous contents and, since traps are often used deliberately as a call mechanism
for Operating System mode procedures, it discards a specified number of
parameters from the User's stack. See Figure 21.

For maskable interrupts, the Return from Interrupt (RETI) instruction is used. It is
basically the same as the Return From Trap instruction except that any Interrupt
Control Units (see section 2.4.3.3) are informed that interrupt service has completed.
Also, since interrupts are generally asynchronous external events, this instruction
does not pop any parameters.

The TI32000 implements a five level priority system for scheduling exceptions which
occur in the same instruction. They are ordered as follows:

1. Traps other than trace (highest priority)
2. Abort trap
3. Nonmaskable interrupt
4. Maskable interrupts
5. Trace trap (lowest priority)

PC REGISTER INTERRUPT STACK

I ... I pop
RETURN -. - ADDRESS

PSR REGISTER _ PSR I MOD
pop J I ~ I

----MOD REGISTER

1 •
.....

. MOD TABLE
,,-

, SB
SB REGISTER

L ~ I LB -.
PB

-

USER STACK

J
n " BYTES 1--------1

PARAMETERS

~,

POP AND DISCARD

Figure 21. Return from Trap Instruction

Maskable interrupts may individually be assigned separate relative priorities (see
below). Exceptions with the same priority are serviced in the order received.

2-49

II
Q) ...
:::s -CJ
Q) -:c
CJ ...
«

» ..
(')
::r
;:;:
CD
(') ..
c ..
CD

This, then, is the basic plan for exception handling on the T132000. The specifics of
interrupt and traps are discussed in the following two sections of this chapter.

2.4.3.2 Interrupts

2-50

The TI32000 provides three types of interrupts: Nonmaskable, Vectored, and
Nonvectored.

Nonmaskable interrupts cannot be disabled and occur when catastrophic events
(such as imminent power failure) require immediate handling in order to preserve
system integrity. A nonmaskable interrupt also occurs when a breakpoint condition
is met. (See section 2.4.5.2)

The Nonvectored interrupt mode may be used by smaller systems in which an
interrupt priority system is not required. In this case, no index into the Dispatch Table
is needed and the CPU simply uses a default vector of zero.

For Vectored interrupts, prioritization of interrupt requests is provided by the
TI32202 Interrupt Control Unit. The basic idea in a priority interrupt mechanism is
that each device, along with its interrupt handler, is assigned a rank indicating its
priority. An interrupt handler can then be interrupted only by devices with a higher
priority.

Each Interrupt Control Unit can prioritize up to 16 interrupt requests, eight of which
can be from external peripheral devices. The ICU provides a vector used as an index
into the Dispatch Table to obtain the address of the service routine required.
In a system with only one ICU, the vectors provided must be in the range of 0
through 127.

To further expand the interrupt handling capability of a system, a single T132202,
acting as the Master ICU, can be cascaded with up to 16 additional T132202s,
providing up to 256 levels of hardware or software interrupt. To support the
cascaded configuration, a Cascade Table is established in memory, in a negative
direction from the Dispatch Table. The entries in the table are the 32-bit addresses
pointing to the Vector Registers in each ICU. To address the Cascade Table, the ICU
provides a negative vector number. The fact that it is a negative number indicates to
the CPU that the interrupt vector is from a cascaded ICU. See Figure 22 for a detailed
explanation of cascaded interrupts.

The Interrupt Control Unit can function in either a fixed priority or an auto-rotate
mode. In auto-rotate mode, the interrupt source, after being serviced, is rotated
automatically to the lowest priority position.

All interrupts except the nonmaskable interrupt may be disabled by the program
with the Bit Clear in PSR instruction; each of the ICU's 16 interrupt sources can be
individually masked by setting a bit in that device's Mask Register.

Interrupt handling on the TI32000 provides a number of features which contribute
to efficiency and programming flexibility. For example, on some microprocessors,
all registers are automatically saved when an interrupt occurs. The TI32000
automatically saves only the Program Counter, the Program Status Register and the
Mod register; the other registers are under program control. They may be saved and

restored by specifying the required ones in a single instruction, allowing for extreme
flexibility in adjusting interrupt response speed. Fast context switching for
interrupts is facilitated by the treatment of all memory locations as though they are
internal address-data registers by virtue of memory-to-memory operations. This
allows a temporary variable to be left in memory during a context switch. Also, the
use of an Interrupt Stack allows context switching in a multiprogramming or
multitasking environment to be done without having to disable interrupts.

MASTER ICU
INTERRUPT #(0·15)

INT VECTOR #1--+

.. ~
INT

VECTOR #n--'

0 1
14

15

FIXED INTERRUPTS
AND TRAPS

CASCADEDICU
VECTOR REG

} 16
DESCRIPTORS

256
DESCRIPTORS

Figure 22. Cascaded Vectored Interrupts

2.4.3.3 Traps

CASCADE
TABLE
ENTRIES

FOR
CASCADED
ICUs

DISPATCH
TABLE

The TI32000 recognizes nine traps. Three of the traps are implemented by explicit
instructions: the Flag Trap (FLAG) allows overflow checking in any arithmetic
operation and is enabled by setting the F bit in the PSR; the Supervisor Call Trap
(SVC) is used to transfer to system mode software in a controlled way, typically to
access facilities provided by the operating system. The Breakpoint Trap (BPT)
instruction is used for program debugging, and is discussed in section 2.4.5.2.

The Abort Trap (ABT) occurs when an attempt is made to access a protected page in
memory or when page swapping is required in the MMU.lfthe pagefaultoccurs in a
string instruction, the processor state is set to reflect the progress made by the
instruction up to the time of the trap; all other instructions are reexecuted from the
beginning.

2·51

II
Q) ...
::J ...
CJ
Q) ...
:2
CJ ...
<t

II
» ...
n
:l'"
;:;"
CD
n
r+
C ...
CD

The Illegal Trap (ILL) results when a privileged instruction occurs while the processor
is in the User mode. Traps are also provided for undefined opcodes (UNO), for
attempted division by zero (OVZ), and forthe occurrence of an exceptional condition
in an FPU or Application Specific Coprocessor (ACU) instruction. The Trace Trap is
enabled by setting the T bit in the PSR and is used for program debugging.

All traps except the Trace trap occur as an itegral part of the execution of an
instruction, and are serviced before interrupts. The return address pushed by any
trap except the Trace trap is the address of the first byte of the instruction during
which the trap occurred; the return address of a Trace trap is the address ofthe next
instruction to be traced.

2.4.3.4 Memory-Mapped I/O

The architecture ofthe TI32000 implements a memory-mapped /10 system, in which
peripheral devices are treated as a specified section of memory. The basic
motivation of a memory-mapped system is to allow the use of the full range of the
microprocessor's instructions and addressing modes for lID operations.

Each device interface is organized as a set of registers (or ports) that responds to
read and write commands to locations in the normal address space of the
microprocessor. For example, a memory store becomes an liD write if a peripheral
device is addressed; a load from memory becomes an liD read. A compare with
memory is a very powerful instruction that can take a group of input data and
successively compare their magnitude with a value in a register. Also, data in an
external device register can be tested or modified directly, without bringing it into
memory or disturbing the address-data registers.

Memory-mapped liD allows liD operations to be performed directly in a high-level
language, i.e., an lID device may be declared as a data structure and then
manipulated with the use of pointers. In an isolated liD system, assembly language
subroutines for liD must be written and then called by the HLL. Memory-mapped liD
also insures that the liD space is protected by the same memory management
facilities that are used to protect critical areas of memory.

2.4.4 Coprocessors

2-52

A coprocessor is an auxiliary processing unit that operates in coordination with the
TI32000 CPU, allowing architectural capabilities which, in view of the limitations in
contemporary integration technology, could not otherwise be provided.
Communication between the master CPU and the coprocessors takes place by
means of a very fast, well defined, and self-contained protocol, which is transparent
to the programmer.

The TI32000 family now includes two coprocessors: the TI32081 Floating Point Unit
and the TI32082 Memory Management Unit. In addition, the TI32000 CPUs provide
the capability of communicating with a user-defined, generalized Application
Specific Coprocessor.

2.4.4.1 Overview

A TI32000 CPU recognizes three groups of instructions as being executable by
external coprocessors: 1) Memory Management Instructions, 2) Floating-Point
Instructions, and 3) Application-Specific Coprocessor Instructions.

Coprocessor instructions have a three-byte Basic Instruction field, consisting of an
10 byte followed by an Operation Word. The 10 Byte identifies the instruction as
being a coprocessor instruction, specifies which coprocessor will execute it, and
determines the format of the following Operation Word of the instruction. The
Operation Word specifies the size and number of operands, the addressing modes
used to access them, and the type of operation to be performed.

In all coprocessor operations, the CPU fetches the instruction, performs any address
calculation that may be needed, and then routes the instruction with the appropriate
data to the coprocessor for execution. The actual data manipulation is handled by
the coprocessor. If the necessary coprocessor chip is not in the system, the CPU
generates a software trap, allowing the instruction to be emulated with software
routines.

Though the coprocessor is external to the host CPU, all of the CPU's registers and
facilities (such as effective address calculation, memory bus interface, etc.) can be
considered an integral part of the system.

A four-bit CFG register, located in the control section ofthe TI32000 CPU, indicates to
the CPU the presence of coprocessors in the system configuration (see Figure 7). The
F, M, and C bits indicate the availability of the FPU, the MMU, and an Application
Specific Coprocessor. The I bit indicates the presence of the TI32202 Interrupt
Control Unit. These four bits must be set by the user during system initialization with
the Set Configuration instruction (SETCFG).

There are no restrictions on the number of coprocessors that can be used in the
system, as long as only one coprocessor of each kind is on the bus. Thus, four orfive
coprocessors, each with a different instruction set, could work alongside the CPU on
the same bus.

The coprocessor concept has two main advantages for software development. First,
the coprocessors are so designed that when integration technology advances to the
point where coprocessor hardware can be incorporated within the CPU chip, no
software modifications will be required - the same programs will simply execute
much faster. Second, the programmer has the option of building an entry-level
system without coprocessors by using software emulators. Later, higher
performance systems can be built by simply adding the coprocessor chips and
removing the emulators.

2.4.4.2 MMU

The MMU provides dynamic address translation, virtual memory management,
memory protection, and both hardware and software debugging support.

The MMU address translation and virtual memory mechanisms are described in
section 2.3; section 2.4.5 covers the debugging facilities ofthe MMU.ln addition, six

2-53

Q) ...
:s ...
CJ
Q) ...
:E
CJ ...
<t

II
»
~
(')
::r
;::;"
CD
(')
r+
c:
~

CD

instructions are provided for manipulating the MMU's status. The Read Address
Validate (RDVAL) instruction and the Write address validate (WRVAL) instruction
provide read and write address translation validation for the user mode. The Load
MMU Register (LMR) instruction allows the programmerto store data into any ofthe
MMU registers. The Store MMU Register (SMR) instruction allows any registerto be
read.

The MOVSU and MOVUS instructions permit the operating system to transfer data
to and from user space. Without these instructions, the operating system would
have no way of accessing data in the user's address space. Many microprocessors
that distinguish Operating System mode from User mode lack this instruction and
the design of operating systems for these machines is adversely affected.

2.4.4.3 FPU

The FPU extends the TI32000 instruction set with very high-speed floating-point
operation's for both single- and double-precision operands, as well as 8, 16 and
32-bit fixed point calculations.

The FPU contains eight 32-bit data registers and a 32-bit Floating-Point Status
Register (FSR) which contains mode control information, the floating-point error
bits, and trap enables. The data registers contain 32-bit single-precision operands;
for 64-bit double-precision operands, two registers are concatenated.

Unlike other microprocessors which support floating-point operations, the
architecture of the TI32000 makes available to the FPU all the TI32000 addressing
modes. For example, the Scaled Index mode permits an array offloating-point data
elements to be addressed by its logical index, rather than its physical address. Also,
any instructions can be register-to-register, register-to-memory, or memory-to
memory.

The FPU executes 18 instructions which supplement the integral arithmetic
instructions and provide conversion from one precision type to another. Three
separate processors in the chip manipulate the mantissa, sign, and exponent,
respectively, under the control of microcode stored on the chip. (See section 2.2.3.2)

, Traps are provided for overflow, underflow, divide by zero, reserved operand, invalid
operations, illegal instructions, and inexact results. All tra'ps can be individually
enabled or disabled by the programmer. '

2.4.4.4 Application-Specific Coprocessors

2-54

The user-defined Application-Specific Coprocessor (ACU) instruction set can be
used to control any generic external chip. This chip is assumed to need some
opcodes for arithmetic-like calculations, some opcodes for data moves, and some
opcodes for examining and modifying status registers. The instruction set defines
the instruction formats, the operand classes, and the communication protocol. Left
to the user are the interpretations ofthe Op Code fields, the programming model of
the ACU, and the actual types of data transferred. The protocol specifies only the size
of an operand, not its data type.

2.4.5 Debugging Facilities

Debugging is one of the most difficult stages in program development. Though
structured design techniques and modular programming have helped to reduce
program debugging time, 20% of software development effort remains committed
to this enterprise. Clearly, any debugging assistance provided by the hardware is of
particular value. The support provided by the TI32000 is unique for
microprocessors.

2.4.5.1 Overview

Hardware support is provided for an operation crucial to program debugging:
breakpointing. The implementation of this operation uses a set of registers on the II
MMU and the Breakpoint Trap instruction.

2.4.5.2 Breakpoint Trap and MMU Breakpoint Registers

Setting breakpoints is a technique for halting a program's execution at a particular
instruction or data access for purposes of examining the program's state and
thereby determining the cause-of improper program behavior.

On the T132000, breakpoints may be set either when a specified address is accessed
or after a specified number of such accesses have been made. Also, more than one
breakpoint address may be simultaneously selected, allowing a halt to be
implemented after either fork of a conditional branch. These facilities are provided
by the Breakpoint Trap instruction (BPT) and three dedicated registers located on the
MMU.

The Breakpoint Trap instruction is a one byte instruction which replaces the first byte
ofthe opcode of the instruction that is to be breakpointed. To allow breakpoints to be
set in PROM, as well as RAM, two Breakpoint registers, BPRO and BPR1, are
provided. These registers hold the double word addresses of two selected
breakpoints which are compared with the contents of the address bus for every
memory cycle. When a breakpoint address appears in the program and other
conditions specified by the contents ofthe register are met, a nonmaskable Interrupt
occurs.

Because these registers are located in the MMU, they may be selected to look at
either the logical addresses from the CPU or the physical addresses from the MMU.
In addition, the Breakpoint registers may be designated to operate when the
indicated address is either written to or read from or when there is an instruction
fetch.

A third register on the MMU, the Breakpoint Count register, specifies the number of
matches of the BPRO register breakpoint condition to pass over before a breakpoint
occurs. This is useful for selecting a particular iteration in a loop instruction. See
Figure 23 for a schematic representation of the operation of the three Breakpoint
registers. In this example, the program contains a loop which will be executed 100
times. For purposes of debugging, the breakpoint is set to occur on the last time
through the loop. This is done by setting BPRO to the address of the particular
instruction and by setting the BC register to 99, this being one less than the number
of times the loop will be executed in the program.

2-55

Q) ...
:l
(J
Q)
:2
(J ...
<t

II
» ..,
n
::T
;:;:
CD
n ,...
c: ..,
CD

2-56

MMU REGISTERS

BPRO

BPR1

BC=99

EXAMPLE PROGRAM

Figure 23. Breakpointing

In most other microprocessors, breakpointing is provided by a trap or breakpoint
instruction which single steps the CPU. This can result in a myriad of problems for a
virtual memory system. First and foremost is the fact that all addresses emanating
from the CPU are logical addresses.ltis often necessary when debugging Operating
System mode software to be able to set breakpoints at absolute addresses; i.e., at
addresses in physical memory. This is not possible with CPU-based debugging
techniques, since the CPU has no concept ofthe distinction between the two types of
addresses. Also, the setting of breakpoints with special instructions that overlay
existing code can cause much additional overhead for the memory manager. For
these and other reasons, the designers of the TI32000 have chosen to implement
debug support on the MMU.

TI32000 Family

lr1tr()ductiofl·· •.. ~.

Architecture O"er"iew'~

Component Description

3-1

II
:j
W
N
o
W
N
~

s:
(;' ... o
'0 ... o
(')
CD
en
en o ...

3-2

3.1 TI32032T Microprocessor

3.1.1 Programming Model

The TI32000 microprocessor family architecture includes 16 registers on the TI32032T
Central Processing Unit (CPU) (Figure 1).

ADDRESS-DATA
DEDICATED 4 32 • • 32 • RO

0 PROGRAM COUNTER PC

R1
0 STATIC BASE SB

R2
0 FRAME POINTER FP

}sp R3
0 USER STACK PTR. SP1

R4
0 INTERRUPT STACK PTR. SPO

R5
0 INTERRUPT BASE INTBASE

PSR MOD
R6

STATUS MODULE R7

Figure 1. Address-Data and Dedicated Registers

3.1.1.1 Address-Data Registers

The TI32032T contains eight registers (RO through R7) for meeting high-speed general
storage requirements, such as for holding temporary variables and addresses. These
registers are free for any use by the programmer. Each is 32 bits in length. If an Address
Data Register is specified for an operand that is 8 or 16 bits long, only the low part
(8 or 16 bit section) of the register is used and the high part is not referenced or
modified.

3.1.1.2 Dedicated Registers

The eight dedicated registers of the TI32032T are assigned specific functions.

PC: THE PROGRAM COUNTER Register is a pointer to the first byte of the instruction
currently being executed. The PC Register is used to reference memory in the program
section. In the TI32032T CPU, the upper eight (most significant) bits of this register
are always zero.

SPO, SP1 :The function of the STACK POINTER Registers is as follows: (1) The SPO
Register points to the lowest address of the last item stored in the Interrupt Stack.
This stack is normally used only by the operating system. It is primarily used for storing

3-3

II
...
o
en
en
Q)
CJ
o ...
C
O ...
. ~
2
i
N
M
o
N
M
i=

I
:::!
CAl
N
o
CAl
N
-I

s:
n ... o
"C ...
o
n
CD
en
(I)

o ...

3-4

temporary data, and holding return information for operating system subroutines and
interrupt and trap service routines. (2) The SP1 Register points to the lowest address
of the last item stored on the User Stack. This stack is used by normal user programs
to hold temporary data and subroutine return information.

In this document, reference is made to the SP Register. The terms "SP Register" or
"SP" refers to either SPO or SP1 , depending on the setting of the S bit in the Processor
Status Register (PSR). If the S bit in the PSR is 0, then SP refers to SPO. If the S bit
in the PSR is 1, then SP refers to SP1 . In the TI32032T CPU, the upper eight (most
significant) bits of these registers are always zero.

Stacks in the TI32000 microprocessor family grow downward in memory. A Push
operation predecrements the Stack Pointer by the operand length. A Pop operation
postincrements the Stack Pointer by the operand length.

FP: The FRAME POINTER Register is used by a procedure to access parameters and
local variables on the stack. The FP Register is set up on procedure entry with the
ENTER instruction and stored on procedure termination with the EXIT instruction.

The FP Register holds the address in memory occupied by the old contents of the Frame
Pointer. In the TI32032T CPU, the upper eight (most significant) bits of this register
are always zero.

SB: The STATIC BASE Register points to the global variables of the software module.
This register is used to support relocatable global variables for software modules. The
SB Register holds the lowest address in memory occupied by the global variables of
a module. In the TI32032T CPU, the upper eight (most significant) bits of this register
are always zero.

INTBASE: The INTERRUPT BASE Register holds the address of the dispatch table for
interrupts and traps (section 3.1.3.8). The INTBASE register holds the lowest address
in memory occupied by the dispatch table. (In the TI32032T CPU, the upper eight
(most significant) bits of this register are always zero.

MOD: The MODULE REGISTER holds the address of the module descriptor of the
currently executing software module. The MOD register is 16 bits long, therefore the
module table must be contained within the first 64k bytes of memory.

PSR: The PROCESSOR STATUS Register holds the status codes for the TI32032T
microprocessor. The PSR, as shown in Figure 2, is 16 bits long, divided into two 8-bit
halves. The low-order 8 bits are accessible to all programs, but the high-order 8 bits
are accessible only to programs executing in Operating System Mode.

Figure 2. Processor Status Register

c: The C bit indicatesthat a carry or borrow occurred after an addition or subtraction
instruction. It canbe used with the ADDC and SUBC instructions to perform multiple
precision integer arithmetic calculations. It may have a setting of 0 (no carry or borrow)
or 1 (carry or borrow).

T: The T bit causes program tracing. If this bit is a 1, a Trace Trap (TRC) is executed
after every instruction (section 3.1.3.8.5).

L: The L bit is altered by comparison instructions. In a comparison instruction, the
L bit is set to "1" if the second operand is less than the first operand, and both operands
are interpreted as unsigned integers. Otherwise, it is set to "0". In floating-point
comparisons, this bit is always cleared.

F: The F bit is a general condition flag, which is altered by many instructions (e.g.,
integer arithmetic instructions use it to indicate overflow).

Z: The Z bit is altered by comparison instructions. In a comparison instruction, the
Z bit is set to "1" if the second operand is equal to the first operand; otherwise it
is set to "0".

N: The N bit is altered by comparison instructions. In a comparison instruction, the
N bit is set to "1" if both operands are interpreted as signed integers and the second
operand is less than the first operand. Otherwise, it is set to "0".

U: If the U bit is "1", no privileged instructions may be executed. If the U bit is "0",
then all instructions may be executed. When U = 0, the TI32032T is said to be in
Operating System Mode; when U = 1, the TI32032T is said to be in User Mode. A
User Mode program is restricted from executing certain instructions and accessing
certain registers which could interfere with the operating system. For example, a User
Mode program is prevented from changing the setting of the flag used to indicate its
own privilege mode. An Operating System Mode program is assumed to be a trusted
part of operating system, hence it has no such restrictions.

S: The S bit specifies whether the SPO Register or SP1 Register is used as the Stack
Pointer. The S bit is automatically cleared on interrupts and traps. Itmay have a setting
of 0 (use SPO Register) or 1 (use SP1 Register).

P: The P bit prevents a TRC trap from occurring more than once for an instruction
(section 3.1.3.8.5). It may have a setting of 0 (no trace pending) or 1 (trace pending).

I: When the I bit is "1", all interrupts will be accepted (section 3.1.3.8). If the I-bit
is "0", only the NMI interrupt is accepted. Trap enables are not affected by this bit.

3.1.1.3 Configuration Register (CFG)

Within the Control section of the TI32032T CPU is a four-bit CFG Register that declares
the presence of certain external devices. It is referenced by only one instruction,
SETCFG, which is intended to be executed only as part of system initialization after
reset. The format of the CFG Register is shown in Figure 3.

Figure 3. CFG Register

3-5

...
o
en
en
Q)
CJ
o ...
Co
o ...
CJ

~
i
N
M
o
N
M
i=

-i
W
N
o
CAl
N
-i

~
(') ...
o
'0 ...
o
(')
CD
en
en
o ...

3.1.1.4

3-6

The CFG I bit declares the presence of external interrupt vectoring circuitry, specifically,
the TI32202 Interrupt Control Unit. If the CFG I bit is "1 ", interrupts requested through
the iN'f pin are "vectored". If it is clear, these interrupts are "nonvectored"
(section 3.1.3.8).

The F, M, and C bits declare the presence of the Floating Point Unit (FPU), Memory
Management Unit (MMU), and Application-Specific Coprocessors. If these bits are Os,
the corresponding instructions are trapped as being undefined.

Memory Organization

The main memory of the TI32032T is a uniform linear address space. Memory locations
are numbered sequentially starting at 0 and ending at 224 - 1. The number specifying
a memory location is called an address. The contents of each memory location is a
byte consisting of 8 bits. Unless otherwise noted, diagrams in this document show
data stored in memory with the lowest address on the right and the highest address
on the left. In addition, when data is shown vertically, the lowest address is at the
top of a diagram and the highest address is at the bottom of the diagram. When bits
are numbered in a diagram, the least significant bit is given the number 0, and is shown
at the right of the diagram. Bits are numbered in increasing significance and toward
the left.

7 o

A

Byte at Address A.

Two contiguous bytes are called a word. Except where noted (section 3.1.2.1), the
least significant byte of a word is stored at the lower address, and the most significant
byte of the word is stored at the next higher address. In memory, the address of a
word is the address of its least significant byte, and a word may start at any address.

15 8 7 0

I MS BYTE I LS BYTE I
f4- A + 1--.J+- A ---.f

Word at Address A.

Two contiguous words are called a double word. Except where noted (section 3.1.2.1),
the least significant word of a double word is stored at the lowest address and the
most significant word of the double word is stored at the address two greater. In
memory, the address of a double word is the address of its least significant byte, and
a double word may start at any address.

31 24 23 16 15 8 7 o

MS BYTE LS BYTE

A+3 A + 2 A + 1 A

Double word at Address A.

Although memory is addressed as bytes, it is actually organized as double words. Note
that access time to a word or a double word depends upon its address, e.g., double
words that are aligned to start at addresses that are multiples of four will be accessed
more quickly than those not so aligned. This also applies to words that cross a double
word boundary.

3.1.1.5 Dedicated Tables

Two of the TI32032T dedicated registers (MOD and INTBASE) serve as pointers to
dedicated tables in memory (section 3.1.3.8).

The INTBASE Register points to the Interrupt Dispatch and Cascade tables.

The MOD register contains a pointer into the Module Table, whose entries are called
Module Descriptors. A Module Descriptor contains four pointers, three of which are
used by the T132032T. At any time, the MOD register contains the address of the
Module Descriptor for the currently running module. It is automatically updated by
the Call External Procedure instructions (CXP and CXPD).

The format of a Module Descriptor is shown in Figure 4. The Static Base entry contains
the address of static data assigned to the running module. It is loaded into the CPU
Static Base register by the CXP and CXPD instructions. The Program Base entry
contains the address of the first byte of instruction code in the module. Since a module
may have multiple entry points, the Program Base pointer serves only as a reference
to find them.

15 o

l MOD J
I

"~31 o~~

STATIC BASE ---LINK TABLE ADDRESS

PROGRAM BASE

RESERVED

,~ ~~

Figure 4. Module Descriptor Format

The Link Table Address points to the Link Table for the currently running module. The
Link Table provides the information needed for:

1. Sharing variables between modules. Such variables are accessed through the
Link Table via the External addressing mode.

2. Transferring control from one module to another. This is done via the Call
External Procedure (CXP) instruction.

3-7

E ..
o
en
en
Q)
(.)

o ..
Co
o ..
(.)

~
....
C\I
('I)
o
C\I
('I)

i=

::!
CAl
N
o
CAl
N
-f

~
n
~ o
c
~ o
n
CD en
(I)

o
~

3.1.2

3.1.2.1

3-8

The format of a Link Table is shown in Figure 5. A Link Table Entry for an external
variable contains the 32-bit address of that variable. An entry for an external procedure
contains two 16-bit fields: Module and Offset. The Module field contains the new MOD
register contents for. the module being entered. The Offset field is an unsigned number
giving the position ofthe entry point relative to the new module's Program Base pointer.

~..- 31 ENTRY

o

2

,"

ABSOLUTE ADDRESS

ABSOLUTE ADDRESS

OFFSET I MODULE

O""~

(

(

(

,~

Figure 5. A Sample Link Table

VARIABLE)

VARIABLE)

PROCEDURE)

For further details of the functions of these tables, refer to the Tl32000 Programmer's
Reference Manual.

Instruction Set

General Instruction Format

Figure 6 shows the general format of a TI32000 instruction. The Basic Instruction
is one to three bytes long and contains the Opcode and up to two 5-bit General
Addressing Mode (gen) fields. Fo"owing the Basic Instruction field is a set of optional

OPTIONAL BASIC
EXTENSIONS INSTRUCTION

~ ________________ ~A ___________________ ~v~ ________ JA~ ________ ~

DISP2 DISP1 DISP21DISP1 ; i
GEN GEN I IMPLIED

INDEX ADDR : ADDR
IMMEDIATE INDEX I OPCODE DISP DISP BYTE MODE CODE
OPERAND(S) BYTE

I A I B
IMM IMM ! I

I
.~

T
.~ , I I

Figure 6. General Instruction Format

extensions, which may appear depending on the instruction and the addressing modes
selected. Index Bytes appear when either or both gen fields specify Scaled Index. In
this case, the gen field specifies only the Scale Factor (1, 2, 4, or 8) and the Index
Byte specifies which Address-Data Register to use as the index and which addressing
mode calculation to perform before indexing. See Figure 7.

7 3 2 o

GEN. ADDR. MODE REG. NO.

Figure 7. Index Byte Format

Following Index Bytes come any displacements (addressing constants) or immediate
values associated with the selected addressing modes. Each Displacementllmmediate
(Disp/IMM) field may contain one or two displacements, or one immediate value. The
size of a Displacement field is encoded within the top bits of that field, as shown in
Figure 8, with the remaining bits interpreted as a signed (two's complement) value.
The size of an immediate value is determined from the Opcode field. Both Disp and
/MM fields are stored most significan't byte first. Note that this is different from the
memory representation of data (section 3.1.1.4).

17 01

SIGNED DISPLACEMENT

BYTE DISPLACEMENT: RANGE - 64 TO + 63

01

WORD DISPLACEMENT: RANGE - 8192 TO +8191

1
I

1 I I

tJ\~~~
p.C€

O\s~\.
G~~O s\

DOUBLE WORD DISPLACEMENT: RANGE (ENTIRE ADDRESSING SPACE)

Figure 8. Displacement Encodings

Some instructions require additional, "implied" immediates and/or displacements, apart
from those associated with addressing modes. Any such extensions appear at the end
of the instruction, in the order that they appear within the list of operands in the
instruction definition (section 3.1.2.3).

3.1.2.2 Addressing Modes

The TI32032T CPU generally accesses an operand by calculating its Effective Address
based on information available' when the operand is to be accessed. The method to
be used in performing this calculation is specified by the programmer as an "addressing
mode" .

3-9

...
o
CI)
CI)
Q)
(,)
o ...
c.
o ...
(,)

~
l
N
M
o
N
M
t=

::::!
eN
N
o
eN
N
-I

S o· ...
o
'0 ...
o
n
CD
en
en
o ...

Addressing modes in the TI32032T are designed to optimally support high-level
language accesses to variables. In nearly all cases, a variable access requires only one
addressing mode within the instruction that acts upon that variable. Extraneous data
movement is therefore minimized.

TI32032T Addressing Modes fall into nine basic types:
1. Register - The operand is available in one of the eight Address-Data Registers.

In certain Coprocessor instructions, an auxiliary set of 8 registers may be
referenced instead.

2. Register Relative - An Address-Data Register contains an address to a
, diplacement value from the instruction, yielding the Effective Address of the

operand in memory.
3. Memory Space - Identical to Register Relative above, except that the register

used is one of the dedicated registers PC, SP, S8, or FP. These registers point
to data areas generally needed by high-level languages.

4. Memory Relative - A pointer variable is found within the memory space
pointed to by the SP, S8, or FP register. A displacement is added to that pointer
to generate the Effective Address of the operand.

5. Immediate - The operand is encoded within the instruction. This addressing
mode is not allowed if the operand is to be written.

6. Absolute - The address of the operand is specified by a displacement field
in the instruction.

7. External - A pointer value is read from a specified entry of the current Link
Table. To this pointer value is added a displacement, yielding the Effective
Address of the operand.

8. Top-of-Stack - The currently selected Stack Pointer (SPO or SP1) specifies
the location of the operand. The operand is pushed or popped, depending on
whether it is written or read .

9. Scaled Index - Although encoded as an addressing mode, Scaled Indexing
is an option on any addressing mode except Immediate or another Scaled
Index. It has the effect of calcula..ling an Effective Address, then multiplying
any Address-Data Register by 1, 2,4, or 8 and adding it to the total, yielding
the final Effective Address of the operand .

Table 1 is a brief summary of. the addressing modes. For a complete description of
their actions, see the Tl32000 Programmer's Reference Manual.

3.1.2.3 Instruction Set Summary

3-10

Table 2 presents a brief description of the TI32032T instruction set.The Format Column
refers to the Instruction Format Tables (See Appendix).The Instruction Column gives
the instruction as coded in assembly language; and the Description column provides
a short description of the function provided by that instruction. Further details of the
exact operations performed by each instruction may be found in the Tl32000
Programmer's Reference Manual.

3.1.3

3.1.3.1

Notations:

= integer length suffix: B = Byte
W = Word
o = Double Word

= Floating Point length suffix: F = Standard Floating
L = Long Floating

gen = General operand: Any addressing mode can be specified.

short = A 4-bit value encoded within the Basic Instruction (see Appendix for
encoding).

imm = Implied immediate operand. An 8-bit value appended after any addressing
extensions.

disp = displacement (addressing constant): 8, 16, or 32 bits. All three lengths
equal.

reg = Any address-data register: RO-R7.

areg = Any Dedicated address register: SP, SB, FP, MOD, INTBASE, PSR,US
(bottom 8 PSR bits).

mreg = Any Memory Management Status/Control Register.

creg = An Application-Specific Coprocessor Register (Implementation Dependent).

cond = Any condition code, encoded as the 4-bit field within the Basic Instruction
(see Appendix for encodings).

Functional Description

Power and Grounding

The TI32032T requires a single 5-V power supply, applied on pin 18 (VCC). See DC
specifications in the TI32032T data sheet.

Grounding connections are made on three pins. Logic Ground (GNDL, pin 44) is the
common pin for on-chip logic, and Buffer Grounds (GNDB1, pin 43 and GNDB2, pin 11)
are the common pins for the output drivers. For optimal noise immunity, it is
recommended that GNDB1 and GNDB2 be connected together through a single
conductor, and GNDL be directly connected to the center of this conductor. All other
ground connections should be made to the common line as shown in Figure 9.

In addition to VCC and GND, the TI32032T CPU uses an internally generated negative
voltage. It is necessary to filter this voltage externally by attaching a pair of capacitors
(Figure 9) from the BBG pin to ground. Recommended values for these are:

C1: 1 J.tF, Tantalum .
. C2: 1000 pF, low inductance. This should be either a disc or monolithic ceramic

capacitor.

3-11

...
o
en
en
Q)
(.)
o ...
c.
o ...
.2
2
l
N
M
o
N
M
i=

Table 1. TI32000 Addressing Modes

ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS

Register

00000 Register 0 RO or FO None: Operand is in the

00001 Register 1 Rl or Fl specified register

00010 Register 2 R2 or F2

00011 Register 3 R3 or F3

00100 Register 4 R4 or F4

00101 Register 5 R5 or F5

00110 Register 6 R6 or F6

00111 Register 7. R7 or F7

Register
Relative

01000 Register 0 relative disp(RO) . Disp + Register.

01001 Register 1 relative disp(Rl)

&I 01010 Reg ister 2 relative disp(R2)

01011 Register 3 relative disp(R3)

01100 Register 4 relative disp(R4)

::! 01101 Register 5 relative disp(R5)
CAl 01110 Reg ister 6 relative disp(R6)
N
0 01111 Register 7 relative disp(R7)
CAl
N Memory
-t Relative
s: 10000 Frame memory relative disp2(displ (FP)) Disp 2 + Pointer; Pointer found (50

10001 Stack memory relative disp2(displ (SP)) at address Displ + Register
0

"SP" is either SPO or SP1, as "'C ...
0 selected in PSR.
(")
(1) 10010 Static memory relative disp2(disp 1 (S8))
fA
t/) Immediate 0 ...

10100 ' Immediate value None: Operand is input from

instruction queue.

Absolute

10101 Absolute @disp Disp.

External

10110 External EXT (disp 1) + disp2 Disp2 + Pointer; Pointer is

found at Link Table Entry

number Disp 1 .

Top of Stack

10111 Top of Stack TOS Top of current stack, using

either User or Interrupt Stack

Pointer, as selected in PSR.

Automatic Push/Pop included.

3-12

ENCODING

Memory
Space

11000

11001

11010

11011

Scaled Index

11100

11101

11110

11111

Table 1. TI32000 Addressing Modes '(Continued)

MODE

Frame memory

Stack memory

Static memory

Program memory

Index, bytes

Index, words

Index, double words

Index, quad words

ASSEMBLER SYNTAX EFFECTIVE ADDRESS

disp(FP) Disp + Register, "SP" is either

disp(SP) SPO or SP1, as selected in

PSR.

disp(SB)

* + disp

modelRn:BI

modelRn:WI

modelRn:DI

modelRn:QI

EA (mode) + Rn.

EA (mode) + 2 x Rn.

EA (mode) + 4 x Rn.

EA (mode) + 8 x Rn.

"Mode" and "n" are contained

within the Index Byte.

EA(mode) denotes the effective

address generated using mode.

3-13

'-
o
t/)
t/)
Q)
(.)

o
'-c.
o
'-
(.)

~
l
N
M
o
N
M
i=

Table 2. TI32000 Instuction Set Summary

MOVES
Format Operation Operands Description

4 MOVi gen,gen Move a value.

2 MOVQi short,gen Extend and move a signed 4-bit constant.

7 MOVMi gen,gen,disp Move Multiple: disp bytes (1 to 16).

7 MOVZBW gen,gen Move with zero extension.

7 MOVZiD gen,gen Move with zero extension.

7 MOVXBW gen,gen Move with sign extension.

7 MOVXiD gen,gen Move with sign extension.

4 ADDR gen,gen Move Effective Address.

INTEGER ARITHMETIC
Format Operation Operands Description

4 ADDi gen,gen Add.

2 ADDQi short,gen Add signed 4-bit constant.

4 ADDCi gen,gen Add with carry.

4 SUBi gen,gen Subtract.

4 SUBCi gen,gen Subtract with carry (borrow).

6 NEGi gen,gen Negate (2's complement).

6 ABSi gen,gen Take absolute value.

7 MULi gen,gen Multiply

7 QUOi gen,gen Divide, rounding toward zero.

7 REMi gen,gen Remainder from QUO.

7 DIVi gen,gen Divide, rounding down.

7 MODi gen,gen Remainder from DIV (Modulus).

7 MEli gen,gen Multiply to Extended Integer.

7 DEli gen,gen Divide Extended Integer.

PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands Description

6 ADDPi gen,gen Add Packed.

6 SUBPi gen,gen Subtract Packed.

INTEGER COMPARISON
Format Operation Operands Description

4 CMPi gen,gen Compare.

2 CMPQi short,gen Compare to signed 4-bit constant.

7 CMPMi gen,gen,disp Compare Multiple: disp bytes (1 to 16),

LOGICAL AND BOOLEAN
Format Operation Operands Description

4 ANDi gen,gen Logical AND.

4 ORi gen,gen Logical OR.

4 BICi gen,gen Clear selected bits.

4 XORi gen,gen Logical Exclusive OR.

6 COMi gen,gen Complement all bits.

6 NOTi gen,gen Boolean complement: LSB only.

2 Scondi gen Save condition code (cond) as a Boolean
variable of size i.

3-14

Table 2. TI32000 Instruction Set Summary (Continued)

SHIFTS
Format Operation Operands Description

6 LSHi gen,gen Logical Shift, left or right.

6 ASHi gengen Arithmetic Shift, left or right.

6 ROTi gen,gen Rotate, left or right.

BITS
Format Operation Operands Description

4 TBITi gen,gen Test bit.

6 SBITi gen,gen Test and set bit.

6 SBITli gen,gen Test and set bit, interlocked

6 CBITi gen,gen Test and clear bit.

6 CBITIi gen,gen Test and clear bit, interlocked.

6 IBITi gen,gen Test and invert bit.

8 FFSi gen,gen Find first set bit

BIT FIELDS

Bit fields are values in memory that are n.ot aligned to byte boundaries. Examples are

PACKED arrays and records used in Pascal. "Extract" instructions read and align a bit

field. "Insert" instructions write a bit field from an aligned source.

Format Operation Operands Description

8 EXTi reg,gen,gen,disp Extract bit field (array oriented).

8 INSi reg,gen,gen,disp Insert bit field (array oriented).

7 EXTSi gen,gen,imm,imm Extract bit field (short form).

7 INSSi gen,gen,imm,imm Insert bit field (short form).

8 CVTP reg,gen,gen Convert to Bit Field Pointer.

ARRAYS
Format Operation Operands Description

8 CHECKi reg,gen,gen Index bounds check.

8 INDEXi reg,gen,gen Recursive indexing step for multiple-

dimensional arrays.

STRINGS

String instructions assign specific functions to the Address-Data Registers:

R4 - Comparison Value

R3 - Translation Table Pointer

R2 - String 2 Pointer

R1 - String 1 Pointer

RD - Limit Count

Options on all strong instructions are:

B (Backward): Decrement string pointers after each step rather than incrementing.

U (Until match): End instruction if String 1 entry matches R4.

W (While match): End instruction if String 1 entry does not match R4.

All string instructions end when RD decrements to zero.

3-15

~

o
en en
Q)
(.)

o
~

c.
o
~

.~
2!
l
N
M
o
N
M
~

Table 2. TI32000 Instruction Set Summary (Continued)

Format Operation Operands Descriptions

5 MOVSi options Move string 1 to String 2.

MOVST options Move string, translating bytes.

5 CMPSi . options Compare String 1 to String 2.

CMPST options Compare, translating String 1 bytes.

5 SKPSi options Skip over String 1 entries.

SKPST options Skip, translating bytes for Until/While.

JUMPS AND LINKAGE
Format Operation Operands Description

3 JUMP gen Jump.

0 BR disp Branch (PC Relative).

0 Bcond disp Conditional branch.

3 CASEi gen Multiway branch.

I 2 ACBi short,gen,disp Add 4-bit constant and branch if non-zero.

3 JSR gen Jump to subroutine.

BSR disp Branch to subroutine.

=! 1 CXP disp Call external procedure.
W 3 CXPD gen Call external procedure ,using descriptor. N
0 SVC Supervisor Call.
W
N FLAG Flag Trap.
-i BPT Breakpoint Trap.
S ENTER [reg list),disp Save registers and allocate stack frame (Enter
n ... Procedure) . 0
'C EXIT [reg list) Restore registers and reclaim stack frame (Exit ...
0 Procedure). n
en RET disp Return from subroutine. t/)
t/)

RXP disp Return from external procedure call. 0 ...
RETT disp Return from trap. (Privileged)

RETI Return from interrupt. (Privileged)

3-16

Table 2. TI32000 Instruction Set Summary (Continued)

CPU REGISTER MANIPULATION
Format Operation Operands Description

1 SAVE Ireg listl Save Address-Data Registers.

1 RESTORE Ireg listl Restore Address-Data registers.

2 LPRi areg,gen Load Dedicated Register. (Privileged if PSR or

INTBASE)

2 SPRi areg,gen Store Dedicated Register. (Privileged if PSR or

.INTBASE)

3 ADJSPi gen Adjust Stack Pointer.

3 BISPSRi gen Set selected bits in PSR. (Privileged if not Byte

length)

3 BICPSRi gen Clear selected bits in PSR. (Privileged if not Byte

length)

5 SETCFG loption listl Set Configuration Register. (Privileged)

FLOA TING POINT II Format Operation Operands Description

11 MOVf gen,gen Move a Floating Point value. ...
9 MOVLF gen,gen Move and shorten a Long value to Standard. 0

en
9 MOVFL gen,gen Move and lengthen a Standard value to Long. en

Q)

9 MOVif gen,gen Convert any integer to Standard or Long Floating. (.)
0

9 ROUNDfi gen,gen Convert to integer by rounding. ...
C.

9 TRUNCfi gen,gen Convert to integer by truncating, toward zero. 0 ...
9 FLOOR fi gen,gen Convert to largest integer less than or equal to . 2

~
value.

t-
11 ADDf gen,gen Add. N

11 SUBf Subtract.
M

gen,gen 0
11 MULf gen,gen Multiply. N

M
11 DIVf gen,gen Divide. ~
11 CMPf gen,gen Compare.

11 NEGf gen,gen Negate.

11 ABSf gen,gen Take absolute value.

9 LFSR gen Load FSR.

9 SFSR gen Store FSR.

MEMORY MANAGEMENT
Format Operation Operands Description

14 LMR mreg,gen Load Memory Management Register. (Privileged)

14 SMR mreg,gen Store Memory Management Register. (Privileged)

14 RDVAL gen Validate address for reading. (Privileged)

14 WRVAL gen Validate address for writing. (Privileged)

8 MOVSUi gen,gen Move a value from Operating System

Space to User Space. (Privileged)

8 MOVUSi gen,gen Move a value from User Space to Operating

System Space. (Privileged)

3-17

Table 2. TI32000 Instruction Set Summary (Concluded)

MISCELLANEOUS
Format Operation Operands Description

NOP No Operation.

WAIT Wait for interrupt.

DIA Diagnose. Single-byte "Branch to Self" for

hardware break pointing. Not for use in

programming.

APPLICATION-SPECIFIC COPROCESSOR (ACU)
Format Operation Operands Description

15.5 CCALOc gen,gen ACU Calculate.

15.5 CCAL 1c gen,gen

15.5 CCAL2c gen,gen

15,5 CCAL3c gen,gen

I
15.5 CMOVOc gen,gen ACU Move.

15.5 CMOV1c gen,gen

15.5 CMOV2c gen,gen

=! 15.5 CCMPc gen,gen ACU Compare.

W 15.1 CCVOci gen,gen ACU Convert.
N
0 15.1 CCV1ci gen,gen
W
N 15.1 CCV2ci gen,gen
-4 15.1 CCV3ci gen,gen
s: 15.1 CCV4DO gen,gen
n

15.1 CCV50D ... gen,gen
0

"C 15.1 LCSR gen Load ACU Status Register. ...
0 15.1 SCSR Store ACU Status Register. n gen
CD en 15.0 CATSTO gen ACU Address/Test. (Privileged) en
0 15.0 CATST1 gen (Privileged) ...

15.0 LCR creg,gen Load ACU Register. (Privileged)

15.0 SCR creg,gen . Store ACU Register. (Privileged)

3-18

3.1.3.2 Clocking

CPU
TI32032T

5V

BBG 1----.... - ...

GNDB2

GNDL

GNDB1

TO OTHER
....... - ... - CONNECTIONS

Figure 9. Recommended Supply Connections

The TI32032T inputs clocking signals from the TI32201 Timing Control Unit(TCU), II
which presents two nonoverlapping phases of a single clock frequency. These phases
are called ClK 1 (pin 26) and ClK2 (pin 27). Their relationship to each other is shown
in Figure 10.

Each positive edge of ClK 1 defines a transition in the timing state (T -State) of the
CPU. One T-State represents the execution of one microinstruction within the CPU,
and/or one step of an external bus transfer. See the ac timing requirements in the
TI32032T data sheet for complete specifications on ClK 1 and ClK2.

ONE

~ T-STATE--.J

CLK1

CLK2

NONOVERLAPPING

Figure 10. Clock Timing Relationships

Since the TCU presents signals with very fast transitions, it is recommended that the
conductors carrying ClK 1 and ClK2 be kept as short as possible, and that they not
be connected anywhere except from the TCU to the CPU and, if present, the Memory
Management Unit (MMU). A TTL Clock signal (CTTl) is provided by the TCU for all
other clocking.

3-19

...
o
en
en
Q)
(.)

o ...
c.
o ...
(.)

~ ...
N
M
o
N
M
i=

II
~
W
N
o
W
N
-I

s:
(') ...
o

"C ... o
(')
CD
tn
tn
o ...

3.1.3.3 Resetting

3-20

The RST/ABT pin serves both as a Reset for on-chip logic and as the Abort input for
Memory-Managed systems. For its use as the Abort command, see section 3.1.3.5.4.

The CPU may be reset at any time by pulling the RST/ABT pin low for at least 64 clock
cycles. Upon detecting a reset, the CPU terminates instruction processing, resets its
internal logic, and clears, the Program Counter (PC) and Processor Status Register (PSR)
to all zeros.

On application of power, RST/ABT must be held low for at least 50 p,s after VCC is
stable. This is to ensure that all on-chip voltages are completely stable before operation.
Whenever a Reset is applied, it must remain active for not less than 64 clock cycles.
The trailing (positive-going) edge must occur while ClK 1 is high, and no later than
10 ns before the ClK 1 trailing edge. See Figures 11 and 12.

VCC

ClK1 ------+-----~

RS'f/A"B'r ----..... ---------------f t-....J

.... --- 2:: 50 Jtsec •

Figure 11. Power-On Reset Requirements

ClKl~JLJl
14 > 64 CLOCK---+I

_____,~~~ CYCLES ,.
RST/ABT ~

~~~~ If~----~ 

Figure 12. General Reset Timing 

The TI32201 Timing Control Unit (TCU) provides circuitry to meet the reset 
requirements of the TI32032T CPU. Figure 13 shows the recommended connections 
for,a non-Memory-Mananaged system. Figure 14 shows the connections for a Memory
Managed system. 



vcc 

r-------, 
I I 

TCU 
TI32201 

CPU 
TI32032T 

I iiESEf XH-T-........... ~ ..... ~~Ht---a RSTI RSTO D---III""--o RSTJABT 

I I L _______ J 
EXTERNAL RESET 

(OPTIONAL) 

(OPTIONAL) 

i!50llSeC 

SYSTEM RESET 

Figure 13. Recommended Reset Connections, Non-Memory-Managed System 

r------, 
I I 

EXTERNAL RESET 
(OPTIONAL) 

RESET SWITCH 
(OPTIONAL) 

vcc 

TCU 
TI32201 

250llsec 

MMU 
TI32082W 

CPU 
TI32032T 

Figure 14. Recommended Reset Connections, Memory-Managed System 

3.1.3.4 Bus Cycles 

The TI32032T CPU has a strap option that defines the Bus Timing Mode as either 
with or without Address Translation. For details covering the use of the strap, refer 
to section 3.1.3.5. 

The CPU will perform a bus cycle for one of the following reasons: 

1. To write or read data, to or from memory or a peripheral interface device. 
Peripheral input and output are memory-mapped in the TI32000 family. 

2. To fetch instructions into the 8-byteinstruction queue. This happens whenever 
the bus would otherwise be idle and the queue is not already full. 

3. To acknowledge an interrupt and allow external circuitry to provide a vector 
number, or to acknowledge completion of an interrupt service routine. 

4. To transfer information to or from a Coprocessor. 

In terms of bus timing, cases 1 through 3 above are identical. The only external 
difference between cases 1 through case 3 is the 4-bit code placed on the Bus Status 
pins (STO-ST3). Coprocessor cycles differ in that separate control signals are applied. 
Refer to section 3.1.3.4.6 

3-21 

II 
~ 

o 
rn 
rn 
Q) 
o 
o 
~ 

Co 
o 
~ 

o 

2 
.... 
C\I 
M 
o 
C\I 
M 
t= 



II 
-f 
W 
N o 
CAl 
N 
-f 

s: 
ri' 
~ o 

"C 
~ o 
n 
C'D 
en 
en 
o 
~ 

3-22 

The sequence of events in a noncoprocessor bus cycle is shown in Figure 16 for a 
Read cycle and Figure 1 7 for a Write cycle. The cases shown assume that the selected 
memory or interface device is capable of communicating with the CPU at full speed. 
If it is not, then cycle extension may be requested through the RDY line. Refer to Section 
3.1.3.4.1. 

ODIN 
8 .... 

024-031 
~ ~ .. 
-" .. BUFFER ~32/ .. 

AOO-A023 
~ ~. ~ .LJJ.. 

"'~4" -'24-
." ... 

TI32032T =-+- 00-031 

BEO'-iiE3 
'iiEo-BE3 4" ..... , p 

ADS 

24 't 
~ 

AO .. 

1.1 A 1 ..... 
LATCH 22/ • ~ .. ... ~ ... 

A2-A23 

CLK 1 CLK2 OS/Rr 
OS 

+ + 
I ..... 

, r ~ 
p 

CLK1 CLK2 ADS ODIN OBE RO .. 
RO 

-p 

WR 
WR ...... 

TI32201 -
TSO 

TSO .. 

Figure 15. Bus Connections 

A full-speed bus cycle is performed in four cycles of ClK1, labeled T1 through T4. 
Clock cycles not associated with a bus cycle are designated Ti (for "idle"). 

During T1, the CPU applies an address on pins ADO-AD23. It also provides a low
going pulse on the ADS pin, which serves the dual purpose of informing external 
circuitry that a bus cycle is starting and of providing control to an external latch for 
demultiplexing Address bits 0-23 from the ADO-AD23 pins. See Figure 15_ Also during 
this time the status signals DDIN, indicating the direction of the transfer, and BEO-BE3, 
indicating which of the four bus bytes are to be referenced, become valid. 

During T2, the CPU switches the Data Bus ADO-AD31 to either accept or present data. 
It also starts the Data Strobe (DS), signalling the beginning of the data transfer. 
Associated signals from the TI32201 Timing Control Unit are also activated at this 
time: RD (Read Strobe) or WR (Write Strobe), TSO (Timing State Output, indicating 
that T2 has been reached), and DBE (Data Buffer Enable). 



ClK1 [ 

ClK2 [ 

AOO·A023 [ 

024·031 [ 

ADS [ 

STO·ST3 [ 

DoiN [ 

BeO·Be3 [ 

Os" [ 

ROY [ 

Wif[ 

OBE [ 

I T4 OR Ti I T1 

CPU BUS SIGNALS 
TI32032T 

T2 I T3 T4 I T1 OR Ti I 

Figure 16. Read Cycle Timing 

3-23 

E1 
... 
o 
(I) 
(I) 
Q) 
(.) 
o ... 
Co 
o ... 
(.) 

~ 
l
N 
M 
o 
N 
M 
i= 



::! 
w 
N 
o 
W 
N 
-I 

s: 
C:;' ... 
o 

"C ... 
o 
n 
CD 
en 
en 
o ... 

3-24 

ClK1 

ClK2 

AOO-A023 

024-031 

ADs 

STO-5T3 

ODiN 

SEO-SE3 

Os 

ROY 

RO 

WR 

OBE 

T50 

CPU BUS SIGNALS 
TI32032T 

I T4 OR Ti I T1 T2 T3 T4 I T1 OR Ti I 
[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

Figure 17. Write Cycle Timing 



The T3 state provides for access time requirements, and it occurs at least once in 
a bus cycle. At the beginning of T3, on the rising edge of the ClK 1 clock, the RDY 
line is sampled to determine whether the bus cycle will be extended (section 3.1.3.4.1). 

If the CPU is performing a Read cycle, the Data Bus (ADO-AD31) is sampled at the 
falling edge of ClK2 in the last T3 state. However, data must be held at least until 
the beginning of T 4. DS and RD are guaranteed not to go inactive before this point, 
so the rising edge of either of them may safely be used to disable the device providing 
the input data. 

The T4 state finishes the bus cycle. At the beginning of T4, the DS, RD or WR, and 
TSO signals go inactive, and on the rising edge of ClK2, DBE goes inactive, having 
provided for necessary data hold times. Data during Write cycles remains valid from 
the CPU throughout T4. Note that the Bus Status lines (STO-ST3) change at the 
beginning of T4, anticipating the following bus cycle (if any). 

3.1.3.4.1 Cycle Extension 

To allow sufficient strobe widths and access times for any speed of memory or 
peripheral device, the TI32032T provides for extension of a bus cycle. Any type of II 
bus cycle except a coprocessor cycle can be extended. 

In Figures 16 and 17, note that during T3 all bus control signals from the CPU and 
TCU are flat. Therefore, a bus cycle can be cleanly extended by causing the T3 state 
to be repeated. This is the purpose of the Ready (RDY) pin. 

At the end of T2, on the falling edge of ClK2, the RDY line is sampled by the CPU. 
If RDY is high, the next T-states will be T3 and T4, ending the bus cycle. If RDY is 
low, an additional T3 state will be inserted after the initial T3 state and the RDY line 
will again be sampled on the falling edge of ClK2. Each additional T3 state after the 
first is referred to as a "Wait State". See Figure 18. 

T1 T2 T3 I T3 . 

. (WAIT) 
T4 

CLK1 

CLK2 

ROY 

Figure 18. ROY Pin Timing 

3-25 

... 
o 
en 
en 
Q) 
CJ 
o ... 
C
o ... 
. 2 
~ 
l
N 
M 
o 
N 
M 
t= 



:::! 
eN 
N 
o 
eN 
N 
-t 
s: 
r;o ... o 

"C ... o 
n 
C'D 
en 
en o ... 

The ROY pin is driven by the TI32201 Timing Control Unit, which applies wait-states 
to the CPU as requested on three sets of pins: 

1. CWAIT (Continuous Wait), which holds the CPU in wait-states until removed. 
2. WAiT1, WAIT2, WAIT4, WAifs (Collectively WAITn), which may be given 

a 4-bit binary value requesting a specific number of wait-states from 0-15. 
3. PER (Peripheral), which inserts five additional wait-states and causes the TCU 

to reshape the RD and WR strobes. This provides the setup and hold times 
required by most MOS peripheral interface devices. 

Combinations of these various Wait requests are both legal and useful. For details on 
their use, see se'ction 3.6. 

Figure 19 illustrates a typical Read cycle, with two wait-states requested through the 
TCU WAITn pins. 

3.1.3.4.2 Bus Status 

3-26 

The TI32032T CPU presents 4 bits of Bus Status information on pins STO-ST3. The 
various combinations on these pins indicate why the CPU is performing a bus cycle, 
or, if it is idle on the bus, then why it is idle. ' " 

Referring to Figures 16 and 17, note that Bus Status leads the corresponding Bus Cycle, 
going valid one clock cycle before T1, and changing to the next state at T4. This allows 
the system designer to fully decode the Bus Status and, if desired, latch the decoded 
signals before ADS initiates the Bus Cycle. 

The Bus Status pins are interpreted as a 4-bit value, with STO the least significant 
bit. Their values decode as follows: 

0000 
0001 
0010 
0011 

0100 

The bus is idle because the CPU does not yet need access to the bus. 
The bus is idle because the CPU is executing the Wait instruction. 
(Reserved for future use.) 
The bus is idle because the CPU is waiting for a coprocessor to complete 
an instruction. 
Master Interrupt Acknowledge. The CPU is performing a read cycle.To 
acknowledge receipt of a Non-maskable Interrupt (on NMI) it will read 
from address FFFF0016 but will ignore any data provided. To 
acknowledge receipt of a Maskable Interrupt (on INT) it will read from 
address FFFF0016, expecting a vector number to be provided from the 
Master TI32202 Interrupt Control Unit (lCU). If the vectoring mode 
selected by the last SETCFG instruction was nonvectored, then the CPU 
will ignore the value it has read and will use a default vector instead, 
having assumed that no TI32202 is present (section 3.1.3.4.5). 

0101 Cascaded Interrupt Acknowledge. The CPU is reading a vector number 
from a Cascaded TI32202 Interrupt Control Unit. The address provided 
is the address of the TI32202 Hardware Vector register 
(section 3.1.3.4.5). 

0110 Master End of Interrupt. The CPU is performing a Read cycle to indicate 
that it is executing a Return from Interrupt (RETI) instruction 
(section 3.1.3.4.5). 



PREVo CYCLE 

IT4 OR Til 
CLK1 [ 

CLK2 [ 

AOO·A023 [ 

T1 

024·031 [ ~t"-"""""""'""'t"-""""""""'I" 

AiiS[ 

STO·ST3 [ 

CWAiT[ 

PER [ 

RO[ 

rso[ 

T2 

CPU BUS SIGNALS 
TI32032T 

I 1 T3 1 T3 I 
T3 (WAIT) (WAITt 

STATUS VALID 

TCU BUS SIGNALS 
TI32201 

NEXT CYCLE 

T4 ~1 OR Til 

NOTE: Arrows on eWAIT. PER. WAITn indicate points at which the TeU samples. Arrows on AOO-A015 
and ROY indicate points at which the epu samples. 

Figure 19. Extended Cycle Example 

3-27 

II 
~ 

o 
en 
en 
Q) 
(J 
o 
~ 

c. 
o 
~ 

(J 

~ ... 
N 
M 
o 
N 
M 
j::: 



II 
:::! 
w 
N 
o 
W 
N 
-t 
~ 
(') ... 
o 
'C ... 
o 
(') 
CD en 
en 
o ... 

0111 

1000 

1001 

1010 
1011 

1100 

1101 

1110 

1111 

Cascaded End of Interrupt. The CPU is reading from a Cascaded Interrupt 
Control Unit .to indicate that it is returning (through RETI) from an 
interrupt service routine requested by that unit (section 3.1.3.4.5). 
Sequential Instruction Fetch. The CPU is reading the next sequential 
word from the instruction stream into the Instruction Queue. It will do 
so whenever the bus would otherwise be idle and the queue is not 
already full. 
Nonsequential Instruction Fetch. The CPU is performing the first fetch 
of instruction code after the Instruction Queue is purged. This will occur 
as a result of any jump or branch, or any interrupt or trap, or execution 
of certain instructions. 
Data Transfer. The CPU is reading or writing an operand of instruction. 
Read RMW Operand. The CPU is reading an operand which will 
subsequently be modified and rewritten. If memory protection circuitry 
would not allow the following write cycle, it must abort this cycle. 
Read for Effective Address Calculation. The CPU is reading information 
from memory in order to determine the Effective Address of an operand. 
This will occur whenever an instruction uses the Memory Relative or 
External addressing mode. 
Transfer Coprocessor Operand. The CPU is either transferring an 
instruction operand to or from a coprocessor, or it is issuing the 
Operation Word of a coprocessor instruction (section 3.1.3.9.1) 
Read Coprocessor Status. The CPU is reading a Status Word from a 
coprocessor. This occurs after the coprocessor has signaled completion 
of an instruction. The transferred word tells the CPU whether a trap 
should be taken, and in some instructions it presents new values for 
the CPU Processor Status Register bits N,Z,L, or F (section 3.1.3.9.1) . 
Broadcast Coprocessor ID. The CPU is initiating the execution of a 
coprocessor instruction. The ID Byte (first byte of the instruction) is 
sent to all Coprocessors, one of which will recognize it. From this point 
the CPU is communicating with only one coprocessor 
(section 3.1.3:9.1) 

3.1.3.4.3 Data Access Sequences 

3-28 

The 24-bit address provided by the TI32032T is a byte address; that is, it uniqqely 
identifies one of up to 16,777,216 eight-bit memory locations. An important feature 
of the TI32032T is that the presence of a 32-bit data bus imposes no restrictions on 
the data alignment; any data item, regardless of size, may be placed starting at any 
memory address. TheTI32032T provides special control signals, Byte Enable (BEO-BE3) 
which facilitate individual byte accessing on a 32-bit bus. 

Memory is organized as four 8-bit banks, each bank receiving the double-word address 
(A2-A23)) in parallel. One bank, connected to Data Bus pins ADO - AD7 is enabled 
when BEO i.s low. The second bank, connected to data bus pins AD8 - AD15, is 
enabled when BE1 is low. The third and fourth banks are enabled by BE2 and BE3, 
repectively. See Figure 20. 



~ ~ ~ ~ 
8 BITS 8 BITS 8 BITS 8 BITS 

A2-A23 "" 

I ,; 

:~ ~~ ~~ 4 ~ .-~ 

00-031 ~.YT 
#3 #2 #1 #0 

E 

Figure 20. Memory Interface 

Since operands do not need to be aligned with respect to the double-word bus access 
performed by the CPU, a given double-word access can contain one, two, three, or 
four bytes of the operand being addressed; these bytes can begin at various positions, 
as determined by A 1 and AO.Table 3 lists the 10 resulting access types. 

Accesses of operands requiring more than one bus cycle are performed sequentially, 
with no idle T -States separating them. The number of buscycles required to transfer 
an operand depends on its size and its alignment. Table 4 lists the bus cycles performed 
for each situation. 

Bit Accesses. The Bit Instructions perform byte accesses to the byte containing the 
designated bit. The Test and Set Bit instruction (SBIT), for example, reads a byte, alters 
it, and rewrites it, having changed the contents of the one bit. 

Bit Field Accesses. An access to a Bit Field in memory always generates a Double
Word transfer at the address containing the least significant bit of the field. The Double 
Word is read by an Extract Instruction; an Insert instruction reads a Double Word, 
modifies it, and rewrites it. 

3-29 

... 
o 
en en 
Q) 
u 
o ... 
Q. 
o ... 
u 
~ 
l
N 
('t) 
o 
N 
('t) 

i= 



-t 
W 
N 
o 
W 
N 
-t 
s: 
(') .. 
o 

"C .. 
o 
(') 
CD 
en 
en 
o .. 

Table 3. Bus Access Types 

TYPE 
BYTES 

A1,AO 
BE3 BE2 BIT BEO 

ACCESSED 

1 00 1 1 0 

2 01 1 0 

3 10 1 0 

4 1 11 0 

5 2 00 1 , 0 0 

6 2 01 1 0 0 1 

7 2 10 0 0 1 1 

8 3 00 1 0 0 0 

9 3 01 0 0 0 1 

10 4 00 0 0 0 0 

Extending Multiply Accesses. The Extending Multiply Instruction (MEl) will return a 
result which is twice the size in bytes of the operands it reads. If the multiplicand is 
in memory, the most significant half of the result is written first (at the higher address), 
then the least significant half. This is done in order to support retry if this instruction 
is aborted. 

3.1.3.4.4 Instruction Fetches 

Instructions for the TI32032T CPU are "prefetched"; that is, they are input before 
being needed into the next available entry of the eight-byte Instruction Queue. The 
CPU performs two types of. Instruction Fetch cycles: Sequential and Nonsequential. 
These can be distinguished from each other by their differing status combinations on 
pins STO-ST3. (section 3.1.3.4.2) 

A Sequential Fetch will be performed by the CPU whenever the Data Bus would 
otherwise be idle and the Instruction Queue is not currently full. Sequential Fetches 
are always type 8 Read cycles (Table 3). 

A Nonsequential Fetch occurs as a result of any break in the normally sequential flow 
of a program. Any jump or branch instruction, a trap or an interrupt will cause the 
next Instruction Fetch cycle to be Nonsequential. In addition, certain instructions flush 
the instruction queue, causing the next instruction fetch to display Nonsequential 
status. Only the first bus cycle after a break displays Nonsequential status, and that 
cycle depends on the destination address. 

3.1.3.4.5 Interrupt Control Cycles 

3-30 

Activating the INT or NMI pin on the CPU will initiate one or more bus cycles whose 
purpose is interrupt control rather than the transfer of instructions or data. Execution 
of the Return from Interrupt instruction (RETI) will also cause Interrupt Control bus 
cycles. These differ from instruction or data transfers only in the status presented 
on pins STO-ST3. All Interrupt Control cycles are single-byte Read cycles. 

This section describes only the Interrupt Control sequences associated with each 
interrupt and with the return from its service routine. For full details of the TI32032T 
interrupt structure, see section 3.1.3.8. 



w 
W 

CYCLE TYPE ADDRESS BE3 

A. Word at address ending with 11 

1. 4 A 0 
2. A + 

B. Double word at address ending with 01 

1. 9 A 0 
2. A+3 1 

C. Double word at address ending with 10 

1. 7 A 0 
2. 5 A + 2 

D. Double word at address ending with 11 

1. 
2. 

4 
8 

A 
A + 

E. Quad word at address ending with 00 

1. 10 A 

o 

o 

Table 4. Access Sequences 

BE2 BE1 

0 0 
1 

0 1 
0 

OAT" BUS - ,,.--------' -------~, 
BEO BYTE 3 BYTE 2 BYTE 1 BYTE 0 

1 
0 

1 
0 

1 
0 

I BYTE 1 I BYTE 0 I .- A 

Byte 0 X X X 
X X X Byte 1 

I BYTE 31 BYTE 21 BYTE 11 BYTE 0 I .- A 

Byte 2 Byte 1 Byte 0 X 
X X X Byte 3 

I BYTE 31 BYTE 21 BYTE 1 I BYTE 0 I .- A 

Byte 1 
X 

Byte 0 X X 
X Byte 3 Byte 2 

1 BYTE 31 BYTE 21 BYTE 11 BYTE 0 I .- A 

B~eO X X X 
o 0 0 X Byte 3 Byte 2 Byte 1 

1 BYTE 71 BYTE 61 BYTE 51 BYTE 41 BYTE 31 BYTE 21 BYTE 1 I BYTE 0 I .- A 

o o o Byte 3 Byte 2 Byte 1 Byte 0 
Other bus cycles (instruction prefetch or coprocessor) can occur here. 
2. 10 A + 4 0 0 0 0 Byte 7 Byte 6 Byte 5 Byte 4 

F. Quad word at address ending with 01 1 BYTE 71 BYTE 61 BYTE 51 BYTE 41 BYTE 31 BYTE 21 BYTE 11 BYTE 0 I .- A 

1 . 9 A 0 0 0 Byte 2 Byte 1 Byte 0 X 
2. 1 A + 3 1 1 1 0 X X X Byte 3 
Other bus cycles (instruction prefetch or coprocessor) can occur here. 
3. 9 A + 4 0 0 0 1 
4. A + 7 1 1 0 

Byte 6 
X 

TI32032T Microprocessor III 
Byte 5 

X 
Byte 4 

X 
X 

Byte 7 



w 
W 
N 

JossaooJdoJO!I/\I1.Z£OZ£ll • 

Table 4. Access Sequences (Concluded) 

DATtA BUS ,,.---------' --------~, 
CYCLE TYPE ADDRESS BE3 BE2 BE1 BEO BYTE 3 BYTE 2 BYTE 1 BYTE 0 

G. Quad word at address ending with 10 I BYTE 71 BYTE 61 BYTE 51 BYTE-4-[BYTE 31 BYTE 21 BYTE 1 I BYTE 0 I +- A 

1. 
2. 

7 
5 

A o o 1 1 Byte 1 .. Byte 0 . X X 

A + 2 o 0 X X Byte 3 Byte 2 
Other bus cycles (instruction prefetch or coprocessor) can occur here. 
3. 7 A + 4 0 0 1 1 Byte 5 Byte 4· X X 
4. 5 A + 6 1 0 0 X X Byte 7 Byte 6 

H. Quad word at address ending with 11 I BYTE 71 BYTE 61 BYTE 51 BYTE 41 BYTE 31 BYTE 21 BYTE 1 1 BYTE 0 I +- A 

1.. 
2. 

4 
8 

A 
A + 

o 1 
o 

1 
o 

1 
o 

Other bus cycles (instruction prefetch or coprocessor) can occur here. 
1. 4 A+4 0 1 1 1 
2. 8 A + 5 0 0 0 

X Don't Care 

Byte 0 
X 

Byte 4 
X 

X 
Byte 3 

X 
Byte 7 

X 
Byte 2 

X 
Byte 6 

X 
Byte 1 

X 
Byte 5 



Table 5. Interrupt Sequences 

DATA BUS ___ I~ ______________ A .. ______________ ~\ 

CYCLE STATUS ADDRESS ODIN BE3 BE2 BE1 BEO Byte 3 Byte 2 Byte 1 Byte 0 

A. Nonmaskable Interrupt Control Sequences 

Interrupt Acknowledge 
1 0100 FFFF0016 o o x x x x 

Interrupt Return 
None: Performed through Return from Trap (RETT) instruction. 

B. Nonvectored Interrupt Control Sequences 
Interrupt Acknowledge 

1 0100 FFFE0016 0 0 X X X X 

Interrupt Return 
1 0110 FFFE0016 0 0 X X X X 

C. Vectored Interrupt Sequences: Noncascaded 
Interrupt Acknowledge 

1 0100 FFFE0016 0 ·1 0 X X X Vector: 
Range: 0-127 

Interrupt Return 
1 0110 FFFE0016 0 0 X X X Vector: Same as 

in Previous Int. 
Ack. Cycle 

w 
W 
w 

TI32032T Microprocessor • 



w 
W 
~ 

Jossa:loJdoJ:l!1I\I iZ£OZ£li 1:1 

Table 5. Interrupt Sequences (Concluded) 

DATA BUS , "--- -" 
CYCLE STATUS ADDRESS ODIN BE3 BE2 BE1 BEO Byte 3 Byte 2 Byte 1 Byte 0 

D. Vectored Interrupt Sequences: Cascaded 

Interrupt Acknowledge 

1 0100 FFFE0016 o 

(The CPU here uses the Cascade Index to find the Cascade Address.) 

2 0101 Cascade 0 See Note 
Address 

Interrupt Return 

1 0110 FFFE0016 o 

(The CPU here uses the Cascade Index to find the Cascade Address) 

2 0111 Cascade 0 See Note 
Address 

x = Don't Care 

o 

o 

x x x Cascade Index: 
range - 16 to - 1 

Vector, range 9-255; on appropriate byte of 
data bus. 

x x x Cascade Index: 
Same as in 

_ previous Int. 
Ack. Cycle 

x x x x 

Note: BEO-BE3 signals will be activated according to the cascaded ICU address. The cycle type can be 1, 2, 3 or 4, when reading the interrupt vector. the 
vector value can be in the range 0-255. 



3.1.3.4.6 Coprocessor Communication 

In addition to its use as the Address Translation strap (section 3.1.3.5.1), the AT/SPC 
pin is used as the data strobe for coprocessor transfers. 

In this role, it is referred to as Coprocessor Control (SPC). In a Coprocessor bus cycle, 
data is transferred on the Data Bus (ADO-AD15), and the least significant two bits 
of CPU cycle status (STO-ST1 ) are monitored by each coprocessor in order to determine 
the type of transfer being performed. SPC is bidirectional, but is driven by the CPU 
during all coprocessor bus cycles (section 3.1.3.9) (Figure 21). 

Coprocessor Bus Cycles. A coprocessor bus cycle always takes exactly two clock 
cycles, labeled T1 and T4 (see Figures 22 and 23). During a Read cycle, SPC is activated 
at T1, data is sampled at T4, and SPC is removed. The Cycle Status pins lead the 
cycle by one clock period, and are sampled at the leading edge of SPC. During a write 
cycle, the CPU applies data and activates SPC at T1, removing SPC at T4. The 
coprocessor latches status on the leading edge of SPC and latches data on the trailing 
edge. 

16 
AO(0-15) ... " .. 0(0-15) -, -
AT/SPC ... .. $PC .... .. 

TI32032T 
COPROCESSOR CPU 

5TO-5T3 .. 5TO-5T3 .. 

Figure 21. Coprocessor Connections 

Since the CPU does not pulse the Address Strobe (ADS), no bus signals are generated 
by the TI32201 Timing Control Unit. The direction of a transfer is determined by the 
sequence ("protocol") established by the instruction under execution; but the CPU 
indicates the direction on the ODIN pin for hardware debugging purposes. 

Operand Transfer Sequences. A coprocessor operand is transferred in one or more 
coprocessor bus cycles. A Byte operand is transferred on the least significant byte 
of the Data Bus (ADO-AD7), and a Word operand is transferred on bits ADO-AD15. 
A Double-Word is transferred in a consecutive pair of bus cycles, least significant word 
first. A Quad-Word is transferred in two pairs of Coprocessor cycles, with other bus 
cycles possibly occurring between them. The word order is from least signficant word 
to most significant word. 

Note that the TI32032T uses only the two least significant bytes of the data bus for 
coprocessor cycles. This is to maintain compatibility with existing coprocessors. 

3.1.3.5 Memory-Management Option 

The TI32032T CPU, in conjunction with the TI32082W Memory Management Unit 
(MMU), provides full support for address translation, memory protection, and memory 
allocation techniques up to and including Demand-Paged Virtual Memory. 

3-35 

II 
~ 

o 
(f) 
(f) 
(1) 
(J 

o 
~ 

a. 
o 
~ 

.~ 
:2 
l
N 
('t) 
o 
N 
('t) 

~ 



II 
::::! 
CAl 
N 
o 
CAl 
N 
~ 

S 
c:r ... 
o 

"C ... 
o 
n 
CD 
f/) 
f/) 

o ... 

PREV CYCLE 

I T4 OR Ti 

ClK1 [ 

ClK2 .[ -t-.... 

SPC [ 

ADO-AD15 [ 

STO-ST3 [ 

ADS [ 

_(3)[ 
DBE 

~""""''''''''''''''''''''"''''IIJ~ 

-+---' 

NOTES: 1. CPU samples Data Bus here. 

T1 T4 

NEXT CYCLE 

T1 OR Ti I 

NEXT STATUS 

2. Coprocessor samples CPU Status here. 
3. OOE and all other TI32201 TCU bus signals remain inactive because no 'ADS pulse is received 

from the CPU. 

Figure 22. CPU Read from Coprocessor 

3.1.3.5.1 Address-Translation Strap 

3-36 

The Bus Interface Control section of the TI32032T CPU has two bus timing modes; 
with or without address-translation. The mode of operation is selected by the CPU 
by sampling the AT/SPC (Address Translation/Coprocessor Control) pin on the rising 
edge of the family Reset (RST) pulse. If AT/SPC is sampled as high, the bus timing 
is as previously described insection 3.1.3.4. If it is sampled as low, two changes occur: 



PREV CYCLE 

I T4 OR Ti T1 T4 

ClK1 [ 

STO·ST3 [ 

ADS [ 

DBE(2) [ ..... __ # 

NOTES: 1. Arrows indicate points at which the Coprocessor samples. 

NEXT CYCLE 

T1 OR Ti I 

2. DBE, being provided by the TI32201 TCU, remains inactive due to the fact that no pulse is presented 
on ADS. TCU signals RD, WR and TSO also remain inactive. 

Figure 23. CPU Write to Coprocessor 

1. An extra clock cycle, Tmmu, is inserted into all bus cycles except coprocessor 
transfers. 

2. The DS/FL T pin changes in function from a Data Strobe output (OS) to a Float-
Command input (FL T). 

The TI32082 MMU will itself pull the CPU AT/SPC pin low when it is reset. In non
Memory Managed systems, this pin should be pulled up to Vee through a 10-kQ 
resistor. 

Note that the Address Translation strap does not specifically declare the presence of 
a TI32082W MMU, but only the presence of external address translation circuitry. 
MMU instructions will still trap as being undefined unless the SETCFG (Set 
Configuration) instruction is executed to declare the MMU instruction set valid. 

3-37 

II 
... 
o 
VJ 
VJ 
Q) 
CJ 
o ... 
Co 
o ... 
CJ 

~ 
l
N 
M 
o 
N 
M 
i= 



EI 
-t 
W 
N 
o 
Co\) 
N 
-t 
s: 
n ., 
o 
"C ., 
o 
n 
(I) 
t/) 
t/) 

o ., 

3.1.3.5.2 Translated Bus Timing 

3-38 

Figures 24 and 25 illustrate the CPU activity during a read cycle and a write cycle 
in Address Translation mode. The additional T-State, Tmmu, is inserted between T1 
and T2. During this time the CPU places ADO-AD23 into the 3-state (high-impedance 
state) mode, allowing the MMU to assert the translated address and issue the physical 
address strobe fSAV. T2 through T 4 of the cycle are identical to their counterparts 
without Address Translation. Note that in order for the TI32082W MMU to operate 
correctly it must be set to the TI32032T mode by strapping A24 to ground during reset. 

In this mode the bus lines AD16-AD23 are floated after the MMU address has been 
latched, since they are used by the CPU to transfer data. Figures 26 and 27 show 
a read cycle and a write cycle as generated by the TI32032T/TI32082W/TI32201 

I T4 OR Ti I T1 I TMMU I T2 T3 T4 I T1 OR Ti I 
ClK1 [ 

ClK2 [ 

AOO-A023 [ 

024-031 [ .... ~ ...... ~~~~'""~~~'-4""'~~I4I'J '---10--' -"""-1~""""""''''''-

m[ 
STO-ST3 [ STATUS VALID NEXT STATUS 

ODIN [~~~~~~ ____ ~ ______ ~ ____ ~ ______ ~ ______ ~ __ N_E_X_T+--

BEO-BE3 [~~~ .. "' .... ____ t-___ ..... __ -++-_V_A_Ll_O ..... _-J "'+ ___ ~ 

Figure 24. Read Cycle with Address Translation (CPU Action) 



I T4 OR Ti I T1 I TMMU I T2 T3 T4 I T1 OR Ti I 
ClK1 [ 

ClK2 [ 

A5S[ 

STO-ST3 [ STATUS VALID NEXT STATUS 

BEO-BE3 [ "''''fIio606'''''-1 "+ ___ +-___ ""'V_A_l_I_D-+"-__ ...... __ .1 ....... __ -+_ 

Figure 25. Write Cycle with Address Translation (CPU Action) 

group. Note that with the CPU ADS signal going to the MMU, and with the MMU PAV 
signal substituting for ADS everywhere else, Tmmu through T4 look exactly like T1 
through T4 in a non-Memory-Managed system. For the connection diagram, see 
Figure 28. 

3.1.3.5.3 The FLT (Float) Pin 

In Address Translation mode, the DS/FL T pin is treated as the input command FL T 
(Float). Activating FL T during Tmmu causes the CPU to wait longer than Tmmu for 
address translation and validation. This feature is used occasionally by the TI32082 
MMU in order to update its internal translation cache from page tables in memory, 
or to update certain status bits within them. 

3-39 

II 
... 
o 
t/) 
t/) 
Q) 
(.) 

o ... 
a. 
o ... 
. 2 
~ 
.... 
C\I 
M 
o 
C\I 
M 
.... 



I 
::! 
CAl 
N 
o 
CAl 
N 
-t-

~ 
(") .. o 
'C .. 
o 
(") 
CD 
t/) 
t/) 

o .. 

3-40 

I T4 OR Ti I T1 I TMMU I T2 T3 T4 I T1 OR Ti I 
eLK1 [ 

CLK2 [ 

AOO-A023 [ 
024-031 [ 

ADS [ 

PAV [ 

STO-ST3 [ 

DDrN [~~~~~~ ____ ~ ____ ~ ____ -++-____ -; ______ ~~ __ ~~_ 

RO[ 

WA[ 

0sE[ 

lSO[ 
Figure 26. Memory-Managed Read Cycle 



ClK1 [ 

ClK2 [ 

ADO A023 [ 

024·031 [ 

ADs [ 

PAil [ 

STO·ST3 [ 

i5i5iN [ 

BEO·BE3 [ 

ROY [ 

DsE[ 

TSa[ 

I T4 OR Ti I T1 I TMMU I T2 T3 

STATUS VALID 

VALID 

TCU BUS SIGNALS 
TI32201 

T4 

Figure 27. Memory-Managed Write Cycle 

I T1 OR Ti I 

NEXT STATUS 

3-41 

II 
... 
o 
CI) 
CI) 
Q) 
(..) 

o ... 
Co 
o ... 
(..) 

~ 
.... 
N 
M 
o 
N 
M 
~ 



JossaooJdoJO!1J\I .lZEOZEI.l • 

w 
~ PER PERIPH CYCLE 

CWAIT READY 
XTAL2 

XIN WAiTS e-} iiO 
~ WAiT4 WAIT REQUESTS Wii 
T XTALI TCU W'AiT2 t=::= IADDR DECODED +5 V 

ALS257 XOUT Tl32201 WAiTi 
1-4- OR STRAPPEOI 

EN 

I\J 

~ RSTI RO . 
CLKI WR ~1 
CLK2 ADS MUXt> BEO 
iiSTO CTn 

OBE 1 iiiiiiii ROY 

.. '" ,I 'il ... BEO 

t 1 '"-BEl 

141 .1 iiEi 
~ 

/ 2 BE2 

~ .. , t 
11 

-r ill H?r-t ill 

, , • • L ill 

ROY CLK 1 CLK2 BEOBE3 lLO HOLD ROY ilO 
-' CLKI HoUi 

CLK2 -. 
HOi]) 4-- iilDAO .. iiUiAO 

':::: ill iNT DS/HT 
ADORESS 

NMi iiLoA HLDAi PAV ~ LATCH BUFFERS 
PFS PFS 

STROBE I Cl 
Al CPU 

US 
MMU .. TI32032 UlS Tl320B2W 

ADO A023 t.; ADS ADS 1241 iiiiiiii DoiN "- r 24Xt> ~ 

(4) ~ IT (4) r 
) / . PO r::z } AO A23 

STO·ST3 7 ) H- STO ST3 

~ l 
(24) r 

RSTIABT 
~ t-- ABT A24 ~ ~~,.."'~" ArISPC 
~ t:-++:- Ar'SpC K> ADO·A023 024·031 (4)1.1 ADO·AD23 ill 

- ENI 

ft ...... (24) 

"U" '-
(24) _ . ~N2 ' 

'Jv > ~ 

< .',. ':lfs ".~ "9~T 
A

1321 .. A ,,,-
""{7> < / > 

"'~H 
(32) 

ADDR/DATA 
16X<J MULTIPLEXED 

~ - r-- '\11.2 BUS 

INT 

~tf""""''' 
t-iiiiiiii ADO·AD15 ~ SPC 

Ir,. V-
FPU STO STI (32) 

TI320B1W !-+---J ~'I '::" 

RST I" EN2 I" 
CLK - V 141 

",> 32Xt> 
DO 03 

~ ~ 

~ 
< > 

1£ 
12'\1 

" 
ABO AD23 AND 

32X<J 024031 
'\11,2 

141 ~ 
STO ST3 

) / > 

Figure 28. System Connection Diagram 



ClK1 [ 

ClK2 [ 

ADO-AD23 [ 

024-031 [ 

ADS [ 

PAV [ 

FlT [ 

STO-ST3 [ 

ODIN [ 

BEO-BE3 [ 

T1 I TMMU I Tf Tf 

VALID 

VALID 

VALID 

Tf I Tf I T2 I 
J.LfLf 

VALID 

VALID 

VALID 

Figure 29. FL T Float Command Timing 

Figure 29 shows the effects of FL T. Upon sampling FL T low late in Tmmu, the CPU 
enters idle T -States (Tf) during which it: 

1. Sets ADO-AD23, D24-D31, and DDIN to the 3-state (high-impedance) 
condition (Floating). 

2. Suspends further internal processing of the current instruction. This ensures 
that the current instruction remains abortable with retry. (See RST/ABT 
description,. section 3.1.3.5.4) 

3-43 

II 
a-
o 
en 
en 
Q) 
U 
o 
a-
C. 
o 
a-
U 

:2 
.... 
C\I 
M 
o 
C\I 
M 
i= 



II 
-i 
W 
N 
o 
W 
N 
-i 

~ 
(") 

"" o 
"C 
"" o 
(") 
(t) 
en 
en 
o 
"" 

3-44 

Note that the ADO-AD23 pins may be briefly asserted during the first idle T-State. 
The above conditions remain in effect until FIT again goes high. 

I TI I Ti I··· I Ti 

ClKl[n.JV 

CLK~ [ 

HolD [ 

HLDA [ 

AFFECTED SIGNALS 

ADS [ 

OS [ 

NEXT 

BEO·BE3 [-+----fo' 
ADO-AD23 [~"""","""",,,,,,,,,,,.q.:r 

Figure 30. HOLD Timing, Bus Inititally Idle 



3.1.3.5.4 Aborting Bus Cycles 

The RST/ABT pin, apart from its reset function (section 3.1.3.3), also serves as the 
means to "abort", or cancel, a bus cycle and the instruction, if any, which initiated 
it. An Abort request is distinguished from a Reset in that the RSTI ABT pin is held active 
for only one clock cycle.lf RST/ABT is pulled low during Tmmu or Tf, this signals that 
the cycle must be aborted. The CPU itself will enter T2 and then Ti, thereby terminating 
the cycle. Since it is the MMU PAV signal which triggers a physical cycle, the rest 
of the system remains unaware that a cycle was even started. 

The TI32082W MMU will abort a bus cycle for either of two reasons: 

1. The CPU is attempting to access a logical address which is not currently 
resident in physical memory. The referenced page must be brought into 
physical memory from mass storage to make it accessible to the CPU. 

2. The CPU is attempting to perform an access which is not allowed due to the 
protection level assigned to that page. 

When a bus cycle is aborted by the MMU, the instruction which caused it to occur 
is also aborted in such a manner that it is guaranteed to be reexecutable later. The 
information that is changed irrecoverably by such a partly executed instruction does 
not affect its reexecution. 

The Abort Interrupt. Upon aborting an instruction, the CPU immediately performs an 
interrupt through the ABT vector in the Interrupt Table. The Return Address pushed 
on the Interrupt Stack is the address of the aborted instruction, such that a Return 
from Trap (RETT) instruction will automatically retry it. 

The one exception to this sequence occurs if the aborted bus cycle was an instruction 
prefetch. If so, it is not yet certain that the aborted prefetch code is to be executed. 
Instead of causing an interrupt, the CPU only aborts the bus cycle, and stops 
prefetching. If the information in the instruction Queue runs out, meaning that the 
instruction will actually be executed, the ABT interrupt will occur, in effect aborting 
the instruction that was being fetched. 

Hardware Considerations. In order to guarantee instruction retry, certain rules must 
be followed in applying an Abort to the CPU. These rules are followed by the TI32082W 
MMU. 

1. If FL T has not been applied to the CPU, the Abort pulse must occur during 
or before Tmmu. 

2. If FL T has been applied to the CPU, the Abort pulse must be applied before 
the T-State in which FL T goes inactive. The CPU will not actually respond 
to the Abort command until FL T is removed. 

3. The Write half of a Read-Modify-Write operand access may not be aborted. 
The CPU guarantees that this will never be necessary for Memory Management 
functions by applying a special RMW status (Status Code 1011) during the 
Read half of the access. When the CPU presents RMW status, that cycle must 
be aborted if it would be illegal to write to any of the accessed addresses. 

3-45 

II 
... 
o 
(J) 
(J) 
Q) 
(J 

o ... 
Co 
o ... 
(J 

~ 
l
N 
M 
o 
N 
M 
~ 



II 
::! 
w 
N 
o 
W 
N 
~ 

s: 
n° 
~ 

o 
"C 
~ 

o 
(") 
CD 
en 
en o 
~ 

If RST/ABT is pulsed at any time other than as indicated above, it will abort either 
the instruction currently under execution or the next instruction and will act as a very 
high-priority interrupt. However,the program which was running at the time is not 
guaranteed recoverable. 

3.1.3.6 Bus Access Control 

The TI32032T CPU has the capability of relinquishing its access to the bus upon request 
from a DMA device or another CPU. This capability is implemented on the HOLD (Hold 
Request) and HLDA (Hold Acknowledge) pins. By asserting HOLD low, an external 
device requests access to the bus. On receipt of HLDA from the CPU, the device may 
perform bus cycles, as the CPU at this point has set ADO-AD23, D24-D31, ADS, DDIN, 
and 8E3-BEO pins to the 3-state condition. To return control of the bus to the CPU, 
the device sets HOLD inactive, and the CPU acknowledges return of the bus by setting 
HLDA inactive. 

How quickly the CPU releases the bus depends on whether it is idle on the bus at 
the time the HOLD request is made, as the CPU must always complete the current 
bus cycle. Figure 30 shows the timing sequence when the CPU ;'s idle. In this case, 
the CPU grants the bus during the immediately following clock cycle. Figure 31 shows 
the sequence if the CPU is using the bus at the time that the HOLD request is made. 
If the request is made during or before the clock cycle shown (two clock cycles before 
T4), the CPU will release the bus during the clock cycle following T4. If the request 
occurs closer to T4, the CPU may already have decided to initiate another bus cycle. 
In that case it will not grant the bus until the next T4 state. Note that this situation 
will also occur if the CPU is idle on the bus but has initiated a bus cycle internally. 

In Memory-Managed systems, the HLDA signal is connected in a daisy-chain through 
the T132082W, such that the MMU can release the bus if it is using it. 

3.1.3.7 Instruction Status 

3-46 

In addition to the four bits of Bus Cycle Status (STO-ST3), the TI32032TCPU also 
presents Instruction Status information on three separate pins.These pins differ from 
STO-ST3 in that they are synchronous to the CPU's internal instruction ,execution 
section rather than to its bus interface section. 

PFS (Program Flow Status) is pulsed low as each instruction begins execution. It is 
intended for debugging purposes, and is used that way by the TI32082W MMU. 

U/S originates from the U bit of the Processor Status Register, and indicates whether 
the CPU is currently running in User or Operating System mode. It is sampled by the 
MMU for mapping, protection, and debugging purposes. Although it is not synchronous 
to bus cycles, there are guarantees on its validity during any given bus cycle. 

(lLO) (Interlocked Operation) is activated during a Set Bit Interlocked (SBITI) or (CBITI) 
Clear Bit, Interlocked instruction. It is made available to external bus arbitration circuitry 
in order to allow these instructions to implement the semaphore primitive operations 
for multiprocessor communication and resource sharing. As with the U/S pin, there 
are guarantees on it is validity during the operand accesses performed by the 
instructions. 



IT2 OR T31 T3 T4 Ti Ti Ti ITi OR T41Ti OR T11 
CLK1 [ . 

CLK2 [ 

ADs [ 

ODIN [ ~ ____ -p_V_A_Ll_D-p ____ ~ 

BEO·BE3 [ -t-__ -t-_VA_L_ID-t_." 

STO·ST3 [ ..... ____ -+-____ ........ ~"""'"~"""'"""111~ ,,~"""f--~---r" '---i-----t--
Figure 31. HOLD Timing,' Bus Initially Not Idle 

3.1.3.8 TI32032T Interrupt Structure 

1. INT, on which maskable interrupts may be requested 
2. NMI, on which nonmaskable interrupts may be requested, and 
3. RST/ABT, which may be used to abort a bus cycle and any associated 

instruction. It generates an interrupt request if an instruction was aborted 
(section 3.1.3.5.4). 

In addition, there is a set of internally generated "traps" which cause interrupt service 
to be performed as a result of exceptional conditions (e.g., attempted division by zero) 
or of specific instructions whose purpose is to cause a trap to occur (e.g., the Supervisor 
Call instruction). 

3-47 

II .. 
o 
en 
en 
Q) 
CJ 
o .. 
a. 
o .. 
CJ 

2 
..... 
N 
M 
o 
N 
M 
t= 



II 
::! 
Co\) 
N 
o 
Co\) 
N 
-t 

s: 
t=r 
""t o 
'C 
""t 

o 
n 
CD 
en 
en 
o 
""t 

MEMORY ~ 

/ 

CASCADE ADDR 0 
1'---------1 

CASCADE TABLE ~ ~ 

CASCADE AD DR 15 

FIXED INTERRUPTS 
AND TRAPS 

VECTORED 
INTERRUPTS 

--~ 31 

0 NVI 

1 NMI 

2 ABT 

3 FPU, 

4 ILL 

5 SVC 

6 DVZ 

FLG 

8 BPT 

9 TRC 

10 UNO 

"til 

o ,~ 

I 

I NONVECTORED 
NTERRUPT I 

NONMASKABLE 
NTERRUPT I 

ABORT 

F PU TRAP 

I LLEGAL OPERATION 
RAP T 

S 
T 

0 
T 

UPERVISOR CALL 
RAP 

IVIDE BY ZERO 
RAP 

F LAG TRAP 

B REAKPOINT TRAP 

T RACE TRAP 

NDEFINED 
NSTRUCTION TRAP 
U 
I 

,,~ 

Figure 32. Interrupt Dispatch and Cascade Tables 

3.1.3.8.1 General Interrupt/Trap Sequence 

3-48-

Upon receipt ()f an interr'upt or trap request, the CPU goes through four major steps: 

1. Adjustment of Registers. Depending on the source of the interrupt or trap, 
the CPU may restore and/or adjust the contents of the Program Counter (PC), 
the Processor Status Register (PSR), and the cu~rently selected Stack Pointer 
(SP). A copy of the PSR is made, and the PSR is then set to reflect Operating 
System Mode and selection of the Interrupt Stack. 

2. Saving Processor Status. The PSR copy is pushed onto the Interrupt Stack 
as a 16-bit quantity. 

3. Vector Acquisition; A vector is either obtained from the Data Bus or is supplied 
by default. , 

4. Service Call. The Vector is used as an index into the Interrupt Dispatch Table, 
whose base address is taken from the CPU Interrupt Base (lNTBASE) Register. 
See Figure 32. A 32-bit External Procedure Call is read from the table entry, 
and an External Procedure Call is performed using it. The MOD Register 
(16 bits) and Program Counter (32 bits) are pushed on the Interrupt Stack. 

This process is illustrated in Figure 33, from the viewpoint of the programmer. 

Full sequences of events in processing interrupts and traps may' be found in 
section 3.1.3.8.7. 



I L RETURN ADDRESS 
I 

I 1 I STATUS MODULE 
J 

PSR MOD 

INTBASE REGISTER 

DESCRIPTOR 

(PUSH) .. 
r 

(PUSH) ... .. 
INTERRUPT 

STACK 

r----------, 
I I 

: CASCADE TABLE : 

I I 

DISPATCH 
TABLE 

DESCRIPTOR (32 BITS) 

} 32 BITS 

}32 BITS 

11441---16 .14 16 --."1 
I OFFSET I MODULE I 

0 
y 

MOD REGISTER }l MODULE TABLE 

I NEW MODULE 

I .. MODULE TABLE ENTRY .. 
... - I 

MODULE TiBlE ENTRY 
-

14 32 .1 , 
STATIC BASE POINTER ~ 

LINK BASE POINTER 

+)--+- PROGRAM BASE POINTER 

(RESERVED) 
~, ~, 

PROGRAM COUNTER SB REGISTER 

I 
ENTRY POINT ADDRESS l-i NEW STATIC BASE I 

Figure 33. Interrupt/Trap Service Routine Calling Sequence 

3-49 

II 
~ 

o 
en 
en 
Q) 
(.) 

o 
~ 

c. 
o 
~ 

.2 
~ ... 
N 
('I) 
o 
N 
('I) 

~ 



II 
::! 
w 
N 
o 
W 
N 
-4 

s: 
(") 
""'I 
o 
'C 
""'I 
o 
(") 
m 
(I) 
(I) 

o 
""'I 

PROGRAM COUNTER 

RETURN ADDRESS 

PSR MOD 

MODULE T ~BLE ENTRY 

STATIC BASE POINTER 

LINK BASE POINTER 

PROGRAM BASE POINTER 

(RESERVED) 

SB REGISTER 

STATIC BASE 

-

(POP) 

(POP) 

.. 
p ... .. 

n 
BYTES 

" 
POP AND 
DISCARD 

INTERRUPT 

· STACK • • · · · 
0 

MODULE 
TABLE 

MODULE TABLE ENTRY 

J 
PARAMETERS 

I 
ST ACK SELECTED 

IN NEWLY-
POPPED PSR. 

Figure 34. Return from Trap (RETTn) Instruction Flow 

32 BITS 

32 BITS 

3.1.3.8.2 Interrupt/Trap Return 

To return to an interrupted program, one of two instructions is used.The RETT (Return 
from Trap) instruction (Figure 34) restores the PSR, MOD, PC, and S8 registers to 
their previous contents and, since traps are often used deliberately as a call mechanism 
for Operating System Mode procedures, it also discards a specified number of bytes 
from the original stack as surplus parameter space. RETT is used to return from any 
trap or interrupt except the Maskable Interrupt. For this, the RETI (Return from interrupt) 
instruction is used, which also informs any external Interrupt Control Units that interrupt 
service has completed. Since interrupts are generally asynchronous external events, 
RETI does not pop parameters. See Figure 35. 

3.1.3.8.3 Maskable Interrupts (INT pin) 

3-50 

The INT pin is a'ievel-sensitive input. A continuous low level is allowed for generating 
multiple interrupt requests. The input is maskable, and is therefore enabled to generate 
interrupt requests only while the Processor Status Register I bit is set. The I bit is 



"END OF INTERRUPT" .. 

BUS CYCLE 

PROGRAM COUNTER 

RETURN ADDRESS 

PSR MOD 

·MODUlE T iBlE ENTRY 

STATIC BASE POINTER 

liNK BASE POINTER 

PROGRAM BASE POINTER 

(RESERVED) 

STATIC BASE 

SB REGISTER 

(POP) 

(POP) 

... 
... 
~ 

.. 

· · · 
0 

INTERRUPT CONTROL 
UNIT 

INTERRUPT 
STACK 

MODULE 
TABLE 

MODULE TABLE ENTRY 

J 

· · · 

Figure 35. Return from Interrupt (RETI) Instruction Flow 

automatically cleared during service of an INT, NMI, or Abort request, and is restored 
to its original setting upon return from the interrupt service routine via the RETT or 
RETI instruction. 

The INT pin may be configured via the SETCFG instruction as either Nonvectored (CFG 
Register bit I = 0) or Vectored (CFG Register bit I = 1). 

Nonvectored Mode. In the Nonvectored mode, an interrupt request on the INT pin will 
cause an Interrupt Acknowledge bus cycle, but the CPU will ignore any value read 
from the bus and use instead a default vector of zero. This mode is useful for small 
systems in which hardware interrupt prioritization is unnecessary. 

Vectored Mode: Noncascaded Case. In the Vectored mode, the CPU uses a TI32202W 
Interrupt Control Unit (lCU) to prioritize up to 16 interrupt requests. See Figure 36. 
Upon receipt of an interrupt request on the INT pin, the CPU performs an "Interrupt 
Acknowledge, Master" bus cycle (section 3.1.3.4.2) reading a vector value from the 

3-51 

11 ... 
o en 
en 
Q) 
(.) 

o ... 
a. 
o ... 
. 2 
2 
.... 
N 
M 
o 
N 
M 
.... 



II 
:::! 
eN 
N 
o 
eN 
N 
-I 

S 
n ... 
o 

" ... o 
n 
CD 
t/) 
t/) 

o ... 

3-52 

DATA 

IR1 

8 IR3 

CONTROL IR5 
HARDWARE 

IR7 iNTERRUPTS 
OR 

IR9 CASCADED 
CPU CONTROLLERS 

GROUP ADDRESS BITS IR11 
TI32032T 

TI32202W IR13 
5 

IR15 

STATUS 1 
GO/IRO 

G1/IR2 

INT INT G2/IR4 

G3/IR6 
INTERRUPTS. 
CASCADED. 

G4/IRB OR 
BIT I/O 

G5/IR10 

FROM G6/IR12 
ADDRESS CS 
DECODER G7/IR14 

Figure 36. Interrupt Control Unit Connections (16 Levels) 

low-order byte of the Data Bus. This vector is then used as an index into the Dispatch 
Table in order to find the External Procedure Descriptor for the proper interrupt service 
procedure. The service procedure eventually returns via the Return from Interrupt (RETI) 
instruction, which performs an End of Interrupt bus cycle, informing the ICU that it 
may reprioritize any interrupt requests still pending. The ICU provides the vector number 
again, which the CPU uses to determine whether it also needs to inform a Cascaded 
ICU (see below). 

In a system with only one ICU (16 levels of interrupt), the vectors provided must be 
in the range of 0 through 127; that is, they must be positive numbers in eight bits. 
By providing a negative vector number, an ICU flags the interrupt source as being a 
Cascaded ICU (see below). 

Vectored Mode: Cascaded Case. In order to allow up to 256 levels of interrupt, provision 
is made both in the CPU and in the TI32202W ICU to transparently support cascading. 
Figure 37 shows a typical cascaded configuration. Note that the Interrupt output from 
the Cascaded ICU goes to an Interrupt Request input of the Master ICU, which is the 
only ICU which drives the CPU INT pin. 



CPU 
GROUP 

TI32032T 

iNT 

DATA 

CONTROL .. · 
CASCADED . ~ ADDR 5 BITS 

ICU .. TI32202W 

· ~ , 
STATUS 1 
~ · 

FROM 
ADDRESS __ CS 
DECODER 

- INT 

l' 

DATA 

~ .. .... .. 
,. .. ... .. 
CONTROL .. ... 

5 ~ MASTER 
~ 

ICU ADDR 5/ .. 
TI32202W 

/ . 
STATUS 1 · · 

t- iNT r-

FROM 
ADDRESS-.. CS 
DECODER 

..... IR1 ... 
.... IR3 -- IR5 ... 

IR7 -.... IR9 ... 
.... 

IR11 -.... - IR13 

... ... IR15 

........ ---. GO/IRO 

....... G1/1R2 --. ......... G2/1R4 ... . 
~G3/1R6 

~G4/1R8 

~G511R10 
~G611R12 
l+-+- G711R14 

.... 
IR1 ... 

..... IR3 .. ... IR5 ... 
.... 

IR7 .. 
..... IR9 ... 

HA 
>INT 

RDWARE 
ERRUPTS 

> 
INT ERRUPTS 

OR 
BIT I/O 

... 
IR11 .-... 

..... 
IR13 ... ... IR15 -.... .. GOIIRD ... -. 

........ G111R2 ... . 

....... G211R4 .. . 
.... .. G3/1R6 ---. 
.... .. 

G411R8 --. ... ... 
G5/1R10 .. . 

... - G611R12 .. 
.... ... --. G711R14 

Figure 37. Cascaded Interrupt Control Unit Connections 

3-53 

... 
o 
tJ) 
tJ) 
Q) 
U 
o ... 
C
O ... . ~ 
2 
l
N 
('t) 
o 
N 
('t) 

I-



=! 
w 
N 
o 
W 
N 
-t 
~ 
C:;' .. 
o 
'C .. o 
(') 
CD 
(I) 
(I) 

o .. 

In a system which uses cascading, two tasks must be performed upon initialization: 

1. For each Cascaded ICU in the system, the Master ICU must be informed of 
the line number (0-15) on which it receives the cascaded requests. 

2. A Cascade Table must be established in memory. The Cascade Table is located 
in a Negative direction from the location indicated by the CPU Interrupt Base 
(lNTBASE) Register. Its entries are 32-bit addresses, pointing to the Vector 
Registers of each of up to 16 Cascaded ICUs. 

Figure 32 illustrates the position of the Cascade Table. To find the Cascade Table entry 
for a Cascaded ICU, take its Master ICU line number (0-15) and subtract 16 from it, 
giving an index in the range - 16 to - 1. Multiply this value by 4 and add the resulting 
negative number to the contents of the INTBASE Register. The 32-bit entry at this 
address must be set to the address of the Hardware Vector Register of the Cascaded 
ICU. This is referred to as the "Cascade Address". 

Upon receipt of an interrupt request from a Cascaded ICU, the Master ICU interrupts 
the CPU and provides the negative Cascade Table·index instead of of a (positive) vector 
number. The CPU, seeing the negative value, uses it as an index into the Cascade 
Table and reads the Cascade Address from the referenced entry. Applying this address, 
the CPU performs an "Interrupt Acknowledge, Cascaded" bus cycle 
(section 3.1.3.4.2), reading the final vector value. This vector is interpreted by the 
CPU as an unsigned byte, and can therefore be in the range of 0 through 255. 

In returning from a Cascaded Interrupt, the service procedure executes the Return from 
Interrupt (RETI) instruction, as it would for any Maskable Interrupt. The CPU performs 
an "End of Interrupt, Master" bus cycle, (section 3.1.3.4.2) whereupon the Master 
ICU again provides the negative Cascade Table index. The CPU, seeing a negative 
value, uses it to find the corresponding Cascade Address from the Cascade Table . 
Applying this address, it performs an "End of Interrupt, Cascaded" bus cycle, informing 
the Cascaded ICU of the completion of the service routine. The byte read from the 
Cascaded ICU is discarded. 

3.1.3.8.4 Nonmaskable Interrupt (NMI pin) 

The Nonmaskable Interrupt is triggered whenever a falling edge is detected on the 
NMI pin. The CPU performs an "Interrupt Acknowledge" bus cycle when processing 
of this interrupt actually begins. The Interrupt Acknowledge cycle differs from that 
provided for Maskable Interrupts in that the address presented is FFFF0016. The vector 
value used for the Nonmaskable Interrupt is taken as.1, regardless of the value read 
from the' bus. 

The service procedure returns from the Nonmaskable Interrupt using the Return from 
Trap (RETT) instruction. No special bus cycles occur on return. 

For the full sequence of events in processing the Nonmaskable Interrupt, see 
section 3.1.3.8.7. 

3.1.3.8.5 Traps 

3-54 

A trap is an internally generated interrupt request caused as a direct and immediate 
result of the execution of an instruction. The Return Address pushed by any trap except 



Trace (TRC) is the address of the first byte of the instruction during which the trap 
occurred. Traps do not disable interrupts, as they are not associated with external 
events. Traps recognized by the CPU are: 

Trap (FPU): An exceptional condition was detected by the TI32081 Floating 
Point Unit (FPU) or another coprocessor during the execution of 
a coprocessor instruction. This trap is requested via the Status 
Word returned as part of the coprocessor protocol 
(section 3.1.3.9.1). 

Trap (ILL): Illegal operation. A privileged operation was attempted while the 
CPU was in User Mode (PSR bit U = 1). 

Trap (SVC): The Supervisor Call (SVC) instruction was executed. 
Trap (DVZ): An attempt was made to divide an integer by zero. (The FPU trap 

is used for floating point division by zero.) 
Trap (FLG): 
Trap (BPT): 

The FLAG instruction detected a "1" in the CPU PSR F bit. 
The Breakpoint (BPT) instruction was exectuted. 

Trap (TRC): The instruction just completed is being traced. 
Trap (UNO): An undefined opcode was encountered by the CPU. 

A special case is the Trace Trap (TRC), which is enabled by setting the T bit in the 
Processor Status Register (PSR). At the beginning of each instruction, the T bit is copied 
into the PSR P ("Trace Pending") bit. If the P bit is set at the end of an instruction, 
then the trace trap is activated. If any other trap or interrupt request is made during 
a traced instruction, its entire service procedure is allowed to complete before the trace 
Trap occurs. Each interrupt and trap sequence handles the P bit for proper tracing, 
guaranteeing one and only Trace Trap per instruction, and guaranteeing that the Return 
Address pushed during a Trace Trap is always the address of the next instruction to 
be traced. 

3.1.3.8.6 Prioritization 

The TI32032T CPU internally prioritizes simultaneous interrupt and trap requests as 
follows: 

1. Traps other than Trace (Highest priority) 
2. Abort 
3. Non-Maskable Interrupt 
4. Maskable Interrupts 
5. Trace Trap (Lowest priority) 

3.1.3.8.7 Interrupt/Trap Sequences: Detailed Flow 

For purposes of the following detailed discussion of interrupt and trap service 
sequences, a single sequence called "service" is defined in Table 6. Upon detecting 
any interrupt request or trap condition, the CPU first performs a sequence dependent 
upon the type of interrupt or trap. This sequence will include pushing the Processor 
Status Register and establishing a Vector and a Return Address. The CPU then performs 
the Service sequence. . 

3-55 

E .. 
o 
en 
en 
Q) 
CJ 
o .. 
c. 
o .. 
CJ 

~ 
l
N 
M 
o 
N 
M 
j::: 



::! 
CAl 
N 
o 
CAl 
N 
-I 

~ 
n 
~ o 

"C 
~ o 
n 
CD 
en 
en 
o 
~ 

3-56 

Maskable/Nonmaskable Interrupt Sequence. This sequence is performed by the CPU 
when the NMI pin receives a falling edge, or the INT pin becomes active with the PSR 
I bit set. The interrupt sequence begins either at the next instruction boundary or, in 
the case of String instructions, at the next interruptible point during its execution: 

1. If a String instruction was interrupted and not yet completed: 
a. Clear the Processor'Status Register P Bit. 
b. Set "Return Address" to the address of the first byte of the interrupted 

instruction. Otherwise, set "Return Address" to the address of the next 
instruction. 

2. Copy the Processor Status Register (PSR) into a temporary register, then clear 
PSR bits S,U,T,P, and I. 

3. If interrupt is Nonmaskable: 
a. Read a byte from FFFF0016, applying Status Code 0100 (Interrupt 

Acknowledge, Master). Discard the byte read. 
b. Set "Vector" to 1. 
c. Go to Step 8. 

4. If the interrupt is Nonvectored: 
a. Read a byte from address FFFF0016, applying Status Code 0100 

(Interrupt Acknowledge, Master (section 3.1.3.4.2). Discard the byte 
read. 

b. Set "Vector" to O. 
c. Go to Step 8. 

5. Here the interrupt is Vectored. Read "Byte" from address FFFE0016, applying 
Status Code 0100 (Interrupt Acknowledge, Master (section 3.1.3.4.2). 

,6. If "Byte" is greater than or equal to 0, thEm set "Vector" to "Byte" and 
go to Step 8. 

7. If "Byte" is in the range - 16 through - 1, then the interrupt source is 
Cascaded. (More negative values are reserved for future use.) Perform the 
following: , 

a. Read the 32-bit Cascade Address from memory. The address is 
calculated as INTBASE + 4 x Byte. 

b. Read "Vector" applying the Cascade Address just read and Status Code 
0101 (Interrupt Acknowledge) (section 3.1.3.4.2). 

8. Push the PSR copy (from Step 2) onto the Interrupt Stack as a 16-bit value. 
9. Perform Service (Vector, Return Address), Table 6. 

Trap Sequence: Traps other than Trace. 

1. Restore the currently selected Stack Pointer and the Processor Status Register 
to their original values at the start of the trapped instruction. 

2. Set "Vector" to the value corresponding to the trap type: 

FPU: Vector 3 
ILL: Vector 4 

SVC: Vector 5 
DVZ: Vector 6 
FLG: Vector 7 
BPT: Vector 8 

UND: Vector 10 



3. Copy the Processor Status Register (PSR) into a temporary register, then clear 
PSR bits S, U, P, and T. 

4. Push the PSR copy onto the Interrupt Stack as a 16-bit value. 
5. Set "Return Address" to the address of the first byte of the trapped 

instruction. 
6. Perform Service (Vector, Return Address), Table 6. 

Trace Trap Sequence 

1. In the Processor Status Register (PSR), clear the P bit. 
2. Copy the PSR into a temporary register, then clear PSR bits S, U, and T. 
3. Push the PSR copy onto the Interrupt Stack as a 16-bit value. 
4. Set "Vector" to 9. 
5. Set "Return Address" to the address of the next instruction. 
6. Perform Service (Vector, Return Address), Table 6. 

Abort Sequence 

1. Restore the currently selected Stack Pointer to its original' contents at the 
beginning of the aborted instruction. . II 

2. Clear the PSR P bit. . 
3. Copy the PSR into a temporary register, then clear PSR bits S, U, T, and I. 
4. Push the PSR copy onto the Interrupt Stack as a 16-bit value. 
5. Set "Vector" to 2. 
6. Set "Return Address" to the address of the first byte of the aborted 

instruction. 
7. Perform Service (Vector, Return Address), Table 6. 

Table 6. Service Sequence 

Invoked during all interrupt/trap sequences 

Service (Vector. Return Address): 

1) Read the 32-bit External Procedure Descriptor from the Interrupt Dispatch Table: 

address is Vector * 4 + INTBASE Register contents. 

2) Move the Module field of the Descriptor into the MOD Register. 

3) Read the new Static Base pointer from the memory address contained in MOD. placing 

it into the SB Register. 

4) Read the Program Base pointer from memory address MOD + 8. and add to it the Offset 

field from the Descriptor. placing the result in the Program Counter. 

5) Flush Queue: Non-sequentially fetch first instructin of Interrupt Routine. 

6) Push MOD Register onto the Interrupt Stack as a 16-bit value. (The PSR has already 

been pushed as a 16-bit value.) 

7) Push the Return Address onto the Interrupt Stack as a 32-bit quantity. 

3-57 

... 
o 
C/) 
C/) 
Q) 
(J 

o ... 
c. 
o ... 
. ~ 
2 
.... 
N 
M 
o 
N 
M 
j:: 



-I 
W 
N 
o 
W 
N 
-I 

s: 
c:r .... o 

"C .... o 
n 
CD 
en 
en o .... 

3.1.3.9 Coprocessor Instructions 

The TI32032T CPU recognizes three groups of instructions as being executable by 
external coprocessors: 

FLoating Point Instruction Set 
Memory Management Instruction Set 
Application-Specific Coprocessor Instruction Set 

Each Coprocessor Instruction Set is validated by a bit in the Configuration Register 
(section 3.1.1.3). Any Coprocessor Instruction which does not have its corresponding 
Configuration Register bit set will trap as undefined, without any coprocessor 
communication attempted by the CPU. This allows software simulation of a nonexisting 
coprocessor. 

3.1.3.9.1 Coprocessor Protocol 

3-58 

Coprocessor instructions have 3-byte Basic Instruction field, consisting of an ID Byte 
followed by an Operation Word. The ID Byte has three functions: 

1. It identifies the instruction as being a coprocessor instruction. 
2. It specifies which Coprocessor will execute it. 
3. It determines the format of the following Operation Word of the instruction. 

. Upon receiving a coprocessor instruction, the CPU initiates the sequence outlined in 
Table 7. While applying Status Code 1111 (Broadcast ID) (section 3.1.3.4.2) the CPU 
transfer.s the ID Byte on the least significant byte of the Data Bus (ADO-AD7). All 
coprocessors input this byte and decode it. The coprocessor selected by the ID Byte 
is activated, and from this point the CPU is communicating only with it. If any other 
coprocessor protocol was in progress (e.g., an aborted coprocessor instruction), this 
transfer cancels it . 

Table 7. Coprocessor Protocol 

Status Combinations: 
Send 10 (10): Code 1111 
Xfer Operand (OP): Code 1101 
Read Status (ST): Code 1110 

STEP STATUS ACTION 

1 

2 

3 

4 

5 

6 
7 

10 

OP 

OP 

ST 

OP 

CPU Send 10 Byte. 

CPU Sends Operation Word. 

CPU Sends Required Operands. 

Coprocessor Starts Execution. CPU Pre-Fetches. 

Coprocessor Pulses SPC low. 

CPU Reads Status Word. (Trap? Alter Flags?) 

CPU Reads Results (If Any). 

The CPU next sends the Operation Word while applying Status Code 1101 (Transfer 
Coprocessor Operand) (section 3.1.3.4.2). Upon receiving it, the Coprocessor decodes 
it, and at this point the CPU and the Coprocessor are aware of the number of operands 
to be transferred and their sizes. The Operation Word is swapped on the Data Bus: 
that is, bits 0-7 appear on pins AD8-AD15 and bits 8-15 appear on pins ADO-AD7. 



Using the Addressing Mode fields within the Operation Word, the CPU starts fetching 
operands and issuing them to the Coprocessor. To do so, it references any Addressing 
Mode extensions which may be appended to the Coprocessor instruction. Since the 
CPU is solely responsible for memory accesses, these extensions are not sent to the 
coprocessor. The Status Code applied is 1101 (Transfer Coprocessor Operand) 
(section 3.1.3.4.2). 

After the CPU has issued the last operand, the Coprocessor starts the actual execution 
of the instruction. Upon completion, it will signal the CPU by pulsing SPC low. To 
allow for this and for the address strap translation function, ATISPC is normally held 
high only by a pull-up device of approximately 5 kO inside the CPU. 

While the coprocessor is executing the instruction, the CPU is free to prefetch 
instructions into its queue. If it fills the queue before the coprocessor finishes, the 
CPU will wait, applying Status Code 0011 (Waiting for Coprocessor) 
(section 3.1.3.4.2). 

Upon receiving the pulse on SPC, the CPU uses SPC to read a Status Word from the 
coprocessor, applying Status Code 1110 (Read Coprocessor Status) III 
(section 3.1.3.4.2). This word has the format shown in Figure 38. If the Q bit ("Quit", iii 
Bit 0) is set, this indicates that an error has been detected by the coprocessor. The 
CPU will not continue the protocol, but will immediately trap through the FPU vector 
in the Interrupt Table. If the instruction being performed is CMPf and the Q bit is not 
set, the CPU loads Processor Status Register (PSR) bits N,Z, and L from the 
corresponding bits in the Status Word. The TI32081 FPU always sets the L bit to zero. 

15 8 7 o 

0000000 

NEW PSR BIT VALUE(S)_~~ 
"QUIT": TERMINATE PROTOCOL. TRAP(FPU). 

Figure 38. Coprocessor Status Word Format 

The last step in the protocol is for the CPU to read a result, if any, and transfer it to 
the destination. The Read cycles from the Coprocessor Processor are performed by 
the CPU while applying Status Code 1101 (Transfer Coprocessor Operand) 
(section 3.1.3.4.2). 

An exception to the protocol above is the LMR (Load Memory Management Register) 
instruction, and a corresponding Application-Specific Coprocessor instruction (LCR: 
Load ACU Register). In executing these instructions, the protocol ends after the CPU 
has issued the last operand. The CPU does not wait for an acknowledgment from the 
coprocessor, and it does not read status. 

3.1.3.9.2 Floating-Point Instructions 

Table 8 gives the protocols followed for each Floating-Point instruction. The instructions 
are referenced by their mnemonics. For the bit encodings of each instruction, see the 
Appendix. 

3-59 

.. 
o 
en 
en 
Q) 
u 
o .. 
c. 
o .. 
.2 
~ 
.... 
C\I 
M 
o 
C\I 
M 
i= 



:::! 
CAl 
N 
o 
CAl 
N 
-f 

~ cr ... 
o 
"C ... o 
(') 
CD 
en 
en 
o ... 

3-60 

Table 8. Floating-Point Instruction Protocols 

RETURNED 
OPERAND 1 OPERAND 2 OPERAND 1 OPERAND 2 VALUE PSR BITS 

MNEMONIC CLASS CLASS ISSUED ISSUED TYPE AND AFFECTED 
DEST. 

ADDf read.f rmw.f f to Op. 2 none 

SUBf read. f rmw.f f to Op. 2 none 

MULf read.f rmw.f f to Op. 2 none 

DIVf read.f rmw.f f to Op. 2 none 

MOVf read.f write.f N/A f to Op. 2 none 

ABSf read.f write.f N/A f to Op. 2 none 

NEGf read.f write.f N/A f to Op. 2 none 

CMPf read.f read.f f N/A N,Z,L 

FLOORfi read.f write.i N/A ito Op. 2 none 

TRUNCfi read.f write.i N/A ito Op. 2 none 

ROUNDfi read.f write.i N/A ito Op. 2 none 

MOVFL read.F write.L F N/A L to Op. 2 none 

MOVLF read.L write.F L N/A F to Op. 2 none 

MOVif read.i write.f N/A f to Op. 2 none 

LFSR read. 0 N/A 0 N/A N/A none 

SFSR N/A write.D N/A N/A o to Op. 2 none 

Note: 
D = Double Word 
i = Integer size (B, W, D) specified in mnemonic. 
f = Floating-Point type (F,L) specified in mnemonic . 
N/A = Not Applicable to this instruction. 

The Operand Class Columns give the Access Class for each general operand, defining 
how the addressing modes are interpreted (see TI32000 Programmer's Reference 
Manual). 

The Operand Issued Columns show the sizes of the operands issued to the Floating 
Point Unit by the CPU: 

"D" indicates a 32-bit double word. 

"i" indicates that the instruction specifies an integer size for the operand (B 
= Byte, W = Word, D = Double Word). 

"f" indicates that the instruction specifies a floating-point size for the operand 
(F = 32-bit Standard Floating, L = 64-bit Long Floating). 

The Returned Value Type and Destination column gives the size of any returned value 
and where the CPU places it. The PSR Bits Affected column indicates which PSR bits, 
if any, are updated from the Coprocessor Statu~ Word (Figure 38). 

Any operand indicated as being of type "f" will not cause a transfer if the Register 
Addressing Mode is specified. This is because the Floating Point Registers are physically 
on the Floating Point Unit and are therefore available without CPU assistance. 



3.1.3.9.3 Memory Management Instructions 

Table 9 gives the protocols for memory management instructions. Encodings for these 
instructions may be found in the Appendix. 

In executing the RDVAL and WRVAL instructions, the CPU calculates and issues the 
32-bit Effective Address of the single operand. The CPU then performs a single-byte 
read cycle from that address, allowing the MMU to safely abort the instruction if the 
necessary information is not currently in physical memory. Upon seeing the memory 
cycle complete, the MMU continues the protocol, and returns the validation result in 
the F bit of the Coprocessor Status Word. 

The size of the Memory Management operand is always a 32-bit double word. For 
further details of the Memory Management Instruction set, see the Tl32000 
Programmer's Manual and the Appendix. 

Table 9. Memory Management Instruction Protocols 

RETURNED 
OPERAND 1 OPERAND 2 OPERAND 1 OPERAND 2 VALUE PSR BITS 

MNEMONIC CLASS CLASS ISSUED ISSUED TYPE AND AFFECTED 
DEST. 

RDVALt addr N/A D N/A N/A F 

WRVALt addr N/A D N/A N/A F 

LMRt read.D N/A D N/A N/A none 
SMRt write.D N/A N/A N/A D to Op. none 

Note: 
In the RDVAL and WRVAL instructions, the CPU issues the address as a Double Word, and performs a single
byte Read cycle from that memory address. For details, see the TI32000 Programmer's Reference Manual 
and the TI32081 W Memory Management Unit Data Sheet. 
D = Double Word 
t = Privileged Instruction: will trap if CPU is in User Mode. 
N/A = Not Applicable to this instruction. 

3.1.3.9.4 Application Specific Coprocessor Instructions 

Provided in the TI32032T is the capability of communicating with a user-defined, 
"Application-Specific" Coprocessor. The instruction set provided for an Application
Specific Coprocessor defines the instruction formats, the operand classes, and the 
communication protocol. Left to the user are the interpretations of the op code fields, 
the programming model of the Application-Specific Coprocessor, and the actual types 
of data transfered. The protocol specifies only the size of an operand, not its data type. 

Table 10 lists the relevant information for the Application-Specific Coprocessor 
instruction set. The designation "c" is used to represent an operand which can be 
a 32-bit ("0") or 64-bit ("0") quantity in any format: the size is determined by the 
suffix on the mnemonic. Similarly, an "i" indicates an integer size (Byte, Word, Double 
Word) selected by the corresponding mnemonic suffix. 

Any operand indicated as being of type "c" will not cause a transfer if the register 
addressing mode is specified. It is assumed in this case that the coprocessor is already 
holding the operand internally. 

For the instruction encodings, see the Appendix. 

3-61 

~ 

o 
en 
en 
Q) 
(.) 

o 
~ 

C
O 
~ 

(.) 

~ 
.... 
N 
M 
o 
N 
M 
t= 



Table 10. Application-Specific Coprocessor Instruction Protocols 

RETURNED 
OPERAND 1 OPERAND 2 OPERAND 1 OPERAND 2 VALUE PSR BITS 

MNEMONIC CLASS CLASS ISSUED ISSUED TYPE AND AFFECTED 
DEST. 

CCALOc read.c rmw.c c c c to Op. 2 none 

CCAL:.1c read.c rmw.c c c c to Op. 2 none 

CCAL2c read.c rmw.c c c c to Op. 2 none 

CCAL3c read.c rmw.c c c c to Op. 2 none 

CMOVOc read.c write.c c N/A c to Op. 2 none 

CMOV1c read.c write.c c N/A c to Op. 2 none 

CMOV2c read.c write.c c N/A c to Op. 2 none 

CCMPc read.f read.c c c N/A N,Z,L 

CCVOci read.c write.i c N/A ito Op. 2 none 

CCV1ci read.c write.i c N/A ito Op. 2 none 

a CCV2ci read.c write.i c N/A ito Op. 2 none 

CCV3ic read.i write.c N/A c to Op. 2 none 

CCV4DO read.D write.O D N/A o to Op. 2 none 

::! CCV50D read.O write.D 
eN 

0 N/A D to Op. 2 none 

N LCSR read.D N/A D N/A N/A none 
0 

SCSR N/A write.D N/A N/A D to Op. 2 eN none 
N 

CATSTOt addr N/A D N/A N/A F -I 

~ CATST1 t addr N/A D N/A N/A F 
Cio LCRt , read.D N/A D N/A N/A none ... 
0 SCRt write.D N/A N/A N/A D to Op. 1 none "C ... 
0 NOTE: 
(') o = Double Word 
CI) 

i = Integer size (B, W, D) specified in mnemonic. VI 
VI c = ACU size (0:32 bits or Q:64 bits) specified in mnemonic. 
0 t = Privileged instruction: will trap if CPU is in User Mode . ... 

N/A = Not Applicable to this instruction. 

3-62 



3.2 TI32016T Microprocessor 

3.2.1 Programming Model 

The TI32000 microprocessor family architecture includes 16 registers on the Tl32016T 
Central Processing Unit (CPU) (Figure 1). 

DEDICATED 
ADDRESS·DATA 

4 32 • • 32 • RO 
0 PROGRAM COUNTER PC 

R1 
0 STATIC BASE SB 

R2 
0 FRAM E POINTER FP 

}sp R3 
0 USER STACK PTR. SP1 

R4 
0 INTERRUPT STACK PTR. SPO 

RS 
0 INTERRUPT BASE INTBASE 

PSR MOD 
R6 

STATUS MODULE R7 

Figure 1. Address-Data and Dedicated Registers 

3.2.1.1 Address-Data Registers 

The TI32016T contains eight registers (RO through R7) for meeting high-speed general
storage requirements, such as for holding temporary variables and addresses. These 
registers are free for any use by the programmer. Each is 32 bits in length. If an Address
Data register is specified for an operand that is 8- or 16-bits long, only the low part 
(8 or 16 bit section) of the register is used and the high part is not referenced or 
modified. 

3.2.1.2 Dedicated Registers 

The eight dedicated registers of the TI32016T are assigned specific functions. 

PC: The PROGRAM COU NTER Register is a pointer to the first byte of the instruction 
currently being executed. The PC Register is used to reference memory in the program 
section. In the TI32016T CPU, the upper 8 (most significant) bits of this register are 
always zero. 

SPO,SP1: The function of the STACK POINTER Registers is as follows (1) The SPO 
register points to the lowest address of the last item stored in the Interrupt Stack. 
This stack is normally used only by the operating system. It is primarily used for storing 

3-63 

II 
... 
o 
(/) 
U) 
(1) 
u 
o ... 
Q. 
o ... 
. 2 
~ 
t
CD 
~ 

o 
N 
M 
i= 



II 
-f 
W 
N 
o ...... 
en 
-f 

~ 
n' 
""I o 
"C. 
""I' o 
(') 
(I) 
en 
en 
o 
""I 

3-64 

temporary data, and holding return information for operating system subroutines and 
Interrupt and Trap service routines. (2) The SP1 register points to the lowest address 
of the last item stored on the User Stack. This stack is used by normal user programs 
to hold temporary data and subroutine return information. 

In this document, reference is made to the SP register. The terms liSP register" or 
"SP" refer to either SPO or SP1, depending on the setting of the S bit in the Processor 
Status Register (PSR). If the S bit in the PSR is 0, then SP refers to SPO. If the S bit 
in the PSR is 1, then SP refers to SP1. In the TI32016T CPU, the upper 8 (most 
significant) bits of these registers are always zero. 

Stacks in the TI32000 microprocessor family grow downward in memory. A Push 
operation predecrements the Stack Pointer by the operand length. A Pop operation 
post increments the Stack Pointer by the operand length. 

FP: The FRAME POINTER Register is used by a procedure to access parameters and 
local variables on the stack. The FP Register is set up on procedure entry with the 
ENTER instruction and stored on procedure termination with the EXIT instruction. 

The FP Register holds the address in memory uccupied by the old contents of the Frame 
Pointer. In the TI32016T CPU, the upper 8 (most significant) bits of this register are 
always zero. 

SB: The STATIC BASE Register points to the global variables of the software module. 
This register is used to support relocatable global variables for software modules. The 
SB Register holds the lowest address in memory occupied by the global variables of 
a module. In the TI320 16T CPU, the upper 8 (most significant) bits of this register 
are always zero. 

INTBASE: The INTERRUPT BASE Register holds the address of the dispatch table for 
interrupts and traps (section 3.2.3.8). The INTBASE register holds the lowest address 
in memory occupied by the dispatch table. In the TI32016T CPU, the upper 8 (most 
significant) bits of this register are always zero. 

MOD: The MODULE Register holds the address of the module descriptor of the currently 
executing software module. The MOD register is 16 bits long, therefore the module 
table must be contained within the first 64k bytes of memory. 

PSR: The PROCESSOR STATUS Register holds the status codes for the TI32016T 
microprocessor. The PSR, as shown in Figure 2, is 16 bits long, divided into two 8-bit 
halves. The low-order 8 bits are accessible to all programs, but the high-order eight 
bits are accessible only to programs executing in Operating System Mode. 

Figure 2. Processor Status Register 

c: C bit indicates that a carry or borrow occurred after an addition or subtraction 
instruction. It can be used with the ADDC and SUBC instructions to perform multipl~

. precision integer arithmetic calculations. It may have a setting of 0 (no carry or borrow) 
or 1 (carry or borrow). 



T: The T bit causes program tracing. If this bit is a 1, a Trace Trap (TRC) is executed 
after every instruction (section 3.2.3.8.5). 

L: The L bit is altered by comparison instructions. In a comparison instruction, the 
L bit is set to "1" if the second operand is less than the first operand, and when both 
operands are interpreted as unsigned integers. Otherwise, it is set to "0". In floating 
point comparisons, this bit is always cleared. 

F: The F bit is 'a general condition flag, which is altered by'many instructions (e.g., 
integer arithmetic instructions use it to indicate overflow!. 

Z: The Z bit is altered by comparison instructions. In a comparison instruction, the 
Z bit is set to "1" if the second operand is equal to the first operand; otherwise it 
is set to "0". 

N: The N bit is altered by comparison instructions. In a comparison instruction, the 
N bit is set to "1 " if both operands are interpreted as signed integers and the second 
operand is less than the first operand. Otherwise, it is set to "0". 

U: If the U bit is "1", no privileged instructions may be executed. If the U bit is "0", 
then all instructions may be executed. When U = 0, the TI32016T is said to be in 
the Operating System Mode; when U = 1, the TI32016T is said to be in User Mode. 
A User Mode program is restricted from executing certain instructions and accessing 
certain registers which could interfere with the operating system. For example, a User 
Mode program is prevented from changing the setting of the flag used to indicate its 
own privilege mode. An Operating System Mode program is assumed to be a trusted 
part of the operating system, hence it has no such restrictions. 

S: The.S bit specifies whether the SPO register or SP1 register is used as the Stack 
Pointer. The S bit is automatically cleared on interrupts and traps. It may have a setting 
of 0 (use SPO register) or 1 (use SP1 register). 

P: The P bit prevents a TRC trap from occurring more than once for an instruction 
(section 3.2.3.8.5). It may have a setting of 0 (no trace pending) or 1 (trace pending). 

I: When the I bit is "1", all interrupts will be accepted (section 3.2.3.8). If the I bit 
is "0", only the NMI interrupt is accepted. Trap enables are not affected by this bit. 

3.2.1 :3 Configuration Register (CFG) 

Within the Control section of the TI32016T CPU is a 4-bit CFG register that declares 
the presence of certain external devices. It is referenced by only one instruction, 
SETCFG, which is intended to be executed only as part of system initialization after 
reset. The format of the CFG Register is shown in Figure 3. 

,Figure 3. CFG Register 

3-65 

E 
... 
o 
C/) 
C/) 
Q) 
(,) 
o ... 
Q. 
o ... . ~ 
2 .
(0 
'r"'" 

o 
N 
M .-



The CFG I bit declares the presence of external interrupt vectoring circuitry, specifically, 
the TI32202 Interrupt Control Unit. If the CFGI bit is "1", interrupts requested through 
the INT pin are "Vectored". If it is "0", these interrupts are "nonvectored" 
Isection 3.2.3.8). 

The F,M, and C bits declare the presence of the Floating Point Unit IFPU), Memory 
Management Unit IMMU), and Application-Specific Coprocessors. If these bits are as, 
the corresponding instructions are trapped as being undefined. 

3.2.1.4 Memory Organization 

3-66 

The main memory of the TI32016T is a uniform linear address space. Memory locations 
are numbered sequentially starting at 0 and ending at 224_1 . The number specifying 
a memory location is called an address.The contents of each memory location is a 
byte consisting of 8 bits. Unless otherwise noted, diagrams in this document show 
data stored in memory with the lowest address on the right and the highest address 
on the left. In addition, when data is shown vertically, the lowest address is at the 
top of a diagram a'nd the highest address is at the bottom of the diagram. When bits 
are numbered in a diagram, the least significant bit is given the number 0, and is shown 
at the right of the diagram. Bits are numbered in increasing significance and toward 
the left. 

7 0 

I 
A 

Byte at Address A. 

Two contiguous bytes are called a word. Except where noted Isection 3.2.2.1), the 
least significant byte of a word is stored at the lower address, and the most significant 
byte of the word is stored at the next higher address. In memory, the address of a 
word is the address of its least significant byte, and a word may start at any address. 

15 8 7 0 

I MS BYTE I lS BYTE I 
~ A + 1 .14 

A 
., 

Word at Address A. 

Two contiguous words are called a double word. Except where noted Isection 3.2.2.1), 
the least significant word of a double word is stored at the lowest address and the 
most significant word of the double. word is stored at the address two greater. In 
memory, the address of a double word is the address of its least significant byte, and 
a double word may start at any address. 



31 24 23 16 15 8 7 o 

I MS 8YTE I I LS BYTE I 
A+2 A + 1 

Double-word at Address A. 

Although memory is addressed as bytes, it is actually organized as words. Therefore, 
words and double words that are aligned to start at even addresses (multiples of two) 
are accessed more quickly than words and double words that are not so aligned. 

3.2.1.5 Dedicated Tables 

Two of the TI32016T dedicated registers (MOD and INTBASE) serve as pointers to 
dedicated tables in memory (section 3.2.3.8). 

The INTBASE register points to the Interrupt Dispatch and Cascade tables. 

The MOD Register contains a pointer into the Module Table whose entries are called 
Module Descriptors. A Module Descriptor contains four pointers, three of which are 
used by the T132016T. At any time, the MOD register contains the address of the 
Module Descriptor for the currently running module. It is automatically updated by 
the Call External Procedure instructions (CXP and CXPD). 

The format of a Module Descriptor is shown in Figure 4. The Static Base entry contains 
the address of static data assigned to the running module. It is loaded into the CPU 
Static Base register by the CXP and CXPD instructions. The Program Base entry 
contains the address of the first byte of instruction code in the module. Since a module 
may have multiple entry points, the Program Base pointer serves only as a reference 
to find them. 

15 o 

I MOD I 
L 

till'" 31 o"'~ 

STATIC BASE ~ 
LINK TABLE ADDRESS 

PROGRAM BASE 

RESERVED 

"'~ 411" 

Figure 4. Module Descriptor Format 

The Link Table Address points to the Link Table for the currently running module. The 
Link Table provides the information needed for: 

1. Sharing variables between modules. Such variables are accessed through the 
Link Table via the External addressing mode. 

2. Transferring control from one module to another. This is done via the Call 
External Procedure (CXP) instruction. 

3-67 

EI 
... 
o en 
en 
Q) 
CJ 
o ... 
c. 
o ... 
CJ 

~ 
t
(0 
~ 

o 
N 
('t) 

i= 



The format of a Link Table is shown in Figure 5. A Link Table Extry for an external 
variable contains the 32-bit address of that variable. An entry for an external procedure 
contains two 16-bit fields: Module and Offset. The Module field contains the new MOD 
register contents for the module being entered. The Offset field is an unsigned number 
giving the position of the entry point relative to the new module's Program Base pointer. 

For further details of the functions of these tables, refer to the TI32000 Programmer's 
Reference. Manual. 

..,... 31 ENTRY 

o 

2 

;~ . 

o~" 

ABSOLUTE ADDRESS ( 

ABSOLUTE ADDRESS ( 

OFFSET I MODULE ( 

~~ 

Figure 5. A Sample Link Table 

VARIABLE) 

VARIABLE) 

PROCEDURE) 

3.2.2 Instruction Set 

3.2.2.1 General Instruction Format 

3-68 

Figure 6 shows the general format of a TI32000 instruction. The Basic Instruction 
is one to three bytes long and contains the Opcode and up to two 5-bit General 

. Addressing Mode (gen) fields. Following the Basic Instruction field is a set of optional 
extensions, which may appear depending on the instruction and the addressing modes 

: selected. Index Byts apear when either or both gen fields specify Scaled Index. In this 
case, the gen field specifies only the Scale Factor (1, 2, 4, or 8) and the Index Byte 
specifies which Address-Data Register to use as the index and which addressing mode 
calculation to perform before indexing. See Figure 7. 

OPTIONAL BASIC 
EXTENSIONS INSTRUCTION 

1\ 1\ 
\/ 

DISP21DISP1 I I 
DISP2 DISP1 I 

GEN I GEN I IMPLIED 
ADDR ADDR 

IMMEDIATE INDEX INDEX I OPCODE DISP DISP BYTE MODE I CODE 
OPERAND(S) BYTE 

I A I B 
IMM IMM I I 

I 
4~ 

T 
4~ , I I 

Figure 6. General Instruction Format 



7 3 2 o 

GEN. ADDR. MODE REG. NO. 

Figure 7. Index Byte Format 

Following Index Bytes come any displacements (addressing constants) or immediate 
values associated with the selected addressing modes. Each Displacement/Immediate 
(disp/imm) field may contain one or two displacements, or one immediate value. The 
size of a disp field is encoded within the top bits of that field, as shown in Figure 8, 
with the remaining bits interpreted as a signed (two's complement) value.The size 
of an immediate value is determined from the opcode field. Both disp and imm fields 
are stored most significant byte first. Note that this is different from the memory 
representation of data (section 3.2.1.4). 

Some instructions require additional, "implied" immediates and/or displacements, apart 
from those associated with addressing modes. Any such extensions appear at the end 
of the instruction, in the order that they appear within the list of operands in the 
instruction definition (section 3.2.2.3). 

7 o 

SIGNED DISPLACEMENT 

BYTE DISPLACEMENT: RANGE - 64 TO + 63 

7 o 

WORD DISPLACEMENT: RANGE -8192 TO +8191 

7 o 

1 
I 

1 I I 

~~~\ 
P.c~

O\s?\..
G~~O s\

DOUBLE WORD DISPLACEMENT: RANGE (ENTIRE ADDRESSING SPACE)

Figure 8. Displacement Encodings

3.2.2.2 Addressing Modes

The TI32016T CPU generally accesses an operand by calculating its Effective Address
based on information available when the operand is to be accessed. The method to
be used in performing this calculation is specified by the programmer as an "addressing
mode"

3-69

II

II
~
CAl
N
o
~

0)
-4

s:
ri' ... o
"C ... o
(")
CD
en
en
o ...

3.2.2.3

Addressing modes in the TI32016T are designed to optimally support high-level
language accesses to variables. In nearly all cases, a variable access requires only one
addressing mode within the instruction that acts upon that variable. Extraneous data
movement is therefore minimized.

TI32016T Addressing Modes fall into nine basic types:
1. Register -;- The operand is available in one of the eight Address-Data Registers.

In certain coprocessor instructions, an auxiliary set of eight registers may bb
referenced instead.

2. Register Relative - An Address-Data Register contains an address to which
is added a displacement value from the instruction, yielding the Effective
Address of the 'operand in memory.

3. Memory Space - Identical to Register Relative, except that the register used
is one of the dedicated registers: PC, SP, S8, or FP. These registers point
to data areas generally needed by high-level languages.

4. Memory Relative - A pointer variable is found within the memory space
pointed to by the SP, S8, or FP register. A displacement is added to that pointer
to generate the Effective Address of the operand.

5. Immediate - The operand is encoded within the instruction. This addressing
mode is not allowed if the operand is to be written.

6. Absolute - The address of the operand is specified by a displacement field
in the instruction.

7. External - A pointer value is read from a specified entry of the current Link
Table. To this pointer value is added a displacement, yielding the Effective
Address of the operand.

8. Top-of-Stack - The currently selected Stack Pointer (SPO or SP1) specifies
the location of the operand. The operand is pushed or popped, depending on
whether it is written or read.

9. Scaled Index - Although encoded as an addressing mode, Scaled Indexing
is an option on any addressing mode except Immediate or another Scaled
Index. It has the effect of calculating an Effective Address, then mUltiplying
any Address-Data Register by 1, 2,4, or 8 and adding it to the total, yielding
the final Effective Address of the operand.

Table 1 is a brief summary of the addressing modes. For a complete description of
their actions, see the TI32000 Programmer's Reference Manual.

Instruction Set Summary

Table 2 presents a brief description of the TI32016T instruction set. The Format Column
refers to the Instruction FormatTables (See Appendix). The Instruction Column gives
the instruction as coded in assembly language, and the Description column provides
a short description of the function provided by that instruction. Further details of the
exact operations performed by each instruction may be found in the Tl32000
Programmer's Reference Manual.

Notations:

= integer length suffix:
B = Byte
W=Word
D = Double Word

f = Floating Point length suffix:
F = Standard Floating
L = Long Floati ng

gen = General operand: Any addressing mode can be specified.
short = A 4-bit value encoded within the Basic Instruction (see Appendix for encoding).
imm = Implied immediate operand. An 8-bit value appended after any addressing

extensions.
disp = displacement (addressing constant): 8, 16, or 32 bits. All three lengths equal.
reg = Any Address-Data register: RO-R7.

areg = Any Dedicated address register: SP, SB, FP, MOD, INTBASE, PSR, US (bottom
8 PSR bits).

mreg = Any Memory Management Status/Control Register.
creg = An Application-Specific Coprocessor Register (Implementation Dependent).
cond = Any condition code, encoded as the 4-bit field within the Basic Instruction

(see Appendix for encodings).

3.2.3 Functional Description

3.2.3.1 Power and Grounding

The TI32016T requires a single 5-V power supply, applied on pin 18 (Vee). See DC
specifications in the TI32016T data sheet.

Grounding connections are made on two pins. Logic Ground (GNDL, pin 24) is the
common pin for on-chip logic, and Buffer Ground (GNDB, pin 25) is the common pin
for the output drivers. For optimal noise immunity, it is recommended that GNDB and
GNDL be connected together through a single conductor. All other ground connections
should be made to the common line as shown in Figure 9.

5V

I vccrJ

(24)

TI32016T

cpu BBG ... (_29_)---4a----.

C1

(25) OTHER GROUND
GNDB t---t .. - __ ~ CONNECTIONS

Figure 9. Recommended Supply Connections

3-71

II
...
o
CI)
CI)

CD
(.)
o ...
Co
o ...
. 2
~
....
(0
~

o
N
M
i=

::!
w
f\)
o
..a
en
-I

s:
n"
""I o

"C
""I o
n
CD
en
en
o
""I

3-72

Table 1. TI32000 Addressing Modes

ENCODING MODE

Register

00000 Register 0

0000 1 Register 1

000 10 Register 2

00011

00100

00101

00110

00111

Register
Relative

01000

01001

01010

01011

01100

01101

01110

01111

Register 3

Register 4

Register 5 .

Register 6.

Register 7

Register 0 relative

Register 1 relative

Register 2 relative

Register 3 relative

Register 4 relative

Register 5 relative

Register 6 relative

Register 7 relative

ASSEMBLER SYNTAX

RO or FO

Rl or Fl

R2 or F2

R3 or F3

R4 or F4

A5 or F5

R6 or F6

R7 or F7

disp(RO)

disp(Rl)

disp(R2)

disp(R3)

disp(R4)

disp(R5)

disp(R6)

disp(R7)

EFFECTIVE ADDRESS

None: Operand is in the

specified register

Disp + Register.

Memory
Relative

10000 Frame memory relative disp2(displ (FP)) Disp 2 + Pointer; Pointer found

at address Displ + Register.

liSP" is either spa or SP1, as

selected in PSR.

10001

10010

Immediate

10100

Absolute

10101

External

10110

Stack memory relative

Static memory relative

Immediate

Absolute

External

Top of Stack

10111 Top of Stack

disp2(displ (SP))

disp2(displ (S8))

value None: Operand is input from

instruction queue.

@disp Disp.

EXT (disp 1) + disp2 Disp2 + Pointer; Pointer is

found at Link Table Entry

number Disp 1.

TOS Top of current stack, using

either User or Interrupt Stack

. Pointer, as selected in PSR.

Automatic Push/Pop included.

ENCODING

Memory
Space

11000

11001

11010

11011

Scaled Index

11100

11101

11110

11111

Table 1. TI32000 Addressing Modes (Continued)

MODE

Frame memory

Stack memory

Static memory

Program memory

Index, bytes

Index, words

Index, double words

Index, quad words

ASSEMBLER SYNTAX

disp(FP)

disp(SP)

disp(SB)

* +disp

mode[Rn:BI

mode[Rn:WI

mode[Rn:DI

mode[Rn:QI

EFFECTIVE ADDRESS

Disp + Register, "SP" is either

SPO or SP1, as selected in

PSR.

EA (mode) + Rn.

EA (mode) + 2 x Rn.

EA (mode) + 4 x Rn.

EA (mode) + 8 x Rn.

"Mode" and "n" are contained

within the Index Byte.

EA(mode) denotes the effective

address generated using mode.

3-73

II
...
o
(I)
(I)
Q)
(,)
o ...
c.
o ...
. 2
2
I
eD
~

o
N
M
i=

Table 2. TI32000 Instuction Set Summary
MOVES

Format Operation Operands Description

4 MOVi gen,gen Move a value.

2 MOVQi short,gen Extend and move a signed 4-bit constant.

7 MOVMi gen,gen,disp Move Multiple: disp bytes (1 to 16).

7 MOVZBW gen,gen Move with zero extension.

7 MOVZiD gen,gen Move with zero extension.

7 MOVXBW gen,gen Move with sign extension.

7 MOVXiD gen,gen Move with sign extension.

4 ADDR gen,gen Move Effective Address.

INTEGER ARITHMETIC
Format Operation Operands Description

4 ADDi gen,gen Add.

2 ADDQi short,gen Add signed 4-bit constant.

a 4 ADDCi gen,gen Add with carry.

4 SUBi gen,gen Subtract.

4 SUBCi gen,gen Subtract with carry (borrow).

::j 6 NEGi' gen,gen Negate (2's complement).

W 6 ABSi gen,gen Take absolute value.
N

7 MULi MUltiply 0 gen,gen
~ 7 QUOi Divide, rounding toward zero. 0) gen,gen

-f 7 REMi gen,gen Remainder from QUO.

s: 7 DIVi gen,gen Divide, rounding down.
n' 7 MODi gen,gen Remainder from DIV (Modulus). ...
0 7 "0 MEIi gen,gen Multiply to Extended Integer. ...

7 DEli Divide Extended Integer. 0 gen,gen
(")

PACKED DECIMAL (BCD) ARITHMETIC (I)
(J)

Format Operation Operands Description (J)

0
6 ADDPi Add Packed. ... gen,gen

6 SUBPi gen,gen Subtract Packed.

INTEGER COMPARISON
Format Operation Operands Description

4 CMPi gen,gen Compare.

2 CMPQi short,gen Compare to signed 4-bit constant.

7 CMPMi gen,gen,disp Compare Multiple: disp bytes (1 to 16).

LOGICAL AND BOOLEAN
Format Operation Operands Description

4 ANDi gen,gen Logical AND.

4 ORi gen,gen Logical OR.

4 BICi gen,gen Clear selected bits.

4 XORi gen,gen Logical Exclusive OR.

6 COMi gen,gen Complement all bits.

6 NOTi gen,gen Boolean complement: LSB only.

2 Scondi gen Save condition code (cond) as a Boolean
variable of size i.

3-74

Table 2. TI32000 Instruction Set Summary (Continued)

SHIFTS
Format Operation Operands Description

6 LSHi gen,gen Logical Shift, left or right.

6 ASHi gengen Arithmetic Shift, left or right.

6 ROTi gen,gen Rotate, left or right.

BITS
Format Operation Operands Description

4 TBITi gen,gen Test bit.

6 SBITi gen,gen Test and set bit.

6 SBITIi gen,gen Test and set bit, interlocked

6 CBITi gen,gen Test and clear bit.

6 CBITIi gen,gen Test and clear bit, interlocked.

6 IBITi gen,gen Test and invert bit.

8 FFSi gen,gen Find first set bit

BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are
PACKED arrays and records used in Pascal. "Extract" instructions read and align a bit
field. "Insert" instructions write a bit field from an aligned source.

Format Operation Operands Description

8 EXTi reg,gen,gen,disp Extract bit field (array oriented).

8 INSi reg,gen,gen,disp Insert bit field (array oriented).

8 INSi reg,gen,gen,disp Insert bit field (array oriented).

7 EXTSi gen,gen,imm,imm Extract bit field (short form).

7 INSSi gen,gen,imm,imm Insert bit field (short form).

8 CVTP reg,gen,gen Convert to Bit Field Pointer.

ARRAYS
Format Operation Operands Description

8 CHECKi reg,gen,gen Index bounds check.

8 INDEXi reg,gen,gen Recursive indexing step for multiple-

dimensional arrays.

STRINGS

String instructions assign specific functions to the Address-Data Registers:

R4 - Comparison Value

R3 - Translation Table Pointer

R2 - String 2 Pointer

R1 - String 1 Pointer

RO - Limit Count

Options on all strong instructions are:

B (Backward): Decrement string pointers after each step rather than incrementing.

U (Until match): End instruction if String 1 entry matches R4.

W (While match): End instruction if String 1 entry does not match R4.

All string instructions end when RO decrements to zero.

3-75

II ..
o
CI)
CI)
Q)
(J

o ..
C
O ..
(J

~
I
<0
'I""'"

o
N
(\')

j:::

Table 2. TI32000 Instruction Set Summary (Continued)

Format Operation Operands ·Descriptions

5 MOVSi options Move string 1 to String 2.

MOVST options Move string, translating bytes.

5 CMPSi options Compare String 1 to String 2.

CMPST options Compare, translating String 1 bytes.

5 SKPSi options Skip over String 1 entries.

SKPST options Skip, translating bytes for Until/While.

JUMPS AND LINKAGE
Format Operation Operands Description

3 JUMP gen Jump.

0 BR disp Branch (PC Relative).

0 Bcond disp Conditional branch.

3 CASEi gen Multiway branch.

II
2 ACBi short,gen,disp Add 4-bit constant and branch if non-zero.

3 JSR gen Jump to subroutine.

BSR disp Branch to subroutine.

=! 1 CXP disp Call external procedure.
eN 3 CXPO gen Call external procedure using descriptor. N
0 SVC Supervisor Call.
~

0) FLAG Flag Trap.
~ BPT Breakpoint Trap.
S ENTER [reg listJ,disp Save registers and allocate stack frame (Enter
n Procedure) .
0
'C EXIT [reg list] Restore registers and reclaim stack frame (Exit ...
0 Procedure). n
CD RET disp Return from subroutine. en
en RXP disp Return from external procedure call. 0

RETT disp Return from trap. (Privileged) .

RETI Return from interrupt. (Privileged)

3-76

Table 2. TI32000 Instruction Set Summary. (Continued)

CPU REGISTER MANIPULATION
Format Operation Operands Description

SAVE [reg list) Save Address-Data Registers.

1 RESTORE [reg list) Restore Address-Data registers.

2 LPRi areg,gen Load Dedicated Register. (Privileged if PSR or

INTBASE)

2 SPRi areg,gen Store Dedicated Register. (Privileged if PSR or

INTBASE)

3 ADJSPi gen Adjust Stack Pointer.

3 BISPSRi gen Set selected bits in PSR. (Privileged if not Byte

length)

3 BICPSRi gen Clear selected bits in PSR. (Privileged if not Byte

length)

5 SETCFG [option list) Set Configuration Register. (Privileged)

FLOATING POINT II Format Operation Operands Description

11 MOVf gen,gen Move a Floating Point value. ...
9 MOVLF gen,gen Move and shorten a Long value to Standard. 0

en
9 MOVFL gen,gen Move and lengthen a Standard value to Long. en

Q)

9 MOVif gen,gen Convert any integer to Standard or Long Floating. CJ
0

9 ROUNDfi gen,gen Convert to integer by rounding. ...
C.

9 TRUNCfi gen,gen Convert to integer by truncating, toward zero. 0 ...
9 FLOOR fi gen,gen Convert to largest integer less than or equal to . 2

value. ~

11 ADDf Add.
I-

gen,gen c.c
11 SUBf Subtract. r-gen,gen 0
11 MULf gen,gen Multiply. N

M
11 DIVf gen,gen Divide. I-
11 CMPf gen,gen Compare.

11 NEGf gen,gen Negate.

11 ABSf gen,gen Take absolute value.

9 LFSR gen Load FSR.

9 SFSR gen Store FSR.

MEMORY MANAGEMENT
Format Operation Operands Description

14 LMR mreg,gen Load Memory Management Register. (Privileged)

14 SMR mreg,gen Store Memory Management Register. (Privileged)

14 RDVAL gen Validate address for reading. (Privileged)

14 WRVAL gen Validate address for writing. (Privileged)

8 MOVSUi gen,gen Move a value from Operating System

Space to User Space. (Privileged)

8 MOVUSi gen,gen Move a value from User Space to Operating

System Space. (Privileged)

3-77

Table 2. TI32000 Instruction Set Summary (Concluded)

MISCELLANEOUS
Format Operation Operands Description

NOP No Operation.

WAIT Wait for interrupt.

DIA Diagnose. Single-byte "Branch to Self" for

hardware breakpointing. Not for use in

programming.

APPLICATION-SPECIFIC COPROCESSOR (ACU)
Format Operation Operands Description

15.5 CCALOc· gen,gen ACU Calculate.

15.5 CCAL 1c gen,gen

15.5 CCAL2c gen,gen

15.5 CCAL3c gen,gen

II
15.5 CMOVOc gen,gen ACU Move.

15.5 CMOV1c gen,gen

15.5 CMOV2c gen,gen

-i 15.5 CCMPc gen,gen ACU Compare.
e;:)

15.1 CCVOci gen,ge~ ACU Convert. N
0 15.1
...I.

CCV1ci gen,gen

0) 15.1 CCV2ci gen,gen
-i 15.1 CCV3ic gen,gen
:!: 15.1 CCV4DQ gen,gen n' ... 15.1 CCV5QD gen,gen
0

"C 15.1 LCSR gen Load ACU Status Register. ...
0

15.1 SCSR Store ACU Status Register. n gen
m
(I) 15.0 CATSTO gen ACU Address/Test. (Privileged)
(I)

0 15.0 CATSn gen (Privileged) ...
15.0 LCR creg,gen Load ACU Register. (Privileged)

15.0 SCR creg,gen Store ACU Register. (Privileged)

3-78

In addition to Vee and GND, the TI32016T CPU uses an internally generated negative
voltage. It is necessary to filter this voltage externally by attaching a pair of capacitors
(Figure 9) from the BBG pin to ground. Recommended values for these are:

C1: 1 /!F, Tantalum
C2: 1000 pF, low inductance. This should be either a disc or monolithic ceramic

capacitor.

3.2.3.2 Clocking

The TI32016T inputs clocking signals from the TI32201 Timing Control Unit (TCU),
which presents two nonoverlapping phases of a single clock frequency. These phases
are called ClK 1 (pin 26) and ClK2 (pin 27). Their relationship to each other is shown
in Figure 10.

ClK1

ClK2

ONE

~T-STATE~

NON-OVERRlAPPING

Figure 10. Clock Timing Relationships

Each positive edge of C lK 1 defines a transition in the timing state (T -State) of the
CPU. One T -State represents the execution of one microinstruction within the CPU,
and/or one step of an external bus transfer. See the ac timing characteristics in the
TI32016T Data Sheet for complete specifications on ClK 1 and ClK2.

Since the TCU presents signals with very fast transitions, it is recommended that the
conductors carrying ClK1 and ClK2 be kept as short as possible, and that they not
be connected anywhere except from the TCU to the CPU and, if present, the Memory
Management Unit (MMU). A TTL Clock signal (CTTl) is provided by the TCU for all
other clocking.

3.2.3.3 Resetting

The RST/ABT pin serves both as a Reset for .on-chip logic and as the Abort input for
Memory-Managed systems. For its use as the Abort command, see section 3.2.3.5.4.

The CPU may be reset at any time by pulling the RST/ABT pin low for at least 64 clock
cycles. Upon detecting a reset, the CPU terminates instruction processing, resets its
internal logic, and clears the Program Counter (PC) and Processor Status Register (PSR)
to all zeros.

On application of power, RST/ABT must be held low for at least 50 /!s after Vee is
stable. This is to ensure that all on-chip voltages are completely stable before operation.

3-79

II
...
o
U)
U)
Q)
CJ
o ...
Co
o ...
CJ

~
I
(0
~

o
N
M
i=

E1
::!
CAl
N
o
....Ji

0)
-i

S
n' ...
o

"C ...
o
(")
CD
fA
fA
o ...

3-80

Whenever a Reset is applied, it must remain active for not less than 64 clock cycles.
The trailing (positive-going) edge must occur while ClK 1 is high, and no later than
10 ns before the ClK 1 trailing edg,e. See Figures 11 and 12.

VCC

ClK1 ---t----..

RST/ABT ---+-------------1~"
~---~50 psec •

Figure 11. Power-On Reset Requirements

CLK1~SL1l-
14 ~ 64 ClOCK----.r

---....,~r"~~ CYCLES r-
RST/ABT ~"'''''''' I ~~~ __ ~II~ ____ -J

Figure 12. General Reset Timing

The TI32201 Timing Control Unit (TCU) provides circuitry to meet the reset
requirements of the TI32016T CPU. Figure 13 shows the recommended connections
for a nonmemory-mananaged system. Figure 14 shows the connections for a memory
managed system.

VCC

,--------,
I I

TCU
TI32201

CPU
TI32016T

I REs'ET "XJ - -:-....."I-.... ~ ~(lI RSTI Rs'fO ~--'iI....--<A RST/ABT . I
I I L _______ ..

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

~50 psec

SYSTEM RESET

Figure 13. Recommended Reset Connections, Non-Memory-Managed System

r------,
I I

VCC

TCU
TI32201

I RESET ~~-r---'_-r""""~""'01 RSTI R"S"TO
I I '-______ .J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

i!!50 I,sec

MMU
TI32082W

CPU
TI32016T

RST:ABT

Figure 14. Recommended Reset Connections, Memory-Managed System

3.2.3.4 Bus Cycles

The TI32016T CPU has a strap option that defines the Bus Timing Mode as either
with or without Address Translation. For details covering the use of the strap, refer
to section 3.2.3.5.

The CPU will perform a bus cycle for one of the following reasons:

1. To write or read data, to or from memory or a peripheral interface device.
Peripheral input and output are memory-mapped in the TI32000 family.

2. To fetch instructions into the 8-byte instruction queue. This happens whenever
the bus would otherwise be idle and the queue is not already full.

3. To acknowledge an interrupt and allow external circuitry to provide a vector
number, or to acknowledge completion of an interrupt service routine.

4. To transfer information to or from a Coprocessor.

In terms of bus timing, cases 1 through 3 above are identical. The only external
difference between cases 1 through cas'e 3 is the 4-bit code placed on the Bus Status
pins (STO~ST3). Coprocessor cycles differ in that separate control signals are applied.
Refer to section 3.2.3.4.6.

The sequence of events in a noncoprocessor bus cycle is shown in Figure 16 for a
Read cycle and Figure 17 for a Write cycle. The cases shown assume that the selected
memory or interface device is capable of communicating with the CPU at full speed.
If it is not, then cycle extension may be requested through the RDY line. Refer to
section 3.2.3.4.1.

A full-speed bus cycle is performed in four cycles of ClK 1, labeled T1 through T4.
Clock cycles not associated with a bus cycle are designated Ti (for "idle").

During T1, the CPU applies an address on pins ADO-AD15 and A 16-A23. It also
provides a low-going pulse on the ADS pin, which serves the dual purpose of informing
external circuitry that a'bus cycle is starting and of providing control to an external
latch for de multiplexing Address bits 0-15 from the ADO-AD 15 pins. See Figure 15.
Also during this time the status signals DDIN, indicating the direction of the transfer,
and HBE, indicating whether the high byte (AD8-AD15) is to be referenced, become
valid.

3-81

II
...
o
CI)
CI)
Q)
CJ
o ...
Q.
o ...
. 2
2
I
eD
or--
o
N
M
i=

II
::!
w
N
o
~

C)
-t

s:
c:r
~ o
'C
~ o
(')
CD
en
en
o
~

3-82

i5i5iN - ..
.. .1 ~~~) ..

00-015
(16)

ADO-AD15 BUFFER
.... I ..

..... , ~,

V -+-

HBE

ADS ..
TI32016T

..
I

... lATCH
I

...

(8) (23)

A16-A23
, I ... , , ...

ClK 1 ClK2 DS'FlT ~ Ir

j + I

~,

ClK1 ClK2 ADS ODIN DBE

RD

TI32201 WR

TSO

Figure 15. Bus Connections

..
r

..
r

..
r

~
r

..
".

..
".

A1-A23

RD

WR

TSO

During T2, the CPU switches the Data Bus ADO-AD15 to either accept or present data.
Note that the signals A 16-A23 remain valid, and need not be latched. It also starts
the Data Strobe (DS)' signaling the beginning of the data transfer. Associated signals
from the TI32201 Timing Control Unit are also activated at this time: RD (Read Strobe)
or WR (Write Strobel. TSO (Timing State Output, indicating that T2 has been reached),
and DBE (Data Buffer Enable).

The T3 state provides for access time requirements, and it occurs at least once in
a bus cycle. At the beginning of T3, on the rising edge of the ClK 1 clock, the RDY
line is sampled to determine whe~her the bus cycle will be extended (section 3.2.3.4.1).

If the CPU is performing a Read cycle, the Data Bus (ADO-AD15) is sampled at the
falling edge of ClK2 in the last T3 state. Data must, however, be held at least until
the beginning of T4. DS and RD are guaranteed not to go inactive before this point,
so the rising edge of either of them may safely be used to disable the device providing
the input data.

The T4 state finishes the bus cycle. At the beginning of T4, the DS, Fffi or WR, and
TSO signals go inactive, and on the rising edge of ClK2; DBE goes inactive, having
provided for necessary data hold times. Data during Write cycles remains valid from
the CPU throughout T4. Note that the Bus Status lines (STO-ST3) change at the
beginning of T4, anticipating the following bus cycle (if any).

3.2.3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for any speed of memory or
peripheral device, the TI32016T provides for extension of a bus cycle. Any type of
bus cycle except a coprocessor cycle can be extended.

In Figures 16 and 17, note that during T3 all bus control signals from the CPU and
TCU are flat. Therefore, a bus cycle can be cleanly extended by causing the T3 state
to be repeated. This is the purpose of the Ready (ROY) pin.

At the end of T2, on the falling edge of CLK2, the ROY line is sampled by the CPU.
If ROY is high, the next T-states will be T3 and T4, ending the bus cycle. If ROY is
low, An additional T3 state will be inserted after the initial T3 state and the ROY line
will again be sampled on the falling edge of CLK2. Each additional T3 state after the
first is referred to as a "Wait State". See Figure 18.

The ROY pin is driven by the TI32201 Timing Control Unit, which applies wait-states
to the CPU as requested on three sets of pins:

1. CWAIT (Continuous Wait) holds the CPU in wait-states until removed.
2. WAIT1, WAIT2, WAIT4, WAIT8 (Collectively WAlTn) may be given a four

bit value requesting a specific number of wait-states from 0- 15.
3. PER (Peripheral) inserts five additional wait-states and causes the TCU to

reshape the RO and WR strobes. This provides the setup and hold times
required by most MOS peripheral interface devices.

Combinations of these various Wait requests are both legal and useful. For details on
their use, see section 3.6.

Figure 19 illustrates a typical Read cycle, with two wait-states requested through the
TCU WAITn pins.

3.2.3.4.2 Bus Status

The TI32016T CPU presents 4 bits of Bus Status information on pins STO-ST3. The
various combinations on these pins indicate why the CPU is performing a bus cycle,
or, if it is idle on the bus, then why it is idle.

Referring to Figures 16 and 17, note that Bus Status leads the corresponding Bus Cycle,
going valid one clock cycle before T1 , and changing to the next state at T4. This allows
the system designer to fully decode the Bus Status and, if desired, latch the decoded
signals before ADS initiates the Bus Cycle.

The Bus Status pins are interpreted as a 4-bit value, with STO the least significant
bit. Their values decode as follows:

0000 . The bus is idle because the CPU does not yet need access to the bus.
0001 The bus is idle because the CPU is executing the WAIT instruction.
0010 (Reserved for future use.)
0011 The bus is idle because the CPU is waiting for a coprocessor to complete

an instruction.

3-83

II
...
o
en
en
Q)
CJ
o ...
c.
o ...
.2
~
I
CD
t"""

o
N
M
~

II
~
W
f\l
o
~

en
-t
3:
(')
"or o

"0
"or o
(')
CD en
en
o
"or

3-84

ClK1 [

ClK2 [

A16·A23 [

AOO·AD15 [

ADS [

STO·ST3 [

DoiN [

HiiE [

Os" [

ROY [

AD [

I T4 OR Ti I T1

CPU BUS SIGNALS
TI32016T

T2 T3

Figure 16. Read Cycle Timing

T4 I T1 OR Ti I

CLK1 [

CLK2 [

A16·A23 [

AOO·A01S [

ADS [

STO·ST3 [

ODIN [

HBE [

OS [

ROY [

RO [

WR [

OBE [

TSO [

CPU BUS SIGNALS
TI32016T

I T4 OR T. I T1 T2 T3 T4

Figure 1 7. Write Cycle Timing

I T1 OR Ti I

3-85

II
~

o
tJ)
tJ)
Q)
(.)

o
~

Co
o
~

.2
2
tc.o
r-
o
N
M
i=

II

3-86

T1

ClK1

CLK2

ROY

T2 T3

STATE:
T3

STATE:
T4

T3
(WAIT)

Figure 18. RDY Pin Timing

T4

0100 Master Interrupt Acknowledge. The CPU is performing a read cycle. To
acknowledge receipt of a Nonmaskable Interrupt (on NMI) it will read from
address FFFF0016 but will ignore any data provided. To acknowledge
receipt of a Maskable Interrupt (on INT) it will read from address
FFFF0016, expecting a vector number to be provided from the Master
TI32202 Interrupt Control Unit (ICU). If the vectoring mode selected by
the last SETCFG instruction was nonvectored, then the CPU will ignore
the value it has read and will use a default vector instead, having assumed
that no TI32202 is present (section 3.2.3.4.5).

0101 Cascaded Interrupt Acknowledge. The CPU is reading a vector number
from a Cascaded TI32202 Interrupt Control Unit. The address provided
is the address of the TI32202 Hardware Vector register
(section 3.2.3.4.5).

0110 Master End of Interrupt. The CPU is performing a Read cycle to indicate
that it is executing a Return from Interrupt (RETI) instruction
(section 3.2.3.4.5).

0111 Cascaded End of Interrupt. The CPU is reading from a Cascaded Interrupt
Control Unit to indicate that it is returning (through RETI) from an interrupt
service routine requested by that unit (section 3.2.3.4.5).

1000 Sequential Instruction Fetch. The CPU is reading the next sequential word
from the instruction stream into the Instruction Queue. It will do so
whenever the bus would otherwise be idle and the queue is not already
full.

1001 Nonsequential Instruction Fetch. The CPU is performing the first fetch
of instruction code after the Instruction Queue is purged. This will occur
as a result of any jump or branch, or any interrupt or trap, or execution
of certain instructions.

1010 Data Transfer. The CPU is reading or writing an operand of an instruction
1011 Read RMW Operand. The CPU is reading an operand which will

subsequently be modified and rewritten. If memory protection circuitry
would not allow the following write cycle, it must abort this cycle.

PREV, CYCLE

I T4 OR Ti I n

ClKl [

ClK2 [

CPU BUS SIGNALS
Tl32016T

NEXT CYCLE

In OR Til

A16·A23 [~I""'''~I' "'--+--~f---+---""-"";'''''---V
AOO·AD15 [~F"""""""'I~

Ao"S[

STO·ST3 [

DrnN[~I""'~~~~-+---~---r---+---+--~~--~
~[~~,,~w ~_~ __ ~ __ ~~ __ +-__ +-__ ~

os[

WA[

TSa[

NOTE: Arrows on EWAiT. PER. WAii"n indicate points at which the TCU samples. Arrows on ADO-AD15 and
RDY indicate points at which the CPU samples.

Figure 19. Extended Cycle Example

3-87

II
...
o
en en
Q)
CJ
o ...
c.
o ...
CJ

~
t
(0
~

o
N
('t)

i=

II
:::j
W
N
o
...l

C)
.....j

S
n
"""I
o
"C
"""I o
n
CD
en
en
o
"""I

1100 Read for Effective Address Calculation. The CPU is reading information
from memory in order to determine the Effective Address of an operand.
This will occur whenever an instruction uses the Memory Relative or
External addressing mode.

1101 Transfer Coprocessor Operand. The CPU is either transferring an
instruction operand to or from a coprocessor, or it is issuing the Operation
Word of a coprocessor instruction (section 3.2.3.9.1)

1110 Read Coprocessor Status. The CPU is reading a Status Word from a
coprocessor. This occurs after the coprocessor has signaled completion
of an instruction. The transferred word tells the CPU whether a trap should
be taken, and in some instructions it presents new values for the CPU
Processor Status Register bits N, Z, L, or F (section 3.2.3.9.1).

1111 Broadcast Coprocessor ID. The CPU is initiating the execution of a
coprocessor instruction. The ID Byte (first byte of the instruction) is sent
to all coprocessors, one of which will recognize it. From this point the
CPU is communicating with only one coprocessor (section 3.2.3.9.1).

3.2.3.4.3 Data Access Sequences

3-88

The 24-bit address provided by the TI32016T is a byte address; that is,it uniquely
identifies one of up to 16,777,216 eight-bit memory locations. An important feature
of the TI320 16T is that the presence of a 16-bit data bus imposes no restrictions on
the data alignment; any data item, regardless of size, may be placed starting at any
memory address. TheTI32016T provides a special control signal, High Byte Enable
(HBE) which facilitates individual byte addressing on a 16-bit bus. Memory is organized
as two S-bit banks, each bank receiving the word address (A 1-A23)) in parallel. One
bank, connected to Data Bus pins ADO-AD7 is enabled to respond to even byte
addresses; i.e., when the least significant address bit (AO) is low. The second bank,
connected to data bus pins ADS-AD 15, is enabled when HBE is low. See Figure 20.

Any bus cycle falls into one of three categories: Even Byte Access, Odd Byte Access,
and Even Word Access. All accesses to any data type are made up of sequences of
these cycles. Table 3 lists the stale of AO and HBE for each category.

Accesses of operands requiring more than one bus cycle are performed sequentially,
with no idle T-States separating them. The number of bus cycles required to transfer
an operand depends on its size ~md its alignment. Table 4 lists the bus cycles performed
for each situation.

Bit Accesses. The Bit Instructions perform byte accesses to the byte containing the
designated bit. The Test and Set Bit instruction (SBIT), for example, reads a byte, alters
it, and rewrites it, having changed the contents of the one bit.

Bit Field Accesses. An access to a Bit Field in memory always generates a double word
transfer at the address containing the least significant bit of the field. The double word
is read by an Extract Instruction; an Insert instruction reads a double wo~d, modifies
it, and rewrites it.

Extending Multiply Accesses. The Extending Multiply Instruction (MEl) will return a
result which is twice the size in bytes of the operands it reads. If the mUltiplicand is

6 6
8 BITS 8 BITS

A1-A23

c)
~~ ,~ ~~ ,~

D MS BYTE l').lS BYT
16 BITS DATA

E

Figure 20. Memory Interface

in memory, the most significant half of the result is written first (at the higher address),
then the least significant half. This is done in order to support retry if this instruction
is aborted.

3.2.3.4.4 Instruction Fetches.

Instructions for the TI32016T CPU are "prefetched"; that is, they are input before
being needed into the next available entry of the 8-byte Instruction Queue. The CPU
performs two types of Instruction Fetch cycles: Sequential and Nonsequential. These
can be distinguished from each other by their differing status combinations on pins
STO-ST3 (section 3.2.3.4.2)

Table 3. Bus Cycle Categories

CATEGORY HBE AO

Even Byte 1 0

Odd Byte 0

Even Word 0 0

3-89

II -o
f/)
f/)
Q)
CJ
o -a.
o -.2
2 ...
(0
~

o
N
(Y) ...

II
~
W
N
o
...A
0)
~

~
n° ...
o
~ ... o
n
(1)
en
en
o ...

3-90

Table 4. Access Sequences

CYCLE TYPE ADDRESS HBE AO HIGH BUS LOW BUS

A. Odd Word Access Sequence

I BYTE 1 I BYTE 0 I -A

1 Odd Byte A 0 1 Byte 0 Don't Care
2 Even Byte A+ 1 0 Don't Care Byte 1

B. Even Double-Word Access Sequence

I BYTE 31 BYTE 21 BYTE1 1 BYTE 0 1 -A

1 Even Word A 0 0 Byte 1 Byte 0
2 Even Word A+2 0 0 Byte 3 Byte 2

C. Odd Double-Word Access Sequence

I BYTE 3 I BYTE 2 I BYTE 1 I BYTE 0 I -A

Odd Byte A 0 1 Byte 0 Don't Care
2 Even Word A+1 0 0 Byte 2 Byte 1
3 Even Byte A+3 0 Don't Care Byte 3

D. Even Quad-Word Access Sequence

I BYTE 71 BYTE 6\ BYTE 51 BYTE 4\ BYTE 3 I BYTE 2 I BYTE 1 I BYTE 0 I -A

1
2

Even Word
Even Word

A
A+2

o
o

o
o

Byte 1
Byte 3

Other bus cycles (instruction prefetch or coprocessor) can occur here .
3 Even Word A+4 0 0 Byte 5
4 Even Word A+6 0 0 Byte 7

E. Odd Quad-Word Access Sequence

Byte 0
Byte 2

Byte 4
Byte 6

I BYTE 7 \ BYTE 6 \ BYTE 5\ BYTE 4\ BYTE 3 \ BYTE 2 \ BYTE 1 \ BYTE 0 I -A

Odd Byte A 0 1 Byte 0 Don't Care
2 Even Word A+1 0 0 Byte 2 Byte 1
3 Even Byte A+3 0 Don't Care Byte 3

Other bus cycles (instruction prefetch or coprocessor) can occur here.
4 Odd Byte A+4 0 1 Byte 4 Don't Care
5 Even Word A+5 0 0 Byte 6 Byte 5
6 Even Byte A+7 0 Don't Care Byte 7

A Sequential Fetch will be performed by the CPU whenever the Data Bus would
otherwise be idle and the Instruction Queue is not currently full. Sequential Fetches
are always Even Word Read cycles (Table 3).

A Nonsequential Fetch occurs as a result of any break in the normally sequential flow
of a program. Any jump or branch instruction, a trap or an interrupt will cause the
next Instruction Fetch cycle to be Nonsequential. In addition, certain instructions flush
the instruction queue, causing the next instruction fetch to display Nonsequential
status. Only the first bus cycle after a break displays Nonsequential status, and that
cycle is either an Even Word Read or an Odd Byte Read, depending on whether the
destination address is even or odd.

3.2.3.4.5 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or more bus cycles whose
purpose is interrupt control rather than the transfer of instructions or data. Execution
of the Return from Interrupt instruction (RETI) will also cause Interrupt Control bus
cycles. These differ from instruction or data transfers only in the status presented
on pins STO-ST3. All Interrupt Control cycles are single-byte read cycles.

This section describes only the Interrupt Control sequences associated with each
interrupt and with the return from its service routine. For full details of the TI32016T
interrupt structure, see section 3.2.3.8.

3.2.3.4.6 Coprocessor Communication

In addition to its use as the Address Translation strap (section 3.2.3.5.1), the AT/SPC
pin is used as the Data Strobe for coprocessor transfers. In this role, it is referred to
as Coprocessor Control (SPC). In a coprocessor bus cycle, data is transferred on the
Data Bus (ADO-AD15), and the least significant two bits of CPU cycle status (STO-ST1)
are monitored by each coprocessor in order to determine the type of transfer being
performed. SPC is bidirectional, but is driven by the CPU during all coprocessor bus
cycles (section 3.2.3.9) (Figure 21).

(16)

AOIO-15) ,
010-15) , ~

TI32016T -AT/SPC ~ r sPC
CPU

COPROCESSOR

STO-ST3 ..
STO-ST3 ...

Figure 21. Coprocessor Connections

Coprocessor Bus Cycles. A coprocessor bus cycle always takes exactly two clock
cycles, labeled T1 and T4 (see Figures 22 and 23). During a Read cycle, SPC is
activated at T1, data is sampled at T 4, and SPC is removed. The Cycle Status pins
lead the cycle by one clock period, and are sampled at the leading edge of SPC. During
a Write cycle, the CPU applies data and activates SPC at T1, removing SPC at T4.

3-91

II -o
en
en
cu
CJ
o -c.
o -CJ

~
I
CD
<r-
o
N
M
i=

II
:::!
w
N
o
~

0')
-f

S
n' ..
o
'C .. o
(")
CD
(I)
(I)

o ..

3-92

Table 6. Interrupt Sequences

CYCLE STATUS ADDRESS AO HIGH BUS LOW BUS

A. Non-Maskable Interrupt Control Sequences.
Interrupt Acknowledge

1 0100 FFFF0016 0 0 Don't Care Don't Care

Interrupt Return

None: Performed through Return from Trap (RETT) instruction.

B. Non-Vectored Interrupt Control Sequences.

Interrupt Acknowledge
1 0100 FFFE0016 o o Don't Care Don't Care

Interrupt Return

None: Performed through Return from Trap (RETT) instruction.

C. Vectored Interrupt Sequences: Non-Cascaded.

Interrupt Acknowledge
1 0100 FFFE0016 o

Interrupt Return
1 0110 FFFE0016 o

o

o

Don't Care Vector:
Range: 0-127

Don't Care Vector: Same as in
Previous Int. Ack.
Cycle

D. Vectored Interrupt Sequences: Cascaded.

Interrupt Acknowledge
1 0100 FFFE0016 o o Don't Care Cascade Index:

range - 1 6 to - 1

(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0101 Cascade 0 1 ort 0 art Vector, range 0-255; on

Interrupt Return
1 0110

Address 0 1 appropriate half of Data Bus for
even/odd address

FFFE0016 o o Don't Care Cascade Index:
same as in
previous Int. Ack.
Cycle

(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0111 Cascade 0 1 or 0 or Don't Care Don't Care

Address 0 t 1 t

t If the Cascaded ICU Address is Even lAO is low). then the CPU applies HBEhigh and reads the vector number
from bits 0-7 of the Data Bus. If the address is Odd (AO is high). then the CPU applies 'RB"E low and reads
the vector number from bits 8-15 of the Data Bus. The vector number may be in the range 0-255.

PREV CYCLE

I T4 OR Ti

elK1 [

ClK2 [-+_

ADO-AD15 [~~~*"~~

STO-ST3 [

ADs [

T1 T4

NEXT CYCLE

T1 OR Ti I

NEXT

NEXT STATUS

HRE [.... ~04o~ ~ ... __ +----of&-___ _

_ 131 [
DBE

_t-_J

NOTES: 1. CPU samples Data Bus here.
2. Coprocessor samples CPU Status here.
3. i5BE and all other TI32201 TCU bus signals remain inactive because no ADS pulse is received

from the CPU.

Figure 22. CPU Read from Coprocessor

3-93

II
~

o
(I)
(I)
CD
CJ
o
~

c.
o
~

.~
2
I
CD
~

o
N
('I)

i=

II
:::!
w
I\)
o
~

(j)
-t
:5: o· ...
o

"C ...
o
(")
c
UI
UI
o ...

3-94

eLK1 [

s.c[

ADO-AD15 [

STO-ST3 [

ODIN [

HBE [

_121[
DBE

PREVo CYCLE

I T4 OR Ti T1 T4

NOTES: 1. Arrows indicate points at which the Coprocessor samples.

NEXT CYCLE

T1 OR Ti I

2. DBE, being provided by the TI32201 TCU, remains inactive due to the fact that no pulse is
presented on ADS. TCU signals RD, WR and TSO also remain inactive.

Figure 23. CPU Write to Coprocessor

The coprocessor latches status on the leading edge of SPC and latches data on the
trailing edge. Since the CPU does not pulse the Address Strobe (ADS)' no bus signals
are generated by the TI32201 Timing Control Unit. The direction of a transfer is
determined by the sequence ("protocol") established by the instruction under
execution; but the CPU indicates the direction on the ODIN pin for hardware debugging
purposes.

Operand Transfer Sequences. A coprocessor operand is transferred in one or more
coprocessor bus cycles. A Byte operand is transferred on the least significant byte
of the Data Bus (ADO-AD7), and a Word operand is transferred on bits ADO-AD15.
A double word is transferred in a consecutive pair of bus cycles, least significant word
first. A quad word is transferred in two pairs of coprocessor cycles, with other bus
cycles possibly occurring between them. The word order is from least signficant word
to most significant word.

3.2.3.5 Memory-Management Option

The TI32016T CPU, in conjunction with the TI32082W Memory Management Unit
(MMU), provides full support for address translation, memory protection, and memory
allocation techniques up to and including Demand-Paged Virtual Memory.

3.2.3.5.1 Address-Translation Strap

The Bus Interface Control section of the TI32016T CPU has two bus timing modes;
with or without address-translation. The mode of operation is selected by the CPU
by sampling the AT/SPC (Address TranslationlCoprocessor Control) pin on the rising
edge of the Reset (RST) pulse. If AT/SPC is sampled as high, the bus timing is as
previously described in section 3.2.3.4. If it is sampled as low, two changes occur:

1. An extra clock cycle, Tmmu, is inserted into all bus cycles except coprocessor
transfers.

2. The DS/FL T pin changes in function from a Data Strobe output (OS) to a Float
Command input (FLT). The TI32082 MMU will itself pull the CPU ATISPC
pin low when it is reset. In Nonmemory Managed systems, this pin should
be pulled up to VCC through a 10 k!l resistor.

Note that the Address Translation strap does not specifically declare the presence of
a TI32082W MMU, but only the presence of external address translation circuitry.
MMU instructions will still trap as being undefined unless the SETCFG (Set
Configuration) instruction is executed to declare the MMU instruction set valid.

3.2.3.5.2 Translated Bus Timing

Figures 24 and 25 illustrate the CPU activity during a read cycle and a write cycle
in Address Translation mode. The additional T-State, Tmmu, is inserted between T1
and T2. During this time the CPU places ADO-AD15 and A 16-A23 into the 3-state
(high-impedance state) mode, allowing the MMU to assert the translated address and
issue the physical address strobe PAV. T2 through T 4 of the cycle are identical to
their counterparts without Address Translation, with the exception that the CPU
address lines A 16-A23 remain in the 3-state condition. This allows the MMU to continue
asserting the translated address on those pins.

3-95

II
...
o
U)
U)

CD
CJ
o ...
C
O ...
CJ

~
l
to
r"

o
N
M
i=

II
:!
W
r\l
0
~

0)
-4

s:
(')
~

0
"C
~

0
(')
CD en
en
0
~

I T4 OR Ti I T1 I TMMU I T2 T3 T4 I T1 OR Ti I
ClK1 [

ClK2 [

A16-A23 [

ADO-AD15 [

ADs [

STO·ST3 [

DDiN[

HBE [

ROY [

Figure 24. Read Cycle with Address Translation (CPU Action)

Figures 26 and 27 show a read cycle and a write cycle as generated by the
TI32016T/TI32082W/TI32201 group. Note that with the CPU ADS signal going to
the MMU, and with the MMU PAV signal substituting for ADS every where else, Tmmu
through T4 look exactly like T1 through T4 in a nonmemory managed system. For
the connection diagram (Figure 28).

3.2.3.5.3 The FL T (Float) Pin

3-96

In Address Translation mode, the DS/FL T pin is treated as the input command FL T
(Float). Activating FL T during Tmmu causes the CPU to wait longer than Tmmu for

I T4 OR Ti I T1 I TMMU I T2 T3 T4 I T1 OR Ti I
elKl [

ClK2 [-+_--'

A 16-A23 [",+-..01~"""""""","'"

ADO-AD15 [""'4-..01~""""'"""","V

ADS [

STO-ST3 [

Figure 25. Write Cycle with Address Translation (CPU Action)

3-97

...
o
rJ)
rJ)
Q)
CJ
o ...
c.
o ...
. 5:
:2E
l
to
~

o
C\I
M
i=

II
:j
W
N
o
~

0)
-f

~
n ... o
'C ...
o
n
(1)
fA
fA
o ...

3-98

I T4 OR Ti I T1 I TMMU I T2 T3 T4 I T1 OR Ti I
CLK1 [

CLK2 [

A1S-A23 [

AOO-A01S [

ADS [

PAV[

STO-ST3 [STATUS VALID NEXT STATUS

HBE [~~~~V , ____ ~----~~V-A-L-I0_r~----_+------~ ~ __ ~--

Wii[

TCU BUS SIGNALS
TI32201

Figure 26. Memory-Managed Read Cycle

ClK1 [

ClK2 [

A16-A23 [

AOO-A015 [

ADS [

PAV [

STO-ST3 [

Di5'iN [

iiBE [

ROV [

RD[

TSO [

I T4 OR Ti I T1 I TMMU I T2 T3

STATUS VALID

VALID

TCU BUS SIGNALS
TI32201

T4

Figure 27. Memory-Managed Write Cycle

I T1 OR Ti I

NEXT STATUS

3-99

II
...
o
(I)
(I)
Q)
CJ
o ...
c.
o ...
. 2
2
t
eD
~

o
C'\I
M
i=

~
o
o

JossaooJdoJO!1I\I .l9.LOZ£I.l III
PERI PH CYCLE

PER XTAL2
XIN

5 CWAIT
READY

=r XTALI WAIT8 r-l XOUT
WAIT4 ~ WAIT REQUESTS

Ami TCU WAiTi ::= IADDR DECODED OR STRAPPEDI

RSTI Tl32201 WAiTi
RD

ClKl RD

ClK2 WR

ADS WR

RSTO CTn ODiN ROY DeE
4 I ILO

H8E

~ • s

--6 10 k'!

I HOLD

+ f t HlDAO

ROY CLK 1 CLK2 ILO H8E HOLD CLK 1 HOLD ROY RST U PHYSICAL
ADDR ADDRESS

CLK2
VALID LATCH 8UFFERS

HLDA _.
iilliAi HUiAO ~-

osm m PAV STR08E I J Cl

INTS I=::: iNr Tl32016T PFS PFS MMU ~. 1241 NMi CPU US Us TI32082W AO A23

ADS ADS ~ID 24X[> LL)

ODiN - DOIN

STO STJ
141 ~

STO ST3

RSr ABT .. ST /1241

ADDR DATA ArSPC
I

.........- AT.SPc ADDR DATA

1248
10 k!! tj '-- -• S

r I.
1241 124~

< > /
ADDR DA~A I16lg ",J 1161S

,
DA T A BUFFERS

MULTIPLEXED V- ENI
BUS

141
~ '---- EN2

DATA DATA
V 1161

121 :t STO STl MULTIPLEXED
IV FPU BUS 16X[>

TI32081W RST ~ RST MEMORY -
~ ~ CLK

PERIPHERALS
CLK

9 16X<]
1.2

141

NOTE: The AND gate on the HBE signal line is not necessary for the current version of the T132016T, since
the CPU forces HBE low whenever FL T is asserted. However, it is needed for future higher speed versions
of the CPU, since HBE will not be affected by FL T any longer. The jumper is needed in a system that
has to work with or without MMU.

Figure 28. System Connection Diagram

1'"

1.29

ODIN

DO 016

[B' ,;., ,-
STATUS

T1 I TMMU Tf Tf • •• I Tf I T2 I
ClK1 [SLJ1J
eLK2 [

A16-A23 [

ADO-AD15 [

iWS[

PAV [

FlT [

STO-ST3 [VALID VALID

DoiN[

HBE [

Figure 29. FLT Float Command Timing

address translation and validation. This feature is used occasionally by the TI32082
MMU in order to update its internal translation cache from page tables in memory,
or to update certain status bits within them.

Figure 29 shows the effects of FL T. Upon sampling FLT low late in Tmmu, the CPU
enters idle T-States (Tf) during which it:

1. Sets ADO-AD 15, A 16-A23, and ODIN to the 3-state (high-impedance)
condition (Floating).

3-101

II
...
0
V)
V)
Q)

" 0 ...
Co
0 ...
" ~
t-
CD
~

0
N
('t)

t-

::!
w
N
o
~

en
-t
S
,=)" .,
o
"C .,
o
(1
(I)
C/)
C/)

o .,

2. Sets HBE low.
3. Suspends further internal processing of the current instruction. This ensures

that the current instruction remains abortable with retry. (See RST/ABT
description, section 3.2.3.5.4)

Note that the ADO-AD 15 pins may be briefly asserted during the first idle T-State.
The above conditions remain in effect until FIT again goes high.

3.2.3.5.4 Aborting Bus Cycles

3-102

The RST/ABT pin, apart from its reset function (section 3.2.3.3), also serves as the
means to "abort", or cancel, a bus cycle and the instruction,if any, which initiated
it. An Abort request is distinguished from a Reset in that the RST/ABT pin is held active
for only one clock cycle. If RST/ABT is pulled low during Tmmu or Tf, this signals
that the cycle must be aborted. The CPU itself will enter T2 and then Ti, thereby
terminating the cycle. Since it is the MMU PAV signal which triggers a physical cycle,
the rest of the system remains unaware that a cycle was even started.

The TI32082W MMU will abort a bus cycle for either of two reasons:

1. The CPU is attempting to access a logical address which is not currently
resident in physical memory. The referenced page must be brought into
physical memory from mass storage to make it accessible to the CPU.

2. The CPU is attempting to perform an access which is not allowed due to the
protection level assigned to that page.

When a bus cycle is aborted by the MMU, the instruction which caused it to occur
is also aborted in such a manner that it is guaranteed to be reexecutable later. The
information that is changed irrecoverably by such a partly executed instruction does
not affect its reexecution.

The Abort Interrupt. Upon aborting an instruction, the CPU immediately performs an
interrupt through the ABT vector in the Interrupt Table. The Return Address pushed
on the Interrupt Stack is the address of the aborted instruction, such that a Return
from Trap (RETT) instruction will automatically retry it .

The one exception to this sequence occurs if the aborted bus cycle was an instruction
prefetch. If so, it is not yet certain that the aborted prefetch code is to be executed.
Instead of causing an interrupt, the CPU only aborts the bus cycle, and stops
prefetching. If the information in the instruction Queue runs out, meaning that the
instruction will actually be executed, the ABT interrupt will occur, in effect aborting
the instruction that was being fetched.

Hardware Considerations. In order to guarantee instruction retry, certain rules must
be followed in applying an Abort to the CPU. These rules are followed by the TI32082W
MMU.

1. If FL T has not been applied to the CPU, the Abort pulse must occur during
or before Tmmu.

2. If FL T has been applied to the CPU, the Abort pulse must be applied before
the T-State in which FL T goes inactive. The CPU will not actually respond
to the Abort command until FL T is removed.

Ti Ti I Ti OR T4 I Ti OR T1 I

CLK2 [..... _

HOW [

HloA[

AFFECTEO SIGNALS II
~

ADs[

0
en
en
Q)
0
0
~

os[c-
o
~

.~
:2E

iiiiiN[
t-
(0

NEXT ~

0
N
M

HsE[
i=

NEXT

A16·A23 [~~""''"''''''''~ NEXT AODR

STO-ST3 [~ ____ .,

-Figure 30. HOLD Timing, Bus Initially Idle

3-103

II
:::j
CAl
N
o
...l

0)

"""i

S
,;" ...
o
"0 ...
o
(')
(1)
en
en
o ...

3. The Write half of a Read-Modify-Write operand access may not be aborted.
The CPU guarantees that this will never be necessary for Memory Management
functions by applying a special RMW status (Status Code 1011) during the
Read half of the access. When the CPU presents RMW status, that cycle must
be aborted if it would be illegal to write to any of the accessed addresses.

If RST/ABT is pulsed at any time other than as indicated above, it will abort either
the instruction currently under execution or the next instruction and will act as a very
high-priority interrupt. However, the program which was running at the time is not
guaranteed recoverable.

3.2.3.6 Bus Access Control

The TI32016T CPU has the capability of relinquishing its access to the bus upon request
from a DMA device or another CPU. This capability is implemented on the HOLD (Hold
Request) and HLDA (Hold Acknowledge) pins.' By asserting HOLD low, an external
device requests access to the bus. On receipt of HLDA from the CPU, the device may
perform bus cycles, as the CPU at this point has set ADO-AD15, A 16-A23, ADS,
DDIN,and HBE pins to the 3-state condition. To return control of the bus to the CPU,
the device sets HOLD inactive, and the CPU acknowledges return of the bus by setting
HLDA inactive.

How quickly the CPU releases the bus depends on whether it is idle on the bus at
the time the HOLD request is made, as the CPU must always complete the current
bus cycle. Figure 30 shows the timing sequence when the CPU is idle. In this case,
the CPU grants the bus during the immediately following clock cycle. Figure 31 shows
the sequence if the CPU is using the bus at the time that the HOLD request is made.
If the request is made during or before the clock cycle shown (two clock cycles before
T4), the CPU will release the bus during the clock cycle following T4. If the request
occurs closer to T4, the CPU may already have decided to initiate another bus cycle.
In that case it will not grant the bus until the next T4 state. Note that this situation
will also occur if the CPU is idle on the bus but has initiated a bus cycle internally.

In Memory Managed systems, the HLDA signal is connected in a daisy chain through
the T132082W, such that the MMU can release the bus if it is using it.

3.2.3.7 Instruction Status

3-104

In addition to the four bits of Bus Cycle Status (STO-ST3), the TI32016T CPU also
presents Instruction Status information on three separate pins. These pins differ from
STO-ST3 in that they are synchronous to the CPU's internal instruction execution
section rather than to its bus interface section.

PFS (Program Flow Status) is pulsed low as each instruction begins execution. It is
intended for debugging purposes, and is used that way by the TI32082W MMU.

U/S originates from the U bit of the Processor Status Register, and indicates whether
the CPU is currently.running in User or Operating System mode. It is sampled by the
MMU for mapping, protection, and debugging purposes. Although it is not synchronous
to bus cycles, there are guarantees on its validity during any given bus cycle.

j"[Q (Interlocked Operation I is activated during a Set Bit Interlocked (SBITII or Clear
Bit Interlocked (CBITIl instruction. It is made available to external bus arbitration circuitry
in order to allow these instructions to implement the semaphore primitive operations
for multiprocessor communication and resource sharing. As with the U/S pin, there
are guarantees on it is validity during the operand accesses performed by the
instructions.

3-105

II
=!
eN
f\)
o
~

0)
-t
s:
C=)" ...
o

"C ...
o
n
CD
en
en
o ...

MEMORY.

~~_C_A_S_CA_D_E __ A_D_DR __ O~
CASCADE TABLE ~ ~

\ CASCADE ADDR 14

INTERRUPT BAS;) \~C-A-S-C-A-D-E-A-D-D-R-1-5~
REGISTER FIXED INTERRUPTS

AND TRAPS

VECTORED
INTERRUPTS

.-" 31

NVI

NMI

2 ABT

3 FPU

4 ILL

SVC

DVZ

FLG

8 BPT

9 TRC

10 UNO

.... ~

O~"

I

I

NONVECTORED
NTERRUPT

NONMASKABLE
NTERRUPT

ABORT

FPU TRAP

I LLEGAL OPERATION
TRAP
SUPERVISOR CALL
TRAP

DIVIDE BY ZERO
TRAP

FLAG TRAP

8REAKPOINT TRAP

TRACE TRAP

UNDEFINED
NSTRUCTION TRAP I

""'~

Figure 32. Interrupt Dispatch and Cascade Tables

3.2.3.8 TI32016T Interrupt Structure

1. INT, on which mask able interrupts may be requested .
2. NMI, on which nonmaskable interrupts may be requested, and
3. RST/ABT, which may.be used to abort a bus cycle and any associated

instruction. It generates an interrupt request if an instruction was aborted
(section 3.2.3.5.4).

In addition, there is a set of internally generated "traps" which cause interrupt service
to be performed as a result of exceptional conditions (e.g., attempted division by zero)
or of specific instructions whose purpose is to cause a trap to occur (e.g., the Supervisor
Call instruction).

3.2.3.8.1 General InterruptlTrap Sequence

3-106

Upon receipt of an interrupt or trap request, the CPU goes through four major steps:

1. Adjustment of Registers. Depending on the source of the interrupt or trap,
the CPU may restore and/or adjust the contents of the Program Counter (PC),
the Processor Status Register (PSR), and the currently selected Stack Pointer
(SP). A copy of the PSR is made, and the PSR is then set to reflect Operating
System Mode and selection of the Interrupt Stack.

2. Saving Processor Status. The PSR copy is pushed onto the Interrupt Stack
as a 16-bit quantity.

3. Vector Acquisition. A vector is either obtained from the Data Bus or is supplied
by default.

4. Service Call. The Vector is used as an index into the Interrupt Dispatch Table,
whose base address is taken from the CPU Interrupt Base (lNTBASE) Register.
See Figure 32. A 32-bit External Procedure Call is read from the table entry,
and an External Procedure Call is performed using it. The MOD Register
(16 bits) and Program Counter (32 bits) are pushed on the Interrupt Stack.

I RETURN ADDRESS I
I

I I I
STATUS MODULE

I
PSR MOD

INTBASE REGISTER

(PUSH)
(PUSH) ..

INTERRUPT
STACK

r----------,
I I

: CASCADE TABLE ~
I I

DISPATCH
TABLE

DESCRIPTOR (32 BITS)

} 32 BITS

}32BITS

DESCRIPTOR

1144.--16--"·""r----16 --"i
OFFSET MODULE

0
y

MOD REGISTER }-1 MODULE TABLE

L NEW MODULE

I ... MODULE TABLE ENTRY ~

... I
I ~

14
MODULE TABLE ENTRY

32 .1
~,

STATIC BASE POINTER I-

LINK BASE POINTER

+r.- PROGRAM BASE POINTER

(RESERVED)

"
,

PROGRAM COUNTER SB REGISTER

I
ENTRY POINT ADDRESS -t NEW STATIC BASE I

Figure 33. Interrupt/Trap Service Routine Calling Sequence

3-107

...
o
U)
U)
Q)
u
o ...
c.
o ...
. 2
~
I
CD
t-
O
('\J
M
i=

::!
CAl
N
o
....Jo

m
-f

S
(")
-t
o

"C
-t o
(")
CD
(f)
(f)

o
-t

This process is illustrated in Figure 33, from the viewpoint of the programmer.

Full sequences of events in processing interrupts and traps may be found in
section 3.2.3.8.7.

PROGRAM COUNTER

RETURN ADDRESS

PSR MOD

I
MODULE T ABLE ENTRY

STATIC BASE POINTER

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

SB REGISTER

STATIC BASE

--

(POP)

(POP)

.. ..
...

n
BYTES

~,

POP AND
DISCARD

INTERRUPT

· STACK • · · · ·
0

MODULE
TABLE

MODULE TABLE ENTRY
I

J
PARAMETERS

I
ST ACK SELECTED

IN NEWLY-
POPPED PSR.

Figure 34. Return from Trap (RETTn) Instruction Flow

32 BITS

32 BITS

3.2.3.8.2 Interrupt/Trap Return

3-108

To return to an interrupted program, one of two instructions is used. The RETT (Return
from Trap) instruction (Figure 34) restores the PSR, MOD, PC, and S8 registers to
their previous contents and, since traps are often used deliberately as a call mechanism
for Operating System Mode procedures, it also discards a specified number of bytes
from the original stack as surplus parameter space. RETT is used to return from any
trap or interrupt except the Maskable Interrupt. For this, the RETI (Return from interrupt)
instruction is used, which also informs any external Interrupt Control Units that interrupt
service has completed. Since interrupts are generally asynchronous external events,
RETI does not pop parameters. See Figure 35.

"END OF INTERRUPT" ..

BUS CYCLE

PROGRAM COUNTER

RETURN ADDRESS

PSR MOD

MODULE T iBlE ENTRY

STATIC BASE POINTER

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

STATIC BASE

SB REGISTER

(POP)

(POP)

.. ...
.... ,

...

· · ·
0

INTERRUPT CONTROL
UNIT

INTERRUPT
STACK

MODULE
TABLE

MODULE TABLE ENTRY

I

Figure 35. Return from Interrupt (RET!) Instruction Flow

3.2.3.8.3 Maskable Interrupts (lNT pin)

. .

The INT pin is a level-sensitive input. A continuous low level is allowed for generating
multiple interrupt requests. The input is maskable, and is therefore enabled to generate
interrupt requests only while the Processor Status Register I bit is set. The I bit is
automatically cleared during service of an INT, NMI, or Abort request, and is restored
to its original setting upon return from the interrupt service routine via the RETT or
RETI instruction.

The INT pin may be configured via the SETCFG instruction as either Nonvectored (CFG
Register bit I = 0) or Vectored (CFG Register bit I = 1).

Nonvectored Mode. In the nonvectored mode, an interrupt request on the INT pin will
cause an Interrupt Acknowledge bus cycle, but the CPU will ignore any value read
from the bus and use instead a default vector of zero. This mode is useful for small
systems in which hardware interrupt prioritization is unnecessary.

3-109

~

o
CIJ
CIJ
Q)
(J

o
~

C
O
~

.2
2
.....
to
'r"'"

o
C\I
M
i=

~
W
N
o
~

en
~

s:
C:;' ...
o
'C ...
o
n
CD
en
en
o ...

3-110

CPU
GROUP

TI32016T

DATA

8

CONTROL

ADDRESS BITS

5

STATUS 1

TI3202W

INT t-----4If-----I INT

FROM
ADDRESS
DECODER

CS

IR1

IR3

IR5
HARDWARE

IR7 INTERRUPTS
OR

IR9 CASCADED

IR11
CONTROLLERS

IR13

IR15

GOIIRO

G111R2

G211R4

G311R6
INTERRUPTS,
CASCADED,

G411R8 OR
BIT 110

G511R10

G611R12

G711R14

Figure 36. Interrupt Control Unit Connections (16 Levels)

Vectored Mode: Noncascaded Case. In the Vectored mode, the CPU uses a TI32202W
Interrupt Control Unit(ICU) to prioritize up to 16 interrupt requests. See Figure 36 .
Upon receipt of an interrupt request on the INT pin, the CPU performs an "Interrupt
Acknowledge, Master" bus cycle (section 3.2.3.4.2) reading a vector value from the
low-order byte of the Data Bus. This vector is then used as an index into the Dispatch
Table in order to find the External Procedure Descriptor for the proper interrupt service
procedure. The service procedure eventually returns via the Return from Interrupt (RETI)
instruction, which performs an End of Interrupt bus cycle, informing the ICU that it
may reprioritize any interrupt requests still pending. The ICU provides the vector number
again, which the CPU uses to determine whether it also needs to inform a Cascaded
ICU.

In a system with only one ICU (16 levels of interrupt), the vectors provided must be
in the range of 0 through 127; that is, they must be positive numbers in eight bits.
By providing a negative vector number, an ICU flags the interrupt source as being a
Cascaded ICU.

Vectored Mode: Cascaded Case. In order to allow up to 256 levels of interrupt, provision
is made both in the CPU and in the TI32202W ICU to transparently support cascading.
Figure 37 shows a typical cascaded configuration. Note that the Interrupt output from
the Cascaded ICU goes to an Interrupt Request input of the Master ICU, which is the
only ICU which drives the CPU INT pin.

CPU
GROUP

TI32032T

INT

OAT A

CONTROL
CASCADED

ICU
j ~ ADDR 5 BITS TI32202
~,

STATUS 1

FROM
ADDRESS CS
DECODER

~ INT

ir

DATA

~
.....
CONTROL

5 I,f
~ MASTER

ADDR 5/ .. ICU
TI32202 .-:/ ..

STATUS 1

... ., INT

FROM
ADDRESS~ CS
DECODER

... IR1 IR3
~ IR5 IR7
.... IR9 ...

IR11-
... - IR13
... IR15 ..

""" ... --.. GOIIRO

...... G111R2--.. G211R4
!-++-G311R6

~G411R8

~G511R10
~G611R12
~G711R14

...
IR1 IR3 IR5

....
IR7 IR9 ..

)HA RDWARE
ERRUPTS

)

INT

INT ERRUPTS
OR

BIT I/O

... +--- IR11 ...
IR13 ... IR15 ..

.... .. GOIIRO

...... G111R2 G211R4 "-PO G311R6 ..
.... ..

G411R8
.... ...
"-PO G511R10 ... -.

G611R12-...
~- G711R14

Figure 37. Cascaded Interrupt Control Unit Connections

3-111

...
o
C/)
C/)
Q)
U
o ...
c.
o ...
. 2
~
....
co
t-
o
N
M
i=

In a system which uses cascading, two tasks must be performed upon initialization:

1. For each Cascaded ICU in the system, the Master ICU must be informed of
the line number (0-15) on which it receives the cascaded requests.

2. A Cascade Table must be established in memory. The Cascade Table is located
in a Negative direction from the location indicated by the CPU Interrupt Base
(INTBASE) Register. Its entries are 32-bit addresses, pointing to the Vector
Registers of each of up to 16 Cascaded ICUs.

Figure 32 illustrates the position of the Cascade Table. To find the Cascade Table entry
for a Cascaded ICU, take its Master ICU line number (0-15) and subtract 16 from it,
giving an index in the range - 16 to - 1. Multiply this value by 4 and add the resulting
negative number to the contents of the INTBASE Register. The 32-bit entry at this
address must be set to the address of the Hardware Vector Register of the Cascaded
ICU. This is referred to as the "Cascade Address".

Upon receipt of an interrupt request from a Cascaded ICU, the Master ICU interrupts
the CPU and provides the negative Cascade Table index instead of of a (positive) vector
number. The CPU, seeing the negative value, uses it as an index into the Cascade
Table and reads the Cascade Address from the referenced entry. Applying this address,
the CPU performs an" Interru pt Acknow ledge, Cascaded" bus cycle
(section 3.2.3.4.2), reading the final vector value. This vector is interpreted by the
CPU as an unsigned byte, and can therefore be in the range of ° through 255.

In returning from a Cascaded Interrupt, the service procedure executes the Return from
. Interrupt (RETI) instruction, as it would for any Maskable Interrupt. The CPU performs
an "End of Interrupt, Master" bus cycle,(section 3.2.3.4.2) whereupon the Master
ICU again provides the negative Cascade Table index. The CPU, seeing a negative
value, uses it to find the corresponding Cascade Address from the Cascade Table.
Applying this address, it performs an "End of Interrupt, Cascaded" bus cycle, informing
the Cascaded ICU of the completion of the service routine. The byte read. from the
Cascaded ICU is discarded.

3.2.3.8.4 Nonmaskable Interrupt (NMI pin)

3-112

The Nonmaskable Interrupt is triggered whenever a falling edge is detected on the
NMI pin. The CPU performs an "Interrupt Acknowledge" bus cycle when processing
of this interrupt actually begins. The Interrupt Acknowledge cycle differs from that
provided for Maskable Interrupts in that the address presented is FFFF0016' The vector
value used for the Nonmaskable Interrupt is taken as 1, regardless of the value read
from the bus.

The service procedure returns from the Nonmaskable Interrupt using the Return from
Trap (RETT) instruction. No special bus cycles occur on return.

For the full sequence of events in processing the Nonmaskable Interrupt, see
section 3.2.3.8.7.

3.2.3.8.5 Traps

A trap is an internally generated interrupt request caused as a direct and immediate
result of the execution of an instruction. The Return Address pushed by any trap except
Trace (TRC) is the address of the first byte of the instruction during which the trap
occurred. Traps do not disable interrupts, as they are not associated with external
events. Traps recognized by the CPU are:

Trap (FPU): An exceptional condition was detected by the TI32081 Floating
Point Unit (FPU) or another coprocessor during the execution of
a coprocessor instruction. This trap is requested via the Status Word
returned as part of the coprocessor protocol (section 3.2.3.9.1).

Trap (ILL): Illegal operation. A privileged operation was attempted while the
CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was executed.
Trap (DVZ): An attempt was made to divide an integer by zero. (The FPU trap

is used for floating-point division by zero.)
Trap (FLG): The FLAG instruction detected a "1" in the CPU PSR Fbit.
Trap (BPT): The Breakpoint (BPT) instruction was executed.
Trap (TRC): The instruction just completed is being traced.
Trap (UNO): An undefined opcode was encountered by the CPU.

A special case is the Trace Trap (TRC), which is enabled by setting the T bit in the
Processor Status Register (PSR). At the beginning of each instruction, the T bit is copied
into the PSR P ("Trace Pending") bit. If the P bit is set at the end of an instruction,
then the trace Trap is activated. If any other trap or interrupt request is made during
a traced instruction, its entire service procedure is allowed to complete before the Trace
Trap occurs. Each interrupt and trap sequence handles the P bit for proper tracing,
guaranteeing one and only one Trace Trap per instruction, and guaranteeing that the
Return Address pushed during a Trace Trap is always the address of the next instruction
to be traced.

3.2.3.8.6 Prioritization

The TI32016T CPU internally prioritizes simultaneous interrupt and trap requests as
follows:

1. Traps other than Trace (Highest priority)
2. Abort
3. Non-Maskable Interrupt
4. Maskable Interrupts
5. Trace Trap (Lowest priority)

3.2.3.8.7 Interrupt/Trap Sequences: Detailed Flow

For purposes of the following detailed discussion of interrupt and trap service
sequences, a single sequence called "service" is defined in Table 6. Upon detecting
any interrupt request or trap condition, the CPU first performs a sequence dependent
upon the type of interrupt or trap. This sequence will include pushing the Processor
Status Register and establishing a Vector and a Return Address. The CPU then performs
the Service sequence.

3-113

II
...
o
tn
tn
Q)
(.)

o ...
c.
o ~
2
t
CD
0r-

O
N
M
t-

:::!
eN
N
o
~

0) ...
S ,;,
-. o
'C -. o
n
en
(f)
(f)

o -.

3-114

Maskable/Nonmaskable Interrupt Sequence. This sequence is performed by the CPU
when the NiVii pin receives a falling edge, or the INT pin becomes active with the PSR
I bit set. The interrupt sequence begins either at the next instruction boundary or, in
the case of String instructions, at the next interruptable point during its execution

1. If a String instruction was interrupted and not yet completed:
a. Clear the Processor Status Register P Bit.
b. Set "Return Address" to the address of the first byte of the interrupted

instruction. Otherwise, set "Return Address" to the address of the next
instruction.

2. Copy the Processor Status Register (PSR) into a temporary register, then clear
PSR bits S, U, T, P, and I.

3. If interrupt is Nonmaskable:
a. Read a byte from FFFFOO, applying Status Code 0100 (Interrupt

Acknowledge, Master). Discard the byte read.
b. Set "Vector" to 1.
c. Go to Step 8.

4. If the interrupt is Nonvectored:
a. Read a byte from address FFFF0016, applying Status Code 0100

(Interrupt Acknowledge, Master (section 3.2.3.4.2). Discard the byte
read.

b. Set "Vector" to O.
c. Go to Step 8.

5. Here the interrupt is Vectored. Read "Byte" from address FFFE0016, applying
Status Code 0100 (Interrupt Acknowledge, Master (section 3.2.3.4.2).

6. If "Byte" greater than or equal to 0, then set "Vector" to "Byte" and go
to Step 8.

7. If "Byte" is in the range - 16 through - 1, then the interrupt source is
Cascaded. (More negative values are reserved for future use). Perform the
following:

a. Read the 32-bit Cascade Address from memory. The address is
calculated as INTBASE + 4 x Byte.

b. Read "Vector" applying the Cascade Address just read and Status Code
0101 (Interrupt Acknowledge) (section 3.2.3.4.2).

8. Push the PSR copy (from Step 2) onto the Interrupt Stack as a 16-bit value.
9. Perform Service (Vector, Return Address), Table 6.

Trap Sequence: Traps other than Trace.

1. Restore the currently selected Stack Pointer and the Processor Status Register
to their original values at the start of the trapped instruction.

2. Set "Vector" to the value corresponding to the trap type:
FPU: Vector = 3
ILL: Vector = 4

SVC: Vector 5
DVZ: Vector 6
FLG: Vector 7
BPT: Vector 8

UNO: Vector 10

3. Copy the Processor Status Register (PSR) into a temporary register, then clear
PSR bits S, U, P, and T.

4. Push the PSR copy onto the Interrupt Stack as a 16-bit value.
5. Set "Return Address" to the address of the first byte of the trapped

instruction.
6. Perform Service (Vector, Return Address), Table 6.

Trace Trap Sequence

1. In the Processor Status Register (PSR), clear the P bit.
2. Copy the PSR into a temporary register, then clear PSR bits S, U, and T.
3. Push the PSR copy onto the Interrupt Stack as a 16-bit value.
4. Set "Vector" to 9.
5. Set "Return Address" to the address of the next instruction.
6. Perform Service (Vector, Return Address), Table 6.

Abort Sequence

1. Restore the currently selected Stack Pointer to its original contents at the
beginning of the aborted instruction.

2. Clear the PSR P bit.
3. Copy the PSR into a temporary register, then clear PSR bits S, U, T, and I.
4. Push the PSR copy onto the Interrupt Stack as a 16-bit value.
5. Set "Vector" to 2.
6. Set "Return Address" to the address of the first byte of the aborted

instruction.
7. Perform Service (Vector, Return Address), Table 6.

Table 6. Service Sequence
Invoked during all interrupt/trap sequences

Service (Vector. Return Address):

1) Read the 32-bit External Procedure Descriptor from the Interrupt Dispatch Table:

address is Vector*4 + INTBASE Register contents.

2) Move the Module field of the Descriptor into the MOD Register.

3) Read the new Static Base pointer from the memory address contained in MOD. placing

it into the SB Register.

4) Read the Program Base pointer from memory address MOD + 8. and add to it the Offset

field from the Descriptor. placing the result in the Program Counter.

5) Flush Queue: Non-sequentially fetch first instructin of Interrupt Routine.

6) Push MOD Register onto the Interrupt Stack as a 16-bit value. (The PSR has already

been pushed as a 16-bit value.)

7) Push the Return Address onto the Interrupt Stack as a 32-bit quantity.

3.2.3.9 Coprocessor Instructions

The TI32016T CPU recognizes three groups of instructions as being executable by
external coprocessors:

Floating-Point Instruction Set
Memory Management Instruction Set
Application-Specific Coprocessor Instruction Set

3-115

II
...
o
en
en
Q)
(J

o ...
c
o ...
.~
~
t
(0
0r-

O
N
M
j::

II

Each Coprocessor Instruction Set is validated by a bit in the Configuration Register
(section 3.2.1.3). Any coprocessor instruction which does not have its corresponding
Configuration Register bit will trap as undefined, without any coprocessor
communication attempted by the CPU. This allows software simulation of a nonexisting
coprocessor.

3.2.3.9.1 Coprocessor Protocol

3-116

Coprocessor instructions have 3-byte Basic Instruction field, consisting of an ID Byte
followed by an Operation Word. The ID Byte has three functions:

1. It identifies the instruction as being a coprocessor instruction.
2. It specifies which coprocessor will execute it.
3. It determines the format of the following Operation Word of the instruction.

Upon receiving a coprocessor instruction, the CPU initiates the sequence outlined in
Table 7. While applying Status Code 1111 (Broadcast ID) (section 3.2.3.4.2) the CPU
transfers the ID Byte on the least significant byte of the Data Bus (ADO-D7). All
coprocessors input this byte and decode it. The coprocessor selected by the ID Byte
is activated, and from this point the CPU is communicating only with it. If any other
coprocessor protocol was in progress (e.g., an aborted coprocessor instruction), this
transfer cancels it.

STEP STATUS

1 ID

2 OP

3 OP

4

5

6 ST

7 OP

Table 7. Coprocessor Protocol

Status Combinations:
Send ID (lD): Code 1111
Xfer Operand lOP): Code 1101
Read Status 1ST): Code 1110

ACTION

CPU Send ID Byte.

CPU Sends Operation Word.

CPU Sends Required Operands.

Coprocessor Starts Execution. CPU Pre-Fetches.

Coprocessor Pulses SPC low. .

CPU Reads Status Word. (Trap? Alter Flags?)

CPU Reads Results (If Any).

The CPU next sends the Operation Word while applying Status Code 1101 (Transfer
Coprocessor Operand) (section 3.2.3.4.2). Upon receiving it, the coprocessor decodes
it, and at this point the CPU and the coprocessor are aware of the number of operands
to be transferred and their sizes. The Operation Word is swapped on the Data Bus;
that is, bits 0-7 appear on pins ADS-AD 15 and bits S-1 5 appear on pins ADO-AD7.

Using the Addressing Mode fields within the Operation Word, the CPU starts fetching
operands and issuing them to the coprocessor. To do so, it references any Addressing
Mode extensions which may be appended to the coprocessor instruction. Since the
CPU is solely responsible for memory accesses, these extensions are not sent to the
coprocessor. The Status Code applied is 1101 (Transfer Coprocessor Operand)
(section 3.2.3.4.2).

After the CPU has issued the last operand, the coprocessor starts the actual execution
of the instruction. Upon completion, it will signal the CPU by pulsing SPC low. To
allow for this and for the address strap translation function, AT/SPC is normally held
high only by a pull-up device of approximately 5 kf2 inside the CPU.

While the coprocessor is executing the instruction, the CPU is free to prefetch
instructions into its queue. If it fills the queue before the coprocessor finishes, the
CPU will wait, applying Status Code 0011 (Waiting for Coprocessor)
(section 3.2.3.4.2).

Upon receiving the pulse on SPC, the CPU uses SPC to read a Status Word from the
coprocessor, applying Status Code 1110 (Read Coprocessor Status)
(section 3.2.3.4.2). This word has the format shown in Figure 38. If the Q bit ("Quit",
Bit 0) is set, this indicates that an error has been detected by the coprocessor. The
CPU will not continue the protocol, but will immediately trap through the FPU vector
in the Interrupt Table. If the instruction being performed is CMPf and the Q bit is not
set, the CPU loads Processor Status Register (PSR) bits N, Z, and L from the
corresponding bits in the Status Word. The TI32081 FPU always sets the L bit to zero.

The last step in the protocol is for the CPU to read a result, if any, and transfer it to
the destination. The Read cycles from the coprocessor Processor are performed by
the CPU while applying Status Code 1101 (Transfer Coprocessor Operand)
(section 3.2.3.4.2).

An exception to the protocol above is the LMR (Load Memory Management Register)
instruction, and a corresponding Application-Specific Coprocessor instruction (LCR:
Load ACU Register). In executing these instructions, the protocol ends after the CPU
has issued the last operand. The CPU does not wait for an acknowledgment from the
coprocessor, and it does not read status.

3.2.3.9.2 Floating Point Instructions

Table 8 gives the protocols followed for each Floating Point instruction. The instructions
are referenced by their mnemonics. For the bit encodings of each instruction, see the
Appendix.

The Operand Class Columns give the Access Class for each general operand, defining
how the addressing modes are interpreted (see Tl32000 Programmer's Reference
Manual).

The Operand Issued Columns show the sizes of the operands issued to the Floating
Point Unit by the CPU:

"0" indicates a 32-bit double word.
"i" indicates that the instruction specifies an integer size for the operand

(B = Byte, W = Word, D = Double Word).
"f" indicates that the instruction specifies a floating-point size for the operand

(F = 32-bit Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the size of any returned value
and where the CPU places it. The PSR Bits Affected column indicates which PSR bits,
if any, are updated from the Coprocessor Status Word (Figure 38).

3-117

~

o
(I)
(I)
Q)
(,)
o
~

c.
o
~

.2
~
I
(0
~

o
N
M
i=

Table 8. Floating-Point Instruction Protocols

OPERAND 1 OPERAND 2 OPERAND 1 OPERAND 2
MNEMONIC CLASS CLASS ISSUED ISSUED

ADDf read. f rmw.f

SUBf read.f rmw.f

MULf read.f rmw.f

DIVf read. f rmw.f

MOVf read.f write.f N/A

ABSf read. f write.f N/A

NEGf read.f write.f N/A

CMPf read.f read.f

FLOORfi read.f write.i N/A

TRUNCfi read. f write.i N/A

ROUNDfi read.f write.i N/A

MOVFL read.F write.L F N/A

MOVLF read.L write.F L N/A

MOVif read.i write.f N/A

LFSR read. 0 N/A 0 N/A

SFSR N/A write. 0 N/A N/A

Note:
D : Double Word
i :: Integer size (8. W. D) specified in mnemonic.
N,A = Not Applicable to this instruction.

15 8 7 0

I 0 0 0 0 0 0 0 0 ~F 0 0 l 0 Q I
NEW PSR BIT V AlUE(S) ::::;:- ,

"QUIT": TERMINATE PROTOCOL. TRAP(FPU).

RETURNED
VALUE

TYPE AND
DEST.

f to Op. 2

f to Op. 2

f to Op. 2

f to Op. 2

ftoOp.2

f to Op. 2

f to Op. 2

N/A

i to Op. 2

i to Op. 2

i to Op. 2

L to Op. 2

F to Op. 2

f to Op. 2

N/A

o to Op. 2

Figure 38. Coprocessor Status Worc,t Format

PSR BITS
AFFECTED

none

none

none

none

none

none

none

N,Z,L

none

none

none

none

none

none

none

none

Any operand indicated as being of type "f" will not cause a transfer if the Register
Addressing Mode is specified. This is because the Floating-Point Registers are physically
on the Floating Point Unit and are therefore available without CPU assistance.

3.2.3.9.3 Memory Management Instructions

3-118

Table 9 gives the protocols for memory management instructions. Encodings for these
instructions may be found in the Appendix.

In executing the RDVAL and WRVAL instructions, the CPU calculates and issues the
32-bit Effective Address of the single operand. The CPU then performs a single-byte
read cycle from that address, allowing the MMU to safely abort the instruction if the

Table 9. Memory Management Instruction Protocols

RETURNED
OPERAND 1 OPERAND 2 OPERAND 1 OPERAND 2 VALUE PSR BITS

MNEMONIC CLASS CLASS ISSUED ISSUED TYPE AND AFFECTED
DEST.

RDVALt addr N/A 0 N/A N/A F

WRVALt add N/A 0 N/A N/A F

LMRt read.D N/A 0 N/A N/A none

SMRt write. 0 N/A N/A N/A o to Gp. 1 none

Note:
In the RDVAL and WRVAL instructions, the CPU issues the address as a Double Word, and performs a single
byte Read cycle from that memory address. For details, see the TI32000 Programmer's Reference Manual
and the TI32081 W Memory Management Unit Data Sheet.
D = Double Word
t = Privileged Instruction: will trap if CPU is in User Mode.
N/A = Not Applicable to this instruction.

necessary information is not currently in physical memory. Upon seeing the memory
cycle complete, the MMU continues the protocol, and returns the validation result in
the F bit of the Coprocessor Status Word.

The size of the Memory Management operand is always a 32-bit double word. For
further details of the Memory Management Instruction set, see the TI32000
Programmer's Reference Manual and the Appendix.

3.2.3.9.4 Application Specific Coprocessor Instructions

Provided in the TI32016T is the capability of communicating with a user-defined,
"Application-Specific" Coprocessor. The instruction set provided for an Application
Specific Coprocessor defines the instruction formats, the operand classes, and the
communication protocol. Left to the user are the interpretations of the op code fields,
the programming model of the Application-Specific Coprocessor, and the actual types
of data transferred. The protocol specifies only the size of an operand, not its data type.

Table 10 lists the relevant information for the Application-Specific Coprocessor
instruction set. The designation "c" is used to represent an operand which can be
a 32-bit ("0") or 64'bit ("Q") quantity in any format: the size is determined by the
suffix on the mnemonic. Similarly, an "i" indicates an integer size (Byte, Word, Double
Word) selected by the corresponding mnemonic suffix.

Any operand indicated as being of type "c" will not cause a transfer if the register
addressing mode is specified. It is assumed in this case that the coprocessor is already
holding the operand internally.

For the instruction encodings, see the Appendix.

3-119

E
...
o
en
en
Q)
(J

o ...
C
O ...
. 2
:E
I
U)
~

o
N
M
i=

Table 10. Application-Specific Coprocessor Protocols

RETURNED
OPERAND 1 OPERAND 2 OPERAND 1 OPERAND 2 VALUE PSR BITS

MNEMONIC· CLASS· . CLASS ISSUED ISSUED TYPE AND AFFECTED
DEST.

CCALOc read.c rmw.c c c· c to Op. 2 none

CCAL 1c read.c rmw.c c c c to Op. 2 none

CCAL2c read.c rmw.c c c c to Op. 2 none

CCAL3c read.c rmw.c c c c to Op. 2 none

CMOVOc read.c write.c c N/A c to Op. 2 none

CMOV1c read.c write.c c N/A c to Op. 2 none

CMOV2c read.c write.c c N/A c to Op. 2 none

CCMPc read.c read.c c c N/A N,Z,L

CCVOci read.c write.i c N/A ito Op. 2 none

CCV1ci read.c write.i c N/A i to Op. 2 none

I CCV2ci read.c write. i c N/A ito Op. 2 none

CCV3ci read.i write.c N/A c to Op. 2 none

CCV4DO read.D write.O 0 N/A o to Op. 2 none
:::! CCV50D read.O write. 0 0 N/A o to Op. 2 none
eN
N LCSR read.D N/A 0 N/A N/A none
0
~ SCSR N/A write.D N/A N/A o to Op. 2 none
en
-I CATSTOt addr N/A 0 N/A N/A F

S CATST1 t addr N/A 0 N/A N/A F

n LCRt read.D N/A 0 N/A N/A none "'" 0
SCRt "0 write.D N/A N/A N/A o to Op. 1 none

"'" 0 NOTE: n D = Double Word CD en i = Integer size (B, W, D) specified in mnemonic.
en c = ACU size (D:32 bits o'r Q:64 bits) specified in mnemonic. 0
"'" t = Privileged instruction: will trap if CPU is in User Mode.

N/A = Not Applicable to this instruction.

3-120

3,3 TI32081W Floating Point Unit (FPU)

3.3.1 Operand Formats

The TI32081 W FPU operates on two floating-point data types: single precision (32 bits)
and double precision (64 bits). Floating-point instruction mnemonics use the suffix F
(floating) to select the single-precision data type, and the suffix L (long floating) to
select the double-precision data type.

A floating-point number is divided into three fields, as shown in Figure 1.

Single Precision

31 30 23 22 o

E F

8 23

Double Precision
63 62 52 51 o

I s I E F

11 52

Figure 1. F,loating-Point Operand Formats

The F field is the fractional portion of the represented number. In normalized numbers,
the binary point is assumed to be immediately to the left of the most significant bit
of the F field, with an implied 1 bit to the left of the binary point. Thus, the F field
represents values from 1.0 (inclusive) to 2.0 (exclusive) as shown in Table 1.

Table 1. Sample F Fields

F FIELD BINARY VALUE DECIMAL VALUE

000 ... 0 1.000 ... 0 1.000 ... 0

010 ... 0 1.010 ... 0 1.250 ... 0

100 ... 0 1.100 ... 0 1.500 ... 0

110 ... 0 1.110 ... 0
i

1.750 ... 0

Implied Bit

The E field is an unsigned number that gives the binary exponentof the represented
number. The value in the E field is biased; that is, a constant bias value must be
subtracted from the E field value in order to obtain the true exponent. The bias value
is 011 ... 112, which is either the value 127 (single precision) or 1023 (double
precision). Thus, the true exponent can be either positive or negative, as shown in
Table 2.

3-121

...
C
'0
a.
C)
c

'';:
ra
o

u::

~

CO
o
N
M
i=

::!
w
N
o
00 ..
"T1
5"
Q)
S·
cc

" o
S·
C
:s ;;.

Two forms of the E field represent special values, and are not available for use as
exponents. The value 11 ... 112 represents a value that is a reserved operand. The
value 00 ... 002 represents the number zero if the F field is also all zeros, otherwise
the represented value is a reserved operand.

The 5 bit indicates the sign of the operand: 0 for positive and 1 for negative. Floating
point numbers are in sign-magnitude form, such that only the 5 bit is complemented
in order to change the sign of the represented number.

Table 2. Sample E Fields

E FIELD F FIELD REPRESENTED VALUE

011 ... 110 100 ... 0 1.5 x 2- 1 = 0.75

011 ... 111 100 ... 0 1.5 x 20 1.50

100 ... 000 100 ... 0 1.5 x 21 = 3.00

3.3.1.1 Normalized Numbers

Normalized numbers are numbers that can be expressed as floating-point operands,
as previously described, where the E field is neither all zeros nor all ones.

The value of a normalized number can be derived by the formula:

(- 1)5 x 2(E-Bias) x 1.F

The range of normalized numbers is given in Table 3 .

Table 3. Normalized Number Ranges

SINGLE PRECISION DOUBLE PRECISION

Most Positive 2127 x (2 - 2 - 23) 2 1023 x (2 - 2 - 52)

= 3.40282346 x 1038 = 1.7976931348623157 x 10308

Least Positive 2 -126 2 -1022

= 1.17549436 x 10- 38 = 2.2250738585072014 x 10- 308

least Negative -(2- 126) - (2 -1022)

= - 1 . 1 7549436 x 1 0 - 38 = - 2.2250738585072014 x 10- 308

Most Negative -2127 x (2 - 2-23) -21023 x (2 - 2- 52)

= - 3.40282346 x 1038 = -1.7976931348623157 x 10308

Note: The values given are extended one full digit beyond their represented accuracy to help in generating
rounding and conversion algorithms.

3.3.1.2 Zero

3-122

There are two representations for zeros: positive and negative. Positive zero has all
zero F and E fields, and the 5 bit is zero. Negative zero also has all-zero F and E fields,
but its 5 bit is one.

3.3.1.3 Reserved Operands

The proposed IEEE Standard for Binary Floating-Point Arithmetic (Task P754) provides
for certain exceptional forms of floating-point operands. The FPU treats these forms
as reserved operands. The reserved operands are:

Positive and negative infinity
Not-a-Number (NaN) values
Denormalized numbers

Both infinity and NaN values have all ones in their E fields. Denormalized numbers have
all zeros in their E fields and nonzero values in their F fields.

The FPU causes an invalid operation trap if it receives a reserved operand, unless the
operation is simply a move (without conversion). The FPU does not generate reserved
operands as results.

3.3.1.4 Integers

In addition to performing floating-point arithmetic, the FPU performs conversions
between integer and floating-point data types. Integers are accepted and generated
by the FPU as two's complement values of byte (S bits), word (16 bits), or double
word (32 bits) length.

3.3.1.5 Memory Representations

The FPU does not directly access memory. However, it is cooperatively involved in
the execution of a set of two-address instructions with its TI32000 CPU. The CPU
determines the representation of operands in memory.

In the TI32000 microprocesor family, operands are stored in memory with the least
significant byte at the lowest byte address. The only exception to this rule is the
immediate addressing mode, where the operand is held (within the instruction format)
with the most significant byte at the lowest address.

3.3.2 Programming Model

The TI32000 architecture includes nine registers that are implemented on the
TI320S1W FPU (Figure 2).

DEDICATED

+--32---+
FSR

DATA

+--32~

FO :====:::::::
Fl

===::::::
F2~====:::
F3:=====::
F4

F5:=====::
F6

F7 ===:::::: _--_
Figure 2. Register Set

3-123

E
....
. 5
o

D-
C)
C

'';:
co
o

u:::

:::!
w
N
o
(Xl
...I

"T1
0"
Q) ... S·
C

"tJ o
S· ...

3.3.2.1 Floating-Point Registers

There are eight registers (FO-F7) on the FPU for providing high-speed access to floating
point operands. Each is 32 bits long. A floating-point register is referenced whenever
a floating-point instruction uses the Register Addressing mode for a floating-point
operand. All other register mode usages (i.e., integer operands) refer to the address
data registers (RO-R7) on the CPU. When the Register Addressing mode is specified
for a double-precision (54-bit) operand, a pair of registers holds the operand. The
programmer must specify the even register of the pair. The even register contains the
least significant half of the operand and the next consecutive register contains the
most significant half.

3.3.2.2 Floating-Point Status Register (FSR)

The Floating-point Status Register (FSR) selects operating modes and records any
exceptinal conditions encountered during execution of a floating-point operation.
Figure 3 shows the format of the FSR.

31 16 15 9 8 7 6 5 4 3 2 o

~~~~V_E_D __ ~ __ ~~~~IS_W~FI~~ __ ~~~_R.r __ ~_IF~I_'E_N~I~U_F~IU_E_N~I~ ___ TT~ __ _ 
Figure 3. The Floating-Point Status Register 

3.3.2.2.1 FSR Mode Control Fields 

3-124 

The FSR mode control fields select FPU operation modes. The definitions of the FSR 
mode control bits· are as follows: 

Rounding Mode (RM). Bits 7 and 8. This field selects the rounding method. 
Floating-point results are rounded whenever they cannot be exactly represented. 
The rounding modes are: 

00 Round to the nearest value. The value that is nearest to the exact result 
is returned. If the value is exactly halfway between the two nearest 
values the even value (LSB = 0) is returned. 

01 Round towards zero. The nearest value that is closer to zero or equal 
to the exact result is returned. 

10 Round toward positive infinity. The nearest value that is greater than 
or equal to the exact result is returned. 

11 Round toward negative infinity. The nearest value that is less than or 
equal to the exact result is returned. 

Underflow Trap Enable (UEN). Bit 3. If this bit is set, the FPU requests a trap 
whenever a result is too small in absolute value to be represented as a normalized 
number. If it is not set, any underflow condition returns a result of exactly zero. 

Inexact Result Trap Enable (lEN). Bit 5. If this bit is set, the FPU requests a trap 
whenever the result of an operation cannot be represented exactly in the operand 
format of the destination. If it is not set, the result is rounded according to the 
selected rounding mode. 



3.3.2.2.2 FSR Status Fields 

The FSR status fields record exceptional conditions encountered during floating-point 
data processing. The definitions of the FSR status bits are as follows: 

Trap Type (T7). Bits 0-2. This 3-bit field records any exceptional condition 
detected by a floating-point instruction. The TT field is loaded with zero whenever 
any floating-point instruction except LFSR or SFSR completes without 
encountering an exceptinal condition. It is also set to zero by a hardware reset 
or by writing zero into it with the Load FSR (LFSRl instuction. Underflow and 
Inexact Result are always reported in the TT field, regardless of the settings of 
the UEN and lEN bits. 

000 No exceptional condition occurred. 

001 Underflow. A nonzero floating-point result is too small in magnitude to 
be represented as a normalized floating-point number in the format of 
the destination operand. This condition is always reported in the TT field 
and UF bit, but causes a trap only if the UEN bit is set. If the UEN bit 
is not set, a result of Positive Zero is produced, and no trap occurs. 

010 Overflow. A result (either floating-point or integerl of a floating-point 
instruction is too great in magnitude to be held in the format of the 
destination operand. Note that rounding, as well as calculations, can 
cause this condition. 

011 Divide by zero. An attempt was made to divide a nonzero floating-point 
number by zero. Dividing zero by zero is considered an Invalid Operation 
instead (below!. 

100 Illegal Instruction. Two undefined floating-point instruction forms are 
detected by the FPU as being illegal. The binary formats causing this 
trap are: 

xxxxxxxxxx0011xx10111110 
xxxxxxxxxx1001xx10111110 

101 Invalid Operation. One of the floating-point operands of a floating-point 
instruction is a Reserved operand, or an attempt has been made to divide 
zero by zero using the DIVf instruction. 

110 Inexact Result. The result (either floating-point or integerl of a floating
point instruction cannot be represented exactly in the format of the 
destination operand, and a rounding step must alter it to fit. This 
condition is always reported in the TT field and IF bit unless any other 
exceptional condition has occurred in the same instruction. In this case, 
the TT field always 'contains the code for the other exception and the 
IF bit is not altered. A trap is caused by this condition only if the lEN 
bit is set; otherwise the result is rounded and delivered, and no trap 
occurs. 

111 (Reserved for future use.l 

3-125 

E 
~ 

c: 
·0 
0.. 
Cl 
c: 

.';: 
co 
o 
u: 



" 0-
:u .... 
S' 
o 
'a 
o 
S' .... 
c:: 
::::J 
:;: 

Underflow Flag (UF). Bit 4. This bit is set by the FPU whenever a result is too 
small in absolute value to be represented as a normalized number. Its function 
is not affected by the state of the UEN bit. The UF bit is cleared only by writing 
a zero into it with the LFSR instruction or by a hardware reset. 

Inexact-Result Flag (IF). Bit 6. This bit is set by the FPU whenever the result 
of an operation must be rounded to fit within the destination format. This situation 
applies to both floating-point and integer destinations. The IF bit is set only if 
no other error has occurred. It is cleared only by writing a zero into it with the 
LFSR instruction or by a hardware reset. 

3.3.2.2.3 FSR Software Field (SWF) 

Bits 9-15 of the FSR hold and display any information written to them (using the LFSR 
and SFSR instruction), but are not otherwise used by the FPU hardware. They are 
reserved for use with TI32000 floating-point software. 

3.3.3 Instruction Set 

3.3.3.1 General Instruction Format 

3-126 

Figure 4 shows the general format of a TI32000 instruction. The basic instruction is 
one to three bytes long and contains the opcode and up to two 5-bit general addressing 
mode gen fields. Following the basic instruction field is a set of optional extensions, 
which may appear depending on the instruction and the addressing modes selected. 

OPTIONAL 
EXTENSIONS 

BASIC 
INSTRUCTION 

~ _________________ A. __________ ...... ~"~ ______ .. A,, .. __ .. __ ~ 

0+2 DI~P 1 

I I 
GEN I GEN I 

IMPLIED 
INDEX INDEX ADDR ADDR 

OPERAND(S) 
BYTE BYTE MODE I MODE I OPCODE 

IMM2 IMM1 
2 1 1 I 2 I 

I I 
~ .. j ~ ~~ i I 

Figure 4. General Instruction Format 

The only form of extension issued to the TI32081 W FPU is an immediate operand. 
Other extensions are used only by the CPU to reference memory operands needed 
by the FPU. 

Index bytes appear when either or both gen fields specify scaled index. In this case, 
the gen field specifies only the scale factor (1, 2, 4, or 8) and the index byte specifies 
which address-data register to use as the index, and which addressing mode calculation 
to perform before indexing. See Figure 5. 



7 3 2 0 

GEN. ADDR. MODE REG. N0'1· 

Figure 5. Index Byte Format 

Index bytes are followed by any displacements (addressing constants) or immediate 
values associated with the selected addressing modes. Each Displacement/Immediate 
(Disp/lmm) field may contain one or two displacements, or one immediate value. The 
size of a disp field is encoded within the top bits of that field, as shown in Figure 6, 
with the remaining bits interpreted as a signed (two's complement) value. The size 
of an immediate value is determined from the opcode field. Both Disp and Imm fields 
are stored most significant byte first. 

Some non-FPU instructions require additional, "implied" immediates and/or 
displacements, apart from those associated with addressing modes. Any such 
extensions appear at the end of the instruction, in the order that they appear within 
the list of operands in the instruction definition. 

7 o 

SIGNED DISPLACEMENT 

BYTE DISPLACEMENT: RANGE - 64 TO + 63 

7 o 

WORD DISPLACEM ENT: RANGE - 8192 TO + 8191 

7 o 

1 
I 

1 I I 

tJ'I't.~"{ 
p.c't. 

O\s\'\.. 
G~'t.O 

s\ 

DOUBLE WORD DISPLACEMENT: RANGE (ENTIRE ADDRESSING SPACE) 

Figure 6. Displacement Encodings 

3.3.3.2 Addressing Modes 

TI32000 CPUs generally access an operand by calculating its effective address based 
on information available when the operand is to be accessed. The method to be used 
in performing this calculation is specified by the programmer as an "addressing mode". 

TI32000 addressing modes are designed to optimally support high-level language 
accesses to variables. In nearly all cases, a variable access requires only one addressing 
mode within the instruction which acts upon that variable. Extraneous data movement 
is therefore minimized. 

3-127 

E 
... 
c::::: 
·0 
a.. 
C') 
c::::: 

.';: 
co 
o 

u:: 

-CO 
o 
N 
M 
t= 



::! 
CAl 
N 
o 
(X) 
~ 

." 
0" 
Q) .... 
S· 

CC 

""C o 
S· .... , 

TI32000 Addressing modes fall into nine basic types. 

1. Register: In floating-point instructions, these addressing modes refer to a 
floating-point register' (FO-F7) if the operand is of a floating-point type. 
Otherwise, a CPU address-data register (RO-R7) is referenced. 

2. Register Relative: A CPU address-data register contains an address to which 
is added a displacement value from the instruction, yielding the effective 
address of the operand in memory; 

3. Memory Space: Identical to Register Relative, except that the register used 
is one of the dedicated CPU registers PC, SP, S8, or FP. These registers point 
to data areas generally needed by high-level languages. 

4. Memory Relative: A pointer variable is found within the memory space pointed 
to by the CPU's SP, S8, or FP register. A displacement is added to that pointer 
to generate the effective address of the operand. 

, 5. Immediate: The operand is encoded within! the instruction. This addressing 
mode is not allowed if the operand is to be written. Floating-point operands 
as well as integer operands may be specified using immediate mode. 

6. Absolute: The address of the operand is specified by a Disp field in the 
instruction. 

7. External: A pointer value is read from a specified entry of the current link table. 
To this pointer value is added a displacement, yielding the effective address 
of the operand. . 

8. Top-of-Stack: The currently selected CPU stack pointer (SPOor SP1) specifies 
the location of the operand. The operand is pushed or popped, depending on 
whether it is written or read . 

9. Scaled Index: Although encoded as an addressing mode, scaled indexing is 
an option on any addressing mode except immediate or another scaled index . 
It has the effect of calculating an effective address, then multiplying any 
address-data register by 1, 2, 4, or 8 and adding it into the total, yielding 
the final effective address of the operand. 

Table 4 provides a brief summary of the addressing modes. For a complete description 
of their actions refer to the Tl32000 Programmer's Reference Manual. 

3.3.3.3 Floating-Point Instruction Set 

3-128 

The TI32081 W FPU instructions occupy formats 9 and 11 of the TI32000 instruction 
set (Figure 7). A list of all TI32000 instruction formats is found in the Appendix of 
this data manual. 

Certain notations in the following instruction description tables serve to relate the 
assembly language form of each instruction to its binary format in Figure 7. 

The Format column indicates which of the two formats in' Figure 7 represents each 
instruction. 

The Op column indicates the binary pattern for the field called "op" inthe applicable 
format. ' 

The Instruction column gives the form of each instruction' as it apears in assembly 
language. The form consists of an instruction mnemonic in upper case, with one or 
more suffixes (i or f) indicating data types, followed by a list of operands (gen1 , gen2). 



Table 4. TI32000 Family Addressing Modes 

ENCODING· MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS 

Register 

00000 Register 0 RO or FO None: Operand is in the 

specified register. 

00001 Register 1 Rl or Fl 

00010 Register 2 R2 or F2 

00011 Register 3 R3 or F3 

00100 Register 4 R4 or F4 

00101 Register 5 R5 or F5 

00110 Register 6 R6 or F6 

00111 Register 7 R7 or F7 

Register 
Relative 

01000 Register 0 relative disp(RO) Disp + Register. 

01001 Register 1 relative disp(Rl ) E 01010 Register 2 relative disp(R2) 

01011 Register 3 relative disp(R3) 
+J 

01100 Register 4 relative disp(R4) ·2 
01101 Register 5 relative disp(R5) :::J 

+J 

01110 Register 6 relative disp(R6) c:: 
·0 

01111 Register 7 relative disp(R7) 0-

Memory a 
c:: 

Space .';: 

11000 Frame memory disp(FP) Disp + Register; liSP" is either CO 
0 

11001 Stack memory disp(SP) SPO or SP1, as selected in u:: 
PSR. 3: 

11010 Static memory disp(S8) r-
OO 

11011 Program memory * + disp 0 
N 

Memory M 
Relative t= 

10000 Frame memory 

relative disp2(disp 1 (FP)) Disp2 + Pointer; Pointer found 

10001 Stack memory relative disp2(displ (SP)) at address Disp 1 + Register. 

10010 Static memory disp2(displ (S8)) "SP" is either spa or SP1, as 

relative selected in PSR. 

Immediate 

10100 Immediate value None: Operand is issued from 

CPU instruction queue. 

Absolute 

10101 Absolute @disp Disp. 

3-129 



::! 
Co\) 
N 
o 
00 
~ 

'TI 
0' 
Q) .... 
S' 
:c 
"tJ 
o 
S' .... 
C 
:::s 
;;: 

3-130 

ENCODING 

External 

10110 

Top of Stack 

Table 4. TI32000 Family Addressing Modes 

MODE 

External 

ASSEMBLER SYNTAX EFFECTIVE ADDRESS 

EXT (disp1) + disp2 Disp2 + Pointer; Pointer is 

found at Link Table Entry 

number Disp 1 . 

10111 Top of Stack TOS Top of current stack. using 

either User or Interrupt Stack 

Pointer. as selected in PSR. 

Automatic Pus'h/Pop included. 

Scaled Index 

11100 

11101 

11110 

11111 

10011 

23 

Index. bytes 

Index. words 

Index. double words 

Index. quad words 

(Reserved for Future 

Use) 

I i I I I 
gen1 gen2 

modelRn:BI 

modelRn:WI 

modelRn:DI 

modelRn:QI 

Format 9 

I I 
op 1.1 

Mode + Rn. 

Mode + 2 x Rn. 

Mode + 4 x Rn. 

Mode + 8 x Rn. 

"Mode" and Un" are contained 

within the Index Byte. 

817 . 0 
I I I I Iii I I 
iO 0 1 ,1 1 1 1 0 

~------------~v~----------------J\ V J 
OPERATION WORD 10 BYTE 

Format 11 

23 16 115 ,/ 817 0 I i 
gen1 

I i I I I 
gen2 op I I I I Iii I I I 

Of10111110 

~------------~v~--------------~"~------~v~------
OPERATION WORD ' 10 BYTE 

Figure 7. Floating-Point Instruction Formats 

An i suffix on an instruction mnemonic indictes a choice of integer data types. This 
choice affects the binary pattern in the i field of the corresponding instruction format 
as follows: 

Suffix i 
8 
W 
D 

Data Type 
Byte 
Word 
Double Word 

i Field 
00 
01 
11 



An f suffix on an instruction mnemonic indicates a choice of floating-point data types. 
This choice affects the setting of the f bit of the corresponding instruction format as 
follows: 

Suffix f . 
F 
L 

Data Type 
Single Precision 
Double Precision (Long) 

f Bit 
1 
a 

An operand designation (genl, gen2) indicates a choice of addressing mode 
expressions. This choice affects the binary pattern in the corresponding gen1 or gen2 
field of the instruction format. For the options available and their patterns, refer to 
Table 4. 

Further details of the exact operations performed by each instruction are found in the 
7132000 Programmer's Reference Manual. 

3.3.3.1.1 Movem~nt and Conversion 

The following instructions move the genl operand to the gen2 operand, leaving the 
genl operand intact: 

Format Op Instruction Description 
11 0001 MOVf gen1, gen2 Move without conversion 

9 010 MOVLFt genl, gen2 Move, converting from double 
preciSion to single precision. 

9 all MOVFL+ genl, gen2 Move, converting from single 
precision to double precision. 

9 000 MOVif gen1, gen2 Move, converting from any integer to 
any floating-point type. 

9 100 ROUNDfi genl, gen2 Move, converting from floating-point 
to the nearest integer. 

9 101 TRUNCfi genl, gen2 Move, converting from floating-point 
to the nearest integer closer to zero. 

9 111 FLOORfi genl, gen2 Move, converting from floating-point 
to the largest integer less than or 
equal to its value. 

tThe MOVLF instruction f bit must be 1 and the i field must be 10. 
lThe MOVFL instruction f bit must be a and the i field must be 11. 

3.3.3.1.2 Arithmetic Operations 

The following instructions perform floating-point arithmetic operations on the gen1 
and gen2 operands, leaving the result in the gen2 operand: 

Format Op Instruction Description 
11 0000 ADDf genl, gen2 Add genl to gen2. 
11 0100 SUBf genl, gen2 Subtract genl from gen2. 
11 1100 MULf genl, gen2 Multiply genl by gen2. 
11 1000 DIVf genl, gen2 Divide gen2 by genl. 
11 0101 NEGf gen1, gen2 Move negative of gen1 to gen2. 
11 1101 ABSf genl, gen2 Move absolute value of genl to gen2. 

3-131 

E 
.... 
t: 
·0 
a.. 
C') 
t: 

.';: 
C'O 
o 

u::: 



." 
0" 
Q) .... 
:r 

(Q 

"'C o 
S· .... 
C 
::l 
;:;: 

3.3.3.1.3 Comparison 

The compare instruction compares two floating-point values, sending the result to the 
CPU Processor Status Register (PSR) Z and N bits for use as condition codes. The 
Z bit is set if the gen1 and gen2 operands are equal; it is cleared otherwise. The N 
bit is set if the gen1 operand is greater than the gen2 operand; it is cleared otherwise. 
The CPU PSR L bit is unconditionally cleared. Positive and negative zero are considered 
equal. 

Format 
11 

Op 
0010 

Instruction 
CMPf gen1, gen2 

Description 
Compare gen1 to gen2. 

3.3.3.1.4 Floating-Point Status Register Access 

The following instructions load and store the FSR as a 32-bit integer. 

Format 
9 
9 

Op 
001 
110 

Instruction 
LFSR gen1 
SFSR gen2 

Description 
Load FSR 
Store FSR 

3.3.4 Traps 

3.3.5 

3.3.5.1 

Upon detecting an exceptional condition in executing a floating-point instruction, the 
TI32081 W FPU requests a trap by setting the Q bit of the status word transferred 
during the coprocesor protocol. The CPU responds by performing a trap using a default 
vector value of 3. Refer to the Tl32000 Programmer's Reference Manual and the 
applicable CPU section in this data manual for trap service details . 

A trapped floating-point instruction returns no reSUlt, and does not affect the CPU 
PSR. The FPU displays the reason for the trap in the Trap Type (Tn field of the FSR . 

Functional Operation 

Power and Grounding 

The TI32081W requires a single 5-V power supply on pin 24 (VCC). Ground 
connections are made on two terminal pins GNDL and GNDB. The GNDL (Logic Ground) 
terminal pin 12 is the common for on-chip logic. The GNDB (Buffer Ground) terminal 
pin 13 is the common for the output drivers. For optimum noise immunity, it is 
recommended that GNDL be attached through a single conductor directly to GNDB, 
and that all other ground connections also be made only to GNDB, as shown in Figure 8. 

3.3.5.2 Clocking 

The TI32081 W FPU requires a single-phase TTL clock input on its CLK pin (pin 14). 
When the FPU is connected to a TI32000 CPU, the CLK signal is provided from the 
CTTL pin of the TI32201 Timing Control Unit. 

3.3.5.3 Resetting 

3-132 

The RST pin serves as a reset for on-chip logic. The FPU may be reset at any time 
by pulling the RST pin low for at least 64 clock cycles. Upon detecting a reset, the 
FPU terminates instruction processing, resets its internal logic, and clears the FSR to 
all zeros. 



(12) 
...--

VCC 

TI32081W 
FPU 

GNDl GNDB 

(24) 
+5 v 

(13) 

l 
. OTHER 

GROUND 
CONNECTIONS 

Figure 8. Recommended Supply Connections 

On application of power, RST must be held low for at least 50 JA.s after Vee is stable. 
This insures that all on-chip voltages are completely stable before operation. See 
Figures 9 and 10. 

, 
~ ~4-.5-V----------------~f:'f---------------

VCCJ! 
I 
I 
I 

I n IlSLSl ClK I 
I "'"'---
I I 2: 64 CLOCK 
I "/4--- CYCLES ----.; ... , 

RST I f-------
-----:------------------~s~1 

111114~----- 2: 50 p.s------I.~I 

Figure 9. Power-On Reset Requirements 

ClK 

2: 64 CLOCK 
.~I----- CYCLES ---~."I 

RsT-"~ cr---F 
Figure 10. General Reset Timing 

3-133 

II 
..... 
c 
'0 
c.. 
C) 
c 

'';; 
co 
o 

u:: 



11 

." 
0' 
Q) .... 
5' 

(Q 

." o 
5' .... 
C 
:::s 
;:;: 

3.3.5.4 BU5 Operation 

Instructions and operands are passed to the TI32081 W FPU with coprocessor bus 
cycles. Each bus cycle transfers either one byte (8 bits) or one word (16 bits) to or 
from the FPU. During all bus cycles, the SPC line is driven by the CPU as an active
low data strobe, and the FPU monitors pins STO and ST1 to keep track of the sequence 
(protocol) established for the instruction being executed. This is especially necessary 
in a virtual memory environment, allowing the FPU to retry an aborted instruction. 

3.3.5.4.1 Bus Cycles 

3-134 

A bus cycle is initiated by the CPU, which asserts the proper status on STO and ST1 
and pulses SPC low. STO and ST1 are sampled by the FPU on the leading (falling) 
edge of the §'PC pulse. If the transfer is from the FPU (a coprocessor read cycle), the 
FPU asserts data on the data bus for the duration of the SP'C pulse. If the transfer 
is to the FPU (a coprocessor write cycle), the FPU latches data from the data bus on 
the trailing (rising) edge of the SPC pulse. Figures 11 and 12 illustrate these sequences. 

The direction of the transfer and role of the bidirectional SPC line are determined by 
the instruction protocol being performed. SPC is always driven by the CPU during 
coprocessor bus cycles. Protocol sequences for each instruction are given in 
section 3.3.5.5. 

5TO.5T1 ~~ ________ V_A~L_IO ______ _ 

~NOTE 11 

~------------~\_--------~I 
00·015 ------------<: VAllO FROM FPU }- - -

NOTE 1: FPU samples CPU status here. 

Figure 11. Coprocessor Read Cycle 

5TO.5T1 ~~ ________ VA_Lrl_O ______ ~ 
________________ ""'tNOTE 1) 

~ \~---------~I 
00·015 ------

NOTE 1: FPU samples CPU status here. 
NOTE 2: FPU samples data bus here. 

VAllO FROM CPU 

Figure 12. Coprocessor Write Cycle 



3.3.5.4.2 Operand Transfer Sequences 

An operand is transferred in one or more bus cycles. A 1-byte operand is transferred 
on the least significant byte of the data bus (00-07). A 2-byte operand is transferred 
on the entire bus. A 4-byte or 8-byte operand is transferred in consecutive bus cycles, 
least significant word first. 

3.3.5.5 Instruction Protocols 

3.3.5.5.1 General Protocol Sequence 

Coprocessor instructions have a three-byte basic instruction field, consisting of an 
10 byte followed by an operation word. See Figure 7 for FPU instruction encodings. 
The 10 byte has three functions: 

1. It identifies the instruction to the CPU as being a coprocessor'instruction. 
2. It specifies which coprocessor will execute it. 
3. It determines the format of the following operation word of the instruction. 

Upon receiving a coprocessor instruction, the CPU initiates the sequence outlined in 
Table 6. While applying status code 11 (broadcast 10, Table 5), the CPU transfers the 
10 byte on the least significant half of the data bus (00-07). All coprocessors input 
this byte and decode it. The coprocessor selected by the 10 byte is activated, and 
from this point the CPU is communicating only with it. If any other coprocessor protocol 
is in progress (e.g., an aborted coprocessor instruction), this transfer cancels it. 

Table 5. Bus Status Combinations 

ST1 STO CPU FUNCTION 

0 0 (Reserved) 

0 Transferring Operation 

Word or Operand 

0 Reading Status Word 

Broadcasting 10 Byte 

Table 6. General Instruction Protocol 

STEP STATUS ACTION 

1 11 CPU sends 10 Byte. 

2 01 CPU sends Operation Wor~. 

3 01 CPU sends required operands. 

4 XX FPU starts execution. 

5 XX FPU pulses SPC low. 

6 10 CPU reads Status Word. 

7 01 CPU reads result (if any). 

The CPU next sends the operation word while applying code 01 (transfer coprocessor 
operand, Table 5). Upon receiving it, the coprocessor decodes it, and at this point 
both the CPU and the coprocessor are aware of the number of operands to be 
transferred and their sizes. The operation word is swapped on the data bus; that is, 

3-135 

II 
.... 
t: 
'0 
c.. 
C) 
t: 

.,t:; 
co 
o 

u::: 



::! 
eN 
N 
o 
ex) 
~ 

"'M 
0-
Q) .... 
:r 

CO 

"'tI o 
S· .... 
C 
::l 
;:;: 

bits 0-7 appear on pins 08-015 respectively, and bits 8-15 appear on pins 00-07, 
respectively. 

Using the addressing mode fields within the operation word, the CPU starts fetching 
operands and issuing them to the coprocessor. To do so, it references any addressing 
mode extensions which may be appended to the coprocessor instruction. Since the 
CPU is solely responsible for memory accesses, these extensions are not sent to the 
coprocessor. The status code applied is 01 (transfer coprocessor operand, Table 5). 

After the CPU has issued the last operand, the coprocessor starts the actual execution 
of the instruction. Upon completion, it will signal the CPU by pulsing SPC low. To 
allow for this, the CPU releases the SPC signal, causing it to float. SPC must be held 
high by an external pull-up resistor. 

Upon receiving the pulse on SPC, the CPU uses SPC to read a status word from the 
coprocessor, applying status code 10 (read coprocessor status, Table 5). This word 
has the format shown in Figure 13. If the Q bit ("quit", bit 0) is set, this indicates 
that an error has been detected by the coprocessor. The CPU will not continue the 
protocol, but will immediately trap through the CPU vector in the Interrupt Dispatch 
Table. If, the instruction being performed is CMPf and the Q bit is not set, the CPU 
loads the PSR bits N,Z, and L ,from the corresponding bits in the status word. The 
TI32081 W FPU always sets the L bit to zero. 

15 8 7 o 

10 0 000 0 0 ~ L 001 

NEW PSR BIT VALUE(S) J 
"QUIT": TERMINATE PROTOCOL. TRAP (FPU). 

Figure 13. FPU Protocol Status Word Format 

The last step in the protocol is for the CPU to read a result, if any, and transfer it to 
the destination. The read cycles from the coprocessor are performed by the CPU while 
applying status code 01 (transfer coprocessor operand, Table 5). 

3.3.5.5.2 Floating-Point Protocols 

3-.136 

Table 7 gives the protocols followed by each floating-point instruction. The instructions 
are referenced by their mnemonics. For the bit encodings of each instruction, refer 
to section 3.3.3.3. 

The operand class columns give the access classes for each general operand, defining 
how the addressing modes are interpreted by the CPU. The operand issued columns 
show the sizes of the operands issued to the FPU by the CPU. A "0" indicates a 32-bit 
double word. An "i" indicates that the instruction specifies an integer size for the 
operand (B = Byte, W = Word, 0 = Double Word). An "f" indicates that the 
instruction specifies a floating-point size for the operand (F = 32-bit standard floating. 
L = 64-bit long floating). 



The returned value type and destination column gives the size of any value and where 
the CPU places it. The PSR bits affected column indicates which PSR bits, if any, are 
.updated from the coprocessor status word (Figure 13). 

Any operand indicated as being of type "f" will not cause a transfer if the register 
addressing mode is specified. This is because the floating-point registers are physically 
on the FPU and are therefore available without CPU assistance. 

Table 7. Floating-Point Instruction Protocols 

RETURNED 
OPERAND 1 OPERAND 2 OPERAND 1 OPERAND 2 VALUE PSR BITS 

MNEMONIC CLASS CLASS ISSUED ISSUED TYPE AND AFFECTED 
DEST. 

ADDf read.f rmw.f f to Op. 2 none 

SUBf read. f rmw.f f to Op. 2 none 

MULf read. f rmw.f f to Op. 2 none 

DIVf read.f rmw.f f to Op. 2 none 

MOVf read.f write. f N/A f to Op. 2 none 

ABSf read. f write.f N/A f to Op. 2 none 

NEGf read. f write. f N/A f to Op. 2 none 

CMPf read.f read. f N/A N,Z,L 

FLOORfi read.f write.i N/A i to Op. 2 none 

TRUNCfi read. f write.i N/A i to Op. 2 none 

ROUNDfi read.f write.i N/A ito Op. 2 none 

MOVFL read.F write.L F N/A L to Op. 2 none 

MOVLF read.L write.F L N/A F to Op. 2 none 

MOVif read.i write.f N/A f to Op. 2 none 

LFSR read.D N/A D N/A N/A none 

SFSR N/A write.D N/A N/A D to Op. 2 none 

D = Double Word 
i = Integer size (8, W, D) specified in mnemonic. 
f ;: Floating-Point type (F,L) specified in mnemonic. 
N/A = Not Applicable to this instruction. 

3-137 

II 
,~ 
s:::: 
:J 
.... 
s:::: 
'0 
c.. 
C) 

s:::: 
'';:: 
ca 
0 

u:: 
~ 
~ 

CO 
0 
N 
(\') 

t= 



II 

-n 
0' 
C) .... 
:i" 
co 
." o 
:i" .... 
C 
::::I 

,;::+0 

3-138 



3.4 TI32082W Memory Management Unit (MMU) 

For purposes of address translation, memory is divided into 512-byte pages. A logical 
address for the MMU is composed of two fields: a logical page frame number and a 
9-bit offset. The offset is unchanged by the translation algorithm. The MMU translates 
the logical page number to a physical page number via tables stored in memory. In 
the established hierarchy, a level 1 table is referred to as a "Page" table, and all level 2 
tables are referred to as "Pointer" tables. 

The operating system and MMU use the translation tables to exchange information 
on the status of the memory pages. The table entries track both the presence of a 
page in the physical memory and the protection level of that page . 

By manipulating the page and pointer tables, an operating system dynamically controls 
the mapping of logical-to-physical addresses. In particular, the operating system may 
specify that references to certain pages should generate translation error aborts. This 
mechanism implements virtual memory management and protection. 

The logical address output from the TI32032T CPU is 24 bits wide, while the physical 
address output from the MMU is 25 bits wide. This extra bit (bit 25) can be used to 
partition memory, but does not increase a task's logical address space. 

The MMU has an internal cache memory which contains direct logical-to-physical 
address mappings of the 32 most recently used pages. Thus, most address translations 
take only one additional clock cycle. The "hit rate" of the cache memory is usually 
better than 98%, so that the overhead time involved in dynamic translation is minimal. 

The MMU is also capable of breakpoint debugging support. Up to two breakpoint 
addresses. logical or physical, may be activated in the MMU. A counter may be attached 
to one of these. enabling "break-on-n occurrences" capability. 

3.4.1 Internal Organization 

Internal organization of the TI32082W MMU consists of five functional blocks and 
their respective addressable registers. These are shown in Figure 1. Both internal and 
external MMU connections are shown in the block diagram. Detailed block and register 
operation is described in the following paragraphs. 

3.4.1.1 Hardware Debug Block 

The debug block contains the registers, counters, and logic which allow the execution 
of program breakpoints. The debug block includes the following registers: 

MMU Status Register (MSR) 
Breakpoint Registers (BPRO and BPR 1 ) 
Breakpoint Counter Register (BCNT) 

3-139 

• 
.., 
c:: 
Q) 

E 
Q) 
C) 
CO 
c:: 
co 
2 
>-... 
o 
E 
Q) 

2 
~ 
N 
CO 
o 
N 
('t) 

t= 



II 
::! 
Co\) 
N o 
(X) 
N 
:E 
s: 
CD 
3 
o ... 
< 
s: 
Q) 

::s 
Q) 

co 
CD 

3 
CD 
::s ... 
C 
::s 
;:;' 

CLK 
1

• } TWO-PHASE 

CLK2 ---t • .---- CLOCKING 

INT-4~--------------------~ 

PFS -~~--------________ ....., 
INTERNAL I/O 
BUS CONTROL 

{

AOO_A015 16 

SYSTEM A 16-A23 ..... ""8~-t 
BUS 

A24 ..... --f 
4 

STO-ST3 -+4~ 

ODIN 

AT/SPC ...... ~ .... 

RST/ABT ...... 1----4 

FlT ..... 1----4 

iiAV ....... f----I 
AOS-~~ 

U/S-~...., 

ROY-~~ 

HOLO-~~ 

HLOAI 

'HiJiA'O 

MSR 
BPRa 
BRP1 
BCNT = 

EIA = 
PTBa = 
PTB1 

I/O BUFFERS 
AND 

LATCHES 

DEBUG REGISTER 
BLOCK FILE BLOCK I 32-BIT I 

MSR 

STATE BUS 

TRANSLATION 
...... BUFFER BLOCK 

(CACHE) 

REGISTER DESCRIPTION 

Memory Management Status Register 
Breakpoint Register a 
Breakpoint Register 1 
Breakpoint Count Register 
Error/Invalidate Address Register 
Page- Table Base Register a 
Page- Table Base Register 1 

Figure 1. MMU Block Diagram 

3.4.1.1.1 Memory Management Status Register 

3-140 

The Memory Management Status Register (MSR) specifies the operational mode and 
current processing .status of the MMU. The register permits user control of address 
translation and breakpoints. The MSR is 32 bits in length. The MSR format is shown 
in Table 1. 

Bits 0 to 25 are the various control bits and flags of the MMU. Bits 26 to 31 are not 
used. The following describes the control bits and flags: 

ERC Error Class flag. This 3-bit flag specifies the cause of the current MMU 
exception. 



Tablf7 1. MMU Bit Maps 

16 15 
Memory Management Status Register (MSR) 

10 
Page Table Base Registers (PTBO. PTB1) 

Error/Invalidate Address Register (EIA) 

H++++EI x I xl: : : : : : : : : : +,~,,: : : : : : : : : : : 1 
31 24 23 0 

Breakpoint Registers (BPRO. BPR1) 

1
0 ;0;0;0;0;0:0 >1 : : : : : : : : : : H< : : : : : : : : : : I. 

31 ·24 23 Breakpoint Count Register (BPRO. BPR1) a 

Page Table Entry (PTE) in Memory 

23 16 15 9 8 
Logical Address Format 

Bit 0 is set to 1 on an address translation error. 
Bit 1 is not used. 
Bit 2 is set to 1 on a break. 

a 

TET Translation Error Trace flag. The 3-bit flag specifies the cause of the current 
address translation error. 

Bit 3 is set to 1 on a protection level error. 
Bit 4 is set to 1 on an invalid Page Table entry. 
Bit 5 is set to 1 on an invalid Pointer Table entry. 

BN Breakpoint Number bit. BN is set to indicate the breakpoint address of the 
current break. If BN is 1, the breakpoint address is contained in BPR 1. If 
BN is 0, the breakpoint address is in BPRO. 

ED Error Data Direction bit. If ED is 1, a read operation or the first part of a 
read-modify-write operation caused an address translation error. If ED is 
0, a write or the last part of a read-modify-write operation caused the error. 

3-141 

.... 
c:: 
(1) 

E 
(1) 
C') 
co 
c:: 
co 
:2 
> ... 
o 
E 
(1) 

:2 
~ 
N 
ex) 
o 
N 
M 
i= 



II 
~ 
eN 
I\) 
o 
(X) 
I\) 

~ 
s: 
CD 
3 
o 

, ... 
< 
s: 
Q) 
::s 
Q) 
(C 
CD 
3 
CD 
::s 
r+ 

C 
::s 
;:;: 

3-142 

BD Breakpoint Direction bit. If BD is 1, a read operation or the first part of 
a read-modify-write operation caused the current break. If BD is 0, a write 
operation on the last part of a read-modify-write operation caused the break. 

EST Error Status flag. On an address translation error, the 3-bit flag is set to 
the low order three bits of the system status bus. 

BST Breakpoint Status flag. On a break, the 3-bit flag is set to the low order 
three-bits of 'the system status bus. 

TU Translate User bit. If TU is 1, the MMU translates all logical addresses 
specified in the User mode. If TU is 0, the MMU interprets logical addresses 
specified in the User mode as physical addresses. 

TS Translate Operating System bit. If TS is 1 , the MMU translates all addresses 
specified in the Operating System mode. If TS is 0, the MMU interprets 
addresses specified in the Operating System mode as physical addresses. 

DS Dual Space bit. If DS is 1, the PTB 1 register contains the Level 1 Page 
Table Base address of all addresses specified in the User mode. If DS is 
0, the PTBO register contains the Level 1 Page Table Base address of all 
addresses specified in both User and Operating System modes. 

AO Access Override bit. If AO is 1, the MMU overrides the protection level 
of all addresses. This permits a program to access memory which is 
normally accessible only to the operating system while the system is in 
the User mode. If AO is 0, the MMU does not override the protection level. 

BEN Breakpoint Enable bit. If BEN is 1, the MMU enables the BPRO and BPR1 
registers and breaks program execution whenever a breakpoint is 
encountered. If BEN is 0, the MMU disables the BPRO and BPR1 registers. 

UB User Break bit. If UB is 1, the MMU enables the BPRO and BPR1 registers 
for User mode operation only. If UB is 0, the MMU enables the registers 
for both User and Operating System mode. The UB bit is ignored if 
breakpoints are disabled (Breakpoint Enable = 0). 

AI Abort or Interrupt bit. 

FT Flow Trace bit. Not presently used. (Reserved). 

UT User Trace bit. Not presently used. (Reserved) 

NT Nonseque"ntial Trace bit. Not presently used. (Reserved) 

The MSR control bits and flags may be read or modified by executing the SMR and 
LMR instructions. The NT, FT, TS, TU bits and the ERC flag are set to 0 whenever 
the system is reset. The BEN bit is set to 0 whenever the MMU generates a breakpoint 
or an instruction abort on an address translation error. 

After writing to the MSR, the MMU automatically suppresses the generation of 
breakpoints until a branch, jump, call, or return instruction has been executed. This 
permits a routine to set the MSR and then pass execution to the program being 
debugged without generating a premature break. The Error Memory Cycle Type (EMCT) 
is the combination of the BST, EST, BD, and ED fields. 



3.4.1.1.2 Breakpoint Registers 

The Breakpoint Registers BPRO and BPR1 provide the breakpoint addresses and 
breakpoint conditions for system breaks .. The registers are each 32 bits in length and 
have the format shown in Table 1. 

Bits 0 to 23 specify the breakpoint address. The MMU compares the breakpoint address 
with addresses referred to by the program. If a match is found and breakpoint conditions 
are met, the MMU sends a Nonmaskable Interrupt (NMI) to the system CPU and breaks 
program ex~cution .. 

Bits 26 to 31 specify the breakpoint conditions (bits 24 and 25 are not used). Breakpoint 
conditions define how the MMU compares the breakpoint address and which conditions 
permit the MMU to generate breaks. 

AS 

VP 

BE 

Address Space bit. If AS is 0, the MMU compares the breakpoint address 
.with logical addresses whose Levell Page Table is specified by the PTBO 
register. If AS is 1, the MMU compares the breakpoint address with logical 
addresses whose Level 1 Page Table is specified by the PTB 1 register. If 
the VP bit is 1, the MMU takes tlie AS bit as bit 24 of the physical address. 

Logical/Physical bit. If VP is 0, the MMU compares the breakpoint address 
with logical addresses only. If VP is 1 , the MMU compares the breakpoint 
address with translated logical addresses (i.e., final physical addresses) 
or physical addresses only. ' 

Breakpoint, Execution bit. If BE is 1, the MM U breaks program execution 
when the instruction at the breakpoint address is executed. The instruction 
must start at the breakpoint address for the break to occur. If BE is 0, no 
break occurs. 

BR Breakpoint Read bit. If BR is 1, the MMU breaks execution when data is 
read from the breakpoint address. If BR is 0, no break occurs. 

BW Breakpoint Write bit. If BW is 1, the MMU breaks execution when data 
is written to the breakpoint address or when data is read from the 
breakpoint· address in the first part of a read-rlOdify-write operation. If BW 
is 0, no break occurs. 

CE Counter Enable bit (BPRO only). If CE is 1, the Breakpoint Count register 
is enabled. If CE is 0, the register is disabled. The Breakpoint Count register 
is described in the next section. 

3.4.1.1.3 Breakpoint Count Register 

The Breakpoint Count (BCNT) register controls the generation of the MMU interrupt 
signal to the CPU. It permits the user to specify the number of breakpoints the MMU 
should ignore before generating a break. The BCNT register is 24 bits in length. 

The BCNT register affects system breaks only when it is enabled. The· CE bit in the 
BPRO register enables/disables the register. When the MMU encounters a breakpoint, 
it checks the CE bit in the register containing the breakpoint address. If CE is 1, the 
MMU decrements the contents of BCNT by 1, and compares the new contents to zero. 
If the new contents are not equal to zero, the MMU ignores the breakpoint, i.e., it 

3-143 

II 
.... 
t: 
Q) 

E 
Q) 
C) 
co 
t: 
co 
::! 
> ... 
o 
E 
Q) 

::! 
~ 
N 
00 
o 
N 
M 
i= 



C 
:::I 
;:;: 

permits program execution to continue. If the contents are zero, the MMU breaks 
executio,n. If CE is 0, the MMU ignores the BCNT register and break~ program execution. 

, The userlllay set the register to any,value within the range 0 to 224_1 by executing 
an LMR instruction. If the register is not given a new value after a break, the next 
breakpoint decrements the register contents by1. 

3.4.1.2 Register File Block 

This block contains a number' of working registers, with no 'extern'al access, used to 
execute the address translation algorithm. In addition, it has three addressable registers 
(PTBO~ PTB1 ,and EIA) used in performing dynamic address t~anslations., 

3.4.1.2.1 Page Table Base Registers 

The Page Table Base registers PTBO and PTB1 specify the base addresses of the Level 
1 Page Tables used in address translation. The PTBO and' PTB 1 registers are each 
32 bits inlengtn and have the format shown in Table 1. 

Bits Oto 23 specify the Page Table Base address. When a I~gical address is translated, 
the MMU reads the base address from the regi~ter and accesses the specified Page 
Table. Bits 0 to 9 must be zeros. Bits 24 to 30 are not used. Bit 31 is the Memory 
Space bit, which may be used to partition physical memory. ' 

. ' ~ 

The MMU accesses only one Page Table Base,register,for any given address translation. 
The current mode of system operation (User or Operating System) and the Oual Space 
bit (OS) in the MSR specify which register is read. If the OS bit is 0, the MMU reads 
the base address from the PTBO register when in either the User or the Operating 
System mode.'lf the OS bit is 1 ;the MMU reads the base address from PTB1 when 
in, User mode and PTBO' when in Operating System mode: 

The contents of the registers may be read or modified at any time by executing an 
SMR and LMR instruction. 

, " 

3.4.1.2.2 Error/Invalidate Address Register 

3-144 

The Error/lnv~lidate Ad'dress (EIA)' register is a dual-purp~se register that (1) holds a 
logical address that has generated' an MMU exception; and, (2) when written to, 
removes Pointer Table entries from the MMU's Tran~lation Buffer. The EIA is 32 bits 
in length. 

The EIA permits 'examination of the logical address that caused the current MMU 
exception. On an' exception (such as 'a protection-level error), the MMU copies the 
logical address that generated the error to the EIA. 'The MMU sets bit 31 in the EIA 
to 1 if the address's Level 1 Page Table is specified by PTB1 , and to 0 if the Level 1 
Page Table is specified by PTBO. The error address may be read by executing an SMR 
instruc:tion. The cause of the error is specified by the ERC and TET flags in the MSR. 

The EIA also permits removal' of invalid Pointer Table entries from the MMU's 
Translation Buffer. T,he Tra,nslation Buffer contains a copy of the Pointer Table entries 
of recently accessed logical addresses. A logical address written to the EIA causes 

, th!3 MMU to remove the table entry of that logical address from the Translation Buffer. 
Bit 31 of the EIA must be s~t' to ,1 if. the Page Table is specified by PTB 1 and to 0 



if it is specified by PTBO. Entries in the Translation Buffer must be removed whenever 
the user modifies the corresponding entries in the tables themselves. The user may 
write to the EIA register using an LMR instruction. 

3.4.1.3 Translation Buffer Block 

3.4.1.4 

3.4.1.5 

3.4.2 

The Translation Buffer is the cache memory of the chip. It provides direct logical-to
physical address mapping for the most recently used pages in memory. Entries in the 
Translation Buffer are allocated and replaced by the MMU; the programmer is not 
involved in the process. 

The Translation Buffer is a content-addressable memory. The logical page frame number 
(the 15 high order bits of the logical address) and the address space bit are compared 
to the entries in the buffer. If the logical page frame number is present in the buffer, 
the mapped physical address is output immediately. If not, a control line is set, indicating 
to the Control Block that the memory translation tables should be referenced. When 
this occurs, the MMU gets the corresponding mapping from memory and replaces the 
least recently used entry in the Translation Buffer with the new mapping. 

Each entry in the Translation Buffer has, besides the logical and physical page frame. 
numbers and the address space bit, a copy of the protection level field (PL) and the 
modified bit (M) of the corresponding Pointer table entry. These bits are used by the .... 
MMU to implement the translation and error handling algorithms described in the "2 

:::l 
Functional Operation section. The protection level field contains the most restrictive 
combination of the Page and Pointer table entries. 

Control Block 

The Control Block is made up of state machines and combinatorial logic. Each machine 
controls the sequence of operations taking place during the different MMU operations. 
A state bus carries the operation code; the different blocks decode appropriate signals 
from the state bus. 

Input/Output Block 

The Input/Output block consists of I/O buffers and internal buffers. 

The I/O buffers provide the communication between the MMU and the outside system 
bus. The internal buffers between the I/O buses which transfer the address offset and 
the complete address in no-translation mode are also part of this block. 

Memory Management Instructions 

Format 
14 
14 
14 
14 

8 

8 

Instruction 
LMR mreg,gen 
SMR 
RDVAL 
WRVAL 

mreg,gen 
gen 
gen 

MOVSUi gen,gen 

MOVUSi gen,gen 

Description 
Load Memory Management Register. (Privileged) 
Store Memory Management Register. (Privileged) 
Validate address for reading. (Privileged) 
Validate address for writing. (Privileged) 
Move a value from operating system Space to 
User Space. (Privileged) 
Move a value from User Space to operating 
system Space. (Privileged) 

The MOVSUi and MOVUSi instructions are intended for memory management. 
Instruction format detail can be found in the Appendix to this data manual. 

3-145 

.... 
r::: 
C1) 

E 
C1) 
C) 
co 
C 
co 
2 
> ... 
o 
E 
C1) 

2 
~ 
C'\I 
ex) 
o 
C'\I 
M 
i= 



lEI 
-f 
W 
N 
o 
CO 
N 
:E 
s: 
CD 
3 
o ... 
'< 

s: 
D) 
::l 
D) 
cc 
CD 
3 
CD 
::l 
~ 

3.4.3 Functional Operation 

3.4.3.1 Power and Grounding 

The TI32082W requires a single 5-V power supply applied to pin 48 (VCC). See 
recommended operating conditions of the TI32082W data sheet. 

Grounding connections are made on pins 24 and 25, Logic Ground (GNDL) pin and 
Buffer Ground (GNDB) pin, respectively. GNDL is the common pin for on-chip logic, 
and GNDB is the common pin for the output drivers. As shown in Figure 2, GNDL is 
directly connected to GNDB with a single conductor. 

All other grounding connections should be made only to GNDB (pin 25) to ensure 
optimum noise immunity. 

GNDl~ 

TI32082W 
MMU 

~GNDB 

-----------411 ....... OTHER GROUND 
.. CONNECTIONS 

Figure 2. Grounding Connections 

3.4.3.2 MMU Operation 

The MMU operation incorporates the following: 

1. Bus Operation as related to address translation, Direct Memory Access (DMA) 
transfers, Breakpoints-on-Physical Address, and Coprocessor Operation 

2. Coprocessor Instruction Execution 
3. Address Translation 
4. Hardware Debugging 
5. Error Handling 

3.4.3.2.1 Bus Operation 

3-146 

Address Translation (see Figures 3 through 6). The MMU time-shares the address/data 
bus with the CPU. During a memory access cycle, the MMU reads the logical address, 
performs the logical-to-physical translation, and places the physical address on the 
bus. A typical memory cycle has five clock periods: T1, TMMU (time of physical address 
on the bus), T2, T3, and T4. The 16 AID bus drivers of the MMU are in high impedance 
state at all times except during TMMU or when the FL T signal is active. The bus drivers 
of lines A 16 to A24 drive the bus from TMMU through T4. 

During period T1, the CPU places on the bus the logical address to be translated; this 
address is strobed into the MMU with the ADS pulse. During period TMMU, the CPU 
places the bus in high impedance and the MMU does one of two things. If the address 
to be translated is in the translation buffer, the MMU sends the physical address on 



-
~ + 

HOLD HOLD 

ArISPC .. ~ ... AT/SPC --... ~r .... .... 

DSIFLT .... ill , 

RST/ABT JII. RSTIABr , 

PFs ... PFS ... 
ADS .. ADS r 

STO-ST3 4, .. STO-ST3 , .... 
NMi JII. 

TI32032T ... INT TI32082W 

CPU U/S UIS 
MMU ... 

HlOA ... HL5Ai .. 
Di5'iN ~ .... Di5iN r , .. 
ClK1 .. .. ClK1 

" .. 
ClK2 ..L ... ClK2 ... r 

RDY .... ... ROY ... .. 
.. FiST .. 

- PAV AOORI 
ADDRIDATA DATA A24 

(24132) ~ ~ (24132) (24116)~; r 
JII." ... , ,r 

ADDRESSIDATA BUS 4.-1 AO~~~SS 
__ ----------I~ (25 BITS) 

---+-r-------------------~~DDIN 

ROY CLK 1 RS'f 
ClK2 i5i5iN ADS 

Tl32201 
CLOCK GENERATOR 

Figure 3. CPU, MMU Interconnections 

the bus with a PAV timing pulse; if not, it takes the bus from the CPU with the FL T 
signal and executes four memory read cycles, to get the two double words needed 
to perform the translation algorithm. When necessary, the MMU executes two memory 
write cycles to update the referenced and modified bits in the Page and Pointer table 
entries. It then releases control of the bus and sends the physical address on the bus. 
The memory cycle initiated by the CPU is resumed from the point it was stopped. 

Between periods T2 and T4, there is data on the ADO-AD15 bus lines, output either 
by the CPU or memory. Bus lines A 16 to A24 continue to hold the physical address. 

DMA Transfers. The Hold (HOLD) and Hold Acknowledge (HLDA) lines are connected 
as shown in Figure 7. 

3-147 

II 
.... 
c::: 
Q) 

E 
Q) 
C) 
co 
c::: 
co 

:2! 
> -o 
E 
Q) 

:2! 
~ 
N 
to 
o 
N 
M 
i= 



C 
::l 
;:;.' 

3-148 

T1 TMMU T2 T3 T4 

CLOCK 

AID --< L. ADD. X P. ADD. ) (DATA) 

AOS"--J 
fiAV 

'J 
AD 

\ / 

AID --< L. ADD. X P. ADD. X"' _____ D_A_T_A _____ ......Ir 

PAV-------~~ 

wR----------------~\~ _____________ ~1 
Figure 4. Bus Operation Timing: Logical Address in Translation Buffer 

The DMA device pulls the HOLD line to request the bus; this line is input to both the 
CPU and the MMU. If the MMU is not floating the CPU (through the FLT line), the 
MMU transfers the CPU HLDA output directly to the MMU HLDAO output. If the MMU 
(when accessing the address translation tables) is floating the CPU, the CPU cannot 
respond to a Hold Request, HLDAI remains high, and the MMU grants the bus by pulling 
low HLDAO at the end of the present memory cycle. When the DMA device releases 
HOLD, the MMU releases HLDAO and regains control of the bus. 

Breakpoints-on-Physical Address. During debug, if a breakpoint is specified to occur 
on a physical address (VP is set in any BPR), an additional clock period is needed in 
the bus cycle. The additional clock period is required to make the address comparison 
after getting. the physical address from the cache or Pointer Table. In this case, the 
MMU floats the CPU for one clock period. This gives the memory cycles six periods: 
T1, TMMU, Tf, T2, T3 and T4. The corresponding waveforms are illustrated in Figure 8. 



Cf 
+::
to 

11 11MMU I 1f I READ CYCLE 1 READ CYCLE 2 READ CYCLE 3 READ CYCLE 4 I 1f I 12 I 13 I 14 I 
ClK1 

BUS 

ADSLJ 

PAV---U U ~--~ 

AD \ I \ I \ I \ I \ I 

m~ ~------------------------~I 
Figure 5. Bus Operation: Read Cycle When Logical Address is not in Translation Buffer 

TI32082W Memory Management Unit II 



~ 
(J1 

o 

l!Un lUawa6euel/ll AJOwal/ll MZSOZ£I.L II 

T1 I TMMU I Tf I READ CYCLE 1 READ CYCLE 2 READ CYCLE 3 READ CYCLE 4 

CLKl 

BUS DATA 

ADS-U 

PAV U LF--- \.....J LJ LJ 

RD \ /\ J '-_ _ ___ 1 - -- -, J 

FLT~ ______________________ ~------------~I 

WR \ I 

Figure 6. Bus Translation Write Cycle When Logical Address is not in Translation Buffer 



CPU 
TI32032T 

HciU5 

T1 

ClK1 

AID -{ L. ADD. 

ADS~ 

FLT 

PAV 

RD 

AID -{ L. ADD. 

ADS \.J' 
FLT 

PAV 

WR 

Figure 8. 

MMU 
TI32082W 

Figure 7. Hold Connections 

TMMU Tf T2 T3 

X PVS. ADDRESS ) 

\ / 

V 
\ 

X PHVS. ADDRESS X 

\ I 
\J 

\ 

DMA 

T4 

( DATA ) 

/ 

DATA 

I 
Bus Operation in Breakpoints on Physical Address 

OPTIONAL 
. CHAINING 

HOLD 

}-

3-151 

II 
... 
'2 
:::> ... 
c 
Q) 

E 
Q) 
C) 
co 
c 
co 
~ 
>-... 
0 
E 
Q) 

~ 

~ 
N 
CO 
0 
N 
M 
i= 



II 
'::i 

W 
N 
0 
(X) 
N 
:E 
S 
CD 
3 
0 ... 
< 
S 
Il) 
:::s 
Il) 
co 
CD 
3 
CD 
:::s 
~ 

C 
:::s 
::+' 

Coprocessor Instruction Bus Operation. For coprocessor instructions, the bus operation 
follows a different protocol. The bus cycle has only two periods (T1 and T4) and the 
timing is done by a one-clock-wide pulse on the Coprocessor Control (SPC) bidirectional 
line. All bus transfers are illustrated in Figures 9 and 10. ' 

T1 T4 

CLOCK J \ I \ r 
AID -< DATA }-

SPC \ I 
DBE (HIGH) 

STATUS ST ATUS VALID X INVALID 

Figure 9. Coprocessor Instruction Timing: Get ID/Opcode/Data from CPU 

T1 T4 

CLOCK J \ I \ / 
AID ( DATA FROM MMU ) 

SPC\ I 
DBE (HIGH) 

STATUS STATUS VALID X INVALID 

Figure 10, Coprocessor Instruction Timing: MMU Sends Status/Data to CPU 

3.4.3.2.2 Coprocessor Instructions 

3-152 

Introduction to Coprocessor Instructions. The MMU coprocessor instructions serve 
two purposes. (1) Coprocessor instructions set up the different registers and check 
their contents (LMR and SMR instructions) in order to control the MMU mode of 



operation. (2) A coprocessor instruction can request the MMU to return a flag indicating 
whether a specified access to a given address would generate a protection fault in 
User mode. 

The general format for coprocessor instructions appears in the Appendix to this data 
manual. The formats for the MMU coprocessor instructions are described in the 
following paragraphs. 

Note: 
All MMU instructions are privileged. While in the User Mode, the CPU will trap on any 
MMU instruction. 

MMU Coprocessor Instruction Format. The 3-byte format of the MMU coprocessor 
instruction is shown in Table 1. 

The format corresponds to the instructions as they are stored in memory; the CPU 
sends the operation word to the MMU with its bytes swapped, i.e., high byte in the 
low bus byte and vice versa. 

The short code assignments for the registers are shown below: 

Note: 

Code Value 
0000 
0001 
1010 
1011 
1100 
1101 
1111 

Register 
BPRO 
BPR1 
MSR 
BCNT 
PTBO 
PTB1 
EIA 

All other short codes are illegal. 

Address Translation Validation Instructions. The two instructions used to validate an 
address are: The RDVAL address and the WRVAL address. Both instructions consists 
of mnemonics and address type operands. (Table 2) 

Upon receipt of a RDVAL or WRVAL instruction, the MMU checks to see if the address 
operand can be translated without protection violations in User mode (user space). 
If the address can be translated without violations, the MMU sends status word zero. 
If not, the MMU sends status word 32. 

If the first translation table entry is invalid, a trap is generated with error class 1 and 
error translation type 2. No trap is generated if the second PTE is invalid or if protection 
violation errors occur. 

A validate instruction generates a status word which sets or resets the flag (F) bit 
in the CPU PSR register. The remaining bits are all zero. 

3-153 

II 
... 
c 
Q) 

E 
Q) 

en 
co 
c 
co 
2 
>-... 
o 
E 
Q) 

2 
~ 
N 
00 
o 
N 
M 
~ 



Cf 
U1 
~ 

l!Un luawa6euell\l AJowall\l MZ80ZEI.l III 

Table 2. RDVAL/WRVAL Instruction (Validate Read/Write Address) 

CPU MMU 

STATUS 
EXECUTION UNIT BUS INTERFACE UNIT ACTION 

PINS 

Sends ID Code in low byte Sends ID Code with SPC timing pulse 1111 Recognizes ID Code 

Sends Opcode in two bytes Sends Opcode with SPC timing pulse 1101 Latches Opcode 

Sends Address to be Sends Address in two Coprocessor Write 1101 

validated in two words cycles with SPC timing pulse 

(bits 24-31 set to zero) 

Generates Dummy Read Starts a Read cycle with address 1010 Performs validation 

with address to be validated to be validated 

Detects MMU completion 0011 Signals completion SPC pulse 

Reads MMU status Reads MMU status word with SPC strobe 1110 Sends status word 

LMR INSTRUCTION (LOAD MMU REGISTER) 

LMR short, read.d (See Tl32000 Programmer's Reference Manual) 

The MMU register specified by first operand is loaded with the contents of the second operand. The instruction executes as follows: 

CPU MMU 

STATUS 
EXECUTION UNIT BUS INTERFACE UNIT 

PINS 
ACTION 

Sends ID Code in low byte Sends ID Code with SPC timing pulse 1111 Recognizes 10 Code 

Sends Opcode in two bytes Sends Opcode with SPC timing pulse 1101 Latches Opcode 

Sends low word of operand Sends low word of operand with SPC 1101 Stores operand in low word of 

timing pulse addressed register 

Sends high word of operand Sends high word of operand with SPC 1101 Stores operand in high word of 

timing pulse addressed register 



~ 
(J1 
(J1 

Table 2. RDVAL/WRVAL Instruction (Validate Read/Write Address) (Concluded) 

SMR INSTRUCTION (STORE MMU REGISTER) 

SMR short, write.d 

The MMU register specified by first operand is stored in the second operand. The instruction executes as follows: 

CPU 

STATUS 
EXECUTION UNIT BUS INTERFACE UNIT 

PINS 

Sends 10 Code in low byte Sends 10 Code with SPC timing pulse 1111 

Sends Opcode in two bytes Sends Opcode with SPC timing pulse 1101 

(See Note 1) 

Detects MMU completion 0011 

Reads status with SPC strobe 1110 

Strobes operand with the SPC pulse 1101 

Strobes operand with SPC pulse 1101 

Notes: 1. The CPU may prefetch more code before this step. 
2. After CPU reads the operand, the contents are stored in second operand according to the second 

operand addreSSing mode. 
3. If addressed register is less than 32 bits, then the high order bits are reset to zero. 

TI32082W Memory Management Unit II 

MMU 

ACTION 

Recognizes 10 Code 

Latches Opcode 

Signals completion with SPC pulse 

Sends zero status 

Sends low word of addressed register 

Sends high word of addressed register 



II 
:::! 
w 
N 
o 
00 
N 
~ 
S 
CD 
3 
o ... 
'< 

S 
Q) 
::s 
Q) 
to 
CD 
3 
CD 
::s ... 
C 
::s 
;:;: 

3.4.3.2.3 Address Translations 

3-156 

Page and Pointer Table Entry (PTE) Format. Address translation is controlled by Page 
and Pointer tables contained in memory. A table is a linear array of 32-bit entries. Each 
PTE defines the access characteristics of one page (512 bytes) of virtual storage. The 
PTE bit format is shown in Table 1 . 

Note: 

BS Bank select: Most significant bit of PFN field. 

PFN Page Frame Number: When the V bit is set, the PFN low field, together 
with the BS bit, contains the high order 16 bits of a physical page address 
which is used by the address translation algorithm. 

M Modified: Used only in Pointer table entries (bits 9 to 15 of logical address) 
and set when mapped page is modified. 

R Referenced: Set when page mapped by PTE is referenced. 

PL Protection Level: Page and Pointer table entries control access to pages 
mapped by the PTE. The following shows the relationship between user, 
operating system and protection level bits: 

V 

PSR Protection Level Bits 
Mode Bit 8 00 01 10 11 
User 1 no no read full 

access access only access 
Operating 0 read full full full 
System only access access access 

Valid bit: When set, indicates that the corresponding page is resident in 
physical memory. When cleared, any attempted reference to the page will 
cause the MMU to abort the reference. If the V-bit is cleared, the PTE may 
be used by the operating system for any desired function. 

Bits 7 and 8 are reserved for the user and are not affected by the MMU. 

Address Translation Algorithm. The MMU translates the 24-bit logical address 
generated by the CPU to either a 25-bit physical address or a translation error. This 
process is described in the following paragraphs. See Figure 11 . 

The logical address is divided into three components as shown in Table 1. The access 
level of a reference is a 2-bit number whose logical expressions are: 

where 
bit 1 = U AND AO 

AO = Access Override bit in MSR 
bit 0 = 1 for write, Read/Modify/Write (RMW) 
bit 0 = 0 for read 

The detailed description of the translation algorithm follows. (Also refer to the TI32000 
Programmer's Reference Manual.) 



~ 
(1l 

-.J 

(8)'1 I PTBX -j-. INDEX 1 PAGE TABLE 

· I PAGE TABLE ENTRY I T 
IF OS - 0 THEN 

X - 0 
ELSE 

X = 1 FOR USER MODE 
X = 0 FOR O.S. MODE 

OS - 0 
LOGICAL PHYSICAL 

b ' 

t---~ I 

USER 
(SPACE 01 

VMx O.S. 

USER 

OS - 1 

PHYSICAL 
-aI t:::""" -.. 

r--

t==--

.... 

.. 

256 

(21 SELECT 2ND PTE 

O.S. 
(SPACE 11 

-lr-vM 
KERNEL ...... 
STACK 

---, 
I 
I 
I 
I 

(9) 

I 000000000 

t ! (POINTER TABLE 1 
, 1 .. __ ~IN~D~E~X~2~PA~G~E~TA~BL~E~_ 

PFN ~. 

POINTER TABLE ENTRY 

I ,I 
(31 GENERATE PHYSICAL 

ADDRESS 

Figure 11. Logical to Physical Address Translation 

TI32082W Memory Management Unit III 



~ 
W 
N 
o 
00 
N 
~ 
S 
n> 
3 
o 
~ 

< 
s 
Q) 
j 
Q) 
co 
n> 
3 
CD 
j ,... 
c 
j 
;:;: 

3-158 

If TU = 0 and U = 1 or TS = 0 and U 0, then PA logical address, else 

1. Select first PTE: 

else 

end. 

If OS (in MSR) 
Index 1 * 4. 

1 and U (in PSR) 

PTEP PTBO or Index 1 *4 

1, then -PTEP PTB 1 or 

Validate PTE: 

else 

If access level is greater than (PTEP).PL or if 
(PTEP).V = 0, then abort CPU 

Set (PTEP).R = 

2. Select second PTE: 

PTEP = (PTEP).PFN * 512 or Index 2 * 4 

Validate PTE: 

else 

If access level is greater than (PTEP).PL or if (PTEP).V = 0, then abort 
CPU 

Set (PTEP).R = 1 

If writing, then set (PTEP).M 

3. Generate physical address: 

PA = (PTEP).PFN * 512 or Offset 

Legend: 

PA Physical Address 

TU, OS, TS MSR bits 

U PSR bit (sent to MMU via the U/S pin) 

PTEP PTE pointer 

(PTEP).PL represents protection level in Page or Pointer Table Entry 

(PTEP). V represents valid bit in Page or Pointer Table Entry 

(PTEP).M represents modified bit in Page or Pointer table entry 
PFN Page Frame Number 



The MMU marks bits Rand M of the PTE for subsequent use by the operating system. 
If a physical page is written upon, it is assumed that the user intends for this 
modification to be permanent in his storage system. The M bit indicates whether a 
page needs to be written to mass storage when it is deallocated from physical memory. 
The R bit is tested and cleared periodically by the operating system in orderto compile 
statistics of the frequency of references to each page currently in memory. It will use 
this information to deallocate the least frequently used pages when new pages must 
be called in. 

Pointer tables that refer to physical pages are referenced by page tables, 1 K bytes 
in length. Selection of the PTBO or PTB1 register depends on the Dual Space (OS) 
and User/Operating System (U/S) modes as shown in the following: 

OS 
o 
1 

U/S 
o 

PTBO 
PTBO 

1 
PTBO 
PTB1 

Page Table Base (PTB) Registers. PTBO and PTB 1 registers are specified as double 
words. The BS bit in the PTE is used by the MMU to produce the 25th bit of the physical 
addresses pointing to the entries in the Page table. Their format is given in Table 1. 

3.4.3.2.4 Hardware Debugging 

The TI32082W MMU incorporates a special debugging facility: address breakpointing. 
A breakpoint generates an abort or interrupt pulse when a software specified address 
is referenced under software controlled conditions. It also updates the ERe and BN 
fields in MSR. Breakpoints are controlled by the BEN and UB bits (in MSR) and the 
BPR registers which have the format shown earlier in Table 1. 

Breakpoint-on-Execution Fetch Mechanism. When a sequential instruction is fetched 
by the CPU, the instruction is placed in the queue. Unless the queue is empty, aborts 
on queue fetches are not received and a breakpoint could be missed. The proper 
operation of breakpoint execution requires flushing the queue, as described in the 
following paragraphs. 

When the BE bit is set and the location specified in the BPR is accessed in a 
nonsequential fetch, an Abort (RST/ABT) or INT pulse is generated. 

When the BE bit is set and the location specified in the breakpoint register is accessed 
in a sequential fetch (or in a nonsequential fetch from an even-numbered address (2n) 
and the location specified in BPR is (2n + 1), the MMU returns a DIA instruction instead 
of the memory byte at the breakpoint location. This is preceded by a read cycle in 
order to return the other original byte from memory. This causes the CPU to flush the 
queue and to fetch the instruction a second time, this time with a nonsequential fetch 
status. 

3-159 

.... 
t: 
Q) 

E 
Q) 
Cl 
co 
t: 
co 
~ 
>-
~ 

o 
E 
Q) 

~ 

~ 
N 
ex) 
o 
N 
M 
i= 



-f 
W 
N 
o 
(X) 
N 
~ 
s: 
CD 
3 
o .. 
-< 
s: 
Q) 
::l 
Q) 

c.c 
CD 
3 
CD 
::l .... 
c 
::) 
;::;: 

The BPR bit functions are tabulated below: 

AS Address Space: Logical address when VP = 0, bank select bit of physical 
address when VP = 1. 

VP Logical or Physical address: If VP is set, the address field is matched against 
physical address. If VP is reset, the address field is matched against the 
logical address. 

BE Breakpoint-on-Execution: If BE is set, a breakpoint occurs when the location 
specified in the address field is referenced in an instruction fetch cycle 
(instruction execution detailed below). 

BR Breakpoint-on-Read operand: If BR is set, a breakpoint occurs when the 
location specified in the address field is referenced in a read operand cycle. 

BW Breakpoint-on-Write operands: If BW is set, a breakpoint occurs when the 
location specified in the address field is referenced in a write or RMW 
operand cycle. 

CE Counter Enable (BPRO only): The 24-bit BCNT counter decrements when 
Counter Enable bit (CE) is set and the conditions for a breakpoint in register 
BPRO are obtained. When this counter reaches zero, an II Abort" or INT 
pulse is generated by the MMU. 

Note: 
An erroneous count will result if both the' CE and BW bits are set. 

3.4.3.2.5 Error Handling 

3-160 

Traps are serviced according to class and type (c, t). In the MSR register, the appropriate 
bit in the ERC field is set due to the fact that RMW accesses are counted twice. 

For Address Translation Error, the following bits are set in the TET field: 

If access level is greater than (PTEP).PL 
If (PTEP).V = 0 in Page Table PTE 
If (PTEP).V = 0 in Pointer Table PTE 

bit 0 set 
bit 1 set 
bit 2 set 

In the EMCT field, set the CPU status and ODIN bits. 

In the EAI register, set AS bit to designate the address space PTBO/PTB 1 of logical 
address being translated and set the address field to the value of the logical address 
being translated, as shown in the register format in Table 1. 

For Breakpoint Error, the following bits are set in the MSR register: 

BN field - the number of the appropriate breakpoint register 
EMCT field - CPU status and ODIN bits 



3.5 TI32202W Interrupt Control Unit (lCU) 

3.5.1 General Description 

The TI32202W leu functions as an overall manager in an interrupt-oriented system 
environment. Its many features and options permit the design of sophisticated interrupt 
systems. 

Figure 1 shows the internal organization of the TI32202W which is divided into five 
functional blocks. 

iNT 
ST1 

IR1 

IR3 

IR5 

IR7 

IR9 

IR11 

IR13 

IR15 

CLK 

PRIORITY 
CONTROL 

TIMING 
AND 

CONTROL 

COUT/SCIN 

1/0 BUFFERS 
AND 

LATCHES 

RST ----------+-----~ 

RD 

WR 

cs 
iiBE 

AO 

A1 

A2 

A3 
A4 ___ .... 

READI 
WRITE 
LOGIC 
AND 

DECODERS 

Figure 1. TI32202W leu Block Diagram 

G7/1R14 

G6/1R12 

G5/1R10 

G4/1R8 

G3/1R6 

G2/1R4 

G1/1R2 

GO/IRO 

07 

06 

05 

04 

03 

02 

01 

DO 

3-161 

II 
..... 
'c 
::::> 
'0 ... ..... 
t: 
0 

U 
..... 
C. 
:::l ... ... 
Q) ..... 
t: 

~ 
N 
0 
N 
N 
M 
t= 



I 
::! 
w 
N 
N 
o 
N 
:E 
~ ,.... 
CD .... .... 
s::: 

"C ,.... 
("') 
o 
~ ,.... .... 
2.. 
c 
~ 
;::;: 

3.5.1.1 I/O Buffers and Latches 

The I/O buffers and latches block is the interface with the system data bus. It contains 
bidirectional buffers for the data I/O pins. It also contains registers and logic circuits 
that control the operation of pins GO/IRO, ... ,G7/1R14 when the ICU is in the a-bit bus 
mode. 

3.5.1.2 Read/Write Logic and Decoders 

The read/write logic and decoders manage all internal and external data transfers for 
the ICU. These include data, control, and status transfers. This circuit accepts inputs 
from the CPU address and control buses. In turn, it issues commands to access the 
internal registers of the ICU. 

3.5.1.3 Timing and Control 

The timing and control block contains status elements that select the ICU operating 
mode. It also contains state machines that generate all the necessary sequencing and 
control signals. 

3.5.1.4 Priority Control 

The priority control block contains 16 units, one for each interrupt position. These 
units provide the following functions: 

1. Sensing the various forms of hardware interrupt signals, e.g., level (high/low) 
or edge (rising/falling) 

2. Resolving priorities and generating an interrupt request to the CPU 
3. Handling cascaded arrangements 
4. Enabling software interrupts 
5. Providing for an automatic return from interrupt 
6. Enabling the assignment of any interrupt position to the internal counters 
7. Providing for rearrangement of priorities by assigning the first priority to any 

interrupt position 
a. Enabling automatic rotation of priorities 

3.q.1.5 Counters 

3-162 

This block contains two 16-bit counters, called the H-counter and the L-counter. These 
. are down counters that count from an initial value to zero. Both counters have a 16-bit 
register (designated HCSV and LCSV) for loading their restarting values. They also 
have registers containing the current count values (HCCV and LCCV). Both sets of 
registers are fully described in section 3.5.2.6. 

The counters are under program control and can be used to generate interrupts. When 
the count reaches zero, either counter can generate an interrupt request to any of the 
16 interrupt positions. The counter then reloads the start value from the appropriate 
registers and resumes counting. Figure 2 shows typical counter output signals available 
from the T132202W. 

The maximum input clock frequency is 2.5 MHz. 

A divide-by-four prescaler is also provided. When the prescaler is used, the input clock 
frequency can be up to 10 MHz. 



INPUT CLOCj{ 

COUNTER 
CONTENTS 

(lNIT. VALUE .. 2) 

OUTPUT IN 
PULSED FORM 

OUTPUT IN 
SQUARE WAVEFORM 

COUNTER 
CONTENTS 

(lNIT. VALUE-1) 

OUTPUT IN 
PULSED FORM 

OUTPUT IN 
SQUARE WAVEFORM 

COUNTER 
CONTENTS 

(lNIT. VALUE - 0) 

2 o 

o 

u 

o o o 

2 0 2 

u Lr 
I 

o 0 

u Lr 
L 

o o 0 0 

OUTPUT IN 
PULSED FORM u u u u lJU 

OUTPUT IN 
SQUARE WAVEFORM 

Figure 2. Counter Output Signals in Pulsed Form and 
Square Waveform for Three Different Initial Values 

When intervals longer than those provided by a 16-bit counter are needed, the L- and 
H-counters can be concatenated to form a 32-bit counter. In this case, both counters 
are controlled by the H-counter control bits. Figure 3 illustrates counter read/write 
operations. For additional information, refer to the discussion of the Counter Control 
register in section 3.5.2.6.16. 

3.5.2 Functional Description 

3.5.2.1 Reset 

The ICU is reset when a logic low signal is present on the RST pin. At reset, most 
internal ICU registers are affected, and the ICU becomes inactive. 

3.5.2.2 Initialization 

After reset, the CPU must initialize the TI32202W to establish its configuration. Proper 
initialization requires knowledge of the ICU register's formats (refer to Figure 14). 

The operation sequence shown in Figure 14 ensures that all counter output pins remain 
inactive until the counters are completely initialized. 

3-163 

II 
~ 

'2: 
::l 
'0 ... 
~ 

C 
o 

U 

~ 
N 
o 
N 
N 
M 
i= 



EI 
:::! 
CAl 
N 
N 
o 
N 
~ 
:::s 
r+ 
CD ... ... 
c: 

"0 
r+ 

(") 
o 
:::s 
r+ ... 
2-
c 
:::s 
~. 

ZERO DETECT 

STARTING VALUE 
LCSV/HCSV 

COUNTER 

FREEZE COUNTER READINGS 

BASIC OPERATIONS: 

WRITING TO LCSV/HCSV 

READING LCSV/HCSV 

WRITING TO LCCV/HCCV 

CURRENT VALUE 
LCCV/HCCV 

(only possible when counters are halted) 

READING LCCV/HCCV 

(only possible when counter 
readings are frozen) 

COUNTER COUNTS AND READINGS 
ARE NOT FROZEN 

COUNTER RELOADS STARTING VALUE 

(occurs on the clock cycle following the 
one where it reaches zero) 

0--

Figure 3. Counter Configuration and Basic Operations 

3.5.2.3 Vectored Interrupt Handling 

3-164 

For details on the operation of the vectored interrupt mode for a particular TI32000 
microprocessor family CPU, refer to the applicable section for that CPU. In this 
discussion, it is assumed that the TI32202W is working with a CPU in the vectored 
interrupt mode. Several ICU applications are discussed, including noncascaded and 
cascaded operation. Figures 4, 5, and 6 show typical configurations of the ICU used 
with the TI32016T CPU. 

A peripheral device issues an interrupt request by sending the proper signal to one 
of the TI32202W interrupt inputs~ If the interrupt input is not masked, the ICU activates 
its Interrupt (INT) output pin and generates an interrupt vector byte. The interrupt vector 
byte identifies the interrupt source in its four least significant bits. When the CPU 
detects a low level on its Interrupt input pin, it performs one or two interrupt-



AO·A15 AO·A23 .. ADO.AD1ri I ... ~ .. 
lATCH I" .." ... 

~ ~ 24 

A16·A23 
16,~ ~~ 8, ~~ ~, 

, 24, ~ 
HBE 

Tl32016T 
,24 AO·A~ ~ 

AO·A4 

t "' -'", 
f-+-CPU .. HBE IR15 .. 

ADS I ADDRESS I .. CS IR13 f-4-
DECODER I .. 

ST1 .. ST1 IR11 ~ ... 
iNT ... 1NT 

TI32202W IR9 -+-
DDIN -~ 

ICU ... 
BUFFER DO·D15 IR7 -+-

ADO·AD15 
, ..... ...... ~ .. .... .... .. DO·D7 & 

'16 
...... 

~"''16 '16 ...... ....... '16 GO/IRO·G7/IR14 -+-ClK1 ClK2 ~ 

~16 IR5 

t t ~, " ~ , IR3 f-+-
ClK1 ClK2 ADS DDIN 

TI32201 RD 
.. AD IR1 f-+-... 

TCU WR ... WR 

DO·D15 

Figure 4. Interrupt Control Unit Connections in 16-Bit Bus Mode 

acknowledge cycles depending on whether the interrupt request is from the master 
ICU or a cascaded ICU. Figure 7 shows a flowchart of a typical CPU Interrupt
Acknowledge sequence. 

In general, vectored interrupts are serviced by interrupt routines stored in system 
memory. The Dispatch Table stores up to 256 external procedure descriptors for the 
various service prC?cedures. The CPU INTBASE register points to the top of the Dispatch 
Table. Figure 8 shows the layout of the Dispatch Table. This figure also shows the 
layout of the Cascade Table, which is discussed with ICU cascaded operation. 

3.5.2.3.1 Noncascaded Operation 

Whenever an interrupt request from a peripheral device is issued directly to the master 
ICU, a noncascaded interrupt request to the CPU results. Ina system using a single 
T132202W, up to 16 interrupt requests can be prioritized. Upon receipt of an interrupt 
request on the INT pin, the CPU performs a Master Interrupt-Acknowledge bus cycle, 
reading a vector byte from address FFFE0016. This vector is then used as an index 
into the dispatch table in order to find the External Procedure Descriptor for the proper 
interrupt service procedure. The service procedure eventually returns via the Return
from-Interrupt (RET) instruction, which performs a Return-from-Interrupt bus cycle, 
informing the ICU that it may re-prioritize any interrupt requests still pending. Figure 9 
shows a typical CPU RETI sequence. In a system with only one ICU, the vectors 
provided must be in the range of 0 through 127; this can be ensured by writing 
OXXXXXXX into the SVCT register. By providing a negative vector value, the master 
ICU flags the interrupt source as a cascaded ICU. 

3·165 

II 
..... 
'c 
=> 
'0 ... ..... 
I: 
o 

U 
..... 
C. 
:::::I ... ... 
Q) ..... 
I: 



=! 
w 
N 
N 
o 
N 
:E 
5" .... 
CD 
"""I 
"""I 
c: 

"'0 .... 
n 
o 
::l .... 
"""I 

2-
c 
::l 
;::;'0 

AO-A23 

16 
A16-A23 

AO-A4 5 
TI32016T AO-A4 G7/1R14 

CPU GNO HBE G6/1R12 

ADS CS' G5/1R10 

G4/1R8 

ST1 ST1 G3/1R6 

iNT iNT G2/1R4 

G1/1R2 

OOIN 
TI32202W GO/IRO 

ICU 
BUFFER 00-07 IR15 

AOO-A015 00-07 IR13 
16 16 8 IR11 

16 IR9 

IR7 

IR5 

TI32201 RD R5 IR3 

TCU WR WR IR1 

00-015 

NOTE: In the 8-Bit Bus Mode the Master ICU Registers appear at even addresses (AO = 0) since the ICU 
communicates with the least significant byte of the CPU data bus. 

Figure 5. Interrupt Control Unit Connections in 8-Bit Bus Mode 

3.5.2.3_2 Cascaded Operation 

3-166 

In cascaded operation, one or more of the interrupt inputs of the master ICU are 
connected to the Interrupt output (INT) pin of one or more cascaded ICUs. Up to 16 
cascaded ICUs can be used, giving a system total of 256 interrupts. 

Note: 
The number of cascaded ICUs is practically limited to 15 because the Dispatch Table 
for the TI32016T CPU is constructed with entries 1 through 15 either used for NMI 
and Trap descriptors, or reserved for future use. Interrupt position 0 of the master 
ICU should not be cascaded, so it can be vectored through Dispatch Table entry 0, 
reserved for nonvectored interrupts. In this case, the nonvectored interrupt entry (entry 
0) is also available for vectored interrupt operation, since the CPU is operating in the 
vectored interrupt mode. 

The address of the master ICU should be FFFE0016. Cascaded ICUs can be located 
at any system address. A list of cascaded ICU addresses is maintained in the Cascade 
Table as a series of sixteen 32-bit entries. 

Note: 
The CPU status corresponding to both master interrupt acknowledge and return from 
interrupt bus cycles, as well as address bit A8, could be used to generate the chip 
select (CS) signal for accessing the master ICU during one of the above cycles. In this 
case, the master ICU can reside at any system address. The only limitation is that 



A1-A5 
G7/IR14 AO-A4 
G6/IR12 

GNO HiiE G5/IR10 

G4/IR8 

G3/IR6 
5 

CS G1/IR2 

ST1 GO/IRO 

IR15 

00-07 IR13 

CASCADED IR11 
TI32202W IR9 

iffi ICU IR7 
WR IR5 

IR3 

8 iNT IR1 

8 24 
A16-A23 AO-A23 

5 
G7/IR14 TI32016T 

CPU G6/IR12 
GNO G5/IR10 

ADS G4/1R8 
CS G3/IR6 

G2/IR4 

ST1 ST1 G1/IR2 

INT iNT GO/IRO 

CoiN 
IR15 

00-07 IR13 
QO-07 IR11 

8 MASTER IR9 

16 TI32202W IR7 

ADS ODIN 
ICU IR5 

IR3 
TI32201 RD RO IR1 

TCU WR WR 

00-015 

Figure 6. Cascaded Interrupt Control Unit Connections in 8-Bit Bus Mode 

the least significant 5 or 6 address bits (6 in the 8-bit bus mode) must be zero. Address 
bit A8 must be decoded to prevent an NMI bus cycle from reading the hardware vector 
register of the ICU. This could happen, since the TI32016T CPU performs a dummy 
read cycle from address FFFF0016, with the same status as a master INTA cycle, 
when a nonmaskable-interrupt is acknowledged. 

The master ICU maintains a list (in the CSRC register pair) of its interrupt positions 
that are cascaded. When a cascaded interrupt input is active, the master ICU activates 
its interrupt output and the CPU responds with a Master Interrupt-Acknowledge cycle. 
However, instead of generating a positive interrupt vector, the master ICU generates 
a negative Cascade Table index. 

The CPU interprets the negative number returned from the master ICU as an index 
into the Cascade Table. The Cascade Table is located in a negative direction from the 
Dispatch Table, and it contains the logical addresses of the hardware vector registers 
for any cascaded TI32202Ws in the system. Thus, the Cascade Table index supplied 
by the master ICU identifies the cascaded ICU that requested the interrupt. 

3-167 

II 
... 
'2 
::l 

"0 
~ ... 
c: 
o 
(J 



I 
::::! 
w 
N 
N 
o 
N 
~ 
:::J 
r+ 
CD 
""'I 
""'I 
s::: 
'C 
r+ 

C') 
o 
:::J 
r+ 
""'I 

2-
c 
:::J 
;:;: 

3-168 

NO 

NO 

NO 

SUSPEND 
INSTRUCTION EXECUTION 

DISABLE INTERRUPTS 

EXECUTE MASTER INTA 
CYCLE AND READ VECTOR 
FROM ADDRESS FFFEOO 16 

NO 

OBTAIN CASCADED ICU ADDRESS 
FROM CASCADE TABLE 

EXECUTE CASCADED INTA 
CYCLE AND READ VECTOR 

FROM CASCADED ICU 

OBTAIN EXTERNAL PROCEDURE 
DESCRIPTOR FROM 

INTERRUPT DISPATCH TABLE 

OBTAIN SERVICE ROUTINE 
ENTRY POINT 

SAVE PROGRAM COUNTER, 
MOD REGISTER AND 

CPU STATUS ON 
INTERRUPT STACK 

RESUME INSTRUCTJION 
EXECUTION AT SERVICE 
ROUTINE ENTRY POINT 

tCond. A is true if current instruction is terminated or an interruptible 

point in a string instruction is reached. 

Figure 7. CPU Interrupt-Acknowledge Sequence 

Once the cascaded ICU is identified, the CPU performs a Cascaded Interrupt
Acknowledge cycle. During this cycle, the CPU reads the final vector value directly 
from the cascaded ICU, and uses it to access the Dispatch Table. Each cascaded ICU 
has its own set of 16 unique interrupt vectors, one vector for each of its 16 interrupt 
positions. 

The CPU interprets the vector value read during a Cascaded Interrupt-Acknowledge 
cycle as an unsigned number. Thus, this vector can be in the range 0 through 255. 

When a cascaded interrupt service routine completes its task, it must return control 
to the main program with the same RETI instruction used in noncascaded interrupt 
service routines. However, when the CPU performs a Master Return-from-Interrupt 



(lNTBASE-64) -----I" 

CASCADE TABLE 

CASCADED ICU ADDRESS 14 

THESE ADDRESSES ARE 
USED BY THE CPU DURING 
THE SECOND CYCLE OF 
AN INTA OR RETI 
SEQUENCE TO GET THE 
INTERRUPT VECTOR FROM 
A CASCADED ICU. 

--, -.----
CASCADED ICU ADDRESS 15 (lNTBASE - 4 * I CASCADE TABLE 

INTBASE ----iNo-----------t- __ __ __ IN~X J...!. _ 
REGISTER 

INTERRUPT 
DISPATCH TABLE .... .. ~ 

NVI DESCRIPTOR 

NMI AND TRAP 
DESCRIPTORSt 

RESERVEDt 

INT. DESCRIPTOR 16 

(lNTBASE + 4 * VECTOR) 

INT. DESCRIPTOR N i4- -- -- --

INT. DESCRIPTOR 255 

MASTER ICU's 
HVCT REGISTER 

...... 

CPU READS THIS LOCATION DURING 
FIRST CYCLE OF INTA OR RETI 
SEQUENCE TO GET EITHER 
THE INTERRUPT VECTOR OR 
A CASCADE TABLE INDEX FROM 
THE MASTER ICU. 

tTable entries 1 to 15 should not be used by the leU since they contain NMI and Trap Descriptors or are 
reserved for future use. 

Figure 8. Interrupt Dispatch and Cascade Tables 

cycle, the CPU accesses the master ICU and reads the negative Cascade Table index 
identifying the cascaded ICU that originally received the interrupt request. Using the 
cascaded ICU address, the CPU now performs a Cascaded Return-from-Interrupt cycle, 
informing the cascaded ICU that the service routine is over. The byte provided by the 
cascaded ICU during this cycle is ignored. 

3-169 

II -'2 
::::> 
(5 
~ -c 
o 

U 

~ 
C\I 
o 
C\I 
C\I 
M 
t= 



::! 
w 
N 
N 
o 
N :E. 
:::l ... 
CD .., .., 
C 
'C ... 
Ci o 
:::l ... .., 
2. 
c 
:::l 
;:;' 

OBTAIN CASCADED ICU 
ADDRESS FROM CASCADE 

TABLE 

EXECUTE CASCADED 
ICU CYCLE AND READ 

VECTOR FROM 
CASCADEDICU 

RESTORE CPU STATUS, 
MOD REGISTER AND 

RETURN ADDRESS FROM 
INTERRUPT STACK 

Figure 9. CPU Return from Interrupt Sequence 

3.5.2.4 Internal leu Operating Sequence 

3-170 

The TI32202W ICU accepts two interrupt types, software and hardware. 

Software interrupts are initiated when. the CPU sets the proper bit in the Interrupt 
Pending (IPND) registers (R6, R7), located in the ICU. Bits are set and reset by writing 
the proper byte to either R6 and R7. Software interrupts can be masked, by setting 
the proper bit in the mask registers (Rl0, Rll). 

Hardware interrupts can be eithe~ internal or external to the ICU. InternallCU hardware 
interrupts are initiated by the on-chip counter outputs. External hardware interrupts 
are initiated by devices external to the ICUs that are connected to any of the ICU 
interrupt input pins. 



Hardware interrupts can be masked by setting the proper bit in the mask registers 
(R10, R11). If the Freeze bit (FRZ), located in the Mode Control (MCTL) Register, is 
set, all incoming hardware interrupts are inhibited from setting their corresponding 
bits in the IPND registers. This prevents the ICU from recognizing any hardware 
interrupts. 

When the ICU is initialized, it is enabled to accept interrupts. If an active interrupt is 
not masked and has a higher priority than any interrupt currently being serviced, the 
ICU activates its Interrupt (lNT) output. Figure 10 is a flowchart showing the ICU 
interrupt-acknowledge sequence. 

The CPU responds to the active INT line by performing an Interrupt-Acknowledge bus 
cycle. During this cycle, the ICU clears the IPND bit corresponding to the active interrupt 
position and sets the corresponding bit in the Interrupt In-Service (ISRV) registers. The 
ISRV bit remains set until the CPU performs a RETI bus cycle triggered by the completion 
of the interrupt service routine for the active interrupt position. Figure 11 is a flowchart 
showing ICU operation during a RETI bus cycle. 

When the ISRV bit is set, the INT output is disabled. This output remains inactive until 
a higher priority interrupt position becomes active, or the ISRV bit is cleared. 

3.5.2.5 Interrupt Priority Modes 

The TI32202W ICU can operate in one of four interrupt priority modes: fixed-priority, 
auto-rotate, special mask, or polling. Each mode is described in the following 
paragraphs. 

3.5.2.5.1 Fixed-Priority Mode 

In the fixed-priority mode (also called fully-nested mode), each interrupt position is 
ranked in priority from 0 to 15, with 0 being the highest priority. In this mode, the 
processing of lower priority interrupts is nested with higher priority interrupts. Thus, 
while an interrupt is being serviced, any other interrupts of the same or lower priority 
are inhibited. However, the ICU does recognize higher priority interrupt requests. 

When the interrupt service routine executes its RETI instruction, the corresponding 
ISRV bit is cleared. This allows any lower priority interrupt request to be serviced by 
the CPU. 

At reset, the default priority assignment gives interrupt IRO priority 0 (highest priority)' 
interrupt IR 1 priority 1, and so forth. Interrupt IR 15 is, of course, assigned priority 
15, the lowest priority. The default priority assignment can be altered by writing an 
appropriate value into register FPRT (L) as explained in section 3.5.2.6.9. 

Note: 
When the ICU generates an interrupt request to the CPU for a higher priority interrupt 
while a lower priority interrupt is still being serviced by the CPU, the CPU responds 
to the interrupt request only if its internal interrupt enable flag is set. Normally, this 
flag is reset at the beginning of an Interrupt-Acknowledge cycle and set during the 
RETI cycle. If the CPU is to respond to higher priority interrupts during any interrupt 
service routine, the service routine must set the internal CPU interrupt enable flag, 
as soon as desired during the service routine. 

3-171 

II 
~ 

'2 
:::::> 

'0 ... 
~ 

c 
o 

(.) 



II 
~ 
CN 
N 
N 
o 
N 
:E 
::l .... 
~ ... ... 
c: 
'C .... 
C") 
o 
::l .... ... 
2-
c 
::l 
::;' 

3-172 

YES 

NO 

INTERRUPT POSITION 

t Condo B is true if no interrupt is being serviced. or if there is a pending unmasked interrupt whose priority 
is higher than that of the interrupt being serviced. 

Figure 10. leu Interrupt-Acknowledge Sequence 



OUTPUT 
CASCADE TABLE 

INDEX 

INTERRUPT ISRV BIT 
AND ASSIGN FIRST 
PRIORITY TO NEXT 

INTERRUPT POSITION 

OUTPUT 
INTERRUPT 

VECTOR 

RESET 
INTERRUPT 

ISRV BIT 

Figure 11. leu Return from Interrupt Sequence 

3.5.2.5.2 Auto-Rotate Mode 

The auto-rotate mode is selected when the NTAR bit is set to 0, and is automatically 
entered after reset. In this mode, an interrupt source position is automatically assigned 
lowest priority after a request at that position has been serviced. Highest priority then 
passes to the next lower priority position. For example, when servicing of the interrupt 
request at position 3 is completed (ISRV bit 3 is cleared), interrupt position 3 is assigned 
the lowest priority and position 4 assumes the highest priority. The nesting of interrupts 
is inhibited, since the interrupt being serviced always has the highest priority. 

This mode is used when the interrupting devices have to be assigned equal priority. 
A device requesting an interrupt will have to wait, in the worst case, until each of 
the 15 other devices has been serviced at most once. 

3-173 

II 
... 
'2 
::::> 
'0 

110. ... 
c: 
o 

U ... 
c. 
:::s 
110. 
110. 

OJ ... 
c: 



II 
:::! 
eN 
N 
N 
o 
N 
~ 
:l ... 
CD .... .... 
s::: 

"C ... 
("') 
o 
:l ... .... 
2-
c 
:l 
;::;: 

3.5.2.5.3 Special Mask Mode 

The special mask mode is used when it is necessary to dynamically alter the ICU priority 
structure while an interrupt is being serviced. For example, it may be desired in a 
particular interrupt service routine to enable lower priority interrupts during a part of 
the routine. To do so, the ICU must be programmed in fixed-priority mode and the 
interrupt service routine must control its own in-service bit in the ISRV registers. 

The bits of the ISRV registers are changed with either the Set Bit Interlocked (SBI
TIW) or Clear Bit Interlocked (CBITIW) instructions. The in-service bit is cleared to enable 
lower priority interrupts and set to disable them. 

Note: 
For proper operation of the ICU, an interrupt service routine must set its ISRV bit before 
executing the RETI instruction. This prevents the RETI cycle from clearing the wrong 
ISRV bit. 

3.5.2.5.4 Polling Mode 

The polling mode gives complete control of interrupt priority to the system software. 
Either some or all of the interrupt positions can be assigned to the polling mode. To 
assign all interrupt positions to the polling mode, the CPU interrupt enable flag is reset. 
To assign only some of the interrupt positions to the polling mode, the desired interrupt 
positions are masked in the Interrupt Mask (lMSK) registers. In either case, the polling 
operation consists of reading the Interrupt Pending (lPND) registers. 

If necessary, the IPND read can be synchronized by setting the Freeze (FRZ) bit in 
the Mode Control (MCTL) register. This prevents any change in the IPND registers 
during the read. The FRZ bit must be reset after the polling operation so the IPND 
contents can be updated. If an edge-triggered interrupt occurs while the IPND registers 
are frozen, the interrupt request is latched, and transferred to the IPND registers as 
soon as FRZ is reset. 

The polling mode is useful when a single routine is used to service several interrupt 
levels. 

3.5.2.6 Register Functions 

3-174 

The TI32202W has thirty-two a-bit registers that can be accessed either individually 
or in pairs. In 16-bit data bus mode, register pairs can be accessed with the CPU word 
or double-word reference instructions. Figure 12 shows the ICU internal registers, and 
lists the name, functi'on, and offset address for each register. 

Because some registers hold similar data, they are grouped into functional pairs and 
assigned a single name. However, if a single register in a pair is referenced, either 
an L.or an H is appended to the register name. The letters are placed in parentheses 
and stand for the low order a bits (L) and the high order a bits (H). For example, register 
R6, part of the Interrupt Pending (IPND) register pair, is referred to individually as 
IPND(L). 

The following paragraphs give detailed descriptions of the registers shown in Figure 12. 



REG. NUMBER AND REG. 
ADDRESS IN HEX. NAME REG. FUNCTION 

RO 100161 HVCT - HARDWARE VECTOR 

R1 (01161 SVCT - SOFTWARE VECTOR 

R3 (03161 R2 (02161 ELTG - EDGE/LEVEL TRIGGERING 

R5 (05161 R4 (04161 TPL - TRIGGERING POLARITY 

R7 (07161 R6 (06161 IPND - INTERRUPTS PENDING 

R9 (09161 R8 (08161 ISRV - INTERRUPTS IN·SERVICE 

R11 (08161 R10lOA161 IMSK - INTERRUPT MASK 

R13 (00161 R12 (OC161 CSRC - CASCADED SOURCE 

II R15 (OF161 R14 (OE161 FPRT - FIRST PRIORITY 

.... 
R16 (10161 MCTL - MODE CONTROL '2 

::::> 
R17 (11161 OCASN - OUTPUT CLOCK ASSIGNMENT (5 .. .... 
R18 (12161 CIPTR - COUNTER INTERRUPT POINTER 

C 
0 

U 
R19 (13161 PDAT - PORT DATA .... 

~ 
::J .. 

R20 (14161 IPS - INTERRUPT/PORT SELECT 
.. 
Q) .... 
C 

R21 (15161 PDIR - PORT DIRECTION 

3: 
R22 (16161 CCTL - COUNTER CONTROL 

N 
0 
N 

R23 (17161 CICTL - COUNTER INTERRUPT CONTROL 
N 
M 
i= 

R25 (19161 R24 (18161 LCSV - L·COUNTER STARTING VALUE 

R27 (1B161 R26 (1A161 HCSV - H·COUNTER STARTING VALUE 

R29 (10161 R28 (1C161 LCCV - L·COUNTER CURRENT VALUE 

R3l (1F161 R30 (1E161 HCCV - H·COUNTER CURRENT VALUE 

Figure 12. leu Internal Registers 

3-175 



II 
::! 
w 
N 
N 
o 
N 
~ 

(") 
o 
:::l 
'* '"'II 

2-
c 
:::l 
;:;: 

3.5.2.6.1 HVC-r: - Hardware Vector Register (RD) 

BBBB 

vvvv 

The HVCT register is a single register that contains the interrupt vector byte supplied 
to the CPU during an Interrupt-Acknowledge (INTA) or Return-from-Interrupt (RETI) 
cycle. The HVCT bit map is shown below: 

7 6 5 4 3 2 o 

B B B B v v v v 

The BBBB field is the bias which is programmed by writing BBBB00002 to the SVCT 
register (R1). The VVVV field identifies one of the 16 interrupt positions. The HVCT 
register provides various information to the CPU, as shown in Table 1. 

Note: 
The ICU always interprets a read of the HVCT register as either an INTA or RETI cycle. 
Since these cycles cause internal changes to the ICU, normal programs must never 
read the leu HVCT register. . . 

Table 1. HVCT Register Data Coding 

INTA CYCLE (sn - 0) RETI CYCLE (sn -1) 

Highest priority pending interrupt is from: Highest priority in-service interrupt was from: 

cascaded ·ICU I any other source cascaded ICU I any other source 

1111 I programmed bias * 1111 I programmed bias" 

encoded value of the highest encoded value of the highest 

priority pending interrupt priority in-service interrupt 

'The Programmed bias for the master ICU must range from 0000 to 01112 because the CPU interprets a one in the 
most significant bit position as a Cascade Table Index indicator for a cascaded ICU. 

3.5.2.6.2 SVCT - Software Vector Register (R1) 

3-176 

The SVCT register contains a copy of the value stored in the HVCT register. This allows 
the programmer to read the contents of the HVCT register without initiating an INTA 
or RETI cycle in the ICU. It also allows a programmer to change the BBBB field of the 
HVCT register. The bit map of the SVCT register is the same as for the HVCT register. 

During a write to the SVCT register, the four least significant bits are unaffected and 
the four most significant bits are written into both SVCT and HVCT (R 1 and RO). 

The SVCT register is continuously updated by the ICU. The four least significant bits 
always contain the vector value that would be returned to the CPU if an INTA or RETI 
cycle were executed. Therefore, when reading the SVCT register, the state of the CPU 
ST1 pin is used to select either pending interrupt data or in-service interrupt data. For 
example, if the SVCT register is read with ST1 = 0 (as for an INTA cycle), the VVVV 
field contains the encoded value of the highest priority pending interrupt. On the other 
hand, if the SVCT register is read with ST1 = 1, the VVVV field contains the encoded 
value of the highest priority in-service interrupt. 



Note: 
If the CPU ST1 output is connected directly to the ICU ST1 input, the vector read 
from SVCT is always the RETI vector. If both the INTA and RETI vectors are desired, 
additional logic must be added to drive the ICU ST1 input. A typical circuit is shown 
in Figure 13. In this circuit, the state of the ICU ST1 input is controlled by both the 
CPU ST1 output and the selected address bit. 

sn 
sn 

CPU A5 OR A6 leu 

Figure 13. Typical Circuit to Show RETI and INTA Vector Capability 

3.5.2.6.3 ELTG - Edge/Level Triggering Registers (R2, R3) 

The EL TG registers determine the input trigger mode for each of the 16 interrupt inputs. 
Each input is assigned a bit in this register pair. An interrupt input is level-triggered 
if its bit in EL TG is set to 1. The input is edge-triggered if its bit is cleared. At reset, 
all bits in EL TG are set to 1. 

Software interrupt positions are not affected by the state of their EL TG bits. 

3.5.2.6.4 TPL - Triggering Polarity Registers (R4, R5) 

The TPL registers determine the polarity of either the active level or the active edge 
for each of the 16 interrupt inputs. As with the EL TG registers, each input is assigned 
a bit. Possible triggering modes for the various combinations of EL TG and TPL bits 
are shown below. 

ELTG BIT 
o 
o 
1 

TPL BIT 
o 
1 
o 

TRIGGERING MODE 
Falling Edge 
Rising Edge 
Low Level 
High Level 

Software interrupt positions are not affected by their TPL bits. At reset, all TPL bits 
are set to O. 

Note: 
Hardware interrupt inputs connected to cascaded ICUs must have their TPL bits set 
to O. 

3.5.2.6.5 IPND - Interrupt Pending Registers (R6, R7) 

The IPND registers track interrupt requests that are pending but not yet serviced. Each 
interrupt position is assigned a bit in IPND. When an interrupt is pending, the 
corresponding bit in IPND is set. The IPND data are used by the ICU to generate 
interrupts to the CPU. These data are also used in polling operations. 

3-177 

II 
... 
'2 
:::) 

(5 .. ... 
c 
o 

(.) ... c. 
::s .. .. 
Q) ... 
c 

~ 
N 
o 
N 
N 
M 
i= 



II 
-I 
W 
N 
N 
o 
N 
:E 

The IPND registers are also used for requesting software interrupts. This is done by 
writing specially formatted data bytes to either IPND(L) or IPND(H). The formats differ 
for registers R6 and R7. These formats are shown below: 

IPND(L) (R6) - SOOOOPPP 
IPND(H) (R7)-S0001PPP 

Where: 
S Set (S = 1) or Clear (S = 0) 

PPP is a binary number identifying one of eight bits 

Note: 
The data read from either R6 or R7 are different from that written to the' register because 
the ICU returns the register contents rather than the formatted byte used to set the 
register bits. 

The ICU automatically clears a set IPND bit when the pending interrupt request is 
serviced. All pending interrupts in a register can be cleared by writing the pattern 
'X 1 XXXXXX' to it (X = don't care). To avoid conflicts with asynchronous hardware 
interrupt requests, the IPND registers should be frozen before pending interrupts are 
cleared. Refer to the Mode Control Register description for details on freezing the IPND 
registers. 

At reset, all IPND bits are set to O. 

Note: 
The edge sensing mechanism used for hardware interrupts in the TI32202W ICU is 
a latching device that can be cleared only by acknowledging the interrupt or by changing 
the trigger mode to level sensing. Therefore, before clearing pending interrupts in the 
IPND registers, any edge-triggered interrupt inputs must first be switched to the level
triggered mode. This clears the edge-triggered interrupts; the remaining interrupts can 
then be cleared in the manner described above. This applies to clearing the interrupts 
only. Edge-triggered interrupts can be set without changing the trigger mode. 

13.5.2.6.6 ISRV - Interrupt In-Service Registers (RS, R9) 

The ISRV registers track interrupt requests that are currently being serviced. Each 
interrupt position is assigned a bit in ISRV. When an interrupt request is serviced by 
the ICU, its corresponding bit is set in the ISRV registers. Before generating an interrupt 
to the CPU, the ICU checks the ISRV registers to ensure that no higher priority interrupt 
is currently being serviced. 

Each time the CPU executes an RETI instruction, the ICU clears the ISRV bit 
corresponding to the highest priority interrupt in service. The ISRV registers can also 
be written into by the CPU. This is done to implement the special mask priority mode. 

At reset, the ISRV registers are set to O. 

3.5.2.6.7 IMSK - Interrupt Mask Registers (R10, R11) 

3-178 

Each TI32202W interrupt position can be individually masked. A masked interrupt 
source is not acknowledged by the ICU. The IMSK registers store a mask bit for each 
of the ICU interrupt positions. If an interrupt position's IMSK bit is set to 1, the position 
is masked. 



The IMSK registers are controlled by the system software. At reset, alllMSK bits are 
set to 1, disabling all interrupts. 

3.5.2.6.8 CSRC - Cascaded Source Registers (R12, R13) 

The CSRC registers track any cascaded interrupt positions. Each interrupt position 
is assigned a bit in the CSRC registers. If an interrupt position's CSRC bit is set, that 
position is connected to the INT output of another TI32202W ICU, i.e., it is a cascaded 
interrupt. 

At reset, the CSRC registers are set to O. 

Note: 
Only the Master ICU should have any CSRC bits set. If CSRC bits are set in a cascaded 
ICU, incorrect operation results. 

3.5.2.6.9 FPRT - First Priority Registers (R14, R15) 

The FPRT registers track the ICU interrupt position that currently holds first priority. 
Only one bit of the FPRT registers is set at one time. The set bit indicates the interrupt 
position with first (highest) priority. 

The FPRT registers are automatically updated when the ICU is in the auto-rotate mode . 
The first priority interrupt can be determined by reading the FPRT registers. This 
operation returns a 16-bit word with only one bit set. An interrupt position can be 
assigned first priority by writing a formatted data byte to the FPRT(L) register. The 
format is shown below: 

7 6 5 4 3 2 o 
x x x x F F F F 

Where: 
XXXX Don't Care 

FFFF = A binary number from 0 to 1 5 indicating the interrupt 
position assigned first priority. 

Note: 
The byte above is written only to the FPRT(L) register. Any data written to FPRT(H) 
is ignored. 

At reset the FFFF field is set to 0, thus giving interrupt position 0 first priority. 

3.5.2.6.10 MCTL - Mode Control Register (R16) 

The contents of the MCTL set the operating mode of the TI32202W ICU. The MCTL 
bit map is shown below. 

7 6 5 4 3 2 1 0 

I CFRZ I COUTO I COUTM I CLKM I FRZ I unused I NTAR I T16N81 

3-179 

II 
... 
'2 
::> 
'0 ... ... 
c 
o 

(,.) ... 
a. 
~ ... ... 
Q) ... 
c 



II 
::! 
w 
N 
N 
o 
N 

~ 
::l ,... 
CD .., .., 
t: 

"C ,... 
(") 
o 
::l ,... .., 
2. 
c 
::l 
;:;: 

CFRZ Determines whether or not the TI32202W counter readings are frozen. When 
frozen, the counters continue counting but the LCCV and HCCV registers 
are not updated. Reading of the true value of LCCV and HCCV is possible 
only while they are frozen. 

CFRZ = 0, then LCc:V and HCCV are not frozen 
CFRZ = 1, then LCCV and HCCV are frozen 

COUTO Determines whether the COUT/SCIN pin is an input or an output. COUT/SCIN 
should be used as an input only for testing purposes. In this case an external 
sampling clock must be provided otherwise hardware interrupts will not be 
recognized. 

COUTO = 0, then COUT/SCIN is Output 
COUTO = 1, then COUT/SCIN is Input 

COUTM When the COUT/SCIN pin is programmed as an output (COUTO = 0), this 
bit determines whether the output signal is in pulsed form or in square wave 
form. 

CLKM 

FRZ 

NTAR 

COUTM = 0, then Square Waveform 
COUTM = 1, then Pulsed Form 

Used only in the 8-bit bus mode. This bit controls the clock wave form on 
any of the pins GO/IRO, ... ,G3/IR6 programmed as counter output. 

CLKM = 0, then Square Waveform 
CLKM = 1, then Pulsed Form 

Freeze Bit. In order to allow a synchronous reading of the interrupt pending 
registers (IPND), their status may be frozen, causing the ICU to ignore 
incoming requests. This is of special importance if a polling method is used. 

FRZ = 0, then IPND not frozen 
FRZ = 1, then IPND frozen 
Determines whether the ICU is in the auto-rotate or fixed-priority mode. In 
auto-rotate mode, the interrupt source at the highest priority position, after 
being serviced, is automatically assigned lowest priority. In this mode, the 
interrupt in service always has highest priority and nesting of interrupts is 
therefore inhibited. 

NTAR = 0, then Auto-Rotate Mode 
NT AR = 1, then Fixed Mode 

T16N8 Controls the data bus mode of operation. 

T16N8 = 0, then 8-Bit Bus Mode 
T16N8 = 0, then 16-Bit Bus Mode 

At reset, all MCTL bits except COUTO, are reset to O. COUTO is set to 1. 

3.5.2.6.11 OCASN - Output Clock Assignment Register (R17) 

3-180 

Used only in the 8-bit Bus Mode. The four least significant bits of this register control 
the output clock assignments on pins GO/IRO, ... ,G3/IR6. If any of these bits is set 



to 1, the clock generated by either the H-Counter or the H + L-Counter will be output 
to the corresponding pin. The four most significant bits of OCASN are not used. At 
Reset, the four least s~gnificant bits are set to O. . 

Note: 
The'interrupt sensing mechanism on pins GO/IRO, ... ,G3/IR6 is not disabled when any 
of these pins is programmed as clock output. Thus, to avoid spurious interrupts, the 
corresponding bits in register IPS should also be set to zero. 

3.5.2.6.12 CIPTR - Counter Interrupt Pointer Register (R 18) 

The CIPTR register tracks the assignment of counter outputs to interrupt positions. 
A bit map of this register is shown below. 

7 6 

I H I H 

. Where:' 
HHHH 

LLLL 

Note: 

5 4 3 2 o 
H H L L L L 

A 4-bit binary' number identifying the interrupt position 
assigned to the H-Counter (or the H + L-Counter if the 
counters are concatenated). 
A 4-bit binary number identifying the interrupt position 
assigned to the L-Counter: 

Assignment of a counter output to an interrupt position also requires control bits 
to be set in the CICTL register. If a counter output is assigned to an interrupt 'position, 
external hardwaret interrupts at that position are ignored. 

At reset, all bits in the CIPTR are set to 1. (Thi$ means both counters are a~signed 
to interrupt position 15.) 

3.5.2.6.13 POAT - Port Oata Register (R19) 

Used only in the 8-bit Bus Mode. This register is used to input or output data through 
any of the pins GO/IRO, ... ,G 7 /IR 14 programmed as I/O ports by the IPS register. Any 
pin programmed as an output delivers the data written into POAT. The inpu.t pins ignore 
it. Reading POAT provides the logical value of all I/O pins, INPUT and OUTPUT. 

3.5.2.6.14 IPS - Interrupt/Port Select Register (R20), 

Used only in the 8-bit Bus Mode. This register controls the function of the pins 
GO/IRO, ... ,G7/IR14. Each of these pins is individually programmed as an I/O port, if 
the corresponding' bit of IPS is 0; as an interrupt source, if the corresponding bit is 
1. The assignment of the H-Counter output to GO/IRO, ... ,G3/IR6 by means of reg. 
OCASN overrides the assignment to these pins as I/O ports or interrupt inputs. 

At Reset, all the IPS bits are set to1 . 

Note: 
Whenever a bit in the IPS register is set to zero, to program the corresponding pin 
as an 110 port, any pending inte~rupt on the corresponding interrupt position will be 
cleared.' . 

3-181 

II 

~ 
N 
o 
N 
N 
M 
i= 



II 

:::J 
r+ 
CD 
~ 
~ 

C 
"C 
r+ ' 

o 
o 
:::J 
r+ 
~ 

~ 
C 
:::J 
;::;: 

3.5.2.6.15 PDIR - Port Direction Register (R21) 

Used only in th~ 8-bit bus mode. This register determines the direction of any of the 
pins GO/IRO, ... ,G7/IR14 programmed as 1/0 ports by the IPS register. A logic 1 indicates 
an input, while a logic 0 indicates an output. 

At Reset, all the PDIR 'bits are set to 1. 

3.5.i.6.16 CCTL - Counter Control Register (R22) 

3-182 

The CCTL, register controls the operating modes of the counters. A bit map of CCTL 
is shown below. . 

7 6 5 4 3 2 1 0 

CCON 

CFNPS 

Determines whether the counters are independent or concatenated to form 
a single 32-bit counter (H + L-Counter). If a 32-bit counter is selected, 
the bits corresponding to the H-Counter will control the' H + L-Counter, 
while the bits corresponding to the L-Counter are not used. 

CCON = 0, then Two 16-bit Counters 
CCON =1, then One 32-bit Counter 

Determines whether the external clock is prescaled or not. 

CFNPS = 0, then Clock Prescaled (divided by 4) 
CFNPS = 1, then Clock Not Prescaled. 

COUT1 & These bits are effective only when the COUT/SCIN pin is programmed 
COUTO as an output (COUTO bit in reg. MCTL is 0). Their logic levels are decoded 

to providedifferent outputs for COUT/SCIN, as detailed in the table below: 

COUT1 COUTO 'COUT/SCIN Output Signal 
0 0 Internal Sampling Oscillator 
0 1 Zero Detect Of L-Counter 
1 0 Zero Detect Of H-Counter 
1 1 Zero Detect Of H + L-Couhter 

If the H- and L-Counters are not concatenated and COUT1/COUTO are both 1, the 
COUT/SCIN pin is active when either counter reaches zero. 

CRUNH Determines the state of either the H-Counter or the H + L-Counter, 
depending upon the status of CCON. . 

CRUNH = 0, then H-Counter or H + L-Counter Halted 
CRUNH = 1, then H-Counter or H + L-Counter Running 

CRUNL Effective only when CCON = O. This bit determines whether the L-Counter 
is running or halted. 

CRUNL 0, then L-Counter Halted. 
CRUNL = 1, then L-Counter Running 



CDCRH Effective only when CRUNH = 0 (Counter Halted). This bit is the single cycle 
decrement signal for either the H-Counter or the H + L-Counter. 

CDCRH = 0, then No Effect 
CDCRH = 1, then Decrement H-C,ounter or H + L-Counter 

. CDCRL Effective only when CRUNL = 0 and CCON = O. This bit is the single cycle 
decrement signal for the L-Counter. 

CDCRL 0, then No Effect 
CDCRL 1, then Decrement L-Counter 

Note: 
The bits CDCRL and CDCRH are set when a logic 1 is written into them, but they are 
automatically cleared after the end of the write operation. This is needed to accomplish 
the decrement operation. Therefore, these bits always contain 0 when read. 

Reset does not affect the CCTL bits. 

3.5.2.6.17 CICTL - Counter Interrupt Control Register (R23) 

The CICTL register controls the counter interrupts and records counter interrupt status. 
Interrupts can be generated from either of the 16-bit counters. When the counters 
are concatenated, the interrupt control is through the H-Counter control bits. In this 
case the CIEL bit should be set to zero to avoid spurious interrupts from the L-Counter. 
A bit map of the CICTL register is shown following. 

'7 6 5 .4 3 2 1 0 

I CERH I CIRH I CIEH I WENH I CERL I CIRLI CIEL I WENL I 
CERH 

CIRH 

CIEH 

H-CounterError Flag. This bit is set (1) when a second interrupt request from 
the H-Counter (or H + L-Counter) occurs before the first request is 
acknowledged. . 

H-Counter Interrupt Request. This bit is set (1) when an interrupt is pending 
from the H-Counter (or H + L-Counter). It is automatically reset when the 
interrupt is acknowledged. 

H-Counter Interrupt Enable. When it is set, the H-Counter (or H + L-Counter) 
interrupt is enabled. 

WENH H-Counter Control Write Enable. When WENH is set to 1, bits CERH, CIRH, 
and CIEH can be written. 

CERL L-Counter Error Flag. This bit is set to 1 when a second interrupt request 
from the L-Counter occurs before the first request is acknowledged. 

CIRL L-Counter Interrupt Request. This bit is set to 1 when an interrupt is pending 
from the L~Counter. It is automatically reset when the interrupt is 
acknowledged. 

CIEL L-Counter Interrupt Enable. When this bit is set (1), the L-Counter interrupt 
is enabled. 

3-183 

II 
.... 
'2 
;:) 

'0 ... .... 
c 
o 

CJ 
.... c. 
:::s ... ... 
Q) 

'.5 



WENL L-Counter Control Write Enable,. When WENL is set to 1, bits CERL, CIRL, 
and CIEL can be written. 

Note: " 
Setting the write enable bits (WENH or WENL) and writing any of the other CICTL 
bits are concurrent operations.-That is, the ICU will ignore any attempt to alter CICTL 
bits if the proper write enable ,bit is not set, in the data byte. 

At reset, all CICTL "bits are set to O. However, if the counters are running, the bits 
CIRL, CERL, CIRH, and CERH may be set again after the reset signal is removed. 

. , 

3.5.2.6.18 LCSV/,HCSV - L-Counter Starting Value/H-Counter Current Value Registers (R24, 
R25, R26, and R27) , 

The LCSV and HCSV registers store the start valu~s for the L-Counter and H-Counter, 
respectively. Each time a counter reacheszero, the start value is automatically reloaded 
from either LCSV or HCSV, one clock cycle after' zero count is reached. Loading LCSV 
or HCSV from the CPU must be synchronized to avoid writing the registers while the 

El 
reloading of the counters is occurring. One method is to halt the counters while the 
regist'ers a're loaded. 

When the 16~bit counters are concatenated, the LCSV and HCSV registers hold the 
32-bit start count, with the least significant byte in R24 and the most significant byte 
in R27. 

::! 
eN 
N 
N 
o 
N ,:e 

(") 
o 
;:, 
r+ ... 
9-
c 
;:, 
;:;: 

3.5.2.6.19 LCCV/HCCV - L-Counter CurrentValue/H-Counter Current Value Registers (R28, 
R29, R30, and R31) 

The LCCV .and HCCV registers hold the current value of the counters. If the. CFRZ 
bit in the MCTL register is reset (0), these registers are updated on each clock cycle 
with the current value of the counters. LCCV and HCCV can be read only when the 
counter readings are frozen (CFRZ bit in the MCTLregister is 1). They can be written, 
only when the counters are halted (CRUNL and/or CRUNH bits in the CCTL register 
are 0). This last feature allows new initial count values to be loaded immediately into 
the counters, and can be, used during initialization to avoid long initial counts~ 

When the 16-bit counters are concatenated, the LCCV and HCCV registers hold the 
32-bit current value, with the least significant byte in R28 and the most significant 
byte in R31. 

3.5.2.6,.20 Register Initialization 

3-184 

Figure l4 shows a recommended initialization procedure for the ICU that sets up all 
the ICU registers for proper operation. 



HALT COUNTERS 
BY CLEARING 

BITS CRUNL AND 
CRUNHIN 
REG. CCTL 

WRITE COUNTER'S 
STARTING VALUES 

INTO LCCV AN 0 . 
HCCV TO AVOID 

LONG INITIAL 
COUNTS 

NO 

NO 

RESET COUTO BIT 
IN MCTL TO 

PROGRAM COUT/SCIN 
PIN AS AN OUTPUT 
AND ENABLE THE 

INTERNAL INTERRUPT 
SAMPLING CLOCK 

START COUNTERS '" 
BY SETTING BITS 
CRUNL AND/OR 

CRUNH IN REG., CClL 

Figure 14. Recommended leU's Initialization Sequence 

NO 

NO 

3-185 

II 

... 
Co 
~ ... ... 
Q) ... 
s::: -

.3: 
N 
o 
N 
N 
M 
i= 



II 

n 
o 
::s 
r+ 
"'t 

2.. 
c 
::s 
;:;: 

3-186 



3.6 ,T132201 Timing Control Unit (TCU) 

3.6.1 Power' and Grounding 

The TI32201 requires a single + 5-v power supply, applied to pin 24 (VCC). See the' 
recommended operating characteristics in the TI32201 data sheet .. ' The logic Ground 
(GND) pin 12 is the common terminal for the TeU. 

A 0.1-J.lF cera~ic decoupling capacitor must be connected across Vee and GND as 
close to the TCU as pos~ible. 

3.6.2 Crystal Oscillator Characteristics 

The TI32201 has a "Pierce" -type oscillator. Connections of the crystal and bi,as 
components to XIN and XOUT are shown in Figure 1. It is important that the crystal 
and the RC components be mounted in close proximity to the XIN, XOUT, and VCC 
pins to keep' printed circuit trace lengths to an absolute minimum. 

Typical Crystal Specifications: 
Type ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. At-Cut 
Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.005% at 25 De 
Stability .................................. 0.01 % from ODC to 70 DC 
Resonance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Fundamental (parallel) 
Capacitance ................................ '.' . . . . . . . . . . . .. 20 pF 
Maximum Series Resistance ............. '. . . . . . . . . . . . . . . . . . . . . .. 50 n 

VCC 

.l-. 30 pF ,. r"' 

XOUT 
(14) ... CRYSTAL 

FREQUENCY R 
(MHz) (OHM) 

Tl32201 C 
TCU 

;;;.- 6-12 470 
12-18 220 
18-24 100 
24-30 47 

XIN 
(13) 

Figure 1. Crystal Connection 

3-187 

II 
.... 
'2 
;:) 

'0 ... .... 
c: 
o 
U 
C) 
c: 
'E 
i= 
~ 

o 
N 
N 
M 
i= 



II 

-i 
3' 
5' 
cc 
(') 
o 
::l 
r+ ... 
2-
c 
::l 
;;" 

3.6.3 Clocks 

3.6.4 

. The TI32201 TCU has four clock output pins. The ClK 1 and ClK2 clocks are required 
by the TI32000 family microprocessor CPUs. These clocks are nonoverlapping as 
shown in Figure 2. ' 

Each rising edge of ClK1 defines a transition in the timing state of the CPU. 

ONE 

, ~ T-STATE-.j 

CLK1 

CLK2 

NONOVERLAPPING 

Figure 2. ClK 1 and ClK2 Clock Signals 

As the TCU generates the various clock signals with very short transition timings, it 
is recommended that the conductors carrying ClK 1 and ClK2 be kept as short as 
possible. It is also recommended that only the TI32000 CPU and, if used, the MMU 
(Memory Management Unit) be connected to the ClK1 and ClK2 clocks. In addition 
to the CPU and MMU, 25-pF ceramic capacitors from these pins to ground are 
recommended as they provide a betterVOH on the outputs. These capacitors should 
be mounted close to the TCU to 'minimize trace inductances. ' 

CTTl is a TTL compatible clock signal which runs at the same frequency as ClK 1 
and'is closely balanced with it. CTTL is intended for driving TTL loads . 

FClK is also a TTL compatible clock, running at the frequency of XIN input. This clock 
is also intended for driving TTL lo'ads and has a frequency that is twice the Crfl clock 
frequency. The exact phase relationship between ClK 1, ClK2, CTTl, ahd FClK can 
,be found in the TI32201 data sh~et. 

Resetting 

The TI32201 TCU provides c;:ircuitry to meet the reset requirements of the TI32000 
family CPUs. If the Reset Input line, RSTI is pulled low, the TCU asserts RSTO which 
resets the TI32000 CPU. This Reset Output may also be used as,a system reset signal. 
Figure 3 illustrates the reset connections for a non-Memory-Managed system. Figure 4 
illustrates the rese't connections for a Memory-Managed system. ' 

3.6.5 Synchronizing Two or More TCUs 

3-188 

During reset, (when RSTO is low), one or more TCUs can be synchronized with a 
reference (Master) TCU. The RWEN/SYNC input to the slave' TCU(s) is used for 
synchronization. The Slave TCU samples the RWE'i\i/SYNC 'input on the rising edge 



VCC 

r-------,· 
I I 

TCU 
TI32201 

CPU 
TI32016T 

I RESET XJ-+---ir-.... -:-.... --e~ ..... -a RSTI RSTO D---"II...--a RST/ABT 
. I I 
L _______ J 

EXTERNAL RESET 
(OPTIONAL) 

RESET SWITCH 
(OPTIONAL) 

~50 p.s 

Figure 3. Recommended Reset Connections 
(Non-Memory Managed System) 

RESET SWITCH 
(OPTIONAL) 

VCC 

TCU 
TI32201 

2!:50 p.s 

MMU 
TI32082W 

Figure 4. Recommended Reset Connections 
(Memory-Managed System) 

SYSTEM REm 

CPU 
TI32916T 

of FCLK when RSTO is low and CTTL is high (see Figure 7). If RWEN/SYNC is sampled 
high, the phase of CTTL of the slave TCU is shifted by one XIN clock cycle. 

Two possible circuits for TCU synchronization are illustrated in Figures 5 and 6. It should 
be noted that when RWEN/SYNC is high, the RD and WR signals will be in the off
state (high-impedance state) at the slave TCU. 

In addition to synchronizing two or more TCUs, the RWEN/SYNC input can be used 
to "fix" the phase of one TCU to an external pulse. The pulse to be used must be 
high for only one rising edge of FCLK. Independent of CTTL's state at the FCLK rising 
edge, its'state following the next FCLK rising edge should be low. Figure 8 shows 
the. timing of this sequence. 

3.6.6 Bus Cycles' ' 

. In addition to providing all the necessary clock signals, the TI32201 TCU provides 
bus control signals to the system. The TCU senses the ADS signal from the CPU or 
MMU to start a bus cycle. The DDIN input sig'nal is also sampled to determine whether 
a Read or Write cycle is to be generated. In addition to RD and WR, other signals are 

~ , 

3-189 

II 
..... 
'2 
::> 
'0 -..... c: o 
c.J 
C') 
r::: 
'E 
i= 



11 
-I 
W 
I\) 
I\) 
o 

-I §. 
:r 
to 
C') 
o 
:::l ... .., 
!2. 
c 
:::l 
;::t' 

3-190 

. EXTERNAL 

CLOCK 

MASTER 
TCU 

,-(_1_3)-1> XIN CTTL (16) 

RSi'O 
(8) 

SLAVE 
TCU RWE'N/SYNC (13) 

XIN 
(2) 

Figure 5. Slave TCU Does Not Use RWEN During Normal Operation 

MASTER 
TCU 

(13) 
XIN CTTL 

(16) 

RWEN 

FiSTO 
(8) 

SLAVE 
TCU RWEN/SYNC 

EXTERNAL (13) 
XIN 

CLOCK (2) 

NOTE: When two or more TeUs are to be synchronized, the XIN of all the TeUs should be connected to an 
external clock source, For details on the external clock, see the TI32201 TeU data sheet. 

Figure 6. TCU Uses Both SYNC and RWEN 

provided: DBE and TSO. DBE is used to enable data buffers. ,The·leading edge of DBE 
is delayed a half clock period during Read cycles to avoid bus conflicts between data, 
buffers and either the CPU or the MMU. This is shown in Figure 9. 

The Timing State Output (TSO) is a general purpose signal that may be used by external 
logic for synchronizing to a System cycle. TSO is activated at the beginning of state 
T2 and~ returns to the high level at th~ beginning of state T 4 of the CPU cycle. TSO 
can be used to gate the CWAIT signal when continuous waits are required. Another 
application of TSO is the control of interface circuitry for dynamic RAMs .• 



FClK 

CTTl(s) " I \ I PHASE CHANGE .. 
RWENISYNC I \ I \ 

RiTI ~~ ____________________________ ~ ____ _ 

\~-------------------------------------
Figure 7. Synchronizing Two' TCUs 

Rsro 
------------------------------------------------lOW 

FClK 

(+) 
RWENISYNC r----\. 

__________ -J' ,~ ____________________________ _ 

CTTl(s) I 
Figure 8. Synchronizing One TCU to an External Pulse 

3.6.7 Bus Cycle Extension 

The TI32201 TCU uses the WAITn input signals to extend normal bus cycles. A normal 
bus cycle consists of four ClK1 clock cycles. Whenever one or more WAITn inputs 
to the TCU are activated, a bus cycle is extended by at least one ClK 1 clock cycle. 
The purpose is to allow the CPU to 'a'ccess slow memories or peripherals. The TCU 
responds to the Wait signals by pJlling the ROY signal low as long as Wait States 
are to be inserted in the bus cyde. 

There are three basic cycle extension modes provided by the TCU, as described in 
the following. . 

3.6.7.1 Normal Wait-States 

This is a normal Wait-State insertion mode. It is initiated by pulling CWAIT or any of 
the WAlTn lines low in the middle of T2. Figure 10 shows the timing diagam of a bus 
cycle when CWAIT is sampled high at the end of T1 and low in the middle of T2. 

The ROY signal goes low during T2 and remains low until CWAIT is sampled high by 
the TCU. ROY is pulled high by the TCU during the same ClK 1 cycle in which the 
CWAIT line is sampled high. 

3-191 

II 
.... 
·2 
::J 

"0 ... .... 
c 
o 
U 
C) 
c 
"E 
t= 



II 
::! 
Col) 
I\) 
I\) 
o 
~ 

'-f 
3" 
:j" 
to 
(") 
o 
:::l ..... .., 
st 
C 
:::l 
~. 

3-192 

CPU STATES 
TCU STATES 

CLK1 

ROY 

T1 
T1 

T2 
T2 

HIGH 

T3 
T3 

T4 
,T4 

NOTES: 1. The CPU and TCU view saine timing 'states (T-states) differently. For clarity. references to 
T-states will sometimes be followed by (TCU) or (CPU). (CPU) also implies (MMU). 

2. Arrows indicate when the lCU samples the input. 
3. RWEN is assumed low liill and WR enabled) unless specified differently. 
4. For clarity. T-states for both the TCI:) and CPU are shown above the diagrams. (See Note 1). 

Figure 9. B~sic TCU Cycle (Fast Cycle) 



CPU STATES 

TCU STATES 

ODiN 

WR 

RD 

D'BE 

CWAIT 

T1 

T1 

T2 

T2 

T3 ....... T3 

TCW ...... TCW 

T3 

T3 

T4 

T4 

Figure 10. Wait-State Insertion Using C~AIT (Fast Cycle) . 

II 
+" 
'2 
::J 

e· +" 
c: 
0 
U 
C) 
c: 
'E 
i= 

.'r'" 

0 
N 
N 
M 
i= 

3-193 



II 
-f 
W 
N. 
N 
'0 
-' 

-f 
3' 
S' 

CQ 

C') 
0 
:J .... ... 
~ 
C 
:J 
::;" 

3-194 

If any of the WAiTil signals are sampled low during T2 and CWAIT is high during the 
entire bus cycle, then theRDY Line goes low for 1 to 15 clock cycles, depending on 
the binary weighted value of WAITn .. If, for example, WAIT1 'and WAIT4 are sampled 
low, then five Wait-States will be inserted. This is shown in Figure 11. 

CPU STATES 

TCU STATES 

CLK1 

ADs' 

TsO 

Di5iN 

WR 

R5 

DBE 

CWAiT 

WAiTn 

ROY 

T1 T2 T3 

T1 T2 TW1 

T3 ........... T3 

TW2 ........ TWn 

T3 

T3 

Figure 11. Wait-State Insertion Using WAffrl (Fast Cycle) 

T4 

T4 



3'.6.7.2 Peripheral Cycle. 

This cycle is entered when the PER signal line is sampled low at the beginning ofT2. 
The TCU adds five Wait-States identified as TDO-TD4 into a normal bus cycle. The 
RD and WR signals are also reshaped so the setup and hold times for address and· 
data will be increased. The use of the PER signal may be necessary when interfacing 
with slower peripherals. Figure 12 shows the timing diagram of a peripheral cycle. 

3.6.7.3 Cycle Hold. 

If the CWAIT input is sampled low at the end of state T1 , the TCU will go into cycle 
hold mode and stay in this mode for as long as CWAIT is kept low. During this mode 
the control signals RD, WR, TSa, and DBE are kept inactive; RDY is pulled low, thus 
causing Wait-States to be inserted into the bus cycle. The cycle hold feature can be 
used in applications involving dynamk RAMs. A timing diagram showing the cycle 
hold feature is shown in Figure 13. 

CPU STATES 

Teu STATES 

elKl . 
....,j 

-

--

RO 

~ 
0-PER 

ROV 

T1 

T1 

~ 

Lf 

~ -, ... _ 

V//~ 
V././././.: 

T2 T3 T3 T3 

T2 TOO TOl T02 

n....: ~ ~ ~ 

\ 
, 

--- --- --- ---

1\--- ---

, 
'--- ---

-~ 1\ \ 

~ '// l/ ./ 'l' ./ .fi ~///h-
W/h ~///.//. V///// v///// 

\ 

T3 T3 

T03 'T04 

rL rL 

--- ---

T3 

T3 

rL 

~--. 

T4 

T4 

rL 

, 

~---

--- ---~ 

: ------ ---II 

r 
W/@ ~ V././///, ~ "/// 'l: ~/// "///./// 

I 

r-,. 

-

~ 

~ 
'/ 

Figure 12. Peripheral Cycle 

3-195 

II 

'l""" 

o 
C\I 
C\I 
M 
t= 



II 
=! 
w 
N 
N 
0 
...lo 

-I 
3' 
5' 
to 

("') 
0 
::l ... ... 
2. 
C 
::l 
;:;: 

3.;.196 

CPU STATES 

TCU STATES 

i5i5iN 

WR 

R5 

DB'E 

PER. 

CWAiT 

T1 T2 T3 T3 T3 T4 

T1 . TH ........... TH T2 T3 T4 

Figure 13. Cycle Hold Timing Diagram 



3.6.8 Bus Cycle Extension Combinations 

3.6.9 

/ 

Any combination of the TeU input signals used for extending a bus cycle can be 
activated at one time. The TeU will honor all of the requests according to a certain 
priority scheme. A cycle hold request is assigned top priority. It follows a peripheral 
cycle request, and then eWAIT and VJAiTr1 respectively. 

If, for example, all the' input signals eWAlT, PER, and WAITn are asserted at the 
beginning of the cycle, the TeU will enter the cycle hold mode. As soon as eWAIT 
goes high, the input signal PER is sampled to determine whether a p~ripheral cycle. 

,is requested. 

Next, the TeU samples eWAIT again and WAITn to check whether additional Wait
States have to be inserted into the bus cycle. This sampling point depends on whether 
PER was sampled high or low. If PER was sampled high, then the sampling point w.ill 
be in the middle of the TeU state T2, (Figure 16), otherwise it will occur three clock 
cycles later (Figure 17). Figures 14 through 17 show the timing diagrams for different 
combinations of cycle extensions. 

Overriding WAITn Wait-States 

The TeU handles the WAITn Wait-States by means of an 'internal counter that is 
reloaded with the binary value corresponding to the state of the WAITn inputs each 
time eWAIT is sampled low, and is decremented when' eWAIT is high. 

This allows one to either extend a bus cycle by a predefined number of clock cycles, 
or prematurely terminate it. To terminate a bus cycle, for example, eWAIT must be 
asserted for at least one clock cycle; and the WAITn inputs must be forced to their 
inactive state. 

At least one Wait-State is' always inserted when using this procedure as a result of 
eWAIT being sampled low. Figure 18 shows the timing diagram of a prematurely 
terminated bus cycle where eleven Wait-States were inserted. 

3-197 

.~ 
c::: 

::J 

"0 ... .... 
c::: 
o 

U 
en 
c::: ·e 
t= 



CPU STATES 

TCU STATES 

ClK1 -: 
..:.J 

-
ADS 

TSO 

WR 

I AD 

~ DBE 
w 
N 
N 
0 PER 
~ ~ 

'l-

-I 
3' 
:i' CWAiT 
(C 

n 
0 
:J' WAiTi .... .. 
2-
c 

WAiT2 :J 
;:::;" 

WAiT4 

WAifS 

~ 
VALUE 

SAMPLED 

ROY 

, 3-198 

T1 T2 T3 T3 T3 ..... T3 T3 

T1 T2 TCW TCW TW1 ..... TW10 T3 

ru ru ru ru ru fu ~ 
rv "., 

\ ,,,. 
r 

~r 
" 

HIGH 

I 

\ r, ., 

\ ~r 
" 

~ r,. 

~ .~ ~ ~ ~ ~ ~ '////.. ','//// .. ... ... + + ~ .. 
\ I " 

.. .. rr , 

J .. ~ I, .... ., 

J . 
~ .. 

I . , 
I" 
" • ~ 
,., 
'7 

11112 10102 
1510 1010 

\ I" I 
.'" 

Figure 14. Fast Cycle with 12 Wait-States 
(2 CWAIT and WAIT10) (Read Cycle) 

T4 • 

T4 

~ 

, 

~ 

I 

~ 

CL. 

~ 



CPU STATES 

TCU STATES 

ClK1 

WAiTn 
VALUE 

SAMPLED 

ROY 

. 
...,j 

-

~ 
'/' 

T1 T2 T3 T3 T3 T3 . T3 ..... T3 T3 T3 T3 

T1 T2 TOO T01 T02 TCW TW1 ... TW5 T03 T04 T3 

FL FL rL FL FL rL FL rL ru 
rv I ......... 

1"7 

~ I,. .... 
~, 

~ I ........ 
" 

I,., 
~, 

HIGH 

\ I...., .. 
" 

~ I,,, 

~ ~ ~ ~ ~ ~ ~ ~ ~ 'l//A '/ 

• .. .. • 1 ... _ • 

U 
~, 

lOW • I" ., • [,. .... 
~ .... 

HIGH • lOW I .... , 
", • I .... , 
' .... 

HIGH 

0101 2 
510 

\ v ..... 
1"'" 

Figure 15. Peripheral Cycle with Six Wait-States 
(1 CWAIT and WAITS) (Write Cycle) 

FL F\. 

r-

~ ~ 

r .....-

3-199 

t-
O 
N 
N 
('t) 

i= 



., 
...t 

-

~ 
~ 

-

3-200 

T1 T2 T3 T3 T3 T3 T3 

T1 TH TH T2 TCW TW1 TW2 

~ ru FU ru ru ru rL 
rv 

.~ 

HIGH 

1\ 

\ 
~ 

V/h~~~ ~~ W/4 ~ ~ ~ 
'/'////. 

W///h r-0'l'/// V///A rLLL/Z V/§~ 

.~ + + + + + + 

" v \-V 
HIGH 

LOW + • HIGH 

+ 
HIGH 

\ 1 
Figure 1.6. Cycle Hold with Three Wait-States 

(1, CW Ali" and WAIT2) (Read Cycle) 

T3 

T3 

ru 

'/'///h 

W~ 

T4 

T4 

ru 
I 

~ 

J 
~ 
~~ 

... 

.... 
f-

~ 

~ ~ 



CPU STATES 

TCU STATES 

T1 

T1 

T2 T3 T3 T3 T3 T3 T3 T3 

TH ..... TH T2 TOO T01 T02 T03 T04 

Figure 17. Cycle Hold of a Peripheral Cycle 

T3 

T3 

T4 

T4 

3-201 



I 
-t 
W 
N 
N 
0 .... 
-t 
3" 
:r 
cc 
(") 
0 
::J ,.. ... 
~ 
C 
::J 
;::;'" 

3-202 

CPU STATES T1 T2 

TCU ST~TES T1 T2 

ClK1 ru tL -.... 

ADS 
-rv 

TSO ,~ 

WR \ 
AD 

i5iiE '\ 
~ 

' PER I \ 
+ + 

CWAiT 

+ 
WAiTi Iy 
WAi'f2 

• WAiT4 

~ 
WAITs 

~ 
vALUE 

SAMPLED 

1011 2 
1110 . 

ROY 

T3 T3 T3 T3 

TW 1 TW2 TW3 TCW 

ru FU rt..J ru 

HIGH 

+ ~ + ~-

'U 
~ 

\ n 
~ 

\ 
, 

~ 
00002 

./ 

T3 

T3 

ru 
T4 

T4 

tt.J 

r 
1/ 

J 

Figure 18. Overriding WAITn Wait-States (Write Cycle) 

r-
~ 

~ 



TI32000 Family 

Data Sheets 

4-1 



4-2 



• High-Speed NMOS Technology 

• 32-Bit Architecture and Implementation with 
24-Bit Address 

• 16-Megabyte Uniform Addressing Space 

• Powerful Instruction Set with: 
General 2-Address Capability 
Very High Degree of Symmetry 
Addressing Modes Optimized for High-

Level Language References 

• TI32000 Coprocessor Support 

• Single 5-V Operation 

• Direct Replacement for National 
Semiconductor NS32032-10 

description 

The T132032T-2 is a monolithic high
performance high-speed NMOS microprocessor 
designed to function as a central processing unit 
(CPU) in the TI32000 microprocessor family; 
The device has been· designed primarily to 
support microprocessor users who require the 
ability to use a large addressing space for large 
programs and/or large data structures. Because 
large programs must realistically be generated 
and maintained in high-level ·Ianguages, the 
TI32000 family architecture provides for very 
efficient compilation while remaining easy to 
program at the assembler level. The TI32000 
family architecture in conjunction with the 
TI32082 Memory Management Unit (MMU) 
provides full support for demand-paged virtual 
memory management. High-performance 
floating-point instructions are provided by the 
TI32081 Floating Point Unit (FPU). 

The TI32032T is characterized for operation 
from OOC to·70oC. 

T132032T·2 
HIGH·PERFORMANCE MICROPROCESSOR 

ST2 

ST1 
STO 

iIO 
NMI 

iN'f 
GNOB2 

031 

Vec 
030 
029 
028 
027 
026 
025 
024 

02875. APRIL 1985 

FK OR FN ... CHlp·CARRIER PACKAGE 

(TOP VIEW) 

IUIf-ltD N a..-.J<t 

~~~I~~~~~~~~~~~I~~~ z~Eozzuu~~zzkb~zz 

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

9 8 7 6 5 4 3 2 16867666564636261

60 NU
59 BEO

58 BEl

57 BE2

56 8E3
55 HLOA
54 HOLD
53 ROY
52 GNOBI

51 GNOL

50 BBG

49 ADO
48 A01
47 A02
46 A03
45 A04

A023 26 44 ADS

1 2 3
A
B

~, . ' ' .
C
0

F
G
H
J
K • Ie, •

v~~~~nn~~~~~~~~~~

4 6

.

PIN GRID ARRAY PACKAGE

(TOP VIEW)

8 9 1011 PIN. NAME

A2 NU . '., . A3 PFS
A4. NU

AS ClKl

AG ADS

A7 NU

A8 ArSPC

A9 RSTIA8T

AID NU

81 ST2 . ,~~ .. 82 ST1

83 ST3

84 DDIN

85 NU

86 ClK2

87 UIS

88 NU

89 fiSm
810 NU

Bll NU

Cl STO

C2 iTO
Cl0 lmi
Cll iiEi
Dl NMi
D2 . iNT
Dl0 BEi
Dll an
El GND82

E2 D31

El0 HTIiA
Ell mms
Fl VCC
F2 D30

PIN

FlO

Fll

Gl

G2

Gl0

GIl

fll

fl2

fll0

fill

Jl

J2

Jl0

Jll

K 1

K2

K3

K4

K5

KG

K7

K8

K9

Kl0

Kll

L2

L3

L4

LS

l6

L7

L8

L9

LlO

NAME

RDY

GND81

D29

D28

GNDL

88G

D27

D26

ADO

ADI

D25

D24

AD2

AD3

AD23

AD21

AD19

AD17

AD15

AD13

ADll

AD9

AD7

AD4

ADS

AD22

AD20

AD18

AD16

AD14

AD12

AD10

AD8

AD6

NU- Reserved for future use. Make no external connection.

PRODUCT PREVIEW
This document contains Information
on a product under development.
Texas Instruments reserve. the right
to change or discontinue this product
without notice.

TEXAS ..
INSTRUMENTS

Copyright © 1984. Texas Instruments Incorporated

POST OFFICE BOX 225012 e DALLAS. TEXAS 75265

4-3

C/)
(1)
(1)

J:
en

CO
CO
o

c
Q)
Q)

en
::r
CD
CD en

4-4

T132032T·2
HIGH·PERFORMANCE MICROPROCESSOR

functional block diagram

ADD/DATA CONTROLS & STATUS

t t
~ BUS INTERFACE CONTROL , ..

TRUCTIONS 32

MICROCODE ROM
AND

a·BYTE CONTROL LOGIC
QUEUE

R ,I • INSTRUCTION ..
DECODER I

en
;:)
III

CIID DISPLACEMENT AND .J

IMMEDIATE EXTRACTOR 'It CFG REGISTER Z
II:
w ...
~ ...
~

REGISTER SET N
M

0 INTBASE

0 SB -++- WORKING

0 FP REGISTERS

0 SP1·

O. SPO

+ + 0 PC

RO ' ..
R1 \ I R2 32·BIT

. R3 ALU

R4 I I
RS I
RS I ,
R7 I
I MOD I
L PSR I

t ____________ J

TEXAS ..
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

PIN

NO.

PIN GRID CHIP
NAME

ARRAY CARRIER

A6 1 Ai5'S

B6 2 ClK2

A5 3 ClK1

B5 4 NU

A4 5 NU

B4 6 ODIN

A3 7 PFS

B3 8 ST3

A2 9 NU

B1 10 ST2

B2 11 ST1

C1 12 STO

C2 13 IlO

01 14 NMI

02 15 INT

E1 16 GNDB2

E2 17 031

F1 18 VCC
F2 19 030

G1 20 029

G2 21 028

H1 22 027

H2 23 026

J1 24 025

J2 25 024

K1 26 AD23

L2 27 AD22

K2 28 AD21

L3 29 AD20

K3 30 AD19

L4 31 AD18

K4 32 AD17

L5 33 AD16

K5 34 AD15

L6 35 AD14

K6 36 AD13

L7 37 AD12

K7 38 AD11

LB 39 AD10

KB 40 AD9

L9 41 AD8

K9 42 AD7

L10 43 AD6

K11 44 AD5

I/O

0

I

I

0

0

0

0

0

0

0

I

I

110

110

110

110

110

110

110

110

110

110

110'

110

110

110

110

110

110

110

~ 110

110

110

110

110

110

110

110

110

T132032T·2
HIGH·PERFORMANCE MICROPROCESSOR

PIN FUNCTIONAL DESCRIPTION

DESCRIPTION

Address strobe output. Available to the system for address latch control. Indicates start of

a bus cycle by going low

Clock 2 input. One phase of a two-phase clock input

Clock 1 input. One phase of a two-phase clock input

Reserved for future use. Make no external connection.

Reserved for future use. Make no external connection.

Data Direction In output. Status signal that indicates the direction of data transfer during

a bus cycle. low for read. high for write

Program Flow Status output. low-going pulse indicates beginning of an instruction

execution.

Status bit 3 output. Bus cycle status code

Reserved for future use. Make no external connection.

Status bit 2 output. Bus cycle status code

Status bit 1 output. Bus cycle status code

Status bit 0 (least significant bitl output. Bus cycle status code

Interlocked Operation Output. When low. indicates that an interlocked instruction is being

executed

Nonmaskable Interrupt input. Nonmaskable interrupt request

Interrupt input. Maskable interrupt request

Buffer Ground 2. Ground reference for half of the on-chip drivers connected to output pins

Data bit 31 of the data bus

+ 5 V supply voltage

Data bit 30 of the data bus

Data bit 29 of the data bus

Data bit 28 of the data bus

Data bit 270f the data bus

Data bit 26 of the data bus

Data bit 25 of the data bus

Data bit 24 of. the data bus

Address bit 23. Multiplexed address/data information

Address bit 22. Multiplexed addressldata information

Address bit 21. Multiplexed addressldata information

Address bit 20. Multiplexed addressldata information

Address bit 19. Multiplexed addressldata information

Address bit 18. Multiplexed addressldata information

Address bit 17. Multiplexed address/data information

Address bit 16. Multiplexed addressldata information

Address bit 1 5. Multiplexed addressldata information

Address bit 14. Multiplexed addressldata information

Address bit 13. Multiplexed addressldata information

Address bit 12. Multiplexed address/ciata information

Address bit 11. Multiplexed addressldata information

Address bit 10. Multiplexed addressldata information

Address bit 9. Multiplexed addressldata information

Address bit 8. Multiplexed addressldata information

Address bit 7. Multiplexed addressldata information

Address bit 6_ Multiplexed addressldata information

Address bit 5. Multiplexed addressldata information

TEXAS ~
INSTRUMENTS

4-5

U) ...
CD
CD

.c:
en
C'a ...
C'a
C

c
D)
D)

en
:r
(1)
(1)
tJ)

4-6

11320321·2
HIGH·PERFORMANCE MICROPROCESSOR

PIN

NO.
NAME'

PIN GRID CHIP

ARRAY CARRIER

Kl0 45 AD4

Jll 46 AD3

Jl0 47 AD2

Hll 48 ADl

Hl0 49 ADO

G12 50 8BG

Gl0 51 GNDL

Fll 52 GNDBl

FlO 53 ROY

Ell 54 HOLD

El0 55 HLDA

Dll 56 BE3

Dl0 57 BE2

Cll 58 BEl

Cl0 59 BEO

Bll 60 NU

Al0 61 NU

Bl0 62 NU

A9 63 RST/ABT

B9 64 DS/FLT

A8 65 AT/SPC

B8 66 NU

A7 67 NU

B7 68 U/S

TIO

1/0

1/0

I/O

I/O

I/O

0

I

I

0

0

0

0

0

I

I

I/O

I/O

0

PIN FUNCTIONAL DESCRIPTION

DESCRIPTION
.'

Address bit 4. Multiplexed addressldata information

Address bit 3. Multiplexed address/data information

Address bit 2. Multiplexed address/data information

Address bit 1. Multiplexed address/data information

Address bit 0 (least significant bit). Multiplexed address/data information

Back-Bias Generator supply. Output of on-chip substrate voltage generator

Logic ground: Ground reference for on-chip logic.

Buffer Ground 1. Ground reference for half of the on-chip .drivers connectd to output pins.

READY input. When high. causes the CPU to terminate the bus cycle. when low. causes

the CPU to extend the current bus cycle to provide for a slower memory or peripheral

reference.

Hold request input. When low. causes the CPU to release the bus for DMA or

multiprocessing purposes.

Hold acknowledge output. Applied by th~ CPU in response to a HOLD input. Low level

indicates that the bus has been released for DMA or multiprocessing purposes.

Byte Enable 3 output. When low. (with BEO through BE2) enables data transfers on

individual bus bytes.

Byte Enable 2 output. When low. (when BEO. BE 1 and"EiE3i enables data transfers on

individual bus bytes.

Byte En.able 1 output. When low. (with BEO. BE2 and BE31 enables data transfers on

individual bus bytes.

Byte Enable 0 output. When low. (with BEl through BE31 enables data transfers on

individual bus bytes.

Reserved for future use. Make no external connection.

Reserved for future use. Make no external connection.

Reserved for future use. Make no external connection.

Reset/Abort input. If held low for one clock cycle and released. causes an abort

command. If held low for longer. than one clock cycle. initiates a reset.

Data Strobe/Float. Data strobe output or float command input. Function is selected by -- .
AT/SPC input.

Address Translation/Coprocessor Control. Used by the CPU as. the data strobe output for

coprocessor transfers. Used by coprocessors to acknowledge completion of an instruction.

Sampled on the trailing edge of reset pulse as address translation strap.

Reserved for future use. Make no external connectiof1.

Reserved for future use. Make no external connection.

User/Supervisor status output. When high. indicates user mode. 'When low. indicates

supervisor mode .

.. TEXAS ~
INSTRUMENTS

T132032T·2
HIGH·PERFORMANCE MICROPROCESSOR

absolute maximum ratings over recommended operating conditions (unless otherwise noted)

Supply voltage, VCC (see Note 1) .. 7 V
Input voltage range '. - 5 V to 7 V
Output voltage range ... - 5 V to 7 V
Continuous total dissipation at (or beiow) 70°C free-air temperature 1.5 W
Operating free-air temperature range, T A'. ooC to 70°C

NOTE 1: All voltage values are with respect to the common ground.

recommended operating conditions

MIN NOM MAX UNIT

Supply voltage, VCC 4.75 5 5,25 V

High-level input voltage, VIH
ClKl, ClK2 VCC-0.5 VCC+O.5

V
All other inputs 2 VCC+O.5

ClKl, ClK2 -0.5 0.3
V low-level input voltage, Vil

All other inputs -0.5 0.8

Operating free-air temperature, T A 0 70 °C

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)

PARAMETER TEST CONDITION MIN Typt MAX UNIT

VOH High-level output voltage ,IOH = - 4OO I'A 2.4 V

Val low-level output voltage' 10l = 2 mA 0,45 V

I AT/SPC VI = 0.4 V 50 1000

II. Input current I All other inputs ex~~
Vl = 0 to VCC ±20

I'A
ClK 1, ClK2, and AT ISPC

10(0ff) Off-state output current Va = 0.4 V to VCC ±20 I'A

ICC Supply current 10 - 0, T A - 25°C 180 300 mA

tAli typical values are at VCC = 5 V, TA = 25°C.

Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten
the symbols, the pin names t'lave been further abbreviated as follows:

AD
ClK1
ClK2
DDIN

A
C or C1
C2
DD

FClK
HlDA
HOLD
U/S

F
HA
HD
US

lowercase subscripts and their meaning are:

c cycle time (period)
dis disable time (H or l to Z)
en enable 'time (Z to H, or l)

f fall time
p propagation delay time

pwr supply voltage stable
rise time

su setup time
w pulse duration

Parentheses have been omitted except when required for separation of a final subscript representing special
conditions. The columns titled NSC SYMBOL show the symbols used by National Semiconductor for the
parameters shown in the, timing requirements and switching characteristics tables.

TExAs ~
INSTRUMENTS

II

4-7

II
c
Q)
Q)

·en
::T
CD
CD
tn

4-8

11320321·2
HIGH·PERFORMANCE MICROPROCESSOR

timing requirements OVer. recommended operating free·air temperature range (unless otherwise noted)

\ NSC
PARAMETER FIGURE

SYMBOL
MIN MAX UNIT

tsuO(RO) . Setup time, read data before ClK2! 2,11 tOls 10 ns

thO(RO) Hold time, read data after ClK 1 t 2,11 tOlh ·10 ns

tsuHOl Setup time, H(5[I5 low before ClK2! (see Note 3) 3,4 tHlOa 25 ns

thHO Hold time, ROIi5 low or high after ClK 1 t 3.4,5 tHlOh 0 ns

tsuHOH Setup time, HOm high before ClK2! 5 tHlOia 25 ns

tsuFlTl Setup time, Fl T low before ClK2! 6 tFlTa 25 ns

tsuFlTH Setup time, Fl T high before ClK2! 7 tFlTia 25 ns

tsuROY Setup time, ROY low or high before ClK2! 8, 9 tROYs 15 ns

thROY Hold time, ROY low or high after ClK 1 ! 8, 9 tROYh 0, ns

twsPC Pulse duration, SPC low at 0.8 V (both edges) 10 tsPCw 20 ns

tsuAT Setup time, Ai/SPt: low before ClK 1 t 13 tATs 1tcC

thAT Hold time, AT/SPC I,ow after ClKH 13 ' tATh 2tcC

trC Rise time, ClK 1 or ClK2 14 tClr 7 ns

tfC Fall time, ClKl or ClK2 14 tcu 7 ns

tcc Clock period 14 tcp 100 5000 ns

tw C1H Pulse du ration, ClK 1 high 14 tClh 0.5tcC-l0 ns

t w C2H Pulse duration,ClK2 high 14 tCLI 0.5tcc-l0 ns

Clock pulse asymmetry, twc 1 H-tw C2H tClwas ±5 ns

tCllC2H Nonoverlap time at 10% of ClK Hand ClK2t 14 tnOVl(l) 0 7 ns

tCllC2l Nonoverlap time at 10% of ClK2! and ClKl t 14 tnOVl(2) 0 7 ns

Nonoverlap asymmetry, tCl lC2H-tC12lCl H tnOVlas ±4 ns

tsuABT Setup time, ABT low before ClK2! 22,23 tABTs 20 ns

thABT Hold time, ABT low after ClK 1 t 22,23 tABTh 0 ns

tpwr Supply voltage stable (above 4.5 V) to RST high 24 tpWR 50 /lS

tsuRST Setup time, RST high beforeClK 1 ! 24, 25 tRSTs 20 ns

twRST Puis duration, RST low at 0.8 V (both edges) 25 tRSTw 64tcC

tsulNT Setup time, INT low b~fore ClK 1 ! 26 tiNTs 20 ns

twNMI Pulse duration, NMI low at 0.8 V (both edges) 27 tNMlw 70 ns

tlX-PFS
last operand transfer of an instruction to next

PFS clock cycle
28 tlXPF Otcc

NOTE 3: This setup time is necessary to ensure prompt acknowledgement via HlOA and the ensuing floating of the CPU off the buses.
The time from the receipt of the HOLD sig~al until the CPU floats is a function of the time HOLD signal goes low, the state of
the ROY input (in MMU systems), and the length of the current MMU cycle.

TEXAS ..
INSTRUMENTS

11320321·2
HIGH·PERFORMANCE MICROPROCESSOR

switching characteristics over recommended' ranges of supply voltage and operating' free-air
temperature, CL ~ 100 pF (unless otherwise noted)

NSC
PARAMETER FIGURE

SYMBOL
MIN MAX UNIT

taA Access time. ADO through AD23 after ClK 1 T 1 tAlv 50 ns

tvA Valid time. ADO through AD23 after elK1 t 1 tALI; 10 ns

taD
Access time. ADO through AD23 and

1 tDv 50 ns
D24 through D31 after ClK1t

tvD
Valid time. ADO through AD23 and

D24 through 031 after ClKl T
1 tDh 0 ns

taBE Access time. BED through BE3 after ClK2t 1 'BEv 45 ns

tvBE Valid time. BED thiough BE3 after ClK2t 1 tBEh 0 ns

taST Access time. STO through ST3 after ClK 1 t 1 tSTv 45 ns

tvST Valid time. STO through ST3 after ClK 1 t 1· tSTh 0 ns

tpADSl Propagation delay time. ClK 1 t to ADS low 1 tADSa 35 ns

tpADSH Propagation delay time. ClK2t to ADS high 1 tADSia 15 45 ns

twADS Pulse duration. ADS low at 0.8 V (both edges) 1 tADSw 35 ns

tpDSl Propagation delay time. ClK 1 T to DS low 1 tDSa 45 ns

tpDSH Propagation delay time. ClK 1 T to DS high 1 tDSia t 40 ns

tAV·ADSH Time interval. ADO through AD23 valid to ADS high 2 tAlADSs 25 ns

tdisA Disable time. ADO through AD23 after ClK 1 t (without MMU) 2 tAU 25 ns

tdisD Disable time. D24 through 031 after ClKl T (without MMU) 2 tADf 25 ns

taDD Access time. DDIN after ClK 1 T 2 tDDINv 65 ns

tvDD Valid time. ODIN after ClK 1 t 2 tDDINh 0 ns

tdisA Disable time. ADO through AD23 after ClK 1 t (HOLD low) 3 tAU 25 ns

tdisD Disable time. D24 through D31 after ClK 1 T (HOLD low) 3 tADf 25 ns

tdisADS Disable time. ADS after ClK 1 i (HOLD low) 3,4 tADSf 55 ns

tdisBE. Disable time. BED through BE3 after ClK 1 i (HOLD low) 3,4 tBEf 55 ns

tdisDD Disable time. ODIN after ClK 1 t (HOLD low) 3,4 tDDINf 55 ns

tpHAl Propagation delay time. ClK 1 i· to HlDA low 3,4 tHlDAa 75 ns

tpHAH Propagation delay time. ClK 1 i to HlDA high 5 tHlDAia 75 ns •

tenADS Enable time. A~S after ClK 1 i(HOlD high) 5 tADSr 55 ns

tenSE Enable time. BED through BE3 after ClK 1t(HOlD high) 5 tBEr 55 ns

tenDO Enable time. DDIN after ClK 1 T (HOLD high) 5 tDDINr 55 ns

t.jADSH·A Valid time. ADO through AD23 after ADSi 6 tAlADSh 10 ns

tdisA(l) Disable time. ADO through AD23 after ClK 1 T (with MMU) 6 tAlMf 25 ns

tdisD Disable time. D24 through 031 after ClK 1 i (with MMU) 6 tADMf 25 ns

tdisA(2) Disable time. ADO through AD23 after ClK 1 i (Fl T low) 6 tAU 30 ns

tdisDD Disable time. DDIN after Fl Ti 6 tDDINf 55 ns

tenDO Enable time. ODIN after Fl Ti 7 tDDINr 50 ns

tpSPCl Propagation delay time. ClK1t to SPC low 10 tSPCa . 35 ns

tpSPCH Propagation delay time. ClK 1 t to SPC high 10 tSPCia 35 ns

taD Access time. write data (bits ADO through AD.15) after ClK 1 T 10 tDv 50 ns

tvD Valid time. write data (bits ADO through AD 15) after ClK 1 i 10 tDh 0 ns

TEXAS ..
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS. TEXAS 75265

II
CI)
Q)
Q)

..c::
en
co
co
o

4-9

T132032T~2
HIGH·PERFORMANCE MICROPROCESSOR

switching characteristics (continued)

PARAMETER FIGURE
NSC

SYMBOL
MIN MAX UNIT

tdisSPC' Disable time, SPC output nonforcing after ClK2t 12 tSPCnf 10 ns

twPFS Pulse duration, PFS low at 0.8 V (both edges) 15 tPFSw 70 ns

tpPFSl Propagation 'delay time, ClK2t to PFS low 15 tPFSa 50 ns

tpPFSH Propagatiori delay time, ClK2t to PFS high 15 tPFSia 50 ns

tPFS-NS Time interval, PFS clock cycle to next nonsequential fetch 16 tpFNS 4tcC

tNS·PFS Time interval, nonsequential fetch to next PFS clock cycle 17 tNSPF 4tcC

tllOl-C1 Time interval, IlO low to ClK1 t 18 tllOs 30 ns

tvlLO Valid time, IlO low after. ClK 1 t 19 tllOh 10 ns

tpllOl Propagation delay time, ClK 1 t to IlO low 20 tllOa 70 ns

tpllOH Propagation delay time, ClK 1 t to IlO high .20 tllOia 70 ns

taUS Access time, U/S after ClK 1 t 21 tUSv 70 ns

tvus Valid time, U/S after ClK 1 t 21 tUSh 10 ns

PARAMETER MEASUREMENT INFORMATIONt

II T4 OR T1 T1 T2 T3 T4

ClK1

C ClK2 Q)
r+
Q)

taA-+! 14- I ~ I+-tvA I
en AOO-A023 I X A:OORES~ X I ~ :r
CD tvo-k-+l. CD I I' ~ If-tao

DATA QU:T
r+ 021-031 IX I IX : > en

I I ~ jf-tpAOSH I I

ADs ,lUI I
,

tpAOSl...l If- I . ! , .1

I I ~twAOS

: '
+I I+-tvBtE

BEO-ill Ix I : VALIOI x=t: I
taBE-+! 1+-1 I I

ODIN I (HIGHt I , I I+--*taST

STO-ST3 =:x I ~ALlb : : X 'NEXT

I =!I ~tpOSl ~ i+-tvST

Os I 1'1 II
I , I =iI \+ . .tpOSH

ROY I I (HIGH) I
FIGURE 1. WRITE CYCLE

tin Figures 1 tlirough 28. time intervals are defined with respect to the following reference points:
For clock signals. the 50% points.
For all other signals. 2 V if the high level is indicated and 0.8 V if the low level is indicated.

4-10 , TEXAS'~
INSTRUMENTS

POST OF~ICE BOX 225012 • DALLAS. TEXAS 75265

T4 OR T1

ClK1

ClK2

T132032T·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATION

T1 T2 T3 T4

BE~~::::J(____ ~ ______ ~ ____ V_Al_I_O~ ________ ~ __ -J)(_~ __ __

~~---------------~----+I~r
tvDO~

STO-ST3 ---v: _____ --:-________ ~-------:-------_t- ,-__ N....;EX-.T;.;.C;.;;;Y-.Cl_E_ ---" _ STATUS

ROY

TEXAS ..
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

4-11

U)
+J
Q)
Q)

.c:::
tJ)

CO
+J
.CO
C

II
o
Q)
Q)

VI
:::r
CD
CD
(f)

T132032T·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATION

T4 Ti Ti Ti

NOTE: When the CPU is not idling (not in Ti), the HOLD request (HOiJj low) must be active before the trailing edge of CLK2 that appears
two clock cycles before T4 (TX 1) and stay low until thHDl after the leading edge of ClK 1 that precedes T4 (TX2) for the request
to acknowledge.

FIGURE 3. FLOATING BY HOLD TIMING (CPU NOT IDLE INITIALLY)

elK1

'I
1T1 T1 T1

---------- - -- - ---
024-031 (FLOATING)

NOTE: During T1 the CPU is already idling.

FIGURE 4. FLOATING BY HOLD TIMING (CPU INITIALLY IDLE)

.'

4-12 TEXAS ~
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

11320321·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATION

I I I I
I Ti I Ti I Ti. T4 I Ti. T1

ClK1 --1l,---' ----fn n n
--- I ~--~I. ~--~ ~-----

~thHo I

n ~nl n ~
------I I~--i-I -I +1-- ----'

tsuHOH..t If- I I
HOlO ______ J~ i(~ __ ~: ________________ __

~tpHAH

It

ClK2

HlOA

• I tenAOS
_ -.. j4-tenOO

o~~~ __________ 1 ~II:'----~(H~I~G':"":'H):------
(FLOATING) r

-to! jf-tenBE

BEO-BE3 - - - - - - - - - J -c=x __________ _
AOO~A023

024-031 - - - - - - - -(FLOATING! - - - - - - - -

FIGURE 5. RELEASE FROM HOLD

TEXAS ..
INSTRUMENTS

4-13

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

II
c
Q)
r+
Q)

CJ)
:r
CD
CD
r+
(J)

T132032T·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATION

CPU
CYCLES

MMU
CYCLES

CLK1

CLK2

T1

--!--......

TMMU T4

I
~ ________ ~I~ts~uF~L~T~L~ ~I . I

FIT I I \. 1 1
I tdisA(1)-M-.! I pi tdisA(2) I

A~~:~23 -+{ADDRESS(CP!u!1i-:"'-I- I I ...: __ -k,....A".?M b~ J ... F }
1 • ~LOATINGI 1'-' --:';'=:':'-J.

0;4.031 I,' ! I 1 ~ I
(CPU) -+<ADDRESS(CPU~--; ~--i------

I· tdiSO-!+ti1 1 I· •

ADS ~*II 1 1
(CPU) i \.-.-..Ij 1 I II I

I i+t*tvAOSH.A 1 I
PAv 1 I II 1\ r

(MMU) 1 l~tdisOO' 1 '--./

: :

I I ' 1

ODiN II 1 '1--.---1-<==
I 1

I I 1
BEo·BE3 1 1

1 I
FIGURE 6. FLT INITIATED FLOAT CYCLE TIMING

CPU
CYCLES

MMU
CYCLES

CLK1

CLK2

T1 T2 T3

FLT I I I' " 1 I
(MMU) i. { ,'J_ I , ,I I

T4

--T-' :'-----tSUFLTH 1 I
A16.A23_L of- - - -i-- __ '_1 ____ .J_ - ~--

(CPU) 1 ~ I (FLOATING, O~IVEN BY MMU)I

1 ..----.rtenOO ' I

i5DiN_ ... J-~.t : l I
(CPU) 1 I lo . . ' 1
ADs I' 1 I 1 I
(CPU) I I I

I 1
iiEO.BE3_t--06-I-----+----~------III-----

1 1

FIGURE 7. RELEASE FROM FL T TIMING

NOTE: When FL T goes high, the CPU rest'arts driving D5i'N before the MMU releases it. This does not cause any conflict since both CPU
and MMU force ODIN to the same logic level.

4-14 TEXAS -Ij}
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS, TeXAS 75265

T132032T·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATION

T1
I OR I I I
I TMMU I T2 I T3 I T4

eLK' -f1----~r ---n~, __ n __
ClK2 : n I n!-_....,.! ..In , __ IL .

I 1 If---tf-thRDY

\: .W{W//a
-+I ... tsuRDY

RDY

FIGURE 8. READY SAMPLING (CPU INITIALLY READY)

T3 T3 T4

ClK1

ClK2 n'---1--+-,n . rL
----~ ~

RDY II

FIGURE 9. READY SAMPLING (CPU INITIALLY NOT READY)

T1

ClK1

ClK2

T4 I

I
'. I

ADo-AD15 """"-il-----<¢-'? _+-: _D_A_TA __ --+-lIr
~taD-.l ~tpSPCH I

SPC---r-\ I I :
tpSPCl I. . ~14 twspc!---.I I

DDiN:P: :
I 1 1

STO·ST3 _~I S_T_A_TU_S_V_A_ll_D-jI-JX NEXT STA:TUS .

I I
I I I

FIGURE 10. COPROCESSOR WRITE TIMING

TEXAS -1!1
INSTRUMENTS

POS~ OFFICE BOX 225012 • OM LAS. TeXAS 75265

4-15

II
en ...
Q)
Q)

oJ:
r.n

CO ...
CO
C

II

T132D32T·2
HIGH·PERFORMANCE MICROPROCESSOR

4-16

ClK1

ClK2

ClK1

PARAMETER MEASUREMENT INFORMATION

ADO-AD1S I I VALID

I DATA (FROM COPROCESSOR I
- --r-\ I

(~~~I i \ : I .
I . I

DDiNJ\ I
I

STO-ST3 I STATUS VALID I

(HI.GHI
I

FIGURE 11. COPROCESSOR READ TIMING

T1 T4

FIGURE 12. SPC NON FORCING DELAY

I
'1

I 1
~/AEIT I /rl~--~~------~------~-

-r------~I------~IJ: I
AT/SPC D¢: ::. ! I

k-:-- ~SUAT ~I j.- th(~TI---.I

FIGURE 13. RESET CONFIGURATION TIMING

TEXAS -1!1
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

11320321·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATION

I4-twC1H~

J
I 90% -+I,I~ ttc I

ClK1 !SO% 0 I 10% ______ _

~I tcc I ~I
I I I. I

-+I 14- trC : j4-twC2H~ I
IIII

ClK2 ________ ~~~~1o ~~I ______ _____

tC1lC2H-+l1f- -Jl4- tC2lC1H

FIGURE 14. CLOCK WAVEFORMS

eLK2 ---fl--[L~
tpPFSl -1+--+1 1+-+1- tpPFSH

I I

PFS~~
I I
14 ~I twPFS

FIGURE 15. RELATIONSHIP OF PFS TO CLOCK CYCLES

T1

ClK1

I I
I I

PFS 1\"" ____ ,..,/ !
.. 1.-----tPFs-NS------.. ~1

STO-ST3 _______________ JX ... __ C_O_D_E _10_0_1 __

FIGURE 16. GUARANTEED DELAY, PFS TO NONSEQUENTIAL FETCH

TEXAS ..
INSTRUMENTS

4-17

POST OFFICE BOX 225012 • DALLAS. TEXAS 75265

II
en ...
Q)
Q)
.c
en

CO ...
CO
C

T132032T·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATION

1T1 IT2 1---1 I'
elK1 D---fLJt
. ~ ~~I----~'----------ADs 1\.../ . .. I

I I , 1.~f ____ ~I ________ __

STO-ST3 I eODe 1001 1
I h~I-----+I-----------
I I'

PFS I~
I_ tNS-PFS ~, .

FIGURE 17. GUARANTEED DELAY, NONSEQUENTIAL FETCH TO PFS

I T3 OR Ti IT3 OR Till T1 I T2 I T3 I T4

elK1

, I I
, I ,

ADS ------------t\IV i!
I ~ i4-tYllO I
I I I I

iLO I :,y :
I I ·1

FIGURE 18. RELATIONSHIP OF ILO TO FIRST OPERAND CYCLE OF AN INTERLOCKED INSTRUCTION

I T3 OR Ti IT3 OR Tid T1 I T2 I T3 I . T4

elK1

I I

I :

ADS -------------""'IV :
I ~ i4-tYllO
I I I

IlO ___________ -;.l __________ ~: _Jt--------'-
,I I

FIGURE 19. RELATIONSHIP OF 1[0 TO LST OPERAND CYCLE·OF AN INTERLOCKED INSTRUCTION

4-18 TEXAS.
INSTRUMENTS

POST OFFICE BOX 225012 .. DA~LAS. TEXAS 75265

11320321·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATIN

ClK1JLJLf

I I
tpllOl~ ~tpILOH

iLO~. I ~,f-' _____ J,

FIGURE 20. RELATIONSHIP OF ILO TO ANY CLOCK CYCLE

I T3 OR Ti I T4 OR Ti I T1 I T2 I T3 I T4

ClK1

I I I
I I I

------~I~---- I I
ADS ~ ,V I I

tau~r-_______ t_vu_s_~_Wk
UlS Wffff/ 1LfUA ... ' ____ V_A_ll_D _____ F<LLLLf'-

FIGURE 21. RELATIONSHIP TO ANY BUS CYCLE, GUARANTEED VALID INTERVAL

I T1 I TMMU I T2 I Ti.

ClK1

ClK2

I I 'I
---~I' II

ADs 'V' II
I I II
I tsuABT..w-.t ~ thABT

I \l--Wtl I I r~I~--~~----
I I I
I I I

FIGURE 22. ABORT TIMING, FL T NOT APPLIED

II

TEXAS ~
INSTRUMENTS

4-19

c
Q)
Q)

(J)
::s
CD
CD
fn

TI32032T·'2
HIGH·PERFORMANCE MICROPROCESSOR

4-20

ClK1

ClK2

PARAMETER MEASUREMENT INFORMATION

I Tf I Tf I Tf I Tf

I
I
I
I

I T2 I Ti

II I
I I I
II I I: / i II

I Ii· I
, I tsUABT~ I4'*thABTI I

I I I I I
~----~I----·I~'lltl II II ~~I-----'~I----

RST/ABT
I ,I I I I
I I I ,I ,I

FIGURE 23. ABORT TIMING, FL T APLIED

, 4.5V*~------------~:r----
VCC,---f l

I

CLK,--LJLrln
I ~ !t-tsuRST
14 tpwr, ~I

RST/ABT , , 'fr
FIGURE 24. POWER-ON RESET

ClK1~JUL
-+I I+tsuRST

___ ~~~ /4--tw RST ~I I

RST/ABT ~,' I~
FIGURE 25. NON POWER-ON RESET

TEXAS •
INSTRUMENTS

ClK1

T132032T·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATION

.ClK1~
~ \f-tsaiiNT --"""",\1 iNi' f-----

FIGURE 26. INT INTERRUPT SIGNAL DETECTION

FIGURE 27. NMIINTERRUPT SIGNAL TIMING

T1 T2 T3 T4 IT10RTd

I I I I
ADs --:\....II . I

~tlxl_PFS---.l
IV
I

I I' I \ / PFS I I I
I I I

FIGURE 28. RELATIONSHIP 8ETWEEN LAST DATA TRANSFER OF AN INSTRUCTION AND
PFS ON NEXT INSTRUCTION

II
(I) ...
Q)
Q)
~
en
co ...
co
C

TEXAS -II}
INSTRUMENTS

4-21

II
o·
D)
D)

(J).
:r
(t)
(t)
t/)

4-22

• High-Speed NMOS Technology

• 32-Bit Architecture and Implementation with
24-Bit Address and 16-Bit Data Bus

• 16-Megabyte UJliform Addressing Space

• Powerful Instruction Set with:
General 2-Address Capability
Very High Degree of Symmetry
Addressing Modes Optimized for High-

Level Language References

• TI32000 Coprocessor Support

• Single 5-V Operation

• Direct Replacement for National
Semiconductor NS32016-1 0

description

The TI320 16T -2 is a monolithic high
performance high-speed NMOS microprocessor
designed to function as a central processing unit
(CPU) in the TI32000 microprocessor family.
The device has been designed primarily' to
support microprocessor users who require the
ability to use a large addressing space for large
programs and/or large data structures. Because
large programs must realistically be generated
and maintained in high-level languages,' the
TI32000 family architecture provides for very
efficient compilation while remaining easy to
program at the assembler level. The TI32000
family architecture in conjunction with the
TI32082 Memory Management Unit (MMU)
provides full support for demand-paged virtual
memory capability. High-performance floating
point instructions are provided with the TI32081
Floating Point Unit (FPU).

The TI32016T is characterized for operation
from O°C to 70 oC.

PRODUCT PREVIEW

T132016T·2
HIGH·PERFORMANCE MICROPROCESSOR

02878. APRIL 1985

JD DUAL·IN·L1NE PACKAGE

(TOP VIEW)

A22 VCC
A2l A23
A20 INT
A19 NMI
A18 IlO
A17 STO
A16 ST1

AD15 ST2
AD14 ST3
AD13 PFS
AD12 ODIN
ADll ADS
AD10 U/S

AD9 AT/SPC
AD8 RST/ABT
AD7 DS/FlT
AD6 HBE
AD5 HlDA
AD4 HOLD
AD3 BBG
AD2 ROY
ADl ClK2
ADO ClKl

GNDl GNDB

Copyright © 1985. Texas Instruments Incorporated

II
en ...
Q)
Q)

.c:
CJJ

CO ...
CO
o

This document contains Information
on a product under develop",ent.
Texas Instruments reserves the right
to change or discontinue this product
without notice.

TEXAs •
INSTRUMENTS

4-23

I
c
D)
D)

(J)
::r
C'D
C'D
f/)

11320161·2
HIGH·PERFORMANCE MICROPROCESSOR

functional block diagram

ADD/DATA CONTROLS & STATUS

t J
,F BUS INTERFACE CONTROL

INS TRUCTIONS 16

MICROCODE ROM
AND

a·BYTE CONTROL LOGIC
QUEUE

R ,I ' INSTRUCTION ..
DECODER I

1 en
:J
III

DID DISPLACEMENT ANDJ

IMMEDIATE EXTRACTOR ct CFG REGISTER z
a:
w
~
....
m

REGISTER SET N
M

0 INTBASE

0 sa -++-- WORKING

0 FP REGISTERS

0 SP1

0 SPO

-+ + 0 PC

RO '. r

R1 \ / R2 "
32·BIT

R3 ALU

R4 I I
R5 I
R6 I
R7 I
I MOD I
I PSR I

t ____________ J

4-24 TEXAS.
INSTRUMENTS

Pin

NO. NAME
I/O

1 A22 a
2 A21 a
3 A20 a
4 A19 a
5 A18 a
6 A17 a
7 A16 a
8 AD15 I/O

9 AD14 I/O

10 AD13 I/O

11 AD12 I/O

12 ADll I/O

13 AD10 I/O

14 AD9 I/O

15 AD8 I/O

16 AD7 I/O

17 AD6 I/O

18 AD5 I/O

19 AD4 I/O

20 AD3 I/O

21 AD2 I/O

22 ADl I/O,

23 ADO I/O

24 GNDL

25 GNDB

26 CLKl I

27 CLK2 I

28 ROY I

29 BBG a
30 HOLD I

31 HLDA a

32 HBE a

33 DS/FLT I/O

34 RST/ABT I

35 AT/SPC I/O

T132016T·2
HIGH·PERFORMANCE MICROPROCESSOR

PIN FUNCTIONAL DESCRIPTION

DESCRIPTION

Address bit 22 of the address bus

Address bit 21 of the address bus

Address bit 20 of the address bus

Address bit 19 of the address bus

Address bit 18 of the address bus

Address bit 17 of the address bus

Address bit 16 of the address bus

Address/Data bit 15. Multiplexed address/data information

Address/Data bit 14. Multiplexed address/data information

Address/Data bit 13. Multiplexed address/data information

Address/Data bit 12. MUltiplexed address/data information

Address/Data bit 11. Multiplexed address/data information

Address/Data bit 10. Multiplexed address/data information

Address/Data bit 9. Multiplexed address/data information

Address/Data bit 8. Multiplexed address/data information

Address/Data bit 7. Multiplexed address/data information

Address/Data bit 6. Multiplexed address/data information

Address/Data bit 5. Multiplexed address/data information

Address/Data bit 4. Multiplexed address/data information

Address/Data bit 3. Multiplexed address/data information

Address/Data bit 2. Multiplexed address/data information'

Address/Data bit 1. Multiplexed address/data information

Address bit 0 (least significant bit). Multiplexed address/data information

Logic ground. Ground reference for on-chip logic.

Buffer Ground. Ground reference for the on-chip drivers connected to output pins.

Clock 1 input. One phase of a two-phase clock input

Clock 2 input. One phase of a two-phase clock input

READY input. When high, causes the CPU to terminate the bus cycle. When low, causes the CPU

to extend the current bus cycle to provide for a slower memory or peripheral reference.

Back-Bias Generator supply. Output of on-chip substrate voltage generator

Hold request input. When low, causes the CPU to release the bus for DMA or multiprocessing

purposes

Hold acknowledge output. Applied by the CPU in response to a HOLD input. Low level indicates

that the bus has been released for DMA or multiprocessing purposes.

High Byte Enable output. 'When low, enables data transfers on most significant byte of data

bus.

Data Strobe/Float. Data strobe output or float command input. Function is selectd by AT /SPC

input.

Reset/Abort input. If held low for one clock cycle and released. causes an abort command. If held

low for longer than one clock cycle. initiates a reset.

Address Translation/Coprocessor Control. Used by the CPU as the data strobe output for

coprocessor transfers. Used by coprocessors to acknowledge completion of an instruction.

Sampled on the trailing, edge of reset pulse as address translation strap . .

II
t/)
Q)
Q)

oJ:
en

CO
CO
C

TEXAS ~
INSTRUMENTS

4-25

'11320161·2
HIGH·PERFORMANCE MICROPROCESSOR

PIN FUNCTIONAL DESCRIPTION

PIN

NO. NAME
I/O DESCRIPTIPN .

36 U/S 0 User/Supervisor status output. When high, indicates user mode. When low, indicates supervisor

mode.

37 ~DS 0 Address strobe output. Available to the system for address latch control. Indicates start of a bus

cycle by going low.

38 ODIN 0 Data Direct jon In output:' Status signal that indicates the direction of data transfer during a bus

cycle, low for read, high for write.

39 PFS 0 Program Flow Status Output. Low-going pulse indicates beginning of an instruction execution.

40 ST3 0 Status bit 3 output. Bus·cycle status code

41 ST2 0 Status bit 2 output. Bus cycle status code

42 ST1 0 Status bit 1 output. Bus cycle status code

43 STO 0 Status bit 0 (least signlficatn bit! output. Bus cycle status code

44 ILO 0 Interlocked Operation Output. When low, if)dicates that an interlocked instruction is being

executed.

45 NMI I Nonmaskable Interrupt input. Nonmaskable interrupt request

46 INT I Interrupt input. Maskable interrupt request

47 A23 0 Address bit 23 of the address bus

48 Vee + 5 V supply voltage

absolute maximum ratings over recommended operating conditions (unless otherwise noteel)

Supply voltage, Vce (see Note 1) ... : I. • • • • • • • • • • • • • • •• 7 V
Input voltage range. .. - 5 V to 7 V
Output voltage' range ;.......................... - 5 Vto 7 V
Continuous total dissipation : , 1.5 W
Operating free-air temperature range, T A ,. O,OC to 70 DC

NOTE 1: All voltage values are with respect to the c'ommon ground.

recommended operating conditions

MIN NOM MAX UNIT

Supply voltage, VCC 4.75 5 5.25 V

High-level input voltage, VII-!
ClK1, ClK2 VCC-O.4 .vCC+0.5

V
All other inputs 2 VCC+0.5

low-level input voltage, Vil
ClK1, ClK2" -0.5 0.3

V
All other inputs -0.5 0.8

Operating free-air temperature, T A 0 70 °c

4-26
, TEXAS~

INSTRUMENTS
POST- OFFICE BOX 225012 • DALLAS TEXA<:: 7~'R~

T132016T·2
HIGH·PERFORMANCE MICROPROCESSOR

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted) , .

PARAMETER TEST CONDITION MIN Typt MAX UNIT

VOH High-level output voltage 10H = - 400IlA 2.4 V

Val low·level output voltage 10l = 2 rnA 0,45 V

1A'i'iS"PC VI = 0.4 V 50 1000

II Input current t All other inputs ex~~
ClKl, ClK2, and AT/SPC

VI = 0 to VCC ±20
p.A

10(oft) Off-state output current \to = 0.4 V to VCC ±20 p.A

ICC Supply current 10 = 0, TA = 25°C 180 300 rnA

t All typical values are at VCC = 5 V, T A = 25°C.

Timing parameter symbols have been createdin accordance with JEOEC Standard 100. In orderto shorten
the symbols, the pin names have been further abbreviated as follows:

AD A HBE BE
CLK 1 C or C1 HI5A HA
CLK2' C2 Horn HD
ODIN DO U/S US
FCLK F

Lowercase subscripts and their meaning are:

c cycle time (period)
dis disable time (H or L to Z)
en enable time (Z to H or L)

f fall time
p propagation delay time

pwr . supply voltage stable
rise time

su setup time
w pulse duration

Parentheses have been omitted except when required for separation of a final subscript representing special
conditions. The columns titled NSC SYMBOL show the symbols used by National Semiconductor for the
parameters shown in the timing requirements and switching characteristics tables ..

. TEXAS ~
INSTRUMENTS

ot'\eT ncclrc anv ??~1? • n4.1 I .de: Tr:)(4..~ 7~";,~

4-27

II
.(1)

Q)
Q)

,c
C/)

CO
CO
C

c
D)
r+
m
en
::r

'CD
CD
r+ en

11320161·2 ,
HIGH·PERFORMANCE MICROPROCESSOR

timing requirements over recommended operati~g free·air temperature range (unless otherwise noted)

PARAMETER FIGURE
NSC

SYMBOL
MIN MAX UNIT

tsuO(RD) Setup time, read data before ClK2! 2,11 to Is 10 ns

thO(RO) Hold time, read data after ClK 1 t 2,11 tOlh 10 ns

tsuHOl Setup time, HOLD low before ClK2! (see Note, 3) 3, 4 tHlDa 25 ns

thHD Hold time, HOLD low or high after ClK 1 t 3,4,5 tHLDh 0 ns

tsuHOH Setup time, HOLD high before ClK2! 5 tHlDia 25 ns

tsuFlTl Setup time, Fl T low before ClK2! '6 tFlTa 25 ns

tsuFlTH Setup ti'me, Fl T high before ClK2! 7 tFlTia 25 ns

tsuROY Setup time, ROY low or high before ClK2! 8, 9 tROYs 15 ns

thROY Hold time, ROY low or high after ClK 1 ! 8, 9 tROYh 0 ns

twsPC Pulse'duration, SPC low at 0.8 V (both edges) 10 tsPCw 20 ns

tsuAT Setup time, AT/SPC low before ClKll 13 tATs 1tcC

thAT Hold time, AT/SPC low after ClK1! 13 tATh 2tcC

trC Rise time, ClK 1 or ClK2 14 . tClr 7 ns

tfC Fall time, ClK 1 or ClK2 14 tcu 7 ns

tcc Clock period 14 tcp 100 5000 ns

twC1H Pulse duration, ClK 1 high 14 tClw(1) 0.5tcC -10 ns

twC2H Pulse duration, ClK2 high 14 tClw(2) 0. 5tcC-10 ns

Clock pulse asymmetry, t wC1H-tw C2H 14 tClwas ±5 ns

tC1lC2H Nonoverlap time at 10% of ClK U and ClK2t 14 tnOVl(1) 0 7 ns

tC2lC1H Nonoverlap time at 10% of ClK2! and ClK 1 t 14 tnOVl(2) 0 7 ns

Nonoverlap asymmetry, tC1 lC2H-tC12lC1 H 14 tnOVlas ±4 ns

tsuABT Setup time, ABT low before ClK2! . 22,23 tABTs 20 ns

thABT Hold time, ABT low after ClKll 22,23 tABTh 0 ns

tpwr Supply voltage stable (above 4.5 V) to RST high 24 tpWR 50 p,s

tsuRST Setup time, RST high before ClK 1 ! 24, 25 tRSTs 20 ns

twRST Puis duration, RST low at 0.8 V (both edges) 25 tRSTw 64tcC

tsulNT Setup time, INT low before ClK U 26 tiNTs 20 ns

twNMI Pulse duration, NMI low at 0.8 V (both edges) 27 tNMlw 70 ns

NOTE 3: This setup time is necessary to ensure prompt acknowledgement via HlDA and the ensuing floating of the CPU off the buses.

4-28

The time from the receipt of the i=iO[5 signal until the CPU floats is a function of the time HODS signal goes low, the state of
the ROY input (in MMU systems), and the length of the current MMU cycle.

, TEXAS.
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

11320161·2
HIGH·PERFORMANCE MICROPROCESSOR

switching characteristics over recommended ranges of supply voltage and operating free·air
temperature, CL = 100 pF (unless otherwise noted)

PARAMETER FIGURE
NSC

SYMBOL
MIN MAX UNIT

t aA(1) Access time, ADO through AD1 5 after ClK 1 t 1 tAlv 50 ns

t vA(1) Valid time, ADO through AD 15 after ClK 1 f 1 tAlh 10 ns

taD Access time, ADO through AD1 5 after ClK 1 f 1 tDv 50 ns

tvD Valid time, ADO through AD 15 after ClK 1 f 1 ·tDh 0 ns

t aA(2) Access time, A 16 through A23 after ClK 1 f 1 tAHv 50 ns

tvAJ2i Valid time, A 16 through A23 after ClK 1 f 1 tAHh 0 ns

taBE Access time, HBE after ClK 1 t 1 tHBEv 70 ns

tvBE Valid time, HBE after ClK 1 f 1 tHBEh 0 ns

taST Access time, STO through ST3 after ClK 1 i 1 tSTv 45 ns

tvST Valid time, STO through ST3 after ClK 1 i 1 tSTh 0 ns

tpADSl Propagation delay time, ClK1 i to· ADS low 1 tADSa 35 ns

tpADSH Propagation delay time, ClK2t to ADS high 1 tADSia 15 45 ns·

twADS Pulse duration, ADS low at 0.8 V (both edges) 1 tADSw 35 ns

tpDSl Propagation delay time, ClK 1 i to DS low 1 tDSa 45 ns

tpDSH Propagation delay time, ClK 1 i to DS high 1 tDSia 10 40 ns

tAV-ADSH(1) Time interval. ADO through AD 15 valid to ADS high 2 tAlADSa 25 ns

tAV-ADSH(2) Time interval, A 16 through A23 valid to ADS high 2 tAHADSs 25 ns

tdisA(1) Disable time, ADO through AD15 after ClK 1t (without MMU) 2 tALf 25 ns

taDD Access time, DDIN after ClK 1 i 2 tDDINv 65 ns

tvDD DDIN valid after ClK 1 i 2 tDDINh 0 ns

tdisA(1) Disable time, ADO through AD15 after ClK 1t (HOLD low) 3 tALf 25 ns

tdisA(2) Disable time, A 16 through A23 after ClK t (HOLD low) 3 tAHf 25 ns

tdisADS Disable time, ADS after ClK 1 i (HOLD low) 3.4 tADSf 55 ns

tdisBE Disable time, HBE after ClK 1 t (HOLD low) 3.4 tHBEf 55 ns

tdisDD Disable time, DDIN after ClK 1 i (HOLD low) 3.4 tDDINf 55 ns

tpHAl Propagation delay time, ClK 1 t to HlDA low 3.4 tHlDAa 75 ns

tpHAH Propagation delay time, ClK 1 t to HlDA high 5 tHlDAia 75 ns

tenADS Enable time, ADS after ClK 1 i (HOLD high) 5 tADSr 55 ns

tenBE Enable time, HBE after ClK It(HOlD high) 5 tHBEr 55 ns

tenDD Enable time, DDIN after ClK 1 t (HOLD high) 5 tDDINr 55 ns

tvADSH-A(1) Valid time, ADO through AD 15 after ADS i 6 tAlADSh 10 ns

t vADSH-A(2) Valid time, A 16 through A23 after ADSi 6 tAHADSh 10 ns

tdisA(1) Disable time, ADO through AD15 after ClKlt (with MMU) 6 tAlMf 25 ns

tdisA(2) Disable time, A 16 through A23 after ClK It (with MMU) 6 tAHMf 25 ns

tdisA(1) Disable time, ADO through AD15 after ClKlt (FlT low) 6 tALf 30 .ns

tdisDD Disable time, DDIN after FlTt 6 tDDINf 50 ns

tFlTl-BEl Time interval, Fl T low to HBE low 6 tHBEI 65 ns

tenDD Enable time, DDIN after Fl Tt 7 tDDINr 50 ns

tenBE Enable time, HBE after Fl Tt 7 tHBEr 75 ns

tpSPCl Propagation delay time, ClK It to SPC low 10 tSPCa 35 ns

tpSPCH Propagation delay time, ClK 1 i to SPC high 10 tSPCia 35 ns

II
tJ)
(1)
(1)
.s:
CJ)

CO
CO
C

TEXAS .",
INSTRUMENTS

4-29

T132016T·2
HIGH·PERFORMANCE MICROPROCESSOR

switching characteristics (continued)

PARAMETER
NSC

MIN FIGURE MAX UNIT
SYMBOL

taD Access time, write data (bits ADO. through AD 15) after ClK 1 t 10 tDv 50. ns

tvD Valid time, write data (bits ADO. through AD15) after ClK 1 t 10. tDh 0. ns

tdisSPC Disable time, SPC output nonforcing after ClK2t 12 tSPCnf ' 10. ns

twPFS Pulse duration, PFS low at 0..8 V (both edges) 15 tpFSw 70. ns

tpPFSl Propagation delay time, ClK2t to PFS low 15 tPFSa 50. ns

tpPFSH Propagation delay time, ClK2t to PFS high 15 tPFSia 50. ns

tPFS-NS Time interval, PFS clock cycle to next nonsequential fetch 16 tpFNS 4tcC

tNS-PFS Time interval, nonsequential fetch to next PFS clock cycle 17 tNSPF 4tcC

tllOl-C1 Time interval, IlQ low to ClK 1 t 18 tllOs 30. ns

tvllO Valid time, IlO low after ClK 1 t 19 tlLOh 10. ns

tp_llOl Propagation delay time, ClK 1 t to IlO low 20. tllOa 70. ns

tpllOH Propagation delay time, ClK 1 t to IlO high 20. tllOia ·70. ns

taUS Access time, U/S after ClK 1 t 21 tUSs, 70. ns

tvus Valid time, U/S after ClK 1 t 21 tUSh 10. ns

tlX-PFS last operand transfer of an insruction to next PFS clock cycle· 28 tlXPF Otcc

II

4-30 . TEXAS .•
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

T132016T·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATIONt

T1 T2 T3 T4

ClKl

ClK2

I
If'"taA(11

ADO-AD15
I
~ I tY A(21-1+-+t

I I

I
I

l
I

A 16·A23 =:])t
!

VALID I) I

D"iDSH
I I I
I I I I I I ADs I . I
I I . I I

I I k---M-twADSl I I
~ Jf-tpADSl ' I I tYBE~

HBE JJ¢ I V1lID ' !. I j'
If--+t-taBE I I I
I ' I I

ODIN I (HIGH) I
I I ~taST

I ! I X NEXT STO·ST3 VALID

-+l ~tpDSl I j4--t.I- tyST
I :" OS l'+ I
I I

I I ~tpDSH
I I I

ROY I (HI~HI I

FIGURE 1. WRITE CYCLE

tin Figures 1 through 28, time intervals are defined with respect to the following reference points:
For clock signals, the 50% points.
For all other signals, 2 V if the high level is indicated and 0.8 V if the low level is indicated.

TEXAS ..
INSTRUME'NTS

4-31

DnCT ncc.f"C e:n'll .,.,~,., • nal I .6.c:. Ts:o.c:: 71;.?~c;,

II
en
~
Q)
Q)
.c
en

CO
~

CO
C

o
OJ ,....
OJ

(J)
::s
CD
CD ,....
en

T132016T·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATION

T1 T2 T3 T4

elK1

STO·ST3 VALID X

Os \ /
ROY

(HIGH)

FIGURE 2. READ CYCLE

4-32 TEXAS ...
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS TEXAS 75265

CLK1

CLK2

HOLD

Hi:'5A

ADs
ODiN

HBE

ADO·AD15

A16-A23

T132016T·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATION

TX1 TX2 T4 Ti Ti Ti

I
1 n I
1 tsuHDL-lf+!

: I tpHAL 14 ~ I I

I I tdiSADS~ \k I :

:

I tdisDD I~ -: I
I IJ---L----I-----

1""-------1.I-----~-----,_- I (FLDATINGII

tdisBE...J.--.l I I·
--1-----+-----+--....... .;.;.;...-+: ';""'"",,'1- - -i IFTDATINGlt - - - -

tdisA(1)-!.----.l 1 1
......,-----+----+--......;.....;.;.;..D-F-"""""'" I - - ~ WLOATINGlr - - -

__ 1------------~---t-di-SA-(2-)-~-~~1 I 1

I 'j- - -1_ - - - - - - - --
~I-----__;I""_---__f-----tl--J· I (FLOATINGII

I I

1 '+ I

I
NOTE: When the CPU is not idling (not in Ti), the HOLD request (HOLD low) must be active before the trailing edge of ClK2 that appears

two clock cycles before T4 (TX 1) and stay low until thHDl after the leading edge of ClK 1 that precedes T4 (TX2) forthe request
to be acknowledge. .

FIGURE 3, FLOATING BY HOLD TIMING (CPU NOT IDLE INITIALLY)

Ti1 Ti2

CLK1

I

CLK2 ----:-__ n n I IL
tsuHDL ~ ~ /4-*-"too;hH.,;;D~..,;.,: .,.,.,.,.,.,.,.,..,.
XI~

I_ *tpHAL

HLDA I ~ j, .
j.-.~tdisAD~S ~I. ----

ADS ~----~'~'J- tdisDD I

ODIN -;.----~I __ . I (FLOATING)

ADO-AD15

A16-A23

NOTE: During Tl the CPU is already idling.

...... ----~D--..." ~~~_l ______ _
------~I -- l (FlOATING)

---------~--------------I 1 (FlOATING) I
I . I I _l ______ ~ ______ ~ _____ _
I I (FlOATING) I

FIGURE 4,' FLOATING BY HOLD TIMING (CPU INITIALLY IDLE)

II

TEXAS -II}
INSTRUMENTS

4-33

II
c
Cl)
D)

en
::r
CD
CD
tb

T132016T·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATION

Ti Ti T4

ClK1

I I

ClK2 Inn I U
,'tsuHDH +I 14-1 I

. I If-+f.thHD I

HOLD: tl~
, ~tp~

HlDA I ~ t :
I tenBE 1
1 j4-+1- tenADS I
I I I ~nDD

HBE I I -F-"---~II---:(~H~IG~H~) -
ADS-j-- _ J ___ ~

DDiiii I (FLOATING) 1 :

ADO·AD15 _I- ___ L - - - ~
A16.A23 r n"" __ _

FIGURE 5. RELEASE FROM HOLD

CPU
CYCLES T1 I TMMU 'Tf I Tf

C~~l~S T1 I TMMU I T4 I T1

ClK1 Jl--------..,. n n ____ n ____
, 1 I 1

ClK2 II n I fl' n I n ___ ... I· '"" II-_~. -+-_~I L
I . ,

mi. tcfiSA(3).Lt \:: I

I I ts~FLTL+j if- H tdisA(1)

AD()"AD15-+(I ~ 10 . I ADDRESS (CPU) - - - - - .- - - - .-
(CPU)I I IFlOATI!'IG) (FLOATING, ,?RIVEN BY MMU)

, tVADSH.A(1)~ I'
___ ...:.I-+~ tdisA(2) _ ~ _____ L __ . __

I (FLOATING, DRIVEN BY MMU)
, . I

I '

I tFl Tl·BEl ~ I
NOTE: When FLT goes high, the CPU restarts driving"iffi'iN before the MMU releases it. This does not cause any conflict since both CPU

and MMU force i5i5iN to the same logic level.

FIGURE 6. FL TINITIATED FLOAT CYCLE TIMING

4-34 TEXAS .-1!1
INSTRUMENTS

· 11320161·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATION

CPU
CYCLES

MMU
CYCLES

CLK1

T1
TMMU

I

T2 T3 T4

elK2': 11: n n n.
FIT-+1(1

(MMU) I I I (
~ts~FLTH 1 (

A16
o
A23_L+- ___ 1 _____ 1 ____ ...J ____ _

(CPU) 1 ~ I (FLOATING, D~IVEN BY MMU)I

1 ~tenDD ~ I

ODiN - ~--.t : I
(CPU) 1 I ~ • . 1

ADs 1 l : 1 I
(CPU) I I ,I 1

I ~ ••• BE :

HBE I !:
((FORCING LOW)I
I I

NOTE: When FLT goes high, the CPU restarts driving DoiN before the MMU releases it, This does not cause any conflict since both CPU
and MMU force ODIN to the same logic level.

FIGURE 7. RELEASE FROM FL T TIMING

T1
I OR I
I TMMU T3 I T4

CLK1D ____ ~---,n,-__
I

CLK2 I

ROY I
I

: ..-.r-th~OY
I ~",.,~....,.~~/j:....,..~.,...,~..,..

:4- tSUROY

FIGURE 8. READY SAMPLING (CPU INITIALLY READY)

T3 T3 T4

CLK1

I

CLK2 n : n Il
~-........ !-ol -+--+1-

I

ROY I "I :~
I (I I I I'

I tsuROY~ ~thR~Y

FIGURE 9. READY SAMPLING (CPU INITIALLY NOT READY)

TEXAS ..
INSTRUMENTS

POST OFFICE BOX 22S012 • DALLAS, TEXAS 75265

4-35

II
(/)
Q)
Q)

-'=
CJ)

CO
CO
C

11320161·2
HIGH·PERFORMANCE MICROPROCESSOR

II
c
Q) ,..
Q)

en
:::r
CD
CD ,..
en

4-36

PARAMETER MEASUREMENT INFORMATION

T1 T4

ClK1

ClK2

STO-ST3 __ I_ST_A_T_U_S_V_A_ll_D-Il-.JX NEXT STA:TUS

I I

FIGURE 10. COPROCESSOR WRITE TIMING

ADO-AD15 I
I DATA (FROM COPROCESSOR)

SPCT\ I
(CPU) I·

. I

DDIN~

, STO-ST3

ADS

I

(HI.GH)
I

FIGURE 11. COPROCESSOR READ TIMING

. TEXAS ~
INSTRUMENTS

POST OFFICE BOX 225012 • OALLAS. TEXAS 75265

ClK1

T132016T·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATION

T1 T4

FIGURE 12. SPC NON FORCING DELAY

I

I I
RsT/AsT I jl"'1jl-'----r----or-----:-

-r---~i---~I~ : I

AT/SPC D¢: :: ! I
~ ~SUAT--~.I j.-- th(~T1----+1

FIGURE 13. RESET CONFIGURATION TIMING

I4--twC1H~
I ~ Il4-tfC

CLK11~' I
l1li 1 teC I ., I· I ' -J If- trC I r t

wC2H--+j I
IIII

ClK2 ---------4~~~% 'J ... I ___ _

tC1lC2H-.r14- ...Ilf- tC2lC1H

FIGURE 14. CLOCK WAVEFORMS

CLK2~JLrLJ
tpPFSl ~ k----*- tpPFSH

I I

PFS~
I I
14 .1 twPFS

FIGURE 15. RELATIONSHIP OF PFS TO CLOCK CYCLES

TEXAS ~
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

4-37

II
en,
Q)
Q)

.J:
en

CO,
CO
C

T132016T·2
HIGH·PERFORMANCE MICROPROCESSOR

4-38

PARAMETER MEASUREMENT INFORMATION

TL

ClK1

I I
I I

m T\~. __ J/ ' ! .
1f14-----tPFS.NS-----~~1

STO.STj _______________ X~ __ CO_D_E_1_00_1 __

FIGURE 16. GUARANTEED DELAY, PFS TO NONSEQUENTIAL FETCH

I T1 I T2 I· •.• 1 ·1

ClK1 -fLSLf1
~ ~~I __ ~I __ . ___ -

ADs 1\.../ .. I .

I I
I r,~f __ ~I-----

STO·ST3 I CODE 1001 I
I h~(---+I-------
I I

I I~ .. I r-
PFs I .' ! "----..I

"1~----tNS-PFS ~I

FIGURE 17. GUARANTEED DELAY, NONSEQUENTIAL FETCH TO PFS

h3 OR Ti h4 OR Ti I T1 I T2· I T3 I T4

ClK1

:V
~ !4-tllOl.C1 -----Xii ii:O

---------~----
FIGURE 18. RELATIONSHIP OF ILO TO FIRST OPERAND CYCLE OF AN INTERLOCKED INSTRUCTION

. TEXAS-II}
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS. TEXAS 7~265

T132016T·2
HIGH·PERFORMANCE MICROPROCESSOR

PARAMETER MEASUREMENT INFORMATIN

I T3 OR Ti 1T3 OR Tid T1 I T2 I ·T3 I T4

ClK1

I I
I I

IV
I

ADS I
I

I -.t k-tYllO

I I
I Y I I

IlO I I
I I

FIGURE 19. RELATIONSHIP OF ILO TO LST OPERAND CYCLE OF AN INTERLOCKED INSTRUCTION

ClK1rrnY

I , I
tpllOl~ i4---+r tpllOH

IlO' \! ." / "L....f ,I------..J
FIGURE 20. RELATIONSHIP OF ILO TO ANY CLOCK CYCLE

I T3 OR Ti I T4 OR Ti I T1 I T2, I T3 I T4

ClK1

I I ..
I I I

----~I----~ I I
ADS I V I I

I I
taUS ~ tyUS ~ If- I

~-------------------~ uiS ~. VALID :P<LiLIf'.
FIGURE 21. RELATIONSHIP TO ANY BUS CYCLE. GUARANTEED VALID INTERVAL

TEXAS -1!1
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS. TEXAS 75265

4-39

II
en
Q)
Q)
..c.
en
ra
ra o

II

11320161·2
HIGH·PERFORMANCE MICROPROCESSOR

4-40.

PARAMETER MEASUREMENT INFORMATION

I T1 I TMMU I T2 I· Ti

ClK1

ClK2

I I II
---~II II

ADs IVI II
I I II

ClK1

ClK2

I tsuABT...If-+! ~ thABT

I ~l I I r~I--~---
I I I
I . I

FIGURE 22. ABORT TIMING, FL T NOT APPLIED

I Tf I Tf I Tf

I
I
I
I

Tf I T2

II
I

I I: ./ I
I . II . I

tSUABT-ff-+t If-*thABT I

I Ti

I I I I --~--~~----I-'Utl II I r--I~--~-----RST/ABT
I , I
I I I

FIGURE 23. ABORT TIMING, FL T APPLIED

~
-------------~: J--4.SV .

vcc I

I

CLK'~J1
I ~ jf-tsuRST
f4 tpwr ~

RST/ABT .. , I ,p
FIGURE 24. POWER-ON RESET

TEXAS ~
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS. TEXAS 75265

T132016T-2
HIGH-PERFORMANCE MICROPROCESSOR

CLK1

PARAMETER MEASUREMENT INFORMATION

FIGURE 25. NONPOWER-ON RESET

CLK1SULJ'L

-+I \f-tsulNT

iNT -----,.\'""~ " ____ _

FIGURE 26. INT INTERRUPT SIGNAL DETECTION

FIGURE 27. NMIINTERRUPT SIGNAL TIMING

T1 T2 T3 T4 1T1 OR Td

I I I I
ADs~1 I

i.-=tLXI.PFS----.I
IV
I

I I \ / • PFs I I I
I I I

FIGURE 28. RELATIONSHIP BETWEEN LAST DATA TRANSFER OF AN INSTRUCTION AND
PFS ON NEXT INSTRUCTION

TEXAS -I./}
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

II

4-41

II

4-42 '

• High·Speed NMOS Technology

• Supports Proposed IEEE Standard (Task
P754) for Binary Floating·Point Arithmetic

• Standard (32·Bit) and Long (64·Bit) Data
Floating-Point Operation

• 8 On-Chip Data Registers

• Direct Compatibility with T132032D·2,
T132032T·2, and T132016T-2 CPUs

• Direct'Replacement for National
Semiconductor NS32081·10

. description

T132081W·2
FLOATING POINT ,UNIT

D2871, APRIL 1985

J OR N DUAL-IN-LINE PACKAGE

(TOP VIEW)

010 Vee
09 STO'
08 ST1
07
06 D11
05 012
04 013
03 014
02 015
01
DO elK

GNOl GNOB

The TI32081 W-2 is a monolithic high-speed NMOS Floating-Point Unit (FPU) integrated circuit that functions
as a coprocessor. The T132081W-2 provides both standard (32-bit, single-precision) and long (64-bit, double
precision) operations, including add, subtract, multiply, divide, move, convert, and compare functions.
It is designed to support the proposed IEEE standard for binary floating-point arithmetic (Task P754) and
to be architecturally consistent with the full two-address architecture and addressing modes of the TI32000
microprocessor family.

The operand and result information transfers take place on a 16-bit bidirectional data bus. The status and
control are handled via two status lines and one control line. The CPU initiates the coprocessor cycle and
transfers the operation word and operands to the TI32081 W-2. The TI32081 W-2 then executes the floating
point instruction and signals the CPU upon completion. The CPU reads the error status and traps, if
appropriate. Otherwise, it reads the results and transfers it to the destination. This coprocessor cycle is
directly supported by TI32000 microprocessor 'family CPUs or can be emulated by other CPUs.

The TI32081 W-2 features single 5-volt supply operation. It also features operation from a single-phase
TTL-level clock that may be from any source. Typically, the clock signal is provided by the TI32201 Timing
Control Unit. The TI32081 W-2 also features power-up reset capabilities to ensure that all on-chip voltages
are completely stable before operation.

The TI32081 W-2 is characterized for operation from OOC to 7o'°C.

PRODUCT PREVIEW Copyright © 1985. Texas Instruments Incorporated

II
tI) ...
Q)
Q)

.J:
en

CO ...
CO
o

This document contain. Information
on a product under development_
Texae 'natNment. re.erv .. the right
to change or discontinue thl, product
without notlca.

. TEXAS"
INSTRUMENTS

4-43

POST OFFICE BOX 225012 e DALLAS. TEXAS 75265

II
c
Q)
r+
Q)

en
::T
CD
CD
r+ en

T132081W·2
FLOATING POINT UNIT

functional block diagram ,-, ------------

4-44

I
I
1:0,:.

I AND

I
I
I
J----
I
I
I
I
I
L __ _

ENTRY
POINT

GENERATOR

INTERNAL DATA BUS

TEXAS ~
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS. TEXAS 75265

CONTROL'BUS

INTERFAC~
AND STORAGE I

C UNIT

PIN

NO. NAME

1 010

2 09

3 08

4 07

5 06

6 05

7 04

8 03

9 D2

10 01

11 DO

12 GNDl

13 GNDB

14 ClK

15 RST

16 015

17 014

18 013

19 012

20 011

21 SPC

22· STl

23 STO

24 VCC

1/0

1/0

1/0

1/0

1/0

1/0

1/0

I/O

1/0

110

I/O

I/O

I

I

I/O

I/O

I/O

I/O

1/0

I/O

I

I

PIN FUNCTIONAL DESCRIPTION

DESCRIPTION

Data bit lOaf the data bus

Data bit 9 of the data bus

Data bit 8 of the data bus

Data bit 7 of the data bus

Data bit 6 of the data bus

Data bit 5 of the data bus

Data bit 4 of the data bus

Data bit 3 of the data bus

Data bit 2 of the data bus

Data bit 1 of the data bus

Data bit 0 (lSB) of the data bus

logic ground. Ground reference for on-chip logic

T132081W·2
FLOATING POINT UNIT

Buffer ground. Ground reference for on-chip output data bus drivers connected to output pins

TTL-level clock signal

Reset input. When low, initiates a reset.

Data bit 15 (MSB) of the data bus

Data bit 14 of the data bus

Data bit 13 of the data bus

Data bit 12 of the data bus

Data bit 11 of the data bus

Coprocessor Control. Used by the CPU as the data strobe for transfers to and from the FPU_

Used by FPU to signal completion of an instruction.

Status bit 1 input. Bus cycle status code from CPU

Status bit 0 input. Bus cycle status code from CPU

+ 5 V supply voltage

absolute maximum ratings over recommended operating conditions (unless otherwise noted)

Supply voltage, VCC (see Note 1) ,' , .. 7 V
Input voltage range .. • - 0.5 V to 7 V
Output voltage range. .. - 0.5 V to 7 V
Continuous total dissipation .. :1.5 W
Operating free-air temperature range, T A. 0 °C to 70 °C

NOTE 1: All voltage values are with respect to the network ground terminals.

recommended operating conditions

MIN NOM MAX UNIT

Supply voltage, VCC 4.75 5 5.25 V

High-level input voltage, VIH 2 VCC+ 0 .5 V

low-level input voltage, Vil -0.5 0.8 V

High-level output current, 10H -400 p,A

low-level output current, 10l 2 rnA

Operating free-air temperature, T A 0 70 °C

The algebraic convention, where the less positive (more negative) limit is designated minimum, is used
in this data sheet for logic voltage levels only.

II
en ...
CI)
CI)
~
(J)

ca ...
ca
C

TEXAS "'J1
INSTRUMENTS

4-45

II
c
Q) ,....
D)

VJ
::r
CD
CD ,....
(J)

T132081W·2
flOATING POINT UNIT

electrical characteristics over recommended ranges of supply'voltage and operating free~air temperature
(unless otherwise noted)

PARAMETER TEST CONDITION MIN MAX UNIT

VOH High-level output voltage 10H = -400 JlA 2.4 V

Val' low-level output voltage 10l = 2 mA ' 0.45 V

II Input current VI = 0 to VCC ±10 JlA

10(off) . Off-state output current Va = 0.45 V to 2.4 V' ±29 JlA

ICC Supply current 10 =0. TA = 25°C 300 mA

Timing parameter symbols t\c\ve been created in accordance with JEDEC Standard 100. In order to shorten
the symbols, the pin names have been further abbreviated as follows:

ClK C

lowercase subscripts and their meaning are:

c ,cycle time (period)
dis disable time (H or l to Z)
en enable time (Z to H or l)
f fall time
p

su
w

propagation delay time
rise time
setup time
pulse duration

Parentheses have been omitted except wh.en require9 for separation of a final subscript representing special
conditions. The columns titled NSC SYMBOL show the symbqls used by National Semiconductor for the
parameters shown in the timing requirements and swit~hing characteristics tables.

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

fclock

tcc

twCH

twCl

tpwr

twRST

tsuST.

thST

tsuo

thO

twsPC

tsusPC

thSPC

tsuRSTH

, thRSTl

tdSPC

4-46

PARAMETER NSC SYMBOL

Clock frequency

Clock peri'od tClKp
Pulse duration. ClK high· tClKh

Pulse duration. ClK low tClKI

Power-on before' RSn tpWR

Pulse duration. RST low tRSTw

Setup time. status before SPC I tSs

.Hold time. status after SPC! tSh

Setup time, data before SPC! tOs

Hold time, data after SPC: tOh

Pulse duration. SPC low. from CPU tsPCw
Setup time, SPC before CI.KT tsPCs

Hold time. SPC after ClK! tSPCh
~etup time. RST high before ClKI tRSTs

Hold time. RST low after ClK! tRSTh

Delay time between SPC pulses during operand tran~fer

TEXAS ~
INSTRUMENTS

MIN MAX UNIT

10 MHz

100 2000 ' ns

42 ns

42 ns

50 I'S

64tcC

50 ns

40 ns

40 ns

50 ns

70 ns

40 ns

0 ns

10 ns

0 ns

10 ms

T132081W-2
FLOATING POINT UNIT

switching characteristics over recommended operating free-air temperature range

taD

twsPC

tdisD

tpSPCl

tpSPCH

tpSPCHZ

PARAMETER NSC SYMBOL MIN

Access time. DO through 015 after SPC! tOv 10

Pulse duration. SPC low from FPU tsPCw teC - 50

Disable time. DO through D 15 after SPCf .. tDf
Propagation delay time. SPC ,

high:to-Iow-Ievel output after ClKf tSPCF1

Propagation delay time. ~
tSPCFh

low-to-high-Ievel output after ClKf

Propagation delay time. SPC high
tSPCFnf level to high impedance after CLKf

PARAMETER MEASUREMENT INFORMATION

ClK

VCC

ClK

I_ tcc----~·I
j.-twCH~ ':
I I I

FIGURE 1. CLOCK TIMING

5t
I
I
I

-----------------------------~ jr2v-sf-l '
FIGURE 2 . POWER-ON RESET

.. ~--- twRST ~I

0,

I' I

\0.' v f~ RST

FIGURE 3. NON POWER-ON RESET

TEXAs ~
INSTRUMENTS

MAX UNIT

50 ns

tcc + 50 ns

ns

70 ns

70 ns

45 ns

4-47

II
(/)
Q)
Q)

.J:
CJ)

CO

CO
c

II
c
D) ...
D)

en
::r
CD
CD ...
tJ)

Tl32081W·2
FLOATING POINT UNIT

PARAMETER MEASUREMENT INFORMATION

-/50% \ 1.50% \ ,..:---_......I, I. I
ClK

thSPC ~ ~tsuspc ---+-thSPC--i /4-- tsuspc--.j

II~ ~2V I IV,ALID 2V~
~O.8V I I 0.8V_ ~

• I I'. I
ft-tsUST~ ~thST~ I I

I I I I

SPC -----, 2~:~.;X ~~C .~ v11~2~V----~f~

14 tdSPC 'I L ~I
If tsuD ~. ~thD~

D~Dl' D(::v VALID FROM CPU •. ::"

STO, ST1

FIGURE 4. WRITE CYCLE TO FPU

ClK
~ __ -JI I

-M---.!~I I k--tsuSPC~ I
I I I , ~ ~,tsuSPC------.J, •
I I I ' thSPC----.-.----.,

STO.ST.j~2V :1',VAl,D . 2V~1
~O.8V I. . 0.8V __

'. , I
k-tsuST+I /f--thST~. I I

II- . twspc -I I .
SPC ----.....2~V~\l.0.8V 0.8 vjf:"2 V '-

k-taD-+j ~tdisD

DO-D15·--------2~~ VALIDFROMFPU \l ______ _
0.45V\ r,

FIGURE 5. READ CYCLE FROM FPU

4-48
. "'/.1.

. . TEXAS "V
INSTRUMENTS

ClK

SPC
(DRIVEN BY

FPU)

PARAMETER I\IIEASUREMENT INFORMATION

50"10

I I

T132081W·2
FLOATING POINT UNIT

tpSPCl-ff---+! tpsPCH -k-+I ~I tpSPCHZ

\1 /1 ~2.4~V~~2.4~V~+,- __ . __ ~
\- 0.45 V 0.45 V FLOAT . ~

I
14-- twSPC --to!

FIGURE 6. SPC PULSE FROM FPU.

ClK

I
thRSTl -ff--+I.... J t I ..----rr- suRSTH

RsT ii=2V ____ JlI 0.8 V

FIGURE 7. RESET RELEASE TIMING

TYPICAL APPLICATION DATA

., 16 '"
ADO·AD15 -c T

'"
,

STO STO I

Tl32032
ST1 ST1

TI32081

SPC .. SPC
~ RsT

I r ClK

RST CTTl

TI32201

FIGURE 8. TYPICAL SYSTEM CONFIGURATION

. TEXAS -I.!}
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS. TEXAS 75265

4-49

II
en
Q)
Q)

.c:
en

CO
CO
C

II
c
Q)
Q)

(J)
::r
CD
CD
C/)

4-50

T132082W·2
_ MEMORY MANAGEMENT UNIT

02877. APRIL 1985

• High·Speed NMOS Technology

• Dynamic Address Translation

• '32·Entry On·Chip Translation Cache,
Updated Automatically from Tables in
Memory

• Full Hardware Support for Demand·Paged
Virtual Memory Management

• Security Mechanisms Implemented via
Access·Level Checking and Dual·Space
Mapping

• Program Debugging Support:
Two Breakpoint Registers
"Break on Branch" Mode

• Single 5· V Supply Operation

description

The T132082W-2 Memory Management Unit
(MMU) supports demand-page, virtual mel)'lOry
management in systems using TI32016T and
TI32032T CPU's. Specific capabilities include
fast, dynamic address translation, protection on
,individual 512-byte pages, and status reporting
to assist an operating system in efficiently
managing up to 16-megabytes. of physical
memory. It provides support for virtual machine
implementations -and -features comprehensive
software debugging capabilities.

JD DUAL·IN·LINE PACKAGE

(TOP VIEW)

A22 VCC
A21 A23
A20 A24
A19 INT
A1B PAV
A17 STO
A16 ST1

AD15 ST2
AD14 ST3
AD13 PFS
AD12 DDIN
AD11 ADS
AD10 U/S

AD9 AT/Spe
ADB RST/ABT
AD7 FIT
AD6 Hi15AO
AD5 RI5Ai
AD4 HOLD
AD3 RST
AD2 RDY
AD1 CLK2
AqO CLK1

GNDL GNDB

High-speed address translation is performed on-chip through a 32-entry associative cache memory that
maintains itself (with no software intervention) from t.ables in memory. Protection violations and page faults
(references to nonresident pages) are automatically detected by the MMl), invoking the abort instruction
along with the retry feature of the CPU. This fault-handling mechanism provides the necessary support
for virtual memory and virtual machines.

Additional program debugging features include two hardware breakpoint registers that provide the
p'rogrammer with powerful stand-alone debugging capability even without expensive test equipment.

ADVANCE INFORMATION

-TEXAS •
INSTRUMENTS_

Copyright © 1985. Texas Instruments Incorporated
This document contains Information
on a new product. Specifications are
subject to chenge without notice. 4-51

II
U)
Q)
Q)
..c
en
ca'
ca
C

c
Q)
r+
Q)

(J)
':l"

CD
CD
r+
(f)

Tl32082W·2
MEMORY MANAGEMENT UNIT

functional block diagram

CLK1 ~

CLK2 ~ }
TWO·PHASE
CLOCKING

~-4~--------------------,
PFS ---1~--------------......,

{

ADO.AD15

SYSTEM A16.A23
BUS

A24

STO·ST3

Di5iN
AT/SPC

RS:h~iiT

m
PAv
ADS

U/S
ROY

HOLD
iilliAi

H'i':'DAO

I/O BUFFERS
AND

LATCHES

DEBUG
BLOCK

1 32·BIT I
MSR

REGISTER
FILE BLOCK

REGISTER DESCRIPTION

MSR = Memory Status Register
BPRO = Breakpoint Register 0
BRP 1 = BreaKpoint Register 1
BCNT = Breakpoint Count Register

EIA = Errorllnvalidate Address Register
PTBO = Page· Table Base Register 0
PTB 1 = Page· Table Base Register 1

PIN FUNCTIONAL DESCRIPTION TABLE

PIN
'DESCRIPTION

NO. NAME 1/0

1 A22 1/0

2 A21 1/0

3 A20 1/0 Multiplexed logical/physical address bus: Eight-bit bus including A23 (pin 47) which holds high byte
4 A19 I/O of 24-bitaddress. During T1 receives the logical address from the CPU, During TMMU-T4, delivers the
5 A18 I/O physical address from the MMU,
6 A17 I/O

7 A16 I/O

4-52 TEXAS.
INSTRUMENTS

PIN

NO. NAME I/O

8 AD15 I/O

9 AD14 I/O

10 AD13 I/O

11 AD12 I/O

12 ADll I/O

13 AD10 I/O

14 AD9 I/O

15 AD8 I/O

16 AD7 I/O

17 AD7 I/O

18 AD5 I/O

19 AD4 I/O

20 AD3 I/O

21 AD2 I/O

22 ADl I/O

23 ADO I/O

24 GNDl I

25 GNDB I

26 ClKl I

27 ClK2 I

28 RDY I

29 RST I

30 HOLD I

31 HlDAI I"

32 HlDAO 0

33 FLT 0

34 RST/ABT 0

35 AT/SPC I/O

36 U/S I

37 ADS I

38 DDIN I/O

39. PFS I

40 ST3 I

41 ST2' I

42 STl I

43 STO I

44 PAV 0

45 INT 0

46 A24 I/O

47 A23 I/O

48 VCC I

T132D82W·2
MEMORY MANAGEMENT UNIT

PIN FUNCTIONAL DESCRIPTION (Continued)

DESCRIPTION

Multiplexed I/O Data Bus': 16-bit bus for data transfer.

During clock period Tl, receives the logical address from the CPU.

During clock period TMMU, delivers the physical address from the MMU.

During clock period T2-T4, carries data from the CPU, memory, or MMU.

logic ground. Ground reference for on-chip logic.

Buffer ground. Ground reference for on-chip output.

Clock 1. One of two 2-phase clocking signals with frequency of 0.5 to 10 MHz_

Clock 2. One of two 2-phase clocking signals with frequency of 0.5 to 10 MHz.

Ready. Used by slow memories to extend memory cycle more than four clock periods. It is

synchronized externally and sampled at the beginning of T3.

System reset, active low. Initiates a reset ..

Hold request, active low. Used in DMA transfers.

Hold acknowledge input: Active low. Used for DMA transfers. Originates from CPU HlDA output.

Hold acknowledge output. Active low. Used for DMA transfers.

Float: Active low output to CPU that floats CPU from the bus when the MMU requires bus

access.

MMU reset or abort. Active low. Output accepted by CPU during T2 or TMMU.

Address translation/coprocessor control. Active low. Driven by the CPU as the data strobe for bus

transfers to and from the MMU. Driven by the MMU to signal completion of an qperation.

Used by the MMU for memory protection and selection of the user/operating system '\node.
Address strobe. Active low input from CPU during Tl of ClK 1 latches logical address.

Data direction in. As an input, a low indicat~s read and a high indicates write. When the CPU places

this line.in the high-impedance state, it permits this line to be driven by theMMU. This permits a read/write

action into the memory page independent of the CPU.

Program flow status. Active-low pulse issued by CPU at beginning of each instruction.

Status (STO, ST " ST2, and ST3). Input from CPU that is monitored by the MMU to keep track of the

status of the instruction being executed.

Physical address valid. Active-low pulse generated during TMMU.

Interrupt Output. Active-low pulse. Informs CPU (when connected to its NMI input) or external hardware.

that a break condition has occurred. ,

As an output, the most significant bit of the physical address, valid from c!ock period TMMU to T4.

During reset, this pin should be held high to configure the MM U for use with the T1320 16T or be held

low to configure the MMU for use with the T132032T.

Address bit 23 of logical/physical address multiplexed bus (A 16-A23).

Supply voltage (5 V).

C/) ...
Q)
'Q)

.c
tJ)

ca ...
ca
C

TEXAS ..
INSTRUMENTS

4-53 .

POST OFFICE BOX 225012 • DALLAS. TeXAS 75265 .

II
c
Q)
r+

;0)

(J)
::r
CD
CD
r+
f/)

T132082W·2
MEMORY MANAGEMENT UNIT

absolute maximum ratings over recommended operating conditio~s (unless otherwise no~ed)

Supply voltage, VCC (see Note 1) .. 7 V
Input voltage range .. -0.5 V to 7 V
Output voltage range , ' -0.5 V to 7 V

. Continuous total dissipation '. 1.5 W
Operating free-air temperature range ... '.' '.' : ,. 0 °C to 70 °C

NOTE 1: All voltage values are. with respect to the common ground.

recommended operating conditions

MIN NOM MAX UNIT

Supply voltage, Vee i 4.75 5 5;25 V

elK 1, elK2 inputs Vee- 0.45 5.25
High-level input voltage, VIH V

Any other input 2 Vee+ 0 .5

low-level input voltage, Vil
elK 1. elK2 inputs -0.3 0.35

V
Any other input -0.5 0.8

Operating free-air temperature, T A 0 70 .oe

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature
-(unless otherwise noted)

PARAMETER TEST· CONDITIONS ·MIN MAX UNIT

VOH High-level output voltage IOH'" -400/loA 2.4 V

Val low-level output voltage 10l = 2 mA 0.45 V

II Input current, other than clocks VI = 0 to Vee 10 /loA

10(0ft) Off-state output current Va = 0.45 V to Vee 10 /loA

lee Supply current 10. = 0, TA = 25°e 300 mA

Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten
the symbols, the pin n~mes have been further' abbreviated.

Pin name abbreviations are as follows:

ABT
ADS
ClK1
ClK2
Data
DDIN
FLT
HlDA
PAV
Physical Address (AO-A 15)
Physical Address (A 16-A23)
RDY
SPC

AB
AS
Cor C1
C2
D
DD
F
HA
P
A1
A2
R
S

lowercase subscripts and their meanings are:

a
c
dis
en
f
p

su
w

access time
cycle time (period)

• disable time (H or L to Z)
enable time (Z to H or l)
fall time
propagation delay time
rise time.
setup time
pulse duration

Parentheses have been omitted. The col~mns titled NSC SYMBOL show the symbols used by National
Sel")1iconductor for th!l parameters shown in the timing requirements and switching characteristics tables:

4-54 TEXAS •
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS. TEXAS 75265

. T132082W·2
MEMORY MANAGEMENT UNIT

timing requirements over recommended operating free·air temperature range (unless otherwise noted)

PARAMETER FROM TO
NSC

SYMBOL

fclock Clock frequency

tcc Clock period 50% ClK1T 50% ClKU tcp

twC1H ClK I hioh pulse duration 50% ClKl T 50% ClKl! tCh

twC2H ClK2 high' pulse duration 50% ClK2T 50% ClK2! tCh

twCl ClK I or ClK2 low pulse duration SO% ClKl! SO% ClKl T tCI
Clock pulse asymmetry, twCl H·twC2H

tCllC2H Nonoverlap time of ClK I! to ClK2T 10% ClKU 10% ClK2T

tC2lC1H Nonoverlap time of ClK2! to ClK IT 10% ClK2! 10% ClK

trC. ClK I 'or ClK2 rise time 10% ClK1T 90% ClKl T tCr

tfC . ClK I or ClK2 fall time 90% ClKl 1 10% ClKU tef

tsuR ROY setup time 0.8/2 V ROY SO% ClKl T tRDYs

thR ROY hold time SO% ClK1T 2 V ROY! tRDYh

tC1HSl ClK I high to .SPC low delay 50% ClKlt 0.8 V SPCl tSPCa

tC1HSH ClK I high to SPC high delay .50% ClKIT 2 V SPCT tSPCia

tsuo Read data 100·0 15) setup time
0.8/2 V

00·015
SO% 'ClK2! tDs

Read'data (00·0 15) hold time 50% ClKIT
0.8/2 V tOh,

thO
DO·01S tDlh

twASl ADS pulse duration 0.8 V ADS! 0.8 V ADST

~EXAS ~
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS. TEXAS 75265

FIGURE

NO.
MIN MAX

5 10

I 100 2000

I O.StcC-IO

I O.Stcc - 10

I 0.Stcc-l0

I ±4

I 0

I 0

I 9

I 9

8,9 30

9 0

10 3S

10 35

5, I I 15

5, I I 0

2,3 35

UNIT

MHz

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns II

4-55

C/) ...
Q)
Q)
.c
CJ)

CO ...
CO
C

Tl32082W·2
MEMORY MANAGEMENT UNIT

switching characteristics over recommended. ranges of supply voltage and operating free"air
temperature, CL .. 100 pF (unless otherwise noted)

PARAMETER FROM TO
NSC

SYMBOL

FIGURE

NO.
MIN MAX UNIT

Physical address (AO-A 15) delay 50% ClK1t.
0.8/2 V tAv.

2.3.4.5 tpA1 50 ns
AO-A15 tAlv

Physical address (A 16-A23) delay 50% ClK1!
0.8/2 V tAv.

2.3.4.5 tpA2 50 ns
A16-A23 tAHv

Read address (AO-A 15) disable time
Hi-Z tAf.

tdisA 50% ClK2! 2.3.5 25 ns
AO-A15 tAU

tpPl PAY high-to-Iow level delay 50% ClK1! 0.8 V PAY! tPAVa 2.3.4.5 35 ns

tpPH PAY low-to-high level delay 50% ClK1t 2 V PAVt tPAVia 2.3.4.5 95 ,ns

twP PAY low pulse duration 0.8 V PAY! 0.8 V PAY! tPAVw 2.3.4.5 40 ns

Physical address to PAY high delay
0.8/2 V

2 V PA'V! tAPH
AO-A23

tpAVs 2.3.4.5 20 ns

Physical address valid
2 V PAY!

0.8/2 V
tvPH-A

after PAV high AO-A15 tAvPAVia 2.3.4.5 10 ns

tenDO ODIN enable time 50% ClK! 0.8/2 V ODIN tOOINa 6 50 ns

tdisOO ODIN disable time 50% ClK1! 0.8/2 V ODIN tOOINia 7 50 ns

Write data delay 50% ClK1t
0.8/2 V

tpo
00-015

tOv 4.9 50 ns

Write data (00-015)
50% ClK2!

0.8/2 V
4.9 tvo valid time 00-015 tOh 0 ns

tpFl ClK 1 to Fl T low delay 50% ClK1! 0.8 V Fln tFlTa 6 45 ns

tpFH ClK 1 to Fl T high delay 50% ClK1! 2 V FLTt tFLTia 7 45 ns

twF Fl T low pulse duration 0.8 V FLH ·2 V FlT t tFlTw 40 ns

tpABl ClK 1 to ABT low delay 50% ClK1t 0.8 V ABH tABTa 55 ns

tpABH ClK 1 to ABT high delay 50% ClKU 2 VABTt tABTia 45 ns

twABL ABT low pulse duration 0.8 V ABT! 0.8 V ABTt tABTw 70 ns

tpHA HlDAI to HLOAO delay 0.8 V HlOAI! 0.8 V HIT5AO! tHLOd 30 ns

PARAMETER MEASUREMENT INFORMATIONt

~ twC1H twCl

90%

10%

--.j tfC--t ~

~
I

teC
I

tC1lC2H ~ If- . tC2lC1H-+!14-

ClK2 r~ ,,'0% 'O%'X 10% I I 1()o,{,

I
14 twCl ~I· twc2H---+f

FIGURE 1. CLOCK CYCLE

tin Figures '2 through 11. time intervals are defined with respect to the following reference points:
For Clock signals. the 50% points.
For all other signals. 2 V if the high level is indicated and 0.8 V if the low level is indicated .

4-56 . TE~.
INSTRUMENTS .

POST OFFiCe BOX 225012 • DALLAS. TEXAS 75265

ClK1

ClK2

AD()'AD15

A16-A23

ViR
(EXTERNAll

T1320B2W·2
MEMORY MANAGEMENT UNIT

PARAMETER MEASUREMENT INFORMATION

T1 TMMU T2 T3 • T4

DATA FROM CPU

tpA2~ I
:){~~!""'-~""'41""''''''PH-Y-SI-CA-l-A-DD-R-E~""''''''''''''''''''''''''''--

.................... -+I.J I I RtvPH-A

I I ~tpPh

\'----__ ---J/
FIGURE 2. MEMORY WRITE CYCLE WITH LOGICAL ADDRESS IN TRANSLATION BUFFER

T1 TMMU T2 T3 T4

ClK1

ClK2

ADO-AD15

t pA2-W I

II \1~~II--------~--A PHYSICAL ADDRE~ A16-A23

ADs ~: ~tAPH
twASl~ .1 L. I

ViR
(EXTERNAll

-91 r-tpPl I

~~---

~twP

\'----~/
FIGURE 3. MEMORY READ CYCLE WITH LOGICAL ADDRESS IN TRANSLATION BUFFER

II
en ...
Q)
Q)

..c
CJ)

CO ...
CO
C

TEXAS ..
INSTRUMENTS

4-57

c
Q)
r+
Q)

~
::r
CD
CD
r+
tn

T132082W·2
MEMORY MANAGEMENT· UNIT

4-58

PARAMETER MEASUREMENT INFORMATION'

TMMU T2 T3 T4

elK1

ClK2
I

...., If-tpA1 ~taD

·ADO-AD15 --i< ADDRESS X.i!!oj -. ,;... --D-A-TA-OU-T-O-F-M-M-U---""'!!I

~ It-tpA2 I
. I I If-tAPH--+-*tvPH-A

A16-A23 ==x ,.' I ADDRESS }-

. ~PPH---..t
tpPl-+l r- I PAV\ '''''---------------

j4- twP-.j

FIGURE 4. MEMORY MANAGEMENT UNIT WRITE CYCLE

TMMU

ClK1

ADO-AD15-t{, ADDRESS

tpA2-.t 14-

T2 T3

)>-'---

T4

_~ I
A16-A23 ----Y\: •. ___:.I ____ A_D_D_R_ESS _____ ..:... __

~tpPH----+I
tpPl+j1f-

PAv~'APHl
'f4--twP.-..I

FIGURE 5. MEMORY MANAGEMENT UNIT READ CYCLE

TEXAS ."
INSTRUMENTS

. POST OFFICE BOX 225012 • DALLAS. TEXAS 75265

T132082W·2
MEMORY MANAGEMENT UNIT

CPU
CYCLES

MMU
CYCLES

CLK1

CLK2

T1

T1

PARAMETER MEASUREMENT INFORMATION

TMMU T1 T1

TMMU T4 T1

I \ .
~tpFL~ I

ADO-AD15_ -<,.------>- Jmmm..
DATA _ ADDRESS (CPU) 'iFLOATING)~ 'iFLOAT"~G:ORiVENBYMMuI-

I
,------- 'I'

A16-23- -{, ADDRESS (CPU))- ----- - - - - - --- ----. , I (FLOATING, DRIV~N BY MMU)

I

'-I -'
DDIN--- -- - - ~ -....:. - -,-, - --i[5RiVENBYMMur~--

tenDD~

FIGURE 6. FLT INITIATED FLOAT CYCLE TIMING

CPU
CYCLES

MMU
CYCLES

CL~1

CLK2

T1

TMMU

I
FLT I -J

(MMU) I Ii
~I---I

T2 T3 T4

J4--tpFH--.I I' ' , A16-23 _____________________________ _

(CPU) (FLOATING, DRIVEN BY MMU)

1f.14----t , tdisDD

- -------___ --~I , -I '
DoiN---(DRiVENBYMMU')--7-- - - - - - - - - - - ~ - - ---

FIGURE 7. RELEASE FROM FL T TIMING

TEXAS ~
INSTRUMENTS

pn<:T n~~lr~ R('))("c;n" • DAt LAS TEXAS 75265

4-59

en
Q)
'Q)
..c
C/)

co
co
C

I

Tl32082W·2
'MEMORY MANAGEMENT UNIT

4-60

CLK1

CLK2

T1 OR
TMMU

PARAMETER MEASUREMENT INFORMATION

T2 T3 T3

~tSUR~
-------\!

ROY T
~---------------------------------THE ROY LINE IS SAMPLED AT

THE BEGINNING OF T3. IF ROY
IS LOW. T3 WILL BE REPEATED.
IF ROY IS HIGH. T4 WILL BE THE
NEXT T STATE.

FIGURE 8. READY SAMPLING (MMU INITIALLY READY)

T3 T3 T4

CLK1

CLK2

ROY

FIGURE 9. READY SAMPLING (MMU INITIALLY NOT .READY)

TEXAS """ INSTRUMENlS
POST OFFICE BOX 225012 • DAII A<: TF)(A<: 7~?"~

· T132082W·2
MEMORY MANAGEMENT UNIT

PARAMETER MEASUREMENT INFORMATION

T1

ClK1

ClK2

ADO-AD15 II--~--t.~
\f-tpD--.f

T4

I '
tVD~

DATA D~TPUT VALID TIMES }-

I
I If
~ ~ tC1HSH

(C~~ ------C(~{
,,", ----....;.ll!r' CPU DATA INPUT

REQUIREMENTS (REF)

\

STATUS ____ ST_A_T_U_S_V_A_l_ID ___ --'XNEXT CYCLE STATUS

ADS (HIGH)

DBE (HIGH)

NOTE: CPU timing shown for reference, for actual CPU setup and hold times see CPU data sheets.

FIGURE 10_ MMU DATA OUT TIMING (COPROCESOR INSTRUCTIONS)

II
CI) ...
Q)
Q)

~
en

CO ...
CO
o

TEXAS ."
. INSTRUMENTS

4-61

POST OFFICE BOX 225012 • DALLAS. TEXAS 75265

II
c
Q)
r+
Q)

(j)
::r
CD
CD
r+ en

Tl32082W·2
MEMORY MANAGEMENT UNIT.

TYPICAL APPLICATION DATA

T1 T4

ClK1

ClK2

ADO-AD1S.-----<f" DATA INPUT ,>--_______ _
\ REQUIREMENTS:(-

SPC
(CPU) \~--~/

AID < DATA FROM CPU >--
(CPU) -----:.~ ""-______ (_R_EF_E_R_E_N_C_E;..) ____ __

ODIN /
-:

STATUS STATUS VALID X NEXT CYCLE STATUS

ADS (HIGH)

DBE (HIGH)

NOTE: CPU timing shown for reference. for actual CPU setup and hold times see CPU data sheets.

FIGURE 11. MMU DATA IN TIMING (COPROCESSOR INSTRUCTIONS)

" 4-62 ·TEXAS ..
INSTRUMENTS

POST OFFice BOX 225012 • DALLAS. TeXAS 75265

• High·speed NMOS Technology

• 16 Maskable Interrupt Sources
(can be Cascaded to 256)

• Programmable B· or 16·Bit Data Bus

• Edge or Level Triggering for Each Hardware
Interrupt with Individually' Selectable
Polarities.

• B Software Interrupts

• Fixed or Rotating Modes

• Dual DC to 10 MHz', 16·Bit Counters that
may be Concatenated to a Single. 32·Bit
Counter

• Optional B·Bit I/O Port Available in
B·Bit Data Bus Mode

• Single 5·V Supply Operation

• Designed to be Interchangeable with
National Semiconductor Ns16202

description

T132202·2
INTERRUPT CONTROL UNIT

02874. APRIl: 1985

JD DUAL·IN·L1NE PACKAGE

ITOP VIEW)

IR15 VCC

iNT IR13

ST1 IR11

G7/IR14 IR9

G6/1R12 IR7

G5/1R10 1R5

G4/1R8 IR3

G3/1R6 IR1

G2/1R4 ClK

G1/1R2 WR

GOIIRO RO

07 COUT/SCIN

06 HBE

05 RST

04 A4

03 A3

02 A2

01 A1

DO AO

GNO CS

The TI32202 Interrupt Control Unit (lCU) is designed for use with the TI32000 microprocessor family.
Its usage minimizes the software and real·time overhead needed to handle multilevel, prioritized interrupts.
One TI32202 can manage up to 16 interrupt sources, resolve interrupt priorities, and supply a single·byte
interrupt vector to the CPU.

The TI32202 operates in either the B·bit or 16·bit data bus modes. In the a·bit mode, up to 16 hardware
interrupts with programmable prioritie's are handled .. In the 16·bit mode, a hardware and a software
interrupts can be handled. In either mode, up to 16 additionallCUs may be cascaded to handle a maximum
of 256 interrupts. .

Two 16·bit c?unters, which may be concatenated under program control into a single counter, are also
available for real·time applications.

The TI3202 is characterized for operation from OOC to 70°C.

ADVANCE INFORMATION
Thl. document contains Information
on e new product. Specifications are
subject to change without notice. TE~ -1!1

. INSTRUMENTS
POST OFFiCe BOX 225012 • DALLAS. TeXAS 75265

Copyright © 1985. Texas Instruments Incorporated

4·63

C/) ...
Q)
Q)

..t:
en

CO ...
CO
C

T132202·2
INTERRUPT CONTROL UNIT

.' '

functional block diagram

ClK COUT/SCIN

iNT G7/IR14

ST1 -G6/IR12

IR1 G511R10

IR3 G4/IR8

1R5 PRIORITY G3/IR6

IR7 CONTROL G211R4
TIMING

IR9 AND G111R2
CONTROL I/O BUFFERS

IR11 AND GOIIRO

IR13 lATCHES 07

IR15 06

05

RST 04

II 03

,RB 02

WR 01

C CS READ/ DO
'DJ WRITE ,..

,HBE lOGIC DJ
AO AND en DECODERS :::r A1

CD
CD A2 ,..
0 A3

A4

PIN FUNCTIONAL DESCRIPTION TABLE

PIN

NO. NAME I/O DESCRIPTION

1 IR15 IN
Interrupt Request - One of eight inputs used for hardware interrupts. May be individually triggered

in one of four modes (see explanation for pins 33 thru .39).

2 INT OUT Interrupt Output - This signal, when low, indicates that an interrupt is pending.

Status - Status Signal from the CPU. When the Hardware Vector Register is read, this signal differentiates

3 STl IN an INTA (lnterrup~ Acknowledge) cycle from an RETI (Return-from·lnterrupt) cycle. If STl is I.ow, the

ICU il1itiates an INTA cycle. If STl is high, an RETI cycle will result.

4 G7/1R14 I/O
G~neral 'Purpose I/O Lines - These pins are the high-order data bits when the ICU is in the 16-bit .

5 G6/1R12
bus mode. When the ICU is in the a·bit bus mode, each pin may be individually assigned one of

6 G5/1Rl0

7 G4/1Ra
the following functions:

a G3/1R6
1. 'Additional Hardware Interrupt Input (lRO through IR14)

G2/1R4
2. General Purpose Data Input

9
3. General Purpose Data Output

10 G1/1R2
4. Clock Output from H·Counter (pins GOIIRO through G3/1R6 only)

11 GO/IRO

4-64 TExAs.
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

PIN

NO. NAME I/O
12 07 I/O

13 06 I/O

14 05 I/O

15 .04 I/O

16 03 I/O

17 02 I/O

18 01 I/O

19 00 I/O

20 GNO

21 CS IN

22 AO IN

23 A1 IN

24 A2 IN

25 A3 IN

26 A4 IN

27 RST IN

28 HBE IN

29 COUT/SCIN I/O

30 RO IN

31 WR IN

32 CLK IN

33 IR1 IN

34 IR3 IN

35 IR5 IN

36 IR7 IN

37 IR9 IN

38 IR11 IN

39 IR13 IN

40 VCC

T132202·2
INTERRUPT CONTROL UNIT

PIN FUNCTIONAL DESCRIPTION TABLE (Continued)

DESCRIPTION

Oata Bus Lines - Eight low-order data bus lines used in both 8-bit and 16-bit bus modes

Ground - Power supply return

Chip Select - When CS is high (inactive), it disables the ICU from responding to address, data, and

control signals.

Address lines - These five-address lines are used to select the ICU internal registers for

read and write operations

Reset - When low, this signal initializes the ICU. The ICU initializes to the 8-bit bus mode.

High-Byte Enable - When low, this input data transfers on the most significant byte of the Data Bus.

If the ICU is in the 8-bit bus mode, this signal is not used a~d the terminal should be connected to

either GNO or VCC.

Cou':lter or Oscillator Output/Sampling Clock Input - An output signal from this pin provides either

a clock signal generated by the ICU internal oscillator, or a zero-detect signal from one or both of the

ICU counters. An input to this pin is used for an external clock to override the ICU internal oscillator.

The internal oscillator is overridden during sampling. This is done only for testing purposes.

Read - When low, this signal enables data to be read from internal registers of the ICU.

Write - When low, this signal enables data to be written into internal registers of the ICU.

Counter Clock - External clock signal used to drive internal counters of the ICU.

Interrupt Request Lines - These seven lines along with IR15 (pin 1) constitute eight inputs used for

hardware interrupts. Each of the eight inputs may be triggered in one of the following modes:

Rising Edge

Falling Edge

Low Level

High Lev~1

Power Supply, 5 V dc

II
(I) ...
Q)
Q)
.c
en
'cu ...

CO
C

TEXAS ~
INSTRUMENTS

4-65

T132202·2
INTERRUPT CONTROL UNIT

absolute maximum ratings over recommended operating conditions (unless otherwise noted)

Supply voltage, V CC (see Note 1) _ ; 7 V
Input voltage range - 0.5 V to 7 V
Output voltage range ... ; -0.5 Vto 7 V
Continuous total dissipation. 1.5 W .
Operating free-air temperature range ~ , O°C to 70°C
Storage temperature range ;..................... - 65°C to 150°C
lead temperature 1,6 mm (1/16 inch) from case for 60 seconds. .. 300°C

. NOTE 1: All voltage values are with respect to the GND terminal.

recommended operating conditions .

MIN NOM MAX UNIT

Supply voltage, Vee 4.75 5 5.25 V

High-level input voltage, VIH .- 2 V

Low-level input voltage, VIL 0.8 V

Operating free-air temperature, T A 0 70 °e

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)

4-66

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VOH High-level output voltage 10H = - 4OO I'A 2.4 Y
VOL Low-level output voltage 10L = 2 mA 0.45 V

II Input current VI = 0 to Vee ±20 I'A

10(offi Off-s~ate output current Vo = 0.4 V to Vee ±20 I'A

lee Supply current 10 = 0, T A = ooe 300 mA

Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten
the symbols, the pin names have been further abbreviated as follows:

Pin Name abbreviations are as follows: lowercase sub~cripts and their meanings are:

ClK
COUT
CS
INT
IR
RD
RST
ST1
WR

Cor Cl
CO
CS
INT
I
RD
RST
S
WR

a
c
d

dis
en
f
h
p
r

su
w

access time
cycle time (period)
delay time interval
disable time (H or l to Z)
enable time (Z to H or l)
fall time
hold time
propagation delay time
rise time
setup time
pulse duration

Parentheses have been omitted except when required for separation of a final subscript representing special
conditions. The columns titled NSC SYM BOl show the symbols used by National Semiconductor for the
parameters shown in the timing requirements and switching characteristics tables.

TEXAS ~
INSTRUMENTS

T132202-2
INTERRUPT CONTROL UNIT

timing requirements over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise. noted)

PARAMETER

thAIR) Read address hold time

tsuAIR) Read address setup time

thCSIR) Read CS hold time

tsuCS!R) Read CS setup time

thDIR) Read data hold time

twRD RD low pulse duration

tsus STl setup time

thS STl hold time

thA(W) • Write address hold time

tsuA(W) Write address setup time

thCS(W) Write CS hold time

tsuCS(W) Write CS setup time

thD(W) Write data hold time

tsuD(W) Write data setup time

twWR WR low pulse duration

tdlAI
Interrupt acknowledge

to IR delay

twl(ET)
IR low pulse duration in

edge-trigger mode

twSCH
Sampling clock high pulse

duration

twSCl
Sampling clock low

pulse duration

tcsc Sampling clock period

tcc Clock period

tcC(P) Clock period with prescaler

twCH ClK high pulse duration

twCH(P)
ClK high pulse duration

(with prescaler)

twCl ClK low pulse duration

tyvCl(P)
ClK low pulse duration

(with prescaler)

twRST RST low pulse duration

FROM TO

2 V RDf 0.8/2 V Address

0.8/2 V Address 2 V RD!

2 V RDf 0.8 V CS!

0.8 V CS! 2 V RD!

2 V RDf 0.8/2 V Data

0.8 V RD! 0.8 V RDf

0.8/2 V STl 2 V RD!

2 V RDf 0.8/2 V STl

2 V WRf 0.8/2 V Address

0.8/2 V Address 2 V WR!

2 V WRf 0.8 V CSf

0.8 V CS! 2 VWR!

2 V WRf 0.8/2 V Data

0.8/2 V Data 0.8 V WRf

0.8 V WR! 0.8 V WRf

2 V RD (lNTAI! 0.8/2 VIR!

0.8/2 VIR! 0.8/2 V IRf

2 V SCINf 2 V SCIN!

0.8 V SCIN! 0.8 V SCINf

0.8 V SCIN! 0.8 V SCIN!

0.8 V ClK! 0.8 V ClK!

0.8 V ClK! 0.8 V ClK!

2 V ClKf 2 V ClK!

2 V ClKf 2 V ClK!

0.8 V ClK! 0.8 V ClKf

0.8 V ClK! 0.8VClKf

0.8 V RST! 0.8 V RSH

. TEXAS"
INSTRUMENTS

NSC

SYMBOL

tAhRDia

tAsRDa

tCShRDia

tCSsRDa

tDhRDia

tRDw

tSsRDa

tShRDia

tAhWRia'

tAsWRa

tCShWRia

tCSsWRa

tDhWRia

tDsWRia

tWRw

tACKiR

tlRw

tSCINh

tSCINI

tSCIt:!Q.
tCy

tc~

tCh

tChp

tCI

tClp

tRSTw

POST OFFICE BOX 225012 .• DALLAS. TEXAS 75265

FIGURE

NO.
MIN MAX UNIT

1 80 ns

1 50 . ns

1 80 ns

1 50 ns

1 0 50 ns

1 160 ns

1 50 ns

1 -30 ns

2 80 ns

2 50 ns

2 80 ns

2 50 ns

2 50 ns

2 100 ns

2 160 ns

3 500 ns

3 50 ns

5 100 .. ns

5 100 ns

5 800 ns

7 400 ns

7 100 ns

7 100 ns

7 50 ns

7 100 ns

7 50 ns

400 ns

4·67

II
UJ
Q)
Q)
.c
en
to

'CO
C

II
c
D)
~
D)

en
::r
CD
CD
~ en

T132202·2
INTERRUPT CONTROL UNIT

switching characteristics over recommended supply voltage and operating free-air temperature, ,
CL -= 100 pF (unless otherwise noted)

4-68

taRO

tdisG

tpG

tplNT

twCOl'

tcco

tClCO

NSC FIGURE
PARAMETER FROM TO

SYMBOL
MIN MAX

NO.

Data access time 0.8 V RO! 0.8/2 V Data tROaOv . 1

GO ... G7 disable time 2 V WR! Hi-Z GO ... G7 tWRiaPf

GO ... G7 output delay time 2 VWRi 0.8/2 V GO ... G7 tWRiaPv 2

INT low delay after IR 0.8/2 VIR! 0.8 V INT! tlRid 3, 4

COUT low pulse duration 0.8 V COUT! 0.8 V COUTi tCOUTI 6, 7 50
tCOUTw

COUT clock period 0.8 V COUT! 0.8 V COUT! tCOUTp 6 400

ClK! to COUT delay 0.8 V ClK! 0.8 V COUT! tGCOUTI 7

PARAMETER MEASUREMENT INFORMATION

ADDRESS ___ '.IX :.~ V o.! ~X'--___ _
I I I ~~I ____ _

ST1 ~_:'_:~~~ __________________________ o._~_~~}(~~: ______ __
I ~tsUAIRI--.I thS ~ I
I \HtSUCS'R' j.-thAIRI-.l./

I 0.8 V'\:: I I ,*0.8 V

~tsus ~ �"4-----twRD----~.llf-thCSIRI---tI

'~O.8V O.8V-K2V

MI----taRD---~.1 tt---tf-thDIRI

--------------- J(2V 2V)(-----
DATA BUS DATA VALID _______________ 0.8V' 0.8 V ___ ' __

Fig'ure 1. READ/INTA Cycle

ADDRESS. =>¢::v o.~ ~X~-------

CS

DATA BUS

I I4--tsucsIWI...J thAIWI~ , _____ I~ I I I

I \'0.8 V I : 0.8vl
I' .1
,...--tsuAIWI~ "14-:-,----tWWR .llt-thcsIWI-..

:~X 0.8Vt,"",-2-V-------

I
~tsuDIWI~ M--......

-------...;.--- 2V

0.8 V
DATA VALID I

If-- tpG --.j

150

200

200

800

300

OUTPUT PORT, ,*"~2~V~--
DATA _____________________________________ ~__'~~~_.8_V ___ _

Figure 2. Write Cycle

TEXAS -1!1
INSTRUMENTS

POST OFFICE BOX 225012 • DALLAS. TEXAS 75265

UNIT

ns

ns

ns

ns

ns

ns

ns

T132202·2
INTERRUPT CONTROL UNIT,

PARAMETER MEASUREMENT INFORMATION

t+--*- twIlET)

IR ~------------::"'2:":'V"ll'"'\r'--"';r-

~ o.sv*\..~_./~
I'---tpINT" tdlAI~

I I
\~o.sv I /
1: 1

1
Rii IINTA)

Figure 3. Interrupt Timing in Edge~ Triggering Mode

IR ____ X'~.:v >C
If-- tp INT----tIt

~~I~O.~sv~ ____ ~ ____ J~

Rii ONTA) _' __ I
F,igure 4. Interrupt Timing In level Triggering Mode

SCIN

Figure 5. External Interrupt Sampling Clock to be Provided at COUT/SCIN When in Test Mode

I4--tI- twCOL 14-----tcco-----..t, '

COUT
---I ----"'" I I

Figure 6. Internal Interrupt Sampling' Clock Provided at COUT/SCIN,

COUNTER OUTPUT
(PULSED FORM)

COUNTER OUTPUT
(SQUARE WAVE) \o.sv

~
I

~I

v-I
I

Figure 7. Relationslhip Between· Clock Input at ClK and Counter Output Signals at COUT/SCIN
or G~/RQ, ... G3/R6. Pulsed Form and Square Wave

II
til ...
Q)
Q)

.c
en

CO ...
CO
C

TEXAS •
INSTRUMENTS

4-69

II
c
Q)
OJ

en
:::T
CD
CD en

4-70

• 2·Phase Full Vce Swing High·Capacitance
Drivers

T132201·2
TIMING CONTROL UNIT

JD DUAL-IN-LiNE PACKAGE

(TOP VIEWI

DBE VCC

D2870,APRIL 1985

• 4·Bit Input (WAITn) Allowing Precise
Specification of 0 to 15 Wait States . RWEN/SYNC PER

• Cycle Hold for System Arbitration and/or
Memory Refresh '

• System Timing (CTTL and FCLK) and
Control (RD, WR, and DBE) Outputs

• General-Purpose Timing-State Output to
Identify Internal States

• Support of Slow MOS Peripheral Interface
ICs (e.g., 8080 Series)

• Provides Re~dy (ROY) Output for TI32000
MPUs

• Synchronous System Reset Generation' from
Schmitt Trigger Input

• Single 5·V Power Supply

description

RD
WR

DDIN
.ADS
RSTI

RSTO
RDY

ClK2
ClK1
GND

CWAIT
WAIT1
WAIT2
WAIT4
WAIT8
TSO
CTTl
FClK
XOUT
XIN

The TI32201 Timing Control Unit (TCU) is a 24-pin device fabricated by a Schottky bipolar process. It
provides the 2-phase MOS clock drivers, system control logic (read, write, and data buffer enable), and
cycle extension logic for the TI32000 microprocessor family.

A crystal or external signal is used as the frequency source. In addition to the two-phase MPU clock outputs
(ClK 1 an'd ClK2)' two other clock outputs (TTL-compatible) are available for system timing. One of these
is a fast clock (FClK) providing twice the MPU clock frequency (Le., at the crystal frequency). Clock CTTl
is a TTL version of ClK 1.

The TCU also features cycle extension that includes digitally programmable wait state inputs, a peripheral
(slow) cycle to accommodate slower MOS peripheral interface, and Cycle Hold between the first cycle
time (Tl) and second cycle time (T2) to allow for arbitration prior to generating control signals.

The TI32201 is characterized for operatio~ from 0 °C to 70 °C.

ADVANCE INFORMATION
This document contains Information
on a new product. Specifications are
subject to change ~Ithout notlca. TEXAS -1!1

INSTRUMENTS

Copyright © 1985. Texas Instruments Incorporated

4-71

II
t/)
Q)
Q)
.c
en

CO
CO
C

II
C
m ...
m
VI
:::r
CD
CD ...
tn

T132201·2
TIMING CONTROL UNIT

functional block diagram

XIN

XOUT

+2

C

INTERNAL CLOCK

INTERNAL RESET
">--J----I---.f----fD

RwE'iiiISVNC

ADs 161

D6iN 151

PER 1231

CWAIT
1221

WAifi 1181

WAiT4 1191.

WAii2
1201

WAif1
1211

4-72

THREE
STATE

COUNTER

WAIT

WAIT
STATE

COUNTER
. AND

LOGIC

TEXAS •
INSTRUMENTS

FCLK

AD

DBE

PIN

NO. NAME
1/0

1 DBE OUT

2 RWEN/SYNC IN

3 RD OUT

4 WR OUT

5 ODIN IN

6 ADS IN

7 RSTI IN

\

S RSTO OUT

9 RDY OUT

10 ClK1 OUT

11 ClK2 OUT

12 GND

13 XIN IN

14 XOUT OUT

15 FCLK OUT

16 CTTl OUT

17 TSO OUT'

18 WAITl IN

19 WAIT2 IN

20 WAIT4 IN

21 WAiTS IN

22 CWAIT IN

23 PER IN

24 VCC IN

T132201·2
TIMING, CONTROL UNIT

PIN FUNCTIONAL DESCRIPTION

DESCRIPTION

Data Suffer Enable Output - A low signal at this pin enables the 3-statebuffers on the data

lines of the TI32000 CPU system, ,

Read-Write Enable/Synchronizing Input - This input when low enables the RD and WR

outputs, When high. it synchronizes the ClK 1 and FClK through the sync logic circuitry and

disables the AD and WR outputs placing the lines in'the high-impedance state.

Read Output Strobe (3-state) - When low. this signal identifies a REA!:> cycle. It is decoded

from ODIN and placed in the high-impedance state by RWEN going high.

Write Output Strobe (3-state) - When low. this signal identifies a WRITE cycle. It is decoded

from ODIN and placed in the high-impedance state by RW'E'N going high.

Data Direction Input - When low. this sianal determir:'es that a READ cycle is performed.

When high. a WRITE cycle is performed.
r

Address Strobe Input from CPU/MMU - This signal (going low) identifies the first timing state

IT1) of a bus cycle for the TCU.

Reset Input - This Schmitt trigger input generates the synchronous reset signal RSTO. The

rising edge of RSTO is synchronized to ClK 1. RSTI going low causes RSTO to go low. and

this signals a system reset.

Reset Output - The signal RSTI going low caus'es RSTO to bo low. When the slow rising edge

of RSTI reaches the threshold of the internal Schmitt trigger. RSTO goes high on the next

rising edge of ClK1.

Ready Output - This signal remains low as long as WAIT states are to be inserted in a bus

cycle (cycle extension). This pin is normally connected to the ROY input of the CPU.

CPU Clocks - These outputs provide 2-phase nonoverlapping clock signals. Their frequency is

half that of the crystal source or external source. They are intended to drive high-capacitance

MOS inputs with a full VCC swing.

Common reference for power supply and all signals.

Crystal 'Or External Frequency Source (XIN) - The desired CPU clock (ClK1 or ClK2)

frequency will be half that of the crystal or external source. A Schottky series gate

(VOHmin = 2.7 V) is recommended to drive XIN (Vthreshold = 2.5 V) as'the external

frequency source.

Crystal Feedback Output - This output is used in crystal operation only. This pin must be left

open when driving XIN with' an external frequency source.

Fast Clock Output - This is a TTL-level clock output having the same frequency as the crystal

or external frequency source. Therefore. its frequency is twice that of the CPU clocks.

TTL System Clock - This output is a TTL version of ClK1; therefore. it operates at the CPU

clock frequency.

Timing State Output - The falling edge signals the beginning of state T2. The rising edge

signals the start of state T4 of the bus cycle.

Wait-State Inputs - These inputs. collectively called WAITn. allow from 0 through 15 wait

states to be specified. They have binary weights of 1. 2. 4. and 8. respectively. The number

of wait states will be equal to the sum of the weights of the wait-state inputs standing at the

low level.

Continuous Wait Input - This input is used to initiate the Cycle Hold (sampled at end of T1)

or (continuous) Wait-State (sampled in the middle of T2) modes. In the Wait-State mode. this

input causes the WAITn inputs to be sampled and possibly to be overridden.

Peripheral Cycle Input - When this signal is low. the TCU performs a slow cycle. This input

causes the TCU to insert 5 WAIT states into a normal bus cycle and reshape the RD and WR

signals. This satisfies the Ri5 and WR setup and hold times required by slower peripherals.

+ 5-Volt power supply input

II

, TEXAS"
INSTRUMENTS

4-73

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

II
c
CI)
r+
CI)

en
:r
CD
CD
r+

,tJ)

T132201-2
TIMING CONTROL UNIT

absolute maximu":, ratings over recommended operating cor:-ditions (unless otherwise noted)

Supply voltage,Vcc (see Note 1) 7 V
Input voltage range ; -: 1 V to 5.5 V
Output voltage range ~ " -1 V to 5.5 V
Continuous total dissipation ' 1.5 W
Operating free-air temperature range r •• OoC to 70°C
Storage temperature range ... , '..................... - 65°C to 150°C

NOTE 1: All voltage values are with respect to the common ground.

recommended operating conditions

MIN NOM MAX UNIT

Supply voltage, Vee 4.75 5 5.25 V

High-level input voltage, VIH, any input except RSTI and XIN 2 V

Low-level input voltage, VIL, any input except RSTI and XIN 0.8 V

Ope~ating free-air temperature, T A 0 70 DC

electric~1 characteristics over recommended ranges of supply voltages and operati'ng free-air temperature.
(unless otherwise noted) ,

PARAMETER' TEST CONDITIONS MIN Typt MAX UNIT

VIK Input clamp voltage Any input except XIN II = -18 mA -0_7 -1.2 V

Vhvs Hysteresis (VT + - VT -) RSTI input 0. 1Vec 0.2VCC 0.25Vce

VT+
Positive-going input

RSTI input 0.5Vce 0.6VCC 0.7Vec
threshold voltage

VT Threshold voltage XIN input 0.4VCC 0. 5VCC 0.6VCC

CLK 1 and CLK2 4.3

VOH High-level output'voltage Any other output

except XOUT

IOH = -1 mA
2.4

V

CLK 1 and CLK2 IOL = 1 mA 0.5 I

VOL Low-level output voltage Any other output,

except XOUT
IOL = 20 rnA 0.5 V'

IIH High-level input current Any input except XIN VI = 5.25 V 50 p.A

IlL LOW-level input current Any input except XIN VI = 0.5 V -500 p.A

ICC Supply current All outputs high 180 260 mA

tAli typical values are atVce = 5 V, TA = 25 DC.

4-74

Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten
the symbols, the pin names have been further abbreviated as follows:'

ClKl C or Cl
ClK2 C2
CTTl CT
CWAIT CW
DBE DB
DDIN DD
FClK F

RD
RSTO
SYNC
TSO
WAITn
WR
XIN

TEXAS" '
INSTRUMENTS

R
RS
SN
T
Wn
W
X

POST OFFICE BOX 225012 • DALLAS. TEXAS 75265

Lowercase subscripts and their meanings are:

c cycle time (period)
dis disable time (H or L to Z)
en enable time (Z to H or L)
f fall time
p propagation delay time '
r rise time
su setup time
w pulse duration

T132201·2
TIMING CONTROL UNIT

. Parentheses have been omitted except when required for separation of a final subscript representing special
conditions. The columns titled NSC SYMBOL show the symbols used by National Semiconductor for the
parameters shown in the timing requirements and switching characteristics tables.

timing requirements over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)

PARAMETER FROM TO
NSC

SYMBOL

FIGURE

NO.
MIN MAX UNIT

tcc ClK 1 clock period 50% ClK1 t 50% ClKll tcp 4 100 ns

twXH
XIN applied high

2,5 V XINt 2.5 V XIN! tXh 4 16 ns
pulse durSltion

twXl
XIN applied low

2.5 V XIN! 2.5 V XINt tXI 4 16 ns
pulse duration

tsuADS ADS setup time . 0.8 V ADS! 50% CLK1t tAOs 6 25 ns

twADS ADS low pulse duration 0.8 V ADS! 0.8 V ADSt tADw 6 25 ns

tsuDD DDIN setup time 0.8/2 V ODIN 50% ClKll tDDs 6 10 ns

tsuCW(CH)
CWAIT setup time

0.8 V CWAIT! 50% CLKll
(cycle hold) tCWs(H) 10 25 ns

0.8 V CWAITt

thCW(CH)
CWAIT hold time

50% CLK1i or tCWh(H) 10 0 ns
(cycle hold)

2 V CWAIT!

tsuCYV(WS)
CWAIT setup time

0.8 V CWAiT! 50% CLK2i
(wait state) tCWs(W) 10,11 13 ns

CWAIT hold time
thCW(WS) (wait state)

50% CLK2t 0.8 V CWAITt tCWh(W) 11 8 ns

tsuWn WAITn setup time 0.8 V WAITn! 50% CLK2t tWs 11,12 5 ns

thWn WAITn hold time 50% CLK2i 0.8 V WAITni tWh 11,12 15 ns

tsuPER PER setup time 0.8 V PER! 50% CLK1i tps 12 0 ns

thPER PER hold time 50% CLK1t 0.8 V PERt tPh 12 20 ns

tsuSN SYNC setup time 2 V SYNCt 0.8 V FCLKt tsyS 13 18 ns

thSN SYNC hold time 2 V FCLKt 2 V SYNC! tSyh 13 0 ns

II
t/)
~
Q)
Q)
.c
en
ct'I
~
ct'I
C

TEXAS ~
INSTRUMENTS

4-75

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

." o
~

~

~

~
en

~z
'tSr.n
~-!
~;o~
;;C~
~ ~",
;:. f'T'lVJ

~z

~~~ x 
1;; 

'" en 

s~aallS e~ea II 
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise 
noted) (see Note 2) 

clocks (XIN, FClK, ClK 1, and ClK2) 

PARAMETER FROM TO 
NSC 

SYMBOL 

FIGURE 

NO. 
MIN 

tCH ClK1 high time 90% ClK1f 90% ClKH tClh 4 0.5tcC-15 

tCl ClK1 low time 10% ClK1! 10% ClKH tCLI 4 0.5 tcc 

twCH ClK 1 high pulse duration 50% ClK1 f 50% ClKH tClw(1) 4 0.5 tcc-10 

tw C2H ClK2 high pulse duration 50% ClK2f 50% ClK2! tClw(2) 4 0.5 tcC-10 

Clock pulse asymmetry 

(tw C1 H - tw C2H) 
tClwas 4 

trC - ClK 1 rise time 10% ClKH 90% ClK1f tClR 4 2 

tfC ClK 1 fall time 90% ClK1! 10% ClKH tClF 4 2 

tC1lC2H ClK1 low to ClK2 high nonoverlap 10% ClKH 10% ClK2f tnOVl(1) 4 

tC2lC1H ClK2 low to ClK1 high nonoverlap- 10% ClK2! 10% ClKH tnOVl(2) 4 

Nonoverlap asymmetry 
tnOVlas 4 

(tC1lC2H - tC1lC1H) 

tXFH XIN high to FClK high delay 2.5 V XINf 2 V FClKf tXFr 4 15 

tXFl XIN low to FClK low delay 2.5 V XIN! 0.8 V FClK! tXFf 4 15 

tXCTH XIN high to CTTl high delay 2.5 V XINf 2 V CTTLf tXCr 4 24 

tXCH XIN high to ClK 1 high delay 2.5 V XINf 50% ClKH tXPr 4 21 

tFCTH FClK to CTTl high differential delay 2 V FClKf 2VCTTLf tFCr 4 5 

tFCTl FClK to CTTl low differential delay 2 V FClKf 0.8 V CTTU tFCf 4 5 

tFCH FClK to ClK 1 high differential delay 2 V FClKf 50% ClK1 f tFPr 5 2 

tFCl FClK to ClK1 low differential delay 2 V FClKf 50% ClK1! tFPf 5 

tFH FClK high time 2 V FClKf 2 V FClK! tFw 5 0.25 tcc - 5 

tC2CT ClK2 to CTTl differential delay 50% ClK2f 2VCTTU tpCf 5 

tCTH CTTl high time 2VCTTLf 2VCTTU tCTw 5 0.5tcC-7 
-- ---- -- ---

NOTE 2: Unless otherwise noted, parameter measurements are taken with the output pins in the following conditions: 
ClK 1 and ClK2 - Figure 1. 
All TTL outputs (except CTTl) Cl = 50 pF - Figure 2. 
CTTl Cl = 100 pF - Figure 2. 

R5 and WR - Figure 3. 

MAX UNIT 

0.5tcC-7 ns 

0.5 tcc + 10 ns 

0.5 tcc-4 ns 

0.5 tcC-4 ns 

±5 ns 

7 ns 

7 ns 

±5 ns 

±5 ns 

±4 ns 

27 ns 

27 ns 

35 ns 

32 ns 

15 ns 

15 ns 

10 ns 

±4 ns 

0.25 tcC+5 ns I 

+10 
ns I -6 

0.5tcC+7 ns ! 

-of -of 
3:~ 
_N 
:2N 
C)C) '-n' eN 
:2 
-of = e 
r-
C 
:2 
=i 



T132201·2 
TIMING CONTROL UNIT 

switching characteristics over recommended ranges of supply voltage and operating free-air temperature 
(unless otherwise noted) (see Note 2) 

clock (CTTL) timing, CL - 50 pF 

PARAMETER FROM TO 
- .- NSC 

SYMBOL 

FIGURE 

NO. 
MIN 

tCCT ClKl to CTTL differential delay 50% ClKlt 2 V CTTLt tPCr 5 

trCT CTTL rise time 0.8 V CTTU 2 V CTTLt tCTR 5 

tfCT CrTL fall time 2VCTTU 0.8 V CTTU tCTF 5 

clock (CTTL) timing, CL - 100 pF 

PARAMETER FROM TO 
NSC 

SYMBOL 

FIGURE 

NO. 
MIN 

tCCT ClK 1 to CTTL differential delay 50% ClKlt 2VCTTU tPCr 5 

trCT CrTL rise time 0.8 V CTTU 2VCTTU tCTR 5 

tfCT CTTL fall time 2VCTTU 0.8 V CTTU tCTF 5 

output controls (RSTO, TSO, WR, RD, ROY, and RWEN/SYNC) 

PARAMETER FROM TO 
NSC 

SYMBOL 

FIGURE 
MIN 

NO. 

tpRS ClKl to RSTO high delay 50% CLKlt 2 V RSTOt tRSTr 6 

tpTL ClK 1 to TSO low delay 50% CLKlt 0.8 V TSO~ tTf 7,8 

tpTH ClK 1 to TSO high delay 50% CLKlt 2 V TSOt tTr 7,8 5 

tpWL(F) 
ClKl to WR low delay 

(Fast cycle) 
50% CLKl t 0.8 V WR~ tRWf(F) 7 14 

tpRl(F) ClKl to RD low delay 50% ClKlt 0.8 V RD~ tRWf(F) 7 14 

tpWL(S) 
ClK 1 to WR low delay 

50% CLKl t 
(Slow cycle) 

0.8 vWFh tRWf(S) 8 3 

tpRl(S) ClKl to RD low delay 50% CLKlt 0.8 V RD~ tRWf(S) 8 3 

tpWH ClKl to WR delay 50% CLKlt 2 V WRt tRWr 7,8 7 

tpRH ClK 1 to RD delay 50% CLKlt 2 V ROt tRWr 7,8 7 

tpDBl(W) 
ClK 1 to DBE delay 

50% CLKlt 
(Write cycle) 

0.8 V DBE~ tDBf(W) 7,8 8 

tpDBl(R) 
ClK 1 to DBE delay 

50% CLK2t 
(Read cycle) 

0.8 V DBE~ tDBf(R) 7,8 3 

tpDBH ClK2 to DBE delay 50% CLK2t 2 V DBEt tDBr 7,8 5 

tdis(W/R) WR or AD output disable time 2 V RWENt 
0.5 V change 

tplZ' tpHZ 9 
WR or R5 

WR or RD output enable time 0.8 V RWEN! 
0.812 V 

9 ten(W/R) WR or RD tpZL' tpZH 

tC2RDY ClK2 to ROY delay 50% CLK2! 0.8/2 V ROY tRd 10,11,12 

tCTSN CTTL to SYNC delay 
0.8 V CTTU 2 V SYNCt 

tcs 13 
(MASTER) (SLAVE) 

. NOTE 2: Unless otherwise noted, parameter measurements are taken with the output pins in the following conditions: 
CLKl and CLK2 - Figure 1. 
All TTL outputs (except CTTL) CL = 50 pF - Figure 2. 
CTTL CL = 100 pF - Figure 2. 

RiS and WR - Figure 3. 

TEXAS -Ij} 
INSTRUMENTS 

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265 

MAX UNIT 

+5 

-2 
ns 

5 ns 

4 ns 

MAX UNIT 

+6 

-2 
ns 

7 ns 

5 ns 

MAX UNIT 

15 ns 

10 ns 

15 ns 

30 ns 

30 ns 

15 ns 

15 ns 

20 ns 

20 ns 

24 ns 

15 ns 

20 ns 

20 ns 

ns 
20 

23 ns 

15 ns 

4-77 

en .. 
Q) 
Q) 
.c 
en 

CO .. 
CO 

C 



II 
C 
Q) 
r+ 
Q) 

CJ) 
:r 
CD 
CD 
r+ 
en 

T132201·2 
TIMING CONTROL UNIT 

PARAMETER MEASUREMENT INFORMATION 

-f
2.43 :.1 kO 

TEST 
FROM OUTPUT POINT 

UNDER TEST CL = 200 pF J (See Note AI 

FIGURE 1. ClK 1 AND ClK2 
OUTPUT lOAD CJRCUIT 

2.31 V 

-to.SO 

, TEST 

FROM OUTPUT POINT 

UNDER TEST CL = SO pF T (See Note AI 

= ' 
FIGURE 2. TTL OUTPUT' 

lOAD CIRCUIT 

l
1,SV

499n 

TEST 
FROM OUTPUT POINT 

UNDER TEST CL = 1S pF l' (See Note AI 

FIGURE 3. 3-STATE OUTPUT 
lOAD CIRCUIT 

NOTE A: CL includes probe and jig capacitance. 

4-78 

XIN 

FCLK 

CTTL 

tXCH 

CLK1 

/4-twXH-.! - t _..J 
1 I ~wXL_ 
1 I 1,.----, 

1 
I I 
~tXCTH tFCTH~ 
1 

'2V \ t2V I 
I 
I 

~ twC1H~ 
I 
I 

SO% SO% 

14------tcc------~ 

I 
I 
I4--tCL ~I 

I 

rtwC2Hi tC1LC2H-.l ~ tC2LC1H~ k--

CLK2 \ ... ______ -Jt SO
% \ ... S_0_% _____ 100_%...,1 ~ 

FIGURE 4. CLOCK SIGNALS ~A) 

TEXAS ~ 
INSTRUMENTS 

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265 



XIN 

FCLK 

ClK1 

ClK2 

CTTl 

RSTo 

ADs 

CoiN 

T132201·2 
. TIMING CONTROL UNIT 

PARAMETER MEASUREMENT INFORMATION 

I4-tFH-.t 
I 1 

14-

I'" I 
I 
I 

\: 
I 

tCCT-.l !.-
X2V 

j+---tCTH 

I 
I 

-+lj4-tFCl 

\50% ! \---
{SO% \ ~----'! 
~ I4-tC2CT trCT-+! 14-

1 I I 

~V l2V 
_I o.sv 

~ t4- tfCT 

------2"":"V~~ I 
\o.SV -, 

FIGURE 5. CLOCK SIGNALS (B) 

':5 I 
I4-tsuADS~ 
I I twADS~ I ,f I I. I 

o.svVo.s~ 
-.t If- tsuDD 

f: I 

X:.:v >: 
FIGURE 6. CONTROL INPUTS 

TEXAS -II} 
INSTRUMENTS 

POST OFFICE BOX 225012 • DALLAS. TEXAS 75265 

4-79 

t/) ..... 
Q) 
Q) 

..c: 
en 
j9 
CO 

C 



II 
o 
Q) ,... 
Q) 

CJ) 
:::T 
CD 
CD ,... 
fJ) 

T132201·2 
TIMING CONTROL UNIT 

4-80 

PARAMETER MEASUREMENT INFORMATION 

CLK1 

CLK2 

tPTL~ tpTH ~ 14-
TSc5 I'\! ~2V --------"""""" 1 V~-...;...-----

I \=0.8V . 

t pWL(F)---t4-+I tpWH-t\ 14-
--------------""""""\! 1,'JF ~2~V--~-------

WR ! ~~V ( 

tpRLlFI~ tpRH-.t jf-
--------------~I , ~~~I--------

RO l'\i_~~------------'I.,2V 'l, ~0.8V . I 
tpOBL(W)---14-+1 If----*tpOBL(R) tpOBH ~ 

DBE ----------\L1-- ----\ I tlr
-2-V---

0.8 V' 3- 0.8 V . 

FIGURE 7. CONTROL OUTPUTS (FAST CYCLE) 

T1 T2 TOO T01 , T02 T03 T04 T3 , T4 

CLK1 

CLK2 

tPTL-.I 14- I 1 tpTH ~ If- : 
:~ I I ~ 11P-2- V+I---

0.8 Vl1:J-......;--------+I--------------+I---..". ' 
I ~ ~ tpWL(S) tpWH ~ 14- : I 

WR ----+I-~-----n:~ fr~2~V-~I-~'---
I ,+0.8V . I I 

\ I 1 I 
,. ..! ~ tpRL(S) tpRH -.I j4- , ' 

----~------_-I F~----
I 1 'I ' . 2V I 

AD I \j 0.8 V ' J 1 
~ j4-tpOBL(RI ~---- --- ------------ ~ I-"tpOBH 

1.:.....,1 r \ 1 2V ' 
0.8V:t !0.8V • 

-+I !f-tpOBL(WI 

FIGURE 8. CONTROL OUTPUTS (PERIPHERAL CYCLE) 

TEXAS ~ 
INSTRUMENts 

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265 



CLK1 

CLK2 

ROY 

T132201·2 
TIMING CONTROLUNll 

PARAMETER MEASUREMENT INFORMATION 

RWEN/SVNC 1f1 2 v \ --.I : 0.8 v-\: 
1
'------

~tdis(W/R) 
I ~ten(W/R) 

WR & RD ___ ---'6"...~-O+L-0-.S-V-----0-.8""\1---- - : 1.5 V 

I I OL 
I I 

WR & RD ----.,~O~05 V 2l,--_-_-_-_- ::.: V 

FIGURE 9. CONTROL OUTPUTS (THREE·STATE TIMING) 

I TH1 (FIRST) I THn (LAST) I 

'''-_f---------So

% t----F'''-------'''''-------,'----
I I 
I I 
I ~ 
I 
I 
I 

tsuCW(CH)--.j I--

0\L0.8V 

I 
I 
I 

-.j j4- t hCW(CH) 

1r--------~2~V~~S-U-B-S-EQ-U-E-N-T-W-A--IT 
CYCLE HOLD 

I f 0.8V 0.8Vt._T!~:: __ ~ 
I I 
I I 

~tC2RDY tC2RDY-j.--.I 

--------~----~~~ _________________ Fv_v_ 
0.8V~I_ ! 

FIGURE 10. CYCLE HOLD 

TEXAS -I/} 
INSTRUMENTS 

POST OFFICE BOX 225012 • DALLAS. TEXAS 75265 

READY REMAINS LOW 
FOR SUBSEQUENT WAIT 

4·81 

II 
tn ..... 
Q) 
Q) 

.J: 
en 

CO ..... 
CO 
o 



II 
c 
Q) ... 
Q) 

C/) 
::r 
CD 
CD ... 
en 

T132201~2 
TIMING CONTROL UNIT 

. CLK1 

CLK2 

CWAiT 

WAITn 

ROY 

T1 

CL.K1 

CLK2 

T2 

I 
I 
I 
1 50% 

PARAMETER MEASUREMENT INFORMATION 

I 
·o.sv I 

I 

f 
I 
I 
I 

HtC2ROY 

. t2V 

TCW 
DR 

TOO T01 T02 TWn T03 T04 

I • I 
1 tsuWn -.I 14-

T3 T4 

__ ---1Ir---+I ________ 1-+ll+-thW~ 1 
CWAIT. I ~I lrl I ,f-------+I--------
~ thPER~..- I 
WAITn I I I 

tsuPER~ 14-1 I : 
PER ~I ~~I-------------------~{·r<----------~I~-----------------

O.S Vlc..J O,.S V I 

~ k-tC2ROY -+i *-. tC2ROY 
-------~. 

\1 t2V 
ROY +~-O.-S-V---------~/I~'--------J. 

FIGURE 12. WAIT-STATE (PERIPHERAL CYCLE) 

4-82 TEXAS .. 
INSTRUMENTS 

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265 



T132201·2 
TIMING CONTROL UNIT 

PARAMETER MEASUREMENT INFORMATION 

CTTL (MASTER) 

tCTSN~~f---"~1 

_
____________________ ~frl-2-V-------------------------------1r1~2_V ____ __ 

RWEN/SVNC (SLAVE). ~ 

J4.- tsuSN---+l1+-- thSN--+/ 

p~~----""" 

\ /0.: ~ \'----FCLK (SLAVE) ~ 

FIGURE 13. SYNCHRONIZATION TIMING 

TEXAS -I.!} 
INSTRUMENTS 

4-83 

t/) .... 
Q) 
Q) 
.r: 
CI) 

co .... 
co 
C 



c 
Q) ..... 
Q) 

en 
:T 
CD 
CD ..... 
t/) 

4-84 



TI32000 Family 

Mechanical Data 

5-1 



5-2 



5 Ordering Information and Packaging Mechanical Data 
5.1 Ordering Instructions 

Electrical characteristics presented in this data manual, unless otherwise noted, apply 
for circuit type(s) listed in the page heading regardless of package. The availability 
of a circuit function in a particular package is denoted by an alphabetical reference 
above the pin-connection diagram(s). These alphabetical references refer to mechanical 
outline drawings sh,own in this section. 

Factory orders for circuits described in this catalog should include a seven-part type 
number as explained in the following example. 

EXAMPLE: TI 32032 0 C FN L 1 

Prefix (Qual Status)---.-t 
Must contain two letters 
TI Complies with TI's published 

quality and reliability policies 
TX Prototype. device not internally 

qualified by TI 

Unique Circuit Description'----J 
Must contain five characters 
Examples: 

32008 
32016 
32032 
32081 
32082 
32201 
32202 

CPU 
CPU 
CPU 
FPU 
MMU 
ICU 
TCU 

Bus Width-------------I 
Blank 
B 
W 
D 
Q 
T 

== No address or data bus 
= Byte (8-bit) data bus 
= Word (16-bitl data bus 
= Double-word (32-bit) data bus 
= Quad-word (64-bit) data bus 
= Truncated (24-bit) address bus 

for CPU 

·1 L Speed Code 
. Must contain one character 

1 = 6 MHz 
2 = 10 MHz 

, Temperature Range 
Must contain one character 

H = OOC to 55°C 
L = OOC to 70°C 

L-____ Package 
Must contain one' or two letters 

JD (Dual-in-line package) t 
FN (Chip Carrier) 
GB (Pin grid array package) 
N (Dual-ill-line package) t 
(From pin-connection diagram 

on individual data sheet) 

L-______ Functionality Code 
Blank = Original NMOS version 
A or B = Revised functionality 

for NMOS product 
C = Original CMOS version 
D or E = Revised functionality 

for CMO S product 

tThese circuits in dual-in-line packages are shipped in one of the car'riers listed below. Unless a specific method of shipment 
is specified by the customer (with possible additional costs). circuits will be shipped in the most practical carrier. Please 
contact your TI sales representative for the method that will best suit your particular needs. . 

Slide Magazines Sectioned Cardboard Box 
A·Channel Plastic' Tubing Individual Plastic Box 

5-3 

co .... 
CO 
C 
CO 
o 
·C 
co 

J:, 
o 
Q) 

2 



s: 
CD 
(") 
:r 
0) 
:l o· 
2L 
C 
0). 
r+ 
0) 

5.2 Packaging Mechanical Data 

5.2.1 FN Plastic Chip Carrier Package 

5-4 

This chip carrier package consists of a circuit mounted on a lead frame and encapsulated 
within an electrically nonconductive plastic compound. The compound withstands 
soldering temperatures with no deformation, and circuit performance characteristics' 
remain stable when the devices are operated in high-humidity conditions. The package 

. is intended for surface mounting on solder lands on 1,27 (O.050-inch) centers, but 
can also be used in a socketed configuration that is pin-compatible with the 68-Pin 
Grid Array Package. 

NO. OF 

TERMINALS 

28 

68 

1,27 (0.050) x 45° . 
NOM 

0,81 (0.032) 
0,66 (0.0261 

FN PLASTIC CHIP CARRIER PACKAGE 

(28-terminal package used for illustration)· 

A 

MIN MAX 

12,24 12,57 

(0.482) (0.495) 

24,94 25,27 

(0.982) (0.995) 

4,78 (0.188) 
4,06 (0.160) 

1,14 (0,045) 
0,63 (0.025) 
2,41 (0.095) MIN 

B 

MIN MAX MIN 

11,43 11,58 10,41 

(0.450) (0.456) (0.410) 

24,13 ·24,28 23,11 

(0.950) (0.956) (0.910) 

18 17 16 15 14 13 

3° NOM r-+l.52 (0.060) MIN 

C 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES. 

MAX 

10,92 

(0.430) 

23,62 

(0.930) 



5.2.2 GB Ceramic Pin Grid Array Package 

This is a hermetically sealed ceramic package with metal cap and gold-plated pins. 

GB CERAMIC 68-PIN GRID ARRAY PACKAGE 

(CAVITY UP) 

INDEX 
CORNER 

TOP 
VIEW 

4,95 (0.195) 

;-------.-;1 11 
-128.4 (1.120) 

27,4 (1.080) 

17,0 (0.670) 

L------'_lM 
2,03 (0'08o

tn
, I 1,40 (0.055) 

I Lr- 1,14 (0.045) 

TI-u TI i i rr iii ffil' . 
3,30(0,130) O,508l0,020)..! I- 1Jl',51510'062) O)A 
2,79 (0.110) 0,406 (0.016) 1.473 (0.058) 

~2,54 (0.100) T.P. 

L 1 cD0000000e--r . 
K 00000000 00e·---t 2,54(0.100) 

J 00 00 T.P. 

H00 00 
G00 00 

BOTTOM F 0 0 0 0 
VIEW 

E00 00 
D00 00 
e00 00 
B00000000000 
A 000°000008- i 

---r 1,27 (0.050) 
2 3 4 5 6 7 8 9 10 11 L- NOM 

(See Note A) 

NOTE A: Pins are located within 0,127 (0.005) radius of true position relative to each other at maximum 
material condition and within 0,254 (00010) radius relative to the center of the ceramic. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

5-5 

co -CO 
C 

CO 
CJ 
'2 

CO 
J: 
CJ 
Q) 

:1E 



5.2.3 JD Ceramic Dual-in-Line Package-Side Braze 

5-6 

This is a hermetically sealed ceramic package with a metal cap and side-brazed gold
plated leads. 

~ . 24 40 48 
DIM. 

A±0.025 15,24 15,24 15,24 

(0.010) (0.600) (0.600) (0.6'00) 

B (MAX) 
32,8 52,1 62,2 

(1.290) (2.050) (2.45) 

C (NOM) 
15,1 15,1 15,1 

(0.595) (0.59)5 (0.595) 

INDEX DOT 

(0-----------------------.. 
ct. ct. 
t=A~ '. 
,~ SEATlN:'51(Or[ffiummuuoo~~ 
~ r 'LAN'::ru u u u u u u ~u~ u. u u u~ 

J\.... 0.25 (0,010) NOM 1,90 ((j,075) MAX ~ I-- 254 (0 100) T p j t ~:~~ :~:~:~: 
piN SPACING' . 0,53 (0.021) 
(See Note A) 0,38 (0.015) 

5,1 (0.200) MAX 

3,05 (0.120) MIN 

NOTE A: Each pin center line is located within 0,25 (0.010) of its true longitudinal position. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES. 



5.2.4 N Plastic Packages 

~ DIM. 
24 40 48 

A (MAX) 
15.88 15.88 15.88 

(0.625 (0.625) (0.625) 

B (MAX) 
31.8 53.1 62.2 

(1.250) (2.090) (2.450) 

C (MAX) 
13.97 13.97 13,97 

(0.550) (0.550) (0.550) 

I' BMAX 'I N 4 • 

O'5081O'020'M'NL~·rn. I 
-SEATING PeANE f -v V v v v v~ IVI ~v V jM b= :[,'::,':,:X 

0,279 ± 0,076 ~\- 0,457 ± 0,076 -+I r-~ . ~ (0.033) NOM 

(0.011 ± 0.003) (0.01B ± 0.003) PIN SPACING 1,77B (0.070) MAX 

2,54 (0.100) NOM 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES. 

5-7 

ca' .... 
ca 
C 
(ij 
CJ 
'2 
ca 

..c: 
CJ 
Q) 

2 



5-8 



TI32000, Family 

v .,: •• ". • ' ••• ~ 

Archit~ctur~·iOv~rViQw 

Glossary 

6-1 



G') 

5" 
t/) 
t/) 
Q) ... 
< 

6-2 



6 Glossary 
Abort - The first step of recovery when an instructiqn or its operand(s) is not available 
in main memory. An Abort is initiated by the Memory Management Unit (MMU) and 
handled by the CPU. 

Absolute Address - An address that is permanently assigned to a fixed location in 
main memory. In assembly code, a pattern of characters that identifies a fixed storage 
location. 

Access Time - The time interval between when a request for information is made 
and the instant this information is available. 

Access Class - The five TI32000 family access classes are memory read, memory 
write, memory read-modify-write, memory address, and register address. The access 
class informs the TI32000 family CPU how to interpret a reference to a general operand. 
Each instruction assigns an access class to each of its two operands, which in turn 
fully defines the action of any addressing mode in referencing that operand. 

Accumulator - A device which stores the result of an ALU operation. 

ACU - Application-specific Coprocessor Unit. This is a user-designed device which 
utilizes-the same coprocessor interface as the dedicated coprocessors (FPU and MMU). 
The TI32000 family instruction set contains 20 instructions designed specifically for 
use with an ACU, but the exact interpretation of these instructions is left to the system 
designer. 

Address - An expression, usually numerical, which designates a specific location in 
a storage or memory device. 

Address-Data Register - A register which may contain either address or data, 
sometimes referred to as a general-purpose register. 

Address Strobe - Control signal used to tell external devices when the address is 
valid on the external address bus. 

Address Translation - The process by which a logical address emanating from the 
CPU is transformed into a physical address to main memory. This is performed by the 
Memory Management Unit (MMU) in TI32000 family systems. Logical address to 
Physical address mapping is established by the operating system when it brings pages 
into main memory. 

Addressing Mode - The manner in which an operand is accessed. TI32000 family 
CPUs have nine addressing modes: Register, Register Relative, Memory Relative, 
Immediate, Absolute, External, Top-of-Stack, Memory Space, and Scaled I,ndexing. 

Algorithm - A set of procedures by which a given result is obtained. 

6-3 

>-
"-co 
t/) 
t/) 

o 
a 



6-4 

Alignment - The issue of whether an instruction must begin. on a byte, double byte, 
or quad 'byte address boundary. 

ALU - Arithmetic Logic Unit. A computational subsystem which performs the 
arithmetic and logical operations of a digital ~ystem. 

Array - A structured data type consisting of a number of elements, all of·the same 
data type, such that each data element can be individually identified by an integer 
index. Arrays represent a basic storage data type used in all high-level languages. 

ASCII - (American National Standard Code for Information Interchange, 1968). This 
standard code uses a character set coded as 7-bit characters (8-bits when using parity 
check). It is used for information interchange among data processing systems, 
communication systems, and associated equipment. The ASCII set consists of alpha, 
numeric, q:>ntrol and graphic characters. Synonymous with USASCII. 

Assemble - To prepare a machine language program (also called machine code or 
object code) from a symbolic language program by substituting absolute operation 
codes for symbolic operation codes and absolute or relocatable addresses for symbolic 
addresses. Machine code is a series of ones and zeros which a computer understands. 

Assembler - A computer program that assembles. 

Assembly Language - A machine-specific language whose symbolic instructions are 
usually in one-to-one correspondence to machine language instructions. 

Associative Cache - A storage area where each data entry has an associated "tag". 
The tags are simultaneously compared to some input value (a logical address) in the 
case of the MMU, and if a matching tag is resident, the associated data entry is emitted. 
An associative cache is present within the MMU in TI32000 family systems to provide 
logical-to-physical address translation. 

Asynchronous Device -. A device in which the speed of operation is not related to 
any frequency in the system to which it is connected. 

Baud Rate - Data transfer rate. For most serial transmission protocols, this is 
synonymous with bits-per-second (bps). 

BCD - Binary Coded Decimal. A binary numbering system for coding decimal numbers. 
A 4-bit grouping provides a binary value range from 0000 to 1001, and codes the 
decimal digits "0" through "9". To count to 9 requires a single 4-bit grouping; to 
count to 99 takes two groupings of 4 bits; to count to 999 takes three groupings of 
4 bits, etc. 

Benchmark - In terms of computers, this refers to a software program designed to 
perform some task which will demonstrate the relative processing speed of one 
computer versus another. 

Bit - An abbreviation of "binary digit". It is a unit of information represented by either 
a one or a zero. 

Bit Field - A group of bits addressable as a single entity. A bit field is fully specified 
by the location of its least significant bit and its length in bits. In TI32000 family 
systems, bit fields may be from one to 32 bits in length. 



Branch - A nonsequential flow in a software instruction stream. 

Breakpoint - A place in a routine specified by an instruction, instruction digit, or other 
condition, where the software program flow will be interrupted by external intervention 
or by a monitor routine. 

Buffer - An isolating circuit used to avoid reaction of a driven circuit on the 
corresponding driver circuit. Buffers also supply increased current drive capacity. 

Bus - A group of conductors used for transmitting signals or power. 

Bus Cycle - The time necessary to complete one transfer of information requiring 
the use of external address, data and control buses. 

Byte - eight bits. 

Byte Enable - BEO to BE3. CPU control signals which activate memory banks, each 
bank providing one byte of data per address. 

Cache - See Associative Cache. 

Cache Hit- In the MMU, logical-to-physicaladdress translation takes place via the 
associative cache. For this to happen, the addressed page must be resident in ·physical 
memory such that a !ogical address tag is present in the MMU's translation cache. 

Cache Miss - When a logical address is presented to the MMU, and no physical address 
translation entry is found in the MMU's associative cache. 

Cascaded - Interrupt Control Units present in a TI32000 family system which are 
in addition to the Master ICU are referred to as "cascaded" ICUs; i.e., interrupts 
cascade from a second-level ICU through the master ICU to the CPU. 

Clock - A device that generates a periodic signal used for synchronization. 

Clock Cycle - After making a low-to-high transition, the clock will have completed 
one cycle when it is about to make another low-to-high transition. This time is equal 
to 1/f where f = the clock frequency. 

Compile - To take a program written in a High-Level Language such as C, Pascal, 
or FORTRAN and convert it into an object-code format which can be loaded into a 
computer's main memory by a linker/loader program. During compilation, symbolic 
HLL statements, called source code, are converted into one or more machine 
instructions which the CPU understands. A compiler also performs the assemble 
function. 

Compiler - A program that compiles. 

Coprocessor .- A processor which cooperates with the main microprocessor in 
executing certain instructions from the instruction stream. A coprocessor generally 
accelerates certain functions which increases overall system throughput. Examples 
of coprocessors are floating-point accelerators and memory-management units. 

CPU - The portion of a computer system that contains the arithmetic logic unit, register 
file, and other control oriented subsystems~ It performs arithmetic operations, controls 
instruction processing, and provides timing signals and other housekeeping operations. 

6-5 

> .... 
co 
(I) 
(I) 

.2 
e" 



G) 

0' 
(J) 
(J) 
Q) ... 
'< 

6-6 

Demand-Paged Virtual Memory. - A virtual memory method in which memory is divided 
into blocks of equal size which are referred to as pages. These pages are then moved 
back and forth between main memory and secondary storage as required by the CPU. 
Demand paging reduces the problem of memory fragmentation which results in unused 
memory space. 

Dispatch Table - In TI32000 family systems, this is ~n area of memory which contains 
interrupt descriptors for all possible hardware interrupts and software traps. The 
interrupt descriptor directs the CPU to the module descriptor for the proced~re which 
is designed to handle that particular interrupt. 

Displacement - -A numerical offset from a known point of reference. Displacements 
are used in programming to facilitate position independent code, such that a given 
program can be loaded anywhere in memory. In TI32000 family processors, a 
displacement is contained in the instruction itself, as opposed to being stored in a 
register by the· programmer. . 

DMA - Direct Memory Access. A method that uses a small processor whose sole 
task is that of controlling input-output or data" movement. With DMA, data is moved 

. into or out of the system without program intervention once the DMA controller has 
been initialized by the CPU. 

Double-Precision - With reference to floating-point arithmetic, a double-precision 
number has a 52-bit fraction field, 11-bit exponent field and a sign bit. 

Double Word - Two words, i.e., 32 bits. 

Emulate - To imitate one system with another, such that the imitating system accepts 
the same data, executes the same programs, and achieves the same results as the 
imitated system. 

Exception - An occurrence which must be resolved through CPU intervention. An 
exception results in the suspension of normal program flow. In TI32000 family systems, 
exceptions occur as a result of a hardware reset, interrupt or software traps. Execution 
of floating-point instructions may also result in occurrences which must be resolved 
through CPU intervention. 

Exponent - In floating-point representation, a numeral that indicates the power to 
which the base is raised. 

FIFO - First-in first-out memory. A memory from which data can be read out in the 
same order as it was entered, but not necessarily at the same rate. 

Firmware - Computer programs and data "loaded in a class of memory that cannot 
be dynamically modified by ~he computer during processing. 

Floating-Point ~ A method by which computers deal with numbers having a fractional 
component. In general, it pertains to a system in which the location of the 
decimal/binary point does not remain fixed with respect to one end of numerical 
expressions, but is regularly recalculated. The location of the point is usually given 
by expressing a power of the ba"se. 1 

FP - Frame Pointer. CPU register which points to a dynamically allocated data area 
created at the beginning of a procedure by the ENTER instruction. 



FPU - Floating-Point Unit. Coprocessor in TI32000 family systems which implements 
in hardware all calculations needed to support floating-point arithmetic, which otherwise 
would have to be implemented in software. 

Fragmented - The term used to describe the presence of small, unused blocks of 
memory. The problem is especially common in segmented memory systems, and results 
in inefficient use of memory storage. 

Frame - A block of memory on the stack that provides local storage for parameters 
in the current procedure. 

Hardware - Physical equipment, as opposed to the software programs or method 
in which the hardware is used, e.g., mechanical, magnetic, electrical, or electronic 
devices. 

HLL - High-Level Language. A programming'language in which the statements 
represent procedures which are multiple machine instructions. C, Pascal, FORTRAN, 
LISP and BASIC are some common high-revel languages. A HLL requires a compiler 
or interpreter that translates each HLL statement into a series of machine language 
instructions. 

ICE -.:.. In-Circuit-Emulator. A computer system which imitates the operation of another 
in terms of software execution. In microprocessor system development, the ICE takes 
the place of the microprocessor by means of a connector at the end of an umbilical 
cable. Not only does the ICE perform all the functions of the microprocessor, but it 
also allows the engineer to debug his system by setting breakpoints on various 
conditions, permits tracing of program flow, andprovides substitution memory which 
may be used in place of actual target system memory. 

ICU - Interrupt Control Unit. A memory-mapped microprocessor support chip in 
TI32000 family systems which handles external inter'rupts as well as additional 
software traps. The ICU provides a vector to the CPU to identify the servicing software 
procedure. 

Indexing - In computers, a method of address modification that is by means of index 
registers. 

Index Register - A register whose contents may be added to or subtracted from the 
operand address. 

Indirect Addressing - Programming method where the initial address is the storage 
location of a word which is the actual address. This indirect address is the location 
of the data to be operated upon. 

Instruction - A statement that specifies an operation and the values or locations of 
its operands, i.e., it tells the CPU what to do and to what. 

Instruction Cycle - The period of time during which a programmed system obeys a 
particular instruction. 

Il1struction Fetch - The action of accessing the next instruction from memory, often 
overlapped by its partial execution. 

6-7 



6-8 

Instruction Queue - In TI32000 family CPUs, this is a small area of RAM organized 
as a FIFO buffer which stores prefetched instructions until the CPU is ready to execute 
them. 

Interpreter - A program which translates HLL statements into machine instructions 
in real-time, i.e., while the program is executing. 

Interrupt - To stop a software program in such a way that it can be resumed. Interrupts 
can be caused by ev~nts external or internal to the CPU, and by either software or 
hardware. 

INTBASE -Interrupt Base Register. A 32-bit CPU register which holds the address 
of the dispatch table used for interrupts and traps. ' 

Linear Address Space - An address space where addresses start at location zero and 
proceed in a linear fashion (i.e., with no holes or breaks) to the upper limit imposed 
by the t6tal number of bits in a logical address. 

Link Base - Module Descriptor entry which points to a table in memory containing 
entries which reference variables or entry points in Modules external to the one 
presently executing. 

Linker - A computer program used to create one load module from one or more 
independent translated object modules or load modules by resolving cross-references 
among the object modules, and possibly by relocating the elements. 

Logical Address Space - The range of addresses which' a programmer can assign 
in a software program. This range is determined by the length of the computer's address 
registers. , 

LSB - Least Significant Bit. The bit in a string of bits representing the lowest value. 

Machine Code - The code that a computer recognizes. Specifies internal register files 
and operations that directly control the computer's internal hardware. 

Main Memory - The program and data storage area in a computer system which is 
physically addressed by the microprocessor or MMU address lines. 

Mantissa - In a floating-point number, this is the fractional component. 

Mapping - The process whereby the operating system assigns physical addresses 
in main memory to the logical addresses assigned by the software. 

Memory-Mapped - Ref~rring to peripheral hardware devices which are addressed as 
if they were part of the computer's memory space. They are accessed in the same 
manner as main memory, i.e." through memory read/write operations. 

Microcode - A sequence of primitive instructions that control the internal hardware 
of a computer. Their execution is initiated by the decoding of a software instruction. 
Microcode is maintained in special storage and often used in place of hard' wired logic. 

Microcomputer - A computer system whose eentral Processing Unit is a 
Microprocessor. Generally refers to aboard-level product. 

Minicomputer - A "box-Ievel" computer with system capabilities generally between 
that of a microcomputer and a mainframe. 



MMU - Memory Management Unit. This is a coprocessor in the TI32000 family which 
aids in the implementation of ·demand-pagedvirtual memory. It provides logical to 
physical address translation and initiates an instruction abort to the CPU when a desired 
memory location is not in main memory. 

MOD - Mod Register. A 16-bit CPU register which holds the address of the Module 
Descriptor of the currently executing software module. 

Module - An independent subprogram that performs a specific function and is usually 
part of a task, i.e., part of a larger program. 

Module Descriptor - In the TI32000 family, a set of four 32-bit entries found in main 
memory which point to the static data area, link table, and first instruction of the module 
it describes. 

Modularity - A software concept which provides a means of overcoming natural 
human limitations for dealing with programming .complexity by specifying the 
subdivision of large and complex programming tasks into smaller and simpler 
subprograms, or modules, each of which performs some well-defined portion of the 
complete processing task. 

MSB - Most Significant BiLThe bit in a string of bits representing the highest value. 

NMI - Nonmaskable Interrupt. A hardware interrupt which cannot be disabled by 
software. It is generally the highest priority interrupt. 

Object Code - Output from a compiler or assembler which is itself executable machine 
code or is suitable for processing to produce executable machine code. 

Operand - In a computer, a datum which is processed by the CPU. It is referenced 
by the address part of an instruction. 

Operating System - Software which controls the execution of computer programs 
and which may provide storage assignment, input/output control, scheduling, data 
management, accounting, debugging, editing, and related services. 

Operating System Mode - In this mode, the CPU can execute all instructions in the 
instru~tion set, access all bits in the Processor Status Register, and access any memory 
location available to the processor. 

Operator - 'In the description of an instruction, it is the action to be performed on 
operands. 

Page Fault - A hardware generated trap used to tell the operating system to bring 
the missing page in from secondary storage. 

Page Swap - The exchange of a page of software in secondary storage with another 
page located in main memory. The operating system supervises this operation, which 
is executed by the CPU and involves external devices such as disk and DMA controllers. 

Page Table - A 1 K-byte area in main memory containing 256 entries 'which describe 
the location and attributes of all pointer tables, i.e., a list of pointer table addresses. 

Peripheral - A device which is. part of the computer sys~em and operates under the 
supervision of the CPU. Peripheral devices are often physically separated from the CPU. 

6-9 

>-a-
ce 
C/) 
C/) 

o 
a 



11 

6-10 

Physical Address - The address presented to main memory, either by the CPU or MMU. 

Pointer Table - A 512-byte' page located either in main memory or secondary storage 
containing 128 entries. Each entry describes an individual page of the software 
program. Eac~ page of the software program may reside in main memory or in 
s~condary storage. 

Pop - To read a datum from the top of a stack. 

Primitive Data Type - A data type which can be directly manipulated by the hardware .. 
In the TI32000 family, these are integers, floating-point numbers, Booleans, BCD digits, 
and bit fields. 

Procedure - A subprogram which performs a particular function required by a module, 
i.e., by a larger program; an ordered set of instructions that have a general o~ frequent 
use. 

Process - A task. 

Program Base - Module Descriptor entry which points to the first instruction in the 
module being described. 

Program Counter - CPU register which specifies the logical address of the currently 
executing instruction. 

Protection - The process of restricting a software program's access to certain portions 
/ of memory using hardware mechanisms. Typically.done at the operating system and 

page level. . 

PSR - Processor Status Register. A 15-bit register on TI32000 family CPU's which· 
contains bits used by the software to make decisions and determine program flow. 

Push - To write a datum to the top of a stack. 

Quad word - Four words, i.e., 54 bits. 

Queue - A First-In-First-Out data storage area, in which the data may be removed 
at a rate different from that at which it was stored. ' 

Real Time ~ Pertaining to the performance of a cOmPutation during the actual physical 
time that relates to the time in which the physical process transpires, in order that· 
the results of the computation can be used in guiding the process in the next unit of 
physical time. 

Record - A,structured data type with multiple elements, each of which may be of 
a different data type, e.g., strings, arrays, bytes, etc. 

Register - A temporary storage location, usually in the CPU, which holds digital data. 

Relative Address - The number that specifies the difference between the base address 
and the absolute address. 

Relocatable - In reference to software programs, this is code which can be loaded 
into any location in main memory without affecting the operation of the program. 

Return Address - The address to which a subroutine call, interrupt or trap subroutine 
will return after it is finished executing. . 



Routine - A procedure. 

SB - Static Base Register. Points to the start of the static data area for the currently 
executing module. 

Secondary Storage - This is generally slow-access, nonvolatile memory such as a 
hard-disk which is used to store the pages of software programs not currently needed 
by the CPU. 0 

Segmented Address Space - Term used to describe the division of allocatable memory 
space into blocks or segments oof variable size. 

Setup Time - The minimum amount of time that data must be present at an input 
to ensure data acceptance when the device is clocked. 

Software - A user program consisting of tasks, modules and procedures; the rules 
and possibly associated documentation and data pertaining to the operation of a 
computer system. 

SP1 - User Stack Pointer. Points to the top of the User Stack and is selected for all 
stack operations while in User Mode. 

SPO - Interrupt Stack Pointer. Points to the top of the interrupt stack. It is used by 
the operating system and whenever an interrupt or trap occurs. 

Stack - °A one-dimensional data structure in which values are entered and removed 
one datum at a time from a location called the Top-of-Stack. To the programmer, it 
appears as a block of memory and a variable called the Stack Pointer (which points 
to the top of the stack). 

Stack Pointer - CPU register which points to the top of a stack. 

Static Base Register - A 32-bit CPU register which points to the beginning of the 
static data area for the currently executing module. 

String - An array of integers, all of the same length. The integers may be bytes, words, 
or double words. The integers may be interpreted in various ways (see ASCII). 

Subroutine - A self-contained program which is part of a procedure. 

Symmetry - A computer architecture is said to be symmetrical when any instruction 
can specify any operand length (byte, word or double word) and make use of any 
address-data register or memory locoation while using any addressing mode. 

Synchronous - Refers to two or more things made to happen in a system Oat the same 
time, by means of a common clock signal. ° 

Tag - A label appended to some data entry used in a look-up proc~ss whereby the 
desired datum can be identified by its tag. 

Task - The highest-level subdivision of a user software program. The largest program 
entity that a computer's hardware directly deals with. 

TCU - Timing Control Unit. A device used to provide system clocks, bus control signals 
and bus cycle extension capability in TI32000 family systems. 

6-11 

III 



III 
G') 

0' 
f/) 
f/) 
Q) .. 
'< 

6-12 

Trap", An internally generated interrupt request caused as a direct and immediate 
result of the execution of an instruction. . 

T-State - One clock period. If the system clock frequency is 10 MHz, one T-State 
will take 100 ns to complete. Operations internal and external to the CPU are 
synchronized to the beginning and middle of the T-States. There are four T-States 
in a normal TI32000 family CPU .bus cycle. 

UNIXTM - An operating system developed at Bell Laboratories in the early 1970s. 
Software programs that run under UNIX are written in the high-level language C, making 
them highly portable. UNIX systems do not distinguish user programs from operating 
system programs in either capability or usage, and they allow users to route the output 

. of one program directly into the input of another. 

User - A software program. The total set of tasks '(instructions) that accomplish a 
desired result. Tasks are managed by the operating system. 

/ 

User Mode - Machine state in which the executing procedure has limited use of the 
instruction set and limited access to memory and the PSR. 

Variable - A parameter that can assume any of a given set of values. 

Vector - Byte provided by thelCU (Interrupt Control Unit) which tells the CPU where 
within the Descriptor table the descriptor is located for the interrupt it has just 
requested. . 

Virtual Address - An address generated by a user's logical address (working in 
conjunction with the operating system) which maps into an address in main or 
secondary storage. 

Virtual Memory - The storage space that may be regarded as addressable main storage 
by the system. The operating system maps Virtual addresses into physical (main 
memory) addresses. The size of virtual memory is limited by the method of memory 
management employed and by the amount of secondary storage available, not by the 
actual number of main storage locations. 

Wait-State - An additional clock period added to a CPU memory cycle which gives 
an external memory device additional time to provide the CPU with data. Also used 
by bus arbitration circuitry to hold the CPU in an idle state until access to a shared 
resource is gained. 

Winchester - Small, hard-disk media commonly found in personal computers. 

Word - A character string or bit string considered as the primary data entity. For 
historical reasons, a word is a group of 16 bits in TI32000 family systems. 

UNIX is a trademark of AT&T Bell Laboratories 



TI32000 Family 

Introduction .. 

L-_A_p_p_en_d_ix __________________ ~1I __ 4tI 

A-l 



» 
"0 
"0 
(I) 
j 
Co 
x' 

A-2 



NOTATIONS 

Appendix 
Instruction Formats 

i = Integer Type Field 
B = 00 (Byte) 
W= 01 (Word) 
D = 11 (Double Word) 

f = Floating-Point Type Field 
F = 1 (Std. Floating: 32 bits) 
L = 0 (Long Floating: 64 bits) 

c =' ACU Type Field 
D = 1 (Double Word) 
Q = 0 (Quad Word) 

op = Operation Code 
Valid encodings shown with each format. 

gen, gen 1, gen 2 = General Addressing Mode Field 

reg = Address-Data Register Number 

cond = Condition Code Field 
0000 Equal: Z = r 
0001 Not Equal: Z = 0 
0010 Carry Set: C = 1 
0011 Carry Clear: C = 0 
0100 - Higher: L = 1 
0101 Lower or Same: L = 0 
0110 Greater Than: N = 1 
0111 Less or Equal: N = 0 
1000 Flag Set: F = 1 ' 
1001 Flag Clear: F = 0 
1010 Lower: L = band Z = 0 
1011 
1100 
1101 
1110 
1111 

Higher or Same: L = 1 or Z = 1 
Less Than: N = 0 and Z = 0 
Greater or Equal: N = 1 or Z = 1 
(Unconditionally True) 
(Unconditionally False) 

A-3 

II 
.~ 
"C 
c: 
Q) 
0. 
0. « 



.J> 
"C 
"C 
(1) 
j 
c.. 
x' 

A-4 

short = Short Immediate v·alue. May contain 
quick: Signed 4-bit value, in MOVQ, ADDQ, 

CMPQ,ACB 
cond: Condition Code (above), in Scond. 
areg: CPU Dedicated Register, in LPR, SPR. 

0000 = US 
0001 = 0111 = (Reserved) 
1000 =·FP 
1001 .= SP 
1010 = SB. 
1011 = (Reserved) 
11 00 = (Reserved) 
1101 = PSR 
1110 = INTBASE' 
1111 = MOD 

Options: in String Instructions 

I U /W I BIT I 
. T = Translated 
B = Backward 

U/W =·00: None 
01: While Match 
11 :. Until Match 

CO!lfiguration bits, in SETCFG: 

ICIM I F I 
mreg: MMU Regist~r number, iri LMR, SMR. 

0000 = BPRO 
0001 = BPR1 
0010 = (Reserved) 

0011 (Reserved) 

0100 = (Reserved) 
0101 = (Reserved) 

0110 = (Reserved) 

0111 = (Reserved) 

1000 = (Reserved) 
1001 = (Reserved) 
1010'·= MSR 
1011 = BCNT 
1100 = PTBO 
1101 = PTB1 
1110 = (Reserved) 
1111 =. EIA 



Bcond (BR) 

BSR 

RET 

CXP 

RXP 

RETT 

RETI 

SAVE 

RE,STORE 

ADDO 

CMPO 

SPR 

7 o 
I i Iii I I 

1 0 1 0 cond 

Format 0 

7 o iii iii I 
OpO 0 1 a 

Format 1 

-0000 ENTER' -1000 

-0001 EXIT -1001 

-0010 NOP -1010 

-0011 WAIT -1011 

-0100 DIA -1100 

-0101 FLAG -1101 

-0110 SVC -1110 

-0111 BPT -1111 

IS, , , , I' ."171' , I,',' 
_ gen short op _ 

:000 

-001 

-010 

Format 2 

ACB 

MOVO, 

LPR 

-100 

-101 ' 

-110 

o 

Scond -011 

CXPD, 

BICPSR 

JUMP 

BISPSR 

15 

I i ~e~ 

Format 3 

-0000 

-0010 

-0100 

-0110 

ADJSP 

JSR 

CASE 

Trap (UNDI on XXX 1, 1000 

o 

-1010 

-1100 

-1110 

A-5 

II 
.~ 
'0 
t: 
Q) 

C. 
C. « 



A-6 

ADD 

CMP 

BIC 

ADDC 

MOV 

OR 

MOVS 

, CMPS 

15 

II glen
l

, I 
81 7 

II ~en 21 I i 
Format 4 

-0000 SUB 

-0001 ADDR 

-0010 AND 

-0100 SUBC 

-0101 TBIT 

-0110 XOR 

Format 5 

-0000 

-0001 

SETCFG 

SKPS 

-1000 

-1001 

-1010 

-1100 

-1101 
I 

-1110 

~0010 

-0011 

0 
I , I, op 

Trap (UN D) on 1 XXX, 01 XX 

ROT 

ASH 

CBIT 

CBITI 

23 
I I I , 

gen , 

Trap (UND) 

LSH 

SBIT 

SBITI 

16
1
15 

iii iii I I 
i 0 , 0 0 , " , 01 I i I .11. I i 

gen 2 _ op 

Format 6 

-0000 NEG -1000 

'-0001 NOT -1001 

-0010 Trap (UN D) -1010 

-0011 SUBP -1011 

-0100 ABS -1100 

-0101 COM -1101 

-0110 IBIT -1110 

-011.1 ADDP -1111 

I· 



0 

1 1 001 1 1 0 

Format 7 

MOVM -0000 MUL -1000 

CMPM -0001 MEl -1001 

INSS -0010 Trap (l,JND) -1010 

EXTS -0011 DEI -1011 

MOVXBW -0100 QUO -1100 

MOVZBW -0101 REM -1101 

MOVZiD -0110 MOD -1110 

MOVXiD -0111 DIV -1111 

23 
I I I I 

gen 1 
'61'5 8~ 0 

Form~t 8 

EXT -000 INDEX -1 00 

CVTP -001 FFS -1 01 

INS -0 10 

CHECK -0 11 

. MOVSU -110, reg = 001 

MOVUS ·-110, reg = 011 

Format 9 

MOVif -000 ROUND -100· 

LFSR -001 TRUNC -101 

MOVLF ·010 SFSR -110 

MOVFL -011 FLOOR -111 

7 0 --
10 1 1 1 101 1 1 --

Forrnat 10 

Trap (UNO) Always 

II 
>< :c 
c 
Cl) 
C. 
C. « 

A-7 



» 
'C 
'C 

.C'D 
::J 
Q. 

>< 

A-8 

Format 11 

ADDf -0000 DIVf -1000 

MOVf -0001 Trap (UNO) -1010 

CMPf . -0010 Trap (UNO) -1011 

SUBf -0100 MULf -'1100 

NEGf -0101 ABSf -1101 

Trap (UNO) -0110 Trap (UNO)· -1110 

Trap (UNO) -0111 Trap (UNO) -1111 

7 0 -- II i I I I I I I 
-- ,1 11 11 1 10, 

Format 12 

Trap (UNO) Always 

7 0 --I I I i I I Iii 
__ 10011110 

Format 13 

Trap(UND) Always 

Format 14 

RDVAL -0000 LMR 1010 

WRVAL -0001 SMR· 1011 

Trap,(UND) on 01 XX, 1 XXX 

Operation Word 10 Byte 

Format 15 

(ACU) 

nnn Operation Word Format 



CATSTO 

CATST1 

23· 

gen 1 

Format 15.0 

-0000 

-0001 

LCR 

SCR 

8 

-1010 

-1011 

Trap (UNO) on all others 

·CCV3 

. LCSR 

CCV5 

CCV4 

CCALO 

CMOVO 

CCMP 

CCALl 

CMOV2 

Trap (UNO) 

Trap (UNO) 

Format 15.1 

-000 

-001 

-010 

-all 

CCV2 

CCVl 

SCSR 

CCVO 

Format 15.5 

-0000 CCAL3 

-0001 Trap (UNO) 

-0010 Trap (UNO) 

-0100 CCAL2 

-0101 CMOVl 

-0110 Trap (UNO) 

-100 

-110 

-110 

-111 

-1000 

-1010 

-1011 

-1100 

-1101 

-1110 

-0111 Trap (UNO) -1111 

If nnn = 010, 011, 100, 110, 111 then Trap (UNO) Always 

Format 16 

Trap (UNO) Always 

7 a --I i I I I I i .1 I 
__ 0 1 a 1 1 1 10 

. \ 

A-9 

>< =c 
s:: 
Q) 
c. 
c. « 



It 
» 

"C 
"C 
CD 
::l 
Co 
)C' 

A-10 

Format 17 

Trap (UNO) Always 

Format 18 

Trap (UNO) Always 

Format 19 

Trap (UNO) Always 

Implied Immediate Encodings: 

7 

7 0 

=],'0'0'0' 1'1' "01 

7 o --I ii, iii. 1 
__ x x x 00 1 1 0 

o 

r7 : r6 : r5 : r4 : r3 : r2 r1 rO 

Register Mark. apended to SAVE. ENTER 

7 0 

rO : r1 : r2:, r3 : r4 : r5 : r6 : r7 I 
Register Mark. appe,nded to RESTORE. EXIT 

7 0 

-j : offset; le;ngth -; 1 ; 

Offset/Length Modifier appended to INSS. EXTS 



TI Sales Offices TI Distributors 
ALABAMA: Hunts.llle (205) 837-7530. 

ARIZONA: PhoenIx (6021 995·1007. 

~:c~~~eRn~~W61~~f,'~rO"200; 
~:~t~lc~a~~6(~~8~~~~; 
Torrance (213) 217-7010; 
Woodland Hills (213) 704·7759. 

COLORADO: Aurora (303) 368·8000. 

CONNECTICUT: Wallingford (203) 269·0074. 

FLORIDA: Ft. Lauderdale (305) 973·8502: 
Mallland (305) 660·4600: Tampa (813) 870-6420. 

GEORGIA: Norcro .. (404) 662·7900. 

ILLINOIS: Arlington Helghll (312) 640·2925. 

INDIANA: Ft. Wayne (219) 424·5174: 
IndlanapoUa (317) 248·8555. 

IOWA: Cedar RapIds (319) 395-9550. 

MARYLAND: Baltimore (301) 944·8600. 

MASSACHUSETTS: Waltham (617) 895·9100. 

MICHIGAN: FarmIngton Hills (313) 553·1500. 

MINNESOTA: Eden PraIrIe (612) 828-9300. 

. ~tl.S~~VsRI~f~nt69~7~1M. (816) 523·2500: 

NEW JERSEY: IIIUn (201) 750·1050. 

NEW MEXICO: Albuquerque (505) 345·2555. 

~~:c~3~6~:7~~~t~~~u::I~~11;) (~~~i91~.hs00: 
PIlls ford (716) 385-6770: 
Poughk .. psle (914) 473·2900. 

NORTH CAROLINA: Charlolle (704) 527'()93O; 
RaleIgh (919) 876·2725. 

OHIO: Beachwood (216) 464-6100: 
Dayton (513) 258·3877. 

OKLAHOMA: Tul .. (918) 25().()633. 

OREGON: Be •• erton (503) 643-6758. 

PENNSYLVANIA: Ft. Wa.hlngton (215) 643-6450: 
CoraopoliS (412) 771·8550. 

PUERTO RICO: Hato Rey (809) 753·8700 

TEXAS: Austin (512) 250-7655; 
Houston (713) 778-6592; RIchardson (214) 680·5082: 
San Antonio (512) 496·1779. 

UTAH: Murray (801) 266·8972. 

VIRGINIA: Fairfax (703) 849-1400. 

WASHINGTON: Redmond (206) 881·3080. 

WISCONSIN: Brooklleld (414) 785·7140. 

~~~~~~~ ~~R~~':;t~;~a(~~6\6~t1~~1:970: 
SI. Laurent, Quebec (514) 334·3635.

TI Regional
Technology Centers
CALIFORNIA: IrvIne (714) 660·8140,
Santa Clara (408) 748·2220. .

GEORGIA: Norcross (404) 662·7945.

ILLINOIS: ArUngton HeIghts (312) 640·2909.

MASSACHUSETTS: Waltham (617) 890-6671.

TEXAS: RIchardson (214) 680·5066.

Technical
Support Center
(214) 995·2171

For further lIIeratur. Informallon:
(800) 232·3200

TI AUTHORIZED DISTRIBUTORS IN
USA

Arrow Electronics
Diplomat Eleclronlcs
ESCO Electronics .
General Radio Supply Company
Graham Electronics .

~~:~:t~o~~rIGI'::t~~~~s
JACO Electronics
Klerulff Electronics
LCOMP, Incorporated
Marshall Industries
Milgray Electronics
Newark ~Iectronlcs
Rochester Radio Supply
Time Electronics
R.V. Weatherford Co.
Wyle Laboratories

TI AUTHORIZED DISTRIBUTORS IN
CANADA

CESCO Electronics, Inc.
Future Electronics
ITT Components
L.A. Varah, Ltd.

ALABAMA: Arrow (205) 882·2730;
Klerullf (205) 883-6070; MarShall (205) 881·9235.

ARIZONA: Arrow (602) 968-4800;
Kierullf (602) 243-4101; MarShall (602) 968·6181;
Wyle (602) 249-2232.

~~~~?a~~i~bt·~~~~m:~~;:~Y~2~ounty: 
Klerulll (213) 725'()325, (714) 73,·57", (714) 220-6300; 
Marshall (213) 999-5001, (818) 442-7204, 
(714) 660'()951; R.V. Weatherford (714) 634·9600, 

!~l~l ~~~~~: ~:ia~~~\~~r%~e(~m)9~;~7~~?' 
~lr~~(~J~~)6~5:~~;S~~~II1P(~'9) 278-2112; 
Marshall (619) 578·9600; Wyle (619) 565·9171; 
San FrancIsco Bay Area: Arrow (408) 745-6600; 

U~;~~!~I~; ~~.',u~~~~~I~~!O~O;>~7'2500; 
Santa Barbara: R.V. Weatherford (805) 965·8551. 

COLORADO: Arrow (303) 696·1111; 
Klerulff (303) 790·4444; Wyle (303) 457·9953. 

CONNECTICUT: Arrow (203) 265·7741; 
Diplomat (203) 797·9674; Klerulff (203) 265-11.15; 
Marshall (203) 265·3822: Milgray (203) 795·0714. 

FLORIDA: Ft. Lauderdale: Arrow (305) 429·8200; 
Diplomat (305) 974·8700; Kierulff (305) 486·4004; 
Orlando: Arrow (305) 725·1480; 
Milgray (305) 647·5747; Tampa: 
~r~~~f\8(W3~~~g~~~iPlomat (813) 443·4514; 

GEORGIA: Arrow (404) 449·8252; 
Klerulff (404) 447·5252; Marshall (404) 923·5750. 

•• 
TEXAS 

INSTRUMENTS 
Creating useful products 

and services for you. 

ILLINOIS: Arrow (312) 397·3440; 
Diplomat (312) 595·1000; Kierulff (312) 640·0200; 
Marshall (312) 490·0155; Newark (312) 638·4411. 

INDIANA: IndIanapolis: Arrow (317) 243·9353; 
Graham (317) 634·8202; 
FI. Wayne: Graham (219) 423·3422. 

IOWA: Arrow (319) 395-7230. 

KANSAS: Kansa. City: Marshall (913) 492·3121; 
WIchita: LCOMP (316) 265·9507. 

MARYLAND: Arrow (301) 247·5200; 
Diplomat (301) 995·1226; Kierulff (301) 636·5800; 
Milgray (301) 793·3993. 

MASSACHUSETTS: Arrow (617) 933·8130; 
Diplomat (617) 935·6611; Kierulff (617) 667·8331; 
Marshall (617) 272·8200; Time (617) 935·8080. 

MICHIGAN: Oetroll: Arrow (313) 971~8220; 
Marshall (313) 525·5850; Newark (313) 967·0600; 
Grand Rapids: Arrow (616) 243'()912. 

MINNESOTA: Arrow (612) 830·1800; 
Klerullf (612) 941-7500; Marshall (612) 559-2211. 

~t~S~0~~:I~~~~sr;,~1~7:;~P (816) 221·2400; 
Kierulff (314) 739.0855. 

NEW HAMPSHIRE: Arrow (603) 668-6968. 

NEW JERSEY: Arrow (201) 575·5300, (609) 596·8000; 
Diplomat (201) 785·1830; 
General Radio (609) 964·8560; Kierulff (201) 575-6750; 
(609) 235·1444; Marshall (201) 882·0320, 
(609) 234·9100; Milgray (609) 983·5010. 

NEW MEXICO: Arrow (505) 2434566; 
International Electronics (505) 345·8127. 

NEW YORK: Long Island: Arrow (516) 231·1000; 
Diplomat (516) 454-6400; JACO (516) 273·5500; 
Marshall (516) 273·2053; Milgray (516) 420·9800; 
Rochester: Arrow (716) 275'()300; 
Marshall (716) 235·7620; 
Rochesler Radio Supply (716) 454·7800; 

gr~~;::'~~\~;S)65~·~~~Tt~~~~1I (607) 754·1570. 

NORTH CAROLINA: Arrow (919) 876·3132, 
(919) 125·8711; Klerulff (919) 872·8410. 

OHIO: CincInnati: Graham (513) 772·1661; 
Cle.eland: Arrow (216) 248·3990; 

~~;.u.::~~;~ ~r~~~:~gi 4~895~f~~'6) 248-1788. 

~~rOni5~~;~~J~W3~~~r5u~ri (513) 439-0045; 
Marshall (513) 236·8088 .. 

OKLAHOMA: Arrow (918) 665·7700; 
Klerulff (918) 252-7537: 

OREGON: Arrow (503) 684·1690; 
Wyle (503) 640-6000; Marshall (503) 644·5050. 

PENNSYLVANIA: Arrow (412) 856·7000, 
(215) 928·1800; General Radio (215) 922·7037. 

TEXAS: Auslln: Arrow (512) 835·4180; 
Klerulff (512) 835·2090; Marshall (512) 458·5654; 
Wyle (512) 834·9957; Dallas: Arrow (214) 380-6464; 
International Electronics (214) 233·9323; 
Kierulff (214) 343·2400; Marshall (214) 233·5200; 
Wyle (214) 235-9953; 
EI Paso: International Electronics (915) 598·3406; 
Houston: Arrow (713) 530·4700; 
Marshall (713) 789-6600; 
Harrison Equipment (713) 879·2600; 
Kierulff (713) 530·7030; Wyle (713) 879-9953. 

UTAH: Diplomat (801) 486·4134; 
Kierul/, (801) 973-6913; Wyle (801) 974·9953. 

VIRGINIA: Arrow (804) 282'()413. 

WASHINGTON: Arrow (206) 643-4800; 
Klerulff (206) 575·4420; Wyle (206) 453·8300; Marshall 
(206) 747·9100. 

WISCONSIN: Arrow (414) 764-6600; 
Klerulff (414) 784·8160. 

~~~~gt~f;J~E'J;"~~:~~~ ~~t3~r~5(~~)0:~~ci~~~; 
Montreal: CESCO (514) 735·5511; Future
(514) 694·7710; ITT Componenls (514) 735·1177;
Ottawa: CESCO (613) 226-6903; Future
(613) 82()'8313: ITT Components (613) 226·7406;
Varah (613) 726·8884: Quebec City: CESCO
(418) 687·4231; Toronto: CESCO (416) 661·0220;
Future (416) 638-4771; ITT Oomponents
(416) 630·7971; Varah (416) 5.16·9311;
Vancou.er: Future (604) 438·5545; Varah
(604) 873·3211; ITT Components (604) 270·7805;
Winnipeg: Varah (204) 633-6190 BK

TI Worldwide
Sales Offices
ALABAMA: Huntsville: 560 Wynn Drive, Suite 514,
Huntsville, AL 35805, (205) 837·7530.

ARIZONA: Phoenix: 8825 N. 23rd Ave., Phoenix,
AZ 85021, (602) 995·1007.

CALIFORNIA: Irvine: 17891 Cartwright Rd., Irvine,
CA 92714, (714) 660·1200; Sacra minto: 1900 Point
West Way, Suite 171, Sacramento, CA 95815.

~~~~ 9J~'~~~lb~g"o~~~~2~~~~ (~\9i 2~~~0~~e., 
g~3~:, ~l~~: i~~~~Yo~~~~e~ri~05t~a~~~~nCti., 
Bldg. A, Suite 1, Torrance, CA 90502, (213) 217-7010; 
Woodland Hills: 21220 Erwin SI., Woodland Hills, 
CA 91367, (213) 704·7759. 

COLORADO: Aurora: 1400 S. Potomac Ave., 
Suite 101, Aurora, CO 80012, (303) 368·8000. 

CONNECTICUT: Wallingford: 9 Barnes Industrial 
Park Rd., Barnes Industrial Park, Wallingford, 
CT 06492, (203) 269·0074. 

FLORIDA: Ft. Lauderdale: 2765 N.w. 62nd St., 
Ft. Lauderdale, FL 33309, (305) 973·8502; Maitland: 

2:O05~ ~~~~~; ~:~e~t;o~~~: ~:~t~~~~, ~1~cl.~751, 
~uite 101, Tampa, ~ 33609, (813) 870-6420. 

GEORGIA: Norcro .. : 5515 Spalding Drive, Norcross, 
GA 30092, (404) 662·7900 

~r~ll~g?~~: ~!I~~t~~LH:~~~:(i~~) ~4tJg~5.quln, 

:~~1:8~~,:(~~9~:1.r.~\ ¥~;2?n~I:~ao:08::' !J~6wt.yne, 
Lynhurst, Suite J·400, I.ndlanapolls, IN 46241, 
(317) 248·8555. 

IOWA: Cadar Rapids: 373 Collins Rd. NE, Suite 200, 
Cedar Rapids, IA 52402, (319) 395·9550. . 

MARYLAND: Baltimore: 1 Rutherford PI:, 
7133 Rutherford Rd., Baltimore, MD 21207, 
(301) 944·8600. 

MASSACHUSETTS: Waltham: 504 Totten Pond Rd., 
Waltham, MA 02154, (617) 895·9100. 

~~~~~~~~~ ~~I~~I~t:~~g,I(~r£7~J3~5Jg. Mile Rd., 

MINNESOTA: Eden Prairie: 11000 W. 78th SI.,
Eden Prairie, MN 55344 (612) 828·9300.

MISSOURI: Kan.as City: 8080 Ward Pkwy., Kansas

~j~IM~e~tll~:' 1~8d~~t~ra~·~~~,SJi. L~~~~~, .
MO 63141, (314) 569-7600.

NEW JERSEY: lie lin: 485E U.S. Route 1 South,
Parkway Towers, Iselin, NJ 08830 (201) 750·1050

NEW MEXICO: Albuquerque: 2820·0 Broadbent Pkwy'
NE, Albuquerque, NM ~7107, (505) 345·2555.

NEW YORK: East Syracuse: 6365 Collamer Dr., East
Syracuse, NY 13057, (315) 463·9291; Endicott: 112
Nanticoke Ave., P.O. Box 618, Endicott,
NY 13760, (607) 754·3900; Melville: 1 Huntington

~~af{~~¥,1(5~6)1~~;~J&/ i>?i:'~:i~~~'1 MC~~~~~'SI.,
Pittsford, NY 14534, (716) 385-6770; Poughk .. psle:
385 South Rd., Poughkeepsie, NY 12601,
(914) 473·2900.

NORTH CAROLINA: Charlotte: 8 Woodlawn Green,
Woodlawn Rd., Charlotte, Ne 28210, (704) 527-0930; ,
~~eJ¥~2;,8(~~~iB~;~7:t. BlVd:, Suite 100, Raleigh,

OHIO: Beachwood: 23408 Commerce Park Rd.,
Beachwood, OH 44122; (216) 464-6100; Dayton:

. ~lr~S~~~.~~~~:, 4124 Linden Ave., Dayton, OH 45432,

OKLAHOMA: Tulsa: 7615 East 63rd Place,
3 Memorial Place, Tulsa, OK 74133, (918) 250·0633.

OREGON: Beaverton: 6700 sw "05th St., Suite 110,
Beaverton, OR 97005, (503) 643·6758.

PENNSYLVANIA: FI. Washington: 260 New York Dr.,
FI. Washington, PA 19034, (215) 643·6450;

g~;:~~~:::: ~iO 1~~~~~(m)'7~t~g~Jt Office Park,

PUERTO RICO: Hato Rey: Mercantil Plaza Bldg.,
Suite 505, Hato Rey, PR 00919, (809) 753·8700.

TEXAS: AusUn: 12501 Research Blvd.,
P.O. Box 2909, AusUn, TX 78723, (512) 25()'7655;
Richardson: 1001 E. Campbell Rd.,
Richardson, TX 75080,

~~i~~ 62Bf7~~;~~~~~~0:~ngg, ~mr7;i1l9r2?'
San Antonio: 1000 Central Parkway South,
San Antonio, TX 78232, (512) 496·1779.

UTAH: Murray: 5201 South Green SE, Suite 200,
Murray, UT 84107, (801) 266·8972.

VIRGINIA: Fairfax: 3001 Prosperity, Fairfax, VA
22031, (703) 849·1400. .

WASHINGTON: Redmond: 5010 148th NE, Bldg B,
Suite 107, Redmond, WA 98052, (206) 881·3080.

~J~~?~~I~r~~~~~~~,'~i ~~80~: ~~~)h~.~~~o.
CANADA: Nepean: 301 Moodie Drive, Mallorn
Center, Necean, Ontario, Canada, K!H9C4,

· ~I~~~~~d ~gi rl~~'l:~~~~~~j;,8ga~~d~e SI. E.,
~16) 884·9181; SI. Laurent: Ville SI. Laurent Quebec,

c~~~J!a~:SW7~~~,~)j34~~3\~urent, Quebec,

ARGENTINA: Texas Instruments 'Argentlna -
S.A.I.C.F.: Esmeralda 130, 15th Floor, 1035 Buenos
Aires, Argentina, 1 + 394·3008.

AUSTRALIA (I NEW ZEALAND): Texas Instruments
Australia LId.: 6·10 Talavera Rd., North Ryde

~S~d~t~i ~2~7 5~~u~~~,a~~~ :~S~\r~~ ~~!~:
. Melbourne, Victoria, Australia 3004, 3 + 267·4677;
~71 ~~~~f~~~hWay, Elizabeth, South Australia 5112,

AUSTRIA: Texas Instruments Ges.m.b.H.:
k~~~~~~[f.be B116, A'2~5 Brunn/Geblrge,

~;~~J~Mde~~~:,s ~~~~~~:~:~~~ R~:IS~U~ ~~~~e,
1130 .Brussels, Belgium, 21720.80.00.

BRAZIL: Texas Instruments Electronlcos do Brasil
Llda.: Rua Paes Leme, 524·7. Andar Plnhelros, 05424
Sao Paulo, Brazil, 0815-6166.

DENMARK: Texas Instruments A/S, Malrelundvej
46E, DK·2730 Herlev, Denmark, 2 • 91 74 00.

FINLAND: T,exas Instruments Finland OY: .
· ~gf!~lf33~skatu 190 00511 Helsinki 51, Finland, (90)

FRANCE: Texas Instruments France: Headquaners
and Prod. Plant, BP 05, 06270 Villeneuve·Loubet,
(93) 20-01-01; Paris Office, BP 678-10 Avenue

· Morane·Saulnler, 78141 Vellzy·VillacOublay,
(3) 946·97·12; Lyon Sales Office, L'Oree D'Ecully,
Batlment B, Chemin de la Forestlere, 69130 Ecully,
(7) 833·04·40; Strasbourg Sales Office, Le Sebastopol
3; Qual Kleber, 67055 Strasbourg Cedex,
(88) 22·12-66; Rennes, 23·25 Rue du Pults Mauger,
35100 Rennes, (99) 31·54·86; Toulouse Sales Office,

~rl~r~00Jro-;;~,;,1~f)m,;~"~~I~:g~~~sn~~reds~I!;:~lf~::
Noilly Paradls-146 Rue Paradis, 13006 Marseille .
(91) 37·25·30. '

."
TEXAS

INSTRUMENTS
Creating useful products

and services for you

GERMANY (Fed. Republic of Germany): Texas
Instruments Deulschland GmbH: Haggertystrasse 1,

~9~f~/S:I,sci38' :~~i~ +,~·~e.'~~~~~rsIW,n~:~e~
43/Kibbelstrasse, .19, 0-4300 Essen, 201·24250;
Frankfurter Allee 6·8, 0-6236 Eschborm "
06196+8070; Hamburgerstrasse 11, 0·2000 Hamburg
76,040+220·1154, Klrchhorsterstrasse 2,0·3000 .
Hannover 51, 511 +648021; Maybachstrabe 11,
0·7302 Ostfildern 2·Nelingen, 711 + 547001;

~~~\~~~~~~9, ~~~t7:s~~ut'a, ~~5:&t~~~~~'; 
261 + 35044. . 

HONG KONG (+ PEOPLES REPUBLIC OF CHINA): 
Jexas Instruments Asia LId., 8th Floor, World 
Shipping Clr., Harbour City, 7 Canton Rd., Kowloon, 
Hong Kong, 3 + 722·1223. . 

IRELAND: Texas Instruments (Ireland) limited: 
Brewery Rd., Stillorgan, County Dublin, Eire, 
1831311. 

ITALY: Texas Instruments Semlconduttorlltalla Spa: 
Vlale Delle Sclenze, " 02015 Cittaducale (Rletl), 
Italy, 746694.1; Via Salarla KM 24 (Palazzo Cosma), 
Monterotondo Scalo (Rome), Italy, 6+9003241; Vlale 
Europa, 38·44, 20093 Cologno Monzese (Milano), 
22532541; Corso Svlzzera, 185, 10100 Torino, Italy, 
~~5Vs~~45; Via J. Baroul 6, 40100 Bologna, Italy, 51 

JAPAN: Texas Instrume.nts Asia LId.: 4F Aoyama 

~~~y~~~~p~~'~O~lh~4~g~2~~~; t~~~~~r~~nh~t~t."' 
Nissho Iwal Bldg., 30 Imabashl 3· Chome,
Hlgashl·ku, Osaka, Japan 541,06·204·1881; Nagoya
Branch, 7F Dainl Toyota West Bldg., 10·27, Meiekl
4·Chome, Nakamura·ku Nagoya, Japan
450, 52·583·8691. '

KOREA: Texas Instruments Supply Co.: 3rd Floor,.

~i5"g~o~\~~o~~~~a!"';~f880rangnam.ku,
MEXICO: Texas Instruments de Mexico SA: Mexico
City, AV Reforma No. 450 - 10th Floor, Mexico,
D.F., 06600,5+514·3003 .

MIDDLE EAST: Texas Instruments: No, 13, 1st Floor

~:~~~aB~dalli;a?~~~~~l~~ ~~~', ~g+~~~l:I~35,
NETHERLANDS: Texas Instruments Holland B.V.,
P.O. Box 12995, (Bullelvijk) 1100 CB Amsterdam,
Zuld·Oost, Holland 20 + 5602911.

~~~~:~~T,eo~~d~~t~uo':~~~ (~)ofg;6~!S: PB106, 

PHILIPPINES: Texas Instruments Asia LId.: 141h 

~~~!i;~Me~~g~~~I~,d~hl~~~in:=~~o. g~ ~~8~~' 
PORTUGAL: Texas Instruments Equlpamento
Electronlco (Portugal), Lda.: Rua Eng. Frederico
~.~~~~iggio Moreira Da Mala, 4470 Mala, Portugal,

¥~NA~tl',s>~~~:x!~?~~ir~~~~E~~~a ~~~~~S~~;ong
Bakar Batu, Unit 01-02, Kolam Ayer Industrial Estate,
Republic of Singapore, 747·2255. .

SPAIN: Texas Instruments Espana, SA: C/Jose
Lazaro Galdlano No.6, Madrid 16, 1/458.14.58 ..

SWEDEN: Texas Instruments International Trade
Corporation (Sverigefilialen): Box 39103, 10054
Stockholm, Sweden, 8· 235480.

SWITZERLAND: Texas Instruments, Inc., Reldstrasse
6, CH·8953 Dletlkon (Zuerich) Switzerland,
1·7402220.

TAIWAN: Texas Instru'ments SUPPI~ Co.: Room 903,

¥~?w~~7 ~e~~~I~cdolM~~,gt~~h~;:i. Taipei,

UNITED KINGDOM: Texas Instruments Limited:
Manton Lane, Bedford, MK41 7PA, England, 0234
67466; SI. James House, Wellington Road North,
Stockport, SK4 2RT, England, 61 + 442·7162. BK

,

....

os

Ia ~

I

I.,
•

II I

TEXAS
NSlRU E 15

Apnl 1985 Creating useful rOOucts
Printed n U .S.A . and servic:~ fot you. SNYSOO1

~, -

