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Abstract

Understanding the diverse functions of serotonin in the human brain can be obtained through examination of subjects having a lower than

normal number of brain serotonin neurons. Behavioral abnormalities consistent with brain serotonergic damage have been reported in some

polydrug users who also use the neurotoxin ecstasy (methylenedioxymethamphetamine, MDMA). This review evaluates the evidence from

neuroimaging studies that brain serotonergic damage is a feature of human users of ecstasy. To date, neuroimaging studies designed to

establish whether levels of brain serotonin neurons are lower than normal in ecstasy users have employed radioligands that bind to one

component of the serotonin neuron, the serotonin transporter (SERT). Because these studies are methodologically flawed in terms of

reliability or validity of the SERT measurement and appear to have employed polydrug users, no definitive information is yet available on the

question of ecstasy toxicity to human brain serotonin neurons. Until these issues are resolved, it cannot be assumed that ecstasy exposure

represents a chronic serotonin deficiency condition. D 2002 Published by Elsevier Science Inc.
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1. Introduction

Experimental animal studies of the role of monoamine

neurotransmitters in brain function typically assess the

influence of experimental surgical and pharmacologic

manipulation of the activity or concentrations of brain

monoamine neurons on behavior. In the human, such

information can also be obtained through pharmacological

investigation of drugs that reversibly or irreversibly alter

neurotransmitter function and, for some neurotransmitter

systems, study of behavior in humans chronically deficient

in number of brain monoamine neurons due either to a

neurodegenerative condition of unknown etiology or to

damage by a selective neurotoxin. In the case of the brain

dopamine neurotransmitter system, the results of human

investigations showing that degeneration of brain dopa-

mine neurons is the fundamental characteristic of both

idiopathic Parkinson’s disease (Ehringer and Hornykie-

wicz, 1960) and parkinsonism caused by a dopaminergic

neurotoxin, MPTP (Vingerhoets et al., 1994), and that

human parkinsonism can be reversed by dopaminergic

agents (Sano, 1960; Birkmayer and Hornykiewicz, 1961)

have established the role of nigrostriatal dopamine in the

control of movement.

Serotonin neurons originate, in the human, in the lower

brain stem raphe nuclei, including the dorsal and median,

and project to all regions of the brain (Tork, 1990). In

humans, the results of a variety of pharmacological studies

have suggested a role for the brain serotonin system in

regulation of such biological processes as mood and appetite

(cf. Staley et al., 1998). However, to date, no human

behavioral disorder has been described for which the etio-

logical involvement of the brain serotonin system has been

clearly established. As in the case of the dopamine neuro-

transmitter system, further information on the function of

serotonin in human brain could be obtained through behav-

ioral examination of subjects deficient in number of sero-

tonin neurons due either to a neurodegenerative disorder or

to damage caused by a neurotoxin. The objective of this

review is to assess the strength of the evidence, involving

examination of the brain, that chronic exposure to the

serotonergic neurotoxin ecstasy (methylenedioxymetham-

phetamine, MDMA) represents a state of decreased brain

serotonin neuron concentration in human users of the drug.
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2. Some behavioral abnormalities reported in chronic

users of ecstasy could be explained by ecstasy-induced

damage to brain serotonin neurons

Animal data indicate that ecstasy causes elevation of

extracellular levels of brain serotonin and, to a lesser

extent, dopamine (Nichols et al., 1982; Kankaapää et al.,

1998). Since this action is blocked by selective serotonin

reuptake inhibitors (SSRIs), the elevation of serotonin is

generally considered to involve serotonin transporter

(SERT)-mediated release (Hekmatpanah and Peroutka,

1990; Rudnick and Wall, 1992; Gudelsky and Nash,

1996), although inhibition of serotonin reuptake might

also be a contributory factor (Iravani et al., 2000). Phar-

macological data in the human showing that some of the

behavioral effects of ecstasy (positive mood, extroversion,

heightened sensory perception) are blocked by the SSRI

citalopram (Liechti et al., 2000a) support the involvement

of serotonin and SERT in the mechanism of action of

ecstasy. The findings that some of the effects of ecstasy are

blocked by ketanserin (perceptual changes, emotional

excitation; Liechti et al., 2000b) and haloperidol (euphoria;

Liechti and Vollenweider, 2000) also suggest some

involvement of the serotonin 5HT2 and (probably via

ecstasy-induced dopamine release) dopamine receptors.

These findings, taken together with the observations, in

ecstasy users during drug withdrawal, of behavioral dis-

turbances involving sleep, memory, and mood (Curran and

Travill, 1997)—behavioral functions considered to be

under partial serotonergic control (Staley et al., 1998;

Meneses, 1999; Portas et al., 2000)—support the notion

that some of the acute effects of ecstasy are probably

mediated by enhanced serotonergic stimulation of as yet

unidentified serotonin receptor subtypes. Conversely, the

withdrawal syndrome might be due to a serotonin defi-

ciency caused by excessive release, metabolism, and

depletion of the neurotransmitter (see Kish et al., 2000).

Animal data also indicate that, depending on the dose,

ecstasy can damage brain serotonin nerve terminals, but

with a sparing of cell bodies, as indicated by a persistent

reduction in serotonin nerve terminal markers (serotonin,

tryptophan hydroxylase, SERT; Stone et al., 1987; Batta-

glia et al., 1987; 1991; Commins et al., 1987; Schmidt,

1987; Ricaurte et al., 1988) and by immunohistochemical

evidence of silver staining and presence of swollen,

fragmented axons (Commins et al., 1987; O’Hearn et al.,

1988) and abnormal reinnervation pattern (Hatzidimitriou

et al., 1999). The mechanism of neuronal damage is

unknown, but may be related to ecstasy-induced release

of dopamine (Stone et al., 1988) and oxidative stress

(Sprague and Nichols, 1995; Colado et al., 1997; Aguirre

et al., 1999; Jayuanthi et al., 1999; Shankaran et al., 1999;

Yeh, 1999). Parenthetically, however, it should be noted

that reactive gliosis, a usual consequence of neurotoxic

damage, has not been reported in animals exposed to

ecstasy, leading some to suggest that the evidence of

actual damage to serotonin neurons by ecstasy is equivocal

(Grob, 2000; Kalia, 2000).

The animal data describing a long-term reduction of

brain serotonin markers following high-dose exposure to

ecstasy suggest that ecstasy might also damage serotonin

neurons in the brain of some human ecstasy users. In this

regard, McCann and Ricaurte (2001) argue that the dose of

ecstasy which causes neurotoxicity in animal studies is close

to that used by human users of the drug (but see Aghajanian

and Lieberman, 2001). Numerous reports have now

appeared describing changes in behavior (mood, cognition,

sleep), which might be serotonin-related, in chronic poly-

drug users who use ecstasy (Krystal and Price, 1992;

Pallanti and Mazzi, 1992; Solowij et al., 1992; Allen et

al., 1993; Curran and Travill, 1997; Bolla et al., 1998;

Parrott and Lasky, 1998; Parrott et al., 1998; Schifano et al.,

1998; McCann et al., 1999a; Morgan, 1999; Gouzoulis-

Mayfrank et al., 2000; Parrott et al., 2000; Reneman et al.,

2000; Rodgers, 2000; Wareing et al., 2000; Bhattachary and

Powell, 2001; Croft et al., 2001; Verkes et al., 2001;

Zakzanis and Young, 2001; for comprehensive review see

Morgan, 2000). The major limitations of these investi-

gations, which will be discussed in detail elsewhere in this

volume, are the continued failure of the investigators to

establish, by forensic drug analysis, whether any of the

subjects had ever actually used ecstasy, and the use, in the

‘‘ecstasy group’’ of subjects who also used other drugs

(especially psychostimulants, opiates, alcohol) which also

affect the same behaviors. Thus, a recent systematic study of

100 drug users recruited from the ‘‘dance scene’’ showed a

concordance of only approximately 50% between self-report

and forensic drug hair analysis (Cooper et al., 2000).

Furthermore, behavioral abnormalities, especially cognitive

impairment, have been described in users of drugs com-

monly used by ecstasy users (e.g., cannabis: Croft et al.,

2001; cocaine: Berry et al., 1993; Tarter et al., 1995; Bauer,

1996; Bolla et al., 1999; Smelson et al., 1999; methamph-

etamine: Simon et al., 2000; Ornstein et al., 2000; Volkow

et al., 2001a,b, opiates: Darke et al., 2000).

The animal toxicity data and human findings of behav-

ioral changes in self-reported polydrug users of ecstasy

raise the possibility that ecstasy might be neurotoxic to

humans. However, a more definitive conclusion on this

public health question will require: (1) forensic confirma-

tion in studies of ecstasy users that the self-report data on

drug use are accurate; (2) behavioral examination of ‘‘pure

ecstasy users’’ (which may not be possible as almost all

ecstasy users use other drugs [e.g., Schifano et al., 1998])

or, if not possible, demonstration of a persistent behav-

ioral syndrome unique to polydrug users who use ecstasy;

and (3) documentation of serotonin neuron damage in

human ecstasy users by postmortem brain examination

(the gold standard) or by neuroimaging studies of living

brain. As described below, only scanty information is

available on the status of brain serotonin neurons in

human ecstasy users.
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3. Measurement by neuroimaging procedures of brain

levels of the SERT is one approach to establish whether

ecstasy might damage serotonin neurons in the human

3.1. Why have so few brain studies of ecstasy users

been conducted?

Ecstasy use is now recognized as a major public health

issue worldwide. However, to date (October 2001), only

three investigations (two neuroimaging, one postmortem)

have been conducted in which components of serotonin

neurons have been measured in the brain of human ecstasy

users. The lack of autopsied human brain investigations is

probably due to the low number of ecstasy users who are

autopsied each year as compared to the number of users of

other neuroactive drugs such as cocaine, methamphetamine,

and heroin in which death from drug toxicity is a more

likely event (Kish, unpublished observations). The small

number of neuroimaging studies of ecstasy users might be

explained by the relative (compared with the dopaminergic

system) absence of neuronal targets for assessment in living

brain and the reluctance of many neuroimagers to use the

presently available radiolabeled probes ([123I]b-CIT;
[11C](+) McN-5652/[11C](� ) McN-5652), which appear

to have uncertain reliability or validity for measurement of

the integrity of serotonin neurons (see below). Finally, there

may be the general perception that damage to brain sero-

tonin neurons in ecstasy users has already been conclusively

demonstrated in the McCann et al. (1998a) positron emis-

sion tomography (PET) investigation (see below).

3.2. Most studies of ecstasy neurotoxicity in human brain

will continue to employ only one marker of serotonin nerve

terminal integrity (SERT)

Because of the relative absence of postmortem human

brain material, and the availability, at the present time, of

only one marker of brain serotonin neuronal number that

can be assessed in living human brain, namely, the SERT

(the site on serotonin neurons which takes released sero-

tonin back into the neuron), investigations of brain serotonin

neuronal integrity in ecstasy users will continue to involve

primarily neuroimaging studies employing radioligands that

bind to this transporter. Although the use of the radioligand

a[11C] methyl-L-tryptophan has been proposed to measure

the rate of serotonin synthesis, and by implication, serotonin

neuronal integrity in living human brain (Chugani et al.,

1998; Nishizawa et al., 1998), it continues to be a contro-

versial issue whether a[11C] methyl-L-tryptophan uptake in

brain reflects serotonin synthesis vs. simple tryptophan

uptake (Shoaf et al., 2000). Thus, it is likely that most

future neuroimaging studies of brain serotonin neurons in

ecstasy users will employ SERT radioligands. This is in

contrast with studies of brain dopamine neuronal integrity,

in which a variety of radioligands that bind to different

components of the dopamine neuron (dopamine transporter,

VMAT2 in dopamine-rich striatum, dopa decarboxylase)

can be employed.

3.3. Strengths and weaknesses of employing SERT as a

marker of the integrity of serotonin neurons by

neuroimaging: what is definitive proof of serotonergic

brain damage?

As shown in Table 1, the two neuroimaging studies (PET:

McCann et al., 1998a; single photon emission computed

tomography [SPECT]: Semple et al., 1999) designed to

assess serotonin neuronal damage in the brain of ecstasy

users have employed radioligand-based methodology

designed to detect binding to SERT, with the assumption that

decreased levels of SERT will reflect decreased number of

serotonin neurons/nerve endings. Is this assumption correct?

As mentioned above, SERT is a protein, localized to the

membrane of serotonin neurons, which is responsible for

taking released serotonin back into the neuron. Although

SERT has traditionally been assumed to be localized to

serotonin nerve endings, recent animal data suggest that

SERT might also be localized to serotonin axon membranes

far from the synapse where it could function to collect and

conserve serotonin that has escaped from the synaptic cleft

(Zhou et al., 1998). The use of SERT as an index of

serotonin neuron integrity is indicated by findings of

decreased brain SERT levels in experimental animals,

including nonhuman primates, exposed to serotonergic

neurotoxins (Battaglia et al., 1987; Scheffel et al., 1998;

Brown and Molliver, 2000). However, it has now been

established that drug-induced changes in levels of brain

neurotransmitter transporters can occur independently of

any changes in the number of serotonin neurons. Thus,

cocaine exposure to experimental animals (Wilson et al.,

1994) and, possibly, in humans (cf. Wilson et al., 1996b),

can cause increased or decreased levels of the striatal

dopamine transporter. This lack of a direct correspondence

between brain dopamine transporter and neuron concentra-

tion indicates that the dopamine transporter can be up- or

down-regulated by some drugs and possibly even in the

drug-free state (e.g., during aging, behavioral states of

chronic dopamine excess or deficiency) and that caution

should be exercised in inferring loss of dopamine neurons

from decreased levels of the dopamine transporter. This

concern has led to the difficulty in interpretation of the

findings of striatal dopamine transporter reductions in

human users of the dopaminergic neurotoxin methamphet-

amine (Wilson et al., 1996a; McCann et al., 1998b; Volkow

et al., 2001a) in which the decrease could be explained as

either drug-induced reversible down-regulation of trans-

porter levels, damage to the dopamine transporter but with

normal number of dopamine nerve terminals, or a neuro-

toxic event in which dopamine transporter loss is accom-

panied by an actual loss of dopamine nerve terminals. In this

regard, Volkow et al. (2001b) recently reported that levels of

the striatal dopamine transporter, assessed by PET, are low
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only in human methamphetamine users examined during

early drug detoxification and recover to normal levels after

more prolonged withdrawal, and concluded that the dop-

amine transporter loss was most likely due to a ‘‘functional

downregulation.’’

Although less attention has been devoted to studies of

SERT regulation, postmortem human brain (Little et al.,

1998; Mash et al., 2000) and SPECT (Jacobsen et al., 2000;

Staley et al., 2001) studies have reported above-normal

levels of brain SERT in human users of cocaine and in

tobacco smokers. These findings suggest that brain levels of

SERT, like the dopamine transporter, might change follow-

ing exposure to some drugs independently of any changes in

levels of nerve terminals.

Experimental animal and/or human data suggest that

SERT levels might also vary as a function of estrogen

status, gender, and variant in a SERT promoter gene

polymorphism in a manner that might be unrelated to

serotonin neuron number.

Estrogen influences brain SERT levels in studies of

female animals, suggesting that this might occur in humans.

Although the data are not entirely consistent, brain SERT

levels and/or mRNA in ovariectomized animals are

increased the day after estrogen (estradiol) exposure

(McQueen et al., 1997; Sumner et al., 1999) whereas levels

are lower after chronic treatment (Mendelson et al., 1993;

Pecins-Thompson et al., 1998 (but see Rehavi et al., 1987).

In a recent primate study, brain SERT mRNA levels were

similarly decreased after estrogen or estrogen plus proges-

terone supplementation, suggesting that estrogen, but not

progesterone, might influence brain SERT levels in women

(Pecins-Thompson et al., 1998).

Most studies of brain SERT in humans still do not

consider that gender might influence levels of the trans-

porter. This is probably due to increased cost and difficulty

of obtaining a representative number of both female and

male subjects for neuroimaging studies and the unstated

assumption that gender probably does not affect brain SERT

levels in humans. However, in a recent postmortem brain

investigation, females had approximately 25% lower SERT

levels in prefrontal cortex (the only area examined) as

compared with those in males (Mann et al., 2000). Clearly,

insufficient data are available to establish conclusively

whether estrogen and gender influence brain SERT levels

in the human. However, these preliminary data suggest that

some consideration should be given that both factors might

influence SERT levels independently of any change in the

levels of serotonin nerve terminal number.

A body of animal and human data also suggest that a

genetic factor might influence brain SERT concentration

without any alteration in neuron number. The SERT gene

(SLC6A4) has been cloned and is localized on chromosome

17q11.1–12 (Lesch et al., 1993; Ramamoorthy et al., 1993).

The SLC6A4 has a polymorphism located in the promoter

region (5-HTTLPR) that consists of 44 base pairs insertion/

deletion (Heils et al., 1996; Lesch et al., 1996). Lesch et al.

(1996) found allele frequencies of 57% for the long (l) or

16-repeat allele and 43% for the short (s) or 14-repeat allele

in a population of 505 subjects of Caucasian origin. Lesch et

al. made the exciting discovery that the SERT gene poly-

morphism appears to be highly functional. Both SERT

expression (transcriptional activity and protein levels

assessed by radioligand binding) and activity were 30% to

more than threefold higher in transformed lymphoblastoid

Table 1

Neurochemical studies of brain serotonin markers in human users of ecstasy

Reference

Subject

number Brain areas

Serotonergic

marker

Mean % change

vs. controls Comments

McCann et al.,

1998a

14 cerebral cortex,

cerebellum,

diencephalon,

midbrain,

striatum, pons

SERT [11C](+) McN-5652,

PET

No percentage

changes reported in

text. Approximately

50% (cerebellum) to

85% (hypothalamus)

reduction calculated

from log scores in

Fig. 3.

Nonspecific binding calculated using

[11C](�) McN-5652 (see Kuikka and

Ahonen, 1999, and Laruelle et al., 2000

for discussion). Data were log-transformed

because of high scatter of subject values

(approximately 30-fold range of control

levels— see Fig. 4). No test– retest data

provided in normal subjects. Extent of past

use of other neuroactive drugs not stated.

No hair analysis.

Semple et al.,

1999

10 cerebral cortex,

striatum, thalamus,

caudal

midbrain/pons

SERT [123I]b-CIT,
SPECT

� 10% to � 13%

(calcarine, occipital,

and cingulate

cortices) normal in

other brain areas

[123I]b-CIT is not specific for SERT, with

validity especially uncertain in areas of low

SERT density (cerebral cortex; for comments

see Heinz and Jones, 2000). Hair analysis

confirmed presence of ecstasy in 7 of

10 subjects; no hair analysis for other drugs

of abuse.

Kish et al.,

2000

1 caudate, putamen,

nucleus accumbens

serotonin

(postmortem brain)

� 60% to � 77% Single case study only. Blood and hair

analysis confirmed recent and past use of

ecstasy but also use of cocaine and opiates.

Low serotonin could be due to reversible

and/or irreversible effects of ecstasy.
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cells that have two copies of the long variant (l) as compared

with those that have the short (s) variant (Heils et al., 1996;

Lesch et al., 1996). Little et al. (1998) subsequently reported

postmortem human brain data consistent with the Lesch et al.

findings, with brain levels of SERT in l carriers approx-

imately twice that of s carriers. New data, however, allow no

clear consensus. Thus, in a more recent postmortem brain

study, SERT levels were found to be unaffected in frontal

cortex of normal subjects by the different variants (Mann

et al., 2000) whereas the results of two SPECT studies that

employed the radioligand [123I]b-CIT are contradictory

(Heinz et al., 2000; Willeit et al., 2001). Although these

data do not yet allow any firm conclusion to be made

regarding the influence of variants in SERT gene poly-

morphism on brain SERT levels in the human, the available

genetic findings suggest that brain SERT levels might be

influenced by genetic makeup and that the results of studies

of drugs on brain SERT in humans might be confounded to

some extent if the control and drug-exposed groups are not

matched with respect to such variables.

The above considerations indicate that a finding of

decreased concentration of brain SERT by a neuroimaging

procedure in the brain of a subject exposed chronically to a

neuroactive drug can be suggestive, but should not be taken

as definitive proof of reduced number of serotonin neurons.

More ‘‘definitive’’ proof of neuronal damage in a con-

dition restricted to damage to nerve terminals (no cell body

loss) can only be obtained by postmortem brain examina-

tion, in which levels of all markers of serotonin nerve

terminal integrity—serotonin, tryptophan hydroxylase, and

SERT—are decreased if nerve terminal loss has occurred. In

addition, if the interval between last exposure to the drug

and death has not been prolonged, histopathological proce-

dures can be utilized to demonstrate the qualitative signs of

acute neuronal damage (the gold standard), namely silver

staining (Switzer, 2000) and swollen, fragmented axonal

elements. At the same time, however, it needs to be

emphasized that all morphological procedures to assess

such signs of neuronal damage rely on the very neuro-

chemical markers (serotonin, tryptophan hydroxylase, and

SERT) that, as discussed above, can be regulated independ-

ently of changes in neuronal number. Because of this

potential confound it can be argued that, on theoretical

grounds, interpretation of studies of serotonin nerve ter-

minal damage (without loss of cell bodies) employing

neurochemical serotonergic markers will always be difficult.

4. Assessment of strength of neuroimaging data on

ecstasy and brain SERT in human brain

SERT has been measured by neuroimaging in a PET

investigation (McCann et al., 1998a) and in a SPECT study

(Semple et al., 1999) of polydrug users of ecstasy. The

major difficulty with both investigations is the uncertainty

that SERT was ever reliably measured.

4.1. McCann PET investigation

The 1998 McCann PET investigation employed binding

of [11C](+) McN-5652 (Suehiro et al., 1993; Szabo et al.,

1995) to measure brain SERT and reported decreases in

binding levels in all 12 examined brain areas (10 of which

were statistically significant) in 14 users of ecstasy (min-

imum reported use of 70 times) as compared with levels in

15 control subjects.

The major limitation of this study is the uncertainty

regarding the reliability and the validity of the SERT mea-

surement by the PET procedure selected by the investiga-

tors. Although [11C](+) McN-5652 is recognized as being

problematic for SERT measurement because of its high

nonspecific binding and suboptimal pharmacokinetic pro-

file, it appears that the radioligand can be used to measure

SERT in regions of the human brain that contain high

density of the transporter (midbrain, thalamus, and stria-

tum) if the quantitation of the nonspecific binding is

conducted using the cerebellum as a reference region

(Parsey et al., 2000; but see Buck et al., 2000). However,

the study of McCann employed a controversial procedure

for the measurement of nonspecific binding, namely, bind-

ing of the inactive enantiomer [11C](� ) McN-5652, which

likely yielded an overestimate of specific binding, espe-

cially in cortical regions (Parsey et al., 2000). This promp-

ted one group to argue that ‘‘. . . the results of this

[McCann] study should be viewed with caution.’’ (Parsey

et al., 2000). Much more seriously, and perhaps related to

the difficulty in quantitation of nonspecific binding, the

individual subject binding values for both the controls and

the ecstasy users in the McCann investigation were so

scattered that the data had to be logarithmically trans-

formed, even in regions of high SERT density. Thus,

examination of the individual control binding values (see

Fig. 4 in McCann et al., 1998a) revealed a wide range of

[11C](+) McN-5652 binding values in which the highest

SERT concentration is approximately 30–35 times the

lowest. The need to logarithmically transform in vivo

neuroimaging data for measurement of a component of a

monoamine neurotransmitter neuron (it is reasonable to

assume that concentrations of such components should be

distributed normally) appears to be without precedent. (For

comparison, see a much tighter distribution of SERT brain

levels in normal human subjects using a radioligand with a

higher specific/nonspecific binding and in which the non-

specific binding was calculated using a more conventional

procedure (Houle et al., 2000)). The additional methodo-

logical difficulties with the study are the absence of any

published test–retest data in normal human subjects (which

would address significantly the issue of the wide scatter of

the data) and, based on more recent data employing experi-

ments with an SSRI; uncertainty as to whether [11C](+)

McN-5652 binding in regions of very low SERT density

(cerebral and especially cerebellar cortices) actually reflects

binding to SERT (see Parsey et al., 2000).
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The percentage changes betweenmean control and ecstasy

group values are not stated in the McCann publication, an

omission that has caused some confusion in the literature.

Since many readers do not appreciate that the mean values

provided in the McCann figures have been log-transformed,

the magnitude of the differences have been incorrectly

calculated from the summary figure (Fig. 3, McCann et al.,

1998a) as representing only a modest (e.g., 22%: Holland,

1999; 25%: Gamma, 2000) decrease in brain [11C](+) McN-

5652 binding in the ecstasy group. However, after taking into

account the log-transformation of the Fig. 3 data, it is apparent

that the average extent of loss of [11C](+) McN-5652 binding

in the polydrug ecstasy users is actually quite severe, ranging

from approximately 50% loss of binding in the cerebellum (a

region with very low SERT levels) to a profound 85%

depletion in the hypothalamus. The extent of reduction

actually becomes even more striking if one accepts the

argument of the investigators that ‘‘. . . PET imaging with

[11C] McN-5652 tends to underestimate the magnitude of

reductions in 5-HT transporter density by about 50%.’’

(McCann et al., 1999b). This would appear to suggest a

global loss of about 75% to 95% of [11C](+) McN-5652

binding/SERT concentration in brain of ecstasy users who,

presumably, do not display any clinical signs of neurotoxicity.

Because of the serious methodological concerns in the

PET measurement related to the high scatter of the values

for the control and drug groups and lack of test–retest

results, the data derived from the McCann investigation can

only be considered, at most, ‘‘semiquantitive.’’ Neverthe-

less, since the mean binding values in the ecstasy group are

lower than that of the controls in all brain regions examined,

it is not unreasonable to suggest that some reduction of

[11C](+) McN-5652 binding had probably occurred in the

brain of the ecstasy users.

4.2. Semple SPECT investigation

The second neuroimaging investigation of SERT in

ecstasy users employed the radioligand [123I]b-CIT by a

SPECT procedure in 10 male ecstasy users (minimum

reported use of 50 tablets) and 10 control subjects (Semple

et al., 1999). The assumption in the Semple investigation

was that brain [123I]b-CIT binding in striatum measured

1 day after injection of the radioligand reflects binding to

the dopamine transporter (a procedure widely used in

studies of patients with Parkinson’s disease) whereas

binding in all brain areas (including striatum) measured

90 min following injection reflects binding only to SERT.

Mean [123I]b-CIT binding in the striatum (caudate, puta-

men) measured 1 day after radioligand injection was

normal in the ecstasy users, suggesting that ecstasy was

not toxic to dopamine neurons in the ecstasy users of this

study. Analysis of 90-min scan data revealed normal

[123I]b-CIT binding levels of striatum, midbrain/pons,

thalamus, and cerebral cortex of the ecstasy users, with

the exception of a slight (10–13%) reduction in binding in

several cerebral cortical brain areas (occipital, cingulate,

and calcarine). In contrast to the data of the McCann

investigation, the binding data in the Semple study were

not log-transformed.

The primary difficulty with the Semple SPECT invest-

igation is the use of a radioligand for measurement of

SERT, [123I]b-CIT, which is not specific to SERT as it also

binds to both dopamine and noradrenaline transporters. In

fact, the uncertainty regarding the validity of [123I]b-CIT
for SERT measurement in human brain is clearly acknowl-

edged by most investigators who employ this nonselective

radioligand in human investigations (e.g., Malison et al.,

1998; Dahlström et al., 2000; van Dyck et al., 2000;

Laruelle et al., 2000; Pirker et al., 2000; Staley et al.,

2001). Because of the lack of selectivity of [123I]b-CIT for

SERT, the radioligand is not usually used for measurement

of SERT in areas of high dopamine transporter concentra-

tion such as the dopamine-rich striatum. A controversial

issue is whether [123I]b-CIT should ever be employed for

measurement of SERT in those extra-striatal brain areas of

the human such as the midbrain/brain stem and diencephalon

which contain, in addition to SERT, dopamine (e.g., in

substantia nigra) and noradrenaline transporters. In this

regard, proponents of the use of [123I]b-CIT in these areas

cite data demonstrating some displacement of [123I]b-CIT
binding to brainstem/thalamus in humans exposed to the

SSRI citalopram (Pirker et al., 1995). However, even at

high doses of the SSRI (20–60 mg), the extent of maximal

displacement in humans is only about 50% (Pirker et al.,

1995; see also Tauscher et al., 1999), suggesting that a

substantial proportion of [123I]b-CIT is probably binding

to non-SERTs.

An equally controversial issue regarding the utility of

[123I]b-CIT for SERT measurement is whether the radio-

ligand should be employed for measurement of SERT in

areas of very low SERT density, such as the cerebral cortex,

in which the measurement might not be reliable or valid

(e.g., presence of multiple transporters), with some SPECT

groups concluding that it should not be utilized for this

purpose in the human (Heinz and Jones, 2000; Laruelle et

al., 2000). Although administration to humans of the SSRI

citalopram does alter washout of [123I]b-CIT from cerebral

cortex (Kuikka et al., 1995; see Ebmeier et al., 2000) the

results of this SPECT investigation do not allow assessment

of the proportion of cortical [123I]b-CIT binding attributable

to SERT vs. that to other transporters.

Finally, the Semple investigation has been criticized

because of the selection of a short time point (90 min after

injection of the radioligand) for measurement of the binding

that probably was not at equilibrium (see Heinz and Jones,

2000 for discussion).

The major limitations of the Semple study are the use of

a radioligand recognized for not being selective for meas-

urement of SERT in brain areas in which non-SERTs are

known to be present and uncertainty regarding the extent to

which the signal in the SERT-poor cerebral cortex (in which
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slight changes in binding were observed in the ecstasy

users) reflects binding to SERT.

The above considerations suggest that methodological

problems related to the reliability and/or validity of the

procedure for SERT measurement cast doubt on the

conclusions in the McCann and Semple investigations

that brain SERT levels and, by implication, serotonin

neuron concentration, are lower than normal in chronic

users of ecstasy.

In addition to these issues related to SERT measurement,

there are also other potentially complicating factors, generic

to such retrospective studies, which also affect interpretation

of the data. The most difficult issue to address in all such

investigations is the possibility, often raised by users of

ecstasy, that the subjects of the ecstasy group in the

investigations might have had a condition (e.g., major

depressive disorder) preexisting drug use which was asso-

ciated with decreased number of brain serotonin neurons.

Although this possibility must be acknowledged, and can

never be ruled out, other than in a prospective study in

which measurements are made before and after drug expo-

sure, this potential confound should not be used to dismiss

arbitrarily the results of all retrospective investigations,

especially when animal data suggest the possibility of

ecstasy neurotoxicity in human brain.

A surprising failing of almost all studies of brain and

behavior in ecstasy users is the lack of any forensic data to

establish whether the ecstasy users had ever actually taken

the drug (on even a single occasion) or whether the ecstasy

users had used other drugs of abuse that could have affected

brain SERT levels. This is related to concerns that ecstasy

users are often unaware of the contents of the drugs that are

self-administered and that other psychoactive drugs (e.g.,

cocaine) often taken by ecstasy users affect SERT levels in

human brain (see above). In the McCann investigation, for

example, not only was there the lack of any drug testing to

prove that any of the subjects in the ecstasy group had ever

used ecstasy, but also lacking was any statement on the

results of an administered questionnaire on use of drugs

other than ecstasy. In contrast, the Semple investigation

included the results of drug testing in hair. However, in this

study insufficient hair was taken to establish use of drugs

beyond approximately 1 month or use of non-amphetamine

(e.g., cocaine) drugs of abuse, and with three ‘‘ecstasy

users’’ who tested negative for ecstasy in hair still included

in the ecstasy group.

Regarding the potential confounds of gender and var-

iants in SERT promoter gene polymorphism, the issue of

gender was dealt with in the Semple (but not McCann)

investigation by inclusion of only males in the study.

Unfortunately, however, such a design would not permit

testing of the hypothesis, based on findings in a prospective

study that the psychoactive effects of ecstasy are more

intense in women than in men (Liechti et al., 2001), that

ecstasy might be more neurotoxic to the brains of women

than that of men.

Neither neuroimaging investigation took into account

the possible influence of variants in SERT promoter gene

polymorphism.

4.3. Kish postmortem brain study

Finally, Kish et al. (2000) recently described low levels

(� 60% to � 77%) of serotonin, but generally normal

dopamine concentration, in autopsied striatum of a long-

term ecstasy user who had also used cocaine and opiate

drugs (drug history confirmed by sequential hair analysis)

and had died of toxicity to one or more of these drugs.

Although a limitation of this single case study is the coabuse

in the single case of cocaine and heroin, investigations in the

same laboratory have not disclosed any reduction of sero-

tonin in chronic users of cocaine (Wilson et al., 1996b) or

heroin (Kish et al., 2001), suggesting that the decreased

serotonin was caused by the ecstasy exposure. These data

are compatible with either an acute, reversible effect (sero-

tonin depletion) of ecstasy and/or actual toxic degeneration

of serotonin nerve endings.

5. Recommendations

It can be expected that many of the important issues

affecting the interpretation of studies of serotonin neuronal

markers in living brain of ecstasy users will be satisfactorily

addressed in future studies, in part by the use of more

selective radioligands for SERT measurement by SPECT or

PET, appropriate quantitation of the data, confirmation of

drug use by forensic drug analysis, and, if at all possible,

selection of a group of ‘‘pure ecstasy users’’ for study.

Furthermore, as neuroimaging data relying on a single

marker of serotonin neurons (SERT), even in subjects

withdrawn (e.g., 6–12 months) from ecstasy, can only be

suggestive of brain damage, some postmortem confirmation

of toxicity using established histopathological procedures

will also be required. Until this is accomplished, most

neuroscientists and ecstasy users will continue to consider

the question of possible toxicity of ecstasy to serotonin

neurons in human brain as unresolved.

6. Conclusions

1. It is likely, on the basis of animal data, that ecstasy, at

some dose, will damage serotonin neurons in human brain.

However, because of methodological problems in the lim-

ited number of studies conducted in the human, no con-

clusions can yet be established on ecstasy toxicity in human

brain or whether ecstasy exposure represents a chronic

serotonin deficiency syndrome.

2. The theoretical limitation of studies relying on neuro-

chemical markers of the integrity of serotonin neurons,

which can be up- and down-regulated independently of

S.J. Kish / Pharmacology, Biochemistry and Behavior 71 (2002) 845–855 851



neuronal number, to assess serotonin neuronal damage

should be recognized.

Appendix

Since submission of this review, Reneman et al.

(2001a,b) recently reported slightly decreased [123I] b-CIT
binding in brain of human ecstasy users. As discussed in

detail in section 4.2, interpretation of the SPECT data is

made difficult by the uncertainty that SERT was never

reliably measured.
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